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ABSTRACT

Qualitative prediction is concerned with problems of building symbolic descriptions of processes, and
using these descriptions for predicting a plausible continuation of the processes. It stresses the qualitative
form of prediction, as it does not seek precise characterization of future events, but rather a specification
of plausible properties, and characterization of constraints on the future events. An important aspect of
qualitative prediction is that only a partial knowledge of the process is available, therefore, the construc-
tion of a description must necessarily involve inductive inference. It also involves deductive inference to
relate the observed process to the concepts contained or derivable from the system’s background
knowledge.

This paper describes a domain-independent methodology, SPARC/G, for a simple form of qualita-
tive prediction, where processes are sequences of discrete events or objects that are characterized by finite-
valued attributes. Building a description of a process employs general and domain specific knowledge, and
involves a new type of inductive learning called part—to—whole generalization. The key idea behind the
methodology is the use of multiple description models, and model-oriented transformations of the input
sequence. Bach description model constrains the syntactic form of candidate descriptions, and in this way
greatly reduces the total search space. A model is instantiated to a specific description by defining various
parameters. A description is considered plausible if it fits a transformed input sequence well, according to
the requirements of the model.

The methodology is illustrated by several example problems, such as discovering a secret code for a
passage through a sequence of channels, determining preconditions for actions in a blocks world, learning a
robot action sequence, predicting the motion of an oscillating spring, and discovering rules in the card
game Eleusis that models the process of scientific discovery.

1. INTRODUCTION

1.1. What is Qualitative Prediction?

Events in our world tend to be highly interdependent. This interdependency makes it possible to
make predictions about the future on the basis of our knowledge of the past. In fact, the whole purpose of
building and maintaining knowledge is to be able to predict and/or influence the future. If our world were
a sequence of comi)letely unrelated random scenes, and therefore our knowledge of the past were of no use
to interpret or predict future events, there would be little reason for storing any knowledge. As the con-
struction and usage of knowledge is a primary function of intelligence, the need for intelligence would cease

also. The above agrees with the observation by Rivest' that "the purpose of intelligence is to predict the

future.”

The relationship between future and past is usually imprecise and uncertain. Also, it is typically

very complex and multi-factored. An important way to capture this relationship is to build descriptions or

At a seminar at the Artificial Intelligence Laboratory, MIT, Fall 1985.



models that are qualitative, i.e., which characterize processes in terms of causal relationships, trends and
dependencies. In qualitative prediction the main stress is on building descriptions from partial knowledge
of a process. Therefore, the major type of inference involved in it is inductive. This is different from the
approaches in [De Kleer & Brown 1984; Forbus, 1984] which are deductive in nature. Inductively derived
descriptions may range from statements of "surface" properties, e.g. observable physical properties, to

causal explanations and abstract relationships characterizing the process.

The most widely researched type of inductive learning has been concerned with discovering a genera;
description of a class of objects, given selected instances of the class. For example, given instances of can-
cerous and non—cancerous cells, the task is to determine a general rule for discriminating between these
two types of cells [Michalski, 83]. This type of inductive learning is called instance-to—class generaliza-
tion. The inductive learning involved in qualitative prediction is different from such instance—to—class gen-
eralization. It involves a form of the part—to—whole generalization. To explain the latter type of induc-
tion, let us consider a few examples. Suppose that a paleontologist has excavated bones of a pre-historic
animal, and from this information he then hypothesizes the entire skeleton of the animal. As another case,
consider an archeologist who is given an incomplete set of pieces of a broken ancient sculpture, and has to

- reconstruct the original. In such cases we do not have independent examples of some class of objects, but
rather interdependent parts of one structured object. The task is to hypothesize a description of the whole

object.

Clearly, the above problems fit the general notion of inductive generalization, but are not the
instance—to—class generalization problems. In instance—to-class we are given instances that are
independent members of a class; any possible relations among training instances are considered
irrelevant. In part—to—whole generalization, the inputs are descriptions of parts of a structured object,

and relations among the parts are of primary importance.

A very simple form of the part—to—whole generalization problem occurs in 1Q tests where the task
is to predict a plausible continuation of a sequence of numbers or letters. The given sequence can be viewed

as a part of an unknown complete sequence. The task is to hypothesize the remaining part of the complete



sequence on the basis of the known parts of the sequence.

Suppose that instead of letters or numbers, we have snapshots of some process occurring in time. .
Assume also that our background knowledge contains sufficient information for characterizing the relation-
ships between these snapshots. The task is to determine a description of the process which not only
accounts for snapshots seen so far but also suggests a plausible continuation of this process. Suppose
further that the description sought is not quantitative but rather qualitative. Instead of precise prediction
of the future process, which may not be possible, one desires only a general characterization of the proper-
ties that the future events are expected to satisfy. In this exploratory paper we assume that a process is

represented by a sequence of events, called an episode:
E= <epy g eg we e >

It is also assumed that each event can be satisfactorily characterized by a vector of values of certain attri-
butes:

xl(ej), X;Z(-Cj)’ x3(ej), ey xn(ej)
or briefly,

Xy Xgy Xgy -eny Xy
We will also assume that attributes x; ... x| have domains which are known a priori (value sets):

D(x,), D(x,), D(xg)s «e D(x,)-
Each D(xi) is the set of all values an attribute can possibly take for any event in the given or future
episodes. These value sets, their structure (which defines the type of an attribute), the constraints on the
relationships among attributes, and knowledge of the application domain, constitute the background

knowledge of a qualitative prediction system.

Given an episode, E, and the background knowledge, the task is to induce a description that charac-
terizes the given episode, and predicts plausible future events: i.e., epi1r Bt Such a description is
called a qualitative prediction rule (QPR). It is not required that a QPR specify precisely what event will

follow, but merely constrain the type of events that may follow. When constraints are sufficiently strong



that only one event may satisfy them at each place, then the QPR is a deterministic prediction rule; other-
wise, a non-deterministic prediction rule. Discovering such qualitative prediction rules is called a non-

deterministic prediction problem (NDP).

An example of an NDP problem is to discover the secret rule in the card game ELEUSIS. The rule,
known only to the dealer, describes a sequence of cards which are legal. Players attempt to play one or
more cards which correctly extend the sequence. To do so, they have to infer the secret rule or its approxi-
mation from the cards observed so far. Dietterich [1980] describes a method and a program for discover-
ing such rules which in some instances outperformed human players. Another paper [Chen & Ko, 1985]
describes the SPARC/E program that discovers rules, and plays the Eleusis game as an autonomous player
using the rules discovered. The methodology underlying the SPARC/E program was subsequently general-
ized and described by Dietterich and Michalski [1985]. This paper further expands and extends the
method, and presents results of various experiments with an implemented program, SPARC/G?. These

results demonstrate the performance and generality of the method.

Three main topics are discussed in this paper. First, various models for expressing descriptions are
defined, and algorithms for constructing descriptions based on these methods are detailed. Second, a pro-
gram that implements the methodology is described. Lastly, several example problems are used to demon-

strate the strengths and weaknesses of the methodology.

1.2. Relationship to Time Series Analysis

There are };arallels between this approach and the regression and spectral methods in time series
analysis [Box & Jenkins, 1976}. Regression methods attempt to explain the behavior of a particular vari-
able in terms of the behavior of a set of independent variables using a polynomial regression function.
Spectral analysis attempts to describe the behavior of a particular variable by analyzing its frequency spec-
trum. In our approach, we use three description models. Our decomposition model corresponds to the
regression polynomial. Our periodic model is a symbolic counterpart of the spectral method. However, our

third model, the disjunctive model, seems to have no counterpart in classical time series analysis. The

2 SPARC/G stands for Sequential Pattern Recognition/General.



major differences between the proposed approach and time series approach can be characterized as follows:

~ In the proposed methodology, each event in the process can be characterized by a large number of
attributes. The attributes may have different types: numerical, nominal, cyclic or structured (where
the value set is a hierarchy).

~  The prediction for the next events is qualitative and non-deterministic; the system constructs a sym-
bolic description that characterizes the set of plausible next events.

o The background knowledge of the program contains constructive induction rules that generate new
attributes not present in the initial data.
We assume that the input information about a given process, and the information derivable from

program’s background knowledge, are sufficient for predicting a plausible continuation of the process.

2. INDUCING GENERAL DESCRIPTIONS FROM EPISODES

This section presents the theoretical background and basic algorithms underlying the SPARC/G

methodology.

2.1. Events and Episodes

The goal of the SPARC/G methodology is to construct a description of an observed process that per-
mits one to predict qualitatively plausible future events. The desired description should be conceptually
simple, and consistent with the information known about the process and the system’s background
knowledge. To cievelop such a description, "snapshots” of the process are taken. In each snapshot, we
measure the state of the process in terms of various attributes believed to be relevant ("attribute” and

"variable”" are used interchangeably throughout).

A collections of measurements of the process in one snapshot is called an event. A sequence of events

in chronological order is called an episode.



2.2. Representation of Events

A simple representation of an event is just a list of values of some attributes. A more elaborate
representation would be in the form of graphs or predicate logic expressions. Here, we use a representation

based on VLla [Michalski, 1974]. Each event is represented by a conjunction of relational statements
called selectors. Each selector describes some measurements taken from the original process. Conjunctions
of selectors are called VL1 complexes, or simply complexes. Formally, a selector consists of an attri-
bute name, a set of values called a reference, and a relation between the attribute name and the set of

values. It is written as

[attribute relation reference].
For example, the relation

[suit = clubs v diamonds]

states that the attribute suit may take on the value clubs or diamonds.

Each attribute is assigned an explicit set of values called its domain. All legal values in the refer-
ence of a selector must be taken from the domain. Four types of attributes are distinguished: linear, nomi-
nal, cyclic, and structured. Both linear and cyclic attributes have integer values. Nominal attributes have
non-ordinal values. For example, the domain of the nominal attribute suit is {clubs, diamonds, hearts,
spades}. A complex (a conjunction of selectors) is written by placing selectors directly adjacent to each
other. For example, the complex {suit = clubs v diamonds]{value < 3] describes the set of cards {AC, 2C,
AD, 2D}. A structured attribute represents a value hierarchy that is built on top of existing attributes,
and can be either linear or nominal. For example, the structured attribute color (of cards) can be defined
with the attribute suit, such that [color = red| is defined as [suit = hearts v diamonds|, and [color =

black] is defined as {suit = clubs v spades].

*the Variable~Valued Logic 1



2.3. Representation of Episodes

Subscripts are used to indicate the relative ordering between events. Attributes with subscript 0
refer to the current event of interest. A subscript of 1 refers to the event immediately preceding the
current eventhof interest; a subscript of 2, to the event before that, and so on. For example, the complex
[color1=red][value0 > 6] states that the color in the preceding event was red and the value in the current
event is greater than 6. We also introduce difference and sum attributes. The attribute dvalue0l is

defined as valueO—valuel. The attribute svalueOl takes on valueO+valuel.

2.4. Lookback and Periodic Descriptions

Statistical prediction methods specify possible next values of some attributes along with a probabil-
ity of each value. The method described here differs from such methods in that it specifies a symbolic
description characterizing all possible next events. There are two basic types of descriptions used to
characterize a sequence and predict its future course: lookback descriptions and periodic descriptions.
A lookback description is a function, F, of the Ib most recent events, where Ib is the lookback parameter.
This function, denoted F, predicts the next event, or a set of plausible next events (the non-deterministic

prediction) in terms of the properties of the Ib past events. Thus, given an episode:
E= <eys €y €3y -y e >,

we have

Fe; 1y Si(ib-1) = %2 &i-1) = (&b

where {ei} is the set of plausible next events.
An example of a lookback description with lb=4 is the function

e I e R B

where z,=0, z,=1, 2,=2, 2,=3

that describes the sequence



<0,1,2,3,8, 16,90, ..>

A periodic description characterizes a sequence by observing a regularity that binds the events at
some fixed distance from each other (the period length) throughout the whole sequence. The relative posi-

tion of an event within the same period is called a phase. For example, the sequence
<a, b, ¢, byc,d, ¢, d, ¢ d, e f, ...>

is characterized by a periodic description of period length 3, in which letters of the same phase grow alpha-

betically.

2.5. Description Models

Inductive learning is the process of generating plausible and useful hypotheses that explain observed
and predict unobserved events. One approach to induction is to identify one or more description models
that constrain the form of hypothesized descriptions. Inductive learning then becomes a two step process
of first instantiating the model to generate a specific description, and then evaluating the plausibility and
utility of the resulting description. Simple forms of such techniques have long been used in traditional
regression analysis, where a typical model is a regression polynomial, and statistical tests are used to test

the fit between the data and the instantiated model.

Examples of symbolic description models are the decision tree used by Hunt [1966], and the disjunc-
tive normal form used by Michalski [1969, 1971, 1974]. Such models carry a good deal of implicit
problem-specific knowledge. It is important that a general inductive tool permit dynamic specification,

modification and manipulation of the models.
Our method uses three description models:

(1) Periodic conjunctive model. This model specifies that the description must be a periodic descrip-

tion in which each phase is described by a single complex. For example, the rule

Period ( [color0O=red], [colbr0=black])



describes an alternating sequence of red and black cards. Furthermore, we can imagine a periodicity
within the phase, in which case we have an embedded periodic rule. For example, suppose that the
first phase of the above rule is another periodic sequence of face and non-face cards. This is

represented as:

Period ( [color0 = red][Period ([face0==true], [face0=false})],

[color0=black]).

(2) Lookback decomposition model. This model specifies that the description must be a lookback

description in the form of a set of if~then rules:

[colorl=red] — [value0<5]

[color1=black] — [value0>==5]

The left—hand sides, or condition parts of the rules refer to no more than Ib (the lookback parame-
ter) events prior to the event to be predicted (subscripts 1, 2, etc.). The right-hand sides provide
predictions for the next events in the sequence given that the condition part is true. The decomposi-
tion model requires that the left-hand sides be disjoint so that only one if-then rule be applicable at

one time.

{3) Disjunctive Normal Form (DNF). This model requires only that the description of the sequence

must be a disjunction of VL1 complexes. For example, the DNF expression:
[dsuit01l = 0] v [dvalue0l = 0]
states that either the suit of the current card must be the same as the suit of the previous card, or

the value of the current card must be the same as the value of the previous card.

From a logical standpoint, any decomposition rule or periodic rules can be written in disjunctive nor-
mal form. The periodic and decomposition models are useful not because of their theoretical expressive-

ness or power, but because of their assistance in locating plausible descriptions quickly. Depending on the
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number of descriptive attributes used, the space of all DNF descriptions could be immense and thus

difficult to search. Therefore, this is a "catch all” model, used after the other models have failed.

2.6. Descriptions Based on Segmentation

Often sequences of events are best described in a hierarchical fashion as series of sub-sequences. For

example,
S = <3,4,4,55,5,6,6,6,8,7,7,7,7,7>

is best described as a sequence of sub-sequences. Each sub-sequence is a string of identical digits. The
length of each sub-sequence is one longer than its predecessor. The digit used in the sub-sequence is one
larger than the digit used in the previous sub-sequence. In our method, this is indicated by a two part
description in which one part defines the segmentation condition, and the second part defines the relations

among segments:
Segmentation Condition:
String : [dvalue01=0]
Intersegment Relation:

[dvalue01=-+1][dlength01="+1]

The segmentation condition defines sub-sequences of events with constant value (dvalue01=0). The
intersegment relation defines relations among the segments in §’. For example, dvalue0l and dlength01
refer to the values and lengths of the segments in S’. In our example the sequence is segmented into

strings of maximal length satisfying this segmentation condition. This yields a new sequence
§' = < (3,1), (4,2), (5,3), (8,4), (7,5)>

In the original episode S each event of the episode is an entity with only one attribute, the value. In S’
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each event is related to a sub-sequence of events in S. Some of the attributes of S may also be used in S’,
while some other are newly created for 8’. For example, the second event in S’ has value 4 because all the
corresponding events in S have value 4. Events in S’ have a new attribute, length, indicating the number

of events corresponding to this event in S.

Any description model listed in section 2.5 can be applied to a sequence after it has been segmented.
The discovery of such segmented descriptions requires both the discovery of the segmentation condition
and the formulation of the description of the segmented sequence. In the current implementation, the sys-
tem is equipped with a repertoire of segmentation conditions. A segmentation condition is chosen if its
application produces a sufficient (user defined criterion) number of elements in the transformed sequence,
and the program checks plausibility exhaustively. A segmentation condition is plausible if it yields enough

elements in S’ from S.
3. THE ALGORITHMS UNDERLYING THE SPARC/G PROGRAM

3.1. Input Representation

The input episode is represented as a list of events. Each event in the list is represented by a set of
attributes which are defined by the user. In addition, each event is marked as a positive or negative event
of the episode. Let us use a very simple example {Figure 1) to illustrate the workings of SPARC/G. Each
event in the episode is characterized by its texture, orientation (in degrees) and size. The representation

(what is actually used by the program) is shown in Figure 2.

S IO %

Figure 1. Sequence of Geometric Figures

> 4@
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Event txtro orient0 | size0
number

1 blank 45 small
2 striped 90 big
3 blank 135 small
4 solid 180 big
5 blank 225 small
6 striped 270 big
7 blank 315 small
8 solid 0 big
9 blank 45 small
10 striped 90 big
11 blank 135 small
12 solid 180 big

Figure 2. Input VL1 Events

3.2. Data Transformations

The first step is to use constructive induction rules to derive additional attributes that may be useful
for creating descriptions of the episode. Such rules are a part of program'’s background knowledge, sup-
plied by the user. New attributes are defined in terms of existing attributes which in turn may be derived
from previously defined attributes. The new attributes augment the current event descriptions. Here, a
new attribute shaded is added that has two values: true and false. The value false characterizes a blank
‘texture and the value true characterizes any other texture. If the generated attributes pass a preliminary
relevance test, they are used to augment episode representation. Such an augmented representation is

shown in Figure 3.

Event txtro orient0 | size0 | shaded0
number
1 blank 45 small false
2 striped 90 big true
3 blank 135 small false
4 solid 180 big true
5 blank 225 small false
6 striped 270 big | true
7 blank 315 small false
8 solid 0 big true
9 blank 45 small false
10 striped 90 big true
11 blank 135 small false
12 solid 180 big true

Figure 3. Augmented VL1 Events
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The second step involves segmenting the episode. As discussed in section 2, a segmentation condition
is a relation that must hold between adjacent events of the segment. SPARC/G segments the episode into
strings of maximal length that satisfy the segmentation condition, and then evaluates the potential useful-
ness of the segmentation. For example, the segmentation is not considered potentially useful if the seg-
mented episode has nearly the same number of events as the original episode, or if the whole episode
satisfies the segmentation condition.

The next transformation step involves making the order of the events explicit in the events. If the
lookback parameter is one or more, the episode is transformed by augmenting each event with previous
events falling within the lookback parameter window. Figure 4 is the result of such a transformation
derived with null segmentation condition and a lookback of one, then augmented with difference attri-

butes. Now, the episode goes through model specific transformations explained in the next section.

3.3. Model Dependent Rule Generation

This section explains how each description model is used in searching for a qualitative prediction

rule.

3.3.1. Rule Generation of the Decomposition Model

The decomposition model describes an episode by a sequence of production rules. It accepts as input

a set of positive events with, optionally, a set of negative events. Some attributes are designated as "left—

Event txtrl orientl | sizel | shadedl txtr0 | orient0 | size0 | shaded0 | dtxtr01 | dorient0l | dsize0l | dshaded01
number
1 blank 45 small false striped 90 big true 1 45 1 1
2 striped 90 big true blank 135 small false 1 45 1 1
3 blank 135 small false solid 180 big true 1 45 1 1
4 solid 180 big true blank 225 small false 1 45 1 1
5 blank 225 small false striped 270 big true 1 45 1 1
8 striped 270 big true blank 315 small false 1 45 1 1
7 blank 315 small false solid 0 big true 1 45 1 1
8 solid 0 big true blank 45 small false 1 45 1 1
] blank 45 small false striped 90 big true 1 45 1 1
10 striped 90 big true blank 135 small false 1 45 1 1
11 blank 135 small false solid 180 big true 1 45 1 1

Figure 4. Transformed VL1 Events
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hand side” attributes. A decomposition seeks to explain current events in terms of the values of "left—

hand side" attributes. A decomposition model-based description for the events in Figure 4 would be

[shadedl=true] — [txtr0==blank] [shaded0=false]

[shaded1="false] — [txtrO=solid v striped] [shadedO=true].

This description decomposes events on attribute shadedl. It breaks the description of the episode into
two if—then rules. The — can be interpreted as an implication. The decomposition algorithm assumes
that both the left~hand and right-hand parts of the if-then rules must be single VLl complexes, and that

the left—hand sides must be logically disjoint.

The decomposition algorithm starts by performing a trial decomposition on each possible left-hand
side attribute. A trial decomposition for a left hand side attribute is formed by creating a complex for
each value of the attribute occurring in the episode. The complex is formed by merging (set union) the
references of corresponding selectors of all events following the left hand side attribute. For example, using
the events of Figure 4, trial decompositions could be performed on txtrl, orientl, sizel and shadedl, but
for simplicity Figure 5 represents a decomposition in terms of txtrl and shadedl. The general idea is to
form trial decompositions, choose the best decomposition, and break the problem into sub—problems, one
for each if-then rule in the selected decomposition. The algorithm can then be applied recursively until a

consistent description has been developed.

Figure 5 shows the raw trial decompositions. These are very low generality descriptions. They must
be processed further before a decision can be made as to which decomposition is best and should be further

.

investigated. Three processing steps are applied to the trial decompositions.

The first processing step involves linear and cyclic interval attributes. These attributes often have
many values, and raw trial decompositions based on them may be uninteresting and implausible. An
attempt is made to apply the "close interval” inductive inference rule on the left-hand side of the trial
decomposition [Michalski, 1983]. The algorithm operates by computing distances between adjacent if-then

rules, and looking for sudden jumps in the distance measure. Where a jump occurs (a local maximum),
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Decomposition on txtrl:

[txtrl=solid]  — [txtrO=blank][orient0=45 v 225)[size0=small|[shadedO=false]
[dtxtr01=1](dorient01==45] [dsize01=1][dshaded01=1]

[txtrl=blank]  — [txtr0=solid v striped|[orient0=0v 90 v 180 v 270} [size0=big|[shaded0=true]
[dtxtr01=1][dorient01=45] [dsize01=1]|[dshaded01=1]

[txtrl==striped]  — [txtr0=Dblank|[orient=45 v 135 v 315| [size0=small}[shaded0="false]

[dtxtr01=1][dorient01=45][dsize=1] [dshaded01=1]

Decomposition on shadedl:

[shadedl=true]  — [txtrO=Dblank][orient0=45 v 135 v 225 v 315|[size0=small][shaded0={alse]
[dtxtr01=1}[dorient=45|(dsize01=1] (dshaded01==1]
[shaded1=false]  — [txtr0==striped v solid]{orient0==0 v 90 v 180 v 270} [size0=big|[shaded0=true]

[dtxtr01=1][dorient01=45|[dsize01=1][dshaded01=1]

Figure 5. Trial Decompositions.

the algorithm tries to split the domain into cases.

The distance computation is a weighted multiple-valued Hamming distance. The weights are deter-
mined by taking user—specified plausibilities for each attribute and relaxing these weights according to the
discriminating power of each attribute (taken singly). For instance, if a right-hand side attribute is
irrelevant in some if-then rules, i.e. its reference contains all possible values, then its weight is reduced to
zero. The distances between adjacent if—then rules are computed and local maxima are located. If there is
one maximum, the interval is split there, and two if-then rules are created. If there are two maxima, there
are three intervals each creates one if-then rule. If there are more than two maxima, the smaller maxima

are suppressed. Similar techniques are used for cyclic interval domains.

Once the cases have been determined, each trial decomposition is processed by applying the domain
type specific rules of generalization to the selectors on the right-hand sides of the if-then rules. The "close
interval” inference rule is applied to linear and cyclic attributes. Special domain types are defined for
difference attributes (attributes derived by subtracting two other attributes). The rules of generalization
for difference attributes attempt to find intervals about the zero point of the domain. Thus, [dvalue01=-3
v 1 v 2] would be generalized to [dvalue01=-3..+3]. One-sided intervals away from zero are also created:

[dvalue01=3 v 4 v 6] would be generalized to [dvalue01>0|. These generalizations are only performed if
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the reference contains more than one value. Corresponding to the trial decompositions of Figure 5 we get
the generalized trial decompositions shown in Figure 6. The notation [sized = *| is used when an attribute

can take on any value from its domain.

The third processing step examines the different if—then rules and attempts to make the right-hand
sides of the rules disjoint by removing selectors whose references are overlapping among them. Figure 7

shows the results of this step.

The selection of the best decomposition uses a set of cost functions that measure characteristics of

each trial decomposition. The cost functions are:

Decomposition on txtrl:

[txtrl=solid] ~ — [txtr0=blank][orient0=45..225] [size0=small|[shaded0="false]
[dtxtr01=1][dorient01=45|[dsize01=1] [dshaded01=1]

[txtrl=blank]  — [txtrO=solid v striped][orient0=0..270] [size0=Dbig][shadedO=true]
[dtxtr01=1][dorient01=45][dsize01=1][dshaded01= 1]

[txtrl=striped]  — [txtr0=blank][orient=45..315][size0=small] [shaded0=false]

[dtxtr01=1][dorient01=45](dsize=1]|[dshaded01=] |

Decomposition on shadedl:

[shadedl=true] — [txtr0O=blank|[orient0=45..315|[size0==small] [shaded0=false]
[dtxtr01=1][dorient=45[dsize01=1][dshaded01=1]
[shaded1==false] ~ — [txtrO=striped v solid}[orient0=0..270}(size0=Dbig] [shadedO=true]

[dtxtr01=1][dorient01=45][dsize01=1|[dshaded01==1]

Figure 6. Generalized I'rial Decompositions.

Decomposition on txtrl:

[txtr1=solid] — Any Event
[txtrl=blank] — Any Event
[txtrl==striped] — Any Event

Decomposition on shaded1:

[shadedl=true] — [txtrO=Dblank}[shaded0=false]
[shadedl=false] — [txtr0=solid v striped|[shaded0=true]

Figure 7. Trial Decompositions With Overlapping Selectors Removed.
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(1) Count the number of negative examples that are incorrectly covered by this decomposition.

(2) Count the number of cases (if-then rules) in this decomposition.

{(3) Return the user-specified plausibility for the attribute being decomposed on.

(4) Count the number of null cases for this decomposition

(5) Count the number of "simple" selectors in this decomposition. A simple selector can be written with
a single value or interval in the reference (e.g. [value01>>4] is a simple selector). After applying the
generalization rules (as in Figure 6) all selectors except those with nominal attributes are simple.
The cost functions are applied in an ordered fashion using the functional sort algorithm developed by

Michalski [Michalski, 1978]. The trial decomposition with the lowest cost is selected. The lowest cost

solution is the decomposition on shadedl shown in Figure 7. It states that if the the figure is shaded, then

the texture of the next figure is blank and not shaded. Also if the figure is not shaded then the texture of

the next figure is solid or striped, and shaded.

Once the best trial decomposition has been selected, it is checked to see if it is consistent with the
events (covers no negative events). If so, the decomposition algorithm terminates. If it is not, the problem
_ is decomposed into separate subproblems, one for each if-then rule in the selected decomposition. Then
the algorithm is repeated to solve these subproblems. (The subproblems are solved simultaneously, not
independently).

The strengths of the decomposition algorithm are
(1) Speed — good decompositions are located quickly.

(2) Transparency - decomposition descriptions are easy to interpret.

(3) Generality - the algorithm can discover a large class of symbolic relations between the current event

and past events within a given lookback.
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3.3.2. Rule Generation using the Periodic Model

The periodic model is used to test if events in the episode display a periodic behavior. It is assumed
that the parameter defining the number of phases is provided to the algorithm. In searching for a periodic
description, the system may try different values of this parameter. Each phase is treated in a manner simi-
lar to the treatment of the different if-then cases in the trial decomposition algorithm described earlier.
First, the events in each phase are combined to form a single complex (by forming the union of references

of corresponding selectors). For the episode in Figure 1, using a phase of two, the results are:

Phasel: [txtrO=blank][orient0=45 v 135 v 225 v 315]
[size0=small][shaded0=false]|

Phase2:  [txtrO=solid v striped][orient0=0 v 90 v 180 v 270]
[size0=big|[shaded0=true]

Note that in order to simplify descriptions, no difference attributes or attributes describing previous events
are included in these derived events. First, overlapping complexes are dropped. complexes that do not

cover examples of other phases or negative examples are then generalized further:

Phasel:  [txtr0=Dblank][orient0=45..315]
[size0=small|[shaded0=false]

Phase2:  [txtrO=solid v striped]{orient0==0..270]
[size0=Dig][shaded0=true]

If these generalized complexes still do not cover negative examples, selectors with overlapping references

(overlapping with selectors in other phases) are removed:

Phasel: [txtrO=Dblank]{size0=small][shaded0=false]
Phase2: [txtr0=solid v striped][size0=big][shaded0=true]

If these complexes are still consistent, they are returned as the final description.

Both the periodic and the decomposition algorithms go through the above post—processing steps until
the description becomes inconsistent, at which time the algorithm backs up and returns the version of the
description before it was overgeneralized to become inconsistent. In some cases, the star generation process
of the Aq algorithm is invoked to attempt to extend the description against negative examples and exam-

ples of other phases.
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For each phase from the above, a new episode is assembled. This episode is considered a full-fledged
episode so that the periodic algorithm is invoked recursively until either the newly assembled episode is
trivial, such as having length of one, or the description returned from the next call to the model is implau-

sible. For the example, the episode for the second phase is again periodic:

Phase2l: [txtr0 = striped]
Phase22: [txtr0 = solid]

Here the second phase of the top level is described by an embedded periodic rule of two phases, Phase2l
and Phase22. The full recursive periodic description is:
Period( [txtr0 = blank][size0 = small|[shaded0 = false],

[size0 = big][shaded0 = true]
[Period([txtr0 = solid], [txtr0 = striped])] )

This rule states that the episode has two phases: the events in the first phase have "blank" texture,
"small” size and shaded; the events in the second phase have "solid" or "striped” texture, "big" size and

not-shaded, also the textures alternate from striped to solid.

3.3.3. Rule Generation using DNF Model

The DNF (Disjunctive Normal Form) model employs the Aq algorithm [Michalski, 1969; Michalski,
1971), which was originally developed in the context of switching theory and subsequently used for induc-
tive inference [Michalski, 1974]. The algorithm accepts as input a set of positive events and a set of nega-
tive events, and éroduces an optimiszed cover of the positive events against the negative events. Such a
cover is a description that is satisfied by all of the positive events, but by none of the negative events. The
process of developing a cover involves partially computing the complement of the set of negative events
and intelligently selecting coniplexes which cover positive events. The final cover may be a single complex
or a disjunction of complexes. Aq seeks to develop covers that satisfy predefined criteria, such as minimiz-

ing the number of complexes in the cover, the total cost of attributes, etc.
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The algorithm proceeds in best-first fashion by the method of disjoint stars. A positive event, el,
is determined, and a star is built about el. A star is the set of all maximally general complexes which
cover el and do not cover any negative event. The best complex in the star, lq, is chosen and included in
the goal description. All events covered by lq are removed from further consideration. The above process
is then repeated. However, the newly selected el must not be covered by any element of any previous
star. In this manner the algorithm builds disjoint, well-separated stars. It has been shown that the
number of such stars is a lower bound on the minimum number of complexes in any cover [Michalski,
1969]. The process repeats until all events are covered by at least one lq complex. Disjunction of the
selected complexes forms the goal description. Some clean-up opera.tions' are required in the case where

some positive events were covered by some star, but by no lq.

A simplified description of the process of building a star about an event el is given as follows: each
negative event is complemented, and then multiplied out, with the proviso that each resulting complex
must cover el. After each ev;mt is multiplied out, the set of intermediate products (so—called partial stars)
is trimmed according to a user-specified preference criterion, and only the MAXSTAR best elements are

retained. The final star has at most MAXSTAR elements in it.

Note that all of the steps mentioned (complementation, multiplication, etc.) are performed on attri-

butes which can take on a set of values. This is 2 multiple-valued covering process.
The strength of the algorithm includes:
(1) Quasi~optimality — The algorithm efficiently generates covers that are optimal or near optimal.

(2) Flexibility of cover optimality and type - the user can specify the cover optimality criterion that
reflects the specific aspects of the problem. The criterion determines which lq is chosen from each
star and which partial stars are retained during the star-building process. The algorithm can also be
told the type of the cover sought. The cover can be disjoint (complexes are disjoint), intersecting

(complexes are overlapping) or ordered (complexes are linearly ordered).

(3) Optimality estimate - if no trimming is performed, the algorithm provides an estimate of the max-

imum difference between the number of complexes in the solution and in the minimum solution.
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The DNF model is used to discover properties that describe the collection of all positive/negative
events. Sequential information, if any, exist in the form of attributes that charac‘terize the relationship
between events. The Aq algorithm is given the set of all positive events and negative events augmented
with the derived attributes. The algorithm then attempts to find descriptions that describe all positive
events, but none of the negative events. With orientation defined as a cyclic attribute so that zero degree is
considered to be 45 degrees "larger” than 315 d'egrees, a difference attribute dorientOl can be defined.

Given appropriated negative events (not shown in Figure 1), A description
[dorient01 = 45]
is discovered as the description that perfectly characterizes the positive events.

3.4. Description Evaluation and Selection

This phase examines rules developed by the above induction algorithms in order to filter out redun-

dant information in the generated rules. For example, the following are the rules given in Figure 7:

[shaded1=dark] — [txtrO==blank] [shaded0="false]

(shadedl=clear] — [txtr0=solid v striped][shaded0=true]

Note that [txtrO=Dblank] implies [shaded0=false], and [txtr0=solid v striped] implies [shadedO==true].
This redundancy was caused because the induction algorithms were not aware of the structural relation-
ships between attributes. This redundancy is removed by the following procedure:
for each rule in the rulebase do
for each complex in the rule do
for selectors A and B in the complex, and both A and B are based on same attribute do
if they are equivalent then keep the more general one .
else if A C B then drop A

else if B C A then drop B

Selector A is more general than B if B tautologically implies A.
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If A and B are based on two different attributes, A and B can not be redundant. For example,
shaded0 and dshaded0l can not be redundant since shadedO is based on txtr0 while dshaded01 is based on

both shaded0 and shadedl.

When an episode is segmented, some additional operations may be required. For example, given the
episode:
S = <3,4,4,5,5,5,6,6,6,6,7,7>
one would not want to create a segment for the sevens. Such a segment would indicate that there is a
string of sevens of length 2. If the induction algorithms received such an event, they would not be able to
discover that the length of a string always increases by 1. So the segmentation process must leave the end
of the episode unsegmented. Each description produced by the induction algorithm must be checked to

verify that it is consistent with the tail end of the episode.

Finally the plausibility of the descriptions is assessed. First of all, the rule must be consistent; that
is, it should not predict an incorrect continuation of the episode. Another criterion for plausibility is that
the rule should be conceptually simple. This is approximated in the program by measuring syntactic com-
plexity of the rule, such as the number of values in a reference, the number of selectors in each complex,

- the number of complexes in the rule and so on.

4. APPLICATIONS

This section presents results from applying the SPARC/G program* to a few example problems. Pos-

sible improvements and extensions to the program are also suggested.

Example 1: Discover Safe Passage through Canals

Suppose that two oceans Oceam1 and ()ce:m2 are connected by a network of canals, and the passage-
ways are full of mines. The mines are constantly activated or de-activated by the enemy through remote
control. The enemy signals the safe passageway to its ships by left and right beacons located before and

after the junctions. The color and frequency of the beacon seem to be governed by a secret code indicating

4 The program was written in Berkeley Pascal, running under Unix 4.2 BSD on a Sun-2/120 workstation.
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the passage. The ally observes the enemy ships passing from Ocea.n1 to Ocea«nz, and would like to decode
the signals so that its ships can also pass through the canals safely. SPARC/G was given the following
descriptors:

{1) LeftColor: Color of the left beacon: {green, red, blue}

(2) RightColor: Color of the right beacon: {green, red, blue}

(3) LeftFrequency: Frequency of the left beacon: {low, medium, high}

(4) RightFrequency: Frequency of the right beacon: {low, medium, high}

A map of the canal is given in Figure 8. The routes not taken by enemy are considered not safe, and
marked as arrow with a bar across it. To discover the rule that characterizes the safe passage, it is
hypothesized that the relevant information for the secret code is provided by the attributes of the beacons
before and after each junction. The input episode is given in Figure 9. The program discovered the follow-

ing safe passage rule using the decomposition rule model:

Rule 1: decomposition model, lookback: 1, nphases: 0

[LeftColor-before = red] — [RightFrequency-after > RightFrequency-before]
[LeftColor-before = green] — [RightFrequency—after < RightFrequency-before]
[LeftColor-before = blue] — [RightFrequency-after = RightFrequency-before]

| Event number || LeftColor | RightColor | LeftFrequency | RightFrequency route
1 red green medium medium taken
2 green blue high low not-taken
3 green blue low high taken
4 red green high high not-taken
5 blue red medium medium taken
6 red blue medium high not-taken
7 red green medium low not-taken
8 green red low medium taken
9 blue red medium high not-taken
10 red red high low taken
11 green blue medium low not—taken
12 green blue high low not-taken
13 blue green low medium taken
14 blue green low high not-taken
15 blue red low medium taken

Figure 9. Input events for example 1.
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The computation time was approximately one second on a Sun-2/120.

The rules can be paraphrased as follows. The passage is safe if:

~  the color of the left beacon before a junction is red, and the frequency of the next beacon on the right

is higher than that of previous beacon on the right, or

~  the color of the left beacon before a junction is green, and the frequency of the next beacon on the

right is lower than that of previous beacon on the right, or

~  the color of the left beacon before the junction is blue, and the frequency of the next beacon on the

right is the same as that of previous beacon on the right.

In the paraphrase, the "implication” is interpreted as "and". This is allowed because the left hand
sides of the implication in decomposition rules are disjoint and complete with respect to the domain of the
attribute. In view of the complexity of the rules, the program was able to discover the rules that are

exactly the ones used to generate the examples.

Example 2: Learning Preconditions in a Blocks World

In many planning systems, operations are often expressed as precondition-postcondition pairs.
Preconditions specify the conditions that must be satisfied before the application of the operation, while
postconditions generally state the changes caused by the operation. For example, the operation put-
on(block1, block2) which puts blockl on top of block2 in blocks world have the following preconditions

and postconditions :

Preconditions: there must be no other object on top of block2, and the top of block2 must be flat.

Postconditions: blockl is on~top—of block2; blockl is "deleted” from its previous position.

This example shows how a system can acquire the rules by learning from examples. In this example,

the world consists of four objects: two cubes, a cylinder, and a pyramid. The following variables are

defined for SPARC/G:
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top-of-cubel: its value is the name of the object that is on top of cubel.

top-~of-cube2: its value is the name of the object that is on top of cube2.

top-of—cylinder: its value is the name of the object that is on top of the cylinder.

top—of-pyramid: its value is the name of the object that is on top of the pyramid.

put: the action of putting an object on top of another. For example, [put=cylinder—on—cube1]

specifies the action of putting the cylinder on top of cubel.

put-on—cubel: a binary variable that states the legitimacy of putting an arbitrary object on top of

cubel.

The positive events given to SPARC/G are arbitrary legitimate actions and statuses permitted by

the blocks world. The negative events are, on the other hand, illegitimate actions and status. Here is one

example given to the program:

[top—of—cubel=cube2}[top-—of—cubeZ:clear]{top—of—cyliuder:clear][put=cylinder—on-cube2| Iput-on~cubel=yes|

This example states that if cube2 is on top of cubel, and the tops of the cube2 and cylinder are clear,

then one may put the cylinder on top of cube2 (put==cylinder-on—cube2) or cubel {put—on-cubel=yes).

The input episode is shown in Figure 10. SPARC/G discovered the following rule using the DNF model

with a lookback of 0 in 2.2 seconds:

[top—of-cubel = clear] v [put-on—cubel = noj

Event number || top—of-cubel | top—of-cube2 | top-of—cylinder put put-on—cube-1
1 clear clear clear cube2—on-cubel yes
2 clear clear clear cylinder-on—-cubel yes
3 clear clear clear pyramid-on—cubel yes
4 clear clear clear cube2-on-pyramid no
5 clear clear clear cubel-on-cylinder yes
6 cube2 clear clear cylinder-on-cube2 yes
7 cube2 clear clear cube2-on-cubel no
8 pyramid clear clear cylinder~on-cubel no
9 cylinder clear clear pyramid—on—cubel no

Figure 10. Input events for example 2.
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which can be reexpressed as

[put-on-cubel = yes] — [top-of—cubel = clear]

which in effect says that if you want to put something on top of cubel, then the top of it must be clear.
This is obviously correct. On the other hand, this example shows one of the limitations of SPARC/G: the
description language allows only one argument functions or predicates. A desirable extension of the pro-

gram would be to include in its description language predicates and functions of one or more arguments.

Example 3: Learning a Symbolic Description of Motion

Motion is one of the most basic notions that governs our understanding of the physical world. How
does motion of an object affect the state of the world and what type of motions are possible given the state
of the world? The answer depends on discovering relations governing motion. We need not know
Newtonian mechanics to understand the physical interactions of motion. The first step toward such
discovery is to draw causal or semi—causal connections between descriptions of the world. Since motion
occurs in time, a sequential pattern recognition program like SPARC/G can play an important role. This
example illustrates how the program can discover the causal relationships between the state of a spring
and motion of an object. The program was given the following descriptors as perceptual vocabulary:
(1) Spring: state of the spring: {compressed, relaxed, stretched}.
(2) Pos: the pogition of the block with respect to the position of the spring at rest: {left, center, right}.
(3) Move: direction of the movement of the block: {left, still, right}.

{(4)  Accel: the block slows down, accelerates, or moves with constant speed: {-1, +1, 0}.

Initially, the spring is stretched and the spring oscillates back and forth as shown in Figure 11. The

corresponding input episode is given as shown in Figure 12:

SPARC/G discovered the following decomposition rule with lookback of 1 in 1.1 seconds:
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spring
block relaxed
spring
block compressed
spring
block relaxed

spring

block stretched

Figure 11. The oscillating block.
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Event number Spring Pos Move | Accel
1 stretched right still -1
2 relaxed center left 0
3 compressed left still +1
4 relaxed center | right 0
5 stretched right still -1
6 relaxed center left 0
7 compressed left still +1
8 relaxed center | right 0
9 stretched right still -1

10 relaxed center left 0
11 compressed left still +1
12 relaxed center | right 0
13 stretched right still -1
14 relaxed center left 0
15 compressed left still +1
18 relaxed center | right 0
17 stretched right still -1
18 relaxed center left 0
19 compressed left still +1
20 relaxed center | right 0
21 stretched right still -1
22 relaxed center left 0
23 compressed left still +1
24 relaxed center | right 0
25 stretched right still -1
26 relaxed center left 0
27 compressed left still +1
28 relaxed center | right 0
29 stretched right still -1
30 relaxed center left 0
31 compressed left still +1
32 relaxed center | right 0
33 stretched right still -1
34 relaxed center left 0
35 compressed left still +1
36 relaxed center | right 0

Figure 12. Input events for example 3.

Rule 1: decomposition model, lookback: 1, nphases: 0
[Springl = stretched] — [Move0 = left]

[Springl = relaxed] — [Move0 = still] _
[Springl = compressed] — [Move0 = right]

The rule can be paraphrased:

(1)  If the spring is stretched then the block is going to move to the left.

(2) If the spring is relaxed then the block is coming to a halt.
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(3) If the spring is compressed then the block is going to move to the right.

SPARC/G was able to predict the movement of the block from the state of the spring. Even though
the above mentioned rule may fail (e.g. if the spring is stretched too much, the spring may break), it seems

to be a good first approximation of our intuitive notion of spring motion.

Physicists can explain the episode from first principles but most human beings are not physicists. It
seems that we typically derive qualitative relations existing in the world by doing inductive inferences from
our observations, such as those performed by SPARC/G. Thus, it appears that the program can be used

to capture some important aspects underlying our processes of acquiring models of the physical world.

Example 4: Learning a Sequence of Actions

The operation of most planning or problem solving systems is usually based upon a predefined set of
rules. These rules represent the direct injection of knowledge from human users to the system. In this

example, we show how SPARC/G can be used to acquire these rules by learning from training episodes.

Suppose we wish to teach a robot to operate a simplified cassette recorder by giving examples.
Several legitimate actions are defined for the robot, such as to put a cassette into the recorder, eject the
cassette, play, stop, etc. The robot is allowed to fiddle with the cassette recorder, and a tutor labels each
of the robot’s actions as being either correct or incorrect. Whenever the robot effects an incorrect action, it
is assumed that the robot will retract the incorrect action before making any further attempt. The robot
must figure out th_e right sequence of actions all by itself. It is assumed that the rules to be learned are in

the form:
ACTIONi — ACTION;j or ACTIONk

Such a rule states that after ACTIONi is executed, the next legitimate action can only be either ACTIONj

or ACTIONk.

In this example, four legitimate actions on the recorder are defined:
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Put: putting the cassette into the recorder

Play: begin playing the cassette

Stop: stop playing the cassette

Eject: taking the cassette out of the recorder

The legitimate sequence of actions are the following:

After putting the cassette into the recorder (Put), one may either eject the cassette (Eject) or start
playing (Play).

After begin playing the cassette (Play), the only legitimate action is Stop.

After Stop, one may either Eject or Play.

After Eject, the only legitimate action is Put.

A variable Action, among some other irrelevant variables, is defined in this example. The variable

Action can take on either one of the four values: put, play, stop or eject.

Part of the episode given to SPARC/G is shown in Figure 13.

Event number || Action | Legal? |
1 put yes
2 put no
3 stop no
4 play yes
5 put no
[i] stop yes
7 eject yes
8 play no
9 put yes

10 eject yes
11 put yes
12 eject yes

Figure 13. Input episode for example 4.

SPARC/G discovered the legal sequences of actions using the decompositional model with a lookback

of 1 in 2.5 seconds. The rules produced take the form of implications:
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Rule 1: decomposition model, lookback: 1, nphases: 0
[actionl = eject] — [action0 = put]

[actionl = stop] — [action0 = play v eject]

[action] = play] — [action0 = stop]

[actionl = put] — [action0 = play v eject]

The rules can be paraphrased:

Following Eject, the next action must be a Put
Following Stop, the next action must be either a Play or an Eject
Following Play, the next action must be a Stop

Following Put, the next action must be either a Play or an Eject

Thus, these rules exactly characterize the legal actions.

Example 5: ELEUSIS: A Game of Scientific Discovery

This example shows the program’s capability to discover rules in the card game Eleusis that models
the process of scientific discovery [Gardener, 1977; Abbot]. The game is played between a dealer and
several players. Given a sequence of cards that represent an instantiation of a qualitative prediction rule
invented by the dealer (e.g. alternating color of cards), the players are supposed to guess the secret rule
invented by the dealer. In order to make the game more interesting, the dealer is penalized for inventing
rules too difficult for any one to discover, or rules so simple that everyone can discover them. For the pur-
pose of this example, it is assumed that SPARC/G poses as a player trying to figure out the rule governing
the card sequenc'e. The following is a simple Eleusis example designed to show the versatility of
SPARC/G. A specialized version of the program, SPARC/E, has shown expert level performance in play-

ing the game, and beat its human counterparts on many occasions.

The card sequence is given as a main line and a side line. The cards (read from left to right) in the
main line represent positive instances that conform to the dealer’s secret rule, and the cards in the side-

lines represent negative instances that defy the rule.
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Main line JC AD QH 10S QD 9H QC 7H
Side line KC 53 4S 10D

The above layout of cards shows a card sequence of alternating faces, with Jack, Queen and King as face
cards. The layout indicates that it is legitimate to play an Ace of diamonds (AD) following a Jack of clubs

(JC), but not a King of clubs (KC), etc.

When given the above sequence, SPARC/G discovered the dealer’s secret rule in three ways:

Rule 1: decomposition model, lookback: 1, nphases: 0
[face(cardl) =false] — [face(card0) =true] v

[face(cardl) =true] — [face(card0) =false]

Rule 2: periodic model, lookback: 1, nphases: 1

period([face(card0) < >>face(cardl)])

Rule 3: periodic model, lookback: 1, nphases: 2
period([face(card0) =true}, [face(card0) =false])
The rules can be paraphrased as follows:
Rule 1: (4 seconds)
If the previous card is a face card, then the next card must be a non—face card. If the previous card is
a non—face card, then the next card must be a face card. This rule was discovered using the decompo-
sition modei with a lookback of one.
Rule 2: (1 second)

Adjacent cards in the card sequence have different face values. This rule was discovered using the

periodic model with a phase of one.

Rule 3: (1 second)
The sequence is composed of two interleaving sequences of cards, where one sequence are all face

cards, and the other sequence all non—face cards. This rule was discovered using the periodic model
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with a phase of two.

Figure 14 shows the result of several game sessions.

5. SUMMARY AND RESEARCH DIRECTIONS

The methodology presented is applicable to a wide range of qualitative prediction problems. The
major strength of the methodology lies in its use of several description models and corresponding sequence
transformations. These models and transformations guide the search through a potentially immense space
of plausible qualitative prediction rules. The methodology assumes that the information contained in the
events, plus the information that can be inferred from the events using the program’s background
knowledge, is sufficient to predict a plausible continuation of a process. One way to improve the capability
of the system is to enhance the background knowledge and the program’s ability to utilize this knowledge.
The current implementation utilizes mainly the information contained in the events, and to a lesser extent
those contained in the baékground knowledge. Background knowledge consists primarily of description
models and associated sequence transformations, domains and types of variables, and various domain
specific constructive induction rules that generate new variables from the old ones. It does not, however,

have capabilities for testing the consistency of generalized selectors in the complexes fqr utilizing various

Secret Rule Execution Source of
Rule Discovered Time the Rule
If previous card is red, rule 1: lookback: 1 nphases: 0 Decomposition
then play a faced card; [color(cardl)=red] — (face(card0)==true| v 2.9 seconds Tom Channic
If previous card is black, [color(cardl)==black] — [face(card0)="aise|
then play a non—faced card.
If previous card is odd, rule 1: lookback: 1 nphases: 0 Decomposition
then play a card of different color; | [parity(cardl)==odd] — [color(card0) < > color(cardl)] v | 1.8 seconds | Donald Michie
If previous card is even, [parity(card1)=even| — [color(card0) < > color(card1)]
then play a card of same color.
rule 1: lookback: 0 nphases: 0 DNF
Play any card that is either |color(card0)=red|{parity(card0)=odd] v 1.2 seconds | Patrick Winston
red and odd, or black and even. [color(card0)==black]|[parity(card0)=even|
If previous cartd is odd, rule 1: lookback: 1 nphases: 0 Decomposition
then plays a black card; {parity(cardl)==cdd| — |cotor(card0)< >color{cardl)}} ¥ | 1.5 seconds | Martin Gardner®
if previous card is even, |parity(card1)==even| — [color(card0)=color(card1)|
then plays a red card.

Figure 14. Results from other ELEUSIS game sessions.

§ From the article, "MATHEMATICAL GAMES: On playing New Eleusis, the game that simulates the search for truth"
Scientific American, October 1977
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inter—domain constraints, or for performing a chain of deductions to see if the episode is explained by the

rules of inference in the background knowledge [DeJong, 1983].
The search strategy invokes two processes simultaneously:

(1) a specialization of description models by instantiating the models with the given parameters to gen-

erate restricted rule forms.
(2) a transformation of the original episode into a new form, more amenable for rule discovery.

The algorithms presented in this report work best when negative events are available, but satisfac-
tory performance can be obtained without negative events. Processes that contain noise or error are

currently not handled by the program.

The generality of the program has been demonstrated by a series of examples from different domains.
Among desirable paths for future research are improving the efficiency of the search process, extending the
representation to more power'ful description language such as the annotated predicate calculus [Michalski,
1984] so that multiple argument descriptions are allowed, and developing the capability for incremental

learning.
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