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ABSTRACT 
 
 
 
REMOTE SENSING TECHNIQUES FOR SOIL MOISTURE AND AGRICULTURAL 
DROUGHT MONITORING 
 
Lingli Wang, Ph.D. 
 
George Mason University, 2008 
 
Dissertation Director: Dr. John J. Qu 

 
 

Drought is the most complex and least understood of all natural hazards, affecting 

more people than any other hazard. Soil moisture is a primary indicator for agricultural 

drought. This dissertation is aimed at evaluating and investigating soil moisture and 

drought monitoring using remote sensing techniques. 

Recent technological advances in remote sensing have shown that soil moisture can 

be measured by a variety of remote sensing techniques, each with its own strengths and 

weaknesses. This research is designed to combine the strengths of optical/infrared as well 

as microwave remote sensing approaches for soil moisture estimation. A soil moisture 

estimation algorithm at moderate resolution was developed based on the well known 

‘Universal Triangle’ relation by using MODIS land parameters as well as ground 

measured soil moisture. Though lower in spatial resolution, AMSR-E microwave 

measurements provides daily global soil moisture of the top soil layer, which are typically 

less affected by clouds, making them complementary to MODIS measurements over 

 



 

xi 
 

regions of clouds.   

Considering that the ‘Universal Triangle’ approach for soil moisture estimation is 

based on empirical relations which lack solid physical basis, a new physics based drought 

index, the Normalized Multi-band Drought Index (NMDI) was proposed for monitoring 

soil and vegetation moisture from space by using one near-infrared (NIR) and two 

shortwave infrared (SWIR) channels. Typical soil reflectance spectra and satellite 

acquired canopy reflectances are used to validate the usefulness of NMDI. Its ability for 

active fire detection has also been investigated using forest fires burning in southern 

Georgia, USA and southern Greece in 2007. Combining information from multiple NIR 

and SWIR channels makes NMDI a most promising indicator for drought monitoring and 

active fire detecting. 

Given the current technology, satellite remote sensing can only provide soil moisture 

measurements for the top soil profile, and these near-surface soil moisture must be related 

to the complete soil moisture profile in the unsaturated zone in order to be useful for 

hydrologic, climatic and agricultural studies. A new numerical method was presented to 

solve the governing equation for water transport in unsaturated soil by matching physical 

and numerical diffusion. By applying a new numerical scheme with which to discrete the 

kinematic wave equation on the space-time plane, this method shows the capability to 

simulate the physical diffusion of the diffusive wave with the numerical diffusion 

generated in the difference solution under certain conditions. Compared with other 

numerical methods with the first-order finite differences scheme, this method has 

enhanced the solution precision to the second order. An example application shows a 



 

xii 
 

good agreement with the observed data and suggests this new approach can be 

appropriate for soil moisture profile estimation. 

By combining the proposed soil moisture and drought estimation techniques, the 

daily soil moisture profile at high resolution can be gained, and is thus expected to be 

helpful not only in drought monitoring and active fire detecting, but also in agricultural 

applications and climate studies.
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CHAPTER ONE 

1. INTRODUCTION 

 

This dissertation develops soil moisture estimation algorithms, which can be used to 

estimate the spatial distribution and temporal variation of soil moisture content and 

drought with satellite remote sensing. The methodology is developed mainly for 

application to the optical/infrared (IR) measurements provided by current remote sensing 

platforms. 

By taking the advantage of the strengths of optical/IR, microwave and ground 

measurements, a new approach is suggested for estimating soil moisture to achieve 

higher accuracy and spatial resolution. A new index, the Normalized Multi-band Drought 

Index (NMDI), which combines information from multiple near infrared (NIR), and short 

wave infrared (SWIR) channels, is proposed for monitoring soil and vegetation moisture 

from space based on the sensitivity analyses of the impact of soil and leaf water content 

on the surface reflectance. Finally, the near-surface soil moisture is related to the 

complete soil moisture profile in the unsaturated zone by using numerical soil moisture 

models. 

1.1 Importance of soil moisture 

Drought is the most complex and least understood of all natural hazards, affecting 
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more people than any other hazard (Wilhite Ed., 2000a). Bryant (1991) ranked natural 

hazards based on various criteria, such as severity, duration, spatial extent, loss of life, 

economic loss, social effect, and long-term impact and found that drought ranks first 

among all natural hazards (Narasimhan, 2004). In spite of the economic and the social 

impact caused by drought, it is the least understood of all natural hazards due to the 

complex nature and varying effects of droughts on different economic and social sectors 

(Wilhite, 2000). The wide variety of sectors affected by drought, its diverse geographical 

and temporal distribution, and the demand placed on water supply by human-use systems 

make it difficult to develop a single definition of drought (Richard and Heim, 2002). 

After analyzing more than 150 definitions of drought, Wilhite and Glantz (1985) broadly 

grouped those definitions into four categories: meteorological, agricultural, hydrological 

and socio-economic drought.  

A number of different indices have been developed to quantify drought. Palmer 

Drought Severity Index (PDSI) (Palmer, 1965) and Standardized Precipitation Index (SPI) 

(McKee et al., 1993) are most widely used to assess and respond to drought. Most of the 

existing drought indices were based on precipitation and/or temperature, however, the 

amount of available soil moisture at the root zone is more critical for agricultural drought 

than the actual amount of precipitation deficit or excess (Narasimhan, 2004). 

Soil moisture in the top one to two meters of the Earth’s surface is one of the key 

variables in controlling the exchange of water and heat energy between land surface and 

atmosphere through evaporation and plant transpiration (Betts et al., 1996; Clark and 

Arritt, 1995). Compared to the total amount of water on the global scale, the volume of 
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soil moisture is small; nonetheless, it is of fundamental importance to many hydrological, 

biological and biogeochemical processes 

(http://www.ghcc.msfc.nasa.gov/landprocess/lp_home.html). As a result, soil moisture 

plays an important role in the development of weather patterns and the production of 

precipitation (Fennessey and Shukla, 1999). Accurate and reliable soil moisture estimates 

have important implications for drought monitoring. 

As a result of the heterogeneity of soil properties, topography, land cover, 

evapotranspiration and precipitation, soil moisture, however, is highly variable both 

spatially and temporally (Engman, 1991; Wood et al., 1992; Walker, 1999). Hence, the 

development of a reliable drought index for agriculture requires proper consideration of 

the spatial and temporal variability of soil and land use properties, as well as of root soil 

moisture development, which will certainly improve the ability to monitor drought on a 

much more precise scale (Narasimhan, 2004).  

1.2 Statement of problem 

In spite of its importance, widespread and/or continuous measurement of soil 

moisture is all but nonexistent 

(http://www.ghcc.msfc.nasa.gov/landprocess/lp_home.html). Direct observations of soil 

moisture are currently restricted to discrete measurements at specific locations, and such 

point-based measurements do not reveal large-scale soil moisture and are therefore 

inadequate to carry out regional and global studies 

(http://www.geotimes.org/may02/WebExtra0503.html). Satellite remote sensing offers a 
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means of measuring soil moisture across a wide area continuously over time (Engman, 

1990), while techniques in the microwave and optical/IR frequency regimes have 

attracted more attention (Chauhan, 2003). Microwave remote sensing technology has 

demonstrated a quantitative ability to retrieve soil moisture physically for most ranges of 

vegetation cover (Njoku et al., 2002). However, current microwave technology limits the 

spatial resolution of soil moisture data. Optical/IR techniques can provide fine spatial 

resolution for soil moisture estimation (Idso et al., 1975), but it is difficult to decouple 

signals from vegetation and soil. In addition, satellite remote sensing can only provide 

soil moisture measurements for the top few centimeters of the soil profile (Engman et al., 

1995), while the complete soil moisture profile in the unsaturated zone is more useful for 

hydrologic, climatic and agricultural studies (Jackson, 1980; Mancini et al., 1995; 

Newton et al., 1983).  

Therefore, to establish robust algorithms for soil moisture estimation, further efforts 

are needed to study the physical principles so as to identify the quantitative relationships 

between soil moisture content and remote sensing variables. The feasibility and capability 

of soil moisture retrieval from space need to be assessed in more details (Hao, 2006). 

1.3 Objectives and scopes 

The general objectives of this research are to present the potential of satellite 

optical/IR measurements as a diagnostic tool to assess soil moisture and drought status. 

Subsequently, we wish to develop new algorithms for making improved estimates of the 

spatial distribution and temporal variation of soil moisture and drought, by using satellite 
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optical and IR measurements. The specific objectives are proposed as follows:  

i) To estimate soil moisture by combining the strengths of multi-sensor and ground 

measurements to achieve higher accuracy and spatial resolution.  

ii) To investigate the potentials of using a combination of multiple NIR-SWIR 

spectral signatures to estimate soil moisture and vegetation moisture from space and to 

find the algorithm that will be best-suited for monitoring soil and vegetation moistures. 

iii) To retrieve soil moisture profile in the unsaturated zone by using numerical soil 

moisture models. 

1.4 Organization of Dissertation 

The dissertation consists of seven chapters. In order to better understand the study, 

the background and literature review are presented in the first three parts of the thesis. 

The next three parts give various works related to the objectives of the study and the last 

part concludes with summary and discussion of future directions.  

Chapter 1 gives the general introduction, including the background for 

understanding the importance of soil moisture for drought monitoring, limitations of 

current methods for estimating soil moisture, research objectives, major data sources and 

principal results of the study. 

Chapter 2 gives the literature review of drought definition and drought indices. The 

widely used Palmer Drought Severity Index and Standardized Precipitation Index will be 

explained in detail, as well as their limitations for drought monitoring. 

Chapter 3 introduces the physical principles of soil moisture estimation from space, 
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with focuses on optical/IR and microwave remote sensing. Soil moisture profile 

estimation techniques such as regression approach, hydrological models, data 

assimilation, and water transport model are discussed in Chapter 3 as well.  

A soil moisture estimation algorithm by linking MODIS land parameters with 

ground measured soil moisture is proposed in Chapter 4. The well known ‘Universal 

Triangle’ relation among vegetation, land surface temperature and soil moisture is 

presented in detail and two years of satellite measurements and ground observed data are 

employed to determine this relation. The relation, in conjunction with satellite 

measurements, is then regressed backward to obtain soil moisture at moderate resolution. 

Chapter 5 develops a drought index by using measurements from multiple Solar 

Reflectance Bands (SRB). By combining information from multiple NIR, and SWIR 

channels, this newly designed drought index has enhanced the sensitivity to drought 

severity, and is well suited to estimate both soil and vegetation moisture from space. 

A new numerical method for solving the one-dimensional soil moisture profile 

model is presented in Chapter 6, which investigates the feasibility of soil moisture profile 

estimation from near-surface soil moisture observations. Instead of directly solving the 

governing diffusion wave equation, the equation is approximated by applying a new 

numerical scheme with which to discrete the kinematic wave equation on the space-time 

plane. This method not only shows the capability to simulate the physical diffusion of the 

diffusive wave, but also enhances the solution precision to the second order. 

Chapter 7 summarizes the results from the previous chapters and gives limitations, 

originalities, and discussions of future directions. 
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1.5 Major data sources 

The major datasets used in this thesis include MODIS L1A Geolocation and MODIS 

L1B Calibrated Radiance, MODIS daily surface reflectance, MODIS daily surface 

temperature, MODIS 8-day surface reflectance, MODIS active fire map, MODIS thermal 

anomalies, fires, and biomass burning product, soil moisture observations from Shandong 

province, P. R. China, land cover type and soil type data collected from the Chinese 

Academy of Science. Table 1.1 lists the primary datasets and sources. The usages of these 

data sets in the study are described in details as follows: 

1) MODIS Daily Surface Reflectance 

Terra MODIS daily surface reflectance datasets for three years (2003-2005) over 

Shandong province, P. R. China are used in chapter 4 for soil moisture estimation. 

2) Soil Moisture  

Soil moisture measurements at 137 stations over Shandong province, P. R. China are 

used in chapter 4 for soil moisture estimation. 

3) Land Cover Type 

Land cover type data collected from the Chinese Academy of Science are used in 

chapter 4 to investigate the relationships among vegetation index, land surface 

temperature, and soil moisture for various surface types. 

4) Soil Type  

Soil type data collected from the Chinese Academy of Science are used in chapter 4 

to investigate the relationships among vegetation index, land surface temperature, and 

soil moisture for various soil types. 
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5) MODIS 8-day surface reflectance  

MODIS 8-day 500 m surface reflectance data (MOD09A1) are used to validate the 

usefulness of the newly designed drought index for remote sensing of vegetation drought 

in Chapter 5. 

6) MODIS L1A Geolocation and MODIS L1B Calibrated Radiance 

Terra MODIS L1A geolocation and L1B calibrated radiance data are used in chapter 

5 for the estimation of water related indices.     

7) MODIS active fire map 

MODIS 250 m active fire data provided by the MODIS Rapid Response Team are 

used to evaluate the ability of the newly designed drought index for active fire detection 

in Chapter 5. 

8) MODIS thermal anomalies, fires, and biomass burning product 

MODIS 1 km fire products are used to evaluate the ability of the new drought index 

for active fire detection in Chapter 5. 

 
Table 1.1 Data and sources 

Data Data Source 

MODIS L1A Geolocation USGS EOS Data Gateway 

MODIS L1B Calibrated Radiance USGS EOS Data Gateway 

MODIS Daily Surface Reflectance USGS EOS Data Gateway 

MODIS 8-day surface reflectance USGS EOS Data Gateway 

MODIS active fire map MODIS Rapid Response Team 

MODIS fire product USGS EOS Data Gateway 

Land Cover Type Chinese Academy of Science 

Soil Type Chinese Academy of Science 

Soil Moisture Shandong Province, P. R. China 
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1.6 Principal results 

The principal results of this thesis include a semi-physical algorithm for estimating 

soil moisture by using MODIS optical/IR measurements and ground observations, a new 

drought index for monitoring both soil moisture and vegetation moisture from space, and 

a numerical method to relate the surface moisture to the layered soil profile. 

The feasibility of estimating soil moisture with optical/IR remote sensing is 

investigated based on the ‘Universal Triangle’ method, a semi-physical approach derived 

from the Soil-Vegetation-Atmosphere-Transfer (SVAT) model. Results show good 

agreement between algorithm derived soil moisture and ground measurements, 

suggesting good potential of using MODIS optical/IR measurements and ground 

observations for soil moisture estimation.  

A new index, the Normalized Multi-band Drought Index (NMDI), is proposed for 

monitoring soil and vegetation moisture from space based on the sensitivity analyses of 

the impact of soil and leaf water content on the surface reflectance. Typical soil 

reflectance spectra and satellite acquired canopy reflectances are used to validate the 

usefulness of NMDI for remotely sensing soil and vegetation moisture. Analysis revealed 

that by combining information from multiple NIR and SWIR channels, NMDI has 

enhanced the sensitivity to drought severity, and therefore, is a good indicator to estimate 

water content for both soil and vegetations. NMDI also demonstrates high performance in 

wildfires detection. 

Finally, the satellite based near-surface soil moisture is related to the complete soil 

moisture profile in the unsaturated zone by using a new numerical soil moisture model.
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CHAPTER TWO 

2. LITERATURE REVIEW: DROUGHT AND DROUGHT INDICES 

 

2.1 Drought definition 

Drought is a recurring phenomenon that has plagued civilization throughout history. 

It affects natural habitats, ecosystems, and many economic and social sectors, from the 

foundation of civilization—agriculture—to transportation, urban water supply, and the 

modern complex industries (Richard and Heim, 2002). Drought is the most complex and 

least understood of all natural hazards, affecting more people than any other hazard 

(Wilhite, 2000). Bryant (1991) ranked natural hazards based on various criteria, such as 

severity, duration, spatial extent, loss of life, economic loss, social effect, and long-term 

impact and found that drought ranks first among all natural hazards (Narasimhan, 2004). 

Compared to other natural hazards like flood and hurricanes that develop quickly and last 

for a short time, drought is a creeping phenomenon that accumulates over a period of 

time across a vast area, and the effect lingers for years even after the end of drought 

(Tannehill, 1947). Hence, the loss of life, economic impact, and effects on society are 

spread over a long period of time, which makes drought the worst among all natural 

hazards.  

In spite of the economic and the social impact caused by drought, it is the least 

understood of all natural hazards due to the complex nature and varying effects of 
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droughts on different economic and social sectors (Wilhite, 2000). The wide variety of 

sectors affected by drought, its diverse geographical and temporal distribution, and the 

demand placed on water supply by human-use systems make it difficult to develop a 

single definition of drought (Richard and Heim, 2002). In Drought and Its Causes and 

Effects, Tannehill (1947) wrote: "We have no good definition of drought. We may say 

truthfully that we scarcely know a drought when we see one…The first rainless day in a 

spell of fine weather contributes as much to the drought as the last, but no one knows 

how serious it will be until the last dry day is gone and the rains have come again... we 

are not sure about it until the crops have withered and died."  

The difficulty of recognizing the onset or end of a drought is compounded by the 

lack of any clear definition of drought. Drought can be defined by various factors, such as 

rainfall amounts, vegetation conditions, agricultural productivity, soil moisture, levels in 

reservoirs and stream flow, or economic impacts. In the most basic terms, a drought is 

simply a significant deficit in moisture availability due to lower than normal rainfall 

(http://www.ncdc.noaa.gov/paleo/drought/drght_what.html).  

After analyzing more than 150 definitions of drought, Wilhite and Glantz (1985) 

broadly grouped those definitions under four categories: meteorological, agricultural, 

hydrological and socio-economic drought.  

• Meteorological drought: A period of prolonged dry weather condition due to 

precipitation departure. 

• Agricultural drought: Agricultural impacts caused due to short-term precipitation 

shortages, temperature anomaly that causes increased evapotranspiration and soil water 
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deficits that could adversely affect crop production. 

• Hydrological drought: Effect of precipitation shortfall on surface or subsurface 

water sources like rivers, reservoirs and groundwater. 

• Socioeconomic drought: The socio economic effect of meteorological, agricultural 

and hydrologic drought associated with supply and demand of the society. 

2.2 Drought indices 

Based on the defined drought criteria, the intensity and duration of drought, a 

number of different indices have been developed to quantify drought, each with its own 

strengths and weaknesses. Drought indices integrate various hydrological and 

meteorological parameters like rainfall, temperature, evapotranspiration, runoff and other 

water supply indicators into a single number and gives a comprehensive picture for 

decision-making (Narasimhan and Srinivasan, 2005). Drought conditions are monitored 

constantly using these indices to provide current information on drought-impacted 

regions (http://www.ncdc.noaa.gov/paleo/drought/drght_what.html). Among various 

drought indices, Palmer Drought Severity Index (PDSI)  (Palmer, 1965) and the 

Standardized Precipitation Index (SPI) (McKee et al., 1993) have been most commonly 

used for agricultural drought monitoring and forecasting. 

2.2.1 Palmer Drought Severity Index (PDSI) 

The Palmer Drought Severity Index (PDSI) was developed by Palmer in 1965 to 

measure the departure of the moisture supply (Palmer, 1965). Palmer based his index on 



 

13 
 

the supply-and-demand concept of the water balance equation, incorporated antecedent 

precipitation, moisture supply, and moisture demand. 

PDSI is a meteorological drought index formulated to monitor both abnormally dry 

and abnormally wet weather conditions. PDSI has gained the widest acceptance because 

the index is based on a simple lumped parameter water balance model. The PDSI is 

calculated based on precipitation and temperature data, as well as the local available 

water content of the soil. From the inputs, all the basic terms of the water balance 

equation can be determined, including evapotranspiration, soil recharge, runoff, and 

moisture loss from the surface layer. 

Despite the widespread acceptance of PDSI, various limitations have been observed 

by different studies (Akinremi and McGinn, 1996; Alley, 1984; Guttman, 1998; 

Narasimhan, 2004) including: 

• Large spatial resolution of model parameters. The model doesn’t consider the 

spatial variability of parameters like land use/land cover, and soil properties and assumes 

that they are uniform over the entire climatic zone encompassing several thousand 

squares. However, land use/land cover and soil properties are spatially highly variable in 

reality. 

• Poorest performing of potential evapotranspiration calculation. In PDSI, potential 

evapotranspiration is calculated using Thornthwaite’s method, which estimates 

evapotranspiration based on an empirical relationship between evapotranspiration and 

temperature (Thornthwaite, 1948). However, studies by Jensen et al. (1990) concluded 

that the poorest performing method overall was the Thornthwaite equation after they 
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evaluated and ranked different methods of estimating evapotranspiration under various 

climatic conditions. 

• Moreover, the water balance model used by Palmer (1965) is a two-layer lumped 

parameter model. The two soil layers within the water balance computations are 

simplified and may not be accurately representative of a location.  

2.2.2 Standardized Precipitation Index (SPI) 

Similar to PDSI, SPI (McKee et al., 1993) is primarily a meteorological drought 

index. McKee et al. developed the SPI in 1993 based on the understanding that a deficit 

of precipitation has different impacts on groundwater, reservoir storage, soil moisture, 

snowpack, and stream flow. A key feature of the SPI is the flexibility to measure drought 

at different time scales. These time scales reflect the impact of drought on the availability 

of the different water resources. McKee et al. (1993) originally calculated the SPI for 3–, 

6–, 12–, 24–, and 48–month time scales. The SPI calculation for any location is based on 

the long-term precipitation record for a desired period. This long-term record is first fitted 

to a probability distribution, which is then transformed into a normal distribution 

(Edwards and McKee, 1997) and gives the value of the SPI for the time scale used.  

Unlike PDSI, SPI takes into account the stochastic nature of the drought and is 

therefore a good measure of short- and long-term meteorological drought. However, SPI 

does not account for the effect of soil, land use characteristic, crop growth, and 

temperature anomalies that are critical for agricultural drought monitoring as well. 

Moreover, the useable precipitation ultimately available for crop growth depends on the 

available soil moisture at the root zone rather than total rainfall itself. Hence, a drought 
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index based on soil moisture conditions would be a better indicator of agricultural 

drought (Narasimhan, 2004).  

2.3 Chapter summary 

This chapter has reviewed the drought definition and drought indices along with the 

limitations of the two mostly used indices PDSI and SPI. It has been found that most of 

the existing drought indices were solely based on precipitation and/or temperature which 

are useful for monitoring meteorological drought. The amount of available soil moisture 

at the root zone, however, is a more critical factor for agricultural drought than the actual 

amount of precipitation deficit or excess. Further the indices, such as PDSI and SPI, are 

based on a lumped parameter model that assumes a uniform soil property, precipitation 

and temperature for the entire climatic division.  

Hence, the development of a reliable index for agriculture drought requires accurate 

and reliable estimates of soil moisture with proper consideration of the spatial and 

temporal variability of soil and land use properties, as well as of soil moisture condition 

and root development, which will certainly improve the ability to monitor agriculture 

drought on a much more precise scale. Recent technological advances in satellite remote 

sensing offer a means of a more effective drought monitoring system at a higher spatial 

and temporal resolution.  
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CHAPTER THREE 

3. LITERATURE REVIEW: SOIL MOISTURE ESTIMATION 

 

Soil moisture is the water that is held in the spaces between soil particles. Surface 

soil moisture is the water that is in the upper 10 cm of soil, whereas root zone soil 

moisture is the water that is available to plants, which is generally considered to be in the 

upper 200 cm of soil (http://www.ghcc.msfc.nasa.gov/landprocess/lp_home.html). Soil 

moisture content can be expressed gravimetrically or volumetrically, i.e.,  

%100*
solid

water
g M

M
=θ ,                             (3.1) 

%100*
solid

water
v V

V
=θ ,                              (3.2) 

where θg and θv are the gravimetric and volumetric soil moisture content respectively, 

Mwater and Msolid are mass of water and solid materials in soil respectively, and Vwater and 

Vsolid are volume of water and solid materials in soil respectively. 

Soil moisture in the top one to two meters of the Earth’s surface is one of the key 

variables in controlling the exchange of water and heat energy between land surface and 

atmosphere through evaporation and plant transpiration (Betts et al., 1996; Clark and 

Arritt, 1995). Compared to the total amount of water on the global scale, the volume of 

soil moisture is small; nonetheless, it is of fundamental importance to many hydrological, 

biological and biogeochemical processes 
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(http://www.ghcc.msfc.nasa.gov/landprocess/lp_home.html). As a result, soil moisture 

plays an important role in the development of weather patterns and the production of 

precipitation (Fennessey and Shukla, 1999). 

In spite of its importance, widespread and/or continuous measurement of soil 

moisture is all but nonexistent 

(http://www.ghcc.msfc.nasa.gov/landprocess/lp_home.html). The lack of a convincing 

approach of global measurement of soil moisture is a serious problem (National Research 

Council, 1992). Direct observations of soil moisture are currently restricted to discrete 

measurements at specific locations, such as those made with the U.S. Department of 

Agriculture Soil Climate Analysis Network. But such point-based measurements do not 

reveal large-scale soil moisture and are therefore inadequate to carry out regional and 

global studies (http://www.geotimes.org/may02/WebExtra0503.html). Clearly, a need 

exists for continuous measurements of soil moisture with global coverage. 

Satellite remote sensing offers a means of measuring soil moisture across wide areas 

continuously over time instead of at discrete point locations that are inherent with ground 

measurements. The moisture content change in soil and vegetation can leave significant 

signatures in remote sensing measurements. Thus, inversion of remote sensing 

measurements can retrieve the moisture content parameters of soil and vegetation.  

3.1 Remote sensing of near-surface soil moisture 

Research in soil moisture remote sensing began in the mid 1970's shortly after the 

surge in satellite development (Barton, 1978; Eagleman and Lin, 1976; Idso et al., 1975; 
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Njoku and Kong, 1977; Schmugge, et al., 1977). A number of techniques that span the 

whole electromagnetic spectrum have been used to sense soil moisture. Numerous 

researches have shown that near-surface soil moisture content can be measured by visible 

and thermal infra-red remote sensing, as well as active and passive microwave remote 

sensing techniques. The main difference between these four techniques is the wavelength 

region of the electromagnetic spectrum that is used by the sensor, and the source of the 

electromagnetic energy (Walker, 1999). Table 3.1 summarizes the relative merits of the 

different remote sensing techniques.  

 

Table 3.1 Summary of remote sensing techniques for measurement of near-surface soil moisture content 

(Engman, 1991; Walker, 1999). 

 Property Observed Advantage Limitations Noise Sources 

Visible Soil albedo 
Index of refraction Lots of data Many noise sources Numerous 

Thermal 
Infrared Surface temperature 

High resolution 
Large swath 
coverage frequency
Physical 
well understood 

Cloud cover 
limits frequency 
of coverage 

Meteorological 
conditions 
Topography 
Vegetation cover 

Active 
Microwave 

Backscatter coefficient 
Dielectric properties 

Low atmospheric 
noise 
High resolution 

Limited swath 
width 
Calibration of SAR 

Roughness 
Surface slope 
Vegetation cover 

Passive 
Microwave 

Brightness temperature 
Dielectric properties 
Soil temperature 

Low atmospheric 
noise 
Moderate 
vegetation 
penetration 

Low resolution 
Man made radiation 
limits operating range 

Roughness 
Surface slope 
Vegetation cover 

 

Among abovementioned four techniques, estimating soil moisture by passive 

microwave and optical/IR remote sensing have attracted more attention (Chauhan, 2003). 

Following sections present overviews of the current state of near-surface soil moisture 



 

19 
 

measurement from passive microwave and optical/IR remote sensing observations. 

3.1.1 Passive microwave remote sensing 

Microwave remote sensing measures the electromagnetic radiation in the microwave 

region of the electromagnetic spectrum, with wavelengths greater than about 5 cm being 

particularly effective, as they have fewer problems with the atmosphere and vegetation, 

sense a deeper soil layer, and maximize soil moisture sensitivity (Schmugge, 1985; 

Jackson et al., 1996). 

The fundamental basis of microwave remote sensing of soil moisture is the large 

contrast between the dielectric properties of liquid water (~ 80) and dry soil (< 4). As the 

moisture increases, the dielectric constant of the soil-water mixture increases and this 

change is detectable by microwave sensors (Njoku and Kong, 1977; Dobson et al., 1985). 

Current algorithms of soil moisture estimation using microwave measurements are 

primarily based on the emissivity of land surface (Hao, 2006). The emission of 

microwave energy is proportional to the product of the surface temperature and the 

emissivity, which is commonly referred to as the microwave brightness temperature 

(http://weather.msfc.nasa.gov/surface_hydrology/surface_hydrology_inverse_model.html

). According to the two-layer model proposed by Peake (1959), the surface scattering 

albedo Wq is composed of the diffused component Wq
diff and the specular component 

Wq
spec (Chauhan et al., 1999). Microwave brightness temperature Tq can be computed in 

the form 

)](1[ spec
q

diff
qq WWTT +−= ,                       (3.3) 
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where T is physical temperature of the surface, q represents the polarization direction, 

either vertical polarization or horizontal polarization. 

The specular albedo for a vegetated rough surface is expressed as 

          
θτ 222

0 cos422 sk
q

spec
q eeRW q −−= ,                   (3.4) 

where τq, k0, s, θ are vegetation optical depth, free-space vegetation constant, surface root 

mean square (RMS) height, and view angle, respectively, and 
2

qR
 is the Fresnel 

reflectivity of flat surface.  

The diffused albedo from a vegetated rough surface is contributed both by the 

vegetation and the rough surface. It can be expressed as sum of the vegetation and rough 

surface albedos. For a vegetated surface, the model is simplified by assuming that the 

vegetation scattering is weak, mathematically, this assumption means the diffused 

scattering albedo of the vegetation canopy to be zero. For a non-vegetated surface, it is 

assumed that the diffused albedo from a rough surface is negligibly small. Therefore, the 

brightness temperature of a vegetated and/or a rough surface is written as 

]1[]1[
222

0 cos422 θτ sk
q

spec
qq eeRTWTT q −−−=−=         (3.5). 

For soil moisture estimation using both horizontal and vertical polarizations, 

equation (3.5) can be rewritten as 

  

)(2
2

hve
R
R

TT
TT

v

h

v

h ττ −=
−
−                           (3.6) 

The subscripts h and v refer to horizontal and vertical polarization, respectively. 

When the viewing angle is less than 35°, it is reasonable to assume that 0≈− vh ττ  



 

21 
 

. Under this assumption, equation (3.6) can be further simplified to  

2

v

h

v

h

R
R

TT
TT

=
−
−                          (3.7). 

For dual polarization approaches, once the surface temperature T and the brightness 

temperatures for vertical and horizontal polarization are known, 2/ vh RR  can be 

determined. Physically, the reflection coefficients Rh and Rv are expressed as (Chauhan et 

al., 1999). 

θεθ
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=

g

g
hR               (3.8) 

and 
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2
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+−
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=

gg

gg
vR ,                (3.9) 

where εg is the real part of soil dielectric constant. εg can be determined from equations 

(3.8) and (3.9). By applying the empirical relation between dielectric constant εg and 

volumetric soil moisture content θv, the volumetric soil moisture content θv can be 

estimated quantitatively (Hallikainen et al., 1985; Hao, 2006).  

Microwave retrieval of soil moisture has solid physical basis, and it has the potential 

to provide a direct measure of soil moisture. It also has the advantage of all-weather 

observations and better vegetation especially at the lower frequencies such as L bands 

(Njoku, 1999; Njoku et al., 2002). However, there are some reasons why microwave 

techniques have not been applied for the global estimation of soil moisture.  

First, the spatial resolution of passive microwave sensors from space is poor, which 
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is usually in decades of kilometers. Present microwave sensor technology is not able to 

provide high-resolution data. In fact, the resolution available for passive microwave 

remote sensing from space has improved very little from its beginnings with the launch of 

the Electronically Scanned Microwave Radiometer in 1972. 

Further, the available wavelengths from satellites do not provide adequate soil 

moisture sensitivity for all types and levels of vegetation cover. Current algorithms are 

mainly valid for weakly vegetated regions and relatively flat surface. Lower frequencies 

in the 1 to 10 GHz range (L- to X-Band) are recognized to be of the greatest utility in 

measuring soil moisture content since they provide adequate sensitivity to soil moisture 

for most ranges of vegetation cover (Njoku et al., 2002). However, long wavelengths 

require large antennas in orbit, which amounts to a challenge for engineering within 

operational cost constraints (Zhan et al., 2002; Crosson et al., 2005). 

In addition, operational microwave technologies from remote platforms have 

wavelengths in the range of a few centimeters to a few decimeters. Due to these limited 

wavelengths, microwave techniques can only provide estimates of the near-surface soil 

moisture content, i.e., the upper few centimeters of the soil profile (Engman and Chauhan, 

1995; Njoku and Entekhabi, 1996; Jackson, 1997).  

In general, the limitation of microwave methods is that they cannot be used to 

estimate soil moisture at fine resolution in the root zone under lush green vegetation, such 

as in agriculture or in wetlands and other environmentally sensitive zones. 

3.1.2 Optical/IR remote sensing 

Remote sensing of soil moisture content using the optical/IR spectrum with 
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wavelengths between 0.4 and 2.5 µm measures the reflected radiation of the sun from the 

Earth’s surface, known as albedo (Sadeghi et al., 1984). Soil albedo is defined as the ratio 

of reflected to incoming radiation (Idso et al., 1975), and has long been recognized as 

being influenced by soil moisture along with numerous other factors (Ångström, 1925). 

There are some physical models to link soil biophysical and geophysical parameters 

with sensor measurements in optical/IR region. Inversion and sensitivity analysis of these 

models provide physical basis for soil moisture estimation (Hao, 2006). The SVAT model 

and the ‘Universal Triangle’ method have been most widely used. 

Vegetation and land surface temperature have a complicated dependence on soil 

moisture. Careful analyses of data by Carlson et al. (1994) and Gillies et al. (1997) 

showed that there is a unique relationship sometimes referred to as the ‘Universal 

Triangle’ among soil moisture θ, the Normalized Difference Vegetation Index (NDVI), 

and the Land Surface Temperature (LST) for a given region. The results were later 

confirmed by theoretical studies using the SVAT model, which was first named by Gillies 

and Carlson (1995) and designed to describe the basic evaporation processes at the 

surface, together with the water partitioning between vegetation transpiration, drainage, 

surface runoff and soil moisture variations. More details of the ‘Universal Triangle’ 

method will be given in Chapter 4. 

Carlson et al. analyzed NDVI and fractional vegetation cover in details and claimed 

the triangle relation is valid for a wide range of surface types (Carlson and Ripley, 1997). 

The relation between fractional vegetation cover and scaled NDVI, however, is very 

complicated. The triangle approach is a simplification based on empirical relations 
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between NDVI and fractional vegetation cover, and therefore it is a semi-physical method 

(Hao, 2006). 

In addition, the relation between soil moisture content and optical/IR measurements 

is quite complex since soil reflectance is also influenced by organic matter, soil texture, 

surface roughness, angle of incidence, and plant cover and color (Engman, 1991; de 

Troch et al., 1996), causing a wide variation in albedo of different soil types even when 

dry (Sadeghi et al., 1984). These complicating factors, as well as the fact that the 

reflected solar energy responds to only the top few millimeters of the soil profile (Idso et 

al., 1975), limit the usefulness of solar reflectance measurements for soil moisture 

content determination (Walker, 1999). 

Since radiative transfer model is all but nonexistent to simulate reflectance with soil 

parameters so far, ‘Universal Triangle’ method is still the primary approach for soil 

moisture estimation with optical/IR measurements. 

3.1.3 Combining microwave and optical/IR remote sensing 

Microwave measurement is the current primary approach for soil moisture 

measurement estimation from space, due to the limited penetration depth of waves in 

optical/IR region. Chauhan (2003) proposed a synergistic approach to estimate soil 

moisture content at higher spatial resolution by combining microwave and optical/IR 

measurements. The soil moisture estimation algorithm consists of two steps. Step one 

involves soil moisture estimation at microwave resolution using microwave brightness 

temperature and aggregated LST. The theoretical basis for measuring soil moisture in 

step one is based on the large contrast between the dielectric properties of water and dry 
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soil, which has been described in section 3.1.1. Step two deals with improving the 

resolution of soil moisture estimated in the first step by incorporating non-aggregated 

km-scale LST, NDVI, and albedo measurements. The second step is based on the 

‘Universal Triangle’ relationship among soil moisture, NDVI, temperature, and albedo. 

Using the microwave derived soil moisture and optical/IR derived NDVI, temperature 

and albedo, a soil moisture product at high resolution can be produced. Both steps are 

based on well known physics. 

However, the low spatial resolution of microwave measurements, as well as surface 

heterogeneity makes it difficult to derive robust relationships between optical/IR 

measurements and soil moisture estimated from microwave remote sensing (Hao, 2006). 

3.2 Soil moisture profile estimation 

Given the current technology, satellite remote sensing can only provide soil moisture 

measurements for the top few centimeters of the soil profile. Since these upper few 

centimeters of the soil are the most exposed to the atmosphere, their moisture varies 

rapidly in response to rainfall and evaporation (Jackson, 1993). These observations of 

near-surface soil moisture must be related to the complete soil moisture profile in the 

unsaturated zone (Walker, 1999), in order to be more useful for agricultural, hydrologic 

and climatic studies. Lots of attempts have been made to extrapolate these near-surface 

soil moisture observations to estimate the soil moisture content over the entire soil profile 

(top one to two meters of the Earth’s surface). This section reviews the approaches that 

have been made for estimation of the soil moisture profile from observations of 
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near-surface soil moisture content, including regression approach, hydrological models, 

data assimilation by combining remotely sensed data with hydrologic models (Kostov 

and Jackson, 1993), and water transport model in unsaturated soil.  

3.2.1 Regression approach 

Developing a regression equation is the simplest approach to estimate the soil 

moisture profile from near-surface measurements. The basis for using simple regression 

relationships to predict the soil moisture profile from near-surface measurements under 

some conditions, is that the laws of physics link all layers of the soil together (Kostov and 

Jackson, 1993).  

However, most of the studies have demonstrated that for a given thickness of 

near-surface layer, the correlation of soil moisture contents between two soil layers 

decreased as the profile depth increased, and that for a given profile depth the correlation 

increased as the near-surface layer thickness increased, suggesting that the profile depth 

over which useful soil moisture information can be determined from near-surface soil 

moisture measurements using linear regression is shallow. In addition, such an approach 

is usually based on data for typical soil and land use conditions, and generally cannot be 

extrapolated from one location to another (Ragab, 1995). 

3.2.2 Hydrological models 

Recent developments in using hydrologic models to estimate soil moisture profiles 

provide an alternative to soil moisture observations in the field (Schmugge et al., 1980). 

The principal advantage of hydrologic models is that they can provide timely information 
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on the spatial soil moisture distribution without the necessity of field visits (Walker, 

1999). 

A limitation of many existing hydrologic models is their emphasis on runoff 

estimation (Wood et al., 1992; Ottle´ and Vidal-Madjar 1994) at the expense of a realistic 

representation of the soil moisture profile. For example, the NOAH model used in Land 

Data Assimilation Scheme, includes two soil layers: a 10 cm thick surface layer and a 190 

cm thick root zone layer (Ek et al., 2003). These two soil layers are conceptual based and 

may not well represent the real water transportation in the soil. Another general 

disadvantage of hydrologic models is that even though they have been verified on basin 

scales with discharge data at various time scales, the estimated soil moisture in the 

various layers has not been verified against measured soil moisture data (Georgakakos 

and Baumer, 1996). 

3.2.3 Data assimilation 

As one of the key advances in recent years, data assimilation has received increasing 

attention given its ability to retrieve the soil moisture profile by assimilating near-surface 

soil moisture measurements in a soil model. The soil model expresses how the surface 

moisture and the deeper layer moisture are related 

(http://cee.mit.edu/index.pl?id=3333&isa=Category&op=show). Remote sensing 

observations can provide spatial and temporal information on soil moisture content, 

which can be used as input for the model, as independent feedback, or to keep the 

simulation on track (Kostov and Jackson, 1993; Walker, 1999). The surface measurement 

will allow the model to better predict the soil moisture down through the root zone, which 
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is where plants draw up moisture and transpire 

(http://cee.mit.edu/index.pl?id=3333&isa=Category&op=show). The statistical 

assimilation techniques such as the Extended Kalman Filter (EKF), through their ability 

to modify directly the soil moisture estimates of deeper soil layers, show the most 

promise in this application. EKF updates the soil moisture profile based on the relative 

magnitudes of the co-variances of the observations and the model profile estimates.  

Despite the advantages of data assimilation, the incomplete knowledge of soil model 

physics and the limitation of assimilation technique itself restrict the use of data 

assimilation approach. Most of the hydrological models developed and evaluated for 

modeling soil moisture content have been for bare soils. Furthermore, in most hydrologic 

models, the soil moisture component is an intermediary component within the water 

balance equation, and has not been verified against measured soil moisture data (Kite and 

Pietroniro, 1996). Recent studies by Walker et al. (2001) indicated that soil moisture 

profile estimation with the EKF assimilation scheme is only as good as the model 

representation of the dominant soil physical processes and its calibration. In addition, the 

assimilation is only useful for correcting error as a result of errors in initial conditions 

and/or atmospheric forcing data and not as a result of error in the physics of the soil 

moisture model. 

3.2.4 Water transport model 

Vertical water infiltration in layered soil profiles is usually modelled using the 

nonlinear partial differential Richards Equation (Parlange et al., 1972, 1980; Sanders et 

al., 1988), which was derived by linking the continuity equation and Darcy’s Law. 
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Richards Equation describes the changes of moisture content in space and time due to 

vertical flows. Procedures for solving unsaturated flow problems very often require the 

use of either analytical or numerical techniques.  

Analytical solutions have received considerable attention because they are very 

useful for assessing the accuracy of numerical models and provide insight into the physics 

of flow phenomena (Si and Kachanoski, 2000). Despite the success of analytical 

solutions, they usually provide answers for a simplified class of problems, while 

problems of a more general type are handled with numerical solutions through attendant 

discretization of the solution domain. 

Numerical simulation of the Richards Equation has been the focus of considerable 

research (Hills et al., 1989; Celia et al., 1990; Pan and Wierenga, 1995). The solutions to 

the governing differential equations for water transport in unsaturated soil are normally 

obtained by using finite difference (FD) or finite element (FE) calculation schemes (Van 

Genuchten, 1982). Often, explicit FD models become numerically unstable and give large 

numerical errors because of the strong nonlinearity inherent in the equation. The 

numerically more involved FE and implicit FD models are numerically stable and 

accurate if appropriate values of the time and depth increments are chosen. However, 

criteria for selecting the correct values of the time and depth increments, are poorly 

understood and often not available. In addition, the FE and implicit FD models are 

relatively complicated to program and to solve (Moldrup et al., 1992).  
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3.3 Chapter summary 

This chapter has reviewed the commonly used methods for measuring the 

near-surface soil moisture content from satellite remote sensing techniques, along with 

approaches to estimate the entire soil profile from near-surface soil moisture 

observations. 

There are a fairly wide variety of approaches, which have been used to retrieve soil 

moisture from satellite remote sensing. Most of the studies have demonstrated the 

considerable potential of microwave and optical/IR frequency regimes for soil moisture 

retrievals. Monitoring soil moisture from space, however, remains challenge. Microwave 

remote sensing has advantages for all-weather observations and solid physics, with the 

limitation of poor spatial resolution. Optical/IR remote sensing can provide 

measurements at relatively higher spatial resolution, while the physical relationships 

between optical/IR measurements and soil moisture have not been established. Moreover, 

only the moisture in the top few centimeters of soil can be detected by current satellite 

remote sensing techniques. 

The review of soil moisture profile estimation from near-surface soil moisture has 

shown that most previous studies have assimilated the near-surface soil moisture 

observations into a hydrologic model. As near-surface soil moisture observations become 

available, they are assimilated into the system to yield an updated estimate of the system 

states. Data assimilation has received increasing attention due to its ability to retrieve the 

soil moisture profiles. However, the incomplete knowledge of soil model physics and the 

limitation of assimilation technique itself restrict the use of data assimilation approach. 
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Therefore, to establish robust algorithms for estimating soil moisture at higher 

spatial and temporal resolution, further efforts are needed to study the physical principles 

so as to identify the quantitative relationships between soil moisture content and remote 

sensing variables. The feasibility and capability of soil moisture profile estimation from 

near-surface soil moisture also need to be assessed in more details (Hao, 2006). 
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CHAPTER FOUR 

4. SOIL MOISTURE ESTIMATION USING MULTI-SENSOR AND 

GROUND MEASUREMENTS 

 

Most of the studies have demonstrated the considerable potential of microwave and 

optical/IR frequency regimes for soil moisture retrievals, each with its own strengths and 

weaknesses. Chauhan (2003) proposed a synergistic approach to estimate soil moisture 

by combining the strengths of microwave and optical/IR measurements. However, the 

poor spatial resolution of microwave sensors, as well as the surface heterogeneity makes 

it difficult to establish robust relationships between optical/IR measurements and soil 

moisture estimated from microwave remote sensing (Hao, 2006). 

The present study is designed to produce a soil moisture estimation algorithm at 

moderate resolution by linking soil moisture measurements from multiple space-borne 

sensors (optical/IR and microwave), and ground stations based on the ‘Universal Triangle’ 

relation among soil moisture, vegetation cover and land surface temperature. 

4.1 Soil moisture estimation using MODIS and ground measurements 

The MODerate resolution Imaging Spectroradiometer (MODIS) is a key research 

instrument for the NASA Earth Observing System (EOS) mission (Barnes and 

Salomonson, 1993). The first MODIS instrument was launched onboard the EOS Terra 
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satellite in December 1999 and the second onboard the EOS Aqua satellite in May 2002 

(Barnes et al., 2002, 2003; http://modis.gsfc.nasa.gov). Because MODIS senses all the 

Earth’s surface in 36 spectral bands spanning the visible (VIS, 0.415 µm) to IR (14.235 

µm) spectrum at nadir spatial resolutions of 1 km, 500 m and 250 m, the MODIS remote 

sensing applications are of interest not only to land, ocean, and atmosphere researchers 

but to application, interdisciplinary and environmental scientists (Justice et al., 1998; Qu 

et al., 2001; Salomonson et al., 2002).  

In this section, MODIS 1 km NDVI and LST products will be combined with 

ground measurements to investigate the potential of soil moisture estimation at higher 

spatial and temporal resolution. 

4.1.1 Algorithm theory 

Vegetation and land surface temperature have a complicated dependence on soil 

moisture. An earlier description of the vegetation and atmosphere relationship is from the 

vegetation index/temperature trapezoid (Moran et al., 1994). Careful analyses of data by 

Carlson et al. (1994) and Gillies et al. (1997) showed that there is a unique relationship 

among soil moisture, vegetation cover, and surface temperature for a given region. The 

results were later confirmed by theoretical studies using the SVAT model, which was 

first named by Gillies and Carlson (1995).  

Figure 4.1 represents a schematic description of the relationship sometimes referred 

to as the ‘Universal Triangle’ (Zhan et al., 2002). The abscissa and the ordinate are scaled 

temperature and NDVI respectively such that: 
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where, T and NDVI are observed land surface temperature and NDVI, respectively, and 

the subscripts o and s stand for minimum and maximum values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1. ‘Universal Triangle’ Relation between soil moisture, temperature and NDVI 
 

The idea behind the triangle is that the vegetation radiometric temperature is always 

close to air temperature, but that the surface radiant temperature over bare soil can vary 

depending on the soil water content. This implies that the spatial variation in surface 

radiant temperature will be small (except for emission from underlying bare soil) over a 

full vegetation but will vary from warm to cold surface moisture availability goes from 

zero to one for bare soil (http://www.essc.psu.edu/~tnc/howto.html).  
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 θ = a00 + a10 NDVI* + a20 NDVI*2  
        + a01 T* + a02 T*2 

+ a11 NDVI* T* + a22 NDVI*2 T*2 
+ a12 NDVI* T*2 + a21 NDVI*2 T*

That the triangle does not exhibit a sharp vertex is due to the fact some emission of 

long wave radiation at full vegetation cover is able to penetrate the canopy and reach the 

radiometer. Thus, even when NDVI* = 1, the underlying dryness of the soil produces a 

spatial variation in surface radiant temperature which is manifested in the above figure as 

a lateral variation in the soil moisture isopleths. Because the lateral variation at NDVI* = 

1 is so much less than that at NDVI* = 0, the figure resembles a triangle, though perhaps 

it is more appropriately called a trapezoid. Eliminating the variation of soil thermal 

inertia (or conductivity and diffusivity) with soil water content will considerably sharpen 

the upper vertex of the triangle (http://www.essc.psu.edu/~tnc/howto.html). 

Carlson et al. (1994) found that the relationship between soil moisture θ, NDVI*, 

and T* can be expressed through a regression formula such as: 

)(*)(*

0 0j
ija ji

ni

i

nj

TNDVI∑∑
=

=

=

=

=θ                             (4.3) 

In terms of a second order polynomial, the above equation can be expanded as 

(Chauhan, 2003) 

 (4.4). 

 

 

Equations (4.1), (4.2) and (4.4) have been employed for the study presented in this 

section. 

The flowchart of the soil moisture estimation algorithm is given in Figure 4.2. The 
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regression relationships are identified by combining the ground measurements of soil 

moisture and MODIS scaled NDVI and LST. By applying these regression relationships 

to MODIS measurements, daily soil moisture estimates at MODIS resolution can be 

obtained. 

 

  

 

 

 

 

 

 
Figure 4.2. Schematic flow diagram for the soil moisture estimation algorithm 

 

This soil moisture estimation technique is later applied to a new set of MODIS 

NDVI and LST products. In-situ soil moisture is compared against the predictions. A 

statistic analysis has also been performed on the estimation procedure. Finally, the 

advantages and limitations of this approach are discussed. 

4.1.2 Study area and data sources  

The current study is conducted over Shandong Province, situated in the eastern part 

of P. R. China bounded by 34.3o-38.2oN latitudes and 114.7o-122.7oE longitudes. It has a 

total area of 156,000 km2, and 65% of its land is plains and low-lying land, while 35% is 
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mountainous or hilly land (http://www.cpirc.org.cn/en/30Province1999-shandong.htm). 

Shandong belongs to the warm temperate monsoon climate region with four distinct 

seasons, the mean annual temperature ranges from 11 to 14 degrees Celsius, and the 

mean annual precipitation ranges from 550 to 950 mm 

(http://www.out369.com/2005/main/english.asp?id=4). The bulk of this region is 

cropland along with other short vegetation in the agriculture fields.  

There are 137 reasonably distributed ground stations over Shandong Province 

(Figure 4.3), which collect soil samples to measure the soil water content gravimetrically 

at the top 10 cm, 20 cm, and 40 cm soil layers at 8 AM on the 6th, 16th, and 26th of each 

month since the year 2003. 

 

 

Figure 4.3. Map of the study area and the distribution of ground stations 

 

The local overpass time of the satellite Terra almost matches the observation time of 

ground measurements, so we used Terra MODIS data in this study. Three years 

(2003~2005) of Terra MODIS data and ground observed soil moisture over the study area 
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were acquired. MODIS data are daily surface reflectance (MOD09) to derive NDVI, and 

daily surface temperature (MOD11) at 1 km resolution. In order to investigate the 

dependency of the regression relations on land cover and soil types, data on land surface 

and soil types at 1 km resolution of the study area have been collected from the Chinese 

Academy of Science. The land cover includes 13 types and 110 subordinate types, and 

the soil data includes 57 types and 178 subordinate types. 

4.1.3 Algorithm construction and validation 

Two years of data (2003 and 2004) were used for algorithm calibration and one year 

of data (2005) for validation. A system of equations (4.4) was set up using ground 

observed soil moisture and MODIS scaled NDVI and LST for all the pixels matching the 

site of each ground station. The regression coefficients aij for each station were 

determined using the least square method. To check the accuracy of the regression 

coefficients, the MODIS scaled NDVI and LST were used in conjunction with calculated 

aij in equation (4.4) to compute soil moisture. The coefficients of determination, relative 

errors and standard deviation between the algorithm derived and the ground observed soil 

moisture were calculated (Table 4.1). 

For a total of 93 ground stations with valid data, the relative errors approach 0, and 

the standard errors are less than 0.05; the coefficients of determination for 55 stations are 

greater than 0.8, 71 stations greater than 0.7 and 82 stations greater than 0.6. The results 

demonstrated the feasibility of soil moisture estimation using equation (4.4). 
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Table 4.1 Statistics for algorithm derived soil moisture 

 R2 Relative Error (%) Standard Error  
>0.8 >0.7 >0.6 >0.5 <1*10-10 <0.05 

Number of Stations 55 71 82 90 93 93 
 

For practical use, we investigated the dependency of the regression relationships on 

land cover and soil types, and calibrated equation (4.4) for the major land cover and soil 

types in the study area. Grassland, Cropland, Wooded Grassland, Closed Shrub-Land and 

Urban and Built-up are the five main land covers, and Loam, Clay Loam and Sandy Clay 

Loam are the three main soil types for the study area. Table 4.2 lists the regression 

coefficients for two dominant land cover types: Grassland and Cropland. These land 

cover and soil types based regression relations, in conjunction with MODIS scaled NDVI 

and LST, were then regressed backward to obtain soil moisture. Coefficients of 

determination and p-values between the regression derived and the ground measured soil 

moisture show that regression relations are land cover and soil type dependent (Table 4.3). 

Considering the Cropland and Grassland, which account for more than 85% of the study 

area (1165 pixels against a total of 1360 pixels), the overall coefficients of determination 

are greater than 0.4, and the p-values are less than 0.02. The same results can be seen for 

the most dominant soil type, Loam, which accounts for a total of 767 pixels. In this sense, 

these regression relations can be applied to estimate the soil moisture over non-ground 

measurement areas based on land cover and soil type information. Thus the moderate 

resolution soil moisture maps can be generated over the study area. Figure 4.4 is the soil 

moisture map at 1 km resolution on 26 November, 2005. The white regions in the map 

are the areas where soil moisture is not computed because of corrupted data due to clouds. 
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Clearly, the 1 km image shows more detail in the soil moisture quantitative estimates and 

spatial pattern than the sparse ground measurements.  

 

Table 4.2 Regression coefficients for main land cover and soil types 

Land Cover 
Soil Type Grassland Cropland 

Regression 
Coefficient Loam Sandy Clay 

Loam 
Clay 
Loam Loam Sandy Clay 

Loam 
Clay 
Loam 

a00 0.3019 -2.868 0.2821 0.3513 0.3612 0.2133 
a10 -0.7071 7.639 -0.7888 -0.8727 -1.199 -0.4935 
a20 0.6581 -4.792 0.7275 0.7577 1.478 0.5112 
a01 0.0922 10.95 -0.4151 0.0482 -0.5267 0.2665 
a02 0.0660 -9.543 0.356 -0.0128 0.4068 0.0432 
a11 0.7794 -29.08 3.046 1.283 3.926 0.7354 
a22 0.8246 -17.20 2.350 0.8761 6.685 1.330 
a11 -0.9992 25.68 -2.547 -0.9416 -3.547 -1.359 
a12 -0.8351 19.22 -2.772 -1.409 -5.551 -1.006 

 

 
Table 4.3 Statistics for land cover and soil type oriented algorithms 

Land Cover Soil Type P-Value R2 Pixels 
Wooded Grassland Loam 0.0526 0.5488 49 

Sandy Clay Loam 0.3047 0.9556 11 
Clay Loam 0.1651 0.6340 29 

Closed Shrubland Loam 0.0440 0.9242 15 
Grassland Loam 3.40E-14 0.4248 412 

Sandy Clay Loam 0.0256 0.6746 35 
Clay Loam 0.0003 0.5295 95 

Cropland Loam 1.50E-09 0.4481 262 
Sandy Clay Loam 0.0040 0.6464 48 
Clay Loam 3.40E-12 0.4540 313 

Urban and Built-up Loam 0.0497 0.7036 29 
Sandy Clay Loam 0.0031 0.7443 35 
Clay Loam 0.2738 0.6153 27 

 



 

41 
 

 
 

Figure 4.4. Soil moisture map at 1 km resolution over Shandong Province of 26 November, 2005 
 

The ground observed soil moisture and MODIS scaled NDVI and LST for the year 

2005 were used to validate the regression algorithms. Table 4.4 shows the validation 

results of surface type dependent soil moisture estimation algorithms. The maximum 

standard error is less than 0.07, and the relative errors are around 10%.  

 

Table 4.4 Statistics for validation 

Land Cover Regression derived and measured soil moisture 
Percentage Relative Error (%) Standard Error Pixels 

Wooded Grassland   15.01 0.0585 43 
Closed Shrubland   -9.83 0.1454 3 

Grassland      -10.87 0.0497 230 
Cropland       -8.74 0.0481 289 

Urban and Built-up 11.41 0.0609 31 

 

Above results indicate that the soil moisture estimation approach using MODIS and 

ground measurements is feasible. 
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4.1.4 Discussion and conclusion 

There are still some limitations of this soil moisture estimation approach. The time 

difference between the ground measurements and the Terra overpass could impact on the 

results. In addition, the 10 cm depth layer observation does not actually correspond to the 

surface parameters. The estimation errors could also come from the fact that the point 

ground soil samples may not represent the 1 km footprints of MODIS observations. 

Moreover, for the cloudy worst case, it is difficult to derive soil moisture from MODIS 

land parameters, which operate in the Optical/IR bands. Fusion of soil moisture data from 

multiple sensors and ground stations may be a solution to this problem. 

Notwithstanding the limitations just mentioned, the primary conclusions of the 

present research are clear: (1) the core process to link ground measured soil moisture and 

MODIS land parameters is ‘Universal Triangle’ relation, which is reinforced by the 

application in this study; (2) the results suggest that soil moisture estimation by 

combining ground measurements and MODIS land parameters is feasible; (3) compared 

with the ground measurements, the soil moisture map at 1 km resolution generated by the 

regression algorithm provides more regional soil moisture details and spatial patterns 

(Wang et al., 2007a).  

4.2 Soil moisture estimation using AMSR-E products 

4.2.1 AMSR-E soil moisture products 

The Advanced Microwave Scanning Radiometer - Earth Observing System 

(AMSR-E) is a multichannel passive microwave radiometer launched aboard NASA's 
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Aqua Satellite on May 4, 2002. This conically scanning instrument measures brightness 

temperature at six frequencies, 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz, with vertical 

and horizontal polarizations at each frequency for a total of twelve channels. It achieves 

global swath coverage every two days or less, separately for ascending and descending 

passes, except for a small region near the poles. The mean footprint diameter ranges from 

60 km at 6.92 GHz to 5 km at 89 GHz. The AMSR-E land surface products of surface 

soil moisture, vegetation water content and surface temperature are available on a daily 

basis in 25 km Equal-Area-Scalable Earth grid with a global cylindrical, equal area 

projection true at 300N and 300S (http://www.ghcc.msfc.nasa.gov/AMSR/). 

The AMSR-E land surface parameter algorithm uses a simplified physically-based 

radiative transfer model to retrieve surface soil moisture (g/cm3), vegetation water 

content (kg/m2) and surface temperature (K) (Njoku, 1999). The retrieval algorithm uses 

the two lowest frequencies (6.9 and 10.7 GHz) since modeling surface roughness and 

vegetation scattering effects above 10 GHz becomes more complex and uncertain. These 

two frequencies also have better vegetation penetration although at the cost of decreased 

spatial resolution. Microwave retrievals are more reliable in regions of low vegetation 

since sensitivities to moisture and vegetation decrease for high vegetation levels (Njoku, 

1999). 

AMSR-E soil moisture products include daily global soil moisture of the top 2 cm 

soil layer with spatial resolution of 25 km. Figure 4.5 is AMSR-E soil moisture map 

projected to the study area described in section 4.1.2 on 16 November, 2005. 

Though lower in spatial resolution than MODIS optical bands, AMSR-E microwave 
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measurements are typically less affected by clouds, making them complementary to 

MODIS measurements over regions of clouds such as the white area in the Figure 4.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.5. AMSR-E soil moisture map over the study area on 16 November, 2005 

 

MODIS 1 km soil moisture products were aggregated to produce equivalent MODIS 

retrievals within the AMSR-E 25 km footprint. Since the AMSR-E observation has been 

shown to be area averaged measures over the sensor footprint, AMSR-E and aggregated 

MODIS soil moisture products are expected be highly correlated (Dasgupta and Qu, 

2006). This relationship was investigated using regression analysis. The relationship was 

reasonably assumed to be applicable at the MODIS resolution and was subsequently used 

to generate soil moisture data for the region of clouds where soil moisture is difficult to 

be derived from MODIS land parameters.  

Combining AMSR-E and MODIS measurements thus has the potential for ensuring 

the data continuity of high spatial resolution soil moisture products and could be 

beneficial for drought monitoring. 
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4.2.2 Relationship between AMSR-E and ground measurements 

To capture exactly the point observation of soil moisture at each ground station, an 

AMSR-E footprint covering the ground station was taken as the matching pixel. The 

ground measurements were compared with the corresponding AMSR-E data directly. 

Results show that these two datasets are poorly correlated (Table 4.5). For total 137 

ground stations, only 8 stations have the coefficients of determination greater than 0.7, 22 

stations greater than 0.6 and 42 stations greater than 0.5. Figure 4.6 are scatter plots of 

ground measurements and AMSR-E data for the best and worst case, respectively. Further 

work has been tried to improve the results, such as filtering out the data with heavy 

rainfall since rainfall is an important factor which affects the soil moisture value, and 

sorting the data by soil type or vegetation type. However, the improvement was not 

clearly visible. 

 
Table 4.5 Coefficients of determination between AMSR-E and ground measurements 

 R2 
>0.7 >0.6 >0.5 

Number of stations 8 22 42 
 

 

The poor correlation might be caused by different spatial scale between AMSR-E 

and ground measurements. Since soil moisture is highly variable spatially, high risk will 

be involved using the point soil samples to represent the 25 km footprints of AMSR-E 

observations. The difference of observation depth between the ground measurements and 
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the AMSR-E products could also impact the correlation. The soil moisture observations 

at the 10 cm depth layer do not correspond to AMSR-E top 2 to 3 cm soil layer products. 

 

 

 

Figure 4.6. Scatter plots of ground measurements and AMSR-E data (best case and worst case) 
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4.3 Chapter summary 

A soil moisture estimation algorithm by linking MODIS land parameters to ground 

measured soil moisture is developed in this Chapter. The algorithm is built on the basis of 

the well known ‘Universal Triangle’ relation among soil moisture, NDVI and LST. Good 

agreements between the algorithm derived and observed soil moisture suggested that soil 

moisture estimation by combining ground measurements and MODIS land parameters is 

feasible. Compared with the ground measurements, the soil moisture map at 1 km 

resolution generated by the algorithm provides more regional soil moisture details and 

spatial patterns (Wang et al., 2007a). AMSR-E soil moisture products were also 

described in this Chapter. Though lower in spatial resolution than MODIS optical bands, 

AMSR-E microwave measurements are typically less affected by clouds, making them 

complementary to MODIS measurements over regions of clouds. 

Notice that the ‘Universal Triangle’ approach used in this Chapter to estimate soil 

moisture at MODIS resolution is based on empirical relations between NDVI and 

fractional vegetation cover, which lacks solid physical basis. Physical retrieval of soil 

moisture from space is still a challenge, and therefore, requires further efforts to study the 

physical principles so as to identify the quantitative relationships between soil moisture 

content and remote sensing variables. 
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CHAPTER FIVE 

5. SOIL MOISTURE ESTIMATION USING MULTIPLE MODIS SRB 

MEASUREMENTS 

 

Water stress causes physiologic changes in vegetation and soil, which in turn causes 

variations in vegetation and soil spectral signatures. Based on the spectral variations of 

water absorption characteristic, several indices using the reflectances from near infrared 

(NIR) and shortwave infrared (SWIR) channels have been proposed for remote sensing of 

vegetation water content from space (Dasgupta, 2007), such as NDII, the Normalized 

Difference Infrared Index (Hardisky et al., 1983); LWCI, the Leaf Water Content Index 

(Hunt et al., 1987); WI, the Water Index (Penuelas et al., 1993, 1996, 1997); NDWI, the 

Normalized Difference Water Index (Gao, 1996); SRWI, the Simple Ratio Water Index 

(Zarco-Tejada and Ustin 2001; Zarco-Tejada et al., 2003), and GVWI, the Global 

Vegetation water Moisture Index (Ceccato et al., 2002).  

However, satellite-measured surface reflectances are mixed results of signals 

reflected from vegetation and bare soils. Reflectance of a canopy is strongly influenced 

by the soil reflectance especially when plant density is low or the canopy has not reached 

ground closure (Bach and Verhoef, 2003). Uncertainties arise in estimating vegetation 

water content using NIR-SWIR indices since they cannot completely remove the 

background soil effects (Gao, 1996). Soil reflectance in turn is influenced by soil 
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moisture along with numerous other factors such as mineral composition, organic matter, 

and soil texture (Asner, 1998; Ben-Dor et al., 1999). For a given location, the soil 

reflectance is primarily determined by the moisture of the soil surface since other factors 

change very slowly with time (Liu et al., 2002). Baret et al. (1993) found that mineral- 

and organic matter-related absorptions are stronger in the shorter visible wavelengths, 

while soil moisture significantly affects the NIR-SWIR spectral domain (Baret et al., 

1993; Lobell and Asner 2002), where the vegetation water indices operate. Since soil 

moisture is not only spatially but also temporally highly variable, it has to be considered 

in realistic simulations of land surface reflectances and optical vegetation water indices. 

In order to identify the quantitative relationships between soil moisture content and 

the canopy reflectance, and vegetation water indices, sensitivity analysis is performed 

using simulations with the coupled soil-leaf-canopy reflectance model. Based on the 

sensitivity analysis, a new index, the Normalized Multi-band Drought Index (NMDI), is 

proposed for monitoring soil and vegetation moisture from space. Typical soil reflectance 

spectra and satellite-acquired reflectances, are used to validate the usefulness of NMDI. 

Its ability for active forest fire detection has also been investigated. 

5.1 Sensitivity studies of moisture effects 

Radiative transfer models providing reflectance spectra of leaves and vegetation 

canopies are used for sensitivity analyses in direct mode. First the soil reflectance in NIR 

and SWIR range over a typical soil type in croplands is obtained using a moist soil 

reflectance model. The moist soil reflectance model is then linked with a leaf and canopy 
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reflectance model to simulate canopy reflectance. Vegetation water indices are derived 

from the simulated canopy reflectance. The MODIS bands centred at 858, 1240, 1640 

and 2130 nm, and vegetation water indices NDWI and NDII are used in this study. 

5.1.1 Model 

5.1.1.1 Moist soil reflectance model 

The moisture effects on soil reflectance have been studied by many authors. These 

studies have reported the familiar darkening of soils upon wetting (Baumgardner et al., 

1985; Ishida et al., 1991; Twomey et al., 1986). Lobell and Asner (2002) analyzed 

shortwave reflectances (400-2500 nm) for four different soils at various moisture 

contents and found that soil reflectance changes due to moisture were well explained by 

the following exponential model: 

)exp()1( θ×−××−+×= cRfRfR drydry              (5.1) 

where R is the soil reflectance at a particular wavelength, f is the ratio of the saturated to 

dry reflectance, Rdry is the reflectance of dry soil (at θ=0.0) , c describes the rate of soil 

reflectance change with moisture, θ is the volumetric soil water content. All variables 

except θ are soil type and wavelength dependent. 

Similar exponential models have been reported in the soil reflectance modelling by 

Liu et al. (2002). Such nonlinear equations are representative of the physical processes 

underlying the relationship, i.e., Beer’s Law for absorption in random homogenous media 

(Liu et al., 2002). It is thus expected that such a model would be useful for estimating soil 

reflectance under different soil moisture contents (Dasgupta, 2007). 
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5.1.1.2 Leaf and canopy reflectance models 

The leaf and canopy radiative transfer models used in this study are the widely used 

PROSPECT and SAIL (Scattering from Arbitrarily Inclined Leaves) respectively. 

Numerous studies have employed coupled PROSPECT-SAIL model to investigate 

remote sensing retrievals of vegetation moisture. The well known and validated leaf 

radiative transfer model PROSPECT (Jacquemund and Baret, 1990) described a leaf as 

consisting of N homogeneous layers having particular absorbing and scattering 

properties, and reflectance and transmittance are calculated from the absorption 

coefficient and refractive index at a given wavelength for each layer. Leaf reflectance 

was simulated with the PROSPECT model with four input parameters: the leaf structure 

parameter, N, representing the number of elementary layers; the chlorophyll a and b 

content (Cab, µg/cm2); the leaf water content (Cw, g/cm2 or cm); and the dry matter 

content or specific leaf weight (Cm, g/cm2) of the leaf.  

The PROSPECT simulated leaf reflectance and the moist soil reflectance model 

simulated soil reflectance are then coupled as the inputs of a canopy reflectance model 

SAIL. SAIL (Verhoef et al., 1984) is a turbid medium model that approximates the 

canopy as an infinitely extended plane-parallel scattering medium, made up of randomly 

oriented scattering phytoelements. Canopy reflectance is calculated from inputs of the 

leaf area index (LAI), leaf angle distribution (LAD), leaf and soil optical properties, and 

the solar and sensor illumination and viewing angles. 
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5.1.2 Simulation setup 

To generate the reflectance database, parameter ranges were defined for each model 

variable first. In the main simulation, the variables were carefully set to represent the 

ranges expected in the ‘real world’, based on data from the literature.  

5.1.2.1 Parameter ranges for soil reflectance model 

Four types of soil have been studied by Lobell and Asner (2002), including Argic 

Aridisol in New Mexico representative of arid shrubland, Xeric Andisol in Oregon 

representative of temperate coniferous forest, Ustic Mollisol in Texas representative of 

temperate savanna, and Aridic Entisol in Texas representative of temperate shrubland. 

Considering that vegetation moisture status is more critical for cropland where the main 

soil type is loam or clay loam, parameters of Ustic Mollisol were used in the moist soil 

reflectance model. Table 5.1 lists the value of each parameter obtained from experiments 

by Lobell and Asner for MODIS Visible-Near Infrared (VNIR) bands 1 (645 nm), 2 (858 

nm) and 4 (555 nm), and SWIR bands 5 (1240 nm), 6 (1640 nm) and 7 (2130 nm). The 

volumetric soil moisture content is set to be 0.005, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 

0.45, representative of the natural soil conditions experienced in cropland. 

 

Table 5.1 Input parameters to soil reflectance model for MODIS bands 

Mollisol Band 1 Band 2 Band 4 Band 5 Band 6 Band 7 
Rdry 0.110 0.213 0.090 0.373 0.416 0.405 

c 10.9 7.5 12.2 5.0 3.33 6.25 
f 0.538 0.612 0.560 0.610 0.429 0.300 
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5.1.2.2 Parameter ranges for PROSPECT and SAIL 

To account for effects due to leaf water content Cw, leaf dry matter Cm, chlorophyll a 

and b content Cab, and leaf internal structure N, the PROSPECT model is running for a 

range of values of Cw (in cm) and Cm (in g/cm2) between 0.004 and 0.04, Cab between 20 

and 80, and N between 1 and 4.  

At the canopy level, a set of SAIL simulations are employed to account for canopy 

structural characteristics such as LAI and the viewing geometry described by solar zenith 

angle, view angle, and fraction of direct sun light. Ten discrete values of LAI were used 

(LAI = 0.01, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0). The canopy is assumed to have an 

erectophile LAD, typical of wheat (Atzberger et al., 2003). The acquisitions are simulated 

for a solar zenith angle of 30°, a sun angle of 45° (0.8 fraction of direct sun light), and 

nadir view angles for all the cases.  

Outputs of soil reflectance and leaf reflectance/transmission from the moist soil 

reflectance model and PROSPECT were tied to the inputs of SAIL. The parameters used 

in the leaf and canopy simulations are summarized in Table 5.2. 

Table 5.2 Input parameters to PROSPECT and SAIL models 

Parameters Range 
PROSPECT 

N 1-4 
Cab (µg/cm2) 20-80 

Cw (cm) 0.004-0.04 
Cm (g/cm2) 0.004-0.04 

SAIL 
LAI (m2/m2) 0.01-7 

LAD erectophile 
solar zenith angle  30° 

Fraction Direct Solar 0.8 
View angle Nadir 
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5.1.3 Model simulation  

5.1.3.1 Modeling the moisture effects on MODIS reflectance 

As can be seen in Figure 5.1, the chlorophyll content Cab only affect MODIS VIS 

bands 4 and 1, and has no effect on MODIS NIR and SWIR bands 2, 5, 6 and 7, while the 

change of leaf dry matter content Cm affects MODIS NIR and SWIR bands. The water 

content Cw affects MODIS SWIR bands 5, 6 and 7, while the effect of the leaf internal 

structure N on reflectance is distributed from VNIR to SWIR region.  
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Figure 5.1. Effects of leaf biochemical constituents such as Cab, Cm, Cw, and N on canopy reflectance 
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conditions found in agriculture fields, while VNIR saturates at intermediate soil moisture 

content near 20%. If the soil is covered by a vegetation canopy with a LAI of 2, the 

impact of soil moisture is still clearly visible over NIR and SWIR spectra range, although 

ground coverage of canopy was almost achieved (lower plot of Figure 5.2). 

 

 

Figure 5.2. Simulated canopy spectra with LAI of 0.01 and 2 and varying soil moisture 
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The canopy biophysical variables are not totally independent, that is, a change in 

leaf water content may induce a change in chlorophyll concentration and leaf internal 

structure, as well as a change in the average leaf angle (Jacquemoud, 1993). In order to 

quantify the relative influence of each canopy parameter, the difference of spectral 

reflectance was obtained by varying each parameter separately from low to high values at 

a given time, while keeping other parameters fixed at medium values. The variables were 

changed over their normal range of variation: leaf dry matter and leaf water content from 

0.004 to 0.04, leaf internal structure from 1 to 4, soil moisture content from 0.005 to 0.45, 

and leaf area index from 0.5 to 4. Medium values of Cab=40, Cm=0.01, Cw = 0.01, N=1.3, 

LAI=1, 2, and soil moisture = 0.25 are used. 

For a given set of input parameters, the results show that the primary affecting 

factors vary with specific wavelength (Figure 5.3). The NIR reflectance is highly 

sensitive to the canopy structural parameter LAI, obtaining an 18% variation when LAI 

changes from 0.5 to 4. The leaf internal structure and leaf dry matter have a major effect 

over the entire NIR and SWIR spectral region, generating 5-10% variations with larger 

effect at higher LAI values. 
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Figure 5.3. Difference of simulated spectra by using low and high values of each parameter separately with 
LAI of 1 and 2 
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bands and affect band 6 primarily. Further, at low LAI values less than 2, although 

changes of soil moisture and leaf water content both introduce around 5% variation to 

MODIS band 6, the soil moisture effects overshadow the latter on MODIS bands 5 and 7. 

However, when LAI values are higher than 2, the primary driver of SWIR reflectance 

variations is leaf water content, while the difference due to soil moisture change is 

reduced to 1%. Following sections will mainly focus on soil moisture and leaf water 

content effects on MODIS SWIR bands 5, 6 and 7.  

The effects of soil moisture on the SWIR reflectance were illustrated for MODIS 

bands 5, 6 and 7 in Figure 5.4 with an LAI range of 0.01-4 assuming different soil 

moisture contents. In each case, an increase of soil moisture is connected with a reduction 

of the reflectance. The soil effects on the SWIR reflectance are stronger at low LAI 

values less than 2 when vegetation does not completely cover soil background, especially 

for MODIS band 5, which continues to respond to soil moisture up to an LAI of 3. 

MODIS band 7 is more sensitive to soil moisture at low moisture levels, obtaining more 

than 10% variation when soil moisture changes from 0.005 to 0.01. When LAI values are 

higher than 3, sensitivity to soil background is minimal and no background effects are 

found on SWIR reflectance for any soil moisture range. 
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Figure 5.4. Sensitivity of MODIS SWIR reflectance to soil moisture 
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Not only does soil water affect the canopy reflectance, but also the water in the 

plants is an actor itself. The plots in Figure 5.5 show such simulations obtained for 

canopies with an LAI range of 0.5-6 assuming different leaf water contents. The increase 

of leaf water content provides similar reduction results in the signatures. This reduction is 

stronger for higher LAI values. MODIS bands 6 and 5 are better suited to measure leaf 

water content changes than band 7 since they both obtain higher variations near 15% 

when they are modelled with LAI value of 6 and Cw changes from 0.004 to 0.04. 

Regarding LAI effects, band 5 is less easy to saturate with high LAI values up to 5, while 

bands 6 and 7 saturate with an LAI of 3. 

 In general, an increase of soil moisture or leaf water content is connected with a 

reduction of the reflectance, while an increase of LAI generates reflectance increment for 

MODIS band 5, and reflectance reduction for bands 6 and 7. MODIS band 5 is more 

sensitive than bands 6 and 7 to both soil moisture and leaf water change: the reflectance 

of band 5 continues to respond to moisture at higher LAI values while the other two 

saturate at lower LAI values. In addition, the comparison of all plots of Figures 5.4 and 

5.5 shows that the reflectance reduction induced by the increase of soil moisture or leaf 

water content has different characteristics. For a range of LAI, the reflectance of MODIS 

band 5 presents divergence with an increase of soil moisture, while convergence with leaf 

water content; both reflectances of MODIS bands 6 and 7 present convergence with soil 

moisture, while band 6 presents divergence and the latter has parallel shape. These 

differences may be useful to extract information about soil and vegetation water status. 
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Figure 5.5. Sensitivity of MODIS SWIR reflectance to leaf water content 
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5.1.3.2 Modeling the moisture effects on water indices 

The most popular NIR-SWIR vegetation water indices are NDWI and NDII. The 

NDWI calculated as 
nmnm

nmnm

RR
RR

1240860

1240860

+
−

, where R represents the reflectance, was suggested 

by Gao (1996) based on the fact that the SWIR centred at 1240 nm is on the edge of the 

vegetation liquid water absorption, while the NIR centred at 860 nm is insensitive to 

water content changes, which make NDWI sensitive to changes in liquid water content of 

vegetation canopies. The NDII calculated as 
nmnm

nmnm

RR
RR

1640860

1640860

+
−

 is similar to NDWI except 

that it uses the relatively stronger liquid water absorption band centred at 1640 nm as the 

water sensitive band (Hardisky et al., 1983; Ceccato et al., 2001). Strong absorption of 

water around 1640 nm makes this band most suitable for the estimation of plant water 

content. 

The effects of soil moisture and leaf water content are also analyzed for NDWI and 

NDII, which are constructed using the simulated reflectance of MODIS bands centred at 

858, 1240 and 1640 nm. 

When NDWI and NDII were modelled with soil moisture varying from low to high 

values and an LAI range of 0.1–6, it becomes obvious that the soil effect is reduced by 

the normalized calculations of these indices compared with the soil effect on SWIR 

reflectance. Both NDWI and NDII have slight variations responding to soil moisture 

change when LAI is less than 2, and remain almost constant starting after an LAI value of 

2. The normalized calculation for index NDWI is more efficient in removing the soil 
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effect than NDII considering the following facts: (1) the reflectance of band 5 which 

NDWI uses is more sensitive to soil moisture than band 6 which NDII operates on: the 

soil moisture effect on band 5 is visible up to an LAI of 3; (2) the NDWI is less sensitive 

than NDII to soil moisture effect after the normalized calculation: soil moisture effect on 

NDWI is nearly negligible starting after LAI of 0.5. NDII is more sensitive to LAI than 

NDWI with varying soil moisture. NDII changes from -0.35 to 0.25 while NDWI 

changes from -0.25 to 0 responding to LAI values from 0.01 to 2. Also shown in the plots 

of Figure 5.6 is that both NDWI and NDII have slight increments with increasing soil 

moisture except when LAI=0.01 which means bare soil.  

The simulation obtained by varying Cw values and changing LAI from 0.5 to 7 

shows that both NDWI and NDII increase with leaf water content for each LAI category 

(Figure 5.7). The increment is stronger with higher LAI values, obtaining the maximum 

variation near 40% when they are modelled with LAI value of 6 and Cw changes from 

0.004 to 0.04. Compared with the maximum SWIR reflectance variation of 15% due to 

the same leaf water content change, the sensitivity of the indices to leaf water content has 

been enhanced significantly. 
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Figure 5.6. Sensitivity of NDWI and NDII to soil moisture 
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Figure 5.7. Sensitivity of NDWI and NDII to leaf water content 
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NDWI is more sensitive to LAI with varying leaf water content, contrary to its easier 

saturation to LAI with varying soil moisture. LAI effects on NDII and NDWI become 

minimal with LAI approaching 4, and 6 respectively. Further, comparing the variations of 

NDWI with NDII, it is clear that the NDII has a larger range of variations with the 

highest value approaching 0.7, while the NDWI approaches 0.5. 

Considering that MODIS has three SWIR bands at 500 m resolution, two of which 

have been used in NDWI and NDII respectively, we apply the last SWIR band 7 to 

generate the similar calculation: 
nmnm

nmnm

RR
RR

2130860

2130860

+
−

. Using the same simulation, results 

show that the soil effect on the new generated formula is obviously stronger compared 

with NDWI and NDII (Figure 5.8): it has a rapid increment with increasing soil moisture 

at LAI values less than 1, unlike the almost flat slopes of NDWI and NDII. Similar to 

NDWI and NDII, it increases with leaf water, while the increment is curved, becoming 

smoother at high Cw values. LAI has the strongest effect on this index with varying soil 

moisture: it changes from -0.3 to 0.7 responding to LAI values from 0.01 to 2, and 

weakest impact with varying leaf water content: LAI effect becomes minimal with LAI 

approaching 3. 
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Figure 5.8. Sensitivity of [(R860nm-R2130nm)/(R860nm + R2130nm)] to soil moisture and leaf water content 
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related vegetation water indices. The results of this study can be summarized by the 

following: 

1. Soil moisture has a large effect on the SWIR reflectance at low LAI values, and 

the effect continues up to an LAI of 3. This result is consistent with what has been 

reported in the earlier study by Bach and Verhoef (2003). 

2. Among three MODIS SWIR bands, reflectance of band 5 is most sensitive to soil 

moisture content spanning from low values to high values, while reflectance of band 7 

responds strongest to dry soil conditions. 

3. The reflectance of band 5 is better suited to measure leaf water content change 

than bands 6 and 7, since it obtains a higher variation when Cw changes from dry to wet 

and it is less easy to saturate with high LAI values. This advantage has been enhanced by 

the normalized calculation of NDWI. 

4. Reflectance of each SWIR band responds differently to the change of soil 

moisture and leaf water content. The MODIS band 5 presents divergence with the 

increase of soil moisture, while convergence with leaf water content; both MODIS bands 

6 and 7 present convergence with soil moisture, while band 6 presents divergence and the 

latter has a parallel shape.  

5. By using the normalized calculation between the water absorption sensitive band 

and insensitive band, NDWI shows the most capability to remove the soil background 

effect and enhance the sensitivity to leaf water content, while the soil moisture effect has 

been amplified for the new index generated using band 7 as the sensitive band. 
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Simple spectral indices similar to NDWI and NDII always use only two bands 

including one sensitive and one insensitive band to interpret changes in leaf water 

content. These simple spectral indices were suggested as suitable for traditional sensors 

that have only a few optical bands. With more optical bands, MODIS measurements 

provide a good opportunity to estimate leaf water and soil moisture more accurately and 

robustly. Combining multiple, rather than one MODIS SWIR band with a NIR band may 

provide a solution to separate two moisture variables by amplifying one signal and 

minimizing the other considering the fact that each SWIR band has a different 

characteristic response to soil moisture and leaf water.  

5.2 Soil moisture estimation using MODIS SRB measurements 

5.2.1 MODIS SRB measurements 

MODIS has a total of 20 Solar Reflectance Bands (SRB) (1-19 and 26) covering the 

VNIR region, providing a good opportunity for land parameters retrieval. Table 5.3 

shows the MODIS 250 m and 500 m SRB specifications (Salomonson et al., 2005). Each 

SRB has been used in one or more indices using empirical relations based on statistical 

analysis of ground measurements and spectral characteristics. MODIS bands 1 and 2 are 

mainly used for retrieval of the NDVI, since vegetation has low reflectance in the VIS 

(0.4 to 0.7µm) part of the spectrum due to the absorption of chlorophyll in the plants and 

high reflectance in the NIR range (0.7 to 1.3 µm). Bands 4 and 6 are used to calculate the 

Normalized Difference Snow Index (NDSI) for snow detection based on the fact that 

snow has high reflectance in the VIS and low reflectance in the SWIR at about 1.6 µm. 
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The NDWI and NDII have also been proposed as a ratio between band 2 and band 5/6 to 

monitor vegetation water content. Like most other normalized indices, the Normalized 

Difference Dust Index (NDDI) calculated as a ration between sand dust sensitive band 7 

and insensitive band 3 was suggested by Qu et al. (2006).  

 

Table 5.3 MODIS 250 m and 500 m SRB Specifications 

Band Bandwidth 
(µm) 

Central Wavelength 
(µm) 

Spatial resolution 
(m) Primary Use 

1 0.620-0.670 0.648 250 Land/Cloud/Aerosols 
Boundaries 2 0.841-0.876 0.858 250 

3 0.459-0.479 0.470 500 

Land/Cloud/Aerosols 
Properties 

4 0.545-0.565 0.555 500 
5 1.230-1.250 1.240 500 
6 1.628-1.652 1.640 500 
7 2.105-2.155 2.130 500 
 

However, simple spectral indices mentioned above which always use two bands 

including one sensitive and one insensitive band were suggested for traditional sensors 

such as Advanced Very High Resolution Radiometer (AVHRR), Landsat Thematics 

Mapper (TM) and Enhanced Thematic Mapper (ETM), which have only a few optical 

bands. With more optical bands, MODIS measurements might provide a good 

opportunity to estimate vegetation water content and soil moisture more accurately and 

robustly.  

5.2.2 Formation of NMDI 

By using simulations with the coupled soil-leaf-canopy reflectance models, 

sensitivity analyses have been performed to quantify the impact of soil and leaf water 



 

72 
 

content on the SWIR reflectance and water related indices. The study has illustrated that 

the reflectance of each MODIS SWIR band responds differently to the soil moisture and 

leaf water content variations (Wang et al., 2007). 

The soil reflectances with varying moisture content for mollisol, representative of a 

typical soil type in the temperate savanna have been demonstrated in the left plot of 

Figure 5.9. The effect of leaf water content on canopy reflectance has also been 

illustrated by using the leaf radiative transfer model-PROSPECT (Jacquemoud and Baret, 

1990) and the canopy reflectance model-SAIL (Verhoef, 1984) with an LAI range of 

0.5-6 assuming different leaf water contents (right plot of Figure 5.9). 

For both soil moisture and leaf water content, an increase of each is connected with 

a reflectance reduction. The sensitivity of MODIS bands 6 (1640 nm) and 7 (2130 nm) 

responding to the moisture change, however, is definitely different. It is evident from 

Figure 5.9 that the slope between bands 6 and 7 becomes steeper with the increase of soil 

moisture, while flatter with the increase of leaf water content. This characteristic ‘slope 

variation’ in response to different kinds of moisture changes might be useful to extract 

information about soil and vegetation water status. 
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Figure 5.9. Simulated soil spectra at various soil moisture (left plot )and canopy spectra at different leaf 
water content (right plot) 

 

Based on the soil and vegetation spectral signatures, the Normalized Multi-band 

Drought Index (NMDI) is proposed by using three wavelengths, one in the NIR centered 

approximately at 860 nm, and two in the SWIR centered at 1640 nm and 2130 nm, 

respectively. Following the simplicity of NDWI and NDII, NMDI is defined as: 

,                   (5.2) 

where R860nm, R1640nm and R2130nm are the apparent reflectances observed by a satellite 

sensor in the 860 nm, 1640 nm and 2130 nm bands, respectively. Similar to NDWI and 

NDII, this new designed index uses the channel centered at 860 nm, which is insensitive 

to leaf water content changes as the reference; however, instead of using a single liquid 

water absorption band like NDWI or NDII, it uses the difference (slope) between two 

liquid water absorption bands (1640 nm and 2130 nm), as the soil and vegetation water 

)(
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sensitive band. Strong differences between two water absorption bands in response to soil 

and leaf water content give this combination potential to estimate water content for both 

soil and vegetations. 

In order to show that the NMDI can be useful for remotely sensing both soil 

moisture and vegetation water status from space, its sensitivities to bare soil or weak 

vegetation, heavy vegetation, and mixture of soil and vegetation are investigated. 

For the dry bare soil, the difference between MODIS bands 6 and 7 is relatively 

small, which gives high NMDI values, while for the wet bare soil the difference becomes 

large, giving low NMDI values. Simulations are obtained by the coupled soil-leaf-canopy 

reflectance models with varying soil moisture from low to high values and an LAI range 

of 0.01–2. The results show that when LAI equals 0.01 which means bare soil or weakly 

vegetated areas, the NMDI is a function of soil moisture content: an increase of soil 

moisture is connected with a reduction of NMDI. NMDI decreases from high values 

around 0.85 for extremely dry soil to low values around 0.15 for wet soil with soil 

moisture content higher than 0.3 (upper plot of Figure 5.10). NMDI is well suited to 

monitor dry soil status: it decreases rapidly from 0.85 to 0.4 responding to the soil 

moisture change from 0.005 to 0.1, and continues to gain 20% variation when soil 

moisture changes from 0.1 to 0.2. NMDI saturates when soil moisture content approaches 

0.3, which means relatively wet soils. 
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Figure 5.10. Sensitivity of NMDI to soil moisture (upper) and leaf water content (lower) 

 

NMDI stops responding to soil moisture change starting from LAI equal to 2, i.e., no 

soil background effects are found on NMDI for any soil moisture range. Therefore, for a 

vegetation canopy with an LAI equal to or higher than 2, which means heavily vegetated 

areas, NMDI turns to be a complete index for estimating plant water content, rather than 

an index for soil moisture. Similar to NDWI, NMDI increases almost linearly with leaf 

water content for each LAI category. The increment presents parallel trends for each LAI 

category range from 2 to 6, obtaining high variations above 40% when they are modeled 
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with leaf water content from 0.004 to 0.04. Compared with the maximum SWIR 

reflectance variation of 15% due to the same leaf water content change (right plot of 

Figure 5.9), the sensitivity of NMDI to leaf water content has been enhanced significantly. 

NMDI saturates with LAI values up to 5. 

For areas with moderate vegetation coverage, i.e., LAI equals to 0.5 and 1 in this 

study, NMDI is still sensitive to soil moisture and leaf water content, decreasing with soil 

moisture and increasing with leaf water content.  

5.2.3 Validation of NMDI 

5.2.3.1 Soil drought monitoring 

For simplicity the soil moisture condition falls into three classes according to the 

volumetric soil moisture range: dry: 0–0.1; intermediate: 0.1–0.2 or wet: >0.2 (Idso et al., 

1975; Miller et al., 2004). The following examples are taken to validate the application of 

NMDI to interpret the soil moisture change. 

In the absence of suitable field data, it was decided to demonstrate the usefulness of 

NMDI for remote sensing of soil moisture by using the bare soil spectra under various 

soil water contents reported in previous studies by B. Leblon (Soil and vegetation optical 

properties, Remote sensing core curriculum, vol. 4, module 9, 2000, 

http://www.r-s-c-c.org/rscc/Volume4/Leblon/leblon.htm, hereinafter referred to as 

Leblon, Module 9, 2000) and Bach and Verhoef (2003). Figure 5.11 a is the spectral 

reflectance curves for Newtonia silt loam at dry to intermediate moisture contents of 

0.008, 0.047, 0.088, 0.129, 0.169 and 0.202 given by Leblon (Module 9, 2000). Figure 



 

77 
 

5.11 b is the GeoSAIL (Bach et al., 2000) model simulated spectra of bare soil with 

varying soil moisture from dry of 0.005 to extremely wet of 0.6 by Bach and Verhoef 

(2003).  

 

 

Figure 5.11. (a) Spectral reflectance curves for Newtonia silt loam at various moisture contents (after B. 
Leblon, Soil and vegetation optical properties, Remote sensing core curriculum, vol. 4, module 9, 2000, 
http://www.r-s-c-c.org/rscc/Volume4/Leblon/leblon.htm). (b) GeoSAIL model simulated spectra of bare 
soil with varying soil moisture [Bach and Verhoef, 2003] (copyright IEEE) 

 

NMDI is constructed by using the reflectances corresponding to each MODIS band 

centered at 858 nm, 1640 nm and 2130 nm from Figure 5.11 with various soil moisture 

values. Figure 5.12 shows NMDIs calculated from the soil spectral reflectances are a 

function of soil moisture. Higher values of the NMDI indicate increasing severity of soil 

drought. The results reinforce that the NMDI is highly sensitive to soil moisture change, 

gaining rapid reduction responding to soil moisture change from extremely dry to 

intermediate and wet soil water status. Both cases show that NMDI values are within the 

range of 0.7 to 1 when soil moisture is less than 0.1, which means dry soil conditions. In 

other words, if NMDI is greater than 0.7, we can conclude that the soil is dry. NMDI 
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values are around 0.6 when soil moisture is about 0.2, which means intermediate 

moisture conditions. When NMDI is less than 0.6, the soil is under wet conditions.  

Therefore, NMDI has demonstrated its ability to monitor soil moisture conditions 

including dry, intermediate and wet. Additional experiments are needed to identify 

NMDI threshold values for each soil moisture condition in the near future. 

 

 

Figure 5.12. Sensitivity of NMDI to soil moisture values corresponding to Figures 5.11 a, and 5.11 b 
 

Although both plots of Figure 5.12 as well as the upper plot of Figure 5.10 show that 

the increase of soil moisture leads to the decrease of NMDI, in regards to the decreasing 

pattern, the shapes of all plots appear to be somewhat different from each other. This 

difference may be a result of the soil spectral reflectances obtained for different soil types: 

Figure 5.10 is for mollisol soil type, while Figure 5.12 a is for silt loam; or from different 

soil reflectance models: Figure 5.10 is based on the exponential model proposed by 

Lobell and Asner (2002), while Figure 5.12 b is based on GeoSAIL model. 
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5.2.3.2 Vegetation drought monitoring 

To test the performance of NMDI for remote sensing of vegetation drought, we use 

examples similar to those reported in a study by Gu et al. (2007). These authors analyzed 

five-year (2001–2005) sets of MODIS NDVI and NDWI data for grassland drought 

assessment for the Flint Hills of Kansas and Oklahoma. Flint Hills is the largest 

remaining area of native tallgrass prairie in North America. The relatively homogeneous 

land cover type allowed the influence of drought on the grasslands to be isolated from 

other factors and therefore more effectively studied. The drought conditions of the study 

area in 2003 and 2004 have been identified by the U.S. Drought Monitor as severe and 

non-drought category droughts, respectively. Figure 5.13 is the true color image of the 

study area centered at 35.25o N latitude and 91.81o W longitude on September 6, 2004.  

 

 
Figure 5.13. True color image of the study area on September 6, 2004 

 

Eight granules of MODIS 8-day 500 m surface reflectance data (MOD09A1, 

Collection 4) (http://delenn.gsfc.nasa.gov/~imswww/pub/imswelcome/) during the 
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summer months from July to September were used to derive NMDI according to equation 

(5.2). To illustrate the relationship between NMDI and vegetation drought conditions, 

four NMDI images for the most severe drought periods in August and September at the 

Flint Hills are shown in Figure 5.14 in the severe drought year 2003 and non-drought 

year 2004. Lower NMDI values indicate increasing severity of vegetation drought. The 

drought development from August to September can be detected clearly from NMDI 

images. NMDI values were much lower for the severe drought year (2003) than for the 

non-drought year (2004). Also lower NMDIs cover much broader areas in 2003 than in 

2004. Good agreements are shown between above and Gu et al. (2007) results. It 

demonstrates the potential of the NMDI for monitoring vegetation drought. 

 

 
August 05, 2003 September 06, 2003 Zoom in the area in the black box 

 
August 05, 2004 September 06, 2004 Zoom in the area in the black box 

Figure 5.14. Spatial distribution of NMDI over the Flint Hills 
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5.2.3.3 Discussion 

Despite the positive results, the application of NMDI is limited to bare soils or 

weakly vegetated areas, and heavy vegetation areas with LAI 2≥  right now. For areas 

with moderate vegetation coverage, i.e., LAI equals to 0.5 and 1 in this study, the 

distinction between NMDI’s roles as a soil drought indicator and a vegetation drought 

indicator blurs. Its application to directly interpret soil and vegetation moisture conditions 

could yield inaccurate results and therefore, remains challenge. 

5.2.4 Uncertainty analysis 

Accurate assessment of interannual, interseasonal, and spatial changes in soil and 

vegetation drought with NMDI data requires accurate knowledge of sensor calibration 

changes (Goward et al., 1991; Miura, et al., 2000). The uncertainty in the knowledge of 

the absolute calibration should be in the range 1– 5% (Slater, 1984, 1985), while 2% is 

the requirement for the reflectance calibration uncertainty for MODIS SRB bands 1-7 

(Barbieri et al., 1997). This section evaluated the impact of MODIS calibration 

uncertainties on the accuracy of NMDI, specifically limited to the combined uncertainties 

of 2%, which includes different sources of uncertainties, such as uncertainties in the bias 

corrections for derivations of the effective digital counts and the uncertainties due to 

electrical noise. 

The bare soil spectra under various soil water contents reported in previous study by 

Bach and Verhoef (2003), and the coupled soil-leaf-canopy model simulated canopy 

reflectances with an LAI value of 4 were used to investigate the impact of reflectance 
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calibration uncertainties on the accuracies of NMDI for soil and vegetation drought 

monitoring, respectively. Reflectance uncertainties of 2% were examined with no 

correlations between any pair of bands for all possible combination of MODIS bands 2, 6 

and 7, which NMDI operates on.  

5.2.4.1 NMDI for soil drought (hereinafter referred to as NMDIsoil) 

NMDIsoil was generated from the bare soil spectral under various soil moisture 

contents. Table 5.4 summarized NMDIsoil uncertainties induced by a total of 24 kinds of 

possible combinations due to 2% reflectance uncertainty. The NMDIsoil uncertainties 

decreased with increasing NMDIsoil values due to calibration uncertainty of single band 2 

or 6, while increased for band 7. For combinations of any pair of bands 2, 6 and 7, 

NMDIsoil uncertainties decreased except the reflectance uncertainties of bands 2 and 6 are 

in the same direction, and those of bands 2 and 7 are in the opposite directions. When 

three bands change together, NMDIsoil uncertainties decrease except when bands 2 and 6 

change in the same direction. The NMDIsoil derived from any combination with band 6 

and 7 changing in the opposite directions resulted in larger uncertainties around 10%, 

while less uncertainties around 2% if bands 6 and 7 change in the same direction. One 

can notice that the main source of uncertainty is in the band 6. The mean NMDIsoil 

uncertainty due to a 2% reflectance calibration uncertainty is 5.78%. 
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Table 5.4 Results of NMDIsoil uncertainties 
 

No. Calibration Uncertainty (2%) NMDIsoil Uncertainty (%) 
Band 2 Band 6 Band 7 Minimum Maximum Average 

1 +   0.46 2.90 1.43 
2 -   0.29 -13.68 5.16 
3  +  -5.23 -6.81 -5.76 
4  -  5.49 7.04 5.99 
5   + 4.01 5.00 4.49 
6   - -3.94 -4.79 -4.35 
7 + +  -3.86 -4.69 -4.27 
8 + -  5.86 9.90 7.36 
9 - +  -5.80 -9.84 -7.30 

10 - -  4.10 5.10 4.58 
11 +  + 5.38 6.90 5.87 
12 +  - -1.01 -4.25 -2.87 
13 -  + 1.06 4.60 3.07 
14 -  - -5.34 -6.95 -5.87 
15  + + -0.47 -2.92 -1.44 
16  + - -9.80 -10.64 -9.94 
17  - + 10.74 11.19 10.67 
18  - - 0.47 2.96 1.46 
19 + + - -7.67 -9.20 -8.41 
20 + - + 11.02 14.03 11.99 
21 + - - 0.93 5.86 2.88 
22 - + + -0.96 -5.91 -2.93 
23 - + - -10.43 -13.68 -11.52 
24 - - + 8.28 10.43 9.32 

 
 

Figure 5.15 shows the NMDIsoil uncertainty trends for combinations of three bands. 

The resultant uncertainties are shown separated into three groups, i.e., the larger 

decreasing uncertainties induced by combinations with bands 6 and 7 changing in the 

opposite directions, the increasing induced by  bands 2, and 6 change in the same 

direction, and smaller decreasing by bands 6 and 7 change in the same direction.  
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Figure 5.15. Uncertainties of NMDIsoil due to a 2% reflectance calibration uncertainty 

 

5.2.4.2 NMDI for vegetation drought (hereinafter referred to as NMDIveg):  

The same analysis was conducted with the model simulated canopy reflectances to 

investigate the uncertainties trends in NMDI for vegetation drought. Different from 

NMDIsoil, decreasing trends of NMDIveg uncertainties can be observed with increasing 

NMDIveg values for all cases. The NMDIveg derived from bands 2 and 6 changing in the 

same direction, or bands 2 and 7 in the opposite directions, however resulted in smaller 

uncertainties (less than 1%) than those from bands 2 and 6 changing in the opposite 

directions, or bands 2 and 7 in the same direction (table 5.5). Figure 5.16 shows how 

NMDIveg uncertainties decreased with increasing NMDIveg values for 6 kinds of typical 

combinations with bands 2, 6 and 7. Regardless of the same decreasing trend, the 

combinations of the same uncertainty direction of bands 2 and 6, and the opposite 

directions of bands 2 and 7 make uncertainties the lowest, compared with the larger 

uncertainties induced by combinations with bands 2 and 6 changing in the opposite 
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directions and bands 2 and 7 in the same direction. Once again, band 6 is the primary 

source of uncertainties. The mean NMDIveg uncertainty is 1.68%.  

 

Table 5.5 Results of NMDIveg uncertainties 
 

No. Calibration Uncertainty (2%) NMDIveg Uncertainty (%) 
Band 2 Band 6 Band 7 Minimum Maximum Average 

1 +  0.66 2.03 1.16 
2 -   -0.68 -2.08 -1.20 
3  +  -0.83 -3.03 -1.58 
4  -  0.84 3.09 1.60 
5   + 0.17 1.01 0.41 
6   - -0.16 -1.00 -0.41 
7 + +  -0.16 -0.99 -0.40 
8 + -  1.49 5.09 2.75 
9 - +  -1.53 -5.15 -2.80 

10 - -  0.17 1.03 0.42 
11 +  + 0.82 3.03 1.57 
12 +  - 0.49 1.03 0.76 
13 -  + -0.50 -1.06 -0.78 
14 -  - -0.85 -3.09 -1.61 
15  + + -1.91 -5.29 -3.07 
16  + - -2.24 -4.02 -3.87 
17  - + 1.01 4.12 2.02 
18  - - 0.67 2.07 1.19 
19 + + - -0.33 -1.97 -0.80 
20 + - + 1.654 6.11 3.16 
21 + - - 1.32 4.08 2.34 
22 - + + -1.36 -4.14 -2.39 
23 - + - -1.70 -6.14 -3.21 
24 - - + 0.34 2.07 0.84 
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Figure 5.16. Uncertainties of NMDIveg due to a 2% reflectance calibration uncertainty 

 

The results show that NMDIsoil and NMDIveg respond to the reflectance uncertainties 

differently. NMDIsoil is more sensitive to calibration uncertainties, resulting over 5% 

mean uncertainties due to 2% calibration uncertainty, while the mean uncertainties is less 

than 2% for NMDIveg. Regardless of the difference, the uncertainties from MODIS band 

6 are the primary contributor to both NMDIsoil and NMDIveg uncertainties. The most 

severe combination for each NMDI occurred when bands 2 and 6 change in the opposite 

directions and bands 2 and 7 in the same direction.    

5.2.5 Conclusion 

A new moisture index, the Normalized Multi-band Drought Index (NMDI), is 

proposed for remote sensing of both soil and vegetation water content from space by 

using three channels centered near 860 nm, 1640 nm and 2130 nm.  

The preliminary results suggest that for bare soil or weakly vegetated areas, a pixel 
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will be mapped as dry soil condition if the NMDI is ≥0.7, intermediate if NMDI is within 

the range of 0.6 to 0.7, and wet if NMDI is <0.6. While for heavily vegetated areas with 

LAI 2≥ , the performance of NMDI is similar to NDWI and NDII. Therefore, by 

combining information from multiple NIR and SWIR channels, NMDI has enhanced the 

sensitivity to drought severity, and is well suited to estimate water content for both soil 

and vegetations. 

Additional analyses of NMDI with respect to the mixture of soil and vegetation 

should be conducted with new experiments. If more broadly applicable, this index may 

provide an opportunity to estimate both soil and vegetation moisture on an operational 

basis. 

5.3 Application of NMDI in fire detection  

Forest fires have drawn a lot of attention in recent years due to their effects on climate 

change and ecosystems.  It is necessary to locate active fire spots since they are important 

for a number of ongoing studies, like landuse and landcover change. Fire detection 

contributes in assessing the area and quantity of forests that are destroyed and further helps 

in wildlife management (Philip, 2007). Drought plays an important role in making the 

conditions favorable for forest fires to occur. Experience over the years has helped 

establish a close relationship between cumulative dryness, or drought, and extremely 

destructive fires (http://www.wrh.noaa.gov/sew/fire/olm/KEETCH.htm). The occurrence 

of fires is highly dependent upon the availability of moisture during the growing season, 

with more severe fires occurring during the drier, warmer years (Dyrness et al., 1986; 
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Kasischke et al., 1993). Soil moisture and vegetation water content are important factors 

that can and will influence the occurrence and behavior of both small and large wildland 

fires (http://www.wrh.noaa.gov/sew/fire/olm/KEETCH.htm).  

Vegetation water indices derived from satellite data have recently been used to detect 

and monitor the moisture conditions of vegetation canopies for fire detection (Maki et al., 

2004). The specific objective of this work is to investigate and compare the ability of the 

selected indices, NMDI, NDWI, and NBR (Normalized Burn Ratio), related to vegetation 

water status, to detect forest fires in southern Georgia, USA and southern Greece in 2007. 

Index performance is evaluated using MODIS fire products. Satellite images generated 

from each index are compared with the active fire map provided by the MODIS Rapid 

Response Team. Performance measures (overall accuracy, commission error, and fire 

detection rate) extracted from the statistical analyses using the confusion matrices are used 

to verify the capacity of the indices for active fire detection.  

5.3.1 Study area and data 

5.3.1.1 Study area  

A severe drought in the southeastern United States created record-breaking fire events 

along the Georgia/Florida border in 2007 

(http://landsat.gsfc.nasa.gov/images/archive/e0009.html). The Sweat Farm Road Fire/ Big 

Turnaround fire complex began to burn in southeastern Georgia during the afternoon 

hours of 16 April 2007, when a tree fell on a power line and, fanned by strong winds, 

quickly exploded into a major fire and became the largest wildfire in Georgia history 
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(http://eobadmin.gsfc.nasa.gov/NaturalHazards/natural_hazards_v2.php3?img_id=14241). 

The study area was located at latitudes 30.80 N to 31.50 N and longitudes 82.00 W to 

83.10 W.  

Throughout the summer of 2007, a series of massive forest fires broke out in several 

areas across Greece (http://en.wikipedia.org/wiki/2007_Greek_forest_fires). The most 

destructive and deadly fires raged from August 23 to August 27 mainly in western and 

southern Peloponnese as well as in southern Euboea (Athens News Agency, 2007). This 

study will mainly focus on the Peloponnese Peninsula (36.40 N to 38.40 N, 21.00 E to 

23.50 E). 

5.3.1.2 Satellite Data 

The dataset is composed of MODIS L1B calibrated radiance (MOD02, 1 km, version 

5), L1A geolocation data (MOD03, 1 km, version 5),  and thermal anomalies, fires, and 

biomass burning product (MOD14, 1 km, version 5) acquired over the study areas for the 

fire periods. Reflectance from MODIS solar reflective bands 1 (620-670 nm), 2 (840-876 

nm), 6 (1628-1652 nm) and 7 (2105-2155 nm), are used to derive NDVI, NMDI, NDWI 

and NBR. The reflectance from MODIS bands 1 and 2, along with the brightness 

temperatures derived from MODIS thermal infrared band 32 (11770-12270 nm) are 

employed to flag cloud pixels based on the method developed by Giglio et al. (2003). The 

Land/sea mask obtained from the MODIS L1B geolocation data is applied to identify 

water pixels. MODIS active fire images with 250 m spatial resolution provided by the 

MODIS Rapid Response Team (http://rapidfire.sci.gsfc.nasa.gov/) and MODIS fire 

products are used to evaluate the performances of the selected indices for forest fire 
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detection. Only Terra MODIS data are used in this study given that Aqua MODIS band 6 

has a striping problem (Wang et al., 2006). 

5.3.2 Methodology for fire detection 

The NDWI is calculated as the ratio of a NIR channel and a SWIR channel as

nmnm

nmnm

RR
RR

1640860

1640860

+
−

. Since NDWI is influenced by both desiccation and wilting in the 

vegetation canopy, it may be a sensitive indicator for drought monitoring (Gu et al., 2007). 

The NBR is calculated as a normalized composite of NIR channel centered at 

approximately 860 nm and a SWIR channel centered at approximately 2130 nm: 

nmnm

nmnm

RR
RR

2130860

2130860

+
−

. NBR has been widely used to map burned areas and burn severity (Key 

and Benson, 1999; Miller and Yool, 2002; Cocke et al., 2005; Key and Benson, 2005). 

Since the NIR and SWIR spectral bands have the greatest change among reflective spectral 

bands (White et al., 1996; van Wagtendonk et al., 2004), with NIR decreasing and SWIR 

increasing through the fire, the NBR would be most discriminating for burn effects. 

By combining information from multiple NIR and SWIR channels, NMDI has proven 

to be a good indicator for both soil and vegetation drought. For bare soil or sparsely 

vegetated areas, higher values of the NMDI indicate an increasing severity of soil drought. 

While for heavily vegetated areas with LAI ≥2, lower NMDI values indicate an increasing 

severity of vegetation drought, similar to NDWI and NBR (Wang and Qu, 2007). Since 

NMDI can monitor both vegetation and soil water content at the same time, it is expected 

to provide more accurate and valuable information about drought and fire conditions, 
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considering that the bare soil in the area will become exposed if vegetation burns. 

Figure 5.17 describes the flowchart of the application of NMDI to monitor soil and 

vegetation drought. First the Land/sea mask obtained from the MODIS L1B geolocation 

data, and cloud mask derived based on the method developed by Giglio et al. (2003) are 

applied to identify water- and cloud-free pixels for the study area. The vegetation index, 

NDVI, derived from MODIS bands 1 and 2 is employed to separate bare soil and 

vegetation pixels, given that NDVI is one of the most extensively applied vegetation 

indices related to LAI: a theoretical interpretation for the relationships between vegetation 

indices and LAI has been provided by Myneni et al. (1995). In general, the higher NDVI 

value, the denser the vegetation, and if the NDVI value exceeds 0.4, the area is thought to 

be covered entirely by forest, greenery, or other vegetation (Suzuki et al., 2001; Nihei et al., 

2002). The fixed NDVI threshold of 0.4, instead of LAI value of 2, is employed to flag soil 

and vegetation pixels. A water- and cloud-free pixel will be mapped as vegetation if the 

NDVI is ≥0.4, otherwise the pixel will be classified as soil. 

NMDI generated directly using equation (5.2) as 

NMDI୴ୣ୥ ൌ
ୖఴలబ౤ౣିሺୖభలరబ౤ౣିୖమభయబ౤ౣሻ
ୖఴలబ౤ౣାሺୖభలరబ౤ౣିୖమభయబ౤ౣሻ

 can be used to interpret vegetation moisture 

conditions for vegetation pixels, with lower values corresponding to vegetation drought. 

Since NMDI responds oppositely to soil moisture that to vegetation water content, 

equation (5.2) should be adjusted for soil pixels in order to keep consistency between 

these two moisture statuses. The previous study suggests that the possible range of NMDI 

values for soil is between 0 and 1 with higher values indicating increasing soil drought, 

but the typical range is from 0.7 to 0.9 for very dry bare soil (Wang and Qu, 2007). The 
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following format of NMDI is adopted to monitor soil moisture conditions:  

NMDIୱ୭୧୪ ൌ 0.9 െ ୖఴలబ౤ౣିሺୖభలరబ౤ౣିୖమభయబ౤ౣሻ
ୖఴలబ౤ౣାሺୖభలరబ౤ౣିୖమభయబ౤ౣሻ

                              (5.3). 

By applying this modification, NMDI can be used to interpret both soil and 

vegetation moisture status in the same direction, ranging from 0 to 0.9 with higher values 

indicating wet conditions and values lower than 0.2 indicating extreme severity of soil 

and vegetation drought, which may be induced by burning fires.  

Several fires burning in southern Georgia, USA and southern Greece in 2007 were 

selected to test the usefulness of the abovementioned water related indices for fire 

detection.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.17. Flowchart of the multi-threshold method for fire detection 
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5.3.3 Indices testing and discussion 

5.3.3.1 Georgia Fires  

We selected satellite data of forest fires in southern Georgia obtained on April 17, 

25 and 29, relatively clear days and intense fire periods.  

Test case 1: fire on April 17th  

The Sweat Farm Road Fire in southern Georgia exploded rapidly in less than 24 

hours between April 16 and 17. The image of the fire (upper left of Figure 5.18) was 

captured by the Terra MODIS at 15:40 UTC on April 17. The locations where MODIS 

detected actively burning fires are outlined in red. 

The NMDI image (upper right of Figure 5.18) derived by combining equations (5.2) 

and (5.3) revealed the obvious red-colored “hot spots” associated with the fire areas in 

the active fire map. NMDI values are much lower (NMDI≤0.2) for the active fire pixels 

than non-burning pixels (NMDI>0.5) identified by the MODIS active fire map. The much 

lower NMDI values separate the burning spots from the neighboring area. It illustrates 

that there are strong relationships between NMDIs and fire activities. Compared to the 

250 m resolution MODIS active fire image, the 1 km resolution NMDI image offered 

almost the same accurate depiction of the active fire shape, coverage, and location.  
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Figure 5.18. Images of active fire (upper left), NMDI (upper right), NDWI (lower left) and NBR 
(lower right) on 17 April, 2007 

 

It was not possible to locate the active fire pixels within the cluster of green and 

sparse yellow pixels on the NDWI and NBR images (lower left and right of Figure 5.18). 

Neither NDWI nor NBR demonstrated any visible response to the fire activities. 

Test case 2: fire on April 25th  

The Sweat Farm Road Fire continued to burn on April 25, 2007, when the Terra 

MODIS passed overhead and captured the active fire image (upper left of Figure 5.19) at 

16:30 UTC time. The brown burn scar can be seen next to the burning fire (shown in the 

red dashed triangle).  
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Figure 5.19. Images of active fire (upper left), NMDI (upper right), NDWI (lower left) and NBR 
(lower right) on 25 April, 2007 

 

As expected, the NMDI values are substantially lower for the pixels experiencing 

the active fire, which make them stand out from the surrounding areas. The burn scar is 

also obvious as the lightgreen-colored areas in NMDI image. These details revealed by 

the NMDI image are consistent with the MODIS active fire map.  

The large size of the resulting burn scar can be indentified in the NBR image. With 

the lower NBR values around 0.3, the NBR image shows the yellow-colored scar 

covering a significant portion along the southeastern edge of the burning fires. Several 

pixels experiencing active fire have been detected by NBR, which are denoted by the 

sparse red-colored spots; however, most of the burning pixels have been missed and 

cannot be located in the NBR image. The NDWI image also shows the yellow-colored 

Waycross 
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area for the burn scar, but it is difficult to separate the scar from the similar 

yellow-colored surrounding pixels. 

Test case 3: fire on April 29th  

The image at the upper left of Figure 5.20, taken at 16:05 UTC on 29 April, 2007 by 

Terra MODIS, shows the Sweat Farm Road and Big Turnaround Fires in southern 

Georgia and the Roundabout Fire burning in northwestern Georgia 

Two large blazes burning in the northwestern and southeastern part of the study area 

were evident by the significant red-colored “hot spots” in the NMDI image. Compared 

with the former two NMDI images, it is clear that the Sweat Farm Road Fire had moved 

to the southeastern perimeter at the end of April. NMDI is in good agreement with the 

MODIS active fire image, demonstrating once again that NMDI is a sensitive indicator 

for active fire monitoring. In addition, the fires appeared to intensify somewhat on 29 

April indicated by the much deeper red-colored fire spots in the NMDI image. 

 As mentioned above, some burn pixels can be captured by the NBR image, while 

most of them have been omitted. Moreover, NBR revealed saturation to the smoke 

plumes, which caused the smoke pixels to be mis-displayed in deep green as “heavy 

vegetation” pixels. There are almost no clear fire signals in the NDWI image, which 

suggests that NDWI is not sensitive to active fires.  
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Figure 5.20. Images of active fire (upper left), NMDI (upper right), NDWI (lower left) and NBR (lower 
right) on 29 April, 2007 

 

Since neither NBR nor NDWI has an obvious response to active fires, statistical 

analyses using confusion matrices (Kohavi and Provost, 1998) have only been conducted 

for the NMDI to further evaluate the accuracy of the active fire detection by comparing it 

with the corresponding MODIS fire product. If any fire is identified by the MODIS fire 

products, this fire spot will be marked as a fire pixel. When fire detection results using 

NMDI agrees with the MODIS products, a correct hit will be counted. Table 5.6 shows 

the confusion matrices used to compare NMDI fire detection results against MODIS 

products. The total numbers of correct fire hits and non-fire hit are represented by a, and 

d, respectively. In the case that NMDI indicates a non-fire event at a certain location 

which disagrees with the MODIS products, the event is labeled as “fire missing”. The 
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total number of fires missing is summed up as b. When NMDI data indicates fire but the 

MODIS product is fire free, the event is labeled as “false alarm”. The total number of 

false alarms is denoted by c.  

In general, the overall accuracy of the fire detection rate can be evaluated as the 

proportion of the total number of correct hits: 

Overall accuracy = (a+d)/(a+b+c+d). 

The fire detection rate is defined as the ratio of fire cases that were detected correctly by 

NMDI to the total number of fire events: 

Fire detection rate = a/(a+b).  

The false alarm rate is the proportion of non-fire cases that were incorrectly classified as 

fire, as calculated using the equation: 

False alarm rate (commission error) = c/(c+d). 

 

Table 5.6 Confusion matrices for fire detection by NMDI against MODIS products 

           NMDI 
MODIS Fire Non-fire 

Fire a b 
Non-fire c d 

 

Table 5.7 summarizes the fire detection results including the total pixel amounts, fire 

pixels detected by MODIS products and NMDI, overall accuracy, false alarm rate and 

fire detection rate. The results show that the overall accuracy of active fire detection by 

using NMDI is approaching 100%. False alarm rate is almost zero percent except for 0.11% 
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for the fire event on 29th April. The average NMDI fire detection rate is about 80% with 

the highest value above 90%.  

 

Table 5.7 Comparison of active fire detection results by MODIS products and NMDI (Georgia fire) 

MM/DD Total 
pixels 

Fire pixels 
a b c d 

Overall 
accuracy 

(%) 

False 
alarm 

rate (%) 

Fire 
detection 
rate (%) MOD14 NMDI 

04/17 2611 13 12 12 1 0 2598 99.96 0.00 92.31 
04/25 7004 16 11 11 5 0 6988 99.93 0.00 68.75 
04/29 6467 40 35 28 12 7 6420 99.71 0.11 70.00 
 

Both, performance evaluations by image interpretation and statistical analyses, 

indicate that the active fire detection using NMDI is quite accurate for Georgia fires.  

In order to show that NMDI is not site-specific and can be applicable to different 

sites with different canopy characteristics, the wildfires that broke out in southern Greece 

are used to validate the application of NMDI for fire detection. 

5.3.3.2 Greek Fires 

The most destructive fires that raged from August 23 to August 25 in western and 

southern Peloponnese are selected for this case study.  

Test case 1: fire on August 23rd  
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Figure. 5.21. Images of active fire (upper left), NMDI (upper right), NDWI (lower left) and NBR 
(lower right) on 23 August, 2007 

 

Fires started in Greece on 23 August 2007. The active fire location represented by 

the red circle in the MODIS active fire image can also be indentified in NMDI, NDWI 

and NBR images by the red-colored dots (Figure 5.21). While considering the scope of 

the burning fire, the NMDI image offers the best fire area mapping which agrees well 

with the active fire image. Only a very small part of the burning area can be detected in 

the other two images. The yellow- and red-colored areas in the top part of the NMDI 

image are visible in the NDWI and NBR images, which may suggest dry soil conditions. 

A large part of the yellow-colored areas in the NDWI image corresponds to bare soil 
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coverage, since NDWI values are expected to be relatively lower for most bare soils than 

for vegetation (Gao, 1996).   

Test case 2: fire on August 24th 

 

Figure. 5.22. Images of active fire (upper left), NMDI (upper right), NDWI (lower left) and NBR (lower 
right) on 24 August, 2007 

 

On 24 August 2007, the MODIS active fire map captured five clusters of blazing 

fires as well as the billowing smoke from fires raging across Greece's southern 

Peloponnese Peninsula (Figure 5.22). The NMDI image provides exactly the same 
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information about fire location, fire coverage, and fire shape as the active fire map, 

without omitting the two relatively small fires in the top and middle part of the 

Peloponnese peninsula. Only two fire spots can be seen with weak signals in the NDWI 

image. The NBR image provides the rough locations of five fires, but it has obvious 

limitations with respect to the fire shape and coverage, especially for the two larger fires. 

Test case 3: fire on August 25th   

 

Figure. 5.23. Images of active fire (upper left), NMDI (upper right), NDWI (lower left) and NBR (lower 
right) on 25 August, 2007 
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The active fire image captured by Terra MODIS on 25 August shows a line of fires 

stretching along the western coast of Greece’s Peloponnesus Peninsula (Figure 5.23). Once 

again, NMDI shows the highest performance and discrimination power in active fire 

detection compared to NDWI and NBR. The deeper red color in the NMDI image 

compared with the former NMDI images reveals that forest fires are raging unabated on 

the Peloponnese Peninsula. To the northeast, a fire is casting a plume of smoke in the 

active fire map, which can only be detected in the NMDI image (outlined by the red 

circle).  

The statistical analysis of the Greek active fire detection by NMDI is summarized in 

Table 5.8. With almost a 100% overall accuracy, less than 1% false alarm rate, and 

around 75% average fire detection rate, fire detection using NMDI matches well with 

MODIS fire products. It thus demonstrates that NMDI is a consistent 

regional-to-global-scale indictor for active fire detection. Such a capacity can help 

monitor large-scale fire hazards and is therefore useful to carry out regional and global 

studies. 

 

Table 5.8 Comparison of active fire detection results by MODIS products and NMDI (Greek fire) 

MM/DD Total 
pixels 

Fire pixels 
a b c d 

Overall 
accuracy 

(%) 

False 
alarm 

rate (%) 

Fire 
detection 
rate (%) MOD14 NMDI 

08/23 32047 11 10 7 4 3 32033 99.98 0.01 63.64 
08/24 32080 72 68 54 18 14 31994 99.90 0.04 75.00 
08/25 20856 125 119 100 25 19 20712 99.79 0.09 80.00 
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5.3.4 Conclusion 

The ability of satellite-derived indices for detecting the forest fires in southern 

Georgia, USA and southern Greece of 2007 was investigated. MODIS fire products were 

applied to evaluate the performance of NMDI, NDWI, and NBR for fire detection.  

Taking advantage of information contained in multiple NIR and SWIR channels, 

NMDI demonstrated the highest overall performance and discrimination power when 

compared to NDWI and NBR. For each test case, NMDI has strong signals 

corresponding to active fires and pinpoints the active hot spots accurately. The 

substantially lower NMDI values make the burning pixels stand out from the neighboring 

areas. Compared to the 250 m resolution MODIS active fire image, the 1 km resolution 

NMDI image offered almost the same accurate depiction of the active fire shape, 

coverage, and location. Moreover, NMDI provides quantitative hints about fire intensity, 

complementary to the burning locations outlined in the MODIS active fire map. 

Performance evaluations by using the statistical analyses reinforce that the active fire 

detection using NMDI is quite accurate. The successful application of NMDI for 

detecting fires in Georgia, USA and Greece demonstrate that NMDI is not site-specific 

and can be applicable to different sites with different canopy characteristics. The NMDI 

therefore proves that it is a promising indictor for monitoring active fire in 

regional-to-global scales. 

NBR is sensitive to resultant burn scars, which can be detected with lower NBR 

values around 0.3. A few pixels experiencing active fire can be identified by NBR, while 
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most of the burning pixels will be omitted. NDWI, however, does not show a clear 

response to active fires for any cases presented in this study. 

A more thorough evaluation of the NMDI as an active fire monitoring tool for other 

vegetation types and different geographic areas will be conducted in the near future. 

5.4 Chapter summary 

In order to quantify the impact of soil and leaf water content on canopy reflectance, 

sensitivity study has been conducted by using the coupled soil-leaf-canopy reflectance 

model. The study has illustrated that soil moisture has a different effect than leaf water 

content, and each MODIS SWIR band responds to these two moisture variables 

differently. 

Based on the findings of the sensitivity study, this chapter has developed a new 

drought index, the Normalized Multi-band Drought Index (NMDI) for monitoring soil 

and vegetation moisture from space. Instead of using a single liquid water absorption 

channel, it uses the slope between two liquid water absorption channels centered at 1640 

nm and 2130 nm as the soil and vegetation moisture sensitive band. Typical soil 

reflectance spectra and satellite-acquired reflectances are used to demonstrate the 

usefulness of NMDI. By combining information from multiple near infrared and short 

wave infrared channels, this index has been shown to be a promising indicator for both 

soil and vegetation drought monitoring. 

Forest fires in southern Georgia, USA and Greece in 2007 are used to investigate and 

compare the ability of NMDI, NDWI, and NBR for active fire detection. NMDI 
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demonstrated the highest overall performance and discrimination power when compared 

to NDWI and NBR. NMDI image offered accurate depiction of the active fire shape, 

coverage, and location, smoke plume, burn scar as well as quantitative information about 

fire intensity. 

The next generation of MODIS sensor - the Visible/Infrared Imager/Radiometer 

Suite (VIIRS) will have channels centered at 865 nm, 1610 nm and 2250 nm (Ou et al., 

2003). This newly designed index can be applied to data that will be acquired by the 

VIIRS to extract information about soil and vegetation moisture. 
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CHAPTER SIX 

6. SOIL MOISTURE PROFILE ESTIMATION 

 

Given the current technology, satellite remote sensing can only provide soil moisture 

measurements for the top few centimetres of the soil profile. Since these upper few 

centimetres of the soil are the most exposed to the atmosphere, their moisture varies 

rapidly in response to rainfall and evaporation (Jackson, 1993). These observations of 

near-surface soil moisture must be related to the complete soil moisture profile in the 

unsaturated zone (Walker, 1999), in order to be more useful for agricultural, hydrologic 

and climatic studies. The ability to retrieve the soil moisture profile by assimilating 

near-surface soil moisture measurements in a soil model has received increasing attention 

over the past decade. However, the incomplete knowledge of soil model physics and the 

limitation of assimilation technique itself restrict the use of data assimilation approach.  

Different from previous studies which use the conceptual model to assimilate 

near-surface soil moisture observations with the objective of improving runoff 

predictions, or have only investigated the estimation of soil moisture profiles using 

synthetic data, this research proposes to solve the governing differential equation for 

water transport in unsaturated soil by applying a new numerical scheme with which to 

discrete the equation on the space-time plane. The solution was compared with the 

measurements of the observed events reported by Menziani et al. (2003). 
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6.1 Richards Equation 

Great efforts have been done to simulate water transport in soil, in which the 

Richards Equation introduced in 1931 is the primary tool for this purpose. Vertical water 

infiltration in layered soil profiles is usually modeled using the Richards Equation 

(Parlange et al., 1972, 1980; Sanders et al., 1988). 

The flow of water in homogeneous, nonhysteritic, nonswelling soils can be 

described by the continuity equation, 
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−=
∂
∂θ

                                            (6.1.1) 

and Darcy’s Law: 
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where t is time, z is the vertical distance from the soil surface, θ is the volume water 

content, q is the volumetric flux of water, D(θ) is the water content dependent soil-water 

diffusivity, and k(θ) is the hydraulic conductivity. 

Substituting equation (6.1.2) into equation (6.1.1) yields the nonlinear Richards 

Equation used to describe one-dimensional water transport in unsaturated soils: 
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Equation (6.1.3) is a nonlinear partial differential equation describing the changes of 

moisture content θ in space and time due to vertical flows. It is nonlinear because the 
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soil-water diffusivity and the hydraulic conductivity vary with θ. As two parameters of 

the Richards Equation, the soil-water diffusivity D and the soil-water conductivity k 

govern the different behaviours in the moisture dynamic. The nonlinearity, however, 

usually can be solved in a linear mode by considering the soil-water diffusivity D, and K 

expressed as θ∂∂ /k  to be constant. Thus the Richards Equation reduces to a linear 

diffusion wave equation.  

The linearized Richards Equation satisfied by soil water content ranging from 0 to 1 

can be written as: 
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                              (6.1.4) 

The initial and boundary conditions for equation (6.1.4) can be expressed as 

following arbitrary conditions: 
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                         (6.1.5). 

We now turn to the methods employed to solve the governing equations. Procedures 

for solving these partial differential equations are either analytical or numerical. 

Analytical solutions provide answers for a simplified class of problems, while problems 

of a more general type are handled with numerical solutions through attendant 

discretization of the solution domain. Numerical simulation of the Richards Equation has 

been the focus of considerable research (Hills et al., 1989; Celia et al., 1990; Pan and 

Wierenga, 1995). 
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6.2 Numerical solution to Richards Equation 

The numerical solutions to the governing differential equations for water transport in 

unsaturated soil are normally obtained by using Finite Difference (FD) or Finite Element 

(FE) calculation schemes (Van Genuchten, 1982). Often, explicit FD models become 

numerically unstable and give large numerical errors because of the strong nonlinearity 

inherent in the equation. The numerically more involved FE and implicit FD models are 

numerically stable and accurate if appropriate values of the time and depth increments are 

chosen. However, criteria for avoiding different types of numerical errors, and 

consequently for selecting the correct values of the time and depth increments, are poorly 

understood and often not available. Moreover, the FE and implicit FD models are 

relatively complicated to program and to solve (Moldrup et al., 1992). Moldrup et al. 

(1989) presented an easily programmed alternative labeled the moving mean slope (MMS) 

model to the FE and the implicit FD models. The MMS model, an integrated version of 

the Darcy equation is used together with a simple, explicit forward time discretization of 

the continuity equation to calculate water transport.  

Instead of directly solving the diffusion wave equation as others did, we proposed to 

approximate the Richards Equation by applying a new numerical scheme with which to 

discrete the kinematic wave equation on the space-time plane. Numerical diffusions are 

known to be introduced by a non-central discretization of the differential equation 

(Vestergaard, 1989). This artificially introduced dispersion is usually required to be 

removed to improve the simulation accuracy since it results in an erroneously large or 

small degree of spreading of the calculated concentration profiles (Moldrup et al., 1994). 
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However, this numerically induced dispersion has been used in this work to simulate the 

physical diffusion, other than being removed and therefore, the second order accurate 

approximation of the diffusion wave equation has been achieved.  

6.2.1 Introduction 

Neglecting the diffusion term in Richards Equation (6.1.4) and introducing the 

differential operator L yields the kinematic wave equation in the following form: 

   0=
∂
∂

+
∂
∂

≡
z

K
t

L θθθ ,                            (6.2.1) 

which describes the movement of water waves which are kinematic in nature. It is a 

first-order partial differential equation, therefore, kinematic waves travel with wave 

celerity of K and do not attenuate. Wave attenuation can only be described by a second 

order partial differential equation. 

By expressing the values in terms of discrete adjacent values in space and time, 

numerical diffusions are known to be introduced in numerical solutions of partial 

differential equation by the finite grid size. This numerically induced dispersion is an 

important source of calculation errors in transport simulations. Moldrup et al. (1994) had 

derived the correction terms for removing numerical dispersion from four commonly 

used FD calculation schemes on the general transport equation using Taylor Series. On 

the other side, Cunge (1969) first proposed to use the numerical diffusion generated in 

the difference solution to the kinematic wave equation to simulate the physical diffusion 

of the diffusive wave under certain conditions and achieved the known 
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Muskingum-Cunge flood routing method (Rui, 1995). However, few similar studies 

focus on water transport in unsaturated soil.  

Based on Cunge’s idea and aimed to control the amount of numerical diffusion in 

such a way that it matches the diffusion of the physical problem, a new numerical method 

is presented. By using a new numerical scheme with which to discrete the kinematic 

wave equation on the space-time plane, this method not only shows the capability to 

simulate the physical diffusion of the diffusive wave, but also enhances the solution 

precision from the first to the second order. 

6.2.2 Discretization of kinematic wave equation 

The kinematic wave equation is discretized on the Z-t plane. Figure 6.1 shows the 

computational scheme. This computational grid is defined by equal space and time steps, 

∆Z and ∆t, respectively. The spatial positions of the grid points are denoted by index i and 

the time moments by index k.  

                    

         t k+1 
     t k     t k 

         t k-1   
                      

                       Z i                  Z i+1  

       Figure 6.1. Space-time discretization of kinematic wave equation 
 

In Figure 6.1, Z is the vertical coordinate (positive downward) , t is the time 

coordinate, i and k are space and time steps, respectively, θ means the sequence of the 
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discrete values θi
k , which should approximate the values θ(tk,Zi)( k=1, 2, 3, ...; i= 0, 1, 

2, ...). 

The differential θ with respect to space is approximated by applying the first-order 

finite differences at point (tk, Zi) with forward in space,  
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Introducing weighting factor x in discretizing θ with off-centering the temporal 

derivative by means of backward for going toward point, and forward for leaving point 

(Hoos et al., 1989; Rui and Wang, 2000; Wang, 1999), we get, 
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where x is the weighting factor between 0 and 1, as it is shown: 10 ≤≤ x .  

Substituting equations (6.2.2) and (6.2.3) into equation (6.2.1), the differential 

operator L is approximated by the following finite difference operator: 
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Manipulating equation (6.2.4) by grouping the terms, the deeper layer soil moisture 

1
1
+
+
k
iθ can be expressed as a linear function of the soil moistures k

iθ , 1−k
iθ and k

i 1+θ as 

follows： 
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The coefficients C1, C2, and C3 in equation (6.2.5) have the following expressions:  
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where C is the Courant number, defined as follows:  

ZtKC ∆∆= /                           (6.2.9). 

Notice that Courant number is the ratio of physical wave celerity to grid celerity 

Z∆ / t∆ . The sum of the coefficients is equal to the unity: C1+C2+C3=1, which expresses 

the storage conservation, meaning that the storage entered at the up layer of the profile 

leaves the down end layer. 

Since k
i 1+θ , 1−k

iθ  and k
iθ  are known for a given time increment, 1

1
+
+
k
iθ  is 

computed using equation (6.2.5) and then the computation sequentially proceeds from 

upper layers towards deeper layer grid points, in a successive time step. By this means, a 

forecast lead time equaling time interval can be obtained for soil moisture profile 

estimation. With valuable increases in lead time, this method therefore permits more 

effective drought management and drought warning. 

It should be emphasized that equation (6.2.5) is numerical solution to kinematic 

wave equation and, therefore the feasibility and condition of its use in diffusion wave 

equation need to be investigated and analyzed.  
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22/2
1/2

−+
−+

=
CP
CPx                             (6.2.17) 

where P is the well-known Péclet number, defined as follows: 

     DZKP /∆=                               (6.2.18). 

Generally speaking, equation (6.2.4) constitutes a second order accurate 

approximation of the diffusion wave equation if the weighting coefficient x is evaluated 

as equation (6.2.17) and chosen in such a way that the false (numerical) diffusion 

generated by the scheme exactly coincides with the physical diffusion. The numerical 

solution resembles a diffusion wave with higher order accuracy rather than a kinematic 

wave. In other words, the new numerical scheme used can not only simulate the 

physical diffusion, but also improve the solution precision to the second order. 

6.2.4 Stability considerations 

Replacing the continuous original problem with an integration over a discrete 

computational grid introduces numerical errors into the results. A finite-difference 

scheme is stable if such errors are not amplified during computation from one time level 

to the next. The numerical stability depends on the size of the time and space steps and on 

some flow characteristics. Therefore, any explicit scheme is conditionally stable.  

The method presented in this study uses an explicit scheme and one must be careful 

to satisfy constrains for numerical stability. 

6.2.4.1 Courant condition 

Notice that Courant number C expressed as ZtK ∆∆ / is the ratio of the movement 
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distance during the time interval t∆ to the space interval Z∆ . The time step t∆  must be 

small enough that the wave propagating at the velocity K will not outrun the spatial grid 

sampling Z∆ . If the wave can travel through the length Z∆  in a time less than the 

computational interval t∆ , then computational instabilities may evolve. Therefore, C is 

restricted to values less than 1 for numerical stability reasons. For values of C greater 

than 1, the amount of diffusion introduced in the numerical problem is unrelated to the 

true diffusion, if any of the physical problem. The condition to satisfy here is known as 

the Courant condition and is expressed as 0<C<1. 

6.2.4.2 Stability condition of numerical diffusion 

The Courant condition is a necessary but insufficient condition for stability of an 

explicit scheme. Other concerns are also required for stability. 

Dividing the right-hand side terms of equation (6.2.15) by 2)/( xt ∆∆  and taking 

into account constrains of Z∆ >0, t∆ >0, C >0, and D >0, it follows that: 

      0
2)1(2)1(2

22

>+−
−

+
−

− CC
x

xC
x

C                  (6.2.19) 

Equation (6.2.19) then reduces to: 

      2
1

21
<

−
×−+

x
xCC                           (6.2.20) 

When C = 1 or x = 0.5, relation (6.2.20) will be violated.  

When 0.5 < x < 1, the denominator is positive, and therefore: 

                     xxCC 2221 −<−+      
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or 

            xxC 21)2(1 −<−                       (6.2.21) 

Since 1-2x < 0, it follows that C > 1, the Courant constraint is violated, and the 

numerical stability is compromised. 

When x > 1, the denominator is negative, and therefore: 

                     xxCC 2221 −>×−+  

or 

                xxC 21)21( −>−                     (6.2.22) 

Since 1-2x < 0, it follows that C < 1, satisfying the Courant condition.  

In a similar way, when x < 0.5, the computation is conditionally stable and 

convergent to the analytical solution as the Courant number less than 1. 

Considering that x is a weighting factor in temporal direction between 0 and 1, we 

can achieve that for numerical stability, the parameter x must satisfy the constraint

5.00 <≤ x . 

As implied by equation (6.2.5), the non-negativity constraint must be verified by 

every coefficient: 

10 3 ≤≤ C                              (6.2.23) 

or                 10 2 ≤≤ C                             (6.2.24) 

 or                 10 1 ≤≤ C                             (6.2.25) 
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If these constraints are violated, when either two terms in the right hand side of 

equation (6.2.5) are made to equal zero due to soil moisture or coefficient of zero, 

negative values for down layer soil moisture can be obtained and the numerical stability 

will be compromised. 

Equation (6.2.23) requires that                    

                   xC −≤≤ 10                              (6.2.26) 

Equation (6.2.24) is satisfied if 5.00 <≤ x . 

Equation (6.2.25) requires that      

                     1≤≤ Cx                              (6.2.27) 

Assembling above restrictions as well as Courant condition achieves the following 

form:  

⎩
⎨
⎧

<≤
<≤

10
0.50

C
x

                             (6.2.28) 

In general, this numerical method is stable as long as the constraint (6.2.28) is met. 

After the x parameter has been determined, the routing space and time steps ∆Ζ and t∆  

can be adjusted using the relationship with C to satisfy stability conditions. 

6.2.5 Application example  

The following example is taken to illustrate the application of this new numerical 

method. By solving equation (6.2.5), the soil water content at all points in the soil profile 

for all time can be determined. The parameters in the model mainly include the hydraulic 
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conductivity K and the soil-water diffusivity D. 

It is well known that numerical solutions are suitable and powerful in solving 

nonlinear equations starting from the experimental initial and boundary conditions. This 

appears to be quite appropriate when solving specific problems such as evolution of the 

vertical profile of the soil water content starting from initially dry soil. In the absence of 

suitable field data, it was decided to evaluate the model performance assuming flow 

conditions similar to those reported in a study by Menziani et al. (2003). Those authors 

analyzed the soil water content trend during the driest period based on the data collected 

at Pallanzeno. On 19 July 1999, the distribution of the experimental soil volumetric water 

content in the first 40 cm soil layer was quite uniform at 31%, representative of a simple 

initial condition for solving the partial differential equation. The soil layer below 40 cm 

remained at practically the same soil water content during the period 19-27 July. The 

uniform initial condition and the upper and lower boundary conditions were obtained 

from the experimental data. 

For simplicity and clarity, the soil layer from the surface down to 40 cm is 

considered as having the mean soil physical characteristics and a mean K equal to 

8*10-7(m/s), D equal to 1.6*10-8(m2/s). The K and D values used are between the 

measured values of the hydraulic conductivity and close to the laboratory estimation 

(Menziani et al., 2003). The finite-difference grid and time steps used in solving the 

Richards equation were fixed at 5 cm and 1, and 2 hour, respectively. The corresponding 

values for numerical solution are shown in Table 6.1. 
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Table 6.1 Values for numerical solution 

∆Ζ(m) t∆ (h) C x C1 C2 C3 Stability condition
0.05 1 0.0576 0.142 -0.0984 0.1655 0.9329 satisfied 
0.05 2 0.1152 0.1 0.0168 0.1112 0.8720 satisfied 

 

Figure 6.2 shows the evolution of the daily vertical profile of the soil water content 

in the first 40 cm layer from 19 to 27 July 1999 (driest period), which were compared to 

the characteristics of the observed events reported by Menziani et al. (2003). It is obvious 

that these two evolutions of the soil water content match well with each other, which 

indicates that this numerical approach ensures easily satisfied solution convergence while 

providing relatively accurate solutions of the equation at reasonable CPU times. 

It is important to point out that the parameter values used in this study should be 

considered typical values that may show a high degree of variability in application (Chow 

et al., 1988). Hydraulic conductivity and soil-water diffusivity values are far less 

consistent, varying by one to two orders of magnitude (James et al., 1992). More reliable 

soil moisture profile predictions can be expected if model parameters are obtained from 

field measurements since these measurements tend to lump the effect of soil 

heterogeneities (Leconte and Brissette, 2001). 

Consequently, the example case presented in this paper can only serve as a means to 

evaluate the validity of the numerical solution to the Richards Equation. They are not 

indicative of actual field conditions. Additional research is required to extend and test the 

usefulness of the approach presented here. Comparison with already available FE and FD 

calculation schemes should be conducted with new experiments.  
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Figure 6.2. Evolution of the daily vertical profile of the soil water content from 19 to 27 July 1999 (driest 
period). Upper: obtained by numerical solution; Lower: adopted from Menziani et al. (2003) 

 
 

6.3 Chapter summary 

A new numerical method for solving Richards Equation is presented by matching 

physical and numerical diffusion. Following conclusion can be drawn from the numerical 
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analysis and application: 

1. By applying a new numerical scheme with which to discrete the kinematic wave 

equation on the space-time plane, this method shows the capability to simulate the 

physical diffusion of the diffusive wave with the numerical diffusion generated in the 

difference solution under certain conditions.  

2. The algebraic formulae of the new method for soil water content routing are 

explicit, and the formulae are simple to use and program. The model parameters can be 

determined either by literature values or the laboratory estimation. 

3. Although any explicit scheme is conditionally stable, analysis suggests that the 

stability conditions of the new scheme used in this study are simple and can be easily 

achieved. The numerical stability depends on the satisfaction of Courant condition and 

the optimal selection of the temporal weighting factor. 

4. Compared with other numerical method with the first-order finite differences 

scheme, this method has enhanced the solution precision to the second order. 

5. The example application shows that this method has good convergence properties. 

The diffusion wave scheme is formulated by matching physical and numerical diffusion, 

which results in an effective control of numerical diffusion.  

6. The merit of this method includes it provides a forecast lead-time equal to one 

time step. This advantage will be significant for drought control if the time step is large. 
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CHAPTER SEVEN 

7. CONCLUSIONS AND FUTURE DIRECTION  

 

The dissertation has explored the use of remote sensing science and technologies 

towards the monitoring of soil moisture and drought. By using approaches that utilize 

remote sensing measurements, ground observations, and a vertical water transport model, 

the ability to estimate the spatial distribution and temporal variation of soil moisture has 

been investigated. The near-surface soil moisture observations have been combined with 

remote sensing measurements for soil moisture estimation to achieve higher accuracy and 

spatial resolution. Remote sensing measurements from multiple optical channels are used 

to monitor soil and vegetation drought based on the spectral reflectance change 

responding to vegetation and soil moisture variations. The water transport model is the 

kernel of the soil moisture profile estimation algorithm, as it forecasts the spatial 

distribution and temporal variation of soil moisture profiles from the near surface soil 

moisture which gained by ground observations or remote sensing measurements. 

Combining these means, daily soil moisture profile at high resolution can be gained. 

7.1 Conclusions 

The main achievements of this dissertation fall into three categories, namely: (i) 

estimation of soil moisture by combining the strengths of multi-sensor and ground 
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measurements to achieve higher accuracy and spatial resolution; (ii) development of a 

new drought index for both soil and vegetation drought monitoring by using multiple 

NIR-SWIR spectral signatures; (iii) one–dimensional soil moisture profile estimation 

algorithm to relate the near-surface soil moisture observations to different soil layers. 

Finally, the applications of the research presented in this thesis and their impact on 

further studies are summarized. 

7.1.1 Soil moisture estimation using multi-sensor and ground measurements 

A soil moisture estimation algorithm at moderate resolution was developed based on 

the well known ‘Universal Triangle’ relation among soil moisture, vegetation cover and 

land surface temperature. Two years of Terra MODIS measurements and ground 

observations at 137 stations in Shandong province, P. R. China were used to investigate 

the regression relationships. Analysis shows that MODIS NDVI and LST are strongly 

correlated with the ground soil moisture measurements, and regression relationships are 

soil type and vegetation type dependent. The land cover and soil types based regression 

relations, in conjunction with MODIS NDVI and LST data, are then regressed backward 

to obtain soil moisture at MODIS resolution. The validation by using a new set of one 

year ground observations and MODIS data shows a good agreement between ground 

observed and algorithm derived soil moisture. It suggests this approach has good 

potential to retrieve soil moisture at high spatial resolution for regional applications. The 

1 km soil moisture maps can provides regional soil moisture details and soil moisture 

spatial pattern, which are valuable for many applications, such as drought monitoring and 

fire danger detecting. 
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 AMSR-E onboard Aqua provides daily global soil moisture of the top 2 cm soil 

layer with spatial resolution of 25 km. Though lower in spatial resolution than MODIS 

optical bands, AMSR-E microwave measurements are typically less affected by clouds, 

making them complementary to MODIS measurements over regions of clouds. 

7.1.2 Soil moisture estimation using multiple MODIS SRB measurements 

By using simulations with the coupled soil-leaf-canopy reflectance models, 

sensitivity analyses have been performed to quantify the impact of soil and leaf water 

content on the SWIR reflectances and water related indices. The results demonstrate that 

soil moisture has to be considered in realistic simulations of land surface reflectances and 

vegetation water indices since it has a large effect on the canopy reflectance when 

vegetation density is low. The study has also illustrated that soil moisture has a different 

effect than leaf water content, and each MODIS SWIR band responds to these two 

moisture variables differently. 

Based on the findings of the sensitivity study, a new drought index, the Normalized 

Multi-band Drought Index (NMDI) was designed for monitoring soil and vegetation 

moisture from space by using three wavelengths, one in the NIR centered approximately 

at 860 nm, and two in the SWIR centered at 1640 nm and 2130 nm, respectively. 

Multiple bands, rather than two bands with the normalized calculations, have not been 

used previously in the formation of vegetation moisture indices. Instead of using a single 

liquid water absorption channel like NDII and NDWI, it uses the slope between two 

liquid water absorption channels centered at 1640 nm and 2130 nm as the soil and 

vegetation moisture sensitive band. Strong differences of soil water and leaf water effects 
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between two water absorption bands make this combination most appropriate for the 

estimation of water content for both soil and vegetations.  

Typical soil reflectance spectra and satellite acquired canopy reflectances, are used 

to validate the usefulness of NMDI for remotely sensing soil and vegetation moisture. 

NMDI has strong responses to both severe soil and vegetation drought conditions in 

opposite directions: higher values with increasing soil drought and lower values with 

increasing vegetation drought, suggesting a promising indicator for monitoring both soil 

and vegetation drought from space. 

2007 forest fires in southern Georgia, USA and southern Greece are used to 

investigate and compare the ability of NMDI, NDWI, and NBR for active fire detection. 

Taking the advantage of information contained in multiple NIR and SWIR channels, 

NMDI demonstrated highest overall performance and discrimination power when 

compared to NDWI and NBR. Compared to the 250 m resolution MODIS active fire 

image, the 1 km resolution NMDI image offered almost the same accurate depiction of 

the active fire shape, coverage, and location, as well as smoke plume and burn scar. 

Moreover, NMDI provides quantitative analysis about fire intensity, complementary to 

the burning locations outlined in the MODIS active fire map. NMDI therefore proves it a 

potential indictor for monitoring active forest fire. 

7.1.3 Soil moisture profile estimation 

A new numerical method for solving Richards equation presented in this thesis 

provides a convenient alternative to existing models and approaches to estimate the soil 

moisture profile from the surface moisture data. By applying a new numerical scheme 
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with which to discrete the kinematic wave equation on the space-time plane, this method 

shows the capability to simulate the physical diffusion of the diffusive wave with the 

numerical diffusion generated in the difference solution under certain conditions. The 

algebraic formulae of the new method for soil water content routing are explicit, and the 

formulae are simple to use and program. Although any explicit scheme is conditionally 

stable, analysis suggests that the stability conditions of the new scheme used in this study 

are simple and can be easily achieved. The numerical stability depends on the satisfaction 

of Courant condition and the optimal selection of the temporal weighting factor. 

Compared with other numerical method with the first-order finite differences scheme, 

this method has enhanced the solution precision to the second order. The example 

application shows that this method has good convergence properties. The diffusion wave 

scheme is formulated by matching physical and numerical diffusion, which results in an 

effective control of numerical diffusion. In addition, the merit of this method also 

includes it provides a forecast lead time equal o one time step. This advantage will be 

significant for drought control if the size of time step is large.  

7.2 Applications of this research 

The research conducted in this dissertation is expected to be useful for soil moisture 

estimation, drought monitoring, and active forest fire detecting.  

The soil moisture products at 1 km resolution presented in Chapter 4 can provide 

decision makers detailed information on soil moisture spatial distribution and temporal 

variation, which are valuable for many applications, such as drought monitoring and fire 
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danger detecting. Although the study was conducted over Shandong province, P. R. China, 

the soil moisture estimation algorithms are expected to apply to other similar areas with 

same land cover and soil type.  

The new drought index, NMDI, will provide a new foundation of physics based 

indices for monitoring both soil and vegetation moisture from space. Combining 

information from multiple channels makes NMDI response to both severe soil and 

vegetation drought conditions in opposite directions and therefore, a promising indicator 

for both soil and vegetation drought monitoring. Its highest overall performance and 

discrimination power compared to other vegetation water related indices in detecting 

Georgia and Greek fires demonstrated its ability for active fire detection. This index can 

be applied to the next generation of satellite instruments, such as VIIRS, to extract 

information about soil and vegetation moisture condition. 

The new numerical solution of Richards Equation presented in Chapter 6 provides 

convenient an alternative to existing models and approaches to estimate the soil moisture 

profile from surface soil moisture data. Better retrievals of soil moisture profile are not 

only useful for drought monitoring, but also can aid in climate studies as well. 

The research presented in this thesis explores a new direction in the use of remote 

sensing science and technologies towards soil moisture and drought estimation. It will 

provide a physics foundation for remote sensing-based approaches for assessing and 

monitoring soil moisture and drought at a finer spatial and temporal resolution.  



 

131 
 

7.3 Limitations of this work  

This study was carried out in some limited condition due to data availability in time 

and space. In the absence of suitable laboratory and field data (such as the soil spectra 

with varying soil moisture, the vegetation spectra at various leaf water content, and the 

soil moisture profile under different initial and boundary conditions), some results are 

thus mainly based on the model simulation and limited available datasets. Simulation 

performed by soil, leaf and canopy reflectance models is a primary part in this research, 

which are used to achieve the desired objectives. Although these models have been well 

calibrated and widely used, and are known to perform reasonably well, models as always 

represent a reasonable simplification of the complex real processes. The availability of 

more relevant data in the future would entail more extensive evaluations and validations 

of the results (Dasgupta, 2007). 

One of the significant achievements of this research is the proposed new index 

NMDI for monitoring both soil and vegetation water conditions. Currently the use of 

NMDI, however, is limited to bare soils or weakly vegetated areas, and heavy vegetation 

areas. For areas with moderate vegetation coverage, which are common conditions found 

in reality, the distinction between NMDI’s roles as a soil drought indicator and a 

vegetation drought indicator blurs. Its application to directly interpret soil and vegetation 

moisture conditions could yield inaccurate results. New experiments are required to 

extend and test the proposed techniques.  
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7.4 Future works 

Recommendations for future research fall into three categories, namely: (i) extensive 

applications of NMDI for drought monitoring and active fire detecting; (ii) improvements 

of soil moisture profile estimation; and (iii) development of an operational system for 

drought monitoring. Potential research in each of these three categories is addressed 

below. 

7.4.1 Extensive applications of NMDI 

More extensive validations of the new spectral index NMDI need to be performed as 

suitable data becomes available. Its applicability to areas with moderate vegetation 

coverage must be investigated and tested. Further studies on identifying LAI or NDVI 

thresholds to separate bare soil, moderate vegetation, and heavy vegetation areas, and 

NMDI thresholds to classify fire and non-fire pixels, need to be carried out to adapt 

NMDI to operational applications. 

7.4.2 Improvements of soil moisture profile estimation 

One objective of this dissertation has been investigating an appropriate methodology 

for estimating the spatial distribution and temporal variation of soil moisture profiles. 

Hence, the obvious progression from the work established in this thesis, is to test the soil 

moisture profile estimation algorithm with actual observations on soil moisture and 

evapotranspiration under natural hydrologic conditions. A series of numerical 

experiments with this soil moisture profile estimation algorithm should be carried out to 



 

133 
 

demonstrate the methodology, and to prove the effectiveness of the techniques used. 

Moreover, further validations and evaluation of this numerical approach need to be 

conducted by comparing with already available FE and FD calculation. 

7.4.3 Development of an operational system for drought monitoring 

Remote sensing plays a major role in applications of soil moisture and drought 

monitoring. In specific remote sensing based estimation of soil and vegetation moisture 

has shown a lot of promise for drought monitoring in this study. The cost effectiveness, 

and the easy availability of remote sensing data with higher spatial and temporal 

resolution possibly in near real time (Dasgupta, 2007) make remote sensing based 

operational system for drought monitoring very attractive. This has not been thoroughly 

investigated here, and would be a key direction for the future work.  
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