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ABSTRACT 

MEASURING THE EFFECT OF MARINE PROTECTED AREAS ON CORAL 

DISEASE PREVALENCE USING A META-ANALYSIS APPROACH 

Valerie T Nguyen, M.S. 

George Mason University, 2021 

Thesis Director: Dr. Jennifer Salerno 

 

With corals threatened worldwide from multiple stressors, the evaluation of coral reef 

management strategies is critical to effectively manage and conserve these ecosystems. 

One management strategy is a marine protected area (MPA). This thesis endeavored to 

evaluate whether MPAs were effective in managing coral disease and describes a 

systematic review to collect data from independently researched sources of coral disease 

prevalence within and outside of MPAs and the synthesis of these data in meta-analysis 

models. Risk difference was calculated from prevalence data either as total averages per 

source, inside and outside MPAs, or by averaging prevalence based on MPA age or 

protection level. Random-effects, inverse variance weighted meta-analysis models were 

fit to these respective datasets. Ultimately, only the models with covariance estimates 

calculated by MPA age or protection level had significant probability values, but power 

analysis showed this significance to be a Type 1 error. The lack of significance and 
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power for all models was best explained by highly significant heterogeneity for all 

models, due to variation at the data-collection level (survey methods and disease 

identification) at the data-reporting level (incomplete data) across all studies.  

Recommendations for resource managers and monitoring organizations include reporting 

usage or protection level of all MPAs surveyed for use as a factor in analysis, increasing 

raw data accessibility for other analysts, and reducing heterogeneity through consistency 

in data collection methods. By addressing heterogeneity in coral disease data, a meta-

analysis of coral disease prevalence outside and inside MPAs may be possible, providing 

valuable insight for coral reef managers into the use of MPAs to mitigate disease as a 

stressor of declining reefs as outbreaks and disease emergence become more common. 
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CHAPTER ONE 

Introduction 

As coral reefs continue to decline due to multiple stressors, most being 

anthropogenic (Bellwood et al., 2004; Cesar et al., 2003; Hughes et al., 2003), the review 

of resource management and conservation strategies to protect coral reefs becomes more 

critical. A common management strategy is to establish a management unit or area 

encompassing part of, or the entirety, of a coral reef, referred to as a “marine protected 

area” (MPA). These areas are established with specific goals that can be empirically 

tested over time to confirm the influence of the MPA on the biological community and/or 

human resource use of the area (Wilkinson et al., 2003).  

MPAs can provide several levels of protection, which vary based on usage 

restrictions and enforcement. Some do not allow any harvest or recreational usage (“no-

take” or “marine reserve”), some allow harvest of specific taxa (“partial-take” or “partial-

protection”), while others are designated for recreation and general use (“parks”). In 

addition, different nations have different designations within their own borders. The most 

assessed MPAs are no-take reserves, which are effective in fisheries recovery (Sala & 

Giakoumi, 2018) and favored by stakeholders and managers (Cvitanovic et al., 2013; 

Fernandes et al., 2005). Although MPAs with fewer restrictions or protection guidelines 

(an overall lower level of protection) have lower measurements of ecological parameters, 
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such as fish biomass, than no-take areas (Sala & Giakoumi, 2018), the comparison of 

ecological benefits of MPAs under different levels of protection is understudied.  

The effectiveness of MPAs for conserving biological communities, coral reef 

structure, and fisheries in general has been measured through several ecological 

parameters with varying and contradicting results. MPAs had increased fish biomass in 

Palau (Friedlander et al., 2017), species richness in Europe (Claudet et al., 2008), and fish 

density globally (Molloy et al., 2009), as compared to non-protected areas. A moderate 

increase in the percent of living coral tissue per unit area as coral cover (i.e., an important 

metric of reef-framework stability) was observed in MPAs in the Philippines compared to 

non-protected areas, with older MPAs having a greater increase in coral cover 

(Magdaong et al., 2014). Coral cover was also observed to increase in comparison to 

unprotected areas with high human disturbance (Suchley & Alvarez‐Filip, 2018). 

However, reviews of MPAs in other areas have described the lack of strong benefits of 

establishing MPAs. For example, studies have shown no positive impact of MPAs on 

coral cover (Bruno et al., 2019), fish density or species richness in Tanzania (Alonso 

Aller et al., 2017). In fact, in the Florida Keys, coral cover significantly declined for 15 

years after the establishment of an MPA (Toth et al., 2014).  

Several factors may influence the efficacy of MPAs, and MPA age (Claudet et al., 

2008; Molloy et al., 2009; Selig & Bruno, 2010) and size (Vandeperre et al., 2011) are 

determinants of success in achieving management goals. In a global analysis of 87 

MPAs, Edgar et al. (2014) found that no-take, well-enforced, old (>10 years), large (>100 

km2), and isolated or deep water MPAs were the most successful, with MPAs with at 
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least 4 out of 5 of these qualities having an increase in fish density and species richness. 

In addition to these factors, the ability for an MPA to increase reef fisheries stock 

(measured in biomass, richness, or assemblage) may be related to the health of the corals 

of the reef being protected (Aburto-Oropeza et al., 2011; Graham et al., 2008; Noble et 

al., 2013).  Currently, there are few studies measuring MPA effectiveness on diseases of 

the foundational coral species of reefs.  

Coral diseases include a wide range of etiologies and effects on individual corals. 

They are generally separated into the categories of infectious (e.g., caused by viruses, 

bacteria, and/or protists), non-infectious diseases (e.g., caused by trauma and/or changes 

in environmental conditions), and diseases that may be caused by combinations of abiotic 

and biotic factors (e.g., pollution, microorganisms, and seawater temperature) 

(Kaczmarsky et al., 2011; Peters, 2015; Woodley et al., 2008). Complicating the research 

of coral disease ecology is that the etiology of many diseases, even infectious diseases, 

remains unknown despite years of research (Moriarty et al., 2020). As a recent example, 

the emergence of stony coral tissue loss disease (SCTLD) in the Florida Keys in 2014 has 

caused rapid mortality across the reef tract (Aeby et al., 2019), with spread to other areas 

of the Caribbean and Gulf of Mexico also causing devastation of local reefs (Alvarez-

Filip et al., 2019). Community composition and total carbon production was permanently 

changed in a section of Mexican reefs in only 8 months (Estrada-Saldívar et al., 2020). 

Although rapid-response programs have funded monitoring efforts and disease 

transmission research, the current etiology of SCTLD remains unknown (Iwanowicz et 

al., 2020). Related to the difficulty of identifying the causes of coral disease, monitoring 
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coral disease is challenging due to the visual similarity of several diseases and the lack of 

identifiable causal factors (Ainsworth et al., 2007; Sutherland et al., 2004; Woodley et al., 

2008). The classification of diseases surveyed are inherently inaccurate due to this issue, 

and the sample of diseased coral captured may not fully represent all diseased corals, as 

coral microbiomes may enter a state of dysbiosis (a departure from the community 

structure under stable conditions) long before signs of functional impairment occur 

(Moriarty et al., 2020; Vega Thurber et al., 2020).  

In the context of coral reef decline and conservation, coral diseases are typically 

endemic issues that are exacerbated by global and abiotic stressors, working 

synergistically with human impacts to cause decline (Rogers, 2009). Disease outbreaks 

are currently hard to predict and are therefore difficult to control and prevent (Alvarez-

Filip et al., 2019; Miller & Williams, 2007). These events have caused managers and 

researchers to organize strategic plans for mitigating the effects of coral diseases on reefs, 

including the production of disease tracking dashboards, data and report sharing, and 

disease intervention and treatment plans (Florida Department of Environmental 

Protection, 2021; Galloway et al., 2009; Ocean Research & Education Foundation, Inc. & 

Atlantic and Gulf Rapid Reef Assessment, 2021). As disease outbreaks and bleaching 

events increase in frequency worldwide (Eakin et al., 2019), particularly as disease has 

been correlated with increases in seawater temperature (Aeby et al., 2020; Boyett et al., 

2007; Caldwell et al., 2016), research on the causes and impacts of coral diseases is 

increasingly necessary. 
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The effect of MPAs on managing disease on coral reefs is not clear, as both 

positive and negative effects have been observed. Disturbances from human impacts that 

sometimes occur in and near MPAs, such as recreational use (Harriott et al., 1997) and 

human development (Pollock et al., 2014), can damage coral and leave them susceptible 

to disease, increasing occurrence and distribution of disease closer to area of high human 

impact (Green & Bruckner, 2000). This is similar to the effect measured for coral cover 

increase, in which the increase in coral cover within MPAs is lower for protected areas 

with human disturbance (Suchley & Alvarez‐Filip, 2018). Although some protections can 

lower disease risk, such as fishing restrictions on herbivorous species (Caldwell et al., 

2020), studies of individual reef systems show that establishing MPAs does not provide 

adequate disease protection, and that disease prevalence may be insignificantly different 

or even higher in some MPAs (Coelho & Manfrino, 2007; Lamb & Willis, 2011). This 

may be due to MPAs increasing host density for coral species, as increased host density 

of other marine species has been shown in models to increase transmission in parasite-

host systems of MPAs (McCallum et al., 2005). However, comparative measurements of 

disease prevalence inside and outside MPAs have shown that disease levels are lower in 

MPAs with effective fisheries protections (Lamb et al., 2015; Raymundo, 2009), and 

protected areas have lower levels of disease than unprotected areas after detrimental 

environmental effects (i.e., a cyclone) (Lamb et al., 2016). This contention may be 

explained by associations of disease prevalence with factors that may be affected by 

protection such as fish community assemblage (Raymundo, 2009), coral colony size 

(Caldwell et al., 2020), and coral cover (Williams et al., 2010), as well as factors that are 
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not well-regulated by protection such as season (Haapkylä et al., 2010), bleaching events 

(Cróquer & Weil, 2009), and reef depth (Couch et al., 2014). These factors can lead to 

high variability in disease prevalence between areas inside MPAs and outside MPAs.  

With disease surveys and studies of individual reefs showing conflicting results as 

to the success of different management strategies, a meta-analysis model might provide 

clearer results about the effects of MPAs on coral diseases (Borenstein et al., 2009). 

Meta-analysis is the pooling of extant data of the effect size of a variable collected 

through primary research or other methods into a summary statistic (Borenstein et al., 

2009; Higgins et al., 2021). For ecological data, meta-analysis has become an 

increasingly popular tool for measuring conservation interventions and creates more 

significant results than older synthesis methods (such as literature reviews) (Côté & 

Stewart, 2013; Fernandez-Duque & Valeggia, 1994). Using a meta-analysis model to 

compare disease prevalence within and outside of MPAs (measuring the effect of 

establishing MPAs) can highlight the direction and magnitude of the effect of MPAs as a 

management tool to mitigate coral disease. Although meta-analysis of coral species 

dynamics has been performed before (Côté et al., 2005), there have been no meta-

analysis studies of coral disease dynamics. 

As one of the most common measurements of disease in coral reefs, prevalence 

may be ideal for comparing disease states within and outside of MPAs. Prevalence for a 

meta-analysis can be coded as a risk ratio, the diseased proportion of the treated 

population divided by the diseased proportion of the untreated population, or an odds 

ratio, the ratio of the proportion of diseased to healthy treated individuals to the 



7 

 

proportion of diseased to healthy untreated individuals (Higgins & Green, 2011). 

However, risk and odds ratios must be transformed before pooling and are not easily 

interpretable by individuals who are not knowledgeable about risk statistics (Borenstein 

et al., 2009). Risk difference, the difference between prevalence of disease in untreated 

and treated populations, does not need to be transformed for calculation. Risk difference 

is also more sensitive to the baseline changes of an effect, and since prevalence can vary 

widely from endemic or chronic levels to outbreak levels and from disease to disease 

(Miller & Williams, 2007), measuring the effect size of establishing MPAs on coral 

disease with risk difference may be a better standard to reduce outliers during analysis. In 

addition, the data for risk difference are more easily obtained, as only prevalence and 

standard error are required (Borenstein et al., 2009).  

There are several confounding factors with measuring prevalence of coral 

diseases on reefs that involve measurement methodology, such as difficulty accurately 

identifying diseases or coral species, as well as other problems common in environmental 

meta-analysis, such as incomplete datasets and highly variable environmental conditions 

(Côté et al., 2005). The heterogeneity of studies of MPA efficacy may also be caused by 

the inherent differences in MPA design and size, lack of paired controls, proximity to 

other MPAs, and heterogeneity in reef morphology and composition (Claudet et al., 

2008; Selig & Bruno, 2010; Vandeperre et al., 2011). The issue of incomplete datasets is 

more difficult to mitigate, but can be addressed by contacting authors of the primary 

source (Côté et al., 2013). 



8 

 

This study is a novel investigation of the efficacy of MPAs in mitigating coral 

disease through meta-analysis of studies conducted on coral disease prevalence inside 

and outside MPAs. The framework established in this study for the systematic review of 

coral disease prevalence literature and the comparison of MPA and non-MPA sample site 

data can be used or improved by other researchers seeking to answer similar questions 

about MPA efficacy. Additionally, this work will add to the scholarship of MPA effects 

beyond the typical measurement of effects on fisheries. Risk difference, the summary 

statistic of the pooled prevalence data, shows both the direction and magnitude of the 

effect of MPAs on coral disease prevalence. Risk difference in this study is defined as 

subtracting prevalence within MPAs from prevalence outside MPAs. Each summary 

statistic created was tested for significance. The null hypothesis tested was that the risk 

difference between the prevalence inside MPAs and outside MPAs would be equal to 

zero. The prevalence outside MPAs was predicted to be higher, resulting in a positive risk 

difference, due to MPA protection generally increasing reef resilience to disturbances 

from bleaching events (Graham et al., 2008; Wilson et al., 2012), climate change 

(Roberts et al., 2017), and natural disturbances (i.e., bleaching, disease, predation, and 

storms) (Mellin et al., 2016), which can decrease the disease prevalence inside MPAs 

relative to the disease prevalence of areas outside MPAs.  

Methods 

Systematic review 

To accumulate data from primary sources of research while controlling for the 

effect of variations among research projects, sources were collected through a systematic 
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review process. The scheme for this systematic review was modified from the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) scheme (Lunny 

et al., 2017). The body of literature on coral disease prevalence within and outside of 

MPAs was found in general scientific databases and coral survey-specific repositories 

with keyword searches. Keywords were specified for use with each search 

engine/database, as each system has a proprietary algorithm for interpreting Boolean 

operators, punctuation, plurals, and synonyms. Full keywords per search are listed in 

Appendix Table 1. Additional sources were collected from hand-searching (i.e., sampling 

relevant sources through reading citations of another source, or author publications) and 

from author correspondence. The results from keyword searches were analyzed for 

relevance, determined by comparison to selection criteria defined before analysis to 

mitigate selection bias (Table 1). Sources were initially compared to selection criteria for 

relevance from the title and abstract alone. Sources determined to be relevant were saved 

and evaluated in the second step, in which the entire article was read for usable data and 

relevance. Sources with incomplete data were saved and marked, and the listed contact 

from the source was e-mailed. Relevant sources without complete data and no author 

reply were excluded from the final dataset (Figure 1). 

Data extraction  

Primary source data extraction. The data collected from each source included 

coral disease prevalence data within and outside MPAs, citation data and moderator 

variables. Moderator variables that were considered to have a potential impact on the 

effect size of each study were recorded along with the effect size and standard error (see 
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Table 1. Selection criteria in full 

Inclusion Criteria Exclusion Criteria 

Study measures coral disease prevalence 

(proportion of diseased corals over total 

coral in study area) 

Study defines marine protected area as 

park with no usage limitations (“marine 

protected area” as area with limited usage 

or established restrictions) 

Study measures coral disease prevalence 

within and outside of marine protected 

areas 

Does not include information on sample 

methodology or protection level 

Document is in English Document is not in English 

 

 

below for how to calculate effect size). These variables included country/nation, marine 

biogeographic province, sampling method (including sampling area size, type, and 

depth), time of observation (including month and season), management level, and MPA 

usage. Sources without values on a given moderator variable were recorded as 

“unknown.” 

Database data extraction. Databases containing survey data of coral disease 

prevalence within and outside of MPAs from coral reef conservation non-governmental 

organizations (NGOs), state and local governments, and other coral survey agencies were 

collected from general databases, data.gov and the National Oceanic and Atmospheric 

Administration (NOAA) OneStop repository of raw data. While these data were not 

collected with the express purpose of scientific and statistical comparison of MPA 

efficacy, the measurement of raw data (analogous to individual participant data in 

medical meta-analysis) allowed the calculation of risk difference and standard error per 

dataset. Data extracted from these sources included the sample size of diseased corals (by 

species, disease, location), total sample size/sample size of apparently healthy corals, 

location, and all available moderator variables. 
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Figure 1. Meta-analysis workflow, adapted from the PRISMA scheme. 

 

Site MPA status and MPA description. All available location data were extracted 

from sources as coordinates in comma-separated value files. Location data were uploaded 

as a layer in ArcGIS Online, in a map with the NOAA MPA inventories geographic 

information systems (GIS) layer (NOAA National Ocean Service, Office of National 
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Marine Sanctuaries, MPA Center, 2020), and MPA establishment year, protection level, 

and other MPA descriptive data were collected per site of all sources. For sources with 

locations within MPAs not captured in the MPA inventory (such as those in the 

Philippines), site data were compared to other documentation on MPAs of the 

location/nation-state (Appendix Table 3), and protection level was categorized into the 

“Definitions and Classification System” by the U.S. National Marine Protected Areas 

Center (National Marine Protected Areas Center, 2020). Sources without location data 

were not included in the dataset of effect size calculated per MPA age and protection 

level (Appendix Table 4). 

Effect size calculation 

 Calculating general effect size. For sources with raw count data per site and raw 

dataset sources, disease prevalence for all sites/locations within MPAs and outside MPAs 

was calculated. The risk difference (RD) was calculated using Equation 1, and the 

standard error was calculated using Equation 2. For sources with a listed average 

prevalence for MPA sites and non-MPA sites and no total count data, the risk difference 

was calculated using Equation 1. The standard error of the risk difference was then 

calculated with Equation 3 by first calculating the confidence intervals of the risk 

difference. For Bruckner (2010), prevalence and total coral sample size were given per 

site. These prevalence data were averaged and grand standard errors for within-MPA 

sites and outside-MPA sites were calculated. The risk difference was then calculated 

using Equation 1, and standard error of the risk difference was calculated using Equation 
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3. Risk differences calculated only considering MPA status per site are referred to as 

“general prevalence data” for the remainder of this paper. 

 

Equation 1. Risk difference 

𝑅𝐷 = 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑜𝑢𝑡 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑖𝑛 

 

Equation 2. Standard error 

𝑆𝐸𝑅𝐷 =  √𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑜𝑢𝑡 ∗
1 −  𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑜𝑢𝑡

𝑛𝑜𝑢𝑡
+ 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑖𝑛 ∗

1 −  𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑖𝑛

𝑛𝑖𝑛
  

 

Equation 3. Standard error (no sample size) 

𝑆𝐸𝑅𝐷 =  
𝐶𝐼𝐿𝐵 + 𝐶𝐼𝑈𝐵

3.92
 

 

 Calculating effect size separated by MPA age and protection level. To calculate 

the risk differences varying by MPA age and protection level, diseased coral and total 

coral sample sizes by site were collated by MPA age or protection level (which may 

include several overlapping MPAs), with all sample sizes from sites outside of MPAs 

calculated separately. Data from overlapping MPAs were calculated as the oldest MPA 

group represented in the overlap or the highest level of protection. Risk difference was 

then calculated with Equation 1, with the individual prevalence data per MPA age or 

protection level subtracted from the singular prevalence of sites outside MPAs, with 

standard error calculated with Equation 2. Prevalence was calculated for sources without 

raw sample sizes by averaging prevalence data for each MPA age or protection level, 
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with standard error calculated with Equation 3. Sources from the general prevalence 

dataset without data on MPA protection level or age per study site or average prevalence 

were excluded from their respective models. 

Statistical analysis  

General prevalence model. All analyses were performed with the R statistical 

program (RStudio Team, 2020) and the packages “meta,” “dmetar,” and “metaphor.” 

General average prevalence was pooled with a three-level structure weighted random-

effects meta-analysis model, with measurement nested within study. A random-effects 

model is preferred for meta-analyses that contain mostly observational data (as opposed 

to the random control data common in clinical trials), and which pool sources from 

several locations, such as the data in this study (Kulinskaya et al., 2008). Significance 

testing of the estimated summary effect size was performed through a one-tailed t-test, 

and the probability (p-value) of this test had a critical value (α-value) of 0.05. The 

assumed null value for significance testing is RD = 0 (no difference in disease prevalence 

between inside MPA and outside MPA sites). Weight was calculated with inverse-

variance. Summary risk difference was calculated with restricted maximum likelihood 

estimation with the Knapp-Hartung adjustment. The measurement of the quality of fit for 

a meta-analysis model relies on the interpretation of the effect size estimate, the 

heterogeneity, and the p-value of significance testing the effect size estimate. At the core 

of the critique of meta-analysis is the impertinence of comparing disparate studies with 

little to no relation to each other (the “apples to oranges” problem) (Borenstein et al., 

2009; Higgins et al., 2021). The dissimilarity of the pooled studies is reflected in the 
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heterogeneity measure Cochran’s QE, from which I2 is derived. In this study, 

heterogeneity was measured with QE and I2. An I2 above 75% was considered “high” 

heterogeneity, supported by the chi-squared significance test of QE (α = 0.05).  

Subgroup analysis of the general prevalence model was performed through meta-

regression of the three-level meta-analysis model, retaining the sources with multiple 

measurements. Significance of the moderator variables in the model was conducted in an 

omnibus test of an F distribution of all regression coefficients, with a significant result 

indicating at least one moderator variable had a significant effect. The risk difference and 

standard error of each study was plotted in a funnel plot of risk difference on the x-axis 

and standard error on the y-axis (Borenstein et al., 2009). 

Moderator coding and clustering. To model the general prevalence data in 

subgroups with meta-regression, moderators were dummy-coded in binary form (i.e., 0 or 

1). The moderator variables chosen for subgroup analysis were source type (primary or 

raw dataset), region (Tropical Western Atlantic or Indo-West Pacific), season (containing 

surveys in Autumn or not), survey method (containing belt transects or not), disease 

community, and species assemblage. These moderators were called “Primary,” “Region,” 

“Season,” “Method,” “Disease,” and “Species,” respectively. To code disease community 

and species assemblage as binary variables, both were clustered individually with a 

hierarchical method and Jaccard similarity (Finch, 2005; Han et al., 2011). The studies 

were separated by two clusters at the highest node. 

Outlier analysis. Two methods were used to assess the dataset for potential 

outliers. The studentized deleted residuals (ti) were calculated for each study, and studies 
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with a residual ti > 1.96 were considered outliers (Viechtbauer & Cheung, 2010). Outliers 

were also assessed with confidence intervals per study measurement. Measurements with 

confidence intervals that did not overlap the confidence interval of the summary risk 

difference were considered outliers. Outliers were removed from the dataset, and the 

same three-level model used for the general prevalence data model was re-run to assess 

changes to the summary effect size and confidence interval (Appendix Table 5).  

Multiple comparison models. For both models separated by MPA age or 

protection level, prevalence data were pooled with a weighted random-effects 

multivariate meta-analysis model. Weight was calculated with inverse variance. 

Summary risk difference was calculated with a restricted maximum likelihood estimation 

with the Knapp-Hartung adjustment. In consideration of MPA age as a continuous 

variable, summary risk difference was first calculated with a three-level structure meta-

analysis model (random-effects, inverse-variance weighted), with two random effects 

variables: measurement nested within study and MPA age. To account for the covariance 

introduced by calculating risk difference with only one control per study (average disease 

prevalence outside MPAs), covariance of the levels of protection or age were modelled 

with a heteroscedastic compound symmetric covariance structure matrix, in which each 

level of either MPA protection or age has a difference variance and the same correlation 

coefficient. As a comparison to the covariance model, the summary risk difference was 

also calculated with a three-level structure meta-analysis model (random-effects, inverse-

variance weighted), with random effects calculated as measurement nested within study 

and MPA level.  
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Power analysis. Power analysis of these data was performed post hoc. The sample 

sizes of coral were estimated through averaging the available coral sample size data from 

all sources (k = 12) inside MPAs (n = 12,783) and outside MPAs (n = 19,940). Risk 

differences were estimated to be values ranging from 0 to 0.05, evenly distributed across 

1000 data points to achieve a smooth estimate curve. The heterogeneity component of the 

variance was estimated as “low” (1.33), “moderate” (1.67), and “high” (2). After the 

curves were modelled, power estimates using the risk differences of the full general 

model, MPA age covariance model, and protection level covariance model were 

calculated with “high” heterogeneity and plotted on the estimate curves. 

Results 

Data exploration. The final dataset consisted of 10 raw datasets and 11 primary 

sources (Appendix Table 2). Of the primary sources, van Woesik & Burman (2012) and 

Hein et al. (2014) contained raw data provided by the authors. The sources were either 

from the biogeographic coral reef provinces of the Tropical Western Atlantic (n = 9) or 

Indo-West Pacific (n = 12) (Figure 2, 3). The average coral disease prevalences inside 

and outside MPAs per province were slightly higher outside of MPAs, but not 

significantly different in either biogeographic coral reef province (Tropical Western 

Atlantic: Inside = 0.0577, Outside = 0.0638, W = 29, p-value = 0.7984, Indo-West 

Pacific: Inside = 0.0444, Outside = 0.0483, W = 67, p-value = 0.3897). The total average 

prevalences of Tropical Western Atlantic and Indo-West Pacific sources were also not 

significantly different (W = 197, p-value = 0.788). The total average inside MPA  



18 

 

 
Figure 2. Average prevalence (± standard error) per study within (light grey) and outside (dark grey) of MPAs 

by biogeographic province (Tropical Western Atlantic = pink and Indo-West Pacific = green). The respective 

average prevalences (combined inside and outside MPAs) for each biogeographic province are represented as 

horizontal lines. Studies with average prevalence within MPAs higher than average prevalence outside MPAs 

are highlighted in red. Lamb et al. (2016) and Ruiz-Moreno et al. (2012) averaged across measurements, and 

standard error not available due to the lack of raw sample size data. 

 

prevalence and outside MPA prevalence, irrespective of province, were also not 

significantly different (W = 197, p-value = 0.5667).  

Diseases ranged greatly in type and assemblage between studies, with five out of 

the 21 (24%) studies not reporting the type of disease (Table 2). The majority (51%) of 

pooled sources had MPA ages between 15–35 years (range <1–110 years), with the 

average MPA age being 28.7 years (Figure 4a). The most common protection level in the 

pooled dataset was Uniform Multiple Use (39.1%), followed by No-Take (29.0%) 

(Figure 5a).  
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Figure 3. World map depicting countries of source sampling sites in blue. Abbreviations for databases are 

defined in Appendix Table 2. A: American Samoa (2016), B: American Samoa Coral Reef Monitoring Project 

(CRMP), C: Bruckner (2010), D: Coelho & Manfrino (2007), E: Devine & Nieves (2008), F: Florida (CRMP), G: 

García-Sais et al. (2017), H: Hawaii (2011), I: Hawaii (2014), J: Hawai’i Coral Disease database (HICORDIS), 

K: Hein et al. (2014), L: Lamb et al. (2015), M: Lamb et al. (2016), N: Mariana Archipelago (CRMP), O: Page et 

al. (2009), P: Puerto Rico (CRMP), Q: Puerto Rico Clean Water Act (CWA), R: Raymundo et al. (2009), S: 

Ruiz-Moreno et al. (2012), T: U.S. Virgin Islands, U: van Woesik & Burman (2012) 

 

 

Table 2. Disease assemblage per source 

Source Disease assemblage 

A. Samoa (2016) algal infection, barnacle infestation, ciliate infection, cyanobacterial 

infection, discolorations other than bleaching, endolithic fungal 

infection, growth anomalies, pigmentation response, Porites discolored 

swelling, trematodiasis, tube worm infestation, white syndrome 

A. Samoa (CRMP) algal infection, barnacle infestation, endolithic fungal infection, growth 

anomalies, pigmentation response, Porites discolored swelling, 

sediment damage, sub-acute tissue loss, tube worm infestation, 

unknown, white syndrome 

Bruckner (2010) black band, Caribbean yellow band, dark spots, white plague 

Coelho & Manfrino 

(2007) 

black band disease, dark spots disease, red band disease, white plague 

disease, yellow blotch disease 
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Devine & Nieves 

(2008) 

unknown 

Florida (CRMP) unknown 

García-Sais et al. 

(2017) 

black band, Caribbean ciliate infection, dark spots, growth anomalies, 

pigmentation response, red band, ulcerative white spots, white band, 

white patch, white plague, white syndromes, yellow band 

Hawaii (2011) algal infection, barnacle infestation, ciliate infection, cyanobacterial 

infection, discolorations other than bleaching, endolithic fungal 

infection, growth anomalies, pigmentation response, Porites discolored 

swelling, sub-acute tissue loss, trematodiasis, unknown, white 

syndrome 

Hawaii (2014) algal infection, discolorations other than bleaching, discolored tissue 

thinning, endolithic fungal infection, growth anomalies, other, patchy 

bleaching, pigmentation response, Porites discolored swelling, sub-

acute tissue loss, trematodiasis, tube worm infestation, white syndrome 

Hawaii (HICORDIS) algal infection, algal overgrowth, black band, ciliate infection, 

cyanobacterial infection, discoloration other than bleaching, endolithic 

fungal infection, growth anomalies, pigmentation response, recently 

denuded skeleton, sub-acute tissue loss, swollen patches, trematodiasis, 

white syndrome 

Hein et al. (2014) atramentous necrosis, black band, broken pieces, brown band, growth 

anomalies, pigmentation response, sediment damage, skeletal eroding 

band, sponge overgrowth, unknown, white spot 

Lamb et al. (2015) atramentous necrosis, black band, brown band, growth anomalies, 

skeletal eroding band, white syndrome 

Lamb et al. (2016) black band, brown band, growth anomalies, skeletal eroding band, 

white syndrome 

Mariana Arch. 

(CRMP) 

algal infection, barnacle infestation, cyanobacterial infection, growth 

anomalies, pigmentation response, Porites discolored swelling, sub-

acute tissue loss, trematodiasis, tube worm infestation, ulcerative white 

spots 

Page et al. (2009) atramentous necrosis, black band, brown band, cyanobacterial 

infection, growth anomalies, skeletal eroding band, ulcerative white 

spots, white syndrome 

Puerto Rico (CRMP) unknown 

Puerto Rico (CWA) unknown 

Raymundo et al. 

(2009) 

black band, brown band, growth anomalies, skeletal eroding band, 

ulcerative white spots, white syndrome 

Ruiz-Moreno et al. 

(2012) 

atramentous necrosis, black band, brown band, dark spots, growth 

anomalies, non-thermal bleach spots, skeletal eroding band, white 

signs, white syndrome 

U.S. Virgin Islands 

(CRMP) 

unknown 

van Woesik and 

Burman (2012) 

black band, dark spots, patchy necrosis, red band, unknown, white 

band, white plague, white spot, yellow band 
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Figure 4. (a) Histogram of MPA ages represented in the dataset with an overlaid density plot. The red vertical 

line represents the mean MPA age. (b) Scatter plot of risk difference per MPA age. The log values of inverse 

variance are color-coded, with green representing the highest inverse variance value. 

 

General prevalence model. The summary risk difference calculated with the general 

prevalence model was positive (RD = 0.000613) with a confidence interval crossing zero 

(-0.0139, 0.0151) (Table 3). The individual effect sizes in this dataset ranged from -

0.0916 to 0.253, with 13 negative risk differences and 28 positive risk differences (Figure 

6). This estimate was not significant (p = 0.932), and the model had high heterogeneity 

(QE(40) = 1922.0726, p < 0.0001) (Table 3). Funnel plot analysis for potential publication 

bias showed possible bias for positive risk differences, indicating a bias for lower 

prevalences inside MPAs, although the asymmetry is not pronounced (Figure 7). 
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Figure 5. MPA protection level frequency and risk difference per level (a) Bar chart of the count of all 

protection levels represented in the MPA protection level dataset. (b) Scatter plot of the risk difference per MPA 

protection level. The log of inverse variance is color coded, with green representing the highest inverse variance. 

 

Analyzing the general prevalence dataset with studentized deleted residuals 

showed five studies to be outliers, representing 25 risk difference measurements (Figure 

8, Appendix Table 5). Analyzing the general prevalence dataset with confidence intervals 

showed 11 measurements to be outliers, with individual measurements selected from 

studies with multiple measurements (Figure 9, Appendix Table 5). The general model 

with the outliers determined with studentized deleted residuals removed had a non- 

significant estimate (RD = 0.000711, CI = (-0.00712, 0.00854), p = 0.849) and 
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Table 3. Model summaries for general disease prevalence, MPA protection level prevalence, and MPA age prevalence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Model Estimate Confidence Interval p-value Cochran's Q I2 p-value(Q) AIC BIC AICc 

General 

General 0.00061 (-0.0139, 0.0151) 0.932 1922.07 97.919 < 0.0001 -154.86 -149.79 -154.193 

Outlier removed (ti) 0.000711 (-0.00712, 0.00854) 0.849 149.549 89.97 < 0.0001 -75.147 -73.023 -72.965 

Outlier removed (CI) 0.00127 (-0.00122, 0.00375) 0.3054 102.106 71.598 < 0.0001 -169.478 -165.376 -168.518 

MPA 

Protection 

Level 

Covariance 0.00694 (0.00506, 0.00882) < 0.0001 4694.202 98.551 < 0.0001 -243.033 -225.276 -240.592 

Random variable -2.36E-05 (-0.00925, 0.00920) 0.9959 4694.202 98.551 < 0.0001 -221.812 -210.714 -220.844 

MPA Age 

Covariance 0.00694 (0.00577, 0.00811) < 0.0001 25008.53 99.612 < 0.0001 -151.889 -28.302 -53.889 

Random variable -0.00181 (-0.0178, 0.0142) 0.823 25008.53 99.612 < 0.0001 -224.511 -214.213 -224.077 
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Figure 6. Forest plot for the general prevalence dataset showing each measurement per source with separate 

risk difference and corresponding confidence interval, arranged by increasing risk difference. Summary risk 

difference is shown at the bottom as a blue point, with its corresponding confidence interval. 

 

 

significantly high heterogeneity (QE(15) = 149.549, I2 = 89.97, p < 0.0001). The general  

model with the outliers determined with confidence intervals removed also had a non-

significant estimate (RD = 0.00127, CI = (-0.00122, 0.00375), p = 0.3054) and 

significantly high heterogeneity (QE(29) = 102.106, CI = 71.598, p < 0.0001) (Table 3).  

Meta-regression. The summary risk difference was -0.00920. The test for residual 

heterogeneity (the heterogeneity not explained by the variance caused by moderator 

variables) was significant (QM(34) = 1418.983, p < 0.0001), and the omnibus test for 

subgroup significance (the heterogeneity caused by at least one of the subgroups being 

significant) was not significant (F(7,34) = 7.2583, p = 0.2976). Most subgroups (Primary,  
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Figure 7. Funnel plot of the general prevalence dataset measurements.  The gray area shows a non-normal 

relationship between the risk difference measurement and standard error. 

 

 

Region, Method, Disease, and Species) did not have a significant summary risk 

difference. However, the estimate for the subgroup “Season” was significant (p = 0.0340) 

and negative (RD = -0.0298) (Table 4). 

 
Table 4. Estimates, p-values, and CI of meta-regression model. Significant terms in the model are bolded.  

estimates (β) 
Sample 

size 
p-value CI 

intercept (βo) 0.0273 41 0.3369 -0.0284, 0.0831 

Primary -0.0265 31 0.2099 -0.0679, 0.0149 

Region -0.0274 7 0.3260 -0.082, 0.0272 

Season -0.0298 8 0.0340 -0.0573, -0.0022 

Method -0.0025 33 0.9169 -0.0485, 0.0436 

Disease 0.0135 5 0.6228 -0.0402, 0.0671 

Species 0.0361 4 0.1655 -0.0149, 0.0871 
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Figure 8. Graph of the studentized deleted residuals per source, arranged in decreasing order of studentized 

deleted residual, with source as the clustering variable for multiple measurements. The vertical dashed line 

represents ti > 1.96, with values to the left of this line considered outliers. Cook's distance is shown with the size 

of the points, with larger points having a larger Cook’s distance. 

 

MPA protection level model. The summary risk difference calculated from the 

covariance method was positive (RD =  0.00694) with a confidence interval that did not 

cross zero (CI = (0.00506, 0.00882)). The individual risk differences ranged from -0.240 

to 0.253, with 25 negative risk differences and 44 positive risk differences. This estimate 

was significant (p < 0.0001) and had significant heterogeneity (QE(68) = 4694.202, I2 = 

98.551, p < 0.0001) (Table 3). The summary risk difference calculated from the random 

variable method was negative and small (RD = -2.36E-05) with a confidence interval that 

crossed zero (CI = (-0.00925, 0.00920)). This estimate was not significant (p =  0.9959) 
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Figure 9. Forest plot of the general prevalence dataset with outlier confidence intervals highlighted, with grey 

points and confidence intervals indicating outlier status, arranged by increasing risk difference. The summary 

risk difference is symbolized with a blue point and confidence interval. 

 

and had high heterogeneity (QE(68) = 4694.202, I2 = 98.551, p < 0.0001) (Table 3).  

MPA age model. The summary risk difference calculated from the covariance 

method was positive (RD = 0.00694) with a confidence interval that did not cross zero 

(CI = (0.00577, 0.00811)). The individual risk differences in this model ranged from        

-0.393 to 0.253, with 39 negative risk differences and 59 positive risk differences. This 

estimate was significant (p < 0.0001) and had significant heterogeneity (QE(97) = 

25008.53, I2 = 99.612, p < 0.0001) (Table 3). The summary risk difference calculated 

from the random variable method was negative (RD = -0.00181) with a confidence 
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interval that crosses zero (-0.0178, 0.0142). This estimate was not significant (p = 0.823) 

and had high heterogeneity (QE(97) = 25008.53, I2 = 99.612, p < 0.0001) (Table 3). 

Power analysis. With the estimated coral sample sizes inside and outside MPAs 

being 12,783 and 19,440 respectively, power for “low” heterogeneity achieved 

significance (≥ 80%) at a risk difference of 0.008. Power for “moderate” heterogeneity 

achieved significance at a risk difference of 0.00896. Power for “high” heterogeneity 

achieved significance at a risk difference of .0.00981. The “observed power” estimates 

using the summary risk differences of the general model, MPA protection level model, 

and MPA age model were 5.337%, 50.53% and 50.53% respectively, and none of the 

models reached the 80% significance level (Figure 10). 
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Figure 10. Distribution of possible power values for "low", "moderate", and "high" heterogeneity (light grey, 

medium grey, and dark grey respectively). The “observed” power of both the MPA age covariance model and 

the MPA protection level covariance model are shown as overlaid blue points. 

 

Discussion 

Although meta-analysis is neither fast nor simple to perform, managers may save 

substantial monitoring costs by considering the use of meta-analysis for describing MPA 

effects on coral reefs (Côté et al., 2005). Whereas meta-analyses of the effects of coral 

reef MPAs have been conducted for various effect measures (Magdaong, 2014; Molloy et 

al., 2009), this research is the first meta-analysis comparing coral disease prevalence 

inside and outside of MPAs. To achieve this, coral disease prevalence data were collected 

from primary literature and raw datasets with a global range of sampling sites. A random-

effects, inverse-variance model of average risk difference per source (with a three-level 
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structure to account for multiple measurements per source) did not return a significant 

summary risk difference (RD = 0.000613, p-value = 0.932) and had highly significant 

heterogeneity (Table 3), indicating that the model could not conclude whether MPAs 

positively or negatively affected coral disease. Although the positive risk difference may 

indicate that the establishment of MPAs could keep disease lower inside MPAs versus 

outside, due to incomplete data as to the prevalence of disease before MPA 

establishment, this value does not describe whether disease is being decreased in relation 

to areas outside MPAs compared to prevalence before establishment, or that disease 

prevalence is maintained at a lower level inside compared to disease prevalence outside. 

Furthermore, the lack of significance indicates that the true effect size estimated from this 

dataset may be zero, or even negative. A subgroup analysis of this dataset based on 

moderator variables returned one significant summary risk difference (Table 4), but with 

the sample size of this subgroup being under 10, this model is not considered robust. 

During post hoc tests, none of the models achieved significant power. While this may be 

due to high heterogeneity, the lack of power and significance prompts reevaluation of the 

data included in this study and the methods used to obtain those data. 

MPAs as effective management strategies. The lack of significance for all of the 

general prevalence data models may be an artifact arising from the lack of agreement of 

the measured change in parameters due to protection level. The assessment of protected 

areas as a management strategy for natural resources shows contention and even 

contradiction between different studies. This disagreement is present globally. In 

terrestrial protected areas, protection has been associated with positive benefits as 
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measured through biodiversity (Coetzee et al., 2014; Gray et al., 2016) or abundance of 

target species (Sáenz-Bolaños et al., 2020) and negative effects such as becoming 

hotspots for emergent diseases (Lee & Bond, 2016) and failing to prevent species 

diversity decline (Brown et al., 2019). In marine protected areas, conservation goals such 

as increasing reef fisheries stock (Aburto-Oropeza et al., 2011; Sala & Giakoumi, 2018) 

or coral cover (Magdaong, 2014) were met by using MPAs as a management strategy, but 

other areas have not shown differential increase in fish diversity after establishing MPAs 

(Machumu, 2013). For managing marine disease dynamics specifically, studies of 

protected areas have shown positive effects by yielding lower disease levels (Lamb et al., 

2015), no measured benefit seen as no significant difference between disease levels 

(Davies et al., 2020; Page et al., 2009; Wootton et al., 2012), or even deleterious effects, 

such as increasing transmission (McCallum et al., 2005).  

Previous analyses synthesizing global datasets do not show agreement as to the 

effects of establishing MPAs on coral reefs. Globally, MPAs have been shown to be 

effective at retaining a given level of coral cover over time (Selig & Bruno, 2010). 

However, a more recent literature review showed that MPAs did not confer resilience to 

their respective reefs, as disturbances (e.g., disease outbreaks and extreme weather 

events) indiscriminately caused significant changes to reef ecological parameters (e.g., 

coral cover), at sites within and outside of MPAs (Bruno et al., 2019). The differences in 

the results and conclusions of these studies, which both analyzed MPA efficacy, 

exemplify the difficulty in making a single, universal statement about the variability in 
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coral reef ecological parameters based on MPA status alone, possibly due to confounding 

factors not accounted for in synthesis analysis. 

Meta-analysis for coral disease prevalence. No model, including the multiple 

comparison models, achieved significant power (as calculated with sample sizes 

estimated with average sample size inside and outside MPAs, respectively) (Figure 10) 

and only the covariance structure models achieved significant summary risk differences 

(Table 3). While this may be due to high heterogeneity (discussed below), the lack of 

power and significance prompts reevaluation of the effect size measure chosen, and 

suggests coral disease data may be better measured with other effect size measures of 

binary data which tend to be greater, such as risk ratio or odds ratio (Higgins et al., 2021). 

For example, a sample with 5 diseased corals of 100 total corals inside MPAs and 7 

diseased corals of 100 total corals outside MPAs has a risk difference of 0.02 (
7

100
−

5

100
), 

a risk ratio of 0.714 (
5

100

7

100
⁄ ), and an odds ratio of 0.699 (

5

95

7

93
⁄ ). As shown in the 

example, the benefits of risk difference are that directionality can be chosen (in this 

example, direction was chosen to be consistent with the direction chosen in this study), 

risk difference is more sensitive to baseline changes (showing greater differentiation 

between outliers), and risk difference is the most intuitive measure to laymen. Risk ratio 

and odds ratio must be log-transformed before pooling and must be transformed back 

before interpretation and are not as easily understandable as risk difference (Borenstein et 

al., 2009). However, with the same sample size, risk ratio and odds ratio result in higher 

summary effect size values, improving the possibility of calculating significant power 

and summary effect sizes even with high heterogeneity. Although this research did not 
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encompass analysis with other prevalence effect size measures, as a simpler modelling 

scheme was preferred for this novel analysis, researchers performing further modelling of 

coral disease prevalence with meta-analysis models should consider using these effect 

size measurements for initial analysis, and reanalyze and resynthesize the data as risk 

differences afterward for ease of interpretation and sensitivity analysis (assessing whether 

significance is maintained) (Higgins et al., 2021).  

As a method of investigating the lack of significance of the model estimates, a 

power analysis was conducted post hoc. With the sample size of the data (estimated as 

the average sample sizes inside MPAs and outside MPAs), the power of this model 

quickly approached 100% (Figure 10). The “limiting factor” causing power to be below 

80% would be the value of the effect size estimate (summary risk difference in this 

study). Since the estimated disease prevalence on coral reefs is low (~0–5%) at non-

outbreak, endemic levels (Ruiz-Moreno et al., 2012), the risk difference between sites 

within and outside of MPAs can be expected to be 0–5% (positive or negative). This 

leads to very small risk differences, ranging from -0.00181 to 0.0069 for the general 

prevalence dataset in this study. Outside of mathematical analysis of the influence of 

effect size on power, the power of risk difference as an effect size is low (Higgins et al., 

2021), and with the variability of the direction of effect size in the datasets (as shown by 

no dataset having a large majority of risk differences in one direction), power can be 

expected to be low. The fact that no models achieved significant power in this study may 

be attributed to these factors, which suggest low feasibility of achieving sufficient power 

with this dataset and effect size measure. Although a researcher could attempt to reach 



34 

 

power by increasing the sample sizes within and outside MPAs, the use of risk difference 

as an effect size already decreases power. The high heterogeneity observed in the effect 

sizes indicates high heterogeneity of risk differences globally, the effects of which may 

not be adequately overcome simply by increasing sample size. As discussed above, the 

best method for achieving significant power may be to use a different effect size measure. 

Assumptions based on power, in this study the lack of power for any model, must 

be limited. According to Hoenig & Heisey (2001), the calculation of power post hoc may 

lead to incorrect and improper assumptions when interpreted with the effect size. The 

lack of significant effect size estimates is not in its entirety explained by the lack of 

sufficient power, and the fact that power for this study would need a relatively high risk 

difference (above modelled estimates of endemic disease levels on reefs [Ruiz-Moreno et 

al., 2012]) is not evidence for the impossibility of risk differences calculated from 

observed disease prevalence to ever achieve sufficient power. The analysis of the p-value 

and confidence interval of each summary risk difference-model estimate without the 

context of the post hoc power analysis sufficiently describes the possible true effect size, 

and effect of heterogeneity on calculating the effect size. Importantly, the power analysis 

in this study provides an explanation of the contradictory model results of the covariance 

structure models from the multiple comparison group, in which both models had highly 

significant summary risk difference estimates, but also highly significant heterogeneity 

(Table 3). The lack of power for these models supports classifying these results as Type I 

errors, in which the null hypothesis (RD = 0) is incorrectly rejected. 
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A method for managers to perform meta-analysis with higher power (chance of 

significance) is to limit their sources to one reef system/nation-state. Global datasets from 

a systematic review may not be large enough to subgroup into individual reefs with a 

significant sample size (k ≥ 10), but it may be possible for coral surveys of one nation or 

reef to create a robust dataset. In this scenario, researchers may reasonably use a fixed-

effect model due to the assumption that all sites on a single reef system/nation-state have 

the same true effect size value, which would lower the requirement for dataset sample 

size to achieve significance. Even a dataset of k = 2 has higher power in a fixed-effect 

model than any single study (Borenstein et al., 2009). However, the results of these 

analyses would be limited to the specific reef system/nation-state only.  

The high heterogeneity observed in all models is another reason for the lack of 

significance observed in summary risk differences. Outlier identification and removal 

methods (the studentized deleted residual method and the confidence interval method) 

did not reduce the heterogeneity of the general prevalence dataset for all models except 

the general prevalence model with outliers determined with confidence intervals 

removed. Each model having significant heterogeneity, even those with heterogeneity 

reducing methods, is evidence of the selected studies being too different to pool in one 

analysis. High heterogeneity is common in meta-analyses of ecology, evolution, and 

conservation data (Senior et al., 2016) and is directly related to the type of data measured 

and the difficulty in accounting for all confounding factors (Borenstein et al., 2009).  

The observed heterogeneity in this study may be caused by several factors at 

different levels of this analysis. At the highest level, heterogeneity may have been 
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introduced at the systematic review, where keywords and selection criteria were 

intentionally vague (low specificity) to include as many relevant sources as possible. This 

method is recommended for ecological databases (such as the CoRIS repository) as most 

are not optimized for meta-analysis (Côté et al., 2013); however, it increases 

heterogeneity. At another level, heterogeneity may be inherent to these data due to the 

difference in data collection methods between different research groups and reef 

managers. In addition, coral disease is difficult to identify in the field (e.g., early biotic 

disease difficult to detect) (Ainsworth et al., 2007; Moriarty et al., 2020; Sutherland et al., 

2004; Woodley et al., 2008) and may lead to high sampling error, which further increases 

heterogeneity. Heterogeneity may also have been introduced by differences in how 

standard error was calculated. For example, for some studies, the standard error was 

calculated by using the confidence intervals calculated by given standard errors (Equation 

3) as opposed to those calculated by raw sample size data (Equation 2). Finally, 

heterogeneity may be inherent to the type of data that were pooled. Although most meta-

analyses of medical data are performed on controlled clinical trials (Higgins et al., 2021), 

the data that were pooled in this analysis are observational, in which each individual 

sample may be affected by unique factors not considered in data reporting. This makes 

the data more heterogenous, as well as having less power (Borenstein et al., 2009; 

Kulinskaya et al., 2008).  

A method of analyzing heterogeneity is subgroup analysis. Subgrouping the 

general prevalence data with the moderator variables chosen (source type, region, season, 

survey method, disease assemblage, and species community) did not change the 
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heterogeneity of the data. This may again be explained b y the observational nature of the 

pooled data in that there may be several unknown and confounding variables not captured 

by the data collection process, and therefore cannot be included in the moderator 

analysis. A study of MPA assessment suggests incorporating MPA habitat structure and 

size in addition to the inclusion of MPA protection level, as well as other covariates into 

measurements of MPAs (Claudet & Guidetti, 2010), which may provide more moderator 

variables not available for this meta-analysis. Additionally, covariate groups with a 

sample size less than 10 are not generally considered robust, as subgroups with less than 

10 samples will have low power (Borenstein et al., 2009). Season was the only subgroup 

to have a significant effect size estimate, suggesting that sampling in autumn may cause 

significant variation in the data. The negative, significant effect size suggests that the 

prevalence of coral disease inside MPAs may be higher than prevalence outside MPAs 

during autumn, although extrapolating causality from a meta-regression (particularly in 

this model, as several of the covariates did not have 10 measurements) is not 

recommended (Borenstein et al., 2009).  Even without assuming causation, this model 

supports the further investigation of how sampling season might impact disease 

prevalence measurements. Seasonality of coral disease has been observed in the Great 

Barrier Reef for brown band syndrome (most prevalent during winter) and ulcerative 

white spots (most prevalent during summer) (Haapkylä et al., 2010). The difference in the 

prevalence seasonality of these diseases suggests modelling of coral disease prevalence 

would have less heterogeneity with prevalence measurements separated by individual 

disease, supported by evidence of individual coral diseases responding differentially to 
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different environmental factors in predictive modelling of disease prevalence (Williams 

et al., 2010).  

Multiple comparison models. As discussed above, modelling the effect of 

establishing MPAs to manage coral disease prevalence with multiple comparison risk 

difference measures per MPA protection level or age for each source returned significant 

summary risk differences only for the models with a covariance structure for the risk 

difference measurements. For these models, the covariance model was predicted to fit 

each model the best, as to account for the non-independence with a correlation 

component maintained between all measurements with the same outer variable (source), 

but with different variance estimates per protection level within the study. The different 

variance estimates would account for the prediction that each level of protection or each 

age has a different level of variation, which is supported by the graphs of logarithm of 

inverse variance values and risk differences per protection level and per age (Figure 4b, 

Figure 5b). Although pooling risk difference through the calculation of prevalence per 

MPA protection level or MPA age resulted in a high enough effect size to achieve 

significance (covariance structure models), all multiple comparison models had highly 

significant heterogeneity (p-value < 0.0001, shown in Table 3), and power analysis of the 

observed risk difference estimates of the covariance structure models showed 

insignificant power (Figure 10), suggesting a Type 1 error of incorrectly significant 

summary risk difference (discussed above).  

Due to limitations of the calculation equations for this type of model, age was 

coerced into a factor with each individual age as a separate, non-related level. The 
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correlation component calculated in the covariance matrix accounts for the non-

independence of the measurements, but does not introduce the correlation of risk 

differences between MPAs of different ages in the same study. As an MPA gets older, it 

follows that any benefit from establishing an MPA would increase, as several 

measurements of coral cover and other coral species parameters have been shown to 

increase with MPA age (Edgar et al., 2014; Friedlander et al., 2017). Due to the 

maintained directionality of effect size across increasing MPA age, a completely 

independent variance estimate per age may overfit the model to the dataset, instead of 

finding the best fit to describe the true effect size.  

For both models, the inclusion of either MPA age or protection level as a random 

variable term, instead of in a covariance structure, resulted in insignificant risk difference 

estimates with high heterogeneity (Table 3). These results suggest that accounting for the 

variance of MPA age and protection levels as a random variable does not sufficiently 

decrease heterogeneity. It also implies that calculating the variance between different 

non-independent measurements with a three-level structure only is not precise and is 

better modelled by a covariance matrix with a maintained correlation component for all 

levels.  

Model comparison and selection. Burnham & Anderson (2004) clarifies that both 

measure different qualities of model fit and converge on different target models by 

describing the mathematic concepts underlying both calculations, and the different 

philosophies of using either for selection. In summation, AIC measures the amount of 

information lost by choosing one model over the other, and tends to be influenced by the 
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sample size of the model measured. BIC, although originally described as a measurement 

of the similarity of one model to a theoretical “true” model of the data, measures the 

difference from the measured model to a quasi-true model (which is the closest to the 

target model measured with the same distance measure as AIC). In either case, the lowest 

value may be used for comparison of models. The lowest AIC selects the model with 

least information lost with the given model. The lowest BIC selects the model that is 

closest to the model representing quasi-truth (Burnham & Anderson, 2004). When 

processing models with low sample size in relation to parameters (which Burnham and 

Anderson define as sample size n/parameter size K < 40), the corrected AIC, AICc, is 

more accurate in measuring information lost. 

For the general prevalence data model set, which includes the full general model, 

the general model with outliers determined by studentized deleted residuals removed 

(study level), and the general model with outliers determined by confidence intervals 

removed (measurement level), the general model with outliers removed determined by 

confidence intervals had both the lowest AICc (-168.518) and BIC (-165.376) (Table 3), 

supporting its selection as the best option to model the general prevalence data. This is 

also supported by this model having the lowest heterogeneity (indicating it has the lowest 

between-studies variance). However, all models of this set had significant heterogeneity 

(p < 0.0001) (Table 3), showing that the differences in calculation between the different 

models do not sufficiently address the underlying heterogeneity of the dataset. 

The MPA protection level model set included a multivariate model with 

covariance of different protection levels modelled as a heteroscedastic compound 
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symmetric structure matrix, and a three-level multivariate model with protection level 

modelled as a random variable along with a nested random variable of measurement and 

study. The covariance model had both the lowest AICc (-240.592) and BIC (-225.276), 

supporting its selection as the better model of this set. The MPA age model set included 

two models with the same modelling methods. For this factor, however, the random 

variable model had the lowest AICc (-224.077) and BIC (-214.213). This difference may 

be explained by the modelling limitation described above for age as a continuous variable 

in a covariance structure model. Just as for the general model set, all multiple comparison 

models had significant heterogeneity (p < 0.0001) (Table 3), showing that neither method 

(covariance or random effect variable) was able to address heterogeneity in the dataset. 

Conclusions 

The impact of MPAs on any one ecological parameter has been contested for 

several biological (Alonso Aller et al., 2017; Edgar et al., 2014; Selig & Bruno, 2010; 

Zvuloni et al., 2009) and statistical reasons (Bruno et al., 2019). Meta-analysis may 

provide scientists and natural resource managers the ability to synthesize data from 

multiple studies, generally with higher power than for any individual study (Borenstein et 

al., 2009; Higgins et al., 2021). For overall disease prevalence of reefs worldwide, the 

results of this study did not support the hypothesis that there was any difference between 

disease prevalence inside MPAs and outside MPAs. This may be due to high 

heterogeneity, low statistical power, or that there truly is no effect of MPAs on coral 

disease. Although several statistical methods were used to decrease heterogeneity, as 

recommended in the Cochrane Handbook for Systematic Reviews and Interventions 
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(Higgins et al., 2021), the best way to decrease heterogeneity and increase the probability 

of detecting non-zero risk differences (from the models compared) is by collating 

samples by MPA protection level and estimating the variance of each risk difference per 

protection level. In addition, the low power for this effect size suggested a Type 1 error, 

in which the null hypothesis (RD = 0) was incorrectly rejected, evidence supported by the 

significant heterogeneity in this model. Persistent sources of heterogeneity were observed 

at every level of this analysis (from data collection to pooling) and were difficult to 

remove, limiting the ability to use meta-analysis models to describe changes in disease 

metrics.  

In consideration of further global scale meta-analysis of coral disease metrics, 

several recommendations for survey or study reporting can be made to assist with 

decreasing heterogeneity. 

 

• The results of the covariance model of MPA protection level suggested that the 

probability of achieving significance with risk difference data increased when 

protection level was used as a factor with covariance. This suggests the need to 

report the current MPA protection level for disease surveys. Although the 

protection level could be categorized through the NOAA MPA inventory, not 

every MPA was represented in this inventory (Appendix Table 3). By at least 

carefully reporting usage or protection laws per MPA measured, meta-analysts 

can use it as a factor. 
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• Any primary study of coral disease should report as much data as possible, either 

in text, supplementary info, or in a repository. Data should include raw coral 

sample sizes, or if possible, individual level data for each coral measured. 

Reporting of raw sample size can lead to more precise effect sizes of disease (i.e., 

risk ratio or odds ratio), and gives meta-analysts more flexibility for recalculation 

of effect sizes. 

 

• Heterogeneity was determined to be one of the driving factors for model 

insignificance, which as mentioned above, may be due to several factors at the 

data collection level. By having uniform survey methods, even for primary studies 

(Durgappa & Hebbale, 2013), more general meta-analysis with global datasets 

can be conducted with less variability and a higher chance of finding a 

significance if it really exists.  

 

With these recommendations, individual studies of coral reef disease may have 

less error and bias, which will lead to less heterogeneity in meta-analysis. The statistical 

methods mentioned above may also be used to decrease heterogeneity and increase 

power. Global cooperation and collaboration are needed to implement these changes, as 

well as increased rigorous monitoring efforts. By sufficiently addressing heterogeneity, 

meta-analysis may be a tool for coral reef managers to use in assessing the effect of 

MPAs as a management strategy to mitigate coral disease, giving them invaluable 

information about their own strategies in the endeavor to slow and reverse coral reef 

decline.  
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APPENDIX 

Appendix Table 1. Full keywords per database 

Database Keywords Used 

Google Scholar, ProQuest Complete coral + "disease prevalence" + "marine 

protected area" + usage + MPA 

Mason Open Educational Resources 

Metafinder 

"Coral disease prevalence" AND ("marine 

reserve" OR "marine reserves" OR 

"marine protected areas" OR MPA) 

Science.gov, ScienceDirect, Web of 

Science Core 

("coral disease" OR "coral diseases" OR 

"black-band disease" OR "white patch 

syndrome") AND ("marine reserve" OR 

"marine reserves" OR "marine protected 

area" OR "marine protected areas" OR 

MPA) 

Washington Research Library Consortium "coral disease prevalence" AND ("marine 

reserve*" OR "marine protected area*" 

OR MPA) 

CoRIS (Library Catalog collection) disease prevalence 

 

 
Appendix Table 2. Full citations of all sources included in the general prevalence model. 

Primary source Raw dataset 

Bruckner, A. W. (2010). View of 

implications of coral harvest and 

transplantation on reefs in northwestern 

Dominica. International Journal of 

Tropical Biology, 58(Supplemental 3). 

https://revistas.ucr.ac.cr/index.php/rbt/articl

e/view/32958/32409 

Coral Reef Ecosystem Program, Pacific 

Islands Fisheries Science Center (2018). 

Belt transect surveys of coral populations 

and disease assessments in Hawaii, Maui, 

and Oahu from 2010-03-08 to 2011-11-08 

(NCEI Accession 0168912). (Version 1) 

[Data set]. NOAA National Centers for 

Environmental Information. 

https://accession.nodc.noaa.gov/0168912 

 

Abbreviated as Hawaii (2011) 

Coelho, V. R., & Manfrino, C. (2007). 

Coral community decline at a remote 

Caribbean island: Marine no-take reserves 

are not enough. Aquatic Conservation: 

Marine and Freshwater Ecosystems, 17 

(7), 666–685. 

https://doi.org/10.1002/aqc.822 

Hawai’i Coral Disease database (2004-

2015). [Individual colony-level data of 

various surveys of Hawaiian coral reefs] 

[Unpublished data set]. NOAA National 

Centers for Environmental Information. 

https://www.ncei.noaa.gov/archive/accessi

on/0128219   
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Abbreviated as Hawaii (HICORDIS) 

Devine, B., & Nieves, P. (2008). 

Developing surface water GPS digital 

mapping technology to map the spatial 

distribution of size classes and disease 

prevalence of elkhorn coral in the 

nearshore waters of St. Thomas and St. 

Croix. The Nature Conservancy. 

NOAA National Centers for Coastal Ocean 

Science (2016). National Coral Reef 

Monitoring Program: Assessment of coral 

reef benthic communities in the U.S. 

Virgin Islands. [Data set]. NOAA National 

Centers for Environmental Information. 

https://doi.org/10.7289/v5ww7fqk 

 

Abbreviated as U.S.V.I (CRMP) 

García-Sais, J., Williams, S., Esteves, R., 

Sabater-Clavel, J., & Carlo, M. (2017). 

Monitoring of coral reef communities from 

natural reserves in Puerto Rico: 2017 

(NA15NOS4820127; Monitoring of coral 

reef communities from natural reserves in 

Puerto Rico, p. 316). 

NOAA Pacific Islands Fisheries Science 

Center Ecosystem Sciences Division 

(2018a). National Coral Reef Monitoring 

Program: Stratified random surveys (StRS) 

of coral demography (adult and juvenile 

corals) across American Samoa. [Data set]. 

NOAA National Centers for Environmental 

Information. 

https://doi.org/10.7289/v579431k 

 

Abbreviated as American Samoa (CRMP) 

Hein, M. Y., Lamb, J. B., Scott, C., & 

Willis, B. L. (2015a). Assessing baseline 

levels of coral health in a newly established 

marine protected area in a global scuba 

diving hotspot. Marine Environmental 

Research, 103, 56–65. 

https://doi.org/10.1016/j.marenvres.2014.1

1.008 

NOAA Pacific Islands Fisheries Science 

Center Ecosystem Sciences Division 

(2018b). National Coral Reef Monitoring 

Program: Stratified random surveys (StRS) 

of coral demography (adult and juvenile 

corals) across the Mariana Archipelago. 

[Data set]. NOAA National Centers for 

Environmental Information. 

https://doi.org/10.7289/v53n21q5 

 

Abbreviated as Mariana Archipelago 

(CRMP) 

Lamb, J. B., Wenger, A. S., Devlin, M. J., 

Ceccarelli, D. M., Williamson, D. H., & 

Willis, B. L. (2016). Reserves as tools for 

alleviating impacts of marine disease. 

Philosophical Transactions of the Royal 

Society B: Biological Sciences, 371 (1689). 

https://doi.org/10.1098/rstb.2015.0210 

NOAA Southeast Fisheries Science Center, 

NOAA National Centers for Coastal Ocean 

Science (2018). National Coral Reef 

Monitoring Program: Assessment of coral 

reef benthic communities in the Florida 

Reef Tract. [Data set]. NOAA National 

Centers for Environmental Information. 

https://doi.org/10.7289/v5xw4h4z 

 

Abbreviated as Florida (CRMP) 
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Lamb, J. B., Williamson, D. H., Russ, G. 

R., & Willis, B. L. (2015). Protected areas 

mitigate diseases of reef-building corals by 

reducing damage from fishing. Ecology, 

96(9), 2555–2567. 

https://doi.org/10.1890/14-1952.1 

 

Puerto Rico Department of Natural and 

Environmental Resources (2019). Puerto 

Rico Long-Term Coral Reef Monitoring 

Program database compilation: substrate 

cover percent, octocoral colony counts, 

macro invertebrate densities, fish densities, 

and fish biomass from 1999 to 2020 (NCEI 

Accession 0204647). [Data set]. NOAA 

National Centers for Environmental 

Information. Retrieved October 14, 2020, 

from 

https://www.ncei.noaa.gov/archive/accessi

on/0204647 

 

Abbreviated as Puerto Rico (CRMP) 

Page, C. A., Baker, D. M., Harvell, C. D., 

Golbuu, Y., Raymundo, L., Neale, S. J., 

Rosell, K. B., Rypien, K. L., Andras, J. P., 

& Willis, B. L. (2009). Influence of marine 

reserves on coral disease prevalence. 

Diseases of Aquatic Organisms, 87(1–2), 

135–150. https://doi.org/10.3354/dao02112 

Schumacher, B., Coral Reef Ecosystem 

Program Pacific Islands Fisheries Science 

Center (2015). Resilience of coral reefs in 

the main Hawaiian Islands from 2013 to 

2014 (NCEI Accession 0128219). [Data 

set]. NOAA National Centers for 

Environmental Information. 

https://www.ncei.noaa.gov/archive/accessi

on/0128219 

 

Abbreviated as Hawaii (2014) 

Raymundo, L. J., Halford, A. R., Maypa, 

A. P., & Kerr, A. M. (2009). Functionally 

diverse reef-fish communities ameliorate 

coral disease. Proceedings of the National 

Academy of Sciences, 106(40), 17067–

17070. 

https://doi.org/10.1073/pnas.0900365106 

Schumacher, B., Pacific Islands Fisheries 

Science Center Ecosystem Sciences 

Division (2018). Identifying coral reef 

resilience potential in Tutuila, American 

Samoa based on NOAA coral reef 

monitoring data from 2010 to 2016 (NCEI 

Accession 0169632). (Version 1) [Data 

set]. NOAA National Centers for 

Environmental Information. 

https://www.ncei.noaa.gov/archive/accessi

on/016963 

 

Abbreviated as American Samoa (2016) 

Ruiz-Moreno, D., Willis, B., Page, A., 

Weil, E., Cróquer, A., Vargas-Angel, B., 

Jordan-Garza, A., Jordán-Dahlgren, E., 

Raymundo, L., & Harvell, C. (2012a). 

Global coral disease prevalence associated 

United States Environmental Protection 

Agency (2016). Biological status 

assessment of coral reefs in Southern 

Puerto Rico supporting coral reef 

protection under the U.S. Clean Water Act. 
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with sea temperature anomalies and local 

factors. Diseases of Aquatic Organisms, 

100(3), 249–261. 

https://doi.org/10.3354/dao02488 

(Version 1) [Data set]. U.S. EPA Office of 

Research and Development (ORD) 

https://catalog.data.gov/dataset/2011-pr-

survey-data 

 

Abbreviated as Puerto Rico (CWA) 

van Woesik, R., & Burman, S. (2012). 

Coral bleaching, coral diseases, and 

protected areas in the Florida Keys (p. 23). 

The Nature Conservancy. 

 

 

 
Appendix Table 3. Full citations of additional sources used to determine MPA status of cited sources. 

Source MPA information source 

MPA 

information 

source type 

Bruckner (2010) Ecoengineering Caribbean Limited. 

(2007). Carbits National Park (Marine 

Component) Site Report, Dominica (No. 

11/2007; Eco Report, p. 318). 

Report 

Coehlo & Manfrino (2007) Clark, T. (2013). Little Cayman Island 

Dive Map [GIS layer]. Esri. 

Map/GIS 

layer 

Lamb et al. (2016) Great Barrier Reef Marine Park Authority. 

(2020). Great Barrier Reef Marine Park 

Zoning [GIS layer]. Esri. 

Map/GIS 

layer 

Lamb et al. (2015) Great Barrier Reef Marine Park Authority. 

(2020). Great Barrier Reef Marine Park 

Zoning [GIS layer]. Esri. 

Map/GIS 

layer 

 

 
Appendix Table 4. Full citations of sources excluded from the multiple comparison models (recalculated risk 

differences by MPA protection level or MPA age). 

Source 

Hein, M. Y., Lamb, J. B., Scott, C., & Willis, B. L. (2015). Assessing baseline levels of 

coral health in a newly established marine protected area in a global scuba diving 

hotspot. Marine Environmental Research, 103, 56–65. 

https://doi.org/10.1016/j.marenvres.2014.11.008 

Page, C. A., Baker, D. M., Harvell, C. D., Golbuu, Y., Raymundo, L., Neale, S. J., 

Rosell, K. B., Rypien, K. L., Andras, J. P., & Willis, B. L. (2009). Influence of marine 

reserves on coral disease prevalence. Diseases of Aquatic Organisms, 87(1–2), 135–

150. https://doi.org/10.3354/dao02112 

Raymundo, L. J., Halford, A. R., Maypa, A. P., & Kerr, A. M. (2009). Functionally 

diverse reef-fish communities ameliorate coral disease. Proceedings of the National 
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Academy of Sciences, 106(40), 17067–17070. 

https://doi.org/10.1073/pnas.0900365106 

 

 
Appendix Table 5. Full citations of sources identified as outliers and removed from the general prevalence 

dataset, by method. 

Studentized deleted residual method Confidence interval method 

Coral Reef Ecosystem Program, Pacific 

Islands Fisheries Science Center (2018). 

Belt transect surveys of coral populations 

and disease assessments in Hawaii, Maui, 

and Oahu from 2010-03-08 to 2011-11-08 

(NCEI Accession 0168912). (Version 1) 

[Data set]. NOAA National Centers for 

Environmental Information. 

https://accession.nodc.noaa.gov/0168912  

Coelho, V. R., & Manfrino, C. (2007). 

Coral community decline at a remote 

Caribbean island: Marine no-take reserves 

are not enough. Aquatic Conservation: 

Marine and Freshwater Ecosystems, 

17(7), 666–685. 

https://doi.org/10.1002/aqc.822  

Hawai’i Coral Disease database (2004–

2015). [Individual colony-level data of 

various surveys of Hawaiian coral reefs] 

[Unpublished data set]. NOAA National 

Centers for Environmental Information. 

https://www.ncei.noaa.gov/archive/accessi

on/0128219   

Coral Reef Ecosystem Program, Pacific 

Islands Fisheries Science Center (2018). 

Belt transect surveys of coral populations 

and disease assessments in Hawaii, Maui, 

and Oahu from 2010-03-08 to 2011-11-08 

(NCEI Accession 0168912). (Version 1) 

[Data set]. NOAA National Centers for 

Environmental Information. 

https://accession.nodc.noaa.gov/0168912  

Hein, M. Y., Lamb, J. B., Scott, C., & 

Willis, B. L. (2015). Assessing baseline 

levels of coral health in a newly 

established marine protected area in a 

global scuba diving hotspot. Marine 

Environmental Research, 103, 56–65. 

https://doi.org/10.1016/j.marenvres.2014.

11.008  

Hawai’i Coral Disease database (2004–

2015). [Individual colony-level data of 

various surveys of Hawaiian coral reefs] 

[Unpublished data set]. NOAA National 

Centers for Environmental Information. 

https://www.ncei.noaa.gov/archive/accessi

on/0128219   

Lamb, J. B., Wenger, A. S., Devlin, M. J., 

Ceccarelli, D. M., Williamson, D. H., & 

Willis, B. L. (2016). Reserves as tools for 

alleviating impacts of marine disease. 

Philosophical Transactions of the Royal 

Society B: Biological Sciences, 

371(1689). 

https://doi.org/10.1098/rstb.2015.0210 

Hein, M. Y., Lamb, J. B., Scott, C., & 

Willis, B. L. (2015). Assessing baseline 

levels of coral health in a newly 

established marine protected area in a 

global scuba diving hotspot. Marine 

Environmental Research, 103, 56–65. 

https://doi.org/10.1016/j.marenvres.2014.

11.008  

Ruiz-Moreno, D., Willis, B., Page, A., 

Weil, E., Cróquer, A., Vargas-Angel, B., 

Jordan-Garza, A., Jordán-Dahlgren, E., 

Lamb, J. B., Wenger, A. S., Devlin, M. J., 

Ceccarelli, D. M., Williamson, D. H., & 

Willis, B. L. (2016). Reserves as tools for 
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Raymundo, L., & Harvell, C. (2012). 

Global coral disease prevalence associated 

with sea temperature anomalies and local 

factors. Diseases of Aquatic Organisms, 

100(3), 249–261. 

https://doi.org/10.3354/dao02488 

alleviating impacts of marine disease. 

Philosophical Transactions of the Royal 

Society B: Biological Sciences, 

371(1689). 

https://doi.org/10.1098/rstb.2015.0210 

 Lamb, J. B., Williamson, D. H., Russ, G. 

R., & Willis, B. L. (2015). Protected areas 

mitigate diseases of reef-building corals 

by reducing damage from fishing. 

Ecology, 96(9), 2555–2567. 

https://doi.org/10.1890/14-1952.1 

 Ruiz-Moreno, D., Willis, B., Page, A., 

Weil, E., Cróquer, A., Vargas-Angel, B., 

Jordan-Garza, A., Jordán-Dahlgren, E., 

Raymundo, L., & Harvell, C. (2012). 

Global coral disease prevalence associated 

with sea temperature anomalies and local 

factors. Diseases of Aquatic Organisms, 

100(3), 249–261. 

https://doi.org/10.3354/dao02488 
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