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A vast amount of 2D images and 3D meshes and points are created every day. Many

applications require us to extract more semantic information beyond the original raw dis-

crete representation of pixels, facets and points from these data. In this dissertation, I

will focus on extracting several types of shape and physical properties from these data.

However, estimating these property information suffers from some difficulties, including

under-constrained setting, missing accurate ground truth data and expensive computation

cost. I will develop methods to solve three tasks of estimating shape and physical properties

with each task representing one of the difficulties. The tasks are appearance synthesis, shape

synthesis and motion synthesis. For the appearance synthesis, I will develop an end-to-end

deep learning framework to estimate the material (reflectance property) from 2D images,

which is originally an under-constrained problem. The main ingredient of the end-to-end

framework is the introduction of a rendering layer. I will show the effectiveness of framework

for editing the materials in 2D images. For shape synthesis, I will discuss how to combine

the inaccurate and noisy ground truth normal data and the image itself to predict fine-scale



normal from 2D images using the deep learning framework. Results will show that even

though the ground truth normal is inaccurate and far from detailed, the trained deep

learning model can still produce detailed normal predictions. The motion synthesis part

will be about approximating the medial axis of a robot’s configuration space. Originally,

computing the medial axis of the configuration space is highly computationally expensive.

I will show how the formulation of support vector machine can be adapted to solve this

task efficiently. Detailed explanation of how the difficulties are resolved and plenty of

experiment results will be provided. On the other hand, the methods for these tasks require

sufficient and valid training data. I generate synthetic datasets to compensate for the

lack of corresponding real image datasets for appearance synthesis and shape synthesis.

Semantically meaningful segmentations of 3D shapes are used to generate plausible synthetic

datasets for these two tasks. To train the model to approximate the medial axis of the

robot’s configuration space well, the segmentation with bounded geometric constraints of

the 3D models in the environment is needed. To generate the segmentations which are

semantically meaningful and with bounded geometric constraints, I will propose a new

part-aware shape feature and two nearly convex decomposition methods. Comparisons with

human segmentation and other alternatives will validate the effectiveness of the proposed

feature and methods.



Chapter 1: Introduction

1.1 Understanding Shape and Physical Properties

During the past several decades, researchers have successfully advanced the design of various

sensors to capture 2D and 3D data from the real world. These sensors include digital

cameras, laser scanners, stereo cameras, etc. As these sensors are becoming more and more

affordable for general public, billions of 2D images and millions of 3D meshes and point

cloud data are created everyday.

However, images and point clouds (meshes) are only represented with a sequence of

discrete pixels and points (facets); for most machine-based operations or interactions, these

low-level discrete representations are not enough. For example, image relighting has to

estimate physical shapes and relative reflectance properties among pixels and preserve them

before and after the relighting operation while the naive relighting usually change all the

pixel values with the same ration, which gives unrealistic output; navigation through an

environment using the captured 3D data also depends on a deep understanding of the spatial

relationship among the objects in the scene; inserting a new object into an existing image

for virtual reality applications requires the cue of global layout of object in the scene. All

these tasks requires us to go beyond the discrete raw representations of the 2D and 3D data

and to have a better understanding of the data at semantic level.

Two types of such semantic information are shape property and physical property. Some

representative types of the shape properties are normal directions, symmetrical correspon-

dence, medial axis, topological connectivity, etc. In computer vision and graphics, re-

searchers have been working on two kinds of physical properties: reflectance property and

dynamics property. Reflectance property captures the relationship between incoming and
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Figure 1.1: Image composition example. Left: editing with wrong estimation of the ball’s
shape and physical properties; Right: editing with better estimation of the ball’s shape and
physical properties. (Image credit: Adobe Project Felix Video)

out-coming light. It determines the appearance of the images captured by sensors and seen

by human. Dynamics property characterizes how objects move and deform given gravity,

external forces and other physical constraints. Physical property is also known as material

property. To well understand these shape and physical properties from either 2D or 3D

captured data remains challenging.

Extracting and understanding those shape and physical properties from raw data lead

to a lot of applications in machine-based interactions with the captured data or the physical

environment itself. The machine-based interactions include image editing, image composi-

tions, image semantic segmentation and labeling and image based reconstruction from 2D

images, 3D model extraction and labeling and semantic-level manipulation and deforma-

tion for 3D data, robot localization, robot navigation, path planning etc. Those property

information usually plays a vital role in the success of the interaction operations. Take

image editing for example. Image editing is with the great demand ranging from common

smart phone users to professionals. However, image editing usually ends up with unreal-

istic artifacts, like wrong details, or that the edited appearance doesn’t correspond to the

appearance of any object or scene. Figure 1.1 is an example of image composition without

and with good estimation of the object’s shape and physical properties. On the other hand,

when those editing and operations are armed with better estimated shape property and
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physical property information, more realistic and plausible results can be generated. For

instance, knowing the reflectance property enables the objects to know better how their

color (appearance) needs to change according to the illumination changes during image

editing. Another example of interactions is to let the human-designed robot or machine to

conduct several specific tasks in the environment that has been re-created in the virtual

world using the captured data. For this kind of interaction, full understanding of the envi-

ronment’s shape property is also the key to the success. Motion planning is one of them.

Motion planning refers to planning the path for the robot to move from the starting con-

figuration to the target configuration without colliding with obstacles, self-intersection or

violating other constraints. As an application of motion planning, delivery robot requires

the geometric information of the environment to plan a safe path to the delivery destination

without colliding with the obstacle where no road exists while some other information like

GPS can only helps the navigation on the existing road system.

Existing methods in estimating physical and shape properties usually suffer from several

difficulties. The major difficulties include but not limit to:

1) the problem setting itself is under-constrained;

2) there is no ground truth data, or the ground truth data is not accurate enough;

3) the computation is time-consuming.

Most estimation tasks contains one or several such difficulties. In this dissertation, I would

like to explore three topics in estimating physical and shape properties. Each topic will be

a representative task for one of those difficulties. Although each topic will focus on one

difficulty, it doesn’t mean that the topic has only one of those difficulties. Instead, my

objective is to use one topic for each difficulty as the representative task to show how the

difficulties can be addressed. Specifically, I will study the following three topics:

1) Appearance Synthesis: understanding more robust reflectance property (physical

property) from 2D images and showing how it can be used for realistic material transfer

tasks;
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input image

target material 
(e.g. leather)

output image

Figure 1.2: Changing material on 2D image.

2) Shape Synthesis: extracting more detailed normal information (shape property) from

2D images and exploring its various applications;

3) Motion Synthesis: sampling the medial axis (shape property) of a robot’s configura-

tion space efficiently and utilizing it for faster and safer motion planning solutions.

Each of these tasks will be the representative task for studying one difficulty with: ap-

pearance synthesis representing the issue of under-constrained setting, shape synthesis

representing the issue of lack of accurate ground truth data and motion synthesis rep-

resenting the issue of expensive computation cost. The goals of this dissertation lie in not

only that I want to present new approaches to solve those three original challenging prob-

lems, but also that I hope the solutions presented in this dissertation would inspire and

stimulate future research in exploring similar methods to estimate other shape and physical

properties and address additional difficulties. The corresponding works are also discussed

and published in papers [1, 2, 3, 4, 5].

1.2 Appearance Synthesis

Problem Setup. One type of an object’s physical properties that contributes to its ap-

pearance is reflectance property. When light reaches an object, reflectance property will

determine the directions and intensities of the outgoing light. The final images seen by
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human eyes or cameras are the results of interaction among the objects’ geometry, lighting

and reflectance property. Reflectance property is also called material. In the rest of this

thesis, the term reflectance property and the term material will be used interchangeably.

Many designers want to change such property of the objects on 2D images or 3D models.

In the case of 2D images, there is such a common demand for designers: given an image,

for instance a fabric sofa, shown in Fig 1.2, how could a new sofa image be synthesized

such that the geometry and lighting are consistent with the input image while the material

becomes leather? I will mainly focus on the material property analysis and material editing

tasks fron a single 2D image.

Difficulty. Those two tasks are very challenging as usually only the images of the

object itself are provided and there is no information about the objects’ geometry, lighting

conditions or the original material property. As the first step, the material property needs

to be inferred from images. As the images are the results of interaction among the geometry,

lighting and material property, typically the first step needs to infer those information from

the images. However, this problem is highly ambiguous since multiple combinations of

those components may result in the same image. The quality of the estimation of each

component is also highly correlated to that of other components. Those issues make the

material property estimation from a single image be a highly under-constrained problem.

Many previous works have tackled this ambiguity either by assuming that at least one of

the intrinsic properties is known [6] or devising priors about each of these properties [7].

The recent success of deep learning methods, has stimulated research to learn such priors

directly from data.

Proposed Method Overview. To apply deep learning approaches for the material

estimation problem, a feasible approach is to predict each of the intrinsic properties inde-

pendently from an input image, i.e. using individual neural networks to predict normals,

material, and lighting. However, the interaction of these properties during the image for-

mation process inspires us to devise a joint prediction framework. An alternative common

practice of deep learning methods is to represent the intrinsic properties in a latent feature
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Figure 1.3: Left: input 2D image; Middle: noisy normal from ground truth depth data;
Right: blurry normal from using the method from [9].

space [8] where an image can be decoded from implicit feature representations. Directly

editing such feature representations, however, is not trivial since they do not correspond to

any true physical property. On the contrary, the physics of image formation process is well

understood and motivates us to replace this black-box decoder with a physical decoder and

thus enables the network to learn the physics of image formation.

I will present an end-to-end network architecture that replicates the image formation

process in a physically based rendering layer. The network is composed of prediction mod-

ules that infer each of the intrinsic properties from a single image of an object. These

predictions are then provided to a rendering layer which re-synthesizes the input image.

The loss function is defined as a weighted sum of the error over the individual predictions

and perceptual error over the synthesize images.

1.3 Shape Synthesis

Problem Setup and Difficulty. Normal direction is one type of shape property, which

captures the local surface details of objects. It plays a vital role in geometry reconstruction,

visual understanding, virtual reality etc. Normal information is usually obtained through

either laser range sensors or estimated from 2D images. However, normal information from

those sources is usually noisy or blurry. In the case of range sensors as source, normal is

computed from the capture depth data or point cloud data. Nevertheless, there are two
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issues for this source: 1). the resolution is usually low compared to the resolution of the

images, which sometimes would miss some important local details; 2). for the regions with

challenging materials, like mirror, the depth data or point cloud data of those regions are

either missing or not correct. In the case of estimating normal from 2D images, estimating

normal information from 2D images relies on 3D model fitting or learning based reasoning

approaches. The performance of model fitting highly depends on whether the accurate

models can be retrieved from the database or generated through deformation. Both of

these two options are challenging problems. Moreover, those model fitting approaches work

poorly for scene images. The current methods of predicting normal from 2D images ofter

produce blurry output, like the deep neural network based approaches. For example, in

Figure 1.3, the left image is the 2D image captured by camera and the middle image show

the noisy ground truth normal computed from the depth data. Both the image and depth

data are from [10]; the right image shows the current state-of-art normal estimation, which

is blurry, using the approach described in [9]. Other photometric stereo based methods

needs multi-view images of the same scene or objects as input, which doesn’t hold for most

scenarios. Those noisy and blurry issues have limited a lot of applications which prefers

fine-scale accurate normal information.

Propose Method Overview. In this dissertation, I will present a framework to predict

accurate fine-scale normal information from a single 2D image using deep neural network.

Different from previous deep learning based normal prediction works, this framework would

not only penalize the difference between the predicted normal and ground truth normal, but

also add the regularization of whether the images generated using the estimated normal are

matched with the original input images. I will use the similar formulation as Section 1.2,

but will focus more on detailed normal prediction, show results on real scene images as well

and discuss how to train such frameworks efficiently.
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1.4 Motion Synthesis

Problem Setup and Difficulty. One main goal of robotics research is to design methods

to conduct some tasks through movements and other interaction operations with the envi-

ronment. The motion planning is about the process of breaking down the desired movement

task into discrete motions satisfying movement constraints or sometimes with the optimiza-

tion in some aspect. Two well-known approaches towards solving this problem are PRM

[11] and RRT [12]. Medial axis, one type of shape properties, is a set of points that locally

maximize the distance to the boundary or objects. Medial axis is originally referred to as

the topological skeleton. It has a lot of applications in shape recognition, shape segmenta-

tion, topology based transform, other shape analysis and topology analysis tasks. Medial

axis is also an important structure in robotic motion planning [11, 13]. Computing the

medial axis of robot’s configuration space and sampling more configurations on the medial

axis will encourage the maximum clearance and distance from the obstacle. Having such

high clearance often creates safer paths and offers higher possibility to find a path in com-

plex environment where the feasible configuration space only occupies a small proportion

of the whole space. However, computing the medial axis can be very time-consuming in

high dimensional space, which is common for robot’s motion planning problems where the

joints and articulation usually cause the problem to be with high degree of freedom. Hence,

instead of computing the exact medial axis, people try to compute the approximate medial

axis.

One type of approximation is sampling. Wilmarth et al. [14] investigated a method,

called Medial Axis Probabilistic Road Map (maprm), which retracts configurations, free of

collision or not, to the medial axis of free configuration space. Because configurations in

collision with obstacles can also be pushed to the medial axis, maprm provably increases the

probability of generating samples in the narrow passage. Lien et al. [15] extended maprm

to high dimensional spaces by approximating the clearance and penetration depth with a

large number of random query rays. Both methods do not provide any guarantee regarding
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the distribution of samples on the MA. Recently, Yeh et al. [16] presented a method named

Uniform Medial-Axis PRM (umaprm) that can uniformly samples the MA, thus provide

better coverage than maprm.

Although these methods effectively addressed the issue of the “narrow passage prob-

lem,” which means only a very small proportion of the whole space is valid for the final task,

they all rely on expensive geometric computation to approximate clearance and penetration

depth, particularly in high dimensional space. These expensive proximity queries hinders

further improvement of these MA-based sampling strategy. For example, it is highly desir-

able that the edges connecting the sample can also be on or near the MA to increase both

roadmap connectivity and path clearance. However, the edges by these maprm-variants

are usually not on the MA because making a connection on the MA between a pair of

configurations requires a local planner that retracts every discretization of the connection

to the MA. This local planner is prohibitively slow for most motion planning problems.

Proposed Method Overview. In this dissertation, I will propose a solution that

allows a configuration, free of collision or not, to be efficiently retracted to the MA. The

proposed method achieves this without excessively expensive geometric proximity queries.

The main idea is based on an observation that constructing the MA from a set of obstacles

can be viewed as a multi-class training and classification problem. Each obstacle is regarded

as a label and the labels of samples in the configuration space (C-space) is determined

according to which obstacle is the closest. Under this setting, the MA of the free C-space

can be viewed as the classification boundary. Therefore, approximating the MA can be

transformed to finding the hyperplane that has the largest distance to the nearest training

data point of any-class (known as the functional margin).

1.5 Machine Learning Approaches and Data Preparation

As discussed briefly above, machine learning models will be used as the main tools to address

the difficulties and solve those tasks. Specifically, Support Vector Machine (SVM) and Deep
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Neural Network are the good fits to tackle the challenges involved in those tasks.

1.5.1 Support Vector Machine and Deep Neural Network

Support Vector Machine [17], especially when armed with kernel tricks, have been widely

used for the past few decades. The success and popularity of SVM largely owe to the solid

but intuitive mathematical background of its formulation function: the maximum margin

idea which represents extracting the plane which can separate the positive dataset and

negative dataset while maximizing the closest distance between the plane and any data

point from the positive set and the closest distance between the plane and any data point

from the negative set. This is similar to extract a corresponding hyper-plane with specific

geometrical properties in the training data’s geometrical space. This connection motivates

us to explore the possibilities in adapting the solid mathematical formulation and efficient

optimization technique of Support Vector Machine to geometric problems which shares some

similar properties or formulations. Especially, I made the observation that the maximum

margin hyper-plane shares some similar spirits with the medial axis, which also defines the

region having the maximum distance to the two closest objects or elements.

Recently neural network has regained its popularity due to explosion of the available

training data, fast-development computation speed and effective training strategies. It has

achieved great breakthrough in image classification [18], object detection [19], semantic

segmentation [20], speech recognition [21] etc. These successes have a common setting:

the problem originally is under-constrained problem and needs a lot of priors while those

priors are difficult to express explicitly. Taking the image recognition as example, asking

computer to recognize the object in the image with a single image itself without looking

at other images is usually impossible. In this scenario, priors are needed to fuel the sys-

tem. Nevertheless, encoding these priors by hand is difficult as there are many varieties in

object color, rotation, translation, size, species etc. The same scenario applies to the task

of extracting physical properties from images. Extracting physical property from a single

image (view), or even several images (views), is under-constrained as well due to the fact
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that physical property captures the global distribution of how the appearance or deforma-

tion state changes according to the changes in other ingredients, like light intensity, light

direction, surface orientation, external force strength, etc. While, a single image is just

single discrete appearance shot (view) of such distribution given the fixed lighting, surface

orientation and other surrounding environment. Priors are required for this type of prob-

lem. Similarly, estimating normal directions, the 2.5D structure, from a single 2D image is

also an ambiguous problem. Priors will be need to build the mapping from pixels in the

images to normal directions. From a series of recent advance in different fields, deep neural

network, with huge amount of training data to optimize each layer’s parameter, has been

shown to be able to capture those priors that are hidden in the training dataset robustly.

One prerequisite of applying machine learning approaches is to obtain feasible and suf-

ficient training data. In other words, enough valid and feasible training data needs to be

collected for the selected machine learning models. Few training data will lead to prema-

ture convergence and over-fitting. Some data-augmenting tricks like random cropping [18]

only increase a small amount of translation invariance. The large number of parameters in

machine learning system requires more varieties in the training data. AlexNet [22] has 60

million+ parameters; VGGNet [23] has 130 million+ parameters. The starvation of training

data becomes more serious as people try to apply machine learning to more complex prob-

lems. One way which has been shown to be successful to obtain sufficient data to reduce

over-fitting is to first synthesize and simulate the training data and later, if necessary and

possible, fine-tune the trained model using real training data, which usually has smaller

size. For example, for vision tasks, regardless of some possible artifacts, the data generated

by rendering the 3D models has shown to be successful in acting the role of training data

[24, 25, 26].

1.5.2 Data Preparation

Obtaining feasible and sufficient training data plays a vital role in the success of applying

machine learning approaches for various tasks. This section will mainly consider two issues
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of training data: feasibility and sufficiency . The feasibility is the main concern when adapt-

ing the Support Vector Machine to analyze the geometrical property of the configuration

space. Support Vector Machine relies on the “binary partition” between the “positive set”

and “negative set”. When adapting Support Vector Machine to extract the medial axis,

specifically medial axis of a robot’s configuration space, one needs to define the equivalent

sets to the “positive set” and “negative set”. In this way, the geometrical objects or bound-

aries need to be separated into several parts. The separation lies in both the region between

disconnected objects and the concave region of a single object. For the disconnected objects,

the separation are already given; for the objects with concave parts, segmentation meth-

ods are required to separate the concave object into convex parts. The medial axis among

the decomposed convex parts contains the medial axis of the original concave regions.

The sufficiency issue dominates the main concerns for the training data of appearance

ans shape synthesis. Nowadays, people have labeled a lot of dataset for some tasks like im-

age classification, image segmentation, object detection etc. However, there are few dataset

which labels the physical properties for the objects in the image. Even for some available

labeled dataset of physical properties, like the reflectance property, the labels sometime are

just the text description based reflectance category information, not the accurate numerical

representations. One way which has been shown to be successful is to first synthesize and

simulate the training data and later fine-tune the trained model using the few real data.

Dosovitskiy et al. [24] rendered 3D chairs models using different views as the training data

for training a model which would be able to synthesize an image given certain descriptions

(class, view and transformation parameters). Su et al. [25] render images using different

camera poses to train a model which is capable to have a favorable estimation of camera

poses from a random image. For motion tasks, Mnih et al. [26] generated synthetic data

running a lot simulations to learn how the game agent operates in Atari game. Similarly,

the training data will be synthesized for appearance synthesis and shape synthesis. Specif-

ically, 3D models, material dataset, illumination dataset etc will be used to render images

and transfer the corresponding accurate geometric information, material information and

12



lighting information onto the images. During this process, there is also a challenging is-

sue that when synthesizing multi-material images, how to generate plausible images with

different material in a single images? Naively assigning different materials for each pixel

independently would render almost noisy images, which are meaningless and totally differ-

ent from the real images. Instead, 3D models will first be segmented into meaning parts

and different materials are assigned part-wisely for the rendering. For example, given a 3D

chair model, it is usually preferred to decompose the chair into the parts like legs, frames,

seat and backs, and maybe assign one material to legs and frames and another material to

the seat and back. Unfortunately, most of the times, such part information doesn’t come

with the model itself.

1.5.3 Segmentation Methods for Data Preparation

Those issues discussed above requires us to design good segmentation approaches to

prepare high-quality training data. To adapt the Support Vector Machine for medial axis,

segmentation approaches are needed to partition the geometric elements into the feasible

equivalent “positive set” and “negative set”. To train Deep Neural Network models for ap-

pearance synthesis and shape synthesis tasks well, segmentation approaches will be needed

to decompose the 3D shapes into parts, which will be used together with per-part material

assignment to provide sufficient training dataset with enough varieties.

However, designing good segmentation approach is not an easy task, either. The chal-

lenges include: the segmentation results usually needs to be both perceptually meaningful

and satisfying some bounded geometric properties; there are sometimes geometric noises

in the input shapes; many previous segmentation methods rely on many unintuitive user

parameters. For example, as mentioned in Section 1.5.1, partition of “positive set” and

“negative set” requires the segmentation results to meet with the geometric constraint to

reduce the errors introduced by training data; decompositions for material synthesis prefers

the segmentation to be perceptually meaningful which make the final rendered images with

part-wise material assignment to be more consistent with the real world’s multi-material
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images.

In this dissertation, I will propose a new 3D shape part-aware feature called Continuous

Visibility Feature (CVF) and two nearly convex decomposition methods. it will show that

CVF better encodes the surface and part information of mesh than the tradition line-of-sight

based visibility. For example, it will be shown that existing segmentation algorithms can

generate better segmentation results using CVF and its variants than using other visibility-

based shape descriptors, such as shape diameter function [27]. Similar to visibility and

other mesh surface features, continuous visibility would have many applications. Tradition-

ally, developing shape segmentation which is both fast and similar to human segmentation

requires expensive computation and tedious and unintuitive parameter settings; also many

such methods would not be able to satisfy some bounded geometric constraints. I will

propose a 2D shape decomposition method which is robust to noises and shape holes and

can generate segmentation results which will be matched with the human segmentation re-

sults collected from Amazon Mechanical Turk and ensure each part has bounded concavity.

Similarly, I will propose another method to segment a 3D model into several parts which

are also close to the human segmentation results [28] and with bounded concavity. Both

methods will take a single user parameter, concavity tolerance, as input. The number of

the user parameters is fewer than most, if not all, other alternatives.

1.6 Overview of Thesis

Figure 1.4 shows an overviews of my dissertation and the relations among different parts of

this dissertation. Specifically, taking the 3D and 2D shape data as input, the first part, Data

Preparation will segment them into perceptually meaningful parts with bounded concavity

with few user input parameters. The perceptual meaningfulness is important to simulate the

multi-material images which would be closer to real images; while, the bounded concavity

helps to improve the quality of medial axis. The simulated multi-material images will be

used to train the Appearance Synthesis model and Shape Synthesis model. Those two
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Figure 1.4: Overview of this dissertation.

models will be later fine-tuned in real image data. On the other hand, the segmented results

will also be directly used to train the Motion Synthesis model. Appearance Synthesis

part represents my effort towards extracting physical property problem where the problem

itself is under-constrained; Shape Synthesis and Motion Synthesis are the representative

tasks for shape property estimation. Shape Synthesis needs to tackles the difficulty of

missing accurate ground truth data issue; Motion Synthesis has to address the difficulty of

expensive computation cost.

1.6.1 Contributions

In this dissertation, I will design new approaches to explore one type of physical property

and two types of shape properties: material property, fine-scale normal direction and medial

axis. I will also show how those estimated properties can be used for image editing and

motion planning tasks. The contributions of this work are as follows:
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• In data preparation part, I propose a new 3D shape feature which can capture the

part information robustly and is useful for various shape analysis tasks.

• In data preparation part, I also propose two nearly convex decomposition methods to

segment the concave objects into nearly convex parts. The segmentation process is

faster than previous approaches and the segmentation is similar to human segmenta-

tion with fewer user parameters as input.

• In appearance synthesis part, I present the first end-to-end network architecture for

image-based material editing that encapsulates the forward image formation process

in a rendering layer. Compared with previous material editing works, my method

achieves more realistic material editing results with less assumptions.

• In appearance synthesis part, I also present the first differentiable rendering layer

that supports both diffuse and specular materials and utilizes an environment map

to represent a variety of natural illumination conditions. This layer can trivially be

integrated into other networks to enable in-network image synthesis and thus boost

performance.

• In shape synthesis part, I develop a framework that can generate much more detailed

normal predictions than previous works.

• In motion synthesis part, I show a method that can generate the approximate medial

axis of robot’s high-dimensional configuration space efficiently, and how it can speed

up and improve the motion planning solutions.

1.6.2 Outline

The rest of this thesis is organized as follows:

• In Chapter 2 (and paper [1, 2, 4]), I explain how to prepare the data for the training

stage for those tasks.
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• In Chapter 3 (and paper [5]), I introduce an end-to-end network architecture to esti-

mate the reflectance property from 2D images and perform material editing tasks.

• In Chapter 4, I focus on the fine-scale normal prediction from 2D scenes images.

• In Chapter 5 (and paper [3]), I show how the approximate medial axis can be computed

efficiently and used for faster motion planning.

• In Chapter 6, I will make a summary of this dissertation.
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Chapter 2: Data Preparation

In this chapter and papers [1, 2, 4], a new shape feature called Continuous Visibility Feature

(CVF), a 2D nearly convex decomposition approach DuDeand a 3D nearly convex decom-

position approach CoRiSeare presented. CVF is a part-aware feature and can be used to

generate semantically meaningful decomposition. DuDeand CoRiSeaim at decomposing

shapes into parts with bounded geometric constraints.

These semantically meaning decomposition results and decompositions parts with bounded

geometric constraints will be used in the following Chapters to produce training data to

train the methods for appearance synthesis task, shape synthesis task and motion synthesis

by using the decompositions results directly or further simulating rendering based on them.

The motion planning part requires the nearly convex parts to train the machine learning

that can approximate the medial axis. The decomposition results will also be directly used

simulate multi-material rendering images. To render such multi-material images, different

materials will be assigned part-wisely. These parts are obtained using CVF, DuDeand

CoRiSe. While these decompositions methods are used to generate the large amount of

training data for machine learning models, less human interactions are preferred due to the

huge quantity fact. One advantage of using CVF, DuDeand CoRiSefor decomposition is

that less user parameters are needed than previous methods. CVF naturally encodes the

part-aware information and two globally fitted parameters are needed for the soft-clustering

nearing facets with similar CVF values. DuDeand CoRiSerequire a single parameter, con-

cavity tolerance.

CVF provides stronger visibility measure by considering the continuously visible region

for a vertex or facet. CVF will be shown to encode the surface and part information of mesh

better than the traditional line-of-sight based visibility. It also be shown that existing seg-

mentation algorithms can generate better segmentation results using CVF and its variants
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than using other visibility-based shape descriptors, such as shape diameter function. The

comparison are conducted on the public segmentation benchmark [28] and the comparison

result would show that segmentation results using CVF is close to human segmentation

results, which means CVF can be used to generate closely semantically meaningful parts.

There are also a lot of scenarios where decomposition algorithms are required to ensure

that the decomposed parts would satisfy bounded geometric constraints. These bounded

geometric constraints usually allows humans to have better quality or error control when the

decomposed results are used for other applications. 2D and 3D nearly convex decomposi-

tion methods, DuDeand CoRiSetake a concavity tolerance as a single user parameter and

generate segmented parts with concavity same or less than the concavity tolerance. The de-

composition algorithms are fast and decomposition results are close to human segmentation

as well.

2.1 Related Work

2.1.1 Shape Decomposition

Shape decomposition has been extensively studied theoretically and experimentally in areas

including computer graphics, computational geometry [29], computer vision and pattern

recognition. In computational geometry, researchers are traditionally interested in creating

decompositions subject to some optimization criteria, such as a minimum number of convex

components [30, 31, 32, 33, 34], to ease the future shape analysis tasks and applications.

In pattern recognition and computer vision, shape decomposition is usually a step toward

shape recognition. For instance, Siddiqi and Kimia [35] use curvature and region information

to identify limbs and necks of a polygon and use them to perform decomposition. Intensive

approaches have been proposed for 2D decomposition. Liu et al. [36, 37] and Ren et al. [38]

have been proposed to improve [39] to create fewer and more natural nearly convex shapes.

Both methods [36, 38] use mutex pairs to enforce the concavity constraint. Points p1 and p2

19



form a mutex pair if their straight line connection is not completely inside the given shape.

Their focus is on separating all mutex pairs with concavity-based weights larger than a

user-specified threshold. Liu et al. [36] used linear programming to compute decomposition

with minimum cost. Short cut rule is the only rule considered for evaluating the cost of a

cut. Ren et al. [38] applied a dynamic subgradient-based branch-and-bound search strategy

to get minimum number of cuts. Other than short cut rule, [38] also took minima rule into

consideration which is that a cut resolving at positions with greater negative curvatures is

preferred. Similarly, Juengling and Mitchell [40] formulate decomposition of a polygon as

an optimization problem and applies dynamic programming to find the optimal subset of

cuts from all possible cuts. The objective functions used for optimization favors short cuts

that create dihedral angles close to π. Mi and DeCarlo [41] propose to decompose shape

into elliptical regions glued by a hyperbolic patches. Many methods have been developed

to decompose 3D mesh models as well. Comprehensive surveys can be found in [28, 42, 43].

Recently, more techniques using data-driven approach are proposed. These methods

usually provide more consistent segmentations over a set of models [44] and produce seg-

mentations that are more natural via machine learning approaches [45, 46]. However, these

methods are computationally intensive (require hours of computation) and are not suitable

for interactive use.

While many algorithms focus on decomposing a model into visually meaningful parts,

other algorithms focuses on partitioning models into geometric primitives such as ellip-

soids [47] and convex objects [39]. In other words, multiple primitives are used to jointly

approximate the original shape.

2.1.2 Shape Features and Their Applications for Segmentation

Many of the existing single-shape segmentation methods are based on clustering mesh faces,

such as k-means clustering [48], fuzzy clustering [49], mean-shift clustering [50], and spec-

tral clustering [51]. Shape features, such as geodesic distance, local concavity, curvature,
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have significant impact on these clustering methods. More advanced features include shape

diameter function [27] that is a measure of the diameter of the object’s volume in neighbor-

hood of a point, Mumford-Shah model [52] that measures the variation within a segment

and continuous visibility feature [2] that uses more restricted visibility to better capture

shape than the traditional line of sight visibility. Methods that are not clustering based do

exist. For example, the method proposed by Wang et al. [53] uses the training segmentation

of 2D projection images. Random cuts method [54] uses other different segmentation algo-

rithms with various parameters to generate a collection of segmentations to find consistent

cut positions.

The core of these clustering based approaches lies in extracting good shape features from

3D models. These shape features can be roughly classified into per-vertex/facet features

and global signatures. However, It should be pointed out that some global signatures are

also generated from per-vertex/facet features via statistical approaches. Osada et al. [55]

introduced Shape Distributions to capture the statistical information of vertices’ and facets’

shape function values. Shape matching is achieved by measuring the similarity between two

shapes’ distribution. Even though the feature function used in [55] is simple, it paves the

way for many research works in shape matching, shape retrieval and other shape analysis

tasks.

Features can be further classified into several categories depending on whether they

are invariant to translation, scaling, and deformation. Some features are designed to be

invariant to rigid transformation, e.g., spin image [56] and shape context [57]. Invariance

to deformation has attracted more attention. For example, geodesic distance is used to

build deformation invariance features in a multi-dimensional scaling based approach [58]

and spectral domain analysis [59]. The idea of heat diffusion process has triggered the

emergence of diffusion geometry [60]. These features are usually using Laplaca-Beltrami

operator, e.g., heat kernel signature [61], global point signature [62] and multi-solution

spectral descriptor [63].
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Most of the aforementioned features are designed for shape matching, retrieval and cor-

respondence. In shape segmentation, researchers have developed other types of features.

These features directly control the quality of the final segmentation results for the ap-

proaches based on k-means clustering [48], fuzzy clustering [49], Gaussian-mixture model

followed by graph cut [27]. Some other recent work on segmentation which acquires better

result also needs some feature definition [64, 65]. Liu et al. [1] used concavity as features.

Kalogerakis et al. [45] and Huang [46] proposed the learning-based segmentation using a

rich collection of the features.

Visibility-based Features. Several recent works use visibility to derive part-aware

features. The intuition behind most of these visibility-based features is that two points in

the a visually or functionally meaningful part (such as the leg of a table) tend to be visible

from each other. For example, Shape Diameter Function (SDF) [27] captures the thickness

of a shape locally among visible points. SDF is determined by sampling rays inside the

cone in the anti-normal direction of a facet. The SDF value is the sum of the projected

length of the rays inside the model. However, SDF may not correspond well to a visually

meaningful component if the thickness is not evenly distributed. For example, as shown in

Figure 2.1(c), the tabletop has quite different feature values at its center from those on the

boundary. In addition, the feature values at the ends of the leg are also quite different from

those closer to the tabletop.

Another visibility-based feature is Volumetric Shape Image (VSI) [66]. With the motiva-

tion of capturing the general volumetric context instead of only getting the local volumetric

context of the local cone used for sampling rays, VSI tries to sample rays in more direc-

tions. The VSI feature is computed by first finding the proxy center for each vertex and then

sampling ray at fixed direction. The field of VSI is achieved by comparing the difference

between the sampling of a source vertex and other vertices on the mesh.

Recently, weak convex decomposition proposed by [64] also uses lines-of-sights. It first

computes the pairwise visibility between all pairs of the vertices/facets on the mesh. Then
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the similarity matrix is constructed with each entry’s value to be 0 or 1 indicating the pair-

wise invisibility or visibility, followed by spectral clustering. Even though the mathematical

background seems to be quite straight-forward by referring to the similar issues in machine

learning problem, the decomposition sometimes is not satisfying especially when a mesh

model has a large area of bended parts. van Kaick et al. [65] used the technique in [64] as

pre-processing step to over-segment the mesh, but it also needs a lot of post-merging.

In all of these features [27, 64, 65, 66], traditional line-of-sight visibility is used. However,

from the Figure 2.2, it could be seen that the continuous visibility 2.2 makes more sense

than the general visibility in terms of charactering a potential component.

2.1.3 Concavity and Nearly Convex Decomposition

Most of the times, creating a minimum number of convex components of a concave objects

is NP-hard [32, 67, 68]. More recently, several methods have been proposed to partition at

salient features of a polygon. Tănase and Veltkamp [69] decompose a polygon based on the

events that occur during the construction of a straight-line skeleton. Dey et al. [70] par-

tition a polygon into collections of Delaunay triangles of points sampled from the polygon

boundary. Lien and Amato [39] partition a polygon into approximately convex components.

Their method reveals significant shape structures by recursively resolving the most concave

features until the concavity of every component is below some user specified threshold. Wan

[71] extends [39] to incorporate both concavity and curvatures and prevent over segmenta-

tion by avoid cuts inside pockets. Liu et al. [72] proposed the idea of α-decomposition that

use persistence analysis of features obtained from the continuous convolution [73] between

the polygon and a disc.

Concavity and its counterpart, convexity, have shown to be valuable for various decom-

position methods. Intuitively, concavity of a polyhedron P measures how different P is

from a convex object, which is typically the smallest convex object enclosing P , i.e. the

convex hull H(P ) of P . Concavity can be measured globally from the difference between
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the volumes of P and H(P ) or the difference of their projections [74]. Concavity can also

be measured locally for every point on the surface ∂P of P . Local concavity measures

how far away a point on the surface of P is from the surface of H(P ), thus provides richer

information to guide the decomposition process.

There have been several definitions of local concavity, such as curvature [75]. A more

general definition of the concavity of a point p is the length of the shortest distances from

p ∈ ∂P to H(P ) without intersecting P . Due to the high computational complexity of

3D shortest-path problem, approximation is required. For example, Zimimer et al. [76]

proposed to compute the shortest path by tessellating the space between ∂P and ∂H(P )

using constrained Delaunay triangulation (CDT). However, this solution required ∂P to be

closed. Many other approaches resort to the Euclidean distance between the vertex and the

convex hull in the outward normal direction of the vertex. It is clear that the association

between ∂P and ∂H(P ) is usually complex and cannot be captured by the surface normals

of P . This can result in inaccurate measurement of the concavity and lead to incorrect

decomposition. Lien and Amato [39] proposed to determine the association by projecting

the edges and then facets of ∂H(P ) to ∂P . Unfortunately, such an association between

∂P and ∂H(P ) is not always well defined as it usually depends on how P and ∂H(P ) are

tessellated.

Mamou and Ghorbel [77] proposed a method called Hierarchical Approximate Convex

Decomposition (HACD) for 3D meshes. HACD iteratively clusters mesh facets by succes-

sively applying half-edge collapse decimation operations (see more detailed discussion in

Section 5.5). Attene et al. [78] proposed to convert a model into tetrahedral mesh and then

merge tetrahedra to form near convex components. However, this method requires human

interaction, thus not suitable for segmenting a large number of models. The method pro-

posed in [79] is based on a region growing approach controlled by convexity, compactness

and part cost. Top-down approaches are rare. For example, Ghosh et al. [80] proposed a

notion named relative concavity to model the concavity measure before and after every mesh

cut. Nearly convex components are obtained by finding the cuts that have largest relative
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concavities via dynamic programming. In many of these methods, several parameters are

needed to be set to balance various features.

It should be noted that there are also methods that use convexity and concavity but

do not produce segmentation with bounded convexity or concavity. For example, Au et

al. [75] used concavity-aware field to form potential cuts and the final cuts are achieved by

maximizing the cut score. Even though concavity is used, it doesn’t have direct control of

concavity for final components and several parameters and thresholds need to be set. Asafi

et al. [64] defined the convexity using the line-of-sight and applied spectral clustering on

the visibility matrix to achieve segmentation. van Kaick et al [65] applied merging on the

initial result of [64] based on the Shape Diameter Function. However, since the pairwise

visibility needs to be computed, the computation is time-consuming. Moreover, even though

these two methods use convexity as clue for segmentation, they didn’t directly control the

convex/concave geometric property for the final components.

An important requirement in shape decomposition is its robustness to boundary noise.

Several of these methods require pre-processing (e.g., model simplification [40, 69]) or post-

processing (e.g., merging over-partitioned components [41, 70]) due to boundary noise.

Other methods [36, 38, 39] are designed to tolerate these noise. However, few existing

approaches focused on handling topological noise that appear quite commonly in polygons

generated from images with significant noise and overlapping objects. On the other hand, as

what will be discussed in this chapter, Continuous Visibility Feature and DuDeare robust

to noises to some extent.

2.2 Continuous Visibility Feature for Shape Analysis

2.2.1 Introduction

Feature extraction often serves as a fundamental engineering task for higher level appli-

cations. For example, almost all of the recognition tasks start with defining or learning
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features. This is particularly true for two-dimensional image that has a simple and uniform

grid structure and pixels can be indexed by a 2D vector in a continuous coordinate system.

Each pixel has fixed number (usually 4 or 8) of neighbors. Thus most of the image features

are defined by the convolution operations of the local areas. Consequently, there are some

default features like SIFT [81] and HOG [82] used widely in computer vision research.

Unlike images, 3D models are usually modeled in the continuous domain which makes

defining 3D features challenging. Consequently, many of the features defined for 3D models

usually are designed for specific types of shapes.

For example, visibility among points inside a given shape has been used directly or

indirectly as shape features, in particular for the task of semantic shape segmentation.

The intuition behind most of these visibility-based features is from the observation that

two points sampled from the same semantic part tend to be visible from each other. For

example, shape diameter function (SDF) [27] is a descriptor to describe the thickness of

a mesh defined via local visibility. The idea is initially proposed for shape segmentation

based on the assumption that a visually meaningful component should have similar thickness

everywhere. However, this assumption does not hold in many cases. For example, for a long

component, such as a leg, the thickness at one end of the component may have different

thickness from the other end. Another example is a flat component or a component whose

size grows gradually in a certain direction.

(a) SDF (b)
CVF

(c) SDF (d) CVF (e) SDF (f) CVF

Figure 2.1: Examples of SDF and CVF on the same models. Red and blue indicate the
largest and smallest SDF and CVF values, respectively. From these examples, It can be
seen that CVF provides a better metric to distinguish visually different parts of a model.
More extensive comparison can be found in Section 2.2.4.
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I believe that the traditional line-of-sight visibility used in all existing visibility-based

shape features is insufficient. In this section, I will describe a new feature named contin-

uous visibility feature. The feature provides stronger visibility measure by considering the

continuously visible region for a vertex or facet. Thus this feature is defined in a per-vertex

manner. A point q is continuously visible by a point p if there exists a geodesic path con-

necting p and q that is entirely visible by p. CVF of p is defined as the area of a set of

continuously visible points by p. A more precise definition of CVF can be found in Sec-

tions 2.2.2. CVF better encodes the surface and part information of mesh than SDF does.

Figure 2.1(a) illustrates some example models color mapped by CVF and SDF values. It

will also be shown that existing segmentation algorithms can generate better segmentation

results using CVF than using other shape descriptors, such as shape diameter function [27].

Segmentation results using the Princeton Segmentation Benchmark will be demonstrated

and applications of CVF and its variants (namely CVFavg, strong CVF and weak CVF)

beyond segmentation will also be discussed in Section 2.2.4.

A major technical challenge of computing CVF is the computational efficiency because

it is known the determining the visibility of two points is expensive and determining their

continuous visibility will require many more pairwise visibility checks. In Section 2.2.3,

two ways to compute CVF efficiently will be presented. The first approach will use the

continuous property of CVF to construct the continuously visible region in a Breadth-First-

Search manner. The second approach further improves the efficiency by first collecting

the potential continuous visible region and then using visibility test to search the true

boundaries of the continuous visible region. Comparisons show that the second approach

provides significant speedup over the first approach.

2.2.2 Definitions and Properties of CVF

Visibility among the points inside a given shape has been used directly or indirectly as shape

features in the past. The intuition behind most of these visibility-based features is from the

observation that two points sampled from the same (visual or functional) part tend to be
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visible from each other. It usually remains true if the property is described the other way

around: two points that are visible from each other are likely to be from the same part.

However, there are many exceptions. For example, in a human model in a standing pose,

a point from the head may see a point in the heel and in most cases head and heel will be

distinguished as different parts of the model.

To overcome the drawbacks of the line-of-sight based visibility approaches and to better

capture the component information of a mesh, a new feature named continuous visibility

feature (CVF) is defined. A point q on the mesh is continuously visible by p if there exists

a geodesic path connecting p and q that is entirely visible by p. Note that, this path may

not be the shortest geodesic path between p and q. More specifically, the function cv(p,q)

is defined to return TRUE if and only if

∃π such that ∀r ∈ π, pr ∩M = ∅ ,

where π is a geodesic path connecting p to q on mesh M . An illustration of the continuous

visibility is shown in Figure 2.2 (a).

Intuitively, by applying this stronger version of visibility measure, two points from the

same part not only should see each other but the entire path connecting them should

be visible. Under these definitions, a continuously visible region (CVR) of a point p is a

collection of all points that are continuously visible by p. That is, CVR of p can be expressed

as the set {q ∈ M | cv(p, q) = TRUE}. CVF of a given point p can be represented either

in vector or in scalar form. In this section, scalar representation will be used, in which CVF

is the area of p’s CVR. If the input model is convex, then all vertices in this convex model

have the same CVF, which is the surface area of the model.

Unlike visibility, continuous visibility is not commutative. That is, if cv(p,q) is true,

cv(q,p) may not be true. A 2D example is illustrated in Figure 2.2 (b), in which the point

v cannot continuously see the point w because the visibility continuity is interrupted by

edges e1 and e2. Therefore, when both cv(p,q) and cv(q,p), p and q have strong continuous
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Figure 2.2: (a) Example of 2D continuous visibility. The vertex r is continuously visible
from the vertex p but the vertex q is not. (b) While p is continuously visible from q, q is
not continuously visible from p.

visibility.

2.2.3 Computing CVF

In this section (2.2.3), I will discuss how continuous visibility can be determined for all

vertices of a given mesh. Without loss of generality, I will focus the computation of the

continuous visibility of a given vertex v. In Section 2.2.3.1, a flooding approach using

Breadth-First Search (BFS) rooted at v will first be introduced. However, BFS-based

approach requires many visibility check between v and all vertices visited by the BFS tree.

The second approach will be proposed to address this efficiency issue in Section 2.2.3.2.

2.2.3.1 BFS-based Approach

This first approach uses the property that the continuous visible region of the vertex v

must be continuous because, by definition, every vertex in the continuous visible region is
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connected to v via a path that is entirely visible by v. In this Breadth First Search (BFS)

based method, the iterative search is expanded only at the vertices that are visible to v and

stop at the vertices that are invisible to v. The correctness of this approach can be proved

by saying that, it is impossible to find a vertex u that is continuously visible by v but is

not discovered by the BFS approach.

Although the BFS-based method is simple to implement and provably correct, it may

require many visibility checks. In the next section, an alternative approach will be proposed

to speed up the computation.

2.2.3.2 Filtering

I further propose a more efficient way to compute the feature values. The main idea is

to filter out the faces that guaranteed to be outside the continuously visible region of a

given vertex v. If a triangle f and v form a tetrahedron of positive volume, then, then

f is a positive triangle. Then a continuously positive region of v is a set Tv of positive

triangles continuously connected to v. It is clear that v’s continuously visible region must

be a subset of Tv, and Tv can be constructed using the same BFS-based approach discussed

in the previous section, except that it starts from the incident facets of v.

The next step involves finding the boundaries between the continuously positive region

CV Rv and the continuously visible region Tv. This is done iteratively by connecting v to

a vertex u that is adjacent to Tv but is not in Tv. This guarantees that cv(v, u) must

be FALSE. A geodesic path π connecting v and u now must cross at least one boundary

between CV Rv and Tv. Let w be the vertex closest v on π that is invisible to v and w′ be

the last visible vertex on π before arriving w. By definition, w′ is continuously visible and

edge e = {w′, w} connecting w′ and w must be a boundary edge. To determine the entire

boundary including e, the algorithm first identifies the visibility of the third vertex of the

triangle t incident to e and then move on to the edge e′ 6= e of t whose end points also form

a pair of visible and invisible vertices. This process repeats until a closed loop is discovered.

Using this loop removes vertices that not continuously visible by v. The algorithm sketching
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this idea can be found in the Algorithm 1.

Algorithm 1 Filter-based CVR computation

Input: a vertex v and its positive continuous region Tv
Output: the continuous visible region of v
1: while ∃f ∈ ∂Tv whose visibility to v is undetermined do
2: Let u 6∈ Tv be a vertex incident to f
3: Find a path π connecting v and u
4: Starting from v, let e = {w′, w} be the first edge such that w′ is invisible and w is visible
5: Let L = {e}
6: while L is not a closed loop do
7: Let f be a face incident to e that is not visited
8: Let w′′ be the vertex of f that is not in e
9: if w′′ is invisible from v then e = {w′, w′′}

10: else e = {w′′, w′}
11: end if
12: L = L ∪ e
13: end while
14: Mark all vertices connected to u without crossing L be continuously invisible from v
15: end while

2.2.3.3 Running Time

Experiments are done by using the models from Princeton Segmentation Benchmark to

obtain the running time reposted below. Some of the benchmark models are shown in

Figure 2.4. The results are obtained from the C++ implementation on a machine with

Intel Xeon 2.30GHz CPU and 32 GB memory, with 24 models running parallely. Using the

BFS-based approach, for models with about 1.5K vertices, the number of intersection test

is around 0.9 million and the running time is 10 seconds on average. A model with about

5K vertices and 10K facets, BFS-based approach requires about 8 million intersection tests

and the total running time is around 100 seconds. For a model with 10K vertices, the total

intersection number is around 70 million and the running time is about 900 seconds.

On the other hand, if the filter-based approach is used on the same set of models, the

intersection tests for models with less 5K vertices reduce by 72% and the running time
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reduces by 30%. For models with 5K ∼ 10K vertices, the intersection tests and running

time reduce by 82% and 37% respectively. For models with more than 10K vertices, the

intersection tests and running time reduce by 89% and 49%.

2.2.4 Comparison and Applications

In this section, comparisons between continuous visibility feature (CVF) and shape diameter

function (SDF) will be shown. SDF has been widely used in part-based shape analysis.

For example, MeshLab has adopted it as a filter and CGAL has re-implemented SDF for

extracting features from shape and then used it for shape segmentation.

2.2.4.1 Visual comparisons

Figure 2.3 shows a visual comparison between CVF and SDF. From the pictures, it can

be seen that semantic parts in these examples have more constant CVF in each part and

higher variance when SDF is used. For example, the head of the octopus model has more

consistent CVF values than SDF. For the tool model, the differences between parts are more

distinct than those in SDF. Furthermore, SDF color-map shows four spots on the tabletop

because the rays sent from these places would reach the leg of the table. Finally, in the

legs, hands and torso of the Armadillo model, CVF provides better distinction between the

neighboring parts and, again, more consistency within the parts.

2.2.4.2 Shape Segmentation

Segmenting a mesh into meaningful parts is a standard step toward part-based shape anal-

ysis. In order to have a fair comparison with SDF, CGAL’s SDF-based segmentation is

adopted and SDF feature is replaced with CVF. The shape segmentation implemented in

CGAL first infers a Gaussian Mixture Model (GMM) on the distribution of the feature

values (SDF or CVF), and then each facet is assigned a soft label based on the inferred
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(a) CVF (b) SDF (c) CVF (d) SDF

(e) CVF (f) SDF (g) CVF (h) SDF

Figure 2.3: Side-by-side comparison between CVF and SDF values. In the ideal situation,
each semantic part should have a constant feature value. In these pictures, the CVF values
have lower variance in each semantic part than SDF values do.

Gaussian Mixture Model. The final segmentation is achieved by applying the k-way graph

cut. The data term of the graph cut is encoded by the soft labels, and the smoothness term is

encoded by dihedral angle and edge length. Figure 2.4 shows segmentations using CVF with

CGAL implementation. Figure 2.5 shows the segmentation evaluation results with CVF,

SDF and other segmentation algorithms from the Princeton Segmentation Benchmark [28].

The evaluation is measured by Rand Index (RI) scores. Lower RI scores indicates higher

similarity to human generated segmentations.

Originally, RI evaluation of two segmentations (of the same polygon) is measured by

the likelihood that each pair of cells is in the same component of two segmentations [83]

and, thus, higher score means higher similarity with two identical segmentations having

score to be 1. However, in the Princeton Segmentation Benchmark[28], the RI score is

defined as 1 − original RI, which measures the discrepancy between two segmentations.

More specifically, let S1 and S2 be two segmentations, and s1
i and s2

i be the indices of cell
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Figure 2.4: Segmentation created using CVF.

i in S1 and S2, respectively. Then their RI is defined as:

RI(S1, S2) = 1−

 2

N


−1 ∑

i,j,i<j

[CijPij + (1− Cij)(1− Pij)] ,

where N is the number of cells inside the original polygon, Cij = 1 if s1
i = s1

j , Pij = 1 if

s2
i = s2

j , CijPij = 1 if cell i and cell j have the same index in both S1 and S2, and, finally,

(1− Cij)(1− Pij) = 1 indicates the cell i and j have different indices.

Additional comparisons evaluated using other metrics such as consistency error, cut

discrepancy, Hamming distance all show similar trend as RI.

The bar labeled as “CVF” shows the evaluation results using the original CVF (as oppose

to CVFavg that will be discussed later). It can be seen that the RI score of CVF (0.17) is

slightly better than the RI score of SDF (0.18). That fact that CVF does not provide more

significant difference leads us to investigate deeper into the segmentation results. Table 2.1
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Figure 2.5: The comparison of segmentations using Princeton Segmentation Benchmark.
The y-axis indicates errors measured in Rand Index values.

shows the RI scores for all categories in the benchmark.

Note that the methods compared in the Benchmark used the features such as geodesic

distance, cut perimeter, component area, etc. Some recent approaches do not introduce

new features, but instead combing existing features via heuristics or learning techniques.

For example, Kalogerakis et al. [45] use a set of descriptors to learn the segmentation,

including curvature, PCA, shape contexts, geodesic distance, spin image etc. van Kaick

et al. [65] employ a multi-step process: 1. Generate over-segments; 2. Merge segments

with SDF dissimilarity lower than a threshold; 3. Cut boundary refinement. Thus it is also

worthwhile to try to incorporate CVF with the feature-rich approaches to understand how

CVF can be combined with other features and how it performs in the combination.

From Table 2.1, segmentation using CVF in the cup, airplane, and bird categories

performed poorly with respect to the human data collected in the benchmark. Figure 2.6

shows the distinct CVF values from the inside (concave part) and the outside (convex part)

of the cup. The reason that CVF would be different for inside and outside parts is that the

inside part is concave everywhere. The vertices in the inside parts can hardly continuously

see any facets except the ones adjacent to it, while the outside part is convex, the vertices
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(a) CVF (b) CVFavg (c) CVF (d) CVFavg

Figure 2.6: Segmentations created using CVF and CVFavg.

there can continuously see a lot of facets. The top left picture in Figure 2.6 shows the

visualization of the cup. The bottom left shows the segmentation result using the CVF.

The GMM-based shape segmentation separates the inside from the outside, which in some

sense is a reasonable segmentation but makes the evaluation score rather low because most

results from the benchmark segment the cup handle from the cup body. In the next section,

I will discuss three variants of CVF that will address these issues.

2.2.4.3 CVF variants

CVF is versatile and can be defined in various ways to address several issues identified in

plain CVF. In this section, I will describe three variants of CVF that provide better results

than CVF. Due to space limitation, detailed comparisons between these variants can be

found in the supplementary materials.

In the first CVF variant, I propose to average the CVF values of a facet (or vertex) p.

That is, a ray will be sent in its counter-normal direction and identifies the nearest facet

q intersected by the ray. Then the CVFavg of p is the average between original CVFp and

CVFq. The upper right picture in Figure 2.6 shows the visualization of the CVFavg, and

the lower right picture in Figure 2.6 shows the segmentation using CVFavg. It can be seen

that the results are more consistent to human segmentation.

In Table 2.1, the RI scores of CVFavg are shown. Note that CVFavg improves CVF

significantly in the cup category (from 0.45 to 0.23). Moreover, surprisingly, CVFavg also
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improved most of the RI scores from other categories (with the exceptions in airplane, plier,

and fourleg). Consequently, it can be seen that CVFavg outperforms SDF in 11 categories

(out of 19). Even when SDF has lower RI scores, the differences between CVFavg and SDF

are usually small, except in the Airplane category. Figure 2.7 shows an example in this

category.

Table 2.1: Compare CVF and CVFavg with SDF . The CVFavg means the the feature values
for a vertex are are achieved by averaging the CVF values between original CVF values and
the the facet that is hit by the ray sent out from that vertex in its anti-normal direction
(counter-normal direction.)

RI

SDF CVF CVFavg Diff

Human 0.18 0.16 0.14 0.02
Cup 0.36 0.45 0.23 0.22

Glasses 0.2 0.21 0.19 0.02
Airplane 0.09 0.17 0.2 -0.03

Ant 0.02 0.04 0.04 0
Chair 0.11 0.1 0.07 0.03

Octopus 0.05 0.04 0.03 0.01
Table 0.18 0.12 0.09 0.03
Teddy 0.06 0.08 0.07 0.01
Hand 0.2 0.17 0.13 0.04
Plier 0.38 0.21 0.22 -0.01
Fish 0.25 0.18 0.18 0
Bird 0.12 0.25 0.18 0.07

Armadillo 0.09 0.11 0.1 0.01
Bust 0.30 0.31 0.30 0.01
Mech 0.24 0.21 0.14 0.07

Bearing 0.12 0.14 0.13 0.01
Vase 0.24 0.18 0.18 0

Fourleg 0.16 0.16 0.17 -0.01

Average 0.18 0.17 0.15 0.03

The second CVF variant is called strong CVF that requires mutual continuous visibility.

two points p and q have strong continuous visibility if both cv(p,q) and cv(q,p). The first two

columns in Fig. 2.9 show the color-map of CVF and strong CVF. In most examples, CVF and
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(a) CVF (b) SDF

(c) CVF (d) SDF

Figure 2.7: Limitation of CVF. In the left figures, the vertices (colored in yellow) between
the airplane body and wings can continuously see both the wing and body. This results in
large CVF values can causes the segmentation cuts to be at the middle of the wings.

strong CVF are almost identical, except in the last example (bottom of Fig. 2.9). Notice

the checker board-like pattern in CVF. The strong CVF provides much more consistent

feature values than CVF in this example.

The third CVF variant is designed to address the issues found in the airplane or bird-like

models, in which the fuzzy regions between the wings and the body cause poor segmentation

as shown in Fig. 2.7. Now, let us go back to the definition of continuous visibility. Even if

both points p and q are continuously visible to each other, the geodesic paths that prove

their mutual continuous visibility may be different. A such example illustrated in Fig. 2.8

shows that two different geodesic paths are taken by points p and q. One can see that path

πp that witnesses cv(p,q) is much longer than the path πq that witnesses cv(q,p). In fact,

it is possible to make the path πv arbitrary long by moving the right most (shaded) face in

Fig. 2.8 to its right. Intuitively, there is a negative correlation between the likelihood of v

and w belong to the same part and the ratio between the continuous visibility path length

and the length of the shortest geodesic length. Similarly, the edge length of e in Fig. 2.8

also has negative effect on the relationship between CVF and the likelihood of v and w
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q

πq

p

πp

e

Figure 2.8: An example of the continuous visibility between two points v and w through
different paths. The point v is continuously visible by the point w via path πw and w is
continuously visible by v via a much longer path πv.

belonging to the same part. In all cases, it will be desirable to take the visibility along

the shortest geodesic path into consideration. Consequently, I propose that a measure of

weak continuous visibility wcv. Given two points p and q, {wcv(p, q) = TRUE} if p and

q are visible to each other but the length of the invisible part of the shortest geodesic path

connecting p and q is smaller than a user defined value τ . Let π be the the shortest geodesic

path connecting p and q and let π̄w and π̄v be subset of π invisible to v and w, respectively.

The function wcv(p, q) returns TRUE if max(||π̄w||, ||π̄v||) ≤ τ .

The last column in Fig. 2.9 shows the results of weak CVF. It is clear that weak CVF

provides significantly sharper boundaries that can lead to better segmentation. See segmen-

tation results using weak CVF with varying values of tau in the supplementary materials.

Since the CVF and its variants are based on visibility checking, one question may be

raised by people is whether CVF and its variants are robust to noises. CVF is insensitive to

bumps and noise. With the original or strong CVF in 3D, it is unlikely that noise or random

bumps block the visibility of all paths between two points on the surface. In addition, the

weak CVF can tolerate a certain amount of invisibility since it allows part of the shortest
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CVF strong CVF weak CVF CVF strong CVF weak CVF

Figure 2.9: Results obtained from CVF (left) vs. strong CVF (middle) vs. weak CVF
(right).

geodesic path to be invisible.

2.2.4.4 Application: Part-based Retrieval

In most shape retrieval problems, the objective is to retrieve a shape that is globally similar

to a query shape. Since CVF can be used to generate segmentation and encode shape

signature of each component, CVF can be used for context-aware part retrieval following the

strategy described in [27]. Specifically, the segmentation using CVF will first be generated

as described in the previous sections and then will be used construct a hierarchical part

structure of the given shape from the segmentation. In this hierarchical part structure, the

whole model is the root of the tree and the leaves are the components in the segmentation.

Then each node in the tree is encoded with the CVF histogram as its signature. During

the retrieval stage, the retrieval is reduced as a bipartite matching problem. Given a query

component, it is compared with all the components in the dataset. To match two nodes

40



query retrieved models with similar part ranked from left to right

Figure 2.10: Part-based retrieval using CVF.

Figure 2.11: Medial-axis samples created using CVF.

(components) p and q, a bipartite graph will be built between nodes of the paths leading

the root to p and q in the hierarchy.

The total matching score is achieved by solving this maximum weight bipartite matching

problem. Fig. 2.10 shows two examples and top 9 matching parts in the database.

2.2.4.5 Application: Medial Axis Extraction

Figure 2.11 shows the medial axis sample points generated by CVF. Skeleton points are

constructed by using the idea of reference points in [66]. Basically, for a vertex p, a ray will

be sent to the continuously visible region and each ray gives a reference point. It can be

seen that the skeleton points provide a good approximation of the medial axis.
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Figure 2.12: Invariance to pose change and deformation.

2.2.5 Discussion & Future Work

In this section, I showed a new shape feature called continuous visibility feature (CVF). I

proposed two algorithms to compute CVF for each vertex of a given mesh: one is based

on BFS and the other one is based on identifying potential continuous visibility regions.

I showed that the second approach is significantly faster than the BFS approach. In the

experimental results, I show that CVF provides good results comparing to the methods

in Princeton segmentation benchmark. If the CVF values are averaged between vertices

on the opposite sides of their anti-normal directions, called CVFavg then I see significant

improvement over CVF and SDF. I demonstrated a couple of applications beyond shape

segmentation, like shape retrieval and medial axis sampling.

My experiments show that CVF is insensitive to pose change and deformation. It is true

that the CVF value is not isometry invariant; however, it is the distribution of CVF that

matters. Pose change or deformation does not change the CVF of one vertex only. Rather,

many vertices’ CVF change. If I consider the overall distribution of all vertices’ CVF, for

most poses, the overall distribution still preserves part-awareness. For example, in Fig 2.12,

even though the legs of octopus (fingers of hand) have different poses or deformation, the

distribution of CVF can still capture the part information.
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I believe the continuous visibility feature would have more applications. Currently I

only focus on the scalar representation, more applications of CVF can be explored with

vector representation, a list of Booleans representing the continuous visibility of all vertex

pairs. For example, modifying the existing features with the constraints of CVF’s vector

representation. This work was also published in the paper [2].

2.3 Dual-Space Nearly Convex Decomposition for 2D Shapes

2.3.1 Introduction

Decomposing two-dimensional (2D) shapes into functional and visually meaningful parts

is a fundamental process in human vision [35, 84, 85, 86, 87, 88]. Many segmentation

and decomposition techniques have been proposed to mimic this process computationally

[89, 90, 91, 92]. While these techniques (usually known as part segmentation) generate

impressive results, they also have only focused on relatively simple shapes, such as those

composed of a single object either without holes [35] or with few simple holes [36, 38, 39].

Even when holes are explicitly considered, existing techniques usually decompose the shape

so that no holes are left [36, 38, 39]. In many situations, shapes are created from images

(e.g., silhouettes) of overlapping objects and can also contain many undesired holes due to

sensor noise. In other cases, these holes can be important part of the shape and arbitrary

complex. These complex shapes, such as those shown in Figures 2.13, 2.18, and 2.19 pose

grand challenges to the existing part segmentation methods.

Another major limitation in the existing part segmentation methods is the lack of well-

defined criteria and benchmark for quality comparisons. Unlike image segmentation, com-

parison between part segmentation methods is usually done visually and evaluated based on

the size of the final decompositions, i.e. smaller decomposition is better. The most widely

used MPEG 7 image set [93] consists of only shapes with single boundary. This limitation is

further hindered by the lack of public domain implementations of many existing methods.
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(a) Human (b) DuDe (c) Human (d) DuDe (e) Human (f) DuDe

Figure 2.13: Examples of decompositions from human and dual-space decomposition
(DuDe).

To address the aforementioned issues, in this section, a new decomposition method,

called Dual-space Decomposition (or simply DuDe), is proposed. DuDe is designed to

handle complex 2D shapes that may be composed of overlapping objects with significant

number of holes. DuDe accomplishes this by recognizing the importance of these holes

by classifying holes as either topological noise and structurally important features. DuDe

is developed based on the idea of nearly convex parts. Strategies that decompose shapes

into nearly convex components have been proposed recently in the communities such as

computer vision, pattern recognition and graphics [36, 38, 39, 71]. In order to recognize

the importance features from the external and hole boundaries, DuDe creates the nearly

convex decomposition of the shapes by segmenting both positive and negative regions of

the shape (the polygon itself and its complementary).

In this section, an efficient dual-space method is proposed to decompose a non-convex

polygon into several approximate convex parts, similar to human decomposition results

which will be explained in following sections. This method is designed to handle shapes

with complex holes. To quantitatively evaluate DuDe, I take an initial step to collected

more than 3800 segmentation from 142 non-expert using 72 polygons (shown in Figure 2.18).

Using two statistics-based evaluation methods described in Section 2.3.4, it will be shown

that DuDe generates segmentation closer to man-made segmentation than existing meth-

ods.
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Figure 2.14: Bridges β0, β1, β2, and β3 and a concave feature x. The end points of β3, u
and v, are the antipodal vertices of the hole. Bridges β0 and β1 are the children of β2.

2.3.2 Concavity

Concavity and the process of measuring it play the key role in the method (DuDe). To ease

the concavity measuring process, 2D shapes are represented using polygons. Let us first

define some notations used throughout the section. A polygon P is represented by a set of n

boundaries {P0, P1, . . . , Pn−1}, where P0 is the external boundary and Pk>0 are boundaries

of holes. Each boundary consists of an ordered set of vertices {pi} which defines a set of

edges. Each edge starts at vertex pi as ei = pipi+1 and has two associated vectors: the

vector −→vi = −−−−→pi pi+1 and the outward normal −→ni . Because DuDe performs decomposition

in both areas enclosed by P and, P , the complement of P , it is worth noting that P

can be obtained by reversing the ordering of {pi}. In many cases, polygons are usually

extracted from images by detecting the silhouettes, thus usually containing many geometric

and topological noises.

Because DuDe relies heavily on the measure of concavity, let us now define the concept

of bridge and pocket.

Definition 1. A bridge β of a given polygon P is a segment β = vu connecting two points

v and u on the boundary ∂P of P from the space exterior to P . More specifically, a segment

vu is a bridge of P if and only if v, u ∈ ∂P and the open set of vu is in the complement P

of P , i.e. vu◦ ⊂ P .

Therefore, a bridge cannot enter P or intersect the boundary of P except at its end
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points. Examples of bridge are shown in Fig. 2.14. Note that, unlike bridges defined [39],

this definition of bridge can be inside the convex hull of P .

Definition 2. A pocket ρ of a bridge β = vu is a subset of the boundary ∂P connecting

v and u so that the region enclosed by β and ρ is completely in P .

Intuitively, when traversing the boundary of P , a bridge can be viewed as a short cut

over its pocket. For example, the pocket of the bridge β0 in Fig. 2.14 is a polyline between

vertices b and c via x.

The relationship between the bridge and pocket gives us an intuitive way to define

concavity. For example, in the simplest case, the concavity of vertices in the pocket is

simply the straight line distances to the bridge. A complete definition of concavity will be

provided in Section 2.3.3 for the cases that the pocket is embedded in other pockets.

2.3.3 Dual Space Decomposition of Polygons

In dual-space decomposition (DuDe), the input polygon P is decomposed based on the

decomposition of the complement P of P (dual-space). Algorithm 2 outlines the idea. The

algorithm starts by determining the bridges and pockets from the convex hull CH(P ) of

P . Algorithm 2 then proceeds by decomposing the regions Pi enclosed between the bridge

βi and pocket ρi pair. The cuts generated by these recursively calls Dual-Decomp(Pi, τ)

are, by definition, bridges of P . Concavity is then measured, important concave features

are identified using the bridges from CH(P ) and the cuts for Pi. Finally, P is decomposed

using these concave features. In the rest of this section, each of these steps will be discussed

in detail. Figure 2.15 illustrates P is decomposed to find concave features of P .

2.3.3.1 Bridge Hierarchy

The bridges β are obtained from two sources: (1) the convex hull boundary (line 3 in

Algorithm 2) and (2) the decomposition of the pockets (line 5 in Algorithm 2). First, note
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Algorithm 2 Dual-Space Decomposition

1: procedure Dual-Decomp(P , τ)
2: Compute convex hull CH(P ) of P
3: Determine bridges β = ∂CH(P ) \ ∂P
4: Determine pockets ρ from β

5: for each Pi enclosed by ρi ∈ ρ and βi ∈ β do

6: κ = κ∪Dual-Decomp(Pi, τ)
7: end for
8: Measure concavity using β ∪ κ . see Section 2.3.3.1
9: c = Features(β ∪ κ, τ) . see Section 2.3.3.2

10: return Cut(P , c) . see Section 2.3.3.3
11: end procedure

Figure 2.15: Decomposed P .

that these bridges form a hierarchy. More specifically, a bridge β is the parent of β′ if the

pocket ρ of β is contained in the pocket ρ′ of β′. For example, in Fig. 2.14, bridges β0 and

β1 are both kids of β2. It is not difficult to show that this relationship of all bridges can be

uniquely determined. That is, when two pockets overlap, one must enclose the other one.

As a consequence, the following theorem stands.

Theorem 3. The hierarchical relationship of bridges determined in Algorithm 2 must form

a tree structure.

As a result, each vertex of P has a unique path to the convex hull boundary of P . The

length of this path determines the concavity of the vertex.
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Note that a hole boundary is a pocket associated with only bridges from the decomposi-

tion. When a hole is nearly convex, there is no bridge associated with the hole. Therefore, a

pseudo bridge is created by connecting the antipodal pair, i.e., two farthest apart vertices, of

the hole (see β3 in Figure 2.14). When a hole is decomposed by DuDe, bridges are formed

from the cuts. Given k bridges, k bridge hierarchies can be formed by using each cut as the

root. The hierarchy with lowest depth is chosen to measure the concavity of vertices in the

hole.

The objective in measuring the concavity is to identify pockets that have large intolerable

concavity. Intuitively, the concavity of a pocket is the largest concavity of its vertices.

Definition 4. For a pocket ρ without children, the definition is:

concavity(ρ) = max
v′∈ρ

(
dist(v′, β)

)
. (2.1)

Otherwise, concavity(ρ) is defined as:

max
ρ′∈C(ρ)

(
concavity(ρ′) + dist(β′, β)

)
, (2.2)

where C(ρ) is the children of ρ, β′ is the bridge of ρ′, and dist(x, y) is the shortest Euclidean

distance between objects x′ and y.

ρ is an intolerable pocket if concavity(ρ) is greater than τ . Finally, it should be pointed

out that this hierarchical definition of concavity provides better accuracy and efficiency

over the traditional concavity measurement computed directly between vertices and the

bridge using either the (fast but inaccurate) straight-line distance or the (accurate but

slow) shortest-path distance [39].
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2.3.3.2 Detect Intolerable Concave Features

Given an intolerable pocket ρ either from the external boundary or a hole boundary of P and

the complement polygon P enclosed by ρ and its associated bridge, The intolerable concave

features of ρ are determined by finding the smallest CH ′ approximation of the convex hull

CH(P ) of P such that the distance from CH ′ to CH(P ) is smaller than τ . Using the

idea similar to the variational shape approximation [94], an optimal approximation CH ′i of

CH(P ) with i vertices in iteration i is obtained. The approximation process starts from two

vertices, i.e. i = 2, in the approximation and iteratively add a vertex to the approximation to

obtain a better approximation until the two-way Hausdorff distance between CH ′i of CH(P )

is less than τ . The vertices in CH ′i are the intolerable concave features. An example of the

intolerable concave features is shown in Figure 2.16(a).

Because the complement polygon P of ρ must be nearly convex (otherwise P is decom-

posed), it is provable that all the intolerable concave vertices of ρ must be on the convex hull

CH(P ) of P [95]. In addition, by determining the smallest approximation of CH(P ) with

bounded Hausdorff distance, the method above provides the minimum number of intolerable

concave features .

2.3.3.3 Decompose at Intolerable Concave Features

This section ( 2.3.3.3) describes how the intolerable concave features of a given polygon P

are connected into cuts that segment P into nearly convex components. My method starts

off by determining the resolvers of each concave feature. A resolver of a concave feature v

is a set of diagonals of P that can locally reduce the concavity of v to τ or less. Once all

resolvers from P are identified and evaluated, the method then proceeds to determine a set

of resolvers that maximizes the total scores subject to the constraints that no conflicting

resolvers are selected.
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(a) (b)

Figure 2.16: (a) Polygon with identified concave features. Size of the circle indicates the
significance of the feature. (b) Simplified polygon using the concave features.

The rest of this section will discuss how a resolver is defined and identified in Sec-

tion 2.3.3.3.1. The optimization problem is addressed by solving 0-1 integer linear pro-

gramming in Section 2.3.3.3.2.

2.3.3.3.1 Resolvers of Intolerable Concave Features

A resolver of an intolerable concave feature v consists of a set of diagonals incident to v. A

diagonal d is valid for a given concave feature v if (1) d is in the interior of P and (2) the

end points of d belong to different pockets.

Given a polygon P , valid diagonals are determined using the Constrained Delaunay

Triangulation (CDT) of both P and the simplified polygon P̃ . The simplified polygon P̃ is

composed of intolerable concave features and the vertices between two consecutive bridges.

Essentially, P̃ is P with all pocket vertices replaced by the intolerable concave features.

An example of P̃ is shown in Figure 2.16(b). To find all valid diagonals, the CDTP̃ of P̃

is computed. Let DP̃ ⊂ CDTP̃ be a set of valid diagonals incident to concave feature of

P . The CDTP is computed using the edges of P and the diagonals in DP̃ as constraints.

Let DP ⊂ CDTP be a set of valid diagonals incident to concave feature of P . The valid
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Figure 2.17: Resolvers of vertices x and v. The resolvers of vertex v include {vx, vz} and
{vy}. The resolver {vx, vz} conflicts with the resolver {vy} and all resolves of x.

diagonals DP̃ ∪DP are candidates for resolvers.

A set of valid diagonals D can locally resolve a concave feature v if the local residual

concavities at v are all less than τ . These local residual concavities at v due to D can be

computed using only D and the edges of P̃ incident to v. Then, a resolver R of v is simply

a minimum set of valid diagonals that can resolve v. An example of resolvers for vertices v

and x is shown in Fig. 2.17.

The resolvers from a vertex v are mutually exclusive because a single resolver, by defi-

nition, can resolve v. As a consequence, no two resolvers of v should be selected in the final

decomposition. To ease the discussion, the complement Ri of a resolver Ri is defined to be a

set of mutually exclusive (conflicting) resolvers. For example, in Fig. 2.17, the complement

of resolver {vy} (for vertex v) is the resolver {vx, vz}. See the caption of Fig. 2.17.

2.3.3.3.2 Final Cut Selection

Cut selection in dual decomposition is an optimization problem that maximizes the total

score of the selected cuts subject to the constraints that no conflicting resolvers are selected

and each concave feature requires a resolver. I will now show that this optimization problem

can be solved using 0-1 integer linear programming.

Let R be a resolver and R be the conflicting resolvers of R. The score S(R) of a resolver
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R is a function of (1) the number of features resolved by R, (2) the concavity of resolved

features and (3) the total length of R. My goal is to select a subset K of all resolvers R

so that
∑
R∈K S(R) is maximized subject to the following constraints (1) ||K|| ≤ n and

(2) K ∩ Ri is empty for all Ri ∈ K. To formulate this problem as a 0-1 integer linear

programming, let R be a vector of all resolvers and x be a 0-1 vector of size ||R||. Then

the final cuts are obtained by solving the following linear programming problem:

maximize S(RTx) (2.3)

subject to
∑
xi∈x

xi ≤ n , (2.4)

and xi + xj ∈ {0, 1}, ∀(Rj ∈ Ri) , (2.5)

where n is the number of intolerable concave features.

2.3.4 Experimental Results and Evaluation

Figure 2.18: Shapes used in the experiments
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(a) Human (b) DuDe (c) Human (d) DuDe

(e) Human (f) DuDe (g) Human (h) DuDe

Figure 2.19: Differences between human segmentation and DuDe.

I have implemented DuDe in C++. To evaluate DuDe, 72 shapes are used as shown

in Fig. 2.18. To provide a baseline for comparison, 3818 segmentation from 142 human

subjects were collected. Many shapes are from the widely used MPEG7 database. All

the images from MPEG7 contain only a single boundary. To test the polygons with many

holes, synthesized noise are added to MPEG7 images and silhouette images, such as trees,

human crowd, and bikes are used. In all experiments, the value of concavity tolerance τ is

fixed for both DuDe , MNCD [38] and ACD [39]. The segmentation collected from human,

DuDe, MNCD and ACD are then compared using two statistics-based evaluation methods

(detailed in Section 2.3.4.2). The average running time for DuDe is less than 2 seconds

on a regular laptop. Example output can be found in Figures 2.19 and 2.20. Complete

segmentation results, the benchmark and the software tools are available to the public at

http://masc.cs.gmu.edu.
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(a) Human (b) DuDe (c) ACD (d) Human (e) DuDe (f) ACD

Figure 2.20: Decomposition results of the aggregated human cuts, DuDe and ACD.

2.3.4.1 Collect Human Segmentation

I use Amazon Mechanical Turk to collect human segmentation. Non-expert users are asked

to draw lines to segment the displayed polygon into meaningful parts via a web-based

interface. Several good and bad examples were shown before the user starts. Constraints

were added to prevent user making segments outside or intersecting with the polygon or

other existing cuts. There were in total 142 people participated, and 3818 valid segmentation

were obtained. On average, each user spent around 90 seconds to segment a polygon, and

made about 8.12 cuts for a polygon. To visualize the segmentation, I overlay user created

segments, each of which is drawn translucent therefore the most frequently picked segments

are darker. Examples of human segmentation can be found in Figures 2.19 and 2.20.

2.3.4.2 Evaluate Part Segmentation

Although few works focusing on evaluating part segmentation, evaluating image segmen-

tation has been widely investigated (see a survey in [28]). In this section, two statistical

methods are used for the evaluation. One is based on Rand Index (RI) [83] and the other

one is called Cluster Coverage (CC).

To perform RI evaluation, the representative human segments are obtained via k-means

clustering for each polygon. Here k is determined by the mean number of cuts created by

human for a given polygon.

Next, I overlay the decomposition with a 200 × 200 regular grid tightly bounding the
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polygon P . A cell is considered as valid if it has more than half of its area inside P .

For a given segmentation, each component in the segmentation is assigned a unique index

and the cells enclosed by this component are assigned the same index number. Different

from Section 2.2, the original definition of RI is used here. Namely, RI evaluation of two

segmentations (of the same polygon) is measured by the likelihood that each pair of cells is

in the same component of two segmentations [83]. More specifically, let S1 and S2 be two

segmentations, and s1
i and s2

i be the indices of cell i in S1 and S2, respectively. Then their

RI is defined as:

RI(S1, S2) =

 2

N


−1 ∑

i,j,i<j

[CijPij + (1− Cij)(1− Pij)] ,

where N is the number of cells inside the original polygon, Cij = 1 if s1
i = s1

j , Pij = 1 if

s2
i = s2

j , CijPij = 1 if cell i and cell j have the same index in both S1 and S2, and, finally,

(1− Cij)(1− Pij) = 1 indicates the cell i and j have different indices.

A major drawback of the RI-based evaluation is that the size of the representative cuts

can affect the RI value dramatically. Therefore, another evaluation method called Cluster

Coverage is proposed. A Cluster Coverage (CC) value between a segmentation S and

clusters C of segmentation created by the human subjects is determined in the following

way:

CC(S,C) =

∑k
i Wifi∑k
i Wi

,

where Wi is the number of elements in Ci and fi is an indicator function that returns one

if ∃Sj ∈ Ci.

The RI and CC values in Table 2.2 are obtained from the evaluations between segmen-

tations created by a given method and the representative human segmentations over all

the polygons shown in Fig. 2.18. Therefore, for both RI and CC evaluations, higher score
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indicates higher similarity to the representative human segmentations. Human vs. Human

comparison is used as the baseline for the comparison. From Table 2.2, it can be seen that

the average RI value of DuDe is only slightly below that of Human, while higher than

those from MNCD and ACD. This means DuDe provides segmentations closer to the ag-

gregated human segmentations. The average CC value of Human is only slightly below that

of DuDe while the standard deviation of DuDe is slightly higher. The CC evaluation again

confirms that DuDe provides segmentation closer to the aggregated human segmentation

than MNCD and ACD.

Table 2.2: Mean values of Rand Index (RI) and Cluster Coverage (CC) and their standard
deviations SDVRI and SDVCC .

Method Human DuDe MNCD ACD
RI 0.73 0.68 0.46 0.39

SDVRI 0.12 0.21 0.17 0.36
CC 0.67 0.77 0.73 0.40

SDVCC 0.094 0.15 0.26 0.38

2.3.4.3 Compare with CSD and MNCD

Both CSD [36] and MNCD [38] generate candidate cuts and mutex pairs using Reeb graphs

from multiple rotations. The major difference between DuDe and these methods is that

DuDe can handle holes (that appear frequently in shapes of many overlapping objects)

much more naturally. Figure 2.21 shows the difference between the decompositions of

MNCD and DuDe. Consequently, as shown in Table 2.2, DuDe can generate more similar

results than MNCD compared to human segmentations. The reasons of lower RI and CC

scores may also be coming from the fact that there are insufficient optimal candidate cuts in

their methods that are generated from intersection of scanning lines and polygon boundary.

Moreover, for polygon with complex holes, MNCD and CSD require parameters to balance
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Figure 2.21: Decomposition result of MNCD and DuDe. From left to right: MNCD (τ =
0.1), DuDe (τ = 0.1), DuDe (τ = 0.01).

between the visual naturalness and the number of cuts for different shapes (while DuDe

requires only the value τ). Find good values for these parameters is usually not easy. In

terms of computation efficiency, for polygons with over several thousand vertices, based on

my implementation, CSD and MNCD usually take several minutes to solve the optimization

problem.

2.3.5 Discussion & Future Work

In this section and also paper [1]., a new method: Dual-space Decomposition (DuDe) to

do 2D shape decomposition is proposed, which has applications in region/part-based recog-

nition, skeleton-extraction (Fig. 2.22), etc. DuDe is designed to segment shape composed

overlapping objects with a significant number of holes. Using two evaluation methods:

Rand Index and Cluster Coverage, it has been shown that segmentation created by DuDe

is statistically more similar to the man-made segmentation than those created by other

methods.

Since DuDe is developed purely based on the geometric properties, its ability to segment

meaningful part is limited. For example, collected data shows that people are good at

segmenting shapes composed of humans and animals. When a figure contains human shape

and other non-human objects, people prefer to separate human from the models.

Although there has been many methods recently proposed in segmenting 3D shapes,

2D part segmentation has its own difficulty because 2D shapes tend to overlap thus create
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(a) Human (b) DuDe (c) ACD

Figure 2.22: Skeleton extracted from different methods

ambiguity. When (either human or non-human) shapes overlap, people also tend to segment

each individual object or human from the group, even when the cut is long (e.g., the

crowd shape in Figure 2.19). Moreover, different people also assign the overlapping area to

different parts. More people tend to assign the overlapping area to an object if it has larger

ratio of non-overlapping parts in the whole shape rather than other objects that share this

overlapping area. For example, in the bike polygon in Figure 2.19, when the frame has

overlapping area with wheel, more people tend to assign the area to wheel instead of frame.

Figure 2.23: Decomposition results of DuDe for polygons with many holes.

58



2.4 Nearly Convex Decomposition of 3D Shapes through Con-

vex Ridge Separation

2.4.1 Introduction

In interactive applications, it is necessary to create simplified representations of a mesh to

support various computationally intensive operations. In this work, one goal is to obtain

such simplified representations via decomposition. Taking deformation as an example, a

mesh that has been decomposed into visually meaningful parts (e.g. head, torso, limbs) eases

the process of creating deformation at semantic level. On the other hand, if a mesh is caged

and partitioned by a set of convex shells, artists can use these shells to perform physically-

based deformation efficiently. In many situations, both of these higher-level (semantic)

and lower-level (physical or geometric) deformations are required. While it is ideal to keep

both representations, it is also desirable to have an unified representation. An unified

representation not only reduces space requirement but also allows deformations created at

various semantic levels to be applied to the original mesh through a single approximation.

Therefore, there is a demand to have decomposition methods, such as the one proposed in

this paper, that provide users both visual saliency and bounded geometric properties.

The first type of decomposition above is called shape decomposition. In the past decade,

significant progress has been made in producing high quality results [27, 45, 46, 52, 54, 65,

75]. Shape decomposition provides implicit shape approximation and is useful for shape

analysis and recognition and semantic level shape editing and deformation. The second

type of decomposition can be accomplished through the Approximate Convex Decompo-

sition (ACD) [39]. ACD decomposes a 3D mesh into nearly convex parts. Unlike shape

decomposition, ACD provides explicit approximation with bounded approximation errors

and is therefore suitable for lower level processing. For example, Bullet physics library uses

hierarchical ACD (HACD) [77] to speed up the collision detection and response computation
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(a) Input (b) Convex
ridges

(c) Iterative decomposition (d) Cage-based defor-
mation

(e)
Physically-
based
simulation

Figure 2.24: An example of CoRiSe with concavity tolerance τ = 0.05. (a) Input mesh. (b)
Ten convex ridges (shown as translucent ellipsoids) are connected by deep valleys (shown
as the geodesic paths). Formal definition of convex ridge and valley can be found in Sec-
tion 2.4.3. (c) Left is the decomposition result of the first iteration; right is final decomposi-
tion (the second iteration). Note that colors are just used to distinguish different parts. (d)
CoRiSe used for automatic cage generation. (e) The convex hulls of CoRiSe components
can be used to speedup the computation in physically-based simulation.

of the non-convex shapes, and Muller et al. [96] proposed an interactive tool to generate

approximate convex parts for speeding up dynamic fracture simulation.

The most challenging task in developing such a decomposition method stems from the

fact that current convex decomposition and shape segmentation methods are computation-

ally expensive and require different parameter settings for different shapes which are usually

unintuitive and make processing a massive number of meshes in applications difficult. Re-

cently, learning based segmentation methods [45, 46] are proposed to learn common param-

eters in an unsupervised or supervised manner, but the computation time of these methods

is often intolerably high (minutes to hours), in particularly, for interactive applications.

Contribution In this section, an efficient decomposition method, called CoRiSe, is

proposed. The only user input parameter is a concavity tolerance which directly controls

the approximation error. The novelty of CoRiSe comes from the idea of convex ridge which

can be efficiently and robustly determined. Essentially, CoRiSe extracts nearly convex

components of a 3D mesh P by separating each convex ridge from all the other convex

ridges using graph cut. An example of convex ridge and CoRiSe decomposition is shown

in Fig. 2.24. Formal definition of convex ridge can be found in Section 2.4.3. In addition,
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through the new concept of residual concavity, CoRiSe is insensitive to the parameter in

graph cut and requires only a single user parameter: concavity tolerance. Section 2.4.4 will

discuss residual concavity and graph cut.

Using the Princeton Segmentation Benchmark, it will be shown that CoRiSe gener-

ates noticeably better segmentation in significant shorter time than the existing methods

[65, 77].Finally, applications of CoRiSewill be demonstrated, including physically-based

simulation, cage generation, model repair and mesh unfolding in Section 5.5. Fig. 2.24

shows two of these applications.

2.4.2 Overview

CoRiSe takes a single 3D mesh and a concavity tolerance parameter τ as input and decom-

poses this mesh into nearly convex components in a top-down fashion that includes three

main steps:

Step 1. Build bridges and compute concavities Bridges are the convex hull edges,

and the shortest geodesic path on the mesh connecting the end vertices of a bridge is called

valley. Then, the concavity of a point in the valley is measured as the shortest-path distance

to the bridge. Exact shortest geodesic path and shortest-path distance are computationally

expensive thus an efficient way to approximate them will be described. A valley is deep if

the maximum concavity in the valley is greater than τ , otherwise the valley is shallow. It is

important to remember that, throughout the entire segmentation process, concavity is only

defined for points in the valleys and undefined elsewhere.

Step 2. Identify convex ridges In CoRiSe, a convex ridge consists of a group of

convex-hull vertices connected only by shallow valleys. Intuitively, a convex ridge can be

viewed as a protruding part of the mesh that is guaranteed to be convex enough. This

implies that a continuous subset of the mesh containing two or more convex ridges must be

too concave. Fig. 2.24(b) shows an example of 10 convex ridges.

Step 3. Partition using convex ridges CoRiSe segments the mesh by ensuring
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Figure 2.25: The left figure shows one bridge and its valley in 3D. The right part shows its
projected concavity polygon in 2D. Concavities are measured in this 2D polygon using the
shortest-path distance.

that each component in the segmentation contains only a single convex ridge. The segmen-

tation process is bootstrapped by splitting each deep valley into shallow ones at the valley

separators. Then CoRiSe applies graph cut using the region defined by valley separators

as data term and edge angle and length as smoothness term to find optimal cut loops near

these valley separators.

The above three steps are repetitively applied to the segmented part whose concavity is

greater than τ .

2.4.3 Bridge, Valley and Convex Ridge

To approximate a mesh using convex shapes, the relationships between the mesh and its con-

vex hull should be established. Let the input be a polyhedron P = {VP , FP , EP } composed

of a list of vertices VP and faces FP connected by edges EP . It is assumed that P consists of

a single connected component. The convex hull of P is denoted as H(P ) = {VH , FH , EH},

where VH ⊂ VP . Let us consider a convex hull edge e = {a, b} ∈ EH . Since e is the shortest

Euclidean path connecting a and b, let us call e a bridge. Because a and b must also be the

vertices of P , a path connecting a and b on ∂P can always be found. The shortest geodesic

path connecting a and b on ∂P is called a valley underneath the bridge eβ.

A bridge eβ and its associated valley e∨ form a 3D polygon. This polygon is called

the concavity polygon, which plays an important role in many stages of the algorithm. For
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Figure 2.26: The concavity of the projected polygon with highly concave regions or self-
intersections.

example, the concavity polygon is projected into a 2D space and only the concavity in the

projected 2D space is measured. More specifically, each point p ∈ e∨ = (a, b) is projected

to

p′ = (−→ap ·
−→
ab,d(p, eβ)) , (2.6)

where −→ap ·
−→
ab is the inner product of −→ap and

−→
ab, and the function d defines the Euclidean

distance between a point and a line segment. Fig. 2.25 shows an example of bridge, its

valley and the projected 2D concavity polygon. Then, the concavity C(p) of the point p is

determined as the shortest-path distance between p′ and the projected eβ. It is known that

the shortest-path distance can be measured in O(n) time for a polygon of size n.

It is possible that the projected polygon can self-intersect. However, self-intersection

seldom happens; all projected polygons of models studied in this work are free of self in-

tersection. However, when the projected polygon is self-intersecting or has large concave

regions, a more sophisticated concavity measure proposed in [1] will be used, which de-

composes the polygon into several near convex parts and determines a hierarchy of bridges.

The concavity will be measured by the accumulated distance of the point-to-adjacent bridge

distance and bridge-to-bridge distances. For example, in Figure 2.26, the concavity of p will

be the distance sum of the distance between p and β1 and the distance between β1 and ab.

The concavity of a valley e∨ (and its associated bridge eβ) is defined as the maximum
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concavity of its vertices, i.e., C(e∨) = C(eβ) = maxp∈e∨(C(p)). Let us call e∨ deep valley

if C(e∨) is larger than the tolerance, otherwise e∨ is called a shallow valley. For the conve-

nience of future discussions, bridges are classified into high and low bridges (as measured by

the deck height of bridge) if their corresponding valleys are deep and shallow, respectively.

2.4.3.1 Convex Ridge

Now let us formally define the convex ridge. A convex ridge R of P is a graph representing

a subset of convex hull H(P ). A subset of R ⊂ H(P ) is a convex ridge if all bridges of R

are shallow and there are no high bridges connecting two vertices in R. More specifically, a

convex ridge R must satisfy the following two conditions:

∀e ∈ ER, C(e) < τ , and

@e = (a ∈ VR, b ∈ VR), C(e) > τ ,
(2.7)

where VR and ER are the vertices and edges of R, respectively. In short, a convex ridge can

only have vertices connected by bridges whose valleys are shallow.

The convex ridges of a given mesh is constructed by iteratively greedy clustering the

convex hull vertices while ensuring that the properties in Eq. 2.7 is maintained for each

cluster. The clustering proceeds by collapsing low bridges sorted in an ascending order

based on the length of the associated valleys. Each final cluster would become a convex

ridge. The detailed procedure can be found in Algorithm 3. Figure 2.27 shows examples

of convex ridges. It can be seen that convex ridges are quite insensitive to surface noise

in Figure 2.27. In fact, as long as shallow valleys remain shallow, all convex ridges will be

unaffected.
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(a) (b) (c) (d) (e) (f) (g)

Figure 2.27: Convex ridges found in these models. Each ellipsoid represents a convex ridge.
Even though several convex ridges in these examples concentrate around small compact
regions, the convex ridges in (c) manifest various ridge-like shapes (regions that are locally
with higher “elevation”). Figures 2.27(e), 2.27(f) and 2.27(g) show the convex ridges on the
ant model with random noise added. The convex ridges of figures 2.27(e), 2.27(f) and 2.27(g)
are all generated using τ=0.08.

Algorithm 3 Build Convex Ridges

1: Sort bridges B in an ascending order by the valleys length

2: V ← the end vertices of all bridges B
3: Create ||V || clusters each of which contains a vertex in V
4: for each shallow bridge bi = (a1, a2) in B do
5: g1 ← the cluster contains a1

6: g2 ← the cluster contains a2

7: if @e = (b1 ∈ g1, b2 ∈ g2) such that C(e) ≥ τ then
8: merge g1 and g2

9: end if

10: end for

11: Report each cluster as a convex ridge

2.4.3.2 Residual concavity

Residual concavity measures the concavity of a valley e∨ after e∨ is split into two subpaths at

a vertex of e∨. Let e∨ = {v0, v1, · · · , vn−1} be a deep valley, and let ek∨ = {v0, v1, · · · , vk−1}

be a prefix subset of e∨, where k ≤ n. Moreover, let ê∨ = {vn−1, vn−2, · · · , v0} be the

reverse of e∨. The residual concavity of e∨ at the k-th vertex is then defined as:
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RC(e∨, k) = max
(
C(ek∨), C(ê

(n−k+1)
∨ )

)
. (2.8)

Recall that the concavity is always measured in the 2D concavity polygon projected

using Eqn.2.6. It is important to note that once the valley e∨ is split, two or more new

bridges must be formed to determine the concavity of e∨’s sub-valleys. Therefore, at the

first glance, computing RC seems to be time consuming, but it has been shown that RC

can be computed in linear time.

Lemma 1. The computation of residual concavity RC(e∨, k) takes time linear to the size

of e∨, i.e. O(n) for e∨ with n edges.

Proof. Similar to the previous definition, the concavity of a prefix ek∨ is defined as the

shortest-path distance between ek∨ and edges of H(ek∨) inside the 2D concavity polygon

(made of edges of eβ and e∨). Due to the special property of the concavity polygon P∨,

whether a convex hull edge e = (vi, vj) of H(ek∨) is inside P∨ can be determined by the order

of vi and vj . That is, if i < j, then e = (vi, vj) ⊂ P∨. Since ek∨ is a polyline, H(ek∨) can

also be constructed in linear time O(k), which makes the computation of residual concavity

RC(e∨, k) linear to the size of e∨, i.e. O(n).

2.4.3.3 Shape of a valley

The residual concavity gives us a way to estimate the shape of a valley. A valley e∨ is

V-shaped if there exists a vertex vk such that the residual concavity of e∨ is less than the

tolerance τ . Otherwise e∨ is U-shaped. An example of a U -shaped valley can be found in

Fig. 2.28. If e∨ is U-shaped, it is always true that the bottom of e∨ as the sub-polygon

bounded by the prefix and suffix of e∨ that have residual concavities less than τ . In Fig. 2.28,

the bottom of the U-shaped valley is defined as (vi, vj), where i and j are the maximum

indices such that C(ei∨) < τ and C(ê
(n−j)
∨ ) < τ , respectively; recall that ê∨ is the reverse of

e∨. As what will be discussed in Section 2.4.4, the shape of valley can be used to determine
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Figure 2.28: A deep U-shaped valley e∨ and its valley separators vk and vg. The sub-valleys

ei∨ and êj∨ are subsets of e∨ whose residual concavity is less than the concavity tolerance τ .

The valley separators vk ∈ ei∨ and vg ∈ êj∨ minimize the residual concavities RC(ei∨, k) and

RC(êj∨, g).

the number of vertices needed to separate each convex ridge in the wired representation to

ensure that its concavity is less than τ .

2.4.4 Convex Ridge Separation

CoRiSe segments a mesh by ensuring that each component in the segmentation contains

only a single convex ridge. Essentially, CoRiSe finds such segmentation in two steps: first,

CoRiSe only focuses on the wireframe representation of the mesh that consists of vertices

and edges of all convex ridges and deep valleys. An example of such a representation can

be found in Fig. 2.24(b). For each deep valley, CoRiSe determines one or two key vertices

(depending on whether it is a V - or U -shaped valley) that can separate each deep valley

into at least two shallow valleys. Section 2.4.4.1 will discuss how CoRiSe decomposes this

wireframe representation. Then, once the wireframe is decomposed, CoRiSe switches back

to the original model and applies a two-way graph cut to find optimal cut loops near the

valley separators. This step will be discussed in Section 2.4.4.2.

2.4.4.1 Valley separators

To separate the convex ridges in the wireframe presentation, CoRiSe finds valley separators

for each deep valley and ensures that each convex ridge only connects the subset of the valley
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that has concavity less than the tolerance. For a V -shaped valley e∨, the valley separator

is a single vertex that has the largest concavity in e∨. By splitting at the vertex with the

largest concavity, it guarantees that the two new sub-valleys of e∨ are shallow.

For a U -shaped valley e∨, things are a bit more complex. Basically, CoRiSe splits e∨

into three sub-valleys and guarantees that two sub-valleys incident to two convex ridges are

shallow even though the bottom of e∨ may not be. Let eβ = (a, b) be a bridge whose valley

e∨ is U-shaped. Using the residual concavity defined in Eqn. 2.8 in Section 2.4.3.2, it can

be found that two vertices vi and vj such that ei∨, a sub-valley between a and vi, and êj∨,

a sub-valley between vj and b, are shallow. See Fig. 2.28 for the illustration of ei∨ and êj∨.

The goal is to define two valley separators in ei∨ and êj∨, respectively. It is true that it is still

guaranteed that ei∨ and êj∨ are shallow if using vi and vj as the valley separators. However,

the locations of vi and vj are quite arbitrary in most cases. Therefore, the valley separators

for a U-shaped valley e∨ are defined as a couple of vertices (vk, vg):

(vk, vg),where k = arg min
k

RC(ei∨, k), g = arg min
g

RC(êj∨, g)) .

From Fig. 2.28, it can be seen that the valley separators vk and vg of e∨ are identified at

the locations of large concavity if the valley is split at vi and vj . Once the valley separators

are identified for all deep valleys, all convex ridges are separated and only attached to

shallow valleys. Next, CoRiSe switches back to the original representation and segments

the mesh using graph cut.

2.4.4.2 Convex ridge separator

Graph cut [97] is a powerful optimization tool that has been proven to be successful in

segmentation. The previous section has discussed how to find separators for deep valleys.

And the valley separators have roughly defined where the cuts should be. However, since

the valley separators are merely feature vertices capturing concavity constraints, separating
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Figure 2.29: Simplified graph cut: black nodes and blue nodes represent the must-link
regions. They have infinite data term associated with source or sink. Red nodes represent
the fuzzy region.

convex ridges needs close cut loops. Finding the cut loops is formulated as a simplified

graph cut problem. It is called simplified graph cut because the data term value is either

infinity or zero, which corresponds must-link region and fuzzy region. The smoothness term

is defined using dihedral angle and edge length. Fig. 2.29 shows the simplified graph cut

formulation. In the rest of this section, the data term and smoothness term will be discussed

in detail.

Data Term To formulate the graph cut problem, two terms: must-link region and fuzzy

region are introduced. Must-link region would have infinite data term values associated with

the source or sink. Fuzzy region would have zero data term values. For each iteration of

graph cut, a facet belongs to either must-link region or fuzzy region. In other words, must-

link region plus fuzzy region will cover the whole model. Intuitively, each convex ridge has

a must-link region which is a set of faces that must be segmented with the convex ridge.

To get the must-link region and fuzzy region, another term named potential region will be

introduced. It is called potential region because a facet belonging to potential region has

the chance to become either part of must-link region or part of fuzzy region. The ways to

determine these regions are described as following:

Potential Region. A potential region will be collected for each convex ridge Rk. This

potential region is the union of the facets collected by Rk’s all the sub-valleys using geodesic
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distance. The way of how each sub-valley collects its facets and doing the union are described

as following:

1. Collecting using Geodesic Distance: for each sub-valley ei∨, (ei∨ is created from valley

separator as described in Section 2.4.4.1) incident to Rk, let Ti be a set of facets whose

geodesic distance to the end point of ei∨ in Rk is less than the path length of ei∨.

2. Union: from Ti, a set URk
of facets that forms a superset containing Rk can be

determined. The set URk
is the potential region of convex ridge Rk. More specially,

URk
=

⋃
1≤i≤n

Ti , (2.9)

where n is the number of sub-valleys incident to Rk.

Potential Region’s Overlapping Issue. Two neighboring convex ridges Rk and Rj are

likely to compete on certain facets. In this case, URk
and URj overlap. The overlapping

region of IRk
with other convex ridges is then defined as:

IRk
=
⋃
∀j 6=k

(
URk

⋂
URj

)
. (2.10)

Must-link and Fuzzy Regions. With URk
and IRk

, it is ready to define the must-link and

fuzzy regions. The must-link region CRk
of Rk is simply URk

with facets in IRk
removed,

CRk
= URk

\ IRk
. (2.11)

Then the fuzzy region is the union of the facets that do not belong to any convex ridge’s

must-link region.

FR = F \
⋃
CRk

, (2.12)

where F is the facets of the mesh.
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Figure 2.30: Left: the potential region (including all the black and red regions). Right:
must-link region and fuzzy region. In the right part, the convex ridges are differentiated
by colors (4 in total). The colored circles (dots) are the end vertices of the deep valleys.
The crossings are the detected valley separators. The red lines (region) are the fuzzy
region. The colored lines attached to circles with same color are must-link region attached
to corresponding convex ridge.

An example is shown in Fig 2.30. In the left part of Fig 2.30, the black segments show

the potential region of a convex ridge. The black vertices are the vertices of a convex ridge.

The crossing vertices are the valley separators. The right part of Fig 2.30 shows the must-

link region and fuzzy region. The red segments represent the fuzzy region. Except the red,

each of other colors stands for the must-link region for each convex ridge. There are three

parts of fuzzy region (red regions). The left part corresponds to the area that is not covered

by deep valley’s potential region. The middle part is part of fuzzy region because it lies in

the middle part of a U-shape valley and it is not within the potential region of either of end

vertices from two convex ridges. The right part becomes fuzzy region due to the fact that

it has been covered by two convex ridges.

Fig 2.31 shows the must-link regions on the 3D models. The filtered out regions are the

fuzzy regions.

Smoothness Term The smoothness term evaluates the similarity/compatibility be-

tween two adjacent triangle facets. CoRiSeuses the same definition of smoothness as that

in [49].

A parameter α is introduced to balance the importance of dihedral angel and edge

length. The definition is as below: Let vi and vj be two adjacent vertices, namely are the
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Figure 2.31: The must-link regions connected by the deep valleys.

two end vertices of an edge (denoted as eij) on the mesh. And let fi and fj to be the two

triangle facets sharing this edge. Let θij be the dihedral angle between fi and fj , |eij | be

the length of eij . Let Θij be a function of θij such that Θij is a positive small number

(the second parameter, fixed to be 0.3) for concave edges and 1 for convex edges. Then the

smoothness term defined in [49] is:

wij = α(
Θij

µΘ
) + (1− α)

|eij |
µe

, (2.13)

where µΘ and µe are the average values of Θ and edge length, respectively, of the entire

mesh. α is set to be 0.8 (the third parameter, fixed) in all experiments.

Segmentation using Graph Cut. Binary graph cut optimization is solved for n− 1

times (n is the number of convex ridges) using the max-flow algorithm. The order of n− 1

graph cut is determined by the bounding box’s diameter of convex ridges’ vertices. One

convex ridge is separated at one time using the graph cut. At each graph cut iteration

i, CoRiSewill assign infinite data term values associated with source for the facets in its

must-link region CRi and assign infinite data term values associated with sink for the facets

in other convex ridges’ must-link region
⋃
∀j 6=iCRj . Facets in fuzzy region don’t have data

term with neither source nor sink. The smoothness term will be defined for any pair of
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neighboring facets using the Equation 2.13. This convex ridge will be separated from the

model and the rest of model will be used for applying region for next binary graph cut.

Segmentation is performed iteratively until all components have smaller concavity than τ .

Fig 2.24 (c) shows the first iteration decomposition result on the left and second (final)

iteration decomposition result on the right.

Discussion One may argue that there are three issues in the above formulation of

graph cut problem. 1. Why use must-link region? The must-link region is defined using

valley separators, which roughly defines where the cut should be and satisfied the concavity

constraints. The must-link region can fully utilize the rough cut positions proposed by

valley separators. 2. Why use n − 1 binary graph-cut? Another option is to k-way graph

cut. However, choosing a right k is important for k-way graph cut. A proper k would be

the number of final components. However, the problem is the number of final components

is unknown and the number of convex ridges is not the real number corresponding to the

number components. Some components may haven’t been detected by the current convex

hull. The real number should be ≥ n. CoRiSeapplies n− 1 times graph cut and postpone

handling of the issue of undetected components in the further iteration of decomposition,

because these components may be detected after CoRiSehas already cut some components

out of the model in previous iteration. 3. How to decide the order of cutting which convex

ridge and how to deal with overlapping labeling issues? The order of applying graph cut

is based on the heuristic that CoRiSehandles the small components first (in terms of the

bounding box’s diameter of convex ridges’ vertices). In for each time of graph cut, if it is

applied on the same region, there may be one issue that a facet has been labeled as “source”

for several times. In this paper, after applying one time of graph cut, CoRiSeseparate one

convex ridges from the model and the rest of the model would be used as the applying

region for further graph cut. In this way, the overlapping labeling issue would be avoided.
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Figure 2.32: Approximate shapes using the convex hulls of decomposed parts. The re-
sults in this figure are generated by CoRiSe using models in the Princeton Segmentation
Benchmark.

2.4.5 Experimental Results

CoRiSeis implemented in C++. In order to evaluate CoRiSe, CoRiSe is compared exten-

sively to existing approximate convex decomposition methods HACD [77] that is available

in the Bullet Physics Library and WCSeg [65]. CoRiSe is also compared with other shape

decomposition methods using the Princeton 3D Mesh Segmentation Benchmark [28], which

includes 380 surface meshes of 19 different object categories. All the models are scaled

to have a 1.0 radius bounding sphere. The quality of the decomposition is measured via

the Rand Index that estimates the similarity by measuring facet pairwise label difference

between the segmentations generated by CoRiSe and those generated by humans and the

state-of-art methods [27, 52, 54, 65]. All experimental results are collected on a work-

station with two Intel Xeon 2.30GHz CPUs and 32 GB memory. HACD and CoRise are

implemented using C++ and WCSeg uses MATLAB.
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(a) CoRiSe (b) HACD

Figure 2.33: Shape approximation using the convex hulls of all components in the decom-
positions from CoRiSe and HACD.

2.4.5.1 Comparison of Approximation

Given a concavity tolerance, CoRiSe with HACD [77] and WCSeg [65] are compared based

on (1) the number of decomposition components, (2) decomposition time, and (3) approxi-

mation accuracy. HACD first simplifies the model using Quadric Error Metrics (QEM) and

then hierarchically merges facets and ensures that the concavities of all clusters are lower

than the tolerance concavity. WCSeg creates initial segmentation using line-of-sight con-

cavity/convexity measurement and then uses Shape Diameter Function [27] to merge the

initial segmentations. Table 2.3 shows the decomposition size, computation time, and the

ratio between the volume of the convex hull approximation and the volume of the original

model.

From Table 2.3, it can be seen that, on average, CoRiSe generates fewer components

than HACD and WCSeg. In addition, CoRiSe is significantly faster than HACD and

WCSeg. This is because HACD requires many concavity evaluations in the bottom-up

approach clustering process. Note that even though it is not totally fair to directly compare

the computation time of CoRiSe and WCSeg shown in Table 2.3 due to WCSeg’s matlab

implementation, doing spectral clustering that involves solving the eigen-decomposition of

a large pairwise matrix (whose size is square to the number of facets) would still be a

bottleneck using the faster C++ implementation. Without simplifying models, HACD can
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even take more than several hours to decompose a model with around 10,000 vertices.

Table 2.3: Statistical results of the number of final components, computation time and the
volume ratio which is approximations’ volume compared to that of the original model on
the Princeton 3D Mesh Segmentation Benchmark. All results are obtained using concavity
tolerance = 0.1.

Category
# of components Time (sec) Volume Ratio

HACD WCSeg CoRiSe HACD WCSeg CoRiSe HACD WCSeg CoRiSe
human 12.10 18.85 9.85 84.80 677.92 2.33 1.23 1.24 1.31

cup 18.90 5.50 4.55 372.09 1,362.30 1.25 2.66 3.02 3.15
glass 6.40 8.90 5.53 433.84 416.09 0.63 1.69 1.90 1.75

airplane 5.20 7.70 7.55 1,103.85 431.91 1.07 1.30 1.25 1.37
ant 13.45 11.25 14.50 223.99 413.63 1.76 1.11 1.17 1.14

chair 9.50 16.35 10.64 297.72 1,021.50 1.86 1.67 1.56 1.45
octpus 14.40 9.10 14.45 903.44 599.90 1.98 1.23 1.83 1.27
table 6.00 5.55 6.05 3,385.97 2,762.60 1.25 1.33 1.68 1.42
teddy 6.80 7.45 7.05 1,548.05 1,026.30 2.16 1.05 1.05 1.07
hand 9.10 9.20 9.00 205.92 670.00 1.67 1.14 1.16 1.27
plier 5.20 6.50 5.89 393.18 368.90 0.88 1.30 1.37 1.33
fish 5.05 6.25 5.20 2,969.80 546.04 0.84 1.12 1.16 1.18
bird 5.55 11.10 6.39 547.89 515.03 0.73 1.36 1.26 1.35

armadillo 15.30 20.10 14.90 56.89 1,914.80 5.46 1.12 1.12 1.19
bust 9.30 8.70 7.80 118.18 2,285.80 4.50 1.05 1.08 1.11
mech 4.45 3.70 3.65 1,286.43 2,587.30 1.04 0.87 1.02 1.02

bearing 5.47 3.00 1.58 1,095.92 1,188.90 0.25 0.95 1.08 1.17
vase 9.80 5.65 5.15 1,059.17 1,247.60 1.63 1.06 1.10 1.12

four-leg 12.95 14.05 12.25 61.85 614.97 1.86 1.20 1.23 1.25

Average 9.21 9.42 8.00 849.95 1,086.90 1.75 1.29 1.38 1.36

Table 2.3 also shows the comparison of volume ratios. The volume ratio is defined as

vol(∪i(CHi))/vol(P ), where vol(∪i(CHi)) is the volume of the union of all convex hulls

and vol(P ) is the volume of the input mesh. From Table 2.3, HACD has smallest average

volume ratios. However, the result is biased because HACD simplifies the input model before

decomposition, thus these convex hulls created by HACD do not guarantee to enclose the

original model. This may also produce noticeable penetration if these convex hulls are used

in collision detection. It also shows that the approximation volume of CoRiSe is slightly

smaller than WCSeg. However, because WCSeg produces more segments, it can be said
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Figure 2.34: WCSeg vs. CoRiSe. Top row from left to right: WCSeg decomposition,
CoRiSe decomposition and convex hulls of CoRiSe components. Bottom row from left to
right: WCSeg decomposition, convex hulls of WCSeg components, CoRiSe decomposition,
and convex hulls of CoRiSe components.

that CoRiSe is more effective (use less components to provide tighter approximation). This

is especially true in the human and octopus category. Fig. 2.34 shows an example of the

segmentations of a human model and an octopus model from both CoRiSe and WCSeg.

The main differences between CoRiSe and WCSeg stem from how concavity is used for

segmentation. CoRiSe cares about the approximation error, thus ignores the fingers of

the human model because the concavity between two fingers is smaller than the concavity

tolerance. On the other hand, the legs of the octopus model are bended and CoRiSe cuts

the legs into several components to satisfy the concavity tolerance while WCSeg merges

them together.
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2.4.5.2 Comparison using benchmark dataset

Figure 2.35: Rand Index (RI) comparison on the Princeton Benchmark data. human:
human cut; PT: CoRiSe with a τ for each model; CT: CoRiSe with a τ for each category;
CR9: CoRiSe with τ = 0.09; CR10: CoRiSe with τ = 0.1; Additional comparisons
evaluated using other metrics such as consistency error, cut discrepancy, Hamming distance
all show similar trend as RI and can be found in the supplementary materials.

Firstly, note that CoRiSe aims at resolving the concavity of a model and is not designed

for semantic segmentation. For example, in Fig. 2.39, the bird is decomposed into over 30

parts which is much more than that of other shape segmentation. This will certainly influ-

ence the evaluation if CoRiSe is compared to segmentations created by human. However,

I feel it is important to compare CoRiSe to shape segmentation methods since, after all,

convexity is one of the important properties used in shape segmentation, and I also believe

that a visually meaningful decomposition can provide visually convincing simulation.

Fig. 2.35 shows the Rand Index (RI) scores obtained from seven methods on the same

benchmark. Although CoRiSe performs worse than the learning-based approach, CoRiSe

outperforms some single-model based methods [27, 54] that require more user parameters,

such as number of clusters. If CoRiSe can choose a concavity tolerance for each category,

its performance is comparable to [65] which also has several parameters and thresholds.

Moreover, if CoRiSe chooses concavity tolerance for each model individually, just as other
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methods selecting component size for each model, its RI score is lower than all single-model

methods in Fig. 2.35.

Compared with other shape-segmentation methods, CoRiSe has three major advan-

tages: First, CoRiSe provides the bounded convexity that can be used by broader appli-

cations. Second, CoRiSe has less number of parameters, while others require several user

parameters for each model to specify component number, soft-clustering number, or smooth

factors. Table 2.4 summarizes the number of parameters of each method. Finally, CoRiSe

is efficient without simplification as pre-processing.

Although it is true that only a small subset of concavity tolerances produce semantic

decomposition of a given shape, those that do create semantic decompositions reflect the

geometric property of the shape.

Table 2.4: Number of parameters of segmentation methods (including fixed parameters).
WCSeg: the parameters will be used for encoding pairwise matrix, computing Shape
Diameter Function and post-merging; RC: rand cut uses the statistics of other approaches’
decomposition results. The parameter number will be more the sum of those approaches;
SDF: Shape Diameter Function method ≥ 5 parameters (number of rays per facet; cone
angle; component number of GMM; two fixed parameters in encoding smoothness term
same as CoRiSe ; other parameters); HACD: many parameters in mesh simplification and
thresholds for angles and edges during decomposition; CORISE: 3 parameters (the first
is the concavity tolerance; the other two are the fixed parameters in encoding smoothness
term).

WCSeg RC SDF HACD CoRiSe

> 5 > 5 ≥ 5 7 3

2.4.6 Applications

CoRiSe is designed to approximate a 3D shape with a set of convex objects. In this section,

several applications are demonstrated using this type of approximation.
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Figure 2.36: Simulation created using the convex hulls of CoRiSe.

2.4.7 Physically-based Simulation

Physics simulation libraries, such as Bullet and Box2D, use multiple convex shapes to ap-

proximate the original non-convex shape. Approximating a shape with bounded concavity

error allows computations, such as collision response and penetration depth, become much

more efficient. In these applications, CoRiSecares about the number of approximation

components and the approximation error. Exact convex decomposition has no approxi-

mation error, however, the number of components is usually prohibitively huge, thus the

computation, e.g., penetration depth, is inherently expensive. It is therefore desirable to

have smaller number of components while the approximation error is bounded. From the

comparisons between HACD and CoRiSe shown in Table 2.3, CoRiSe provides following

advantages: 1). CoRiSe guarantees to enclose the original model while HACD does not;

2). CoRiSe is much faster than HACD; 3). CoRiSe produces smaller segmentation given

the same concavity tolerance.

CoRiSehas been successfully integrated with the Bullet library. This allows us to

generate convincing physically-based simulations using only the convex hulls of CoRiSe

decompositions. I encourage the readers to the website masc.cs.gmu.edu to view the sup-

plementary video.
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Figure 2.37: A cage created from CoRiSe decomposition.

2.4.7.1 Cage-Based Deformation

Cage based deformation technique aims to be an easy-to-use tool for graphics modelling,

texturing and animation. The advantage of cage-based space deformation is its simplicity,

flexibility and efficiency. Most cages in cage-based deformation are created manually, and

the process can be tedious. Xian et al. [98] proposed an automatic cage generation tech-

nique based on iteratively splitting the bounding boxes. However, their method requires

mesh voxelization that is both time consuming and, more importantly, ignores important

structural features of the input shape. For example, their cage usually misses vertices near

the concave regions of the input mesh. Moreover, their method is not suitable for inter-

active applications as for a shape with only 10k vertices, their method can take several

minutes. CoRiSe generates a cage in almost real-time. CoRiSe first generates a nearly

convex decomposition of the shape. Then convex hulls are computed for each part. These

convex hulls are slightly expanded and simplified. The final cage is the union of the convex

hulls. Fig. 2.37 shows a cage created for the Armadillo model and its deformation using

Green coordinates. More examples can be found in the supplementary materials.
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(a) (b) (c)

Figure 2.38: (a) Noisy mesh with missing facets. The bottom figure provides a close-up
view. (b) CoRiSe results. (c) Top: Convex hulls of 16 segmented parts in (b). Bottom:
Convex hulls of HACD segmentation (138 components). All results are obtained using
concavity tolerance 0.1.

2.4.7.2 Model Repair

All the models used in Table 2.3 are watertight. However, many digitized models have

degenerated features and may require mesh repair. The convex hulls of CoRiSe decompo-

sition provide a convenient way to generate a watertight representation. Fig. 2.38 shows a

mesh that has 45% of the facets removed, and CoRiSe successfully decomposes the mesh

and produces better approximation than HACD does. In fact, CoRiSe will be able to

produce similar results as long as the mesh edge connectivity has not been significantly

changed. For models with many holes, CoRiSe can get help from methods such as [99]

that can be used to ensure that the projected geodesic path of the bridges is still well

defined.
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2.4.8 Discussion & Future Work

In summary, in this Chapter and also paper [4], a 3D decomposition method that pro-

duces components with bounded concavity is proposed. The method called CoRiSe meets

the needs of real-time simulations and computer games better than the existing methods.

CoRiSealso shows that the decomposition results can produce semantically meaningful de-

composition with low computation cost when proper concavity tolerances are given. The

decomposition is achieved by identifying convex ridges and then solving a graph cut op-

timization problem formulated with valley separators and must-link regions. Comparing

CoRiSe with other methods on the public benchmark dataset, CoRiSe can generate re-

sults close to manual decomposition. Comparing CoRiSe with other approximate convex

decomposition methods, CoRiSe is significantly more efficient.

Known Limitations. Each of the major step of CoRiSe is quite robust. For example,

the convex ridges are always identified at expected locations for all the tested models. A

main limitation of CoRiSe is that its semantic meaning of CoRiSe components is signif-

icantly influenced by the concavity tolerance τ . When τ is too small, small components

are produced and the semantic meaning of these components diminishes. For example in

Fig. 2.39(c) and (d), even though CoRiSe still provides a tight approximation of the initial

model using a relatively small concavity tolerance (0.05), many small components do not

have significant meanings.

Another limitation of CoRiSe is that CoRiSe may not decompose a cup-like shape

if none of the valleys reach the bottom of the cup’s concavity (see Fig. 2.39(b)). This is

caused by the fact that a valley is the (approximated) shortest geodesic path. One way to

address this issue is to ensure that the vertex p with largest concavity of a valley has the

locally maximum concavity. If this is not the case, then CoRiSeiteratively descends p until

a point p′ with locally maximum concavity is reached. A new valley is then computed by

enforcing it to pass through p′.
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(a) (b)

(c) (d)

Figure 2.39: (a) CoRiSe result of a bird. (b) CoRiSe result of a cup. (c) CoRiSe result
using τ = 0.05. (d) The corresponding nearly convex approximation of (c).
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Chapter 3: Appearance Synthesis - Material Editing

In this chapter, I focus on the appearance synthesis. Specifically, I will develop methods

to editing the materials on 2D images. The ability to edit materials of objects in images

is desirable by many content creators. However, this is an extremely challenging task as

it requires to disentangle intrinsic physical properties of an image. An end-to-end network

architecture that replicates the forward image formation process will be introduced to ac-

complish this task. Specifically, given a single image, the network first predicts intrinsic

properties, i.e. shape, illumination, and material, which are then provided to a rendering

layer. This layer performs in-network image synthesis, thereby enabling the network to un-

derstand the physics behind the image formation process. Due to the lack of corresponding

training data, synthetic dataset will mainly be used to train the network. For multi-material

cases, multi-material images will also be synthesized. To render such multi-material images,

instead of naively assigning different materials for each pixel independently, I will assign

different material part-wisely. The parts are obtained through segmenting the 3D models

into meaning parts using the segmentation approaches described in Chapter 2 (If neces-

sary, I will manually merge some of the parts as the post-processing). Both the results on

synthetic images and real images will be demonstrated.

3.1 Introduction

One of the main properties of an object that contributes to its appearance, is material.

Hence, many designers desire to effortlessly alter materials of objects. In case of 2D design,

however, often the designer only has access to a single image of the object. Given one such

image, e.g. an image of a fabric sofa, how would you synthesize a new image that depicts

the same sofa with a more specular material?
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A typical approach to addressing this image-based material editing problem is to first

infer the intrinsic properties (e.g. shape, material, illumination) from the image which then

enables access to edit them. However, this problem is highly ambiguous since multiple

combinations of intrinsic properties may result in the same image. Many prior work has

tackled this ambiguity either by assuming at least one of the intrinsic properties is known [6]

or devising priors about each of these properties [7]. The recent success of deep learning

based methods, on the other hand, has stimulated research to learn such priors directly

from the data. Inferring intrinsic scene properties such as shape, material, and illumination

from a single image has been a long standing problem in computer vision. This problem

is highly ambiguous and ill-posed since multiple combinations of intrinsic properties may

result in the same image. Many prior work has tackled this ambiguity either by assuming

at least one of the intrinsic properties is known [6] or devising priors about each of these

properties [7]. The recent success of deep learning based methods, on the other hand, has

stimulated research to learn such priors directly from the data itself.

A feasible approach is to predict each of the intrinsic properties independently from

an input image, i.e. using individual neural networks to predict normals, material, and

lighting. However, the interaction of these properties during the image formation process

inspires us to device a joint prediction framework. An alternative common practice of deep

learning methods is to represent the intrinsic properties in a latent feature space [8] where

an image can be decoded from implicit feature representations. Directly editing such feature

representations, however, is not trivial since they do not correspond to any true physical

property. On the contrary, the physics of image formation process is well understood and

motivates us to replace this black-box decoder with a physical decoder and thus enables the

network to learn the physics of image formation.

An end-to-end network architecture that replicates the image formation process in a

physically based rendering layer is presented. This network is composed of prediction mod-

ules that infer each of the intrinsic properties from a single image of an object. These

predictions are then provided to a rendering layer which re-synthesizes the input image.
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input image target material output image

Figure 3.1: The materials of the objects in the input images are replaced with the material
properties of the objects in the middle column, resulting edited images are shown in the
right column.

The loss function is defined as a weighted sum of the error over the individual predictions

and perceptual error over the synthesized images. Comparisons with and without incorpo-

rating the perceptual error are provided and show that the combined loss provides significant

improvements (see Figure 3.5.Due to the lack of a large scale dataset of real images with

ground truth normal, material, and lighting annotations, the network is trained on a ren-

dering based synthetic dataset. Nevertheless, this network performs reasonable predictions

for real images where the space of materials and lighting is much more diverse. The re-

sults on real images are further refined with a post-optimization process and refined results

show that the network predictions provide a good initialization to this highly non-linear

optimization. This paves the road to plausible editing results (see Figure 3.1).
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3.2 Related Work

Intrinsic Image Decomposition. A closely related problem to image-based material

editing is intrinsic image decomposition which aims to infer intrinsic properties, e.g. shape,

illumination, and material, from a single image and thus enables access to edit them. The

work of Barrow et al. [100] is one of the earliest to formulate this problem and since then

several variants have been introduced.

Intrinsic image decomposition is an ill-posed problem since different combinations of

shape, illumination, and material may result in the same image. Therefore, an important

line of work assumes at least one these unknowns to be given, such as geometry. Patow et

al. [101] provides a survey of earlier methods proposed to infer illumination, material, or

combination of both for scenes with known geometry. More recent work from Lombardi et

al. [6, 102] introduces a Bayesian formulation to infer illumination and material properties

from a single image captured under natural illumination. They utilize a material repre-

sentation based on Bidirectional Reflectance Distribution Functions (BRDFs) and thus can

handle a wide range of diffuse and specular materials. Approaches that aim to infer all three

intrinsic properties [7], on the other hand, often make simplified prior assumptions such as

diffuse materials and low-frequency lighting to reduce the complexity of the problem.

An important sub-class of intrinsic image decomposition is shape from shading (ShS)

where the goal is to reconstruct accurate geometry from shading cues [103]. Many ShS

approaches, however, assume prior knowledge about the material properties [104] or coarse

geometry [105] to be given.

As opposed to these approaches, my method assumes no prior knowledge about any

of the intrinsic properties to be given and handle both diffuse and specular materials un-

der natural illumination. Instead of making assumptions, my method aims to infer priors

directly from data via a learning based approach.

Material Editing. Some previous methods treat material editing as an image filtering

problem without performing explicit intrinsic image decomposition. Khan et al. [106] utilize
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Figure 3.2: Given a single image of an object, I, a network architecture which first predicts
material (m′), surface normals (n′), and illumination (L′) is proposed. These predictions
are provided to a rendering layer which re-synthesizes the input image (I′). In addition,
a desired target material, mt, is passed to the rendering layer along with n′ and L′ to
synthesize a target image O′ which depicts the object with the target material from the
same viewpoint and under the same illumination. By defining a joint loss that evaluates
both the synthesized images and the individual predictions, this framework perform robust
image decomposition and thus enable material editing applications.

simple heuristics to infer approximate shape and illumination from an image and utilize

this knowledge to perform material editing. Boyadzhiev et al. [107] introduce several image

filters to change properties such as shininess and glossiness. While these approaches achieve

photo-realistic results they can provide limited editing scenarios without explicit knowledge

of the intrinsic properties.

Material Modeling via Learning. With the recent success of learning based meth-

ods, specifically deep learning, several data-driven solutions have been proposed to infer

intrinsic properties from an image. Tang et al. [108] introduce deep lambertian networks to

infer diffuse material properties, a single point light direction, and an orientation map from

a single image. They utilize Gaussian Restricted Boltzmann Machines to model surface

albedo and orientation. Richter et al. [109] use random forests to extract surface patches

from a database to infer the shape of an object with diffuse and uniform albedo. Narihira

et al. [110] predict relative lightness of two image patches by training a classifier on fea-

tures extracted by deep networks. Similarly, Zhou et al. [111] use a convolutional neural
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network (CNN) to predict relative material properties of two pixels in an image and then

perform a constrained optimization to solve for the albedo of the entire image. Narihira et

al. [112] propose a CNN architecture to directly predict albedo and shading from an image.

Kulkarni et al. [8] use variational auto-encoders to disentangle viewpoint, illumination, and

other intrinsic components (e.g. shape, texture) in a single image. One of the limitation of

these methods is the ability to handle diffuse materials only. The recent work of Rematas et

al. [113] predict the combination of material and illumination from a single image handling

both diffuse and specular materials. In a follow-up work [114], they propose two inde-

pendent network architectures to further disentangle material and illumination from such

a combined representation. However, any error that occurs when inferring the combined

representation is automatically propagated to the second step. In contrast, in this chapter,

an end-to-end network architecture is proposed to perform this disentangling in one pass.

Last but not least, several recent work [115, 116] uses neural networks to estimate per-pixel

intrinsic properties from a given image. However, these estimations are aligned with the

input image, thus, it is not easy transfer these properties across images of different objects

as my method does.

3.3 Approach

Overview. An end-to-end network architecture for image-based material editing is pro-

posed. The input is I, a single image of an object s with material m captured under

illumination L. The object is assumed to be masked out in the image. Given a desired

target material definition mt, the goal is to synthesize an output image O that depicts s

from the same viewpoint with material mt and illuminated by L.

While inferring illumination, material, and shape from a single image is an ill-posed

problem, once these parameters are known, the forward process of image synthesis, i.e.

rendering is well defined. I propose a network architecture that encapsulates both this

inverse decomposition and the forward rendering processes as shown in Figure 5.1. The
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first part of the network aims to infer illumination (L′), material (m′), and 3D shape

(represented as surface normals, n′) from I via three different prediction modules. The

output of each of these modules is then provided to a rendering layer to synthesize I ′. In

addition, the target material mt is passed to the rendering layer along with predicted L′

and n′ to synthesize an output image O′. A joint loss function is defined to evaluate both

the outputs of the rendering layer and the predictions of two of the individual modules.

It will show that this joint loss significantly improves the accuracy of the inverse image

decomposition process and achieves compelling material editing results.

Sec. 3.3.1 introduces the render layer; Sec. 3.3.2 discusses prediction modules providing

data to it; and the training procedure is described in Sec. 3.3.3. Then, Sec. 3.3.4 shows how

objects composed of multiple materials are handled.

3.3.1 Rendering Layer

The color of each pixel in an image depends on how the corresponding object surface point

reflects and emits incoming light along the viewing direction. The rendering layer aims to

replicate this process as accurately as possible. Compared to previously proposed differen-

tiable renderers [117], the main advantage of the rendering layer is to model surface material

properties based on BRDFs to handle both diffuse and specular materials. Environment

maps is also utilized, which provide great flexibility in representing a wide range of illumina-

tion conditions. Note that the rendering layer also makes several moderate assumptions. It

assumes the image is formed under translation-invariant natural illumination (i.e. incoming

light depends only on the direction). It also assumes there is no emission and omit complex

light interactions like inter-reflections and subsurface scattering.

Under these conditions, the image formation process is modeled mathematically similar

to Lombardi et al [6]. Given per-pixel surface normals n (in camera coordinates), material

properties m and illumination L, the outgoing light intensity for each pixel p in image I
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can be written as an integration over all incoming light directions ωi:

Ip(np,m,L) =

∫
f(ωi, ωo,m)L(ωi) max(0,np · ωi)dωi, (3.1)

where L(ωi) defines the intensity of the incoming light and f(ωi, ωo,m) defines how this

light is reflected along the outgoing light direction ωo based on the material properties m.

In order to make this formulation differentiable, the integral is substituted with a sum over

a discrete set of incoming light directions defined by the illumination L:

Ip(np,m,L) =
∑
L

f(ωi, ωo,m)L(ωi) max(0,np · ωi)dωi. (3.2)

The rest of this section discusses how each property is represented.

Surface normals (n). n is represented by a 3-channel image, same size as the input

image, where each pixel p encodes the corresponding per-pixel normal np.

Illumination (L). Illumination is represented with an HDR environment map of di-

mension 64 × 128. Each pixel coordinate in this image can be mapped to spherical coor-

dinates and thus corresponds to an incoming light direction ωi in Equation 3.2. The pixel

value stores the intensity of the light coming from this direction.

Material (m). f(ωi, ωo,m) is defined based on BRDFs [118] which provide a physi-

cally correct description of pointwise light reflection both for diffuse and specular surfaces.

Non-parametric models [119] aim to capture the full spectrum of BRDFs via lookup ta-

bles that encode the ratio of the reflected radiance to the incident radiance given incoming

and outgoing light directions (ωi, ωo). Although such lookup tables achieve highly realistic

results, they are computationally expensive to store and not differentiable. Among the

various parametric representations, Directional Statistics BRDF (DSBRDF) model [120]

is adopted, which is shown to accurately model a wide variety of measured BRDFs. This
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model represents each BRDF as a combination of hemispherical exponential power distribu-

tions and the number of parameters depends on the number of distributions utilized. The

experiments show that utilizing 3 distributions provides accurate approximations resulting

in 108 parameters per material definition in total. The original work [120] provides more

details.

3.3.2 Prediction Modules

Three prediction modules are utilized to infer surface normals, material properties, and

illumination. The input to each module is the 256× 256 input image I.

Normal prediction. The normal prediction module follows the same spirit as the

recent work of Eigen et al. [9]. The main difference is that the normal map is predicted

to be equal in size to the input image by utilizing a 4-scale-submodule network as opposed

to the originally proposed 3-scale-submodule network. The fourth submodule consists of

2 convolutional layers where both input and output size is equal to the size of the input

image. A normalization layer is utilized to predict surface normals with unit length.

Illumination prediction. Illumination prediction module is composed of 7 convolu-

tional layers where the output of each such layer is half the size of its input. The convolu-

tional layers are followed by 2 fully connected layers and a sequence of deconvolutional layers

to generate an environment map of size 64 × 128. Each convolutional and fully connected

layer is accompanied by a rectifier linear unit. Fully connected layers are also followed by

dropout layers.

Material prediction. Material prediction module is composed of 7 convolutional layers

where the output of each such layer is half the size of its input. The convolutional layers

are followed by 3 fully connected layers and a tanh layer. Each convolutional and fully

connected layer is accompanied by a rectifier linear unit. Fully connected layers are also

followed by dropout layers. Note that since each of the 108 material parameters are defined

at different scales, each is normalized to the range [−0.95, 0.95] and remap to their original

scales after prediction.
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3.3.3 Training.

The proposed network architecture is trained by defining a joint loss function that evaluates

both the predictions of the individual modules and the images synthesized by the rendering

layer. Specifically, a L2 normal loss is defined as:

lnormal =
∑
p

(np − n′p)2, (3.3)

where np and n′p denote the ground-truth and predicted surface normals for each pixel p

respectively. Since both ground-truth and predicted normals are unit length, this loss is

equivalent to cosine similarity used by Eigen et al. [9].

The material loss is defined as the L2 norm between the ground truth (m) and predicted

material parameters (m′):

lmaterial = (m−m′)2 (3.4)

A perceptual loss, lperceptual, is also utilized to evaluate the difference between the synthe-

sized {I ′,O′} and ground truth {I,O} images. The pre-trained vgg16 network is used to

measure lperceptual as proposed by Johnson et al. [121].

The final loss, l, is defined as a weighted combination of these individual loss functions:

l = wnlnormal + wmlmaterial + wplperceptual, (3.5)

where the weights are empirically set to be wn=1× 104, wm=1× 103, wp=1.

3.3.4 Extension to Multi-Material Case

A typical use case scenario for image-based material editing is where a user denotes the

region of interest of an object and a desired target material that should be applied to

this region. My approach trivially supports such use cases. Given a segmentation mask

94



input image GT output input image GT output input image GT output

Figure 3.3: For each input image, an output image is synthesized with a given target
material definition. The ground truth (GT) target images are provided for reference. The
left (middle) column shows cases where the target material is more (less) specular than the
input material. Examples where both the input and the target material are specular are
also provided in the right column.

denoting regions of uniform material, material prediction is performed for each region while

predicting a single normal and illumination map for the entire image. All these predictions

are then provided to the rendering layer. Target materials are defined for each region of

interest separately. The rest of the training and testing process remains unchanged.

Such multi-material dataset will also be synthesized for training as well. Specifically,

the 3D segmentation methods described in Chapter 2 will be used to decompose the 3D

models into several parts. Then, if necessary, some of the parts will be manually merged

to create more semantic segmented parts. During the training, a material will be randomly

assigned to each part independently and then use a single environment map image to render

an image. the normal and lighting will be estimated from the whole image; but estimate

the material property from each part individually.

3.3.5 Refinement with Post-optimization

Due to the lack of a large scale dataset of real images with ground truth normal, material,

and illumination annotations, the network is trained with synthetic renderings. Although

large 3D shape repositories [122] provide sufficient shape variation, the network does not

see a large spectrum of material and illumination properties captured in real images. While

increasing the variation in the synthetic data could reduce the discrepancy between the
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training and test sets, the gap is almost always there theoretically. Thus, the network pre-

dictions on real images are refined with a post-optimization. Specifically, using no,mo, Lo,

the network predictions of surface normal, material, and illumination for an input image I

as initialization, n∗,m∗, L∗ are optimized to minimize the following energy function:

argmin
n∗,m∗,L∗

‖ I∗ − I ‖2 +a ‖ n∗ − no ‖2 +b ‖ L∗ − Lo ‖2 . (3.6)

I∗ is the image formed by n∗,m∗, L∗ and the first term penalizes the image reconstruction

loss. The remaining regularization terms penalize the difference between the network pre-

dictions of normal and illumination and their optimized values. The relative weights are set

to be a = 1, b = 10 for those regularization terms. L-BFGS is used to solve Equation 3.6

in an alternative scheme where only one intrinsic property is updated at each iteration.

3.4 Evaluation

This section provides quantitative and qualitative evaluations of my method as well as

comparisons to previous work.

3.4.1 Datasets and Training

The framework is trained with a large amount of synthetic data generated for car, chair,

sofa, and monitor categories. They include a total of 280 3D models (130 cars, 50 chairs, 50

sofas and 50 monitors) obtained from ShapeNet [122]. For materials, BRDF measurements

corresponding to 80 different materials provided in the MERL database [119] are used.

For illumination, 10 free HDR environment maps were downloaded from the Internet and

random rotation is used to augment these environment maps.

Data generation. For each 3D model, material, and illumination combination 5 ran-

dom views are sampled from a fixed set of pre-sampled 24 viewpoints around the object with
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fixed elevation. The data is split such that no shape and material is shared between training

and test sets. Specifically, 80 cars are used for pretraining, and 40 shapes per each category

for joint category finetuning, which leaves 10 shapes per category for testing. Out of the 80

materials, 20 are used for testing and the rest are used in pre-training and training. This

split allows us to generate 240K pre-training instances, and 480K multi-category finetun-

ing instances. In total, the network is trained with over 720K unique material-shape-light

configurations.

Training procedure. The weights are initialized from a uniform distribution: [−0.08, 0.08].

Normal and material modules are pre-trained using L2 loss for a few iterations and then

trained jointly with illumination network. Adam [123] optimizer is utilized for stochas-

tic gradient descent. Similarly, momentum parameters are first set to be β1 = 0.9 and

β2 = 0.999, and a learning rate to be 0.0001. Later the learning rate is reduced to be

1× 10−6 and 1× 10−8. β1 is also reduced to 0.5 for a more stable training.

3.4.2 Evaluation on Synthetic Data

To test my network, an image corresponding to shape s, environment map L, and material

m from the test set is randomly selected as input. Given a target material mt, an output

image depicting s with material mt and illuminated by L is synthesized. This synthesized

output is compared to ground truth using two metrics. While the L2 metric measures

the average pixel-wise error, SSIM metric[124] measures the structural difference. The L2

error is computed on tone mapped images where each color channel is in the range [0, 255]

and define per-pixel error as the average of the squared difference of three color channels.

Note that lower (higher) numbers are better for the L2 (SSIM) metric. Quantitative results

are provided in Table 3.2, last two columns. Note that the network is trained for all

categories jointly. Figure 3.3 provides visual results demonstrating that my approach can

successfully synthesize specularities when replacing the input material with a more specular

target material. Similarly, specularities in the input image are successfully removed when
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source image GT output GT output

Figure 3.4: An image of an object is synthesized under some desired illumination with
material properties predicted from a source image. The ground truth (GT) is provided for
reference.

replacing the input material with a more diffuse one.

Figure 3.4 shows examples where material properties predicted from a source image are

transferred to a different object under some desired illumination. Such material transfers

alleviates the need to define target materials explicitly, instead each image becomes an

exemplar.

3.4.3 Evaluation of the Rendering Layer

The effectiveness of utilizing the perceptual loss on the images synthesized by the rendering

layer is evaluated as opposed to independent predictions.

Accuracy of Material Coefficients. For this evaluation, given an input image I,

ground truth normals (n) and illumination (L) are provided and the network only predicts

material. The material prediction module is also trained as a standalone network. While

both the standalone module and my network use the L2 loss on material coefficients in

spirit similar to the recent work of Georgoulis et al. [114], the latter combines this with the

perceptual loss on I ′. Qualitative and quantitative results are provided in Figure 3.5 and

Table 3.1 respectively. The results demonstrate that the L2 loss is not sufficient in capturing

the physical material properties, a small L2 error may result in big visual discrepancies in

the rendering output. Incorporation of the rendering layer resolves this problem by treating
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GT standalone combined GT standalone combined

Figure 3.5: Each example shows the ground truth image as well as the renderings obtained
by utilizing the material coefficients predicted by the standalone material prediction module
and the combined approach which also uses the rendering layer.

the material coefficients in accordance with their true physical meaning.

material rendering

L2 L2 SSIM

standalone 4.1038 544.1 0.9297
combined 4.8144 355.5 0.9517

Table 3.1: The accuracy of the predicted material coefficients and the images rendered
using these together with ground truth normals and illumination are shown. Results of the
material prediction module trained standalone vs with the rendering layer are provided.

3.4.4 Multi-Material Examples

Examples for objects composed of multiple materials are also provided in this section. For

these examples, the 3D segmentation method described in Chapter 2 are used to decompose

the 3D models into several parts; then some of the parts are manually merged to become

more semantic regions where each region gets its own material assignment. Renderings from

5 different viewpoints are generated with random illumination and materials assignments.

The model trained on single-material examples is fine-tuned with these additional render-

ings. 80 chairs are used for fine-tuning and 20 for testing. Figure 3.7 shows examples of
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input Lombardi Baseline1 Baseline2 Baseline2+opt mine mine+opt GT

Figure 3.6: For each example, the input and the ground truth target image (GT) are shown.
The results obtained by the method of Lombardi et al. [6], two baseline methods, and my
approach are provided.

editing each region with a target material. These results are also quantitatively evaluated

with respect to ground truth over 4000 examples. It achieves an L2 error of 1272.1 and

SSIM index of 0.9362.

input image GT my output input image GT my output

Figure 3.7: Given an image of a multi-material object, this figure shows how different
target material assignments are realized for different parts. Ground target (GT) images are
provided for reference.

3.4.5 Comparisons

My method is compared with several baseline methods and previous approaches which are

briefly discussed below.
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input image target material Lombardi Baseline2 Baseline2+opt mine mine+opt

Figure 3.8: The target materials are transferred to the input image using the method of
Lombardi et al. [6], baseline 2, baseline 2 with post-optimization, my network, and my
network with post-optimization.

Lombardi et al. [6] My method is compared to the approach of Lombardi et al. [6]

which uses certain priors to optimize for illumination and material properties in a single

image of an object with known geometry. The ground truth surface normals are provided

to this method and the material and illumination coefficients are from predictions. The

target image is rendered given the target material, ground truth normals, and the predicted

illumination.

Baseline 1. The first baseline is inspired by the work of Kulkarni et al. [8] and is

based on an encoder-decoder network. The encoder maps the input image to a feature

representation, f = (fm, fo), with one part corresponding to the material properties (fm)

and the remaining part corresponding to other factors (fo) (i.e. normals and illumination).

This disentangling is ensured by passing fm as input to a regression network which is trained

to predict the input material coefficients. fm is then replaced by the feature representation

of the target material. The decoder utilizes the updated feature representation to synthesize

the target image. Skip connections are also provided from the input image to the decoder to

avoid blurry output. Similar to my approach, baseline 1 is trained with the perceptual loss

between the synthesized and ground truth target image and the L2 loss on the estimated

input material coefficients.

Baseline 2. For the second baseline, given the input image,three individual networks
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Lombardi Baseline1 Baseline2 mine
no opt opt no opt opt

L2 802.7 1076.7 886.9 1273.7 805.2 530.9
SSIM 0.9416 0.9173 0.9256 0.9159 0.9408 0.9557

Table 3.2: The accuracy of material transfer results are evaluated on synthetic data for
Lombardi et al. [6], baseline 1, baseline 2 with and without post-optimization, and my
method with and without post-optimization.

are trained to predict the surface normals, material, and illumination separately. All net-

works are trained with the L2 loss. The target images are then rendered using the predicted

surface normals, illumination, and the target material.

For this comparison, my method and both of the baselines are trained on the same

training and testing set. The output of baseline 2 and my method are refined with the post-

optimization described in Section 3.3.5. 500 images sampled from the testing set are used

as input and generate a new image with a target material from the test set. Quantitative

results are provided in Table 3.2 and visual results in Figure 3.6. For baseline 2, the use

of L2 loss only results in blurry normal prediction, hence the blurry target images. While

baseline 1 addresses this issue by use of skip connections, implicit feature representations

fail to capture the true intrinsic properties and result in a large appearance difference

with respect to ground truth. The approach of Lombardi et al. [6] performs non-convex

optimization over the rendering equation which is likely to get stuck in local minimum

without a good initialization. The individual predictions from baseline 2 are quite far from

the global minimum or any reasonable local minimum. Thus, no improvement is observed

with post-optimization, in some cases the optimization in fact gets stuck in a worse local

minimum. My initial network output performs in par with [6] with no assumption on

known surface normals. Refining these predictions with the post-optimization outperforms

all other methods significantly.
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Figure 3.9: Given a set of images (in diagonal, in red boxes), new images are synthesized
by using shape and light from its row and material from its column using my approach.

3.4.6 Evaluation on Real Images

Visual comparisons of my method with the method of Lombardi et al. [6] and baseline 2 on

real product images1 downloaded from the internet in Figure 3.8 are provided. Since the

1For real examples I finetune my network using all materials in the material dataset to better generalize
to unseen materials.

103



method of Lombardi et al. [6] assumes surface normals to be known, the normal predictions

of my method are provided to their optimization. Additionally, the results are fined for

both baseline 2 (i.e. individual prediction of normal, material, and illumination) and my

method with the post-optimization introduced in Section 3.3.5. Despite the fact that my

network has been trained only on synthetic data with a limited set of environment maps

and materials, the raw network results are promising and provide a good initialization to

the post-optimization. Independent predictions, on the other hand, result in the post-

optimization to get stuck in a local minimum which does not yield as visually plausible

results.

Finally, in Figure 3.9, material transfer examples are provided on some real images

provided by the SMASHINg challenge dataset [113] with the combination of my network

and the post optimization.

3.5 Conclusion and Future Work

I propose an end-to-end network architecture for image-based material editing that encap-

sulates the image formation process in a rendering layer. The rendering layer enables the

network to synthesize images with significant improvements in appearance. I demonstrate

various plausible material editing results both for synthetic and real data. This work is also

published in [5].

One limitation is that the MERL BRDF dataset [119] only contains 100 materials. Even

though these materials can be combined to interpolate more materials, this interpolated

space sometimes can’t cover some of the real world’s materials. For some real images, the

material estimations would be quite different from the real underlying materials. Some

failure examples can be found in Figure 3.10.

Another limitation of this work is the fact that lighting space is learned with a rela-

tively small dataset, because of the lack of data. This may result in imperfect decompo-

sition, specifically some lighting effects being predicted to be part of the surface normals.
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input image 1 edited image 1 input image 2 edited image 2

Figure 3.10: Failure cases: given two input images, new images are synthesized by swapping
the material properties of the objects.

This is especially apparent in the relatively poor performance on real examples (see the

supplementary material).

For multi-material cases, even though the normal and lighting can be estimated from

the whole image globally and assign a desired target material for a either big or small re-

gion, directly estimating material for a small segment independently is difficult. For such

scenarios, extending the network to perform per-pixel material predictions will be a promis-

ing direction. Incorporation of advanced light interactions such as subsurface scattering

and inter-reflections in the rendering layer is crucial to generalize the method to scenes

with multiple objects and real images. Finally, I expect the performance boost obtained by

the encapsulation of the rendering layer to stimulate further research in designing neural

networks that can replicate physical processes.
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Chapter 4: Shape Synthesis - Fine Scale Normal Prediction

In this Chapter, I will focus on estimating fine-scale normal from 2D images. I will work on

both synthetic dataset and real image dataset. The framework is similar to the framework

used in the Chapter 3. Especially, I will show how this framework will be used for extracting

detailed images from real scene images where the ground truth data is noisy. Comparisons

will be shown to validate the effectiveness of this framework.

4.1 Introduction

As one type of shape properties, normal direction captures the local surface details. It

has wide applications in image editing, visual understanding, geometry reconstruction etc.

Image relighting is a representative task where the normal direction is useful. Naive image

relighting may add or reduce the light intensity for each pixel equally; while knowing the

normal direction helps to make each pixel’s light changes to be more consistent with the

pixel’s geometry variation. David Marr [125] proposed that visual recognition takes 2.5D

representation as the intermediate representation, where human recognition system tend

to first infer 2.5D structure for the visible pixels from 2D image and then generates the

3D shape using the 2.5D representation. Surface normal is one of those important 2.5D

representations. Normal prediction, which captures the local surface details, can also be

used to generate denser and smoother geometry reconstruction.

There are mainly three sources to obtain the normal direction information:

1). One way to obtain normal is to use depth sensors to get the 3D point cloud data first

and then normal direction is computed from the the local frame. However, the problems

of this source are: a). Inadequate calibration and inaccurate measurement of

disparities. Inadequate calibration is the source of systematic error in points’ coordinates.
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Inaccurate measurement of disparities also influence the accuracy [126]; b). Measurement

setup. This is related to the lighting condition and the imaging geometry. With strong

light, the laser speckles appear in low contrast in the infrared image leading to outliers

or gap in the captured point clouds. The imaging geometry includes object’s distance and

surface orientation relative to the sensor. For instance, the operating range of a certain may

be between 0.5m to 5m and the error increase when out of this range. Some part of the

sense may not be seen by the infrared camera, but may have been by the laser pattern [126];

c). Smooth and specular materials. For the surfaces with these materials, sensors can’t

get accurate feedback to measure the depth. As a result, the computed normals usually

are noisy or contains some missing regions, shown as the second image in Figure 1.3. On

the other hand, normals computed from these depth data usually serve as the ground truth

training data for some learning-based approaches [9, 127, 128]. In consequence, it is possible

that inaccurate ground truth confuses the machine learning models and leads to model’s

worse performance during the deployment stage.

2). The second source is multi-view image based reconstruction [129]. However, it

usually can only reconstruct sparse points and for most scenarios, there are no multiple

views images of the same object or scene, like the images on the Internet.

3). The third source is the single image based normal estimation. Single image based

normal estimation usually depends on model fitting or priors which usually are learning

through learning approaches. Model fitting [130] requires a large dataset to cover enough

geometry variety. Occlusion and camera pose are also big challenges for model fitting,

which directly influence final fitting performance. Occlusion causes a lot of ambiguities;

while camera pose estimation itself is an unsolved open problem. Moreover, model fitting

approaches are not easy to generalize to scene. Some of the prior based approaches [131]

usually over-simplify the problems with a lot of assumptions, which limit their application

scenarios. Other priors based approaches [132] have few assumptions and constraints, but

usually produce blurry normal predictions.

In this chapter, I will propose a framework to predict fine-scale normals from a single
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image. The novelties contain two parts: 1). this framework will predict significantly more

detailed normals than previous learning approaches with few assumptions or even without

any assumption about the input image; 2). one mechanism is proposed to reduce the effects

of inaccurate ground truth normal training data. Previous learning based approaches only

defines the L2 loss function (equivalent to the angular loss) between the ground truth normal

n∗p and predicted normal n′p.

lnormal =
∑
p

(n∗p − n′p)2, (4.1)

where the problems include: 1). this type of loss function usually leads to blurry output; 2).

as it uses the inaccurate ground normal directly, the inaccuracy may hurt the performance

of the model.

The main motivation of my approach is that: during the training, it not only penal-

izes the difference between ground truth normal and predicted normal but also adds the

regularization of whether the image generated from estimated normal matches with the

image generated from the real normal. The image generated from real normal represents

the original input image. Besides normal, the material and lighting will also be predicted

from the image. It is equivalent to that my approach predict normals that is both close to

the ground truth and generates the image close to the original input image, together with

the predicted material and lighting. Particularly, the new formulation can be regarded as

the following: ∑
p

P (I∗p, f(n′p,m
′
p, l
′
p)) + λ

∑
p

(n∗p − n′p)2, (4.2)

where I∗p denotes the input image; n′p, m′p and l′p are the predicted normal, material and

lighting respectively; f is the rendering function; n∗p is the ground normal. P is perceptual

loss function defined in [121]. The rendering equation is same with that in Chapter 3.
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Figure 4.1: Multi-Branch Normal Prediction Architecture.

One main advantage of this formulation is that it can transfer the high resolution char-

acteristics of image to normal prediction. Images serve as a better source to provide details

than the ground truth normal computed from depth data acquired by depth sensors. Also

there is a chance that it would improve the training for the region where ground truth

normal is noisy or missing.

To validate the effectiveness of the formulation, I train and test the model on both single

object images and scene images. For single image, both the cases of single material and

multi-material are covered. For scene images, the model is trained and tested on RGB-d

dataset.
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Figure 4.2: “U”-net Normal Prediction Architecture.

4.2 Single Object Normal Estimation

Deep neural network is chosen as the model and loss function is defined using Formula-

tion 4.2. For the deep neural network architecture, two architectures are considered. The

first architecture is a multi-branch network, similar to the work of Eigen et al. [9]. This

type of network contains several sub-networks with smaller sizes to make the network have

higher capability to generate detailed final output. The structure of this architecture can

be found in Figure 4.1. Assuming the input image is with size 256 × 256, the first branch

generates 64× 64; the second branch use a single convolution layer to convolute the input

image to 64 × 64 and concatenate it with the result produced by first branch, then it will

generate the 128× 128 output; similar to the second branch, the third branch will give the

output with size 256 × 256; the fourth branch does all the convolution operations on size

with 256×256 directly. The second architecture is similar to the work of Zhang et al. [133].

This architecture contains encoder part and decoder part. The encoder part is adapted

from VGG-16 network [23] by removing the fully connected layers, same to the encoder of

Zhang et al. [133]. The decoder is symmetric to the encoder with convolutional layers and

upsampling layers (or unpooling layers). Figure 4.2 shows the details of this architecture.

From the experiments, I find that two architectures perform similarly. For single object
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Figure 4.3: Some examples of environment map used for training.

case, I mainly use the multi-branch network for single object normal prediction.

4.2.1 Single Material Case

For single object case, synthetic data are mainly used. The advantage of using synthetic

data is that there are ground truth normal, material and light. Unlike the normal computed

from depth data capture by depth sensors, the ground truth normal is accurate and detailed.

Same to Chapter 3, the network is trained on car, chair, sofa and monitor categories, with

a total of 280 3D models (130 cars, 50 chairs, 50 sofas and 50 monitors). 80 materials from

MERL dataset [119] are used. 14 free HDR environment maps downloaded from the Internet

are used as illumination. Some examples of environment maps are shown in Figure 4.3. The

details of data generation and training process are discussed in Section 3.4 of Chapter 3.

Figure 4.4 shows the results of testing on the synthetic images of single object with

single material. Figure 4.5 shows the results of testing on the real images using the model

trained on synthetic images. “standalone” represents the results using the Formulation 4.1

as the loss function; “combined” represents the results using Formulation 4.2 as the loss
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input ground truth standalone combined

Figure 4.4: Comparison of standalone and combined formulation on synthetic dataset.

functions. It can be seen that the model trained using Formulation 4.2 as the loss function

can produce more details normal prediction.

4.2.2 Multiple Material Case

I use the same setting as the Single Material Case as in Section 4.2.1. The only difference is

that the shape will be segmented into several parts. The segmentation is obtained: 1). using

the connectivity information to do graph search and. if possible, getting the original com-

ponent information coming along with the model itself; 2). using the segmentation methods

described in Chapter 2 to further decompose the model into several parts; 3). manually
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input standalone combined

Figure 4.5: Comparison of standalone and combined formulation on real images.
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input ground truth standalone combined

Figure 4.6: Comparison of standalone and combined formulation on single object with
multiple materials.
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merging the decomposed parts into more meaningful and semantic components. The nor-

mals are generated using the views same to the views in Section 3.4 of Chapter 3. I trained

two models both using the network in Figure 4.1: one using standalone Formulation 4.1 as

the loss function; the other one using combined Formulation 4.2 as the loss function. Two

models are trained using the same dataset with same batch numbers. Figure 4.6 shows the

comparison of the models trained using those two formulations as loss functions. It can be

seen that the model trained using combined Formulation 4.2 as the loss function can also

generate more detailed normal predictions than the one using standalone Formulation 4.1

as the loss function.

4.3 Scene Image Normal Estimation

Scene images contain a lot of textures and various objects with different material properties.

Thus, a single scene image usually contains several material properties, especially when there

a lot of various texture patterns in the image. As a result, predicting a single material from

the whole image is not enough. Per-pixel material estimation is required. One challenge

about the per-pixel material estimation using current material representation is that each

pixel needs to predict 108 dimensional vector. As a result, if the input image is with size

256 × 256 × 3, where height and width area 256 and channel size is 3, the network needs

to produce an output with size 256 × 256 × 108. This makes the network structure to be

very complex and increases the parameter number by a large amount. Both the model size,

computation time for forward pass and computation for backward pass will increase a lot.

It would make the network very difficult to train. To reduce the complexity, following the

work of Lombardi et al [6], the functional PCA (functional principal component analysis)

is used as the representation. This functional-PCA allows to use fewer number of material

representation. The basis of functional principal component analysis is computed from the

100 materials from MERL BRDF [119]. In this way, the material is represented using 32

115
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Figure 4.7: Comparisons of standalone and combined formulation on real scene images.
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dimensions with the help of functional-PCA. The network design is the same with the “U”-

shape structure, except that the output channel size 32. To train this network, I use the

raw video of RGB-d data from [10] and use the method described in [127] to compute the

ground truth normal. For the normal predictions on scene images, there are some existing

works on this topic, such as the work of [133]. The network structure in [133] is the same

with Figure 4.2. The same networks are used for the comparisons.

Figure 4.7 shows the comparisons between standalone network and combined formula-

tion. The first column shows the input image; the second column shows the ground truth

compared from the depth data, which is noisy; the third column shows the results from

standalone formulation; the fourth column shows the results from combined formulation.

It can be seen that the model trained using combined formulation produces much more

detailed output than the ground truth and the model trained using standalone formulation.

4.4 Quantitative Evaluation

Accuracy of Surface Normals. For this evaluation, as there is no accurate or detailed

normal ground truth data for real images, I mainly do the quantitative evaluation on syn-

thetic images. Given an input image I, ground truth material (m) and illumination (L)

are provided and my network only predicts surface normals. The predicted surface normals

along with m and L are used to synthesize I ′.

Quantitative results are provided in Table 4.1 respectively. It can be seen that L2 loss

helps to get the orientation of the surface normals correct, and thus results in small errors,

but produces blurry output. Adding the perceptual loss helps to preserve sharp features

resulting in visually more plausible results. Also note that, although commonly used, L1

and SSIM metrics are not fully correlated with human perception.
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normals rendering

cosine L2 SSIM

standalone 0.9105 313.2058 0.9441
combined 0.9050 238.4619 0.9625

Table 4.1: The table shows the accuracy of the predicted surface normals and the images
rendered using these together with ground truth material and illumination. The results
of the normal prediction module trained standalone v.s. with the rendering layer are also
provided.

4.5 Discussion & Future Work

In this Chapter, I show the formulation, which both penalizes the difference between ground

truth normal and predicted normal but also regularize whether the image generated from

estimated normal matches with the image generated from the real normal, is effective at

predicting fine-scale normal prediction. Results on both synthetic and real images are

shown. However, due to the lack of accurate ground truth normal for real scene images, the

quantitative evaluation currently is only on synthetic images. It is still needed to explore

how to evaluate the detailed normal predictions from real images.
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Chapter 5: Motion Synthesis - Medial Axis based Motion

Planning

Chapters 3 and 4 have discussed about extracting the independent properties for individual

objects. In this chapter and paper [3], I will focus on analyzing the relative spatial and

topological relationship among objects. More specifically, I will present a new method,

called svma, to approximate the medial axis of robot’s configuration space for motion

planning problem. The 2D and 3D decompositions methods presented in Chapter 2 are

critical to decompose the concave objects into nearly convex parts in order to extract the

medial axis in the concave regions of those concave objects. To begin with, I will explore the

similarity between medial axis and max-margin scheme in optimization, specifically, Support

Vector Machine. Based on this similarity, I propose a new method to quickly construct

the medial axis for the motion planning environment both in low and high dimensional

space. However, directly applying the SVM classification on the large volume of uniformly

sampled configurations suffers from huge computation and the medial axis is usually not the

real medial axis due to SVM’s optimization function’s tolerance to the mis-classification.

Instead, I show a method that can quickly push any configuration to the medial axis by

using the characteristics of the Max-Margin’s optimization function. Comparison will be

presented to show how the proposed method can speed up the computation of the medial

axis extraction for motion planning tasks.

5.1 Introduction

Medial axis (MA), a set of points that locally maximize the distance to obstacles, is known

to be an important structure in robotic motion planning [134]. Maintaining clearance, or
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distance from obstacles and sampling efficient enough configurations on the medial axises

are a vital component for successful motion planning. By planning motions on the medial

axis not only create safer paths for robots, but also offers higher possibility to find a path in

complex environment where the feasible configuration space only occupies a small proportion

of the whole space. However, computing the exact representation of the MA in configuration

space whose dimensionality is usually greater than three is highly nontrivial [135] and can

only be approximated. Some researchers have proposed methods to approximate the medial

axis using sampling. Medial Axis Probabilistic Road Map (maprm) proposed by Wilmarth

et al. [14] retracts the configuration (either collision free or not), to the medial axis. This is

extended to high dimension spaces by Lien et al. [15], who used a large number of random

query rays to approximate the clearance and penetration depth. Either of these two methods

can’t control the distribution of the samples on medial axis. Yeh et al. [16] tried to solve

this issue using Uniform Medial-Axis PRM (umaprm), which samples configurations on

medial axis more uniformly.

Even though, to some extent, those maprm-variants can tackle the “narrow passage”

issue, their computation time is dominated by approximating clearance and penetration

depth, which is very computationally expensive, especially in high dimensional space. More-

over, maprm-variants can’t guarantee that the edges connecting the samples will be on or

near the MA, which usually increase both roadmap connectivity and path clearance other-

wise. Instead, they rely on another local planner to retract every discretization of connection

to the medial axis. Such local planner will further cause huge computation cost.

Proposed Work. This work proposes a solution that allows a configuration, free of

collision or not, to be efficiently retracted to the MA. The proposed method achieves this

without excessively expensive geometric proximity queries. The main idea is based an

observation that constructing the MA from a set of obstacles can be viewed as a multi-class

training and classification problem. Each obstacle is regarded as a label and the labels of

samples in the configuration space (C-space) is determined according to which obstacle is

the closest. Under this setting, the MA of the free C-space can be viewed as the classification

120



SVM
classifiers

input

nearly convex decomposition

minkowski sum training data

sampling

pushing

medial axis

Figure 5.1: Overall pipeline of svma.

Figure 5.2: Training and Pushing pipeline of svma.
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boundary. Therefore, approximating the MA can be transformed to finding the hyperplane

that has the largest distance to the nearest training data point of any-class (known as the

functional margin).

Fig. 5.1 illustrates the main steps of the proposed method called svma. Figure 5.1 shows

the overview of the whole pipeline of my proposed framework:

• taking the environment as input, nearly convex decomposition methods in Chapter 2

will be first used to decompose the 3D models (obstacles) into nearly convex parts;

• compute the minkowski sum between each decomposed part and the robot;

• use the contact configurations from minkowski sum as the training data to train one

v.s. one and one v.s. all others classifiers;

• sample random configurations in the working space and use the learned classifiers to

push to the medial axis;

• build graph connection using the neighboring informations from the pushed configu-

rations.

Figure 5.2 shows the more concrete explanations of the training and pushing stages and

the step by step visualization of pushing. In the rest of this Chapter, I will focus more on

describing the training and pushing in detail.

In machine learning, the widely-used Support Vector Machine (SVM) is a technique that

achieves the binary classifier by constructing a hyperplane that has maximum margin. The

proposed method svma uses the connection between SVM and the medial axis to accelerate

the retraction process (discussed in Section 5.3).

The basic SVM only supports binary classification. Extensions to multiple-classes cases

are required to handle motion planning problems with more than two obstacles. In Sec-

tion 5.3.5, I will discuss an efficient multi-class classification approach by combining both

the pairwise one-vs.-one SVM and one-vs.-others SVM. As shown in Fig. 5.1, svma has

two stages: the training stage and the pushing (retraction) stage. In the training stage,

122



I train two types of classifiers: pairwise one-vs.-one SVM and one-vs.-others SVM. Given

n obstacles, I would have n one-vs.-other SVM classifiers and n(n − 1)/2 one-vs.-one clas-

sifiers. In the pushing stage, I first randomly sample a configuration in the environment,

and one-vs.-other SVM classifiers are used to determine the closest obstacles, m and n, for

this configuration. Then svma uses the pairwise one-vs.-one SVM classifier for m and n

to push the configuration towards the medial axis. The last two steps are repeated until

convergence. Details about training and pushing will be discussed in Section 5.3.5. My

experimental results show that the proposed method provides a fast way to generate dense

configurations on the medial axis with bounded approximation error controled by a user

parameter.

5.2 Related work

Motion Planning with the Medial Axis Techniques to construct the medial axis (MA)

have been widely explored, such as in graphics and robotics. In this section, I briefly review

the use of MA in motion planning literature. Much research has been proposed for motion

planning with the workspace medial axis. Few motion planning research has been done

using the medial axis in arbitrary C-space. Surveys [134, 136] summarize earlier work in

this area. Here I will concentrate on more recent work using probabilistic roadmap methods

(prms).

Foskey et al. [137] propose a hybrid approach which uses a discrete approximation of

the generalized Voronoi Diagram of the workspace to find an estimated path. Then they

use a randomized path planner to bridge invalid segments along the path.

Hoff et al. [138] present a motion planning method that employs the approximate me-

dial axis computed by graphics hardware. They successfully apply this technique to a 2D

dynamic environment composed of more than 140,000 polygons. In [139], Holleman and

Kavraki approximate the workspace medial axis by employing a similar method to [140].

Choset and Burdick [141] use the generalized Voronoi graph (GVG) to serve as a basis
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for sensor based robot motion planning. The GVG is an extension of the medial axis. The

medial axis is the set of all points that are equidistant to at least two obstacles. The GVG

is the set of all points in m dimensions that are equidistant to m obstacles. The GVG is

not guaranteed to be connected in dimensions greater than two, so additional structures

are introduced to link the disconnected components of the GVG. The resulting structure is

the hierarchical generalized Voronoi graph (HGVG). The HGVG is proven to be connected,

and can be built incrementally using distance measurements from sensors.

The Equidistance Diagram (EDD) [142] is a roadmap method based on the medial axis

of the workspace. Roadmap nodes are the local maxima of a clearance function defined in

the workspace.

Multi-classifier using maximum margin. Learning the multi-classifier is one of

the main goals in machine learning. Among the widely used classifier models, SVM [17],

short for support vector machine is a supervised model used for classification, regression, or

other tasks. SVM [143] constructs a hyperplane or set of hyperplanes in a high or infinite

dimensional space. Choosing the hyperplane is based on the intuition that a good separation

is achieved by the hyperplane that has the largest distance to the nearest trainig data point

of any-class (so-called functional margin), since in general the larger the margin in lower

the generalization error the classifier. SVM is widely used due to its solid mathematic

background support, its fast computation speed and high classification accuracy, support

vector machine has been successfully applied for a lot of tasks including text classification

[144], object detection [145], [146] etc. Pan et al. [147] used SVM to estimate the penetration

depth, a challenging prolem in geometry and motion planning. Even though SVM is a

binary classifier, it is also widely used for multi-classification task. The general way to

extend to multi-class classification is to use the one-versus-all or one-versus-one [148]. Even

though more complex methods have formulated the multi-classification problem as a one-

shot problem and built a single optimization function [149], they usually require much longer

training time and produce much more larger model size.
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Figure 5.3: Linear separating hyperplane of SVM [150]. W is the normal vector of the
separating hyperplane.

5.3 Max-Margin and Medial Axis

The medial axis of the free space partitions the C-space into Voronoi-cell-like regions. Each

region corresponds to a connected component of C-obstacle. All configurations inside that

region must be closer to its associated obstacle than to the other obstacles. If I view this

property as a classification problem, I can also say that the label of these configurations

is their corresponding obstacle. Thus, the MA is where a configuration has similar chance

of being labeled from two or more obstacles. Based on this observation, the problem of

approximating the medial axis can be transformed to a problem of finding the classification

boundary for the labeling (classification) problem.

In this section, I will describe a method called svma that uses the characteristics of the

max-margin optimization function to push a configuration onto the classification boundary.

This is achieved by using the derivative of the SVM Max-Margin classification function as

the pushing direction and the classification score as the step size.
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5.3.1 Max margin and separating hyperplane

Support Vector Machine (SVM) finds a linear hyperplane to separate positive and negative

data in feature (kernel) space. The hyperplane is parameterized by w and b, where w is

the normal vector and b is the offset of the hyperplane. The distance from the closest point

to the hyperplane in feature (kernel) space is called “margin”. SVM, as shown in Fig 5.3

minimizes ||w||2, subject to the constraint:

yi(w
Txi + b)− 1 >= 0 ,

where yi ∈ {−1, 1} indicates the label of xi. If the kernel function is used, the f(x) becomes

f(x) =
∑
αiyiK < xi,x > +b (K is the kernel function). Fig 5.3 shows the visualization

of the linear separating hyperplane for the separable case.

The testing data on the separating hyperplane, corresponding to f(x) = wTx + b = 0,

would have equal chance to be assigned with positive label and negative label. In other

words, the testing data has the equal “classification distance” to positive support vectors

and negative support vectors. Thus, with the similar spirit, the separating hyperplane

can be regarded as the “medial axis” between the positive support vectors and negative

support vectors. If the positive training data and negative training data are from two

geometric objects, the separating hyperplane can be regarded as the approximate medial

axis. In motion planning, the positive and negative training data can come from the contact

configurations of two obstacles.

5.3.2 Modeling the medial axis

The approximate medial axis (i.e., separating hyperplane) corresponds to the set of {x}

where f(x) = wTx + b = 0. To obtain a collection of medial axis configurations {x},

directly solving x = f−1(0) (the inverse function of f(x) = 0) is impossible when some

more complex kernel function like RBF is introduced.
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Another approach is to partition the whole space into uniform grids and determine

the labels for each grid cell. Then, the grid cells which have neighboring grid cells with

different labels are retained and the rest grid cells are filtered out. The remaining cells

must enclose the MA. Unfortunately, this approach requires to test many samples whose

size is exponential to the robot’s degrees of freedom, thus impractical for higher dimensional

space. In the next section, I introduce an efficient pushing-based approach to approximate

the medial axis.

5.3.3 Push configurations to the Medial Axis

Pushing a configuration x0 to medial axis is inspired by the intrinsic idea of maximal

margin. The pushing strategy is similar to gradient decent algorithm, but with the step

size automatically determined. Given the SVM classification f(x), the pushing is achieved

by iteratively updating xn+1 = xn− f ′(x)f(x)
||f ′(x)||2 until |f(xn+1)| < ε. In this chapter, ε is set to

be 0.02 throughout all experiments. Configurations generated in this way are approximately

on the medial axis. From the view point of SVM classification, the approximation error of

these configurations are bounded by this parameter ε. Since the classification score field

is continuous, given enough samples of such kind, their connecting edges would be on the

approximated medial axis too.

I proved the correctness of this gradient-based approach from the perspectives of the

intrinsic idea of SVM and from the perspective of gradient decent based optimization.

Details of the proofs are shown in the supplemental material.

5.3.4 Handle workspace with more than two obstacles

The SVM is a binary classifier. When there are more than two obstacles in the environment,

the followings parts discuss the limitations in using either one-vs.-one classifier or one-vs.-

others classifier in this section.
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Figure 5.4: The figure shows the drawback of extracting medial axis using one-vs.-one
classifier only. Left: the classification score f(x) field of the one-vs.-one classifier between
the two obstacles on the top. Right: the extracted medial axis of this one-vs.-one classifier.

one-vs.-one classifier. Let x be a set of configurations on the separating hyperplane

between object A and object B. I observe that some configurations in x may be not on the

medial axis. For example, some points on the separating hyperplane between A and B can

be inside a third object C as shown in Fig. 5.4.

one-vs.-others classifier If I extract the medial axis by find the points where |g| ≈ 0,

for a one-vs.-others classifier g. The extracted medial axis underestimates the region that

should ‘belong’ to this obstacle. Take Fig 5.5 as an example. The score field of the one-vs.-

others classifier is shown in the left two and top-right images of Fig 5.5. The bottom right

image is the medial axis extracted using one-vs.-others classifier for the bottom obstacle. It

can be seen that the medial axis for the one-vs.-others classifiers is too close to the classifier.

Combining one-vs.-one and one-vs.-others classifiers. From the discussions above,

it’s known that both only using one-vs.-others classifier and one-vs.-one classifier do not ex-

tract the correct medial axis. To solve the problem, svmaneed to find the answers for these

questions: for a random configuration or a random region in the space, svmaneed to know

which obstacles are closer, which part of the medial axis svmashould push to and which

classifier svmaneeds to use for pushing. The solution to these question is to combine one-

vs.-one classifier and one-vs.-others classifier. svmause one-vs.-others classifiers to identify

which obstacles are closer and whose one-vs.-one classifier svmashould use for pushing; then

svmause the identified one-vs.-one classifier for pushing. To validate this solution, score
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Figure 5.5: This figure shows the drawback of extracting medial axis using one-vs.-others
classifier. From left to right, top to bottom: three images show the classification score
field of three one-vs.-others classifier for each of the three obstacles. Bottom-right: The
extracted medial axis using the bottom obstacle’s one-vs.-others classifier.
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Figure 5.6: The medial axis field of combining one-vs.-one and one-vs.-other classifiers. Ap-
ply the one-vs.-other classifier to get the top two nearest obstacles m and n. Then compute
the |fm,n(x)|. The blue means lower value and red represents higher value. Note that there
are some discontinuity in the red regions. These discontinuity belongs to two different pair-
wise one-vs.-one SVM classifier; the second topmost label (obstacle) has changed between
the two sides of the discontinuity. For example, for the left most discontinuity edge, the
discontinuity edge’ up-side’s top two labels are triangle obstacle and the ellipse obstacle;
the bottom side for triangle obstacle and w − shape obstacle. The discontinuity is caused
by the classification score’s scale difference between the two pairwise SVM classifiers on the
either side.

field of this combining solution is visualized in Fig 5.6. svmafirst use one-vs.-other classi-

fiers to get the right one-vs.-one classifier fi(x) and then compute and visualize the value

|fi(x0)| for the current configuration x0. The general procedure for generating configura-

tions on medial axis is: a. for a configuration x0, svmafinds the “closest” 2 obstacles using

all the one-vs.others classifiers’ classification score as the measurement; higher classification

score means closer. b. get the one-vs.-one classifier corresponding to those two “closest”

obstacles, and apply the pushing strategy discussed in section 5.3.3.

5.3.5 svma Push Algorithm

In this section, I summarize the whole algorithm of svma pushing. Given a random config-

uration x, the pushing is an iterative process. For each iteration, svmause all one-vs.-others

classifiers to get two obstacles s, t with the two top classification scores; then use the one-

vs.-one classifier fst(x) of these two obstacles to get pushing direction f ′st(x) and pushing

step size fst(x); repeat the pushing until the step size is slower than the threshold. The
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overall procedure can be described as Aglorithm 4:

Algorithm 4 Pushing Algorithm

Input: a configuration x, stopping pushing threshold ε, one-vs.-one classifiers f and one-
vs.-others g

Output: updated x on the approximate medial axis
1: while d > ε do

2: x = x− f ′st(x)
||f ′st(x)||2d

3: find s and t such that gs ≥ gt ≥ gi, ∀i ∈ {1..n} \ {s, t}
4: step size d = fst(x)
5: end while

The Fig 5.7(a) shows how the step size changes during the pushing. The bottom part

of Fig 5.1 shows the pushing process of an environment containing four obstacles.

5.4 Step Size Optimization

I have discussed using the SVM score as pushing step size. In this section, I will discuss its

limitation and alternative approaches that use workspace clearance to obtain better step

size.

The training process of SVM is to minize the overal optimization function. So if the

positive and negative sample are not lineary separable, some may be misclassified serving

as compromise. As a consequence, the classification boundary is not the real medial axis.

If I directly use the SVM’s score as the step size and stopping criteria for pushing, some

of the pushing result is not on the medial axis. For example, Fig. 5.8(a) is the constructed

medial axis with SVM classification score as the step size. However, part of the medial axis

goes through the obstacles.
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(a)

(b)

Figure 5.7: (a): the changing of step size during pushing; (b): the two cubes represent two
obstacles. p1, pn, q1, qn are the support vectors.
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(a) (b)

Figure 5.8: The medial axes (a) using SVM score as step size and (b) using clearance-based
difference as step size.

5.4.1 Workspace clearance difference as step size

The distance measurement and the SVM score are in different domains and have different

units. In order to utilize the distance difference for the step size, first I need to find the

relationship between the distance and SVM score. Support vectors are used for computing

it. The procedure is below: 1. for each positive support vector p, I find the nearest negative

support vector q. 2. place the robot on that support vector (the support vector is a

configuration); compute the distance dpqwhen the robot is placed on these two configuration.

3. repeat 1 and 2 for all the positive support vectors. The relation between score difference

and distance is 1
n

∑n
i=1

f(pi)−f(qi)
dpiqi

.

To determine the pushing step size for any configuration, shown as Fig 5.8(b), I place

the robot onto that configuration; then I use PQP [151] to get the point that is the closest

to the robot for those two obstacles; then get the perpendicular bisector l of these two
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Table 5.1: Comparison with MAPRM

Env ObN Method
Number Time(s)

MKSum Num Train Num Pushing Num MKSum Train Push Conn Total

354 MAPRM - - 40000 - - 439.16 275.96 715.2
2D SVMA 70800 70800 35000 0.33 82.23 323.01 40.14 448.24

SVMA 70800 70800 40000 0.33 86.86 391.11 61.30 542.32

3D 148
MAPRM - - 20000 - - 904.65 431.72 1337.06
SVMA 69469 59200 20000 0.59 160.02 87.40 73.89 323.42

6D 2
MAPRM - - 2000 - - 19.03 27.61 47.09
SVMA 27478 3000 2000 3.23 0.47 3.61 11.96 19.33

points; later compute the distance b between the robot center and l; the pushing step size

is b 1
n

∑n
i=1

f(pi)−f(qi)
dpiqi

. And in the same way, the pushing stopping criteria is when the step

size is smaller than a threshold ε.

5.4.2 Combining SVM score and clearance difference

I also provide another option that is to use the SVM score as the step size to roughly push

the configuration to the medial axis and then change the way to determine the step size

by using clearance difference (PQP distance difference). That is to combine the SVM score

and clearance difference for pushing. However, I observed that sometimes the improvement

of combination of two over only using clearance is insignificant. One reason is that for some

very complex environment, SVM classification would have a lot of misclassification. Thus,

for the combination approaching, the initial pushing results would be farther from the real

medial axis.

5.5 Experiments and results

In order to validate my method, I implemented svma in C++. All experimental results

are collected from a Linux Virtual Machine with 4G RAM hosted on Windows 7 with Intel

Core i7-2640M CPU 2.8G. The SVM implementation is adapted from libsvm [148].
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Figure 5.9: Configurations generated by svma

5.5.1 Training data

The training data are obtained from two sources: 1. the configurations from the contact

space, and 2. the configurations that are in-collision with the obstacle. I used Minkowski-

sum to geneate configurations on contact space. Generating configurations on contact-space

is more time-consuming compared to doing it in collision space. Intuitively, configurations

on contact space would be better for max-margin. In 2D and 3D, generating the sample

configurations on the contact-space does not cost too much time comparing to training the

SVM models. Thus, I used the configurations in contact space as my training data. For

higher dimension, I can use either contact space or obstacle space.

5.5.2 Experiment Setting

As shown in Fig. 5.9, I tested four environments with 2D, 3D, 6D C-space. The first

environment contains 354 3D buildings from Oklahoma City. In my 2D experiment, I use

their 2D footprints on the ground. I also use these models to construct the medial axis in 3D.

Another 3D model is a skeleton model of a house, which is decomposed into 148 cylinders
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using the nearly convex decomposition methods. The environment with 6D has a robot

made up of 3 parts and can translate and rotate, enabling the total degree of freedom to be

6D. Figure 5.9 shows the built medial axis configurations for those environments. For the

2D and 3D examples, my goal is to have enough samples that can approximate the medial

axis of all the obstacles in the space. The robot for these two environment is a point robot.

However, for the 6D environment, my goal is to find the path for the robot through the

narrow passage. The robot’s geometry contains three parts that are perpendicular to each

other and needs to rotate when it goes through the narrow passage. From the Table 5.1,

I found that the main time cost are computing Minkowski-sum in 6D and connecting the

configurations. While for this environment, two obstacles are separable, thus, training the

SVM is very fast.

5.5.2.1 Comparison with MAPRM

And another observation is that the medial axis from MAPRM is generated with the help

of approximation using rays. The pushed result is less accurate than the pushing result of

my method. In other words, my medial axis configurations are more concentrated. In this

way, the length of the connecting edges would be shorter too. Thus, less interpolation is

needed to check whether this edge is valid or not. As a result, the connecting time of my

method is also shorter than the MAPRM. And pushing using my method is faster than

MAPRM.

5.5.3 Step Size Strategy

As mentioned above, the constructed medial axis using clearance difference as step size has

better quality than the SVM score. I will discussing the running time difference.

I set the maximum pushing steps for each method to be the same. However, 80% to

90% of the configurations can be pushed to the MA in 10 steps. The running time is

usually related to the density of obstacles and the SVM model’s complexity. The former
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Table 5.2: The running time comparisons for step size using SVM score, clearance difference
and their combination. The combination approach would have 30% steps using SVM score
and the rest 70% using clearance difference.

Env OB N Sample N SVM Clearance Combine

2D 354 10000 94.69 100.41 101.03
3D 148 10000 56.84 49.48 52.08
6D 2 10000 20.74 29.85 22.01

will influence the speed of collision checking and computing clearance difference, while the

latter relates to the time cost for classifying a configuration. Generally, using SVM as the

step size is faster than using clearance difference as step size, because running one time

of the classification is often faster than doing one time collision detection. This is also

one advantage of my method, especially when the geometry structure of the obstacle is

complex. However, when the geometry of the obstacle is simple and only approximated by

few vertices, it is not an advantage any more. For example the obstacles in 2D and 3D

examples in Fig 5.9, the obstacles are simple geometry object. On the other hand, for 2D

examples, the obstacles have very different scales and some of them are very close at their

concave parts. This makes the SVM models more complex. Thus, the time-cost difference

between using SVM score as step size and using clearance difference as step size is very

small. The same to the combination of them. While in 6D examples, two obstacles doesn’t

touch each other. As a result, the learned SVM model is less complex. Using SVM score

as step size is faster than using clearance difference as step size. The combination of them

is between them.

5.6 Discussion & Future Work

In summary, I presented a method that can generate approximate medial axis method

based on SVM model. The building processing is based on pushing, where the pushing

direction and step size can be automatically determined. This pushing scheme can fast

generate configurations on the medial axis. The proposed method can address the medial
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axis motion planning problem for both two obstacles cases and multiple obstacle cases.

Experiments show that svmacan generate medial axis faster than previous methods. This

work also appeared in [3].
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Chapter 6: Conclusion & Future Work

In this dissertation, the common theme has been to develop methods to estimate the shape

and physical properties from 2D or 3D data. As these estimations usually suffer from

several difficulties. I presented three representative topics of predicting shape and physical

properties. Each of them represents how one of these difficulties can be addressed.

In the appearance synthesis topic, I have proposed methods to tackle the issue of under-

constrained setting. The rendering layer is introduced to enable an end-to-end physical

based rendering network. The model trained through this network has produced plausible

and robust material editing results for both synthetic data and real data. In the shape

synthesis part, I have shown a deep learning model using the formulation which penalize

both the difference between predicted normal and ground truth normal and the difference

between images generated using the estimated normal and the original input images. This

formulation enable us to get final-scale normal prediction even when there is the difficulty

that ground truth normal data is noisy or missing. In the motion synthesis part, a pushing

approach based on support vector machine is introduce to approximate the medial axis of a

robot’s configuration space, which original has the issue of expensive computation cost. The

efficiency and effectiveness of such approximation has been validated by the experiments

and comparisons with other alternatives.

One prerequisite of applying these methods is to prepare feasible and sufficient data. In

Chapter 2, I have proposed a new part-aware shape feature called continuous visibility fea-

ture and nearly convex decomposition approaches for 2D and 3D shapes. These approaches

and feature can produce segmentation components which are semantically meaningful and

with bounded geometric constraints. These semantically meaningful parts are used to simu-

late the rendering data for appearance synthesis and shape synthesis tasks. Decomposition

results with bounded geometric constraints will also be used to train the support vector
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machine models for the motion synthesis task.

There are several ways to extend the approaches proposed in this dissertation. For

the material editing part, my current pipeline assumes the whole object (image) contains

the same material or the segmentation masks for material are given. It would be valuable

to explore some ways which enables interactive material editing easily. For the normal

prediction part, although detailed normal information can be predicted from real images,

how to evaluate the detail and correctness of the predicted normal is still an unsolved

problem due to the fact that there is no accurate and detailed normal for real images.

On the other hand, this dissertation only presents three tasks to show how the cor-

responding three difficulties of physical and shape property estimation can be addressed.

There are other difficulties that need to be explored in those property estimation problems.

I hope this dissertation inspires new directions for addressing other difficulties and also

exploring other property estimation research.
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