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Abstract

COLLECTIVE DYNAMICS FOR HETEROGENEOUS NETWORKS OF THETA
NEURONS

Tanushree Luke, PhD

George Mason University, 2013

Dissertation Director: Dr. Paul So

Collective behavior in neural networks has often been used as an indicator of com-

munication between different brain areas[1–4]. These collective synchronization and

desynchronization patterns are also considered an important feature in understand-

ing normal and abnormal brain function[5–9]. To understand the emergence of these

collective patterns, I create an analytic model[10] that identifies all such macroscopic

steady-states attainable by a network of globally coupled canonical Type-I neurons.

This network, whose basic unit is the model “theta” neuron[11], contains a mixture

of excitable and spiking neurons coupled via a smooth pulse-like synapse. Applying

the Ott-Antonsen reduction method in the thermodynamic limit[12, 13], I obtain a

low-dimensional evolution equation that describes the asymptotic dynamics of the

macroscopic mean field of the network. This model can be used as the basis in un-

derstanding more complicated neuronal networks when additional dynamical features

are included.

From this reduced dynamical equation for the mean field, I show[10] that the net-

work exhibits three collective attracting steady-states. The first two are equilibrium



states that both reflect partial synchronization in the network, whereas the third is a

limit cycle in which the degree of network synchronization oscillates in time.

In addition to a comprehensive identification of all possible attracting macro-

states, this analytic model permits a complete bifurcation analysis of the collective

behavior of the network with respect to three key network features: the degree of

excitability of the neurons, the heterogeneity of the population, and the overall cou-

pling strength. The network typically tends towards the two macroscopic equilibrium

states when the neuron’s intrinsic dynamics and the network interactions reinforce

each other. In contrast, the limit cycle state, bifurcations, and multistability tend to

occur when there is competition between these network features.

I also outline here an extension of the above model[14] where the neurons’ ex-

citability varies in time sinuosoidally, thus simulating a parabolic bursting network.

This time-varying excitability can lead to the emergence of macroscopic chaos and

multistability in the collective behavior of the network.

Finally, I expand the single population model given in [10] to examine a two-

population neuronal network where each population has its own unique mixture of

excitable and spiking neurons, as well as its own coupling strength (either excitatory or

inhibitory in nature). Specifically, I consider the situation where the first population is

only allowed to influence the second population without any feedback, thus effectively

creating a feed-forward “driver-response” system.

In this special arrangement, the driver’s asymptotic macroscopic dynamics are

fully explored in the comprehensive analysis of [10]. Then, in the presence of an

influence from the driver, the modified dynamics of the second population, which now

acts as a “response” population, can also be fully analyzed. As in the time-varying

model, these modifications give rise to richer dynamics to the response population

than those found from the single population model, including multi-periodicity and

chaos.



Chapter 1: Neuroscience Background

The adult human brain is comprised of an enormous number of neurons, estimated

to be on the order of 85 billion[15]. The synaptic connections between these neurons,

both electrical and chemical in nature, are themselves extremely complex, giving rise

to approximately 1015 synapses in the brain as a whole[16, p. 1]. The dynamics of

these individual neurons and their synaptic connections represent a microscopic view

of neuronal activity[17].

On a macroscopic level, these neurons are arranged into neural assemblies ex-

hibiting collective patterns of activity (such as synchronization and desynchroniza-

tion)[5, 18, 19]. In particular, it has been shown that various regions of the brain

communicate with each other by means of these neural activity patterns[1–4]. Fur-

ther, normal and abnormal brain functions have also been shown to be correlated with

these collective patterns[5–9, 20]. For example, epileptic seizures have traditionally

been associated with excessively synchronized rhythmic discharges in large popula-

tions of neurons[21], but have recently been shown to correlate with desynchrony

during seizure-like events[22, 23].

One avenue in understanding these collective patterns, as well as the neurophysi-

ological microscopic characteristics that give rise to them, is by use of theoretical and

computational models. Models for individual neuronal characteristics range from elec-

trophysiologically detailed descriptions (e.g. Hodgkin-Huxley[24]) to simpler abstract

mathematical representations (e.g. the integrate-and-fire model[25, p. 268-272]). The

choice of these models depends on the particular question of interest and the level of

detail required. For example, to understand the interplay between individual ionic

1



channels and conductance, one would use the former. On the other hand, the latter

is better suited to exploring effects related to the interconnection of these neurons in

a network.

In this dissertation, my primary goal is to create a concise mathematical model

that captures many of the salient features of a “real” neural network. As previously

stated, however, these networks are complicated not only in view of their overall

dynamics, but also by the complexity of their individual components. For example,

a “real” neural network can be made up of a mixture of excitatory and inhibitory

neurons, and the dynamics of each are governed by various types of membranes, ionic

channels, etc.[16, 26].

The purpose of this chapter, rather than focusing on the neurophysiological de-

tails of these components, is to identify the common mechanisms by which these

neurons interact with each other. Once these essential mechanisms are simplified

and understood mathematically, they can be used to identify larger categories with

common features (e.g. Type-I vs. Type-II neurons). These common sets, in turn,

can then be used to build larger networks that reflect the dynamical characteristics of

their components, which is essential for understanding the brain’s emergent collective

behaviors[10, 27–29].

1.1 Neuronal Properties

1.1.1 Dynamics of a Spiking Neuron

I begin here with a basic description of the electrophysiology of a neuron. The propa-

gation of electrical signals in neurons occurs in one of two ways: 1) passively over short

distances via graded potentials, and 2) actively through transmission between neu-

rons via action potentials. While graded potentials result from the passive diffusion

2



of ionic currents across the cell membrane, action potentials (or spikes) are gener-

ated due to dynamic changes in the conductances[16, p. 143]. A critical difference is

that graded potentials travel relatively short distances, whereas action potentials can

travel long distances. Therefore, action potentials represent the primary mechanisms

by which one neuron communicates with another[16, p. 5].

There are two phenomena associated with spike generation: 1) neuronal excitabil-

ity, or 2)a transition (or bifurcation) in neuronal state from quiescence to firing[30,

p. 82]. In neurophysiology, the former will only cause an action potential under certain

conditions, highlighted by Izhikevich[25, p. 203] as follows:

A textbook definition of neuronal excitability is that a “subthreshold”

synaptic input evokes a small graded post-synaptic potential (PSP), while

a “superthreshold”(sic) input evokes a large all-or-none action potential....

Figure 1.1 shows a reproduction of a figure of an action potential recorded from a

pyramidal neuron in the CA1 region of a rat hippocampus[31], similar to that obtained

by Hodgkin and Huxley in their seminal experiment on a squid giant axon[32]. Here,

the “resting potential” of pyramidal neurons lies in the range of approximately −85

and −60 mV, with a “threshold potential” for this cell approximately equal to −53

mV. As can be seen from this figure, only a brief depolarizing current that evokes

a response greater than the threshold potential will result in a non-linear response

corresponding to the firing of a spike.

The second phenomenon results from a qualitative change of dynamical behavior

(i.e. rest to periodic spiking) when a system parameter is varied[30, p. 84],[25, p. 218].

This is a consequence of the fact that an excitable neuron is typically near a dynam-

ical bifurcation point. As one varies a system parameter gradually, the neuron can

transition from resting to periodic spiking state by means of a specific bifurcation, to

3



Figure 1.1: Diagram representing the effect of both a supra- and sub-threshold stim-
ulus on the firing of an action potential in a rat hippocampus[31].

be discussed in Section 1.1.2.

A viable neuronal model has to faithfully represent all of the salient features of a

spiking neuron. In the next section, I outline some of the key distinctions between

periodically spiking neurons that give rise to different classifications: namely, Type-I

and Type-II neurons.

1.1.2 Type-I vs. Type-II Neurons

In the mid-twentieth century, Hodgkin and Huxley began a series of voltage-clamp

experiments on a squid giant axon to describe how changing ion currents in a neuron

give rise to action potentials[24, 32]. To study these non-linear excitable properties,

Hodgkin and Huxley inserted two electrodes into the neuron membrane. The elec-

trodes recorded the transmembrane voltage, and current was injected into the axon

to keep this transmembrane voltage constant[16, p 143-4],[33, p. 151-3].

By applying a weak but sustained external current of increasing magnitude to the

cell, thereby perturbing the membrane potential, Hodgkin and Huxley were able to

classify different types of neurons according to their excitability properties. When

4



the current was small, the neuron potential was at equilibrium; however, past a

certain critical applied current, the neuron began to fire repeatedly at a specific

frequency[30, p. 83]. Based on these unique firing characteristics, Hodgkin classified

different axons into three distinct classes1 as follows[34, p. 49]:

• Class 1: Axons fire at arbitrarily low frequencies, have a sharp threshold (i.e. a

fixed amplitude[30, p. 84]), and can have long latency to firing.

• Class 2: Action potentials are generated in a certain frequency band, with a

positive minimal frequency. They have variable thresholds and a short latency.

• Class 3: An intermediate classification that has a rest potential far below its

threshold potential[30, p. 83].

In 1989, Ermentrout and Rinzel[35] identified an additional dynamical property

linked to these two types: namely, that Type-I neurons transition from rest to periodic

spiking by means of a Saddle-Node on the Invariant Circle (SNIC) bifurcation (c.f.

Section 1.3.2), whereas Type-II neurons transition via a subcritical Andronov-Hopf

bifurcation2.

Ermentrout was also able to identify another distinguishing feature between these

types; specifically, in how their “phase resetting curves” (PRC) relate to these classi-

fications[39]. The PRC predicts the delay or advance in the timing of the next spike

in a regularly spiking neuron in response to a perturbation[40]. Through analysis

1Some authors, including the original, use the word “class” rather than “type” to denote these
different neuronal behaviors. Throughout this dissertation, I will make use of the nomenclature
“Type-I” to refer to “Class 1,” etc.

2The Andronov-Hopf bifurcation is the onset of a limit cycle occurring when an equilibrium
changes stability via a pair of purely imaginary eigenvalues[36]. It can occur as one of two types:

supercritical (also called “subtle”), when a stable spiral changes into an unstable spiral surrounded

by a small, nearly elliptical limit cycle[37, p. 249], and subcritical (or “catastrophic”), where an

unstable limit cycle shrinks to zero amplitude and engulfs a stable spiral[37, p. 252], rendering it

unstable and causing the system to jump discontinuously to a new attractor[38, p. 544].
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of the SNIC bifurcation in a Type-I neuron, Ermentrout demonstrated that Type-I

neurons have Type-I PRC’s; i.e. the phase of a regularly spiking Type-I neuron will

only advance when a stimulus is received. Conversely, Type-II neurons have been

shown to exhibit Type-II PRC’s, consisting of both advances and delays in phase in

response to a depolarizing input, depending on the phase of the neuron at the time

of stimulus[40, 41].

From this result, it is possible to infer the classification of neurons based upon

their PRC’s. Layer 5 neocortical pyramidal neurons in the rat motor cortex[42] and

in the cat sensorimotor cortex[43,44], typically advance the timing of the next spike,

and therefore imply the existence of Type-I excitability. Conversely, rat Layer 2/3

pyramidal neurons in the visual cortex are equally likely to exhibit Type-I or Type-II

PRC’s[45], thereby indicating that these are Type-II neurons.

Numerous studies have also directly classified neurons from specific anatomical

regions based on their frequency at the onset of firing. Recently, Wang et. al. have

shown direct evidence of both Type-I excitability and Type-I PRC’s in hippocampal

CA1 pyramidal neurons[40]. Further, Tateno et. al.[46] have characterized regular

spiking (excitatory) and fast spiking (inhibitory) interneurons in the rat somatosen-

sory cortex. They demonstrate that the onset of firing for regular spiking neurons

happens at low frequencies, consistent with Type-I excitability; whereas fast spiking

neurons appear to be Type-II in character, in that they cannot support sustained

periodic firing below a frequency range of 10-30 Hz.
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1.2 Computational Neuronal Models

Even within the limited summary of Section 1.1, it becomes immediately apparent

how difficult it becomes to capture all of the biophysical complexity of a “real” neu-

ral network with a mathematical model. The task of modeling a network of “real”

neurons, therefore, becomes prohibitive unless one makes some simplifying assump-

tions. These simplifying assumptions define what are known as “model” neurons in

the field of computational and theoretical neuroscience[47, p. 5]. The model neurons

that make up the neural network have to be simple enough to make the network ana-

lytically and mathematically tractable, while maintaining the essential characteristics

of neuronal behavior, as described in Section 1.1. To this purpose, I introduce here

some of the more historically well-known computational models for understanding

neural dynamics.

1.2.1 The Hodgkin-Huxley Model

In a seminal paper in 1952, A. Hodgkin and A. Huxley introduced a biophysically

detailed, mathematical model to capture the underlying mechanisms associated with

spike generation and propagation in neurons[24]. Here, they found that the squid

giant axon has the following main types of currents: (1) the persistent voltage-gated

K+ current, (2) the transient voltage-gated Na+ current, and (3) the leak current,

which is carried mostly by Cl− and other ions[16, p. 149],[25, p. 37]. In addition,

Hodgkin and Huxley also discovered that the K+ conductance was controlled by four

activation gates and Na+ by three activation gates and one inactivation gate[25, p. 34].

Viewing the quantities Vm, n, m, and h as variables related to the transmembrane

potential, potassium activation, sodium activation, and sodium inactivation, respec-

tively, the system of dynamical equations representing the Hodgkin-Huxley model
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can be written as:

CV̇m = I − gKn
4(Vm − VK)− gNam

3h(Vm − VNa)− gl(Vm − Vl), (1.1a)

τnṅ = −[n− n0(Vm)], (1.1b)

τmṁ = −[m−m0(Vm)], (1.1c)

τhḣ = −[h− h0(Vm)], (1.1d)

where I(t) is the total current through the membrane, C represents the capacitance,

Vi denotes voltage of the ith channel, and gi refers to the conductance per unit area

of the ith channel. The first of (1.1) is simply a current balance equation across the

cell membrane, whereas the other three are kinetic equations describing the gating

channels. The subscripts m, K, Na, and l correspond to the membrane wall, the K+

channel, the Na+ channel, and the leakage current, respectively. Finally, n0, m0, and

h0 denote the asymptotic values of the corresponding activation variables[47, p. 6-7].

The significance of the Hodgkin-Huxley model lies in the accuracy of its predic-

tions. Here, one finds noteworthy agreement between the numeric results obtained

from the above system of differential equations with those acquired experimentally

from the squid giant axon[24],[16, p. 143-4]. On one hand, the simplicity of the

Hodgkin-Huxley mathematical expressions provide accurate insights into the com-

plex time- and voltage-dependent changes in K+ and Na+ conductances[31]. On the

other hand, the relative high-dimensionality of this model makes its application to

very large networks of interconnected neurons computationally cumbersome.
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1.2.2 The Morris-Lecar Model

To explain the underlying mechanisms of action potentials generation in a barnacle

muscle fiber, K. Morris and H. Lecar in 1981[48] proposed a much simpler model than

the Hodgkin-Huxley model described above. Based on the voltage-clamp experiments

performed by Keynes in 1973 on a giant barnacle muscle fiber [49], the Morris-Lecar

model describes the behavior of the three main channels: a potassium channel, a

calcium channel, and a leak channel. For the sake of simplicity, the underlying as-

sumptions of the model are that the calcium current depends instantaneously on the

voltage[48]. Under this simplified hypothesis, the Morris-Lecar models describes the

behavior of the membrane through the following system of dynamical equations for

the voltage V (t) and the potassium activation n(t):

C
dV

dt
= Iapp − gL(V −EL)− gKn(V − EK)− gCam∞(V )(V −ECa)

≡ Iapp − Iion(V, n), (1.2a)

dn

dt
= φ

n∞(V )− n

τn(V )
, (1.2b)

where C represents the capacitance of the cell membrane, Iapp is the applied current to

the neuron, and g and E represent the conductance and the voltage difference across

each of the three ionic channels (K+, leak, and Ca+, respectively). The parameters
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m∞(V ), n∞(V ), and τn(V ) are defined by:

m∞(V ) =
1

2

[

1 + tanh

(

V − V1
V2

)]

, (1.3a)

n∞(V ) =
1

2

[

1 + tanh

(

V − V3
V4

)]

, (1.3b)

τn(V ) = 1/ cosh

(

V − V3
2V4

)

, (1.3c)

with V1, V2, V3, and V4 chosen to fit experimental voltage-clamp data.

Despite the considerable simplicity of the Morris-Lecar model over the Hodgkin-

Huxley, the former still retains many important features of neuronal activity; e.g.

the generation of action potentials, the existence of a firing threshold, and persistant

oscillatory behavior in response to an increase in the applied current[34, p. 49]. Al-

though much simpler in construct, the Morris-Lecar model also suffers from the same

limitations as the Hodgkin-Huxley model, i.e., its additional complexity can prove

computationally challenging for extremely large networks of neurons.

1.2.3 The Integrate-and-Fire Models

The integrate-and-fire (IF) group of models[25, p. 268-272] (e.g., integrate-and-fire,

quadratic integrate-and-fire, “leaky” integrate-and-fire, etc.) represent some of the

simplest models to understand the dynamics of a spiking neuron. Compared to the

biophysically detailed nonlinear conductance-based models like the Hodgkin-Huxley,

the integrate-and-fire class of models are described by a simple first-order differential

equation for the variable V(t). For example, the “leaky” integrate-and-fire model is
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given by:

τ
dV (t)

dt
= −V (t) +RI(t)

if V (t) = Vth, V (t) → Vf → Vreset, (1.4)

where the voltage, upon reaching a threshold Vth, is set to a voltage Vf at a “firing

time” tf , when the neuron is said to have fired, and is immediately afterwards reset to

a voltage Vreset. Here, the change in voltage over time is modeled by envisioning the

neuron as a simple electrical circuit with a resistor R and a capacitor C in parallel[50],

which in turn represent the membrane’s resistance and capacitance respectively. In

this model, I represents the current through the membrane and τ ≡ RC is the time

constant of the circuit[50].

Although the simplicity of this circuit cannot explain the biophysical mechanisms

of the spike generation itself, it can model the regular periodic activity of the neuron

by use of basic physics principles. More specifically, if the capacitor is charged to a

certain threshold potential, a spike is generated and the capacitor discharges, resetting

the membrane potential to a lower initial value[51]. However, the standard leaky IF

models do not correctly reproduce neuronal dynamics close to the firing threshold[52].

Another member of this family, the Quadratic Integrate and Fire (QIF) model,

is often used to simulate Type-I neuronal behavior[50]. Mathematically, the time

dependence of the membrane potential V (t) in the QIF is given by:

τ
dV (t)

dt
= a0(V (t)− Vrest)(V (t)− Vc) +RI(t)

if V (t) = Vth, V (t) → Vrest, (1.5)
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where a0 is a positive definite parameter, Vrest < Vc < Vth are the “rest,” “critical,”

and “threshold” transmembrane voltages of the neuron, respectively, R and I(t) are

the resistance and the driving current, respectively, and τ ≡ RC represents the time

constant of the circuit. For V (t) < Vc, the voltage decays back to the resting potential

Vrest. However, if V (t) > Vc, the voltage increases to Vth, at which point the neuron

fires and the voltage is “reset” to Vrest.

The QIF model represents a slightly more detailed dynamical model compared to

its other integrate-and-fire family members, while still retaining sufficient simplicity

to use in simulating a larger network. However, the need to implement a “manual”

resetting of the voltage (a feature of all of the IF models) introduces a discontinuity

in the dynamical behavior of this model near firing, which calls into question how well

the QIF model performs for a realistic time-dependent input scenario when the neuron

could spend a significant amount of time far away from the firing threshold[52, 53].

1.2.4 The Wilson-Cowan Model

In 1972, using a “mean field” approach, H. Wilson and J. Cowan described the macro-

scopic dynamics of interacting populations of neurons[54]. These interacting popula-

tions consist of both excitatory and inhibitory groups of spatially localized neurons.

Denoting the proportion of neurons firing at a given time t in the former by E(t) and

the latter by I(t), the Wilson-Cowan model in its original form gives the following
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set of coupled, nonlinear differential equations:

E(t+ τe) =

[

1−
∫ t

t−re

E(t′)dt′
]

− Se

{
∫ t

−∞

α(t− t′) [(c1E(t
′)− c2I(t

′) + P (t′)] dt′
}

,

(1.6a)

I(t+ τi) =

[

1−
∫ t

t−ri

I(t′)dt′
]

− Si

{
∫ t

−∞

α(t− t′) [(c3E(t
′)− c4I(t

′) +Q(t′)] dt′
}

,

(1.6b)

where c1, c2, c3, and c4 are the positive synaptic coefficients, P (t) and Q(t) represent

external inputs to each population, α(t − t′) is the stimulation time decay function,

and τe and re (or τi and ri) represent the time period and the duration of the absolute

refractory period of the excitatory (resp., inhibitory) populations.

Se and Si are the sigmoidal response functions representing the interactions be-

tween the excitatory and inhibitory subpopulations, respectively. This nonlinear sig-

moidal function is given by:

S(x) =
1

1 + exp[−a(x − θ)]
− 1

1 + exp(aθ)
, (1.7)

where a and θ represent the value and the position of the maximum slope of the

function according to:

Max[S ′(x)] ≡ S ′(θ) ≡ a

4
. (1.8)

Phase plane and numerical analysis of a simplifed version of the model indicate

that these interacting neuronal populations exhibit hysteresis as well as simple peri-

odic behaviors in response to stimuli. These results are qualitatively robust since they

are independent of the choice of a particular sigmoid response function[54]. However,
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this model gives the activity level in the whole E(t) and I(t) populations and does not

give any information about the individual elements within the population. Conse-

quently, within the original Wilson-Cowan model itself, there is no direct mechanism

to explicitly include heterogeneity within these populations. Further, without addi-

tional simplifying assumptions (1.6) is also not analytically solvable, thereby making

any additional bifurcation analysis of the model more complicated.

1.2.5 The Kuramoto Model

The Kuramoto model of a large system of coupled oscillators was first introduced by

Y. Kuramoto in 1975[55,56]. In this model, the only dynamical variable is the phase

of the ith oscillator θi, which evolves according to:

dθi(t)

dt
= ωi +

K

N

N
∑

j=1

sin(θj − θi), (1.9)

where K is the global coupling strength, N is the number of oscillators, and ωi is

the natural frequency of the ith oscillator, which is chosen from a distribution g(ωi).

For simplicity, Kuramoto assumed a unimodal and symmetric g(ωi) distribution for

all ω[56]. This dynamical equation represents the simplest possible expression of a

system of equally weighted, all-to-all, purely sinusoidal coupled oscillators[56].

Kuramoto introduced a “mean-field” parameter z(t) representing the overall state

of the system of N coupled oscillators, each with phase θ, defined as:

z ≡ reiψ ≡ 1

N

N
∑

j=1

eiθj . (1.10)
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Here, r represents the overall coherence of the phases in the network, ranging from

0 (completely incoherent) to 1 (perfectly coherent), while ψ represents the average

phase of the network as a whole. In terms of this mean field parameter, the dynamical

equation for the phase of the ith oscillator, θi, can be written as:

dθ(t)

dt
= ωi +Kr sin(ψ − θi). (1.11)

Although the Kuramoto model itself does not expressly capture the neurophysio-

logical excitability of a neuron, applications of this simple approach have successfully

modeled the onset of synchrony in a wide range of biological and biophysical systems,

from populations of fireflies and crickets[57–59], to pacemaker cells in the heart and

circadian pacemaker cells in the brain[60–62].

1.3 The Theta Neuron Model

So far, I have described several different approaches to mathematically model neu-

ronal behavior, and have discussed the strengths and weaknesses of each of these

approaches. In this section, I focus exclusively on the the theta neuron model[11].

This model neuron will form the basic building block of my full network formalism in

this dissertation. It represents a reasonable compromise between capturing the impor-

tant individual characteristics of a firing neuron, while retaining sufficient simplicity

and mathematical tractability to be useful in a larger network.
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1.3.1 General Description

In 1986, Ermentrout and Kopell [11] derived the canonical3 normal form for a Type-

I excitable neuron near its bifurcation point. The resulting phase model for the

“theta” neuron (or Ermentrout-Kopell canonical model) is described by the following

equation:

dθ(t)

dt
= 1− cos θ(t) + (1 + cos θ(t))I(t), (1.12)

where the phase variable θ(t) describes the state of the neuron and I(t) is a parameter

that describes the input to the theta neuron. For example, in the case of a single iso-

lated neuron in a voltage-clamp experiment, I(t) can represent an external electrical

impulse that causes the neuron to fire a spike. Alternatively, I(t) can also include

time-dependent influence from other neurons within an interconnected network.

To make this more explicit, I define I(t) as follows:

I(t) ≡ η + Isyn(t), (1.13)

where Isyn(t) represents the synaptic current from the remaining neurons in the net-

work, and where η is a bias parameter[64] that controls the excitability of the neuron

and is here assumed to be constant in time.

The variable θ(t) represents a parameterization of the potential difference across

the neuron membrane. Equation (1.12) is a one-dimensional model with a single

angular variable, θ(t). Therefore, θ(t) can be visualized as the angular coordinate of

a point on a unit circle (i.e. in polar coordinates with r = 1) ranging from 0 to 2π.

3Canonical in this context means that this model is the simplest universal representation of
a class of objects, systems, or functions[30, 63]. All systems or functions in this universal class

can be transformed into this model through use of a suitable coordinate transformation[30]. For
example, the QIF model can be transformed into the theta neuron model by use of the transformation
V (t) → tan(θ(t)/2)[25, 50].
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When θ passes π, the neuron is said to have fired a spike.

1.3.2 The SNIC Bifurcation

To examine the nature of the bifurcation of the theta neuron model, I explore how

the behavior changes with respect to the excitability parameter η. For this purpose,

the equilibria of the theta neuron are found by setting the right-hand side of the

differential equation given in (1.12) equal to zero (with Isyn set to zero as well):

1− cos θ + (1 + cos θ)η = 0, (1.14)

Solving for cos θ, this equation can be rewritten as:

cos θ =
1 + η

1− η
. (1.15)

Given that −1 ≤ cos θ ≤ 1, one can observe that equilibrium values for θ can only

exist when the right hand side of (1.15) is less than 1. In this particular case, which

occurs where η < 0, the theta neuron has two equilibrium points. A stability analysis

of these two equilibria, given by θ± ≡ ± cos−1((1 + η)/(1− η))[30], can be conducted

by differentiating (1.12) with respect to θ and inserting each of these values. In doing

so, one finds that θ−, the “rest” potential, is a stable equilibrium point, while θ+, the

“threshold” potential, is unstable.

From a physiological perspective, the external stimulus Isyn(t) and its effect on

a real neuron with η < 0 is as follows: In the absence of an external stimulus, the

neuron remains at its rest potential, θ−. If the external influence is of a subthreshold

nature, the neuron moves near the threshold potential, θ+ but subsequently relaxes

back to the rest potential, θ−. Since it cannot bypass the threshold potential, the

17



Figure 1.2: Schematic diagram of the SNIC bifurcation of a theta neuron.

neuron will not pass through θ = π and does not spike. On the other hand, if the

stimulus is suprathreshold, the neuron can bypass the threshold and subsequently

pass through θ = π, returning to the rest potential from the other direction. The

neuron is considered to have fired a spike in this case.

The “Saddle Node on the Invariant Circle” (SNIC) bifurcation occurs at the crit-

ical value η = 0, where the right hand side of (1.15) equals 1. At this critical point

η = 0, the two equlibria collide, forming a simple loop.[39].

Beyond this point, where η > 0, the two equilibrium values for θ have annihilated

each other and no longer exist. This annihilation leaves behind a stable limit cycle,

which, in real physical terms, is associated with the continuously spiking behavior of

a neuron[25, p. 82]. Figure 1.2 describes the qualitative behavior of the theta neuron

with respect to its bifurcation parameter η.

1.4 Summary and Outline

In this chapter, I describe several important biophysical characteristics of a neuron.

I also describe some of the more well-known mathematical models that attempt to

recreate neuronal behavior, and describe in detail the model of choice in this disser-

tation, namely, the theta neuron model. In Chapter 2, I describe how this model can
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be interconnected to build a complete mathematical description of a network of theta

neurons.

Some of the primary advantages of using the theta neuron model is that it is

the canonical normal form for neurons with Type-I excitability in addition to being

analytically tractable. Further, one can model the excitability characteristics of the

theta neuron by use of the excitability parameter η. Here, in the case of a resting but

excitable neuron, the value of this parameter directly determines the location of the

rest and threshold potentials, thereby controlling how easily an external stimulus can

cause the neuron to fire a spike. Further, due to the SNIC bifurcation characteristics

themselves, η > 0 will mimic the behavior of a regularly spiking neuron. It is advan-

tageous, therefore, to include some degree of heterogeneity in this parameter across

the network, in order to better simulate the diversity present in any “real” network

of neurons. The discussion of how this heterogeneity can be introduced is included

in Chapter 2 as well.

The remainder of this dissertation is organized as follows. In Chapter 2, I describe

the basic features of the full theta neuron network, and in Chapter 3, I derive the

mean field reduction of this network using the Ott-Antonsen method[12, 13]. Then,

in Chapter 4, I use this reduced mean field equation to identify and describe the

possible macroscopic states. I further provide a comprehensive bifurcation analysis

for the macroscopic dynamics of the network in this chapter.

Chapter 5 describes an extension of the reduced model of Chapter 3 to investigate

the dynamics of an infinite theta neuron network where the excitability parameters

of the neurons are modulated in time. A second extension, introduced in Chapter

6, explores the interaction of two networks in a “driver-response” configuration. The

macroscopic dynamics of the response population are explored under the influence of

both equilibrium and periodic driving states in Chapters 7 and 8, respectively.
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Finally, I summarize and discuss the results and implications of all three models

in Chapter 9.
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Chapter 2: The Full Network Model

In Section 1.3, I introduced the well-known canonical theta neuron model. This dy-

namical equation describes the behavior of a single Type-I neuron near its bifurcation

point, taking into account both its intrinsic dynamics and the effect of any external

influences.

However, as we know, neurons do not exist as independent entities in the brain,

but rather as parts of a much larger interacting population. Therefore, any network

model must take into account both these intrinsic neuronal dynamics as well as the

external influences from the rest of the network. In order to construct such a network

model, one must define the means by which these neurons interact with each other.

One observed method of interaction in a neuronal network occurs through synaptic

currents. In this chapter, I take into account this type of interaction in order to

construct a full network model. The purpose of this approach is twofold: it allows

one to understand the network’s unified behavior while giving us a window into how

individual neurons behave as parts of this larger population.

2.1 Building the Network

Here, I construct a mathematical model for a neural network with the theta neuron

as its basic building block. Beginning with a dynamical description of a single theta

neuron, I subsequently connect these single units to form a larger network. The

resulting system of dynamical equations represents the full network model for this

population of theta neurons.
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2.1.1 Dynamics of a Single Theta Neuron

Let us begin with a single theta neuron, θ1. As seen in Section 1.3.1, the dynamics

of this neuron are given by the following:

dθ1(t)

dt
= 1− cos θ1(t) + (1 + cos θ1(t))(η1 + Isyn(t)). (2.1)

Here, θ1(t) represents the phase of the theta neuron and is related to its trans-

membrane potential[11], and Isyn(t) refers to the synaptic influence from all other

neurons in the network (the details of which will be discussed in Section 2.1.2).

The parameter η1 is the intrinsic excitability of the neuron. Similar to the dis-

cussion of Section 1.3.2, if η1 < 0, the neuron is in an excitable state. In this state,

the neuron essentially remains at rest until a sufficiently large input causes it to pass

its unstable equilbrium, at which point the neuron is said to have fired an action

potential. As η1 becomes more negative, the distance between the stable and unsta-

ble equilbria increases. Effectively, therefore, it requires a much larger input for the

neuron to exceed its unstable equilibrium. Conversely, as the neuron’s excitability

approaches zero, even a relatively minor stimulus will cause the neuron to exceed its

threshold.

On the other hand, if η1 > 0, the neuron continuously spikes at a regular interval

without rest. Moreover, this firing frequency is related to the excitability η1 according

to:

f1 =

√
η1

π
. (2.2)

From this equation, one can easily see that increasing η1 also increases the fre-

quency of oscillation. In the case where η1 is just slightly larger than zero, one should
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expect to observe an arbitrarily low frequency for the theta neuron. This character-

istic is representative of a Type-I neuron.

2.1.2 Connecting the Neurons

Let us now add a second theta neuron, θ2, to the network. Here, too, the internal

dynamics of the neuron are also represented by 2.1 with an appropriate change in

subscript, i.e.

dθ2(t)

dt
= 1− cos θ2(t) + (1 + cos θ2(t))(η2 + Isyn(t)). (2.3)

Here, the second neuron responds to the synaptic influence function Isyn according

to a sensitivity[65,66] or response[39,67] function R(θ2) ≡ (1+ cos θ2). This response

function is maximal when θ2 = 0 and zero when spiking, i.e. θ2 = π.

In order to couple the neurons together, I use Isyn(t) to represent the influence

from the other (pre-synaptic) neuron. Following an approach proposed by Ariaratnam

and Strogatz[65], one can choose a form for Isyn(t) that is smooth, phase-dependent,

and pulse-like[66] to model this interaction. Mathematically, this function can be

represented as:

Isyn(t) ≡ kan(1− cos θj(t))
n, (2.4)

where the subscript j = 1, 2 refers to the pre-synaptic neuron in the network, θj is

the pre-synaptic neuron’s phase, and k represents the strength of coupling between

these neurons. n, the “sharpness” parameter, is an integer that defines how pulse-like

this synaptic connection is, and an is a normalization constant. Both n and an will

be discussed in greater detail in Section 2.2.1.
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2.1.3 The Full Network Model

Following the same recipe as above, one can construct a much larger network by

adding neurons in precisely the same fashion. All that is required is to modify the

definition of Isyn(t) (2.4) to include the influence from all of the other neurons in the

network simultaneously1. Symbolically, I express this relation as:

Isyn(t) ≡
kan
N

N
∑

j=1

(1− cos θj(t))
n, (2.5)

where N represents the total number of neurons in the network and where j, θj , k,

n, and an are defined as before.

Inserting this expression (2.5) into the theta neuron model, the system of dynam-

ical equations governing the change in phase for each neuron can be written as:

dθ1(t)

dt
= 1− cos θ1(t) + (1 + cos θ1(t))[η1 +

kan
N

N
∑

j=1

(1− cos θj(t))
n] (2.6a)

dθ2(t)

dt
= 1− cos θ2(t) + (1 + cos θ2(t))[η2 +

kan
N

N
∑

j=1

(1− cos θj(t))
n] (2.6b)

...

dθN(t)

dt
= 1− cos θN (t) + (1 + cos θN (t))[ηN +

kan
N

N
∑

j=1

(1− cos θj(t))
n]. (2.6c)

Consolidating these equations and performing some algebraic manipulations, the

above system of coupled differential equations can be written in a more concise form

1For more realistic neurons, one might include a time delay in the connection between neurons.
In this dissertation, however, I consider only the simpler mathematically tractable case without
time-delay in the following analysis.
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as:

dθi
dt

= (1 + ηi)− (1− ηi) cos θi + (1 + cos θi)
kan
N

N
∑

j=1

(1− cos θj(t))
n, (2.7)

with i ranging from 1 to N .

The dynamical evolution equations of the full network are given by (2.7). More-

over, by explicitly solving the coupled equations (2.6a), (2.6b), etc. simultaneously,

one can obtain θ1, θ2, etc. as functions of time. This essentially gives us a window

into the microscopic behavior of each individual theta neuron in the network.

2.1.4 The Macroscopic Behavior of the Full Network

In order to understand the collective behavior of this full network model, one can

define a Kuramoto-like[55] “mean field” or “order” parameter z(t), as:

z(t) ≡ 1

N

N
∑

q=1

eiθq(t), (2.8)

where the mean field z(t), similar to Section 1.2.5, can be interpreted as the collective

rhythm (or average activity) produced by the full network[56].

Within this full network model, the mean field z(t) can be computed at any

moment in time by first numerically solving the system of differential equations given

in (2.7) simultaneously. After evolving the phases of all neurons in the network to a

specific time, the mean field can be computed from these phases using (2.8).

The mean field helps us to understand the overall state of the full network. To
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interpret the mean field physically, it is helpful to represent z(t) in polar coordinates2

as:

z(t) ≡ r(t)eiψ(t). (2.9)

Here, the magnitude r(t) measures the phase coherence, and ψ(t) represents the

average phase of the network. For instance, when r ≈ 1, the neurons move in a

single tight clump with phases approximately equal to the average phase ψ. On the

other hand, if r ≈ 0, all of the neurons are scattered around the unit circle, and the

individual phases of the neurons add incoherently so that no macroscopic rhythm

is produced[56]. A more detailed discussion of the mean field parameter is given in

Section 3.1.3.

2.2 Key Components of the Model

Having derived both the system of equations defining the microscopic behavior and

the corresponding average behavior of the full network, let us now consider in detail

some of the key components of this network model. These features include: 1) a

pulsatile synaptic connection between these interacting neurons, and 2) heterogeneity

in the intrinsic excitabilities of the network.

2.2.1 A Pulse-Like Synapse

The pulse-like synapse was first introduced in Section 2.1.2. The functional form of

this synapse, given by:

Isyn ≡ kan
N

N
∑

j=1

(1− cos θ)n, (2.10)

2Recall that if z = x+ iy = reiψ , then r =
√

x2 + y2 and ψ = tan−1(y/x).
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Figure 2.1: Diagram showing the shape of several synapses for values of n = 1 through
n = 9. The synapse becomes increasingly pulse-like as the value of the sharpness
parameter increases.

demonstrates that these synapses are indeed instantaneous functions of the pre-

synaptic voltage, or phase[39]. Here, the influence from a neuron on the rest of

the network is maximal when the neuron fires (i.e. when θ = π and cos θ = −1) and

minimal at θ = 0.

Recall that in (2.10), n is an integer, called the “sharpness parameter”, that allows

one to “sharpen” the pulse-like nature of this interaction. Figure 2.1 shows several

plots of the synaptic influence for different values of n. Effectively, as n increases, the

influence from a neuron on the rest of the network increases when it is near the spiking

state and becomes smaller when it approaches θ = 0. As n approaches infinity, this

synaptic influence becomes a delta-like function centered on the spiking state, θ = π.

One can also remove the pulse-like nature of the synapse entirely by setting n = 0.

As discussed earlier, an increase in n also increases the value of the function given

in (2.10) significantly near θ = π (indeed, becoming infinite as n → ∞). To adjust

for this effect, the function is normalized by means of the constant an according to
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the condition[65]:

∫ 2π

0

an(1− cos θ)ndθ = 2π, (2.11)

so that the accumulated effect over all phase angles from the pre-synaptic neuron will

be the same, independent of the sharpness parameter n.

2.2.2 A Heterogeneous Network

The second feature of the full network model is the inclusion of heterogeneity in the

population. To do this, I create a distribution function that defines the likelihood

of each excitability existing in the network. More specifically, I utilize a Lorentzian

distribution, so that the probability of choosing a specific excitability in [η, η+dη] is

given by the following:

g(η)dη =
∆

π[(η − η0)2 +∆2]
dη. (2.12)

Here, ∆ is the half-width of the distribution at half maximum, and η0 is the median

excitability of the distribution. A diagram of a Lorentzian distribution is displayed

in Figure 2.2, with both of these parameters identified.

In principle, one is not limited to a Lorentzian distribution; any normalizable

continuous distribution for η can be considered. However, the choice of a Lorentzian

distribution in this work enables the derivation of a low dimensional dynamical system

to describe the asymptotic macroscopic behavior of this network of theta neurons, the

detailed analytics of which will be demonstrated in Chapter 3.
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Figure 2.2: Diagram of the shape of a Lorentzian distribution of excitabilities across
the neural network. Here η0 represents the median excitability of the network and
∆ signifies the half-width of the distribution. As ∆ increases, the network becomes
more heterogeneous. A shift of η0 to more negative values means that the network is
more heavily skewed towards resting (but excitable) neurons, whereas a more positive
value of η0 increases the number of spikers in the network.

2.3 Assumptions of the Full Network Model

As with any attempt to model the behavior of a real system, certain underlying

assumptions are required. These assumptions often impose restrictions on the con-

ditions under which the predictions, results, and conclusions of the model are valid.

Having described several of the salient components of my full network, I briefly de-

scribe here some assumptions and their resulting limitations for this model.

2.3.1 Caveat of the Theta Neuron Model

The theta neuron model is the normal form for all Type-I excitable systems and their

networks[63], and therefore captures the universal qualitative features of a Type-I

neuron near its excitability threshold. However, this canonical model is not intended

to be an accurate quantitative approximation of a real Type-I neuron[25]; it only

captures qualitative behavior of Type-I neurons. Other models for the Type-I neuron
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(Quadratic Integrate-and-Fire, etc.) suffer from the same limitation, although the

specific deviation of the actual versus model-based results may vary depending on

the model of choice.

2.3.2 Globally Coupled Neurons

Another underlying assumption of the full network model is that of global (or all-to-

all) neuronal coupling. For the purposes of mathematical tractability, all neurons in

the network are assumed to be uniformly connected to all other neurons within the

network, independent of any structural or spatial correlation.

Numerous microscopic models[68–70] have made use of a “coupling matrix” in an

effort to incorporate topology in their coupling. Although such an approach is not

explored microscopically in this dissertation, I examine in Chapter 6 a parallel ap-

proach by which a tractable relaxation on global coupling can be introduced through

a multi-population model. This approach can theoretically be expanded to any num-

ber of sub-populations, provided the number of elements of each sub-population is

still large enough to render finite-size errors negligible.

2.3.3 Thermodynamic Limit

The number of neurons present in a realistic neural network in the brain are on the

order of 1010 or 1012[15]. For such large populations, the full network model requires

one to simultaneously solve 1010 or 1012 coupled differential equations in (2.7). This is

a large task, even for today’s computational resources. Application of the full network

model to understand the microscopic evolutions of such systems therefore becomes

computationally prohibitive.

Moreover, in the large network limit (i.e. as N → ∞ or, the thermodynamic
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limit), the dynamical impact from individual neurons on the overall network can be

safely assumed to be limited. Consequently, in this thermodynamic limit, it becomes

less important to know how the individual phase of a single neuron in the network

changes; rather, it becomes far more interesting to understand the change in the

overall macroscopic state of the network as a whole. Inspired by real networks, this

modified question of interest serves as a motivation for the reduced theta neuron

network model, to be introduced in Chapter 3.

2.4 Summary

In this chapter, I presented the full network model, which can be used to simulate an

interconnected network of Type-I neurons. Here, I highlight all the salient features

that make this model unique, in addition to describing the underlying assumptions

of the model.

The significance of this model is that by solving the differential equations of (2.7)

directly, it is possible to track individual neurons in the larger network. Further,

application of the Kuramoto mean field parameter to this full network model provides

one with a convenient metric for understanding the collective behavior of the full

network, while still maintaining valuable insights into the microscopic behavior of the

individual neurons in the population.

The main disadvantage of the full network model is that, at some point, it becomes

mathematically intractable to simulate a network with elements on the order of real

neural networks. The benefit of the approach, i.e. the ability to follow the dynamics

of an individual neuron, becomes less important for a network this large.

The viability of the full network model as a theoretical tool depends on the ques-

tion of interest for the reader. In this dissertation, the full network model presented
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in this chapter will continue to be used to understand the microscopic behavior of

a network of theta neurons. On the other hand, questions related to the large scale

dynamics can help one understand the collective behavior of larger networks. This

macroscopic model will be introduced in Chapter 3.
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Chapter 3: The Reduced Network Model

In Chapter 2, I defined a full network model describing the microscopic dynamical be-

havior of a population of theta neurons. I also show in Chapter 2 how the full network

model is not appropriate for the examination of the behavior of large networks. For

such large systems, it becomes more important to understand the collective macro-

scopic dynamics of the network instead of tracking its individual elements.

With this purpose in mind, I use a recently developed analysis tool[12,13] to obtain

a dynamical equation for the asymptotic mean field of this network in the thermody-

namic limit (i.e. where N → ∞). The mathematical steps outlining the derivation of

this macroscopic model are laid out in detail in this chapter. The reduced theta neu-

ron network model described here allows one to access the asymptotic macroscopic

behavior of this network, without having to compute the individual phases of the

network at each moment in time.

3.1 The Continuum Limit

In the thermodynamic limit (i.e. withN → ∞), one can no longer track the movement

of any individual neuron; they are simply too numerous to count. Therefore, one can

re-imagine the network as a continuous “sea” of neurons, rather than a discrete set.

3.1.1 Choice of Distribution Functions

In this continuum limit, the network is described by a distribution function F (θ, η, t).

Here, F (θ, η, t)dθdη gives the probability of finding a neuron with a phase in [θ, θ+dθ]
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and excitability in [η, η + dη] at time t. Therefore, this distribution function satisfies

the normalization condition:

∫ π

−π

dθ

∫

∞

−∞

dηF (θ, η, t) = 1, (3.1)

at all times t.

Without loss of generality, the distribution function can be expanded as a Fourier

series in θ, so that F (θ, η, t) becomes:

F (θ, η, t) = g(η)
1

2π

{

A0 +
∞
∑

k=1

[Ak(η, t)e
−ikθ + A∗

k(η, t)e
ikθ]

}

, (3.2)

where the Fourier coefficients Ak of this expansion, which are functions of η and t

alone, will be defined in detail in Section 3.2.1.

In (3.2), the function g(η) represents a distribution function for excitability alone.

This distribution function represents the integral of F (θ, η, t) over all possible phases

θ, as in:

g(η) =

∫ π

−π

F (θ, η, t)dθ, (3.3)

where g(η) is assumed here to be time independent, so that this equality is satisfied

at all times t.

In keeping with the model presented in Section 2.2.2, I choose the distribution

function g(η) to be a Lorentzian distribution (2.12) with half-width at half maximum

∆ and median excitability η0.
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3.1.2 Dynamics of the Network in the Continuum Limit

I now describe how the distribution function F (θ, η, t) changes in time. Since the

total number of neurons is conserved, the distribution function F (θ, η, t) satisfies the

following continuity equation:

∂F (θ, η, t)

∂t
+

∂

∂θ
(F (θ, η, t)ν(θ, η, t)) = 0, (3.4)

where the function ν(θ, η, t) represents the “phase velocity” of the neurons. This

function describes how the phase variable θ changes in time, and is given by the

continuum version of the full network model (2.7). To express this equation in the

continuum limit, the average over the neurons in the finite network is replaced by an

integral over the distribution function F (θ, η, t), and the phase velocity ν(θ, η, t) of

the network is written as:

ν(θ, η, t) = (1+η)−(1−η) cos θ+ank(1+cos θ)

∫ 2π

0

dθ′
∫

∞

−∞

dη′F (θ′, η′, t)(1−cos θ′)n.

(3.5)

The expression for the phase velocity ν(θ, η, t) can be expanded further to express

the quantity in the double integral of (3.5) as a power series in θ′. To begin, the

quantity (1− cos θ′)n in (3.5) can be expanded by use of the binomial theorem1:

(1− cos θ′)n =

n
∑

j=0

n!(−1)j

j!(n− j)!
cosj θ′. (3.6)

The expression (1 − cos θ′)n is now represented by a power series for the quantity

1Recall that the binomial expansion of (1 + x)n is
∑n

j=0
n!

j!(n−j)!x
j .
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cos θ′. To write this power series in terms of the phase θ′, I replace cos θ′ with its

Eulerian definition (eiθ
′

+ e−iθ
′

)/2:

(1− cos θ′)n =
n

∑

j=0

n!(−1)j

2jj!(n− j)!
(eiθ

′

+ e−iθ
′

)j

=

n
∑

j=0

n!(−1)j

2jj!(n− j)!
eijθ

′

(1 + e−i2θ
′

)j. (3.7)

In the second equality, I factor out eiθ
′

in order to write the power series quantity in

binomial expansion form once again. Applying the binomial theorem a second time:

(1− cos θ′)n =
n

∑

j=0

n!(−1)j

2jj!(n− j)!
eijθ

′

j
∑

m=0

j!

m!(j −m)!
e−i2mθ

′

=
n

∑

j=0

j
∑

m=0

n!(−1)j

2jm!(n− j)!(j −m)!
ei(j−2m)θ′ . (3.8)

Consolidating the factorial constants into a new constant Pjm defined by:

Pjm ≡ n!(−1)j

2jm!(n− j)!(j −m)!
, (3.9)

the quantity (1− cos θ′)n can now be written as:

(1− cos θ′)n =
n

∑

j=0

j
∑

m=0

Pjme
i(j−2m)θ′ . (3.10)

Inserting this result into (3.5), the expression for ν becomes (with cos θ = (eiθ +
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e−iθ)/2) once again inserted):

ν(θ, η, t) = (1 + η)− (1− η)
eiθ + e−iθ

2
+

ank(1 +
eiθ + e−iθ

2
)

n
∑

j=0

j
∑

m=0

Pjm

∫ 2π

0

dθ′
∫

∞

−∞

dη′F (θ′, η′, t)ei(j−2m)θ′ . (3.11)

The continuity equation, (3.4), combined with (3.11), defines the dynamics of the

network in this continuum limit.

3.1.3 Mean Field Definition

In order to undertand the macroscopic state of the network, I again make use of

the mean field z(t) introduced in Section 2.1.4. To express the mean field in the

continuum limit, I replace the average of discrete neuron phases given in (2.8) with

an equivalent integral expression suitable for this continuous model:

z(t) ≡
∫ 2π

0

dθ′
∫

∞

−∞

dη′F (θ′, η′, t)eiθ
′

. (3.12)

One can also define the set of “higher-order” or Daido moments[71, 72] as:

za(t) ≡
∫ 2π

0

dθ′
∫

∞

−∞

dη′F (θ′, η′, t)eiaθ
′

. (3.13)

Upon inspection of (3.11), one can see that the double integral exactly matches the

expression for the Daido moments defined in (3.13) with a ≡ j − 2m. Replacing this
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integral with the expression for the higher order moments gives:

ν(θ, η, t) = (1+ η)− (1− η)
eiθ + e−iθ

2
+ ank(1+

eiθ + e−iθ

2
)

n
∑

j=0

j
∑

m=0

Pjmzj−2m. (3.14)

Note that the definition of (3.15) is not strictly a function of the mean field z(t), but

is instead expressed as a series of zj−2m(t), i.e. the Daido moments. In Section 3.2.2,

I will show how these Daido moments can be expressed simply in terms of the mean

field z(t) for the specific choice of a Lorentzian distribution function in g(η).

I now define the continuous influence function, Hn(z), by the following:

Hn(z) ≡ an

n
∑

j=0

j
∑

m=0

Pjmzj−2m, (3.15)

so that the phase velocity ν can be written in the following simple form:

ν(θ, η, t) = (1 + η)− (1− η)
eiθ + e−iθ

2
+ k(1 +

eiθ + e−iθ

2
)Hn(z). (3.16)

3.2 The Ott-Antonsen Reduction Method

With the components of the continuous model identified in the previous section, I

now outline the steps by which one can derive a low-dimensional dynamical equation

for the asymptotic behavior of the macroscopic mean field. I refer to this approach,

introduced by Ott and Antonsen[12, 13], as the “reduction method” in this disserta-

tion.
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3.2.1 Time Evolution of the Ott-Antonsen Parameter

I begin by writing the expression for the phase velocity function ν (3.16) in a sinu-

soidally coupled form[73] as:

ν = feiθ + h+ f ∗e−iθ, (3.17)

with f and h defined as:

f ≡ −1

2
[(1− η)− kHn(z)] = f ∗

h ≡ (1 + η) + kHn(z). (3.18)

I now revisit the previously unrestricted Fourier coefficients in the distribution

F (θ, η, t) (3.2). Following the procedure laid out by Ott and Antonsen[12, 13], I

adopt the ansatz that the these Fourier coefficients Ak are as powers of a single (yet

to be determined) complex function α(η, t), so that:

Ak = α∗(η, t)k. (3.19)

with the condition |α(η, t)| < 1 at all times t, in order to ensure that the series

converges. This expression for Ak is the key insight from the Ott-Antonsen reduction

method, namely, recognizing that the sinusoidally coupled expression for the phase

velocity (3.17) allows the system to collapse the infinite number of Fourier components

Ak into a single mode.

Substituting this ansatz into (3.2), and inserting the result into (3.4) (along with
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(3.17)) results in the following expression:

(

∂α

∂t
− i(fα2 + hα + f ∗)

)

{

∞
∑

q=1

qαq−1e−iqθ + c.c.

}

= 0, (3.20)

where c.c. denotes the complex conjugate of the first term in the summation and the

sums have been reindexed appropriately to consolidate where possible. Since this

equation must hold for all values of the phase θ, the expression in parentheses in

(3.20) must vanish. Setting this expression equal to zero and rearranging terms, the

time evolution of the parameter α can be expressed as:

∂α

∂t
= i(fα2 + hα + f ∗)

= i[f(α2 + 1) + hα], (3.21)

recognizing in the second equality that f is a real function (as shown in Section 3.2.3).

In order to close the expression for the physically relevant mean field parameter

z(t), I return to the definition of z(t), (3.12). Inserting into this defintion the expres-

sion for F (θ, η, t) (3.2) and the Ott-Antonsen ansatz (3.19), the mean field parameter

becomes:

z(t) =

∫

∞

−∞

g(η′)dη′
∫ 2π

0

dθ′

2π
eiθ

′

{

1 +

∞
∑

k=1

[

α∗keikθ
′

+ αke−ikθ
′

]

}

, (3.22)

Due to the orthogonality of eikθ
′

, the integral over θ′ is zero for all terms except
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for the second term when k = 1; therefore, the equation for z(t) reduces to:

z(t) =

∫

∞

−∞

dη′g(η′)α(η′, t). (3.23)

The integral expression for the mean field (3.23), combined with the differential equa-

tion for α (3.21), is the formal solution of the continuity equation for F (θ, η, t).

3.2.2 Time Evolution of the Mean Field

Following a method described in [12,74], one can utilize the specific choice of g(η′) as a

Lorentzian distribution to simplify this integral-differential solution of the continuity

equation (3.4) further. Inserting (2.12) into (3.23), the expression for z(t) becomes:

z(t) =
∆

π

∫

∞

−∞

1

(η′ − η0)2 +∆2
α(η′, t)dη′. (3.24)

Using a partial fraction expansion of the denominator and permitting η′ to be

complex, the integrand can be written as a sum of two simple poles at η′ = η0 ± i∆:

∆

π

(

1

(η′ − η0)2 +∆2

)

=
1

2πi

(

1

(η′ − η0)− i∆
− 1

(η′ − η0) + i∆

)

. (3.25)

Now, by analytically continuing α(η′, t) into the upper half of the complex η′ plane

and assuming that |α| is continuous and approaches 0 as Im(η′) → ∞, performing a

contour integration around the upper imaginary η′ half-plane via the residue theorem
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gives the following:

z(t) = 2πi

(

α(η = η0 + i∆, t)

2πi

)

= α(η = η0 + i∆, t), (3.26)

where η = η0+i∆ is the simple pole within the upper semi-circular contour. Therefore,

I find that the mean field parameter z(t) is just equal to the value of α(η, t) at the

specific value of η = η0 + i∆.

One can follow a similar approach to write the Daido moments (3.13) in terms of

the Ott-Antonsen parameter α(η, t). Inserting the continuous distribution F (θ, η, t)

and the Ott-Antonsen ansatz (3.19) in (3.13) gives the following:

za(t) =

∫

∞

−∞

g(η′)dη′
∫ 2π

0

dθ′

2π
eiaθ

′

{

1 +
∞
∑

k=1

[

α∗keikθ
′

+ αke−ikθ
′

]

}

. (3.27)

In this case, however, since a can be both positive and negative, the orthogonality

of the eiaθ function will allow different Fourier coefficients to survive depending on

the sign of a. For a > 0, the surviving term in the integral is αa; however, a negative

value of a gives α∗−a as the surviving Fourier coefficient. Therefore, after performing

the same contour integration as the previous section, the following relation for the

specific Daido moment in the definition of Hn(z) is found:

zj−2m =















αj−2m j − 2m ≥ 0

α∗−(j−2m) j − 2m < 0

(3.28)

From (3.26), the expression for zj−2m can be expressed simply in terms of powers
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of either the mean field parameter or its complex conjugate2:

zj−2m =















zj−2m j − 2m ≥ 0

z∗−(j−2m) j − 2m < 0

(3.29)

Substituting (3.26) into (3.21) and collecting terms, the low-dimensional differen-

tial equation giving the asymptotic macroscopic behavior of the system can now be

explicitly written in terms of the four network parameters: the median excitability

η0, the heterogeneity ∆, the global coupling strength k, and the sharpness parameter

n as:

dz(t)

dt
= −i(z − 1)2

2
+ [−∆+ i(η0 + kHn(z))]

(z + 1)2

2
, (3.30)

with the function Hn(z) defined by (3.15), and with Pjm and zj−2m defined by (3.9)

and (3.29), respectively.

3.2.3 The Continuous Influence Function Hn(z)

As defined in the previous section, the function Hn(z) can be thought of as the

“continuous influence function” within this continuum limit, analogous to the pulse-

like synaptic current of Section 2.2.1. To see this, a plot of the values of Hn(z) with

respect to all physically possible values of z is shown in Figure 3.1. The function

reaches a minimum of 0 when the average macroscopic phase ψ = 0 and a maximum

value at ψ = π that increases with increasing n. Comparing the minimum and

maximum values ofHn(z) with those obtained from the microscopic influence function

2Note that (3.29) is specific to the choice of the Lorentzian distribution, (2.12). For other choices

of g(η), the relationship between the Daido moments and the mean field parameter might not be as
simple.
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Figure 3.1: A three-dimensional plot of the macroscopic influence function Hn(z) for
several values of the sharpness parameter n. The plots move towards the red end of
the visible spectrum as the sharpness parameter n increases. These plots show an
increasingly large peak at ψ = π for increasing values of n, and a minimum of 0 at
ψ = 0.

of Section 2.2.1, one can see that this Hn(z) function represents the continuous analog

of the microscopic influence function from before.

Figure 3.1 reveals that the value of Hn(z) is always positive. Further, the contin-

uous influence function Hn(z) is always a real valued function. This is a consequence

of the structure of (3.15), where the sum over m of the term j − 2m must result in a

summation of equal powers of both z(t) and z∗(t).

As we shall see in Chapter 4, the asymptotic values of z will approach either

an equilibrium or a periodic state. In the former case, the influence function Hn(z)

asymptotically approaches a constant positive definite value. In the latter case, how-

ever, Hn(z) varies periodically in time. Figure 3.2 gives a time-series plot of the value

of the influence function Hn(z) showing this periodic behavior.

In the single population model derived here, the physical significance of Hn(z) is
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Figure 3.2: A time-series plot of the macroscopic influence function from a periodic
asymptotic macroscopic state. The influence function can clearly be seen to be peri-
odic as well.

not immediately apparent; it appears merely a functional part of the evolution equa-

tion for the mean field, (3.30). However, in the multi-population model of Chapter 6,

this function represents the influence of one population on another one. Therefore,

the positive-definite and potentially periodic nature of the Hn(z) function will play

an important role in the derivation and subsequent analysis of the multi-population

model.

3.3 Summary

In this chapter, I have derived a reduced model describing the dynamics of the

macroscopic states for a heterogeneous network of theta neurons. The resulting low-

dimensional equation provides a simple and useful way to identify, interpret, and

analyze the asymptotic macroscopic behavior of this network. This analysis will be
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discussed in greater detail in Chapter 4.
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Chapter 4: Analysis of the Heterogeneous Model

In Chapter 3, I derived a low dimensional evolution equation that describes the asymp-

totic dynamics for a heterogeneous network of theta neurons. This simple dynamical

equation for the mean field is parameterized by four network parameters: the median

excitability η0, the heterogeneity ∆, the global coupling strength k, and the sharpness

parameter n. In this chapter, I identify all possible asymptotic macroscopic states

attainable by the network. Once all these macro-states are classified, I then identify

and catalogue all possible transitions of these states arising from changes in the above

four parameters.

4.1 Collective States

From the evolution equation for the mean field given by (3.30), the large-scale asymp-

totic dynamics of the single population network (in the absence of time-varying pa-

rameters or additional complicating factors in the network) are fully represented by a

two-dimensional ordinary differential equation. One can visualize the dimensionality

explicitly by separating the mean field parameter into its real and imaginary parts

(z ≡ x+ iy) and rewriting the resulting dynamical equations for ẋ and ẏ.

As the system is two dimensional and any trajectory starting within the unit circle

is bounded by that circle, the Poincaré-Bendixson theorem1 implies that the only

1The Poincaré-Bendixson theorem states that if well-behaved continuously differentiable vector
field surrounds a specific closed and bounded region R of the phase plane where no fixed points
exist in R, then every trajectory that is confined in R must either be a closed orbit or spiral towards
a closed orbit as t → ∞. In either case, R contains a closed orbit[37, p. 203], and nothing more
complicated is possible. This theorem implies that chaos can never occur in a two-dimensional
dynamical system[37, p. 210].
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possible macroscopic states of this system are either equilibria states or periodic states

(i.e. limit cycles). Further, the existence of more complicated non-linear behavior

and chaos are precluded in the absence of other complicating dynamical features (e.g.

multiple populations, explicit time variation, etc.).

4.1.1 Equilibrium States

From a two-dimensional dynamical equation such as (3.30), one finds only six possible

types of fixed points (or equilibria): stable and unstable nodes, stable and unstable

focuses, centers, and saddle nodes, depending on the eigenvalues of the Jacobian

matrix evaluated at the equilibrium(see Figure 4.1). For this heterogeneous network

of theta neurons, only the stable node and stable focus represent asymptotically

attracting stable macroscopic states. I begin this section by considering each of these

simple attracting equilibria in greater detail.

The Partially Synchronous Rest State

In the case where a stable node exists in the macroscopic mean field, the corre-

sponding macrostate is identified as the “Partially Synchronous Rest” (PSR) state.

Dynamically, all trajectories of the mean field z(t) starting near this fixed point will

asymptotically decay to this equilibrium point[37]. Figure 4.2 shows an example of

the asymptotic attracting behavior of a representative PSR state.

To physically interpret this behavior in the context of the heterogeneous model,

I note that this behavior is most commonly observed when the intrinsic excitability

as well as the network coupling strength are both negative. Essentially, this can be

thought of as a “cooperative” interaction between the network’s intrinsic character-

istics and the overall network dynamics itself, stemming from η0 and k, respectively.

As we’ve seen, η0 less than zero implies that most of the neurons are at rest,
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Figure 4.1: A diagram showing the possible fixed points and where the eigenvalues λ
for each equilibrium reside on the imaginary λ plane. Here, saddle nodes dominate
in the region to the left of the y-axis (for negative values of Det[J]), and have both a
positive and negative real eigenvalue. Unstable nodes and focuses reside in the upper
right quadrant, where the real parts of both eigenvalues are positive. The lower right
quadrant represents stable nodes and focuses with the real parts of both eigenvalues
as negative quantities. Centers are neutrally stable, and lie on the positive Det[J]
axis. The conditions for the three transitions identified in Section 4.2, Saddle-Node
(SN), Andronov-Hopf (AH), and Node-Focus (NF), respectively, are identified on this
figure as well[25].

Figure 4.2: Phase portraits for the Partially Synchronous Rest (PSR) state. (a) The
reduced model phase portrait and vector field in (y, x) phase space with η0 = −0.2,
∆ = 0.1, and k = −2. The location of the equilibrium node is shown as a dot, and
the directions of maximum and minimum stability are shown as arrows on the figure.
(b) An equivalent full network simulation with 10,000 neurons showing asymptotic
attraction to the location predicted in (a). (c) A zoomed-in view of the full network
simulation of (b) showing finite size effects.
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Figure 4.3: Phase portraits for the Partially Synchronous Spiking (PSS) state. (a)
The reduced model vector field in (y, x) phase space and location of the stable spiral.
Here, η0 = 0.2, ∆ = 0.1, and k = 2. (b) An equivalent full network simulation
with 10,000 neurons again showing asymptotic approach to the spiral from (a). (c)
A zoomed-in view of the full network simulation of (b) showing finite size effects.

but excitable. However, as the excitabilities in the network are represented by a

Lorentzian distribution, a small fraction of continuously spiking neurons are always

represented as well. Here, the individual spiking neurons can be seen to regularly fire

an action potential, and will periodically cause one of the resting neurons to spike

as well. The existence of these few spiking neurons causes the full network model to

“jitter” around the macroscopic equilibrium, giving rise to the finite size effects seen

in Figure 4.2(c).

The Partially Synchronous Spiking State

In the case where a stable focus is found, the corresponding macrostate is identified

as the “Partially Synchronous Spiking” (PSS) state. Here, while all trajectories of

the mean field z(t) starting near this fixed point still asymptotically approach the

equilibrium point, the transient motion of the trajectory now exhibit exponentially

decaying oscillations towards this focus[37]. Figure 4.3 shows an example of the

asymptotic attracting behavior of a representative PSS state.
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As in the PSR case, this PSS state commonly exists in a “cooperative” regime,

only now the intrinsic excitability as well as the network coupling strength are both

positive. This positive median excitability η0 implies that most of the neurons are

continuous spikers. A few resting but excitable neurons are also present, but have a

negligible effect on the overall network dynamics.

4.1.2 Differences between PSR and PSS Equilibrium States

Both the PSR and PSS states exhibit stationary behavior in the macroscopic mean

field z(t) and reflect partially coherent network configurations. In this section, I

emphasize the subtle difference between them: namely, that one is a node in the

macroscopic mean field, and the other is a focus. This observation suggests that

transient behavior in the macroscopic mean field z(t) resulting from abrupt perturba-

tions or small shifts of network parameters should reveal the difference between these

two states.

Figure 4.4 shows time series of the macroscopic mean field z(t) for both the PSR

(panels a and b) and the PSS (panels c and d) states. For the PSR state, the system

starts with the following parameter set: η0 = −0.2, ∆ = 0.1, k = −2, and n = 2.

Then, at t = 500, η0 is abruptly switched from −0.2 to −0.5. The new asymptotic

state remains a PSR state (with Lyapunov exponents λs = −2.51,−3.94), but the

stable node shifts, and the macroscopic mean field z(t) converges exponentially toward

the new asymptotic value. The time series from both the reduced system in Figure

4.4(a) and a discrete network of 10,000 neurons in Figure 4.4(b) clearly demonstrate

this exponential convergence.

The results from applying the same procedure to a PSS state (with ∆ = 0.1,

k = 2, and n = 2, and η0 changing from 0.2 to 0.5) is shown in Figures 4.4(c) and

(d). In this case, the shifted PSS state is characterized by a stable focus with a pair
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Figure 4.4: Time series of the real part of the macroscopic mean field, x = Re[z(t)],
showing the very different responses of the PSR and PSS states to a sudden small
change in η0 at t = 500. (a) shows the behavior of the reduced equation (3.30), and
(b) shows the time series calculated using a network of 10,000 theta neurons for the
PSR state. (c) and (d) show the same for the PSS state. The horizontal dotted
lines indicate the asymptotic values of the macroscopic equilibria at the initial and
perturbed η0 values. The parameter values are given in the main text.

of stable complex eigenvalues (λs = −0.061 ± 3.25i). Thus, the transient behavior

after the parameter shift exhibits prominent oscillations that do not occur in the PSR

case.

4.1.3 Periodic States

As previously stated, the only other possible steady collective state for this two-

dimensional system, apart from the equilibrium states defined in Section 4.1.1, is a

periodic solution, or a limit cycle. I discuss this state in detail in this section.

The Collective Periodic Wave State

Any stable periodic solution (or limit cycle) of the asymptotic macroscopic mean field

satisfies the condition z(t) = z(t + τ), where τ is the period of the limit cycle. In

this dissertation, all such states are identified as “Collective Periodic Wave” (CPW)
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Figure 4.5: Phase portraits of a bistable PSR state and a Collective Periodic Wave
(CPW) state. (a) The reduced model vector field in (y, x) phase space, the location
and stability of the PSR state and a nearby saddle node, and an aymptotic trajectory
of the CPW state. Here, η0 = 10.75, ∆ = 0.5, and k = −9. (b) An equivalent full
network simulation with 10,000 neurons again showing asymptotic attraction to both
predicted states from (a). (c) A zoomed-in view of the full network simulation of (b)
for the CPW orbit. Here, successive orbits do not exactly overlap due to finite size
effects.

states. Near a stable limit cycle, all trajectories of z(t) asymptotically approach this

orbit over time, and if perturbed slightly, will always return to this orbit[37]. Figure

4.5 shows an example of the asymptotic attracting behavior of a representative CPW

state, coexisting with a separate PSR state. The reason for this coexistence will be

discussed in Section 4.3.2.

Unlike the two equilibrium cases, which primarily observed when both η0 and k

have the same sign, the CPW is only found in the case where k < 0 and η0 > 0.

Here, the population consists mostly of spikers (η0) that are inhibitorily coupled

(k < 0). The tug-of-war between the highly energetic internal dynamics and the

overall inhibitory coupling causes these spikers to “clump” together and spread apart

in a periodic fashion.
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4.1.4 Bistability and Hysterisis

In most cases, the macroscopic behavior of the network is found to exclusively ap-

proach only one of the equilibrium states identified in Section 4.1.1. However, in the

competitive regions of the network where η0 and k have opposite sign, the network

also can exhibit “bistability”, where two attracting states coexist[25]. Here, depend-

ing on initial conditions, the system will reach one of these two coexisting states after

a transient period had passed. For example, in Figure 4.5, one can see that the PSR

and CPW state coexist. Essentially, the network can approach either of these states,

depending on its initial condition.

Within the phase space constrained by the unit circle, a singly stable state is

globally attractive; i.e. any initial configuration of neural phases will eventually

reach that equilibrium state. In contrast, a bistable state implies that different initial

neuronal configurations can lead to either of these stable states.

Once the network settles onto a given macroscopic state, the system will remain in

that state for all times in the absence of external influence. However, if one or several

of the parameters describing the neural system changes periodically due to some

external influence, then the system can exhibit hysterisis as it transitions between

one stable state to the other over time.

4.2 Bifurcation Analysis

Having identified the three classes of attractors for the macroscopic mean field z(t),

I now turn my attention to the analysis of the bifurcations that they can undergo.

Specifically, I identify the bifurcations that occur as the following network param-

eters are varied: the neurons’ intrinsic excitability parameter η0, the heterogeneity

parameter ∆, and the overall coupling strength k. I consider both excitatory (k > 0)
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and inhibitory (k < 0) interaction among the neurons. The bifurcation set will be

illustrated in the three-dimensional parameter space defined by η0, ∆, and k, for fixed

values of the synaptic sharpness parameter n. In these examples, I use n = 2 and

n = 9, and these results suggest that the bifurcation scenarios described here are

qualitatively robust with respect to n.

I begin by separating the reduced system (3.30) into its real and imaginary parts,

where z(t) = x(t) + iy(t):

ẋ = (x− 1)y − (x+ 1)2 − y2

2
∆− (x+ 1)y [η0 + kHn(z)] ,

ẏ = −(x− 1)2 − y2

2
− (x+ 1)y∆+

(x+ 1)2 − y2

2
[η0 + kHn(z)] . (4.1)

To construct a comprehensive bifurcation diagram, the right-hand side of (4.1)

represents two separate functions of the same five variables: η0, ∆, k, x, and y, i.e.:

fx(η0,∆, k, x, y) = (x− 1)y − (x+ 1)2 − y2

2
∆− (x+ 1)y [η0 + kHn(z)] ,

fy(η0,∆, k, x, y) = −(x− 1)2 − y2

2
− (x+ 1)y∆+

(x+ 1)2 − y2

2
[η0 + kHn(z)] .

(4.2)

Then, by setting the right side of both of these equations equal to zero, I obtain two

conditions for the macroscopic equilibria of the network (xe, ye) as a function of the

three network parameters:

fx(η0,∆, k, xe, ye) = 0

fy(η0,∆, k, xe, ye) = 0. (4.3)
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Now, instead of solving (4.1) for xe and ye given particular values of η0, ∆, and

k, one can consider xe, ye, η0, ∆, and k to be five independent variables and think

of (4.3) as two constraints that define a three-dimensional submanifold on which the

equilibria must reside. Algebraic conditions for the occurrence of a particular kind of

bifurcation provide additional constraints, thus defining lower-dimensional surface(s)

that characterize the bifurcation of interest.

For a generic codimension-one2 bifurcation such as the Saddle-Node (SN) or the

Andronov-Hopf (AH) bifurcation, this procedure results in two-dimensional surfaces

embedded in the full five-dimensional space. One can visualize these two-dimensional

bifurcation sets in the three-dimensional space defined by the network parameters

η0, ∆, and k. In the following, I examine the SN and AH bifurcations separately,

and infer (and numerically verify) that Homoclinic (HC) bifurcations are present as

well. I also describe the transition between the PSR and the PSS states in which

a macroscopic equilibrium changes from a node to a focus, or vice versa. I call this

a Node-Focus (NF) transition. Collectively, these results lead to an understanding

of the various bifurcations and transitions that can occur in the attractors of the

macroscopic mean field of this network.

4.2.1 Saddle-Node Bifurcation

The SN bifurcation is the primary mechanism by which equilibrium points are either

created or destroyed[37]. In practice, this destruction or creation coincides with the

creation of a saddle node and either a stable or unstable node (or, conversely, the

collision and annihilation of a saddle node with an existing node). Therefore, the

2The codimension of a bifurcation is the number of parameters that must be varied for the bifur-
cation to occur[37, p. 70]. Geometrically, the codimension of the bifurcation is the difference between
the dimensionality of the parameter space and that of the bifurcation surface. For example, a sur-
face area in a three-dimensional parameter space has codimension-one, whereas a (one-dimensional)

curve in the same three-dimensional space has codimension-two[38, p. 541].
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SN surface typically indicates the boundaries of potentially bistable regions in the

bifurcation diagram of the network.

The SN bifurcation is defined by the condition[37]:

det[J(xe, ye, η0,∆, k)] = 0. (4.4)

where J(xe, ye, η0,∆, k) is the Jacobian of the system given by (4.1):

J(xe, ye, η0,∆, k) =







∂xfx(η0,∆, k, xe, ye) ∂xfy(η0,∆, k, xe, ye)

∂yfx(η0,∆, k, xe, ye) ∂yfy(η0,∆, k, xe, ye)






. (4.5)

As stated previously, since the reduced equation is two-dimensional, all SN bi-

furcations that occur in this network must necessarily involve PSR states. This is

because the creation of a pair of PSS equilibrium states requires at least three di-

mensions (two corresponding to the complex conjugate eigenvalues, and one along the

heteroclinic connection). Note also that the above determinant condition includes the

codimension two cusp bifurcation when both eigenvalues of J are zero simultaneously.

The combination of the three algebraic constraints given in (4.3) allows one to

solve for η0, ∆, and k in terms of the remaining two degrees of freedom, xe and ye.

I then plot the SN bifurcation surface parametrically in (η0, ∆, k) by considering all

possible values of (xe, ye) within the allowed state space (|z| ≤ 1). The SN bifurcation

surfaces obtained in this manner are displayed in Figure 4.63. Figure 4.6(a) and (b)

show the surfaces obtained for synaptic sharpness parameters n = 2 and n = 9,

respectively.

The bifurcation set consists of two similar tent-like structures. The edges of the

3Note that these figures extend into the unphysical region where ∆ < 0. This is done to help the
reader visualize the shape of the surfaces, as they are symmetric across ∆ = 0.
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Figure 4.6: Bifurcation solution representing saddle-node (SN) transitions between
different macroscopic behaviors in the three-dimensional parameter space defined by
η0, ∆, and k. In the two figures, the sharpness parameter is set to (a)n = 2, and
(b)n = 9, respectively.

tent-like surfaces correspond to parameter values where a codimension two cusp bifur-

cation occurs. It is notable that these tent-like structures are predominately (but not

exclusively) located in regions where the internal excitability parameter η0 and the

coupling strength k are of opposite sign, for both excitatory and inhibitory connectiv-

ity. This is the dynamically competitive region mentioned above. Furthermore, the

similarity between the surfaces in Figure 4.6(a) (for n = 2) and (b) (for n = 9) indi-

cate the robustness of these results with respect to the synaptic sharpness parameter

n.
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4.2.2 Andronov-Hopf Bifurcation

The second of the two generic codimension-one bifurcations of equilibria is represented

by the AH bifurcation, which denotes the transition of a stable to an unstable fixed

point, or vice versa, and the emergence or disappearance of periodic motion. Here,

as with the SN bifurcation, the system loses or gains a stable fixed point. However,

unlike the SN, the change in stability does not correspond to a change in the overall

number of equilibria[30].

The AH bifurcation is one of the conditions under which the CPW state is either

created or destroyed. The other condition that creates or annihilates the CPW state is

the global Homoclinic (HC) bifurcation4. Since this bifurcation does not correspond

to a change in behavior of an equilibrium point and is instead a global change in

character of the system, it cannot be identified through the analysis described in

this section. As it must be paired with an AH bifurcation, however, the locations

of several HC bifurcation points are found numerically wherever an AH surface is

present in the analysis of Section 4.3.

The Andronov-Hopf (AH) bifurcation is defined, for this two-dimensional system,

by two conditions[37]:

tr[J(xe, ye, η0,∆, k)] = 0 &

det[J(xe, ye, η0,∆, k)] > 0. (4.6)

This equation, combined with (4.3), give three equations for five unknowns, with

the additional constraint that det[J] must be greater than zero. Proceeding as before,

one can obtain two-dimensional parametric plots of the AH bifurcation surface, shown

4A Homoclinic bifurcation occurs when a limit cycle touches a saddle node and becomes a ho-
moclinic orbit[37, p. 263], i.e. the orbit originates and terminates at the saddle node[25, p. 111].

59



Figure 4.7: Bifurcation solution representing Andronov-Hopf (AH) transitions be-
tween different macroscopic behaviors in the three-dimensional parameter space de-
fined by η0, ∆, and k. In the two figures, the sharpness parameter is set to (a)n = 2,
and (b)n = 9, respectively.

in Figure 4.7. In this case, there is qualitative similarity between the shapes for the

n = 2, Figure 4.7(a), and the n = 9, Figure 4.7(b) cases, but there are quantitative

differences in the location of the surfaces.

The result is a tube or funnel-shaped surface that opens and flattens out on one

side. The funnel emanates from the regime of large inhibitory coupling (k ≪ 0)

and less heterogeneity (∆ ≈ 0) with η0 ≈ 0 (i.e., most neurons are very close to their

SNIC bifurcations), and then opens up and flattens out for increasing values of η0 (i.e.,

greater dominance of spiking neurons). As in the case of the SN bifurcation, the sur-

face occurs most prominently where there is dynamic competition within the network.

However, in this case, the surface only exists where the competition is specifically be-

tween predominantly spiking neurons and inhibitory network interaction (η0 > 0 and

k < 0).
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4.2.3 Node-Focus Transition

As discussed earlier, the SN and AH bifurcations are the only two local generic bi-

furcations attainable by the two-dimensional system. Both of these transitions are

considered “strict” bifurcations because both represent a change in stability of the

system. In order to understand the transition between stable (or unstable) equilibria

without a change in stability, e.g. the switch from a PSR (node) to a PSS (focus)

state, I explore in this section another transition. This Node-Focus (NF) transition

is not typically classified as a bifurcation in the traditional sense, since the stability

of the equilibrium does not change, nor are additional states created or destroyed.

Nevertheless, it is desirable to know where in parameter space this transition occurs,

since the type of equilibrium (i.e., focus or node) can have macroscopic consequences,

as illustrated in Figure 4.4.

The node-focus transition occurs when the discriminant5 of the characteristic

equation of the Jacobian equals zero, thus signifying the presence of equilibria with

real eigenvalues of multiplicity two:

tr[J(xe, ye, η0,∆, k)]
2 − 4det[J(xe, ye, η0,∆, k)] = 0 (4.7)

To identify the transition surface, I proceed as before by directly plotting the

two dimensional parametric surface in the three-dimensional parameter space (η0, ∆,

and k) using the three algebraic constraints given in (4.3) and (4.7). The resulting

NF transition surfaces are shown in Figure 4.8(a) and (b) for n = 2 and n = 9,

respectively.

5Recall that the discriminant of a quadratic equation ax2 + bx+ c = 0 is given by the expression

b2 − 4ac. As the reduced network model is two dimensional, the Jacobian is given by a two-by-two
matrix, and the characteristic equation of this Jacobian is a quadratic equation. In (4.7), I give an
equivalent expression for the discriminant in terms of the trace and determinant of the Jacobian
matrix.
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Figure 4.8: Bifurcation solution representing Node-Focus transitions between different
macroscopic behaviors in the three-dimensional parameter space defined by η0, ∆,
and k. In the two figures, the sharpness parameter is set to (a)n = 2, and (b)n = 9,
respectively.

Figure 4.8 reveals two surfaces: a lower surface with an internal pleat somewhat

like a fortune cookie, and an upper folded surface like the nose cone of an airplane. In

examining this figure, however, one must keep in mind that the SN and AH bifurca-

tions discussed above occur near these transitions as well. To achieve a comprehensive

understanding of the relationship between all of these transitions, Figure 4.9(a) and

(b) show a superposition of all three surfaces for n = 2 and n = 9, respectively.

From Figure 4.9, one can observe than none of the three transitions are present

in the upper right cooperative region where both η0 and k are positive. The PSS

state occurs in this region. Here, the network dynamics are cooperative in that

predominantly spiking neurons (η0 > 0) interact via excitatory synapses (k > 0),

leading to an active network.

In contrast, in the far lower left corner of Figure 4.9, predominantly resting neurons
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Figure 4.9: A diagram of the bifurcation surfaces for the SN, AH, and NF transitions
combined, appearing as green, orange, and blue contours, respectively. Here, the
sharpness parameter values are (a)n = 2 and (b)n = 9, respectively.

(η0 < 0) interact cooperatively via inhibitory synapses (k < 0), and the network

primarily exhibits the quiescent PSR state. Here, the only transition present is the

NF transition, which converts the PSR state to a PSS state, and vice versa.

Interestingly, the upper nose cone surface of Figure 4.9 encloses another region of

PSR states. Within this nose cone, the network consists of predominantly resting but

excitable neurons interacting via weak excitatory synapses. In this case, the resting

states of most neurons are relatively far from their thresholds (η0 ≪ 0), so that weak

synaptic excitation is not sufficient to cause most neurons to fire. Thus, the network

exhibits the PSR state.

As observed above, both of the cooperative regions of parameter space are dom-

inated by one of the two macroscopic equilibrium states, PSR or PSS. On the other

hand, where competition exists between the intrinsic and network dynamics (i.e.

where η0 and k have opposite signs), one finds additional bifurcations beyond the
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NF transition. However, the combined surface of Figure 4.9 is too crowded in these

competitive regions to decipher the exact nature of these transitions. In order to un-

derstand the specifics of how these transitions interrelate, I consider a two-dimensional

cross-section of Figure 4.9(a) in both of the competitive regions of parameter space

in the next section.

4.3 Classifying State Transitions

In an effort to explore the interplay between the bifurcations identified in Section 4.2

more closely, I focus here on two regions of parameter space where multiple transitions

are present; namely, where inherent competition exists between the neurons’ intrinsic

dynamics and the strength of the interneuronal coupling. For a fixed value of k in each

region, I slice the 3-dimensional surface of Figure 4.9(a) into a two-dimensional cross-

section. For the remainder of this analysis, I also restrict the sharpness parameter to

a value of n = 2.

4.3.1 The Competitive and Excitatory Network

Figure 4.10(a) shows a two-dimensional slice through the n = 2 tent at k = 9. A

typical fold structure with two saddle-node curves meeting at a codimension-two

cusp point is seen. Between these two SN curves, there exists a region of bistability

where both equilibria states (PSR and PSS) coexist. Figure 4.11(a) shows the one-

dimensional bifurcation diagram, plotting y = Im[z] versus η0, that results from

following η0 along the line ∆ = 0.5, represented as a dotted line in Figure 4.10(a).

Figure 4.11(a) shows how the equilibrium solutions evolve for increasing η0, be-

ginning at η0 = −10.5. Initially, there is an attracting PSR state, represented by the

lower-most branch of blue points. As η0 increases further, this PSR state gradually
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Figure 4.10: Two-dimensional bifurcation surface in the excitatory region with k = 9.
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Figure 4.11: (a)One-dimensional bifurcation surface in the excitatory region with
k = 9 and ∆ = 0.5. (b) A zoomed-in view of the SN/NF combined transition. In this
figure, blue lines indicate stable equilibria, and black lines represent saddle nodes.

migrates towards higher values of y. Then, a SN bifurcation and a NF transition

point occur in rapid succession at η0 = −9.4763 and η0 = −9.4760, respectively. This

SN bifurcation creates a new stable PSR state (shown as the upper-most branch of

blue points) and a saddle node (represented as a series of black points) in a separate

region of state space (near y = −0.037), and at the NF point, the stable PSR changes

into a stable PSS state. These transitions are not resolvable at the resolution shown

in Figure 4.11(a) and are therefore marked “SN/NF” in this figure. Figure 4.11(b)

shows a magnified view of these two transition points.

65



As η0 increases further, the stable PSS state created in the SN/NF combination

persists, while the saddle node migrates towards smaller values of y and collides with

the coexisting stable PSR state. These annihilate each other via the SN bifurca-

tion at η0 = −6.155. Beyond this point, only the PSS state created in the SN/NF

combination remains.

This competitive excitable region (with k > 0 and η0 < 0) represents the simplest

possible example of bistability exhibited by this system; i.e., that of two coexistent

equilibrium states. Here, the SN bifurcation represents the mechanism by which

bistability becomes possible. In Section 4.3.2, however, one can see that the SN

bifurcation is a necessary, but not sufficient, condition for the creation of the bistable

state.

4.3.2 The Competitive and Inhibitory Network

I now examine the second competitive region of interest; namely, that of an inhibitorily

coupled network (k < 0) comprised primarily of continuous spikers (η0 > 0). In

addition to the SN and NF transitions present in Section 4.3.1, transitions in this

region are complicated by the existence of the AH bifurcation as well, which introduces

the CPW state.

Figure 4.12(a) shows the two-dimensional bifurcation diagram that results from

slicing through the n = 2 AH and SN surfaces at k = −9. The two SN curves again

meet at a cusp, and the AH curve intersects the left SN curve at a codimension two

Bogdanov-Takens (BT) point. The dashed rectangular region shown in Figure 4.12(a)

is magnified in Figure 4.12(b), making it easier to see the AH curve, as well as the

homoclinic (HC) bifurcation curve that also emerges from the BT point. The latter

curve is identified numerically.

To further clarify the identity of the macroscopic network states, Figure 4.13(a)
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Figure 4.12: (a)Two-dimensional bifurcation surface in the inhibitory region with
k = −9. (b) A zoomed-in view of the AH/HC bifurcation region.

shows the one-dimensional bifurcation diagram (in this case, x = Re[z] vs. η0) ob-

tained by varying η0 along the line ∆ = 0.5, again shown as a dotted line in Figure

4.12(a). Here, as before, the blue lines represent stable equilibria. The lower equi-

librium branch corresponds to the PSR state, and it persists until it collides with a

saddle node in the right-most SN bifurcation. Moving along the upper stable equilib-

rium with decreasing η0, the network exhibits the PSS state before encountering the

AH bifurcation, which is supercritical. At this point the equilibrium loses stability

(illustrated as a red line in the figure), and an attracting limit cycle emerges, i.e., the

CPW state. The amplitude of this limit cycle (represented as a series of green points

in the figure) subsequently increases until it collides with the saddle node equilibrium

in an HC bifurcation.

Figure 4.13(b) shows a magnification of the vicinity of the SN/NF point in 4.13(a),

showing both the SN and NF points distinctly. This SN point corresponds to the left

SN curve in Figure 4.12(a), and in this case, leads to the creation of a saddle node

and an unstable node. At the NF point, this unstable node changes into an unstable

focus. Here, though, as neither of these newly created equilibria are asymptotically

attracting, this bifurcation does not result in the creation of a bistable state; the
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Figure 4.13: (a) The one-dimensional bifurcation surface with k = −9 and ∆ = 0.5.
(b) A zoomed-in view of the SN/NF combined transition.

pre-existing PSR state remains the only attracting state of the network.

As demonstrated in this section, the SN bifurcation should not be interpreted as

always giving rise to bistability in this model. Further, the AH and HC bifurcations

are the only mechanisms by which the periodic state is achieved by this network, and

this CPW state can only be co-existant in a bistable condition with this PSR state

in this network.

4.4 Summary

In this chapter, I performed a complete analysis of all possible collective states of the

reduced theta neuron network. I conduced a complete microscopic and macroscopic

analysis of the characteristics of each of these states, as well as the conditions under

which these states transition from one to another.

The analysis of this chapter has been performed for specific values of the sharpness

parameter n. In all simulations performed on this model, no qualitative change in

the steady state collective behavior is apparent due to changes in the pulsatility of

the synaptic connections. I conclude, therefore, the sharpness parameter n can be

considered to be qualitatively robust within this model.
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As a final note, the PSR and PSS both represent equilibrium states. However,

trajectories approaching these two states will have very different behaviors (i.e. spi-

raling in vs. directly decaying). These differences are seen in two cases: 1) during

the transient period, and 2) from a small perturbation to the asymptotic rest state

of the network, whether via a shift in one of the network parameters or due to finite-

size effects. In Chapter 5, I consider an extension of the reduced network model by

introducing this kind of perturbative shift in the network parameters.
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Chapter 5: The Parabolic Burster Network Model

In Chapter 3, I derive a low dimensional dynamical equation that describes the asymp-

totic macroscopic behavior of a network of theta neurons. This model describes a

network whose parameters are static in time. However, as generally speculated, the

internal dynamics of the network elements will vary in time in response to synaptic

input or other changes in the neuronal environment.

Specifically, if the theta neurons excitability parameter η is made to oscillate

sinusoidally, repeatedly crossing the SNIC bifurcation, the neuron can be used to

model a parabolic burster[11], as shown in Figure 5.1(a). Several biophysical mech-

anisms could modulate neuronal excitability in this manner. For example, synaptic

barrages associated with characteristic brain rhythms create up and down states in

cortical neurons[75]. This is also motivated by a recent study suggesting that burst-

ing neurons result from the dynamics of time-varying extracellular potassium ion

concentrations[76, 77].

In this chapter, I explore the complex dynamical behavior that arises when the

excitability parameter of a large heterogeneous network of coupled theta neurons

varies sinusoidally in time[14]. Using the same Ott-Antonsen reduction method[12,13]

as in Chapter 3, a low dimensional dynamical equation for the asymptotic mean field

is derived and analyzed. The introduction of this perioidic excitability results in

a network that can support macroscopic chaos, multistability, and other complex

macroscopic dynamic states.
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Figure 5.1: (a) Time trace of a voltage-like variable V (t) = sin(θ) for a theta neuron
with a time-varying excitability parameter η(t) = η̄ + A sin(2πt/τ). The lower panel
shows η versus time. Reproduced with permission from Elsevier[14].

5.1 The Burster Network Model

The membrane potential in a “bursting” neuron switches periodically between an

active phase of repeated spiking and a quiescent phase of non-spiking behavior. This

bursting behavior is called “parabolic” when the spiking frequency is at its minimum

at both the onset and cessation of the active phase[78], as can be seen in Figure 5.1.

To model this behavior, the theta neuron’s excitability parameter is chosen to vary

in time, as in:

dθ

dt
= (1 + cos θ) + (1− cos θ)η(t), (5.1)

where the time dependence of η is given by:

η(t) ≡ η̄ + A sin(2πt/τ). (5.2)
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Here, η̄ represents the time-averaged value of the excitability, A denotes the amplitude

of the sinusoidally varying term, and τ is the period of this variation.

5.1.1 The Full Network Model

One can now construct a full network similar to the procedure laid out in Section

2.1. Once again, the bursting neurons are assumed to be coupled through a constant

coupling strength k, and the synaptic current remains as follows:

Isyn =
kan
N

N
∑

j=1

(1− cos θj)
n. (5.3)

Also, the network heterogeneity is again modeled by assuming that each η̄j for the

jth neuron in the network is randomly drawn from a Lorentzian distribution, as in:

g(η̄) =
∆

π[(η̄ − η0)2 +∆2]
. (5.4)

From these assumptions, the full parabolic burster network dynamically evolves

according to the following coupled system of equations:

dθi(t)

dt
= (1+ηi(t))− (1−ηi(t)) cos θi(t)+(1+cos θi(t))

kan
N

N
∑

j=1

(1−cos θj(t))
n, (5.5)

where i ranges from 1 to N and the time variation of the excitability is given by

(5.2). The full network dynamical equation mirrors that of Chapter 2, except for the

inclusion of the sinusoidal time modulation of ηi(t) from (5.2).
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5.1.2 The Reduced Model

A low-dimensional dynamical equation for the asymptotic macroscopic mean field of

this network can be found by the same reduction method used in Chapter 3. Begin-

ning with the full network model of (5.5), I first move to a continuum description by

introducing a probability density function F (θ, η̄, t) that gives the fraction of neurons

with phases between [θ, θ + dθ] and time-averaged excitability between [η̄, η̄ + dη̄].

F (θ, η̄, t) satisfies the same continuity equation as in (3.4), with the phase velocity

ν(θ, η̄, t) given by the continuum version of (5.5):

ν(θ, η̄, t) = (1 + η(t))− (1− η(t))
eiθ + e−iθ

2
+ k

[

1 +
eiθ + e−iθ

2

]

Hn(z), (5.6)

where η(t) is defined in (5.2) and where Hn(z) is defined as in (3.15).

By Fourier expanding F (θ, η̄, t) and introducing the Ott-Antonsen ansatz from

(3.19) as before, it is possible to derive the equation governing the time evolution of

α(η̄, t) from the continuity equation. Contour integration over the upper-half imag-

inary η̄ plane then yields the same relation between z(t) and α(η̄, t) as (3.26). The

reduced model for the asymptotic mean field then becomes:

dz(t)

dt
= −i(z(t) − 1)2

2
+ [−∆+ i(η0(t) + kHn(z(t)))]

(z(t) + 1)2

2
. (5.7)

where the expression η0(t) has the same explicit time dependence as in (5.2), i.e.:

η0(t) = η0 + A sin(2πt/τ), (5.8)
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with η0 representing the median excitability of the Lorentzian distribution of time-

averaged excitabilities (5.4), as before.

5.2 Analysis of the Parabolic Burster Model

The macroscopic mean field equation is basically a time varying version of the “frozen”

network studied in Chapter 4. All results from Chapter 4 can be carried over here

for a fixed value of η0. In this section, therefore, I examine the changing dynamics of

the bursting neuron network against the new parameters of amplitude A and period

τ of the time-dependent variation.

5.2.1 The Burster Network Macro-states

The introduction of time variation essentially precludes a simple “equilibrium” state

in the parabolic burster network, since the excitability of the system never reaches

a fixed value in time. Therefore, the simplest possible asymptotic macroscopic state

for the network is now a periodic orbit, or limit cycle. Here, I classify the different

potential periodic motions of the network in greater detail.

The first of these states occurs when the equilibria of the frozen system (i.e. PSR

or PSS states) become periodic orbits in the time-dependent system. If the amplitude

A of the modulation is small, then the system simply follows along as the periodic

drive moves the previously frozen equilibrium back and forth. This periodic state is

referred to as a “libration”[14].

Similarly, limit cycles of the frozen system, i.e. the CPW state, typically become

quasi-periodic attractors on a torus in the time-dependent system (again, for small A).

This is shown in Figure 5.2(a), in which a plot of the quasi-periodic state calculated

using (5.7) is shown. For comparison, Figure 5.2(b) shows the mean field behavior
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Figure 5.2: a) The predicted quasi-periodic attractor, obtained using 5.7. b) The
asymptotic trajectory of the macroscopic mean field in a network of 10,000 theta
neurons with η0 = 10.75, k = 9, ∆ = 0.5, A = 0.38, and τ = 1. c) A snapshot
showing the phases of 550 randomly sampled neurons. The blue line indicates the
instantaneous macroscopic mean field variable z(t). Reproduced with permission from
Elsevier[14].

of a large discrete network realization with 10,000 theta neurons, after a sufficiently

long transient has been discarded.

As η0(t) exhibits increasingly slow modulations (i.e. as τ increases), a sequence of

period-adding bifurcations[79] in the periodic orbit occur. This increase in winding

number gives rise to a “multi-periodic” orbit. Figure 5.3 shows the phase portrait

of the period-9 orbit (i.e. the orbit goes through nine “twists” in one period of the

modulation, τ) at τ = 25.

Finally, a phase portrait of a “chaotic attractor” is shown in Figure 5.4(a), and

the corresponding mean field behavior for the finite network (N = 10,000) is shown in

Figure 5.4(b). Figure 5.4(c) shows a sparsely sampled snapshot of the corresponding

microstate. Despite the small amount of blurriness due to the finite-size effects, the

trajectory from the reduced mean field equation traces out an attractor which matches

very well with the one calculated directly from the full network.
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Figure 5.3: A period-9 periodic orbit in the macroscopic mean field created from a
sequence of period adding bifurcations. a) The predicted macroscopic orbit obtained
from the reduced mean field equation (5.7). b) The asymptotic trajectory of the
macroscopic mean field from a network of theta neurons with N = 10, 000. c) A
random sampling (550) of the microscopic neurons within the network at a particular
time. Parameters were η0 = 10.75, k = 9, ∆ = 0.5, A = 4.8, and τ = 25. Reproduced
with permission from Elsevier[14].
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Figure 5.4: a) The predicted chaotic attractor obtained with the reduced mean field
equation (5.7). b) The asymptotic trajectory of the macroscopic mean field from a
network of theta neurons with ∆ = 0.5, η0 = 10.75, k = 9, A = 4.8, τ = 1, and N =
10, 000. c) A snapshot showing the phases of 550 randomly sampled neurons. The
blue line indicates the instantaneous macroscopic mean field variable z. Reproduced
with permission from Elsevier[14].
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5.2.2 Bifurcations of the Burster Network

In Chapter 4, I conducted an exhaustive bifurcation analysis of the “frozen” reduced

theta neuron network model against the time-independent parameters η0, ∆, and k.

Here, I explore the transitions between macrostates that arise from the new param-

eters in the parabolic burster network model, A and τ . In this analysis, the state of

the frozen system is chosen to be the example CPW state from Section 4.1.3 (where

η0 = 10.75, ∆ = 0.5, and k = −9), which allows the time modulation to “sweep”

near the Bogdanov-Takens point identified in Section 4.3.2. With this choice, the

parabolic burster network model exhibits a much richer bifurcation structure[80], as

compared to the frozen model of Chapter 4.

Variations in the Amplitude A

Here, I first describe the effect of variations in the value of A with the period fixed at a

value of τ = 1. As one detunes the time-varying network by increasing the amplitude

of the periodic modulation A, frequency locking behavior between the macroscopic

mean field and the periodic drive η(t) is observed. This is shown in the bifurcation

diagram of Figure 5.5, which shows x(t) ≡ Re[z(t)] sampled stroboscopically at a

period τ . In our case, frequency locking arises from the interplay between the periodic

drive and the collective rhythm that emerges from the interacting neurons in our

network.

Periodic orbits that coexist with the quasiperiodic bands are visible in Figure 5.5.

A prominent one is near x = −0.75, corresponding to a small libration. Another

periodic orbit, near x = −0.3, actually encircles the quasiperiodic orbit in the cen-

ter (note that this is not apparent in the figure due to the stroboscopic sampling).

Sequences of bifurcations near this orbit appear around A = 0.5. These, along with

other bifurcation cascades that are difficult to resolve, lead to the creation of a chaotic
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Figure 5.5: Bifurcation diagram showing x(t) = Re[z(t)], sampled using a time-τ
stroboscopic map, versus the amplitude A. Other parameters are: η0 = 10.75, k = 9,
∆ = 0.5, and τ = 1. The structure with dark bands on the left is quasiperiodic
behavior. Reproduced with permission from Elsevier[14].

saddle which eventually becomes attracting.

Figure 5.6 is a continuation of Figure 5.5 to higher values of the amplitude A that

shows the existence of several chaotic bands. (The lower panel shows the two largest

Lyapunov exponents.) The first attracting chaotic band appears at a crisis when the

chaotic saddle and an unstable period-one orbit collide near A = 4.525. Note that

there is a small region in which the libration (a stable period-one orbit) coexists with

the stable chaotic band. For higher values of A, multiple chaotic bands delineated

by period doubling cascades on the right and crises on the left can be seen. Also

visible near A = 5.65 is a smaller cascade from a period three orbit that coexists with

the main branch. Many such regions of multistability are present throughout the A

parameter space.

78



Figure 5.6: (Top panel) A bifurcation diagram showing the emergence of macroscopic
chaos with A being the bifurcation parameter using (5.7). Other system parameters
were chosen as in Figure 5.5. The bifurcation diagram was obtained by plotting the
real part x of the mean field variable z on a time-τ stroboscopic map. (Bottom panel)
The corresponding plot for the two largest Lyapunov exponents of the macroscopic
dynamics. Reproduced with permission from Elsevier[14].

Variations in the Period τ

A similar sequence of bifurcations into and out of quasi-periodicity and chaos can be

seen if one varies the period τ of the time-varying network excitability η(t). This is

shown in Figure 5.7, which was obtained with A = 4.8 and the remaining parameters

fixed as above. The three panels show the network’s attractors for fast, moderate,

and slow modulation of η0(t) (i.e., increasing periods τ).

For fast modulation (Figure 5.7(a)), the macroscopic mean field exhibits quasi-

periodic behavior similar to that described above with small amplitude modulation

(see Figure 5.5). For moderate modulation (Figure 5.7(b)), a more dynamically rich

regime is found. As before, there is a region (τ approximately between 0.4 and 0.9) in

which bifurcation cascades are difficult to resolve numerically, after which attracting

chaotic bands occur that are again bracketed by crises and period doubling cascades.
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Figure 5.7: A bifurcation diagram of the macroscopic mean field with τ as the bifurca-
tion parameter using the reduced mean field equation (5.7) for a) Fast (0.1 ≤ τ ≥ 0.5),
b) Moderate (0.5 ≤ τ ≥ 1.2) and c) Slow (τ > 1.2) modulation. Bifurcation diagrams
(a) and (b) were calculated by plotting the real part x of the mean field variable z on
a time-τ stroboscopic map. In order to show the increasing winding number from the
period-adding bifurcations, we used a standard Poincaré surface of section at y = 0.3
instead of a stroboscopic map in (c). Other system parameters for all three graphs
were ∆ = 0.5, η0 = 10.75, k = 9, and A = 4.8. Reproduced with permission from
Elsevier[14].
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Finally, for very slow modulation (τ > 1.2), no more chaos is found. The bifur-

cation diagram of Figure 5.7(c) was obtained using a Poincaré surface of section at

y = −0.3 instead of the stroboscopic map used in previous diagrams. The bifurcation

diagram (Figure 5.7(c)) shows that multi-periodic orbits arise by acquiring an addi-

tional twist each time τ increases through the following sequence of period-adding

bifurcation points: τ = 5.5, 8.7, 11.5, 14.2, 16.8, 19.3, 21.7, and 24.2.

5.3 Summary

I demonstrate here how a large heterogeneous network of coupled theta neurons

whose excitability parameter varies sinusoidally in time exhibits richer dynamics in

its asymptotic macroscopic behavior than those found in Chapter 4. The macroscopic

states encountered here include librations and quasi-periodic states, which correspond

to weak periodic perturbations of the frozen network macrostates of Chapter 4 (i.e.

PSR, PSS, and CPW), and new more complex collective states, i.e. chaotic attractors

and multi-stability, when the periodic perturbations to the network become larger.

In this chapter, the time-variation in median excitability was introduced by means

of an explicit time-varying sinusoidal function. Alternatively, interaction with an

external “driving” population in a CPW state can induce similar dynamics. This

“driver-response” system will be introduced in Chapter 6.
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Chapter 6: Multi-Population Network Model

One underlying assumption of the mean field reduction method of Chapter 3 is that all

members of the network are equally connected to each other.1 To relax this assump-

tion, I introduce here a multi-population extension of the single population model

described in Chapter 3. Through this modification to the previously defined reduced

model, I am now able to include multiple populations with their unique coupling

strengths, heterogenieties, and excitabilities and connect them via an intercoupling

parameter. Individually, each of these populations represents a equivalent model to

Chapter 3. Here, by use of this modified approach, one has the freedom to choose

not only the parameters that control the internal dynamics within a given popula-

tion, but also those that dictate the dynamics between these populations. Through

this multi-population topology, one not only has the freedom to assign unique “intra-

coupling” strengths to each of these populations, but to also decide on the strength

of the “intercoupling” parameter that connects these independent populations.

6.1 General Two Population Model

Let us consider the simplest multi-population network first; one consisting of two pop-

ulations only. Here, I replace the single coupling parameter k in the single population

model with a “coupling matrix” that takes into account multi-population connectivity

1Here, the coupling strength k is not a characteristic of individual neurons, but rather is related to
the connection between two separate neurons. While it might be possible to introduce heterogeneity
in coupling strength as was done for the excitability in Chapter 2, this particular method was not
explored in this work.
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in its elements:

k →







k11 k12

k21 k22






(6.1)

To understand this connectivity matrix better, let us now consider an arbitrary ele-

ment of the matrix, kpq. Here, the first index (p) represents the population receiving

the influence, while the second index (q) denotes the population providing the influ-

ence. In neurophysiological terms, k11 represents the intracoupling strength of the

first population, i.e. the synaptic influence strength each neuron in Population 1 has

on every other neuron in the same population. On the other hand, k12 represents an

intercoupling strength, i.e. the strength of the influence that a Population 2 neuron

exerts on a neuron in Population 1.

6.1.1 The Full Two-Population Network

To derive the dynamical evolution equations for each population, I follow the same

general procedure as before. Incorporating the effect of both populations into (2.7), I
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modify the full network model (previously defined for only one population) as follows:

dθi
dt

(1)

=1 + η
(1)
i − (1− η

(1)
i ) cos θ

(1)
i

+ an(1 + cos θ
(1)
i )





k11
N (1)

N(1)
∑

p=1

(1− cos θ(1)p )n +
k12
N (2)

N(2)
∑

q=1

(1− cos θ(2)q )n





dθi
dt

(2)

=1 + η
(2)
i − (1− η

(2)
i ) cos θ

(2)
i

+ an(1 + cos θ
(2)
i )





k21
N (1)

N(1)
∑

p=1

(1− cos θ(1)p )n +
k22
N (2)

N(2)
∑

q=1

(1− cos θ(2)q )n



 ,

(6.2)

where the superscript labels (1) and (2) denote members of the first and second

populations, respectively. Based on the conclusion of Chapter 4 regarding the limited

significance of the sharpness parameter n, I assume here that n is the same for both

populations.

In this model, each population has its own mean field parameter z(t), which is

calculated in the same way as before:

z(1)(t) ≡ 1

N (1)

N1
∑

p=1

eiθ
(1)
p (t)

z(2)(t) ≡ 1

N (2)

N2
∑

q=1

eiθ
(2)
q (t). (6.3)

The procedure for numerically computing the full two-population network is un-

changed. Specifically, one uses (6.2) to numerically solve for all of the phases in each

populations independently at each time step. These phases are then averaged by use
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of (6.3) to obtain the mean field for each population.

6.1.2 The Reduced Two-Population Network

Using the procedure laid out in Chapter 3, it is possible to identify a set of low-

dimensional dynamical equations that identify the asymptotic attracting macroscopic

states of each population within the two-population network of Section 6.1.1. To

do this, I first assume that both populations are in the thermodynamic limit, i.e.

N (1) → ∞ and N (2) → ∞. In this continuum limit, the probability distribution of

neurons in each population is denoted by F1(θ1, η1, t) and F2(θ2, η2, t)
2.

Since the two populations are assumed to be independent, the probability distri-

bution of each population must separately obey its own continuity equation:

∂F1

∂t
+

∂

∂θ1
(F1ν1) = 0,

∂F2

∂t
+

∂

∂θ2
(F2ν2) = 0, (6.4)

with the phase velocity distribution ν for each population defined by the continuum

analog of (6.2):

ν1 =1 + η1 − (1− η1)
eiθ1 + e−iθ1

2
+ (1 +

eiθ1 + e−iθ1

2
)[k11Hn(z1) + k12Hn(z2)],

ν2 =1 + η2 − (1− η2)
eiθ2 + e−iθ2

2
+ (1 +

eiθ2 + e−iθ2

2
)[k21Hn(z1) + k22Hn(z2)], (6.5)

and where the continuous influence function Hn(z) is defined from (3.15) as before.

2Note that with this change to the continuum limit, subscripts are now used to label individual
populations in the continuum limit, and should not be confused with the order of the Daido moments
of (3.13). I will continue to use subscripts to denote a population label for the remainder of this
analysis.
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By regrouping terms, I represent these expressions as:

ν1 =
eiθ1 + e−iθ1

2
[1 + η1 + k11Hn(z1) + k12Hn(z2)]+

[−(1 − η1) + k11Hn(z1) + k12Hn(z2)] ,

ν2 =
eiθ2 + e−iθ2

2
[1 + η2 + k21Hn(z1) + k22Hn(z2)]+

[−(1 − η2) + k21Hn(z1) + k22Hn(z2)] . (6.6)

The system of equations (6.6) each appear in the sinusoidally coupled form ν =

feiθ + h+ f ∗e−iθ, with f and h defined as:

fp ≡ −1

2
[(1− ηp)− (kp1Hn(z1) + kp2Hn(z2))] = f ∗

p ,

hp ≡ (1 + ηp) + (kp1Hn(z1) + kp2Hn(z2)), (6.7)

where p = 1, 2 represent the label of each individual population.

The procedure for deriving the dynamical equations for each population’s Ott-

Antonsen parameter αp is identical to that demonstrated in Chapter 3. Therefore,

now utilizing the sinusoidally coupled expression for νp and following Watanabe and

Strogatz[73], one can immediately write the equation defining the time evolution of

αp for each population (p = 1, 2) as:

dαp
dt

= i[fpα
2
p + hpαp + f ∗

p ]

= i[fp(1 + α2
p) + hpαp], (6.8)

where I have utilized the fact that fp is real for both populations.
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The next step is to define the distribution of excitabilites across each population

using a Lorentzian distribution. However, the median excitability η0 and half-width

∆ at half-maximum of the distribution for the two populations can either be unique

or similar, depending on whether the individual populations are distinct or identical.

Continuing with the procedure of Chapter 3, I conduct a contour integration on

the following expression for the mean field:

zp(t) =

∫

∞

−∞

dη′pg(η
′

p)αp(η
′

p, t), (6.9)

on the upper-half imaginary plane for η′p for each population. Combined with the

assumptions that again |αp| < 1 and that |αp| → 0 as Im[ηp] → ∞, one finds the

identical simple relation between α and z for each of the two populations p = 1, 2 as

before:

zp = αp(ηp = η0,p + i∆p), (6.10)

at the specific value of excitability where ηp = η0,p + i∆p.

From this relation, the dynamical expressions for the mean field of each neuronal

populations immediately follows from (6.8):

dz1
dt

=i{[(1− η1 − i∆1) + k11Hn(z1) + k12Hn(z2)]
1 + z21

2
+

[(1 + η1 + i∆1) + k11Hn(z1) + k12Hn(z2)]z1},

dz2
dt

=i{[(1− η2 − i∆2) + k21Hn(z1) + k22Hn(z2)]
1 + z22

2
+

[(1 + η2 + i∆2) + k21Hn(z1) + k22Hn(z2)]z2}, (6.11)

where I implement a notation change to represent the median excitability η0,p for
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each population as ηp. Regrouping terms in (6.11), the reduced two-population model

becomes:

dz1
dt

= −i(z1 − 1)2

2
+ [−∆1 + i(η1 + k11Hn(z1) + k12Hn(z2))]

(z1 + 1)2

2
,

dz2
dt

= −i(z2 − 1)2

2
+ [−∆2 + i(η2 + k21Hn(z1) + k22Hn(z2))]

(z2 + 1)2

2
. (6.12)

6.2 The Driver-Response System

The derivation of the two-population system in Section 6.1 very closely mirrored

the derivation of the equivalent single population system of Chapter 3, and one might

assume that the bifurcation analysis of this system will also mirror the previous study.

However, the two-population model is considerably more complex. Consider that the

dynamical system has now increased from two-dimensions (i.e. x and y) to four (i.e.

x1, y1, x2, and y2). The dimensionality of the parameter space has increased from the

four-dimensional parameter space defined by η0, ∆, k, and n to a nine-dimensional

one, given by η1, η2, ∆1, ∆2, n, and the four elements of the coupling matrix (6.1).

In this section, I introduce another simplification to the multi-population network

of Section 6.1. Here, the two populations are assumed to be in a “driver-response”

relationship[81–88], where the first population “drives” the behavior of the second

population without any feedback. Consequently, I denote the second population as

the “response” population.

6.2.1 Formulation of the Driver-Response System

The dynamical equations given in (6.12) introduced in Section 6.1 describe a fully

bi-directional coupled state, where two populations interact with each other via the
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k12 and k21 parameters. These parameters characterize the intercoupling between the

populations. In particular, k12 represents the influence of Population 2 on Population

1, and k21 represents the opposite effect. In the completely isolated system where

both intercouplings are zero, comparison of (6.12) and (3.30) shows that the dynam-

ical evolution equations for Population 1 and Population 2 are identical. Therefore,

all of the possible macrostates and the bifurcations of each isolated population are

comprehensively explored in Chapter 4 for each independent network.

To construct the driver-response system, I simply set one of the intercoupling

terms (i.e. k12) equal to zero. This decoupling essentially creates a feed-forward or

uni-directional coupling. Here, setting k12 = 0 implies that Population 1 receives no

influence from Population 2. Therefore, I denote the Population 1 as the “driver,”

and Population 2 as the “response” population.

The dynamics of the response population are determined both by the driver’s state

and by the response population’s own internal dynamics. The only two previously

unexplored effects on the response network arise from 1) the intercoupling strength

k21, and 2) the influence of the driver. This analysis is conducted in detail in Chapter

7 and 8.

6.2.2 The Effective Median Excitability ηeff

Setting k12 = 0, the system of evolution equations from (6.12) in this driver-response

system can be written as:

dz1
dt

= −i(z1 − 1)2

2
+ [−∆1 + i(η1 + k11Hn(z1))]

(z1 + 1)2

2
,

dz2
dt

= −i(z2 − 1)2

2
+ [−∆2 + i(η2 + k21Hn(z1) + k22Hn(z2))]

(z2 + 1)2

2
. (6.13)
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From the dynamical equations, one can immediately observe that the driver equa-

tion is identical to that found in Chapter 3, as previously stated. The response

population, though, has an additional term k21Hn(z1). Here, Hn(z1) represents the

influence from the driver population, and the value of the intercoupling k21 represents

how strong this influence is.

As discussed in Section 3.2.3, the function Hn(z1) is real for all values of z1 and

n. Now, combining this additional term with the intrinsic median excitability of the

response population, η2, gives us a shift in this parameter. This shifted excitability

represents the effective median excitability of the response population and is defined

as:

ηeff ≡ η2 + k21Hn(z1). (6.14)

Inserting this definition into the dynamical equation for the response population

from (6.13), the modified system of dynamical equations becomes:

dz1
dt

= −i(z1 − 1)2

2
+ [−∆1 + i(η1 + k11Hn(z1))]

(z1 + 1)2

2
,

dz2
dt

= −i(z2 − 1)2

2
+ [−∆2 + i(ηeff + k22Hn(z2))]

(z2 + 1)2

2
. (6.15)

The two dynamical equations now mirror each other perfectly (with an appropriate

change in subscripts). Since the influence from the driver appears only as a parametric

shift in ηeff , the bifurcation analysis of Chapter 4 for a single population directly

applies to the response population, provided one replaces η0 with ηeff in that analysis.

As demonstrated above, the influence of the driver causes the response population

to act as if its median excitability is skewed from its uncoupled intrinsic value. Given

that the value of Hn(z1) is always positive-definite (c.f. Section 3.2.3), an excitatory

inter-coupling parameter (k21 > 0) results in an increase in the effective median
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excitability. Physically, this increased effective median excitability in the response

population causes it to act as if there are more continuously spiking neurons in the

population than actually exist if the two populations are uncoupled. Conversely, an

inhibitory inter-coupling parameter (k21 < 0) causes ηeff to decrease, so that the

responder acts as if it has more excitable neurons.

6.3 Summary

In this chapter, I have demonstrated how the Ott-Antonsen reduction method can

be applied to a system of interconnected populations. The motivation for this effort

was to introduce an added layer of heterogeneity in the coupling strength. Here, I

describe the dynamics of the “driver-response” system mathematically, in addition to

drawing physical insights from the model itself.

In the upcoming two chapters, I examine in detail the effects on the response

population from the driver. From Chapter 4, we know that the driver can exist in

one of the two macroscopic attracting states: either an equilibria or a periodic state.

Each of these states has a unique effect on the response population. These unique

effects are explored separately in Chapters 7 and 8, respectively.
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Chapter 7: Analysis of the Response Population

with an Equilibrium Driver

In Chapter 3, I use the Ott-Antonsen reduction technique[12, 13] to derive a low

dimensional system of differential equations to describe the asymptotic macroscopic

dynamics of a network of theta neurons. I then expand this single-population model

in Chapter 6 to include multiple distinct populations of neurons within a network of

networks. However, each additional population adds two dimensions of complexity

to the resulting dynamical system. Consequently, it quickly becomes prohibitive to

conduct a detailed dynamical analysis of a full multi-population model.

In this chapter, I will analyze the macroscopic dynamics for the simpler driver-

response network introduced in Section 6.2, in order to explore the effects of the

influence of one population on another. As shown in Section 6.2, the dynamical

equation defining the macroscopic state of each isolated population (i.e. without any

intercoupling) is identical to the system explored in Chapter 4 with a trivial change of

subscript labels. Therefore, we know that the driver population will asymptotically

approach one of the two equilibrium states (PSR or PSS) or a periodic state (CPW).

Here, I only explore the dynamical consequence on the response network when the

driver in one of these two equilibrium states. The effect from a CPW driver will be

explored in Chapter 8.

In the absence of feedback from the response population, it is analytically straight-

forward to explore the effects of a driver at a macroscopic equilibrium state on the

response population. These effects can be analyzed in one of two ways: 1) by varying
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the intercoupling strength with the driver in a fixed equilibrium state, or 2) by fix-

ing the intercoupling and allowing variations in the driver state. I explore these two

procedures independently in the following two sections.

7.1 Effect of the Intercoupling Parameter k21

In this section, I begin the analysis of the driver-response network by considering

variations of the simplest possible bifurcation parameter: the intercoupling strength

k21.

Recall from Chapter 6 that the dynamical equation for the response population

in (6.15) is identical to that of the single population (3.30) (with the trivial change

of subscript labels: η0 → ηeff , ∆ → ∆2, and k → k22). Therefore, the procedure

outlined in Chapter 4 by which the bifurcation diagrams are generated is also identical,

with the given change in subscript labels. The bifurcation diagrams generated in

Chapter 4 are equally applicable here, provided one uses the effective excitability in

place of the intrinsic excitability of the response population.

From the definition of ηeff (6.14), it is immediately apparent that the excitability

of the response population is shifted from its intrinsic (i.e. without intercoupling)

value by k21Hn(z1). Since Hn(z1) is a function of the driver state z1, one can think

of the intercoupling strength k21 as the “gain” of the driver’s influence. As the value

of an excitatory k21 increases, the shift in ηeff also increases linearly, as can be seen

from Figure 7.1. Consequently, when applying the bifurcation results for the single

population in Chapter 4, the observed behavior of the response population should

simply shift to the right in Figures 4.10 and 4.12. To verify this prediction, I examine

the effect of increasing intercoupling strength on the driver-response system in the

two regions of interest discussed in Section 4.3.
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Figure 7.1: A plot showing the linear relationship between the effective excitability
ηeff and the intercoupling strength k21 for a driver fixed in an equilibrium state.

7.1.1 Effect of k21 on the Excitatorily Intracoupled (k22 > 0)

Region

I begin my analysis of the response population against the bifurcations predicted in

the single population excitatorily intracoupled region of Section 4.3.1. Here, I analyze

the change in this bifurcation with respect to variations of the intercoupling k21, with

the intracoupling1 strength k22 fixed at 9.

Figure 7.2 shows the 2-D bifurcation diagram for the excitatory network (as refer-

enced above). Here, the intrinsic state of the response population (i.e. when k21 = 0)

is shown as a red dot at the fixed values of ∆2 = 0.5 and η2 = −10. As k21 in-

creases, the response population will “move” along the dotted line shown in this

figure. For this study, the driver is chosen to be in a fixed PSR state given by param-

eters η1 = −0.2, ∆1 = 0.1, and k11 = −2.

In this analysis, only excitatory values of the intercoupling (i.e. k21 > 0) are

considered. This choice is solely a matter of convenience, because the bifurcation

1Recall that intracoupling refers to the coupling strength between neurons in the same population,
whereas intercoupling refers to the coupling between populations.
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Figure 7.2: The two-dimensional bistable region in the excitatorily coupled network.
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Figure 7.3: (a) The one-dimensional bifurcation surface for the bistable region of the
excitatorily coupled network. (b) The equivalent one-dimensional bifurcation surface
from the single-population model. Here, blue points indicate stable equilibria and
black points represent saddle nodes.

curves only exist to the right of this starting point (see Figure 7.2).

Figure 7.3(a) shows how the imaginary part of the response mean field changes

with respect to k21. The equivalent single population diagram from Section 4.3.1 is

also reprinted here as Figure 7.3(b). Comparison of these two figures indicates that

the bifurcation diagrams are qualitatively similar to each other.

At first glance, this mathematical result seems rather uninteresting, as it simply

confirms the linear relationship between ηeff and k21. However, the biological inter-

pretations of this result are quite remarkable. Here, this result demonstrates that by
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Figure 7.4: The two-dimensional bistable region in the inhibitorily coupled network.

modifying either the intercoupling or the median excitability of the response popula-

tion itself (two very different system characteristics), one obtains identical transitions

in the response network.

7.1.2 Effect of k21 on the Inhibitorily Intracoupled (k22 < 0)

Region

I now consider the bifurcations in our second region of interest in parameter space,

where the response population is comprised of mostly continuous spikers that are

inhibitorily intracoupled (k22 = −9). As above, Figure 7.4 is the same bifurcation

figure from Section 4.3.2, except with the red dot now denoting the location of the

intrinic (k21 = 0) response system at ∆2 = 0.5 and η2 = 5. The dotted line shows the

path of the response population as the excitatory intercoupling k21 increases. Here,

the driver is fixed to be in the same PSR state as in Section 7.1.1.

Figure 7.5(a) shows the bifurcation diagram for the response population against

k21. Here, the real part of the response mean field x2 appears on the y-axis, and values

of the intercoupling strength k21 are on the x-axis. Once again, comparison of this

96



ííéé

éé

SN�NF

SN
HC

AHuPSS

uPSR
PSS

PSR

LC

0.63 1.3 1.9 2.5 3.2 3.8 4.4
k21

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6
x2

HaL

ííéé

éé

SN�NF

SN
HC

AHuPSS

uPSR
PSS

PSR

LC

6 7 8 9 10 11 12
Η0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6
xHbL

Figure 7.5: (a) The one-dimensional bifurcation surface for the bistable region of the
inhibitorily coupled network. (b) The equivalent one-dimensional bifurcation surface
from the single-population model. Here, blue points indicate stable equilibria, black
points represent saddle nodes, red points show unstable equilibria, and green points
represent the maxima and minima of a limit cycle orbit.

figure with the one-dimensional bifurcation diagram of Section 4.3.2 (reprinted here

as Figure 7.5(b)) once again confirms that the changes from either the intercoupling

k21 or the intrinsic excitability η2 produce the same effects in the second population.

7.2 Effect of the Driver Influence Function Hn(z1)

I now examine the effects on the response population by varying the driver’s macro-

scopic influence function, Hn(z1), for a fixed intercoupling strength. Recall that in

Chapter 4, I conduct an exhaustive analysis of how varying η0, ∆, and k affects the

macroscopic state of a single population and its corresponding bifurcations. Here, I

focus on how these three parameters from the driver population affect the behavior

of the response system when the intercoupling k21 is fixed but non-zero.

To do this, I first explore how the macroscopic influence function itself varies with

respect to η1, ∆ and k11. Once these effects are well characterized, I am then able to

choose the optimal driver parameter to affect on the response population.
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7.2.1 Variations in the Influence Function

Here, I examine how the influence function Hn(z1) changes with variations of each

of the three driver parameters η1, ∆1, and k11. This influence function is non-linear

with respect to all three of these parameters. Therefore, in this section, I identify

which of these parameters causes the greatest overall change in Hn(z1), so that it will

consequently have the greatest effect on the response population.

I begin with a systematic exploration where I vary one of these parameters while

holding the other two fixed. Recognizing that these parameters and the function

Hn(z1) all reside in the same population, I drop the subscripts from z1, η1, ∆1, and

k11 in this section to generalize these conclusions for any single population network.

Keeping the excitability η0 and coupling strength k fixed, I begin my exploration

by varying ∆ alone. Figure 7.6(a) shows the values of the influence function Hn(z)

against ∆ for two fixed pairs of values of (η0, k). From this figure, I conclude that as

∆ increases, the overall variation in the values of Hn(z) (i.e. the distance between the

red (η0 = 10, k = 5) and blue (η0 = −10, k = 5) curves in Figure 7.6(a)) decreases.

Consequently, the greatest overall variation in Hn(z) occurs when the heterogeneity

of the driver is small.

Next, Figure 7.6(b) shows the effect of varying excitability η0 on Hn(z). Keeping

∆ fixed at 0.05, I plot two curves corresponding to this varying excitability at k = −5

(the blue curve in Figure 7.6(b)) and k = 5 (the red curve in Figure 7.6(b)). As

can be seen from either the red or blue curves in Figure 7.6(b), the value of Hn(z)

varies nonlinearly with changes to η0. Further, the maximum and minimum Hn(z)

for either the red or blue curves spans a much broader range than that seen in Figure

7.6(a) with variations in ∆. In addition, one can also see that the minimum value of

Hn(z) (i.e. the smallest influence from this population) occurs when η0 ≈ −k.
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Figure 7.6: (a) A plot of variations in the influence function Hn(z) with respect to ∆.
Here, the red curve shows values with the (η0, k) fixed at (10,5), and the blue curve
shows values with (η0, k) equal to (−10,5). (b) A plot of variations in the influence
function Hn(z) with respect to η0. Here, the blue curve shows this variation with k
fixed at -5, and the red curve shows values of Hn(z) when k = 5. ∆ is fixed to be
0.05 in both curves.

Finally, Figure 7.7(a) illustrates the effect of changing intracoupling on the in-

fluence function Hn(z). Again, I fix ∆ = 0.05 and show the plot for two values of

η0 = −5 and η0 = 5 (the blue and red curves of Figure 7.7(a), respectively). This

figure confirms the previous conclusion; i.e. the value of Hn(z) is smallest when

k ≈ −η0. Further, Figure 7.7(b), which shows a three-dimensional plot of the influ-

ence function Hn(z) versus both η0 and k, demonstrates that the minimum influence

from the population is indeed found when η0 ≈ −k, implying that this relationship

is robust throughout the (η0, k) parameter space. Therefore, the minimum influence

from this population on other populations occurs when its internal dynamics and

network interactions are in competition (i.e. when η0 and k have opposite signs).

7.2.2 Effect of k11 on the Excitatorily Intracoupled (k22 > 0)

Region

In Section 7.1, I explored how the effective excitability of the response population

varies with respect to the intercoupling for a fixed value of Hn(z1). Similarly, in this
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Figure 7.7: (a) A plot of variations in the influence function Hn(z) with respect to
k. Here, the blue curve shows this variation with η0 fixed at -5, and the red curve
shows values of Hn(z) when η0 = 5. ∆ is fixed to be 0.05 in both curves. (b) A
three-dimensional plot of variations in the influence function Hn(z) with respect to
both k and η0.

section, I conduct a bifurcation analysis of the response population as the influence

function changes, where the intercoupling k21 is now held fixed. To examine the

effect of this influence function Hn(z1) on the response population, I now create the

bifurcation plots with respect to k11 directly. Here, I fix ∆1 = 0.05 and η1 = −0.05

for the remainder of this analysis.

The primary goal of this inquiry is to understand how the macroscopic states of the

response system vary due to changes in the driver parameters themselves. To provide

a context for this analysis, I reprint in Figure 7.8(a) the same two-dimensional slice as

explored in Section 4.3.1, with the intrinsic response state at ∆2 = 0.5 and η2 = −10

again represented by a red dot. As Figure 7.8(a) is unchanged from before this case,

though, it does not provide any new information about how the response popula-

tion’s effective excitability varies with respect to changes to the driver parameters.

To determine the exact nature of this dependence, I plot in Figure 7.8(b) how the

effective excitability varies with respect to k11 for this driver-response system (with

the intercoupling k21 = 2). From this figure, the nonlinear relationship between ηeff

and k11 is immediately apparent. This corroborates the discussion of Section 7.2.1,
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Figure 7.8: (a) The two-dimensional bifurcation surface for the bistable region of the
excitatorily coupled network. (b) A plot showing how k11 changes the values of ηeff .

where one can see that Hn(z1) (and therefore ηeff through (6.14)) varies nonlinearly

with respect to the intracoupling k11.

To understand how the driver intracoupling k11 affects the response population,

I first trace the “path” of the response network across the two-dimensional tent of

Figure 7.8(a) with respect to ηeff . For large negative values of k11, near the bottom

of Figure 7.8(b), the population resides to the right on both figures. As k11 becomes

less negative, the population moves to the left, crossing first the right tent flap of

Figure 7.8(a) and then emerging on the left side of the tent. The value of ηeff reaches

a minimum near k11 = 0, and then begins increasing (i.e. moving back to the right on

both figures). The population passes through the tent from left to right and emerges

again on the right side, albeit at a smaller value of ηeff than its starting point.

Figure 7.9(a) shows the resulting one-dimensional bifurcation diagram of y2 =

Im[z2], for the response population plotted with respect to k11, with a rotated plot of

Figure 7.8(b) reprinted for reference in Figure 7.9(b). The response network begins

in a singly-stable PSS state (the uppermost series of blue points) and continues in

that state until a SN bifurcation is encountered at the leftmost open circle in Figure

7.9(a) at k11 = −2.915. This SN bifurcation creates a new stable PSR state (the
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Figure 7.9: (a) The one-dimensional bifurcation surface for the bistable region of the
excitatorily coupled network with respect to changes of k11. Here, blue points indicate
stable equilibria and black points represent saddle nodes. (b) A plot showing how k11
varies with respect to ηeff . The location of the two saddle node (SN) bifurcations are
shown as dotted lines. Note that the left SN bifurcation includes a node-focus (NF)
transition as well. Although this transition does not occur at the exact same value
of ηeff , they are close enough to overlap in this figure.

lower branch of blue points) with an unstable PSR (uPSR) from a saddle-node (rep-

resented in black) in a separate region of state space near y2 = −0.4781. Then, a

NF transition and a SN bifurcation occur in rapid succession at k11 = −1.31 and

k11 = −1.27, respectively (these points are not resolvable at the resolution shown in

the figure and are therefore marked “SN/NF”). At the NF point, the original stable

PSS state changes into a stable PSR before being destroyed by the SN bifurcation.

As k11 passes zero and becomes positive, the population begins moving to the right

in Figure 7.8(a) and encounters the same SN/NF bifurcations in opposite order at

k11 = 0.2775 and k11 = 0.35, thereby recreating the bistable (PSR+PSS) state. The

response population eventually emerges from the bistable region at the rightmost

SN bifurcation in Figure 7.9(a) (the open circle at k11 = 8.422), leaving behind the

original recovered PSS state.
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Figure 7.10: (a) The two-dimensional bifurcation surface for the bistable region of
the inhibitorily coupled network. (b) A plot showing how k11 changes the values of
ηeff . Here, again, the rapidly-sequential NF/SN combination is denoted by a single
dotted line.

7.2.3 Effect of k11 on the Inhibitorily Intracoupled (k22 < 0)

Region

I now explore the effect of variations to the driver intracoupling k11 with respect to

our second region of interest in parameter space, namely, the inhibitorily intracoupled

network (k22 > 0) of Section 4.3.2. Figure 7.10(a) shows the two-dimensional diagram

for this region, with the red dot at ∆2 = 0.5 and η2 = 5 again representing the

intrinsic (k21 = 0) state of the response population. Figure 7.10(b) plots how the

effective excitability varies with respect to k11 for this new set of parameters. In this

case, ηeff shows the same kind of non-linear relationship with k11 as seen in Section

7.2.1.

Under the influence of the driver, the response network follows an equivalent

“path” across Figure 7.10(a) as described in Section 7.2.2. The system again begins

to the right of the inhibitory bistable region at large negative values of k11 (near the

bottom of Figure 7.10(b)). As k11 increases, the population again moves to the left on

both figures, crossing first the right tent flap of Figure 7.10(a) and then the AH and

HC curves in sequence before emerging on the left side of the tent. After reaching
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the minimum of ηeff , the population then moves back to the right on both figures,

crossing the same curves in opposite order before coming out again on the right side

of the inhibitory tent.

Figure 7.11(a) shows the equivalent one-dimensional bifurcation diagram, here

with x2 = Re[z2] plotted with respect to k11. (The rotated plot of Figure 7.10(b)

is again reprinted for reference in Figure 7.11(b)). To understand the transitions

between these attracting states, I begin again at large negative values of k11. Here,

the response network exists in a singly-stable PSS state, represented in blue in Figure

7.11(a). A SN bifurcation is encountered at the open circle at k11 = −2.663, creating

a new PSR state with a uPSR (from a saddle node, represented in black) near x2 =

−0.662. The AH bifurcation at k11 = −2.286 causes the original PSS attracting state

to lose equilibrium, becoming an unstable PSS (uPSS) state (thereafter shown as a

series of red points). At this point, an attracting limit cycle emerges, i.e., the CPW

state, the maximum and minimum values of which are shown as green points.

The amplitude of this limit cycle subsequently increases until it collides with the

uPSR (in black) in an HC bifurcation at k11 = −2.124. In the upper equilibrium

branch, the uPSS (in red) continues until it encounters a similar NF/SN combination

near k11 = −1, causing the uPSS to become a uPSR (in red) before colliding with

the uPSR from before (in black). This leaves behind only the PSR state in the lower

equilibrium branch near x2 = −0.8729. Once again, as k11 becomes positive, the

population begins moving to the right in Figure 7.10(a) and experiences the reverse

set of transitions, eventually emerging in a PSS state as before at k11 = 6.68.

From this analysis for both regions of interest, it is immediately apparent that

the bifurcation regions are not symmetric, i.e. the bistable region is much wider for

the driver’s excitatory intracoupling versus inhibitory intracoupling. Therefore, when

the neurons in the driver are excitatorily coupled, the response system maintains its
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Figure 7.11: (a) The one-dimensional bifurcation surface for the bistable region of the
inhibitorily coupled network with respect to changes of k11. Here, blue points indi-
cate stable equilibria, black points represent saddle nodes, red points show unstable
equilibria, and green points represent the maxima and minima of a limit cycle orbit.
(b) A plot showing how k11 varies with respect to ηeff .

bistability for greater coupling strengths than in an equivalent inhibitorily coupled

driver network.

7.3 Summary

In this chapter, I analyze the effect on the response population due to the influence

of a driver in a static equilibrium state. I explore these effects for changes in both the

intercoupling parameter as well as the influence function from the driver. In Chapter

8, I complete this analysis by exploring the effects of a time-varying driver state on

the response population.

From the analysis in this chapter, the effect of the intercoupling parameter can

be interpreted as the “gain” of the driver’s influence on the response population. As

demonstrated, this gain is linear, since increasing the intercoupling causes a linear

shift in the effective excitability of the response network. On the other hand, varia-

tions in the driver influence function are non-linear with respect to variations of any

or all of its three parameters. Consequently, this introduces an asymmetry in the
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bifurcation of the response population due to the driver’s influence.
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Chapter 8: Analysis of the Response Population

with a CPW Driver

In Chapter 6, I introduce a simple system made up of two populations of neurons in

a “feed-forward” or “driver-response” configuration. The response population here

can receive an influence from a driver in either a static equilibrium state or in a time-

varying periodic state. The bifurcations in the response population resulting from the

former are analyzed in Chapter 7. In this chapter, I focus on the bifurcations arising

from the latter, i.e. when the driver is in an asymptotically periodic state.

Recall from Section 3.2.3 that the driver influence function Hn(z1(t)) is periodic

when the driver is in a CPW state. Since ηeff is defined in terms of Hn(z1(t)) by

(6.14), this implies that the effective excitability also varies periodically in time. Using

this time-varying excitability, one can also draw parallels between the features of this

driver-response network and the parabolic burster network of Chapter 5.

8.1 Comparing the Driver-Response and Parabolic

Burster Models

In this section, I begin by describing in detail the parallels between the driver-response

network with a CPW driver and the parabolic burster network. Recall that the

parabolic bursting-like behavior described in Chapter 5 can be simulated by means

of a sinusoidal time-variation in the median excitability of the heterogeneous theta
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Figure 8.1: A time series plot of the macroscopic influence function Hn(z1(t)) vs.
time, with a sine fit to this function overlaid as a dashed blue line.

neuron network, as in:

η0(t) = η0 + A sin(2πt/τ), (8.1)

where η0 is the time-averaged median excitability of the network, A is the amplitude

of the time-variation of this excitability, and τ is the period of the modulation. In

contrast, the time-variation in the effective excitability ηeff of the response popu-

lation is a direct consequence of the driver being in a CPW asymptotic attracting

macroscopic state, as given by:

ηeff ≡ η2 + k21Hn(z1(t)), (8.2)

where η2 is the median excitability of the response population in the absence of any

influence from the driver, k21 is the intercoupling strength between the driver and

response populations, and where the macroscopic influence function from the driver,

Hn(z1(t)), now includes the time-dependence of the effective excitability.

Figure 8.1 shows Hn(z1(t)) as a function of time arising from a CPW driving state.

From this figure, it is immediately apparent that, although periodic, Hn(z1(t)) (and
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consequently ηeff (t)) is not a purely sinusoidal function. However, for the purposes of

comparison between (8.1) and (8.2), one can approximate the driver influence function

Hn(z1(t)) by the following form:

Hn(z1(t)) ≈ |H| sin(ωHt) + H̄, (8.3)

where |H| denotes the amplitude of this driving function, ωH represents its approxi-

mate sinusoidal frequency1, and H̄ represents the time-averaged value of the influence

function.

Substituting this expression for the influence function in (8.2), the effective ex-

citability of the response population becomes:

ηeff ≈ (η2 + k21H̄) + k21|H| sin(ωHt). (8.4)

Direct comparison of (8.4) with the time-varying excitabilty of the parabolic

burster-like network (8.1) gives the following relations between the parameters de-

scribing the two models:

η0 ≈ η2 + k21H̄,

A ≈ k21|H|,

τ ≈ 2π/ωH. (8.5)

1It is recognized here that equating Hn(z1(t)) with a perfect sinusoidal function is misleading.
However, the purpose of this section is not to construct an exact relation between these parameters,
but merely to get a sense of how the driver-response network can represent an alternate model for
a network of parabolic bursters.
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Figure 8.2: A time series plot for ηeff (t) for the response population under the influ-
ence of a driving population with (a) k21 = 1 and (b) k21 = 6, respectively. Other
parameters are η1 = 10.75, ∆1 = 0.5, k11 = −9, η2 = −5, ∆2 = 0.5, and k22 = 9.

From the equivalences given in (8.5), one should note that the intercoupling pa-

rameter k21 has two distinct effects on the value of ηeff (t). The first effect is similar to

that identified in Section 7.3; namely, that an increase in the intercoupling strength

increases the overall shift in ηeff (t) linearly. In addition to this linear shift, how-

ever, k21 also increases the amplitude of the time-varying modulation to the effective

excitability. Figure 8.2 illustrates the consequences of each of these effects on the

time-dependence of ηeff(t) for different values of the intercoupling strength k21.

8.2 Macroscopic States of the Response Popula-

tion

As demonstrated by the analysis in Chapter 4, a single heterogeneous population of

globally coupled theta neurons with a set of fixed (but randomly chosen) excitabilities

can only have three possible asymptotic macroscopic states, two of which are equilibria

(i.e. PSR or PSS) and the third being a simple limit cycle (i.e. CPW). In the

absence of additional dynamical features (e.g. time variation or multi-population

interaction), these are the exhaustive asymptotic macroscopic states possible in such
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a heterogeneous network. As outlined in Section 5.2.1, the introduction of time

variation in the form of η0(t), by its very nature, causes the equilibria of the frozen

system to become periodic orbits in the time-dependent system[14]. Additionally, the

time-variation, in turn, induces features such as multi-periodicity, quasi-periodicity,

and chaos[14].

From the mathematical comparisons laid out in the previous section, it should

come as no surprise that the potential asymptotic macroscopic states laid out here

parallel those found in the parabolic burster-like network due to the similarities in

the time-variation between these models. However, this time variation, as noted in

the previous section, is caused by a periodic interaction, which creates multi-periodic

macroscopic attracting states that appear slightly modified from the parabolic burster-

like network. In this section, I describe all such possible asymptotic attracting macro-

scopic states for the response population.

8.2.1 Simple Periodic Loop

The first type of asymptotic attracting macroscopic state arising from the introduction

of a time varying driver state is that of a “simple periodic loop” (or “libration” from

[14]). This simple periodic loop, as represented in Figure 8.3, primarily exists in

the same region of parameter space where only a PSR state is found in the single-

population model. It is a direct consequence of the introduction of time varying

effective excitability in the response population. In essence, one can visualize this

simple loop as “chasing” the previously frozen equilibria in a periodic fashion.
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Figure 8.3: (a) A phase portrait of a simple periodic loop in the region to the left of
the excitatory tent. (b) A zoomed-in view of the periodic nature of this state.

8.2.2 Multi-Periodic Orbit

A slightly more complicated asymptotic attracting macroscopic state in this driver-

response model is that of a “multi-periodic orbit.” Similar to the simple periodic

loop in Section 8.2.1, this multi-periodic orbit is predominantly (but not exclusively)

found where the single population network approaches a PSS macroscopic state. In

this case, the equivalent single population system exhibits prominent oscillations[10]

in its approach to the equilibrium point. In the driver-response system, these PSS-

state related oscillations are modulated by the periodic time-varying influence from

the driver, giving rise to a multi-periodic orbit. Figure 8.4 shows a representative

phase portrait of this state of the response population.

8.2.3 Quasi-Periodic Orbit

Another possible macroscopic state that can arise in this case is that of a “quasi-

periodic orbit,” where the system’s behavior never exactly repeats itself[38, p. 211].
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Figure 8.4: (a) A phase portrait of a multi-periodic orbit in the region to the right of
the excitatory tent. (b) A zoomed-in view showing the multi-periodic nature of this
state.

This state is found when the response population is itself in a CPW state prior to any

influence from the driver. At first glance, this orbit can appear chaotic, but can be

distinguished from chaos through identification of the maximal Lyapunov exponent,

which is zero for quasi-periodic behavior and positive for chaotic behavior[38, p. 239].

8.2.4 Chaotic Attractor

Finally, the response network can exhibit a “chaotic attractor” macro-state, which,

by definition, exhibits sensitive dependence on the initial condition of the system[37,

p. 325]. This attractor is also found when the response population is in a CPW state

in the absence of any driver influence. More specifically, this chaotic state has been

observed when systems are periodically “swept” across bifurcation boundaries near

a Bogdanov-Takens point[80], as is the case for a response population in a CPW

state. Figure 8.5 shows a phase portrait of a representative chaotic attractor (with

intercoupling k21 = 5.296 and a maximal Lyapunov exponent of λ ≈ 0.2118).
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Figure 8.5: A phase portrait of a chaotic attractor state (with k21 = 5.296). Other
parameters are η1 = η2 = 10.75, ∆1 = ∆2 = 0.5, and k11 = k22 = −9.

8.3 Bifurcation Analysis and Orbit Diagrams of

the Response Population

Following the classification of the possible asymptotic macroscopic attracting states

of the response population, I now outline the bifurcations of these states with respect

to the intercoupling parameter, k21
2. For the purposes of classification, I examine

four distinct regions of the parameter space. The first three of these regions are

plotted against the excitatorily intracoupled bifurcation region from Section 4.3.1

(with k22 = 9). The fourth region spans the corresponding inhibitorily intracoupled

bifurcation region from Section 4.3.2 (with k22 = −9).

As a note, although the two-dimensional bifurcation curves from Chapter 4 are

strict bifurcation diagrams, the one-dimensional orbit diagrams presented here are

not strict “bifurcation diagrams,” but are more correctly “orbit maps”, as they are

2Recall that in Section 8.1, I pointed out that as k21 increases, both the amplitude and the
centroid of the periodic motion of ηeff (t) also increase. In the following analysis, I use a double-

headed arrow to represent the range that ηeff (t) can span for a given η2 and k21.
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simply a record of the stable solutions for any particular choice of parameters. A true

bifurcation diagram should show solutions which are both stable and unstable[89,

p. 49].

8.3.1 The Single Population PSR Region

I begin my analysis here in the first of the four regions of the parameter space, i.e.

to the left of the excitatorily intracoupled bifurcation region (k22 > 0). As stated in

Section 8.2.1, in the absence of any intercoupling, Population 2’s collective behavior

is a PSR state in this region. However, as the intercoupling parameter k21 is switched

on, Population 2 becomes the response population following the influence from the

driver, transforming the simple PSR into a stable periodic loop. The purpose of this

particular analysis is to understand how increasing this intercoupling strength affects

the simple periodic loop state.

In Figure 8.6(a), I plot a two-dimensional bifurcation curve of the response popu-

lation’s heterogeneity vs. effective excitability. Here, the red dot shows the location

of the response system when k21 = 0. The double-headed arrow indicates the range

of ηeff over time for the specific value of k21 = 6.

Figure 8.6(b) is the one dimensional bifurcation of the real part of the response

system’s macroscopic mean field, x2, with respect to increasing intercoupling k21.

This high-low plot clearly indicates that as k21 increases, so does the amplitude of

the simple periodic loop macroscopic state.

The corresponding time series plot of this periodic loop is shown in Figure 8.7

for two values of the intercoupling strength k21. These plots show that while the

amplitude of the simple periodic loop grows with increasing values of k21, the fre-

quency of oscillation of the loop is unchanged. In comparing this time series with

Figure 8.1, which shows the periodic motion of the influence function of the CPW
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Figure 8.6: (a) The two-dimensional bifurcation diagram of the bistable region of an
excitatory response population in the absence of any driver influence, showing the
first region of interest to the left of the bistable tent. Here, the red dot indicates the
location of the response population without any intercoupling, and the double headed
arrow shows the variation of ηeff with time when k21 = 6. (b) The one-dimensional
high-low bifurcation diagram of variations with respect to k21 to the left the bistable
region of the excitatorily intracoupled response population.

driver, the frequency of the CPW driving state can be seen to match that of the

simple periodic loop of the response population. Therefore, the oscillatory behavior

of the response population is a direct reflection of the time-varying influence from the

driver, as expected.

8.3.2 The Single Population PSS Region

I continue my analysis in the second of the four regions of the parameter space, i.e.

to the right of the excitatorily intracoupled bifurcation region. In the absence of any

intercoupling (c.f. Section 8.2.2), Population 2’s collective behavior is predominantly

a PSS state in this region. Here, the influence from the intercoupling parameter

k21 converts the simple PSS into a multi-periodic loop in the corresponding response

population.

Again, to understand how increasing the intercoupling strength modifies the re-

sulting multi-periodic orbit in the response population, I follow the same procedure
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Figure 8.7: A time series plot of x2(t) for a response population in a simple periodic
loop under the influence of a driving population with (a) k21 = 1 and (b) k21 = 8,
respectively. Other parameters are η1 = 10.75, ∆1 = 0.5, k11 = −9, η2 = −20,
∆2 = 0.5, and k22 = 9.

as outlined before. Here, I focus on the region to the right of the excitatory tent in

Figure 8.8(a). As before, the red dot gives the location of the response system when

k21 = 0, and the double-headed arrow indicates the range of ηeff over time in this

region for the specific value of k21 = 2.

Figure 8.8(a) is the one dimensional bifurcation of the real part of the response sys-

tem’s macroscopic mean field, x2, with respect to increasing intercoupling k21. From

this high-low plot, one immediately observes a period-adding bifurcation[79] that

gives rise to the multi-periodic state. As the intercoupling strength k21 is increased,

one sees the amplitude of the oscillation initially increase, peaking near k21 ≈ 2.5.

Beyond this point, the period-2 orbit achieves a smaller steady amplitude of oscilla-

tion until the point k21 ≈ 8.4, where another period is added to the orbit and the

whole process repeats.

Figure 8.9(a) show a period-2 orbit at k21 = 6, whereas Figure 8.9(b) shows a

period-3 orbit at k21 = 10. The corresponding plots of y2 vs. time for each orbit

in Figure 8.10 clearly show the change in period adding behavior from period-2 to

period-3.
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Figure 8.8: (a) The two-dimensional bifurcation diagram of the bistable region of
an excitatory response population in the absence of any driver influence, showing
the second region of interest to the right of the bistable tent. Here, the red dot
indicates the location of the response population without any intercoupling, and the
double headed arrow shows the variation of ηeff with time when k21 = 2. (b) The
one-dimensional high-low bifurcation diagram of variations with respect to k21 to the
right the bistable region of the excitatorily intracoupled response population.
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Figure 8.9: Phase portraits of a (a) period-2 and (b) period-3 multi-periodic orbit
from the region to the right of the single population excitatory tent, with k21 = 6
and k21 = 10, respectively. Other parameters are η1 = 10.75, ∆1 = 0.5, k11 = −9,
η2 = −5, ∆2 = 0.5, and k22 = 9.
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Figure 8.10: Time series plots of y2(t) for a response population corresponding to the
periodic orbits of 8.9 with (a) k21 = 6 for the period-2 orbit and (b) k21 = 10 for the
period-3 orbit, respectively.

8.3.3 The Excitatorily Intracoupled Bifurcation Region

Having explored the regions with a single stable attractor in Sections 8.3.1 and 8.3.2,

I now focus on the multi-stable region underneath the excitatory bifurcation region

with k22 = 9. Recall that in the isolated population model, this region corresponded

to a bistable (PSR+PSS) state, as shown in Figure 8.11(a) with k21 = 1.5. Now,

plotting the real part of the response population’s mean field parameter x2 with

respect to the intercoupling k21 as a high-low orbit diagram in Figure 8.11(b), one

can see that the simple periodic loop of Section 8.2.1 coexists with the multi-periodic

orbit of Section 8.2.2.

Figure 8.12(a) shows a representative phase portrait with k21 = 1.5. Figure 8.12(b)

shows the one-dimensional bifurcation of the response population as y2 vs. ηeff from

Section 4.3.1, with the trajectories of both of the attracting macroscopic steady-state

orbits overlaid in gray. Similar to the single population bistable case, the response

population approaches one of the two steady-state orbits depending on its initial

condition, as expected.

119



CUSP

SN�NF

SN

-8 -6 -4 -2 0
Ηeff

0.5

1.0

1.5

2.0
D2

HaL

0. 0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5

-0.6

-0.4

-0.2

0.0

0.2

k21

x2

HbL

Figure 8.11: (a) The two-dimensional bifurcation diagram of the bistable region of
an excitatory response population in the absence of any driver influence for the third
region of interest, spanning the bistable tent. Here, the red dot indicates the location
of the response population without any intercoupling, and the double headed arrow
shows the variation of ηeff with time when k21 = 1.5. (b) The one-dimensional high-
low bifurcation diagram of variations with respect to k21 in the bistable region of the
excitatorily intracoupled response population.
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Figure 8.12: (a) A phase portrait of a bistable state underneath the excitatory tent
of a response population with a CPW driver. (b) The one-dimensional bifurcation
diagram of the response population without driver influence with the trajectories of
each of the states overlaid.
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Figure 8.13: (a) The two-dimensional bifurcation diagram of the bistable region of an
inhibitory response population in the absence of any driver influence for the fourth
region of interest. Here, the red dot indicates the location of the response population
without any intercoupling, and the double headed arrow shows the variation of ηeff
with time when k21 = 5.475. (b) The one-dimensional high-low bifurcation diagram
of variations with respect to k21 in the bistable region of the inhibitorily intracoupled
response population. A zoomed-in view of the chaotic region from k21 = 5.2 to
k21 = 5.8 is shown in Figure 8.14(a).

8.3.4 The Inhibitorily Intracoupled Bifurcation Region

The final region of interest is the inhibitorily intracoupled bifurcation region for the

response population where k22 = −9. The isolated population model in this region

exhibits the CPW asymptotic attracting macroscopic state emerging from the super-

critical Hopf bifurcation, which coexists with a PSR state in a bistable condition.

Figure 8.13(a) shows the two-dimensional bifurcation curve given by ∆2 vs. ηeff for

the inhibitory tent of the response population. Again, the red dot shows the location

of the response system when k21 = 0, with the double-headed arrow indicating the

range of ηeff over time for the specific value of k21 = 5.475.

Once again, Figure 8.13(b) shows an orbit diagram with the real part of the

response population’s macroscopic mean field x2 against the intercoupling k21. Here,

a single simple periodic loop exists for small values of k21. At k21 ≈ 5.2, the response

system roughly begins sweeping across the Homoclinic/Andronov-Hopf bifurcation

curves. At this point, the response population exhibits chaotic behavior, similar to
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Figure 8.14: (a) A zoomed-in view of the period of chaotic behavior from Figure
8.13(b). (b) A plot of the two maximal Lyapunov exponents in this chaotic region.
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the parabolic burster-like network case in the same region[14].

Zooming in on this chaotic region in Figure 8.14(a), one can see distinct chaotic

bands separated by periodic windows. Figure 8.14(b) shows a plot of the corre-

sponding two maximal Lyapunov exponents across this region, which confirms that

a positive maximal Lyapunov exponent coincides with the chaotic bands observed in

the orbit diagram.

As k21 increases, the first chaotic band, beginning at k21 ≈ 5.28, is multi-stable

with the simple periodic loop formed previously coexisting with a newly created the

chaotic attractor. Outside of this band, there is a thin periodic window that shows

several period doubling cascades, which continue into a second chaotic band begin-

ning at approximately k21 = 5.48. This second band terminates at approximately

k21 = 5.65, which shows a series of period doubling cascades in reverse giving rise to

multiperiodic orbits.

8.4 Summary

In this chapter, I began by exploring how the parameters of the driver-response and

parabolic burster-like models can be related. I then defined the attracting macroscopic

states of the response system created in response to a periodic driving state. Finally,

I explored how these states can transitions between these states under variations of

the intercoupling strength k21.

In the final chapter of this dissertation, Chapter 9, I summarize all of the key

features and results of the single population, parabolic burster-like network, and

driver-response system. Additionally, I lay out some potential future applications of

these models.
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Chapter 9: Summary and Discussion

Using the well-known theta neuron model, I constructed a heterogeneous network

containing a mixture of at-rest but excitable neurons as well as spontaneously spiking

neurons. These globally coupled neurons interact with each other through pulse-like

interactions. To this network, I applied the Ott-Antonsen reduction technique to de-

rive a low-dimensional dynamical equation that completely describes the asymptotic

behavior of the network’s mean field in the thermodynamic limit.

By analyzing this reduced system, I found that the asymptotic mean field of

the network exhibits only three possible states: two corresponding to equilibrium

solutions and one limit cycle solution. I also identified the bifurcations that occur as

the degree of excitability, heterogeneity, and coupling strength (both excitatory and

inhibitory) are varied.

Further, I demonstrated how the dynamics of this frozen network evolve when the

excitability parameters of the neurons are modulated in time. This idealization again

allowed for the application of the Ott-Antonsen technique to identify the asymptotic

behavior of the macroscopic mean field. I have shown that macroscopic chaos, quasi-

periodicity, and multi-stability are all exhibited by this network.

Finally, I extended the single population model to construct a system of two

distinct but interacting heterogeneous theta neuron networks. As before, the Ott-

Antonsen method was applied to each of the individual networks to obtain a low-

dimensional dynamical equation for the asymptotic behavior of each network. I then

created a “driver-response” network model by allowing Population 1 to interact with

Population 2 in a strictly “feed-forward” manner via an intercoupling parameter.
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By means of this mechanism, I explored the possible asymptotic collective behav-

iors of the response system arising from the two distinct driving states, i.e. equilib-

rium and periodic states. If the driver is in equilibrium, the dynamics of the response

network mirrored that of the single-population model with a “shifted” effective ex-

citability. On the other hand, if the driver is periodic, the response network more

closely paralleled the asymptotic behavior of a parabolic burster network.

In this chapter, I discuss the implications of these three distinct models and draw

inferences from their results, both in terms of non-linear dynamics and biology. I

further outline some potential future avenues and applications of this work.

9.1 Results and Implications

The basic building block of these theoretical models (i.e. single population, parabolic

bursting, and multi-population) presented in this dissertation is the theta neuron.

Although real neurons are far more complex entities, the theta neuron model, which

is the normal form of the SNIC bifurcation, captures all the universal features of

Type-I neurons near the onset of spiking. Given the ubiquity of this type of neuron

in the cortex (e.g. pyramidal neurons, which make up approximately 80% in the hip-

pocampus and 70% in the temporal cortex[90–92]), the predictions from these models

can be applied, with appropriate caution, to understand the collective dynamics of

numerous functionally connected networks of Type-I neurons.

From the autonomous (i.e. single isolated neuronal network) model, in the absence

of time dependence, several important conclusions can be drawn. One of the more

subtle, but significant, predictions of this model is that the trivially incoherent state

(where the magnitude of the mean field, |z|, equals 0) cannot exist as an equilibrium

point, due to the heterogeneity of the network and the fact that the phase speed of

125



isolated neurons is not uniform along the unit circle in this model. Equivalently, the

system is never asymptotically perfectly synchronous either (i.e. with |z| = 1) for

finite values of the coupling strength, although it can approach perfect synchrony for

very large values of |k| (similar to the classic Kuramoto model). Therefore, for this

heterogeneous theta neuron network, only partially synchronized asymptotic macro-

scopic states can exist for typical parameter values, similar to the asynchronous states

that have been described by others[93–95].

These partially synchronized states, i.e. the Partially Synchronized Rest (PSR)

and Partially Synchronized Spiking (PSS) states from Section 4.1, themselves exhibit

subtle dynamical differences since the former is a node and the latter is a focus. The

consequences of this distinction can be observed in Figure 4.4, where it is shown

that the mean field responses to small shifts in the network parameters are markedly

different. When a PSR state is shifted slightly, the mean field relaxes to the equi-

librium directly. In contrast, when a PSS state is shifted, the mean field displays

decaying oscillations. In this latter case, as the equilibrium microscopic configuration

is approached, the neurons alternate between bouts of scattering and clumping, or

desynchronization and resynchronization, in a manner such that each bout is less

severe than the preceding one.

Similar microscopic dynamics underlie the Collective Periodic Wave (CPW) state,

except that for the CPW state, the alternation between the de- and resynchronizing

bouts persists indefinitely. Consequently, the asymptotic mean field approaches a

limit cycle. This class of collective periodic behaviors includes a similar synchronous

state described by Wang and Buzsáki[96], which occurs for homogeneous (or very

weakly heterogeneous) networks. Here, the phases of most neurons lock, so that al-

most all neurons fire together. Thus, the order parameter of such a network exhibits
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a CPW state with a constant magnitude very close to one and a frequency of oscil-

lation identical to that of an individual neuron. In contrast, the CPW states from

the heterogeneous theta neuron network described in this dissertation are more gen-

eral in that the degree of coherence of the network waxes and wanes periodically, as

demonstrated in Figure 4.5.

As described in Chapter 4, the PSR and PSS states predominantly (but not ex-

clusively) appear in regions of parameter space where the network is preferentially

cooperative. This cooperative regime in parameter space is manifested when the in-

ternal neuronal dynamics, as parameterized by η0, and the interneuronal coupling,

parameterized by k, have the same sign. In contrast, additional richer dynamics

are observed (including the potential existence of the CPW state and multistability)

when η0 and k are of opposite sign, i.e. when the neuronal dynamics and interneu-

ronal coupling are in competition. Further, excitatorily coupled networks (i.e. with

k > 0) can only give rise to the PSR or PSS state (or a bistable combination of these).

Conversely, the CPW state only exists when the network is inhibitorily coupled and

only in a bistable state with a coexisting PSR state. In other words, the CPW state

is never the sole attracting state for any choice of parameter values in this network

model.

The introduction of time variation in any of the network parameters precludes the

existence of equilibrium states. In this dissertation, I have shown two generic cases

that demonstrate this result: namely, the introduction of time-varying excitability in

the frozen network model, and the introduction of a CPW driving state in a driver-

response configuration. However, these are not the only mechanisms by which this

non-existence of equilibria can occur; any modulation of the network parameters over

time should produce this effect.

Further, the existence of time variation in the network parameters can introduce
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macroscopic chaos, quasi-periodicity, and multi-periodic behaviors in both the single

and multi-population networks. However, it is important to note that this time-

variation can never arise from static macroscopic equilibrium driving states (i.e. PSR

or PSS); therefore, only periodic driving states can produce macroscopic chaos in a

response network.

Additionally, in a driver-response configuration, the median excitability of the

response population is no longer determined by its intrinsic excitability alone. Mod-

ifications to this parameter can be brought about in one of two ways: 1) by varying

the strength of the intercoupling between the networks, or 2) by altering the nature

of the driver’s influence itself, i.e. by changing either the driver’s intracoupling, het-

erogeneity, or excitability parameters. For example, as the coupling strength between

the neurons in the driver increases (whether excitatory or inhibitory), the response

population behaves as if it has recruited more continuously spiking neurons in its

network than originally existed.

The significance of the reduced mean field network models presented here lies

in the ease with which one can identify attractors of the macroscopic mean field,

as well as the parameter space regions in which these attractors can coexist. The

bifurcation diagrams presented in this dissertation demonstrate that multistability is

easy to find in the macroscopic dynamics of these networks. However, understanding

the transient behavior, including the structure of attractor basins, requires detailed

specification of the full network microstates. Therefore, fluctuations due to the finite

number of neurons in a real or simulated network must be considered. Since finite-size

fluctuations scale as 1/
√
N , I expect that smaller networks would be more affected

by these fluctuations. Specifically, as the size of a discrete network decreases, the

probability of a fluctuation “kicking” a trajectory from near one attractor into the

basin of a different attractor increases[14].
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9.2 Future Work

The driver-responder model described in Section 6.2 can be used as a mathemati-

cal tool to examine local uni-directional connections between distinct regions of the

brain, e.g. the well-known CA3 to CA1 feed-forward interaction in the hippocam-

pus[5, 75, 97–99]. However, these interactions are often mediated by additional feed-

back interactions between interneurons[100–102] that are not included in the driver-

responder model of Section 6.2. In this section, I conclude my dissertation by high-

lighting some of the potential future directions of this work that might help expand

this model, thereby addressing open questions in both theoretical and computational

neuroscience.

One can use, for example, the multi-population model to extend beyond a sim-

ple driver-response relationship. More specifically, it is possible to make the inter-

connection between populations bi-directional, either by allowing both intercoupling

strengths to be non-zero[103], or by means of time-delayed feedback loop[104–106].

This type of bi-directional interconnection between chaotic sub-systems has been

shown to exhibit synchrony with strong enough coupling[107]. Consequently, it would

be interesting to see if similar collective behavior can be observed in a bi-directionally

coupled multi-population theta neuron network.

Further, one might explore the effects of asymmetric population sizes in the collec-

tive behavior of a multi-population system. By introducing a weighting factor wi, one

can represent unequal contributions from these networks to the overall coherence of

the system[74, 108]. Although one might naturally expect to see a significant impact

only in finite-sized networks, asymmetric population sizes have been shown to play a

substantial role in the collective dynamics of large interacting networks as well (i.e.

in the thermodynamic limit)[108].
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Another possible extension of the multi-population model would be to explore

mixed networks of Type-I and Type-II neurons. This extension could then examine

a potential feedback mechanism between intercoupled pyramidal and inhibitory in-

terneuron populations. This particular feedback mechanism has been suggested to

be the main cause of an oscillatory response in the CA1 region of the hippocam-

pus[101,102]. To model the CA1 region here, therefore, one would need to develop a

corresponding reduced network model comprised of Type-II neurons (e.g. resonate-

and-fire neurons[25, p. 270]), and then connect this network to the existing reduced

Type-I network model. To this block of interacting pyramidal cells and inhibitory

interneurons, one can subsequently add a feed-forward connection representing the

influence from the CA3 region.

Finally, as outlined in Chapter 6, interactions between different populations within

the multi-population network are characterized by the elements of the coupling ma-

trix kij , given in (6.1). As stated earlier, this particular approach can be generalized

to extend to a n-population system by means of an n× n coupling matrix. One can

then examine specifically directed population interactions by an appropriate choice

of these matrix elements. This particular approach (with appropriate weighting be-

tween populations) could be used to simulate a potential spatio-temporally dependent

network model.
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Springer Verlag, Heidelberg, 2011.

[54] H. Wilson and J. Cowan, “Excitatory and inhibitory interraction in localized
population of model neurons,” Biophysical Journal, vol. 12, no. 1, pp. 1–24,
1972.

[55] Y. Kuramoto, in International Symposium on Mathematical Problems in The-
oretical Physics, ser. Lecture Notes in Physics, H. Araki, Ed. Springer-Verlag,
New York, 1975, vol. 39, p. 42.

[56] S. Strogatz, “From Kuramoto to Crawford: exploring the onset of synchroniza-
tion in populations of coupled oscillators,” Physica D, vol. 143, no. 1-4, pp.
1–20, 2000.

[57] J. Buck, “Synchronous rhythmic flashing of fireflies,” Quarterly Review of Bi-
ology, vol. 63, no. 3, pp. 265–289, 1988.

[58] J. Buck and E. Buck, “Synchronous fireflies,” Scientific American, vol. 234,
no. 5, pp. 74–85, 1976.

[59] T. J. Walker, “Acoustic synchrony: Two mechanisms in the snowy tree cricket,”
Science, vol. 166, no. 3907, pp. 891–894, 1969.

[60] C. Peskin, in Mathematical Aspects of Heart Physiology. New York: Courant
Institute of Mathematical Science Publication, 1975.

[61] D. Michaels, E. Matyas, and J. Jalife, “Mechanisms of sinoatrial pacemaker
synchronization: a new hypothesis,” Circulation Research, vol. 61, no. 5, pp.
704–714, 1987.

[62] C. Liu, D. Weaver, S. Strogatz, and S. Reppert, “Cellular construction of a cir-
cadian clock: Period determination in the suprachiasmatic nuclei,” Cell, vol. 91,
no. 6, pp. 855–860, 1997.

[63] F. Hoppensteadt and E. M. Izhikevich, “Canonical neural models,” in The
Handbook of Brain Theory and Neural Networks, 2nd ed., M. Arbib, Ed. Cam-
bridge, MA: The MIT Press, 2006.

135



[64] R. Osan and G. Ermentrout, “Two dimensional synaptically generated travel-
ling waves in a theta-neuron neural network,” Neurocomputing, vol. 38-40, pp.
789–795, 2001.

[65] J. Ariaratnam and S. Strogatz, “Phase diagram for the Winfree model of cou-
pled oscillators,” Physical Review Letters, vol. 86, no. 19, pp. 4278–4281, 2001.

[66] A. Winfree, “Biological rhythms and the behavior of populations of coupled
oscillators,” Journal of Theoretical Biology, vol. 16, no. 1, pp. 15–42, 1967.

[67] G. Ermentrout and N. Kopell, “Multiple pulse interactions and averaging in
systems of coupled neural oscillators,” Journal of Mathematical Biology, vol. 29,
no. 3, pp. 195–217, 1991.

[68] J. Restrepo, B. Hunt, and E. Ott, “Onset of synchronization in large networks
of coupled oscillators,” Physical Review E, vol. 71, no. 3, 2005, 036151.

[69] P. So, B. Cotton, and E. Barreto, “Synchronization in interacting populations
of heterogeneous oscillators with time-varying coupling,” Chaos, vol. 18, no. 3,
2008, 037114.
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