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Abstract

As the field of machine learning is experiencing great diversification and multiplication of research

directions, there is a need for developing theoretical frameworks that would unify different

paradigms and methods, and clarify relationships among them. This paper discusses an inference-

based theory of leaming that is intended to provide such a framework, and serves as a basis for

?;\14 integrated task-responsive leamning methodology, called multistrategy cooperative learning
CL).

In any process of learning, an MCL learner applies the strategy, or a combination of strategies,
that is most appropriate for achieving the desired goal in the context of the relationship between the
input information and the learner's prior knowledge. The input information to a learning act can be
external, from a teacher or environment; or internal, produced as an intermediate result of the
previous learning act. Any input information to the system is first evaluated for potential
"relevance" to the leamer's goal(s), and it it passes the test, a learning process is activated.

If the input information is “novel,” but not inconsistent with the learner’s prior knowledge, it is
assimilated within the prior knowledge. This process may involve a generalization of relevant
segments of prior knowledge, as well as storing representative facts. If the input is inconsistent
with prior knowledge, and is believed to be correct, the appropriate parts of prior knowledge
undergo modification. This process typically involves specialization, and/or weakening parameters
indicating the strength of relevant knowledge segments. If the input is similar to some part of the
prior knowledge at some level of abstraction, an analogy is established, and explored in the
context of the leamer's goals. If the input is recognized to be already a part of the learner’s prior
knowledge, is implied by it, or implies it, the relevant segments are reinforced and/or restructured
to facilitate their future use. Finally, if the input information is evaluated as irrelevant to the
learner's goal(s), it is ignored. Thus, any input causes construction of either new knowledge or

better knowledge.

The proposed methodology is intended to ultimately integrate empirical learning, constructive
induction, learning by instruction, constructive deduction, explanation-based learning,
reinforcement learning, conceptual clustering and learning by analogy (hence, the term
multistrategy). An important property of the MCL methodology is that in a given act of leaming,
different strategies may cooperate to achieve the desired outcome (hence, the term cooperative). To
implement such a collaboration, the learner must have the ability to apply knowledge gained from
one learning act in another leaming act (this property is called closed-loop learning). It is hoped
that the developed ideas will serve as a theoretical basis for building advanced integrated learning
systems.



For every belief comes either through syllogism or from induction.
Aristotle, Prior Analytics, Book II, Chapter 23 (p.90)
ca 330 BC.

1. INTRODUCTION
Machine learning strives to develop principles underlying learning processes in whatever form they

occur and to construct computational leaming methods based upon them. The last several years
have seen an extraordinary growth of this field, and one can expect a continuation of this trend in

the predictable future.

While previously established areas, such as empirical symbolic learning and discovery systems,
have continued to be very active (e.g., Laird, 1988; Segre, 1989), several new areas have been
rapidly expanding, such as explanation-based learning (e.g., G. DeJong, 1988), and
computational learning theory (€.g., Haussler and Pitt, 1988; Ehrenfeucht, 1988). There has also
been a tremendous new interest in subsymbolic learning approaches, such as connectionist and
neural network learning (e.g., Barto and Anderson, 1985: Touretzky, Hinton and Sejnowski,
1988; and Fisher et al., 1989), and mixed approaches, such as classifier systems and genetic
algorithms (Holland, 1986, 1987; Davis, 1987; Goldberg, 1988; and Schafer, 1989).

Another important development has been an increasing interest in building systems that integrate
different learning strategies. Among the most well-known such systems are Unimem (Lebowitz,
1986), Odysseus (Wilkins, Clancey, and Buchanan, 1986), Prodigy (Minton et al., 1987),
DISCIPLE-1 (Kodratoff and Tecuci, 1987), the GEMINI (Danyluk, 1987 and 1989), OCCAM
(Pazzani, 1988), and IOE (Dietterich and Flann, 1988). For other examples see (Segre, 1989).

In the context of great diversification of research directions and methods, there is a need for
developing a general theoretical framework that would clarify the relationship among these
directions and methods, and provide a conceptual foundation for building multistrategy learning
systems. Such a framework might also provide insights for determining the most desirable new
research directions.

This paper presents our initial results toward developing such a theoretical framework. It outlines
the inference-based learning theory that views learning as a process of knowledge transformation
based on inference, and classifies leamning methods into two basic types: synthetic and analytic.
Synthetic methods involve a generation of hypothetical explanations of the input information, and
use induction as the primary type of inference. Analytic methods involve a generation of
derivational explanations of the input, and use deduction as the primary type of inference. The
theory is then used as a basis for an integrated task-responsive learning methodology, called

multistrategy cooperative learning (MCL).

The MCL methodology is intended to integrate empirical learning, constructive induction,
constructive deduction (see sec. 4), reinforcement learning, learning by instruction, explanation-
based learning, conceptual clustering and learning by analogy. It postulates that a learner should
be able to learn something from any input information (even from facts that it already “knows”),
and should employ the strategy that is most effective for a given combination of dynamically
changing input facts, the learner’s prior knowledge and the goal of leamning. Another postulate is
that whatever the learner learned should be reusable in subsequent acts of learning (the “closed-
loop” assumption). An interesting consequence of these assumptions is that to meet the needs of

different strategies, a new form of knowledge representation has to be employed.

The presented work is an extension and an elaboration of the ideas presented earlier in (Michalski
and Ko, 1988; Michalski and Watanabe, 1988; and Ko and Michalski, 1989). It also draws upon
many ideas developed by others in the field of machine learning and cognitive science. Its
intention is to provide a conceptual analysis of different leaming methods and describe the intuition
behind various ideas, rather than present a formal and rigorous treatment of the topics considered.
References to identified sources are made in the text. We start with an outline of the inference-

based theory of learning and a discussion of basic learning strategies.



2. INFERENCE-BASED THEORY OF LEARNING

A key idea in symbolic learning is that the leamer typically acquires desired knowledge through
some form of reasoning - inductive, analogical, or deductive. In special cases, learning involves
only copying the information provided by a source (“rote learning”), or syntactically transforming
it and/or selecting from it some parts (“leamning by instruction’). These cases, however, are not
central to understanding the learning behavior, and will not be discussed here. The reasoning
process is activated by input facts, obtained from a teacher or from the environment. It involves the
leamer’s prior knowledge (“background knowledge™) and is guided by the goal of leaming. The
learning goal sets the criteria for determining the relevant parts of prior knowledge, choosing the
leaming strategy, and selecting the most preferred hypothesis among candidate ones. The goal also
specifies the amount of effort to be extended in pursuing any specific strategy.

Thus, leaming can be viewed as a process of transforming input information into the desired
knowledge by the use of inference and under the guidance of the leamer’s goal. Because a learning
act may involve any type of inference, a complete theory of learning must therefore include also a
theory of inference.These ideas provide a framework for what we call the inference-based theory
of learning (Figure 1).

Input Facts

Background Knowledge

Figure 1. An Illustration of the inference-based theory of leaming

The input ipformation (“input”) can be facts, observations, concept instances, previously formed
generalizations, or other knowledge. The input activates segments of background knowledge that
are most relevant to it from the viewpoint of the learning goal(s). This is done by making matches



between the input and hierarchically organized knowledge segments (see knowledge representation
in section 5). 1

Depending on the goal of learning and the relationship between the input and the activated
knowledge segments, a different primary inference is involved. This inference may be analogical,
if the input is “similar” to what the learner already knows, and the goal is to make a decision about
the input based on the past experience. It can be inductive, if the input consists of one or more
facts, or previously generated descriptions, and the goal is to generalize these facts and/or
descriptions. It can be deductive, if the input is a special case of what the leamner already knows,
but the possessed knowledge is not efficient or directly applicable, and the goal of leaming is to
evaluate future similar inputs as efficiently as possible. The results of the inference are assimilated
into Background Knowledge (BK), so that the next act of leaning will involve the modified BK.
The above implies that whatever is leamed must be expressed in the form compatible with the form
in which any other knowledge is stored. Thus, a segment of knowledge in BK can itself be an
input to a leamning process. This aspect is called closed-loop learning.

In summary, the inference-based theory states that in order to learn, an agent needs to be able to
perform transformations of knowledge, i.e., to perform inference, and to have memory which
supplies the learner with the background knowledge needed for performing the inference, and
records the results of the inference in the form useful for future use. Without either of the two
components there cannot be learning (except for “rote” leaming). Thus, one can say that:

Learning = Inference + Memory

While these ideas seem clearly to apply to symbolic learning, one may ask if they also apply to
methods such as those used in connectionist systems or genetic algorithms. A short answer is that
they do apply, because both the latter approaches are capable of generalizing or specializing
information, although implicitly rather than explicitly, as in symbolic systems. They also have the
ability to memorize results of their leamning for future use, although, again, they do it in a different
way.

Another question may be what is the main goal of this theory, in particular, whether it is intended
to be a cognitive theory, which explains information processes in human (or animal) learning. The
answer is that our intention is to develop a theory that is sufficiently general that unessential
biological and implementational aspects can be ignored, but sufficiently specific that it can account
for major information processes occuring in diverse forms of leaming, whether they exist in nature
or not. The success of the theory can be measured by its ability to characterize and explain
conceptual relationships among methods and paradigms studied in machine learning or in human
learning. We deliberately avoid being too formal, so that we can primarily stress the ideas and
intuitions behind different learning strategies and their interrelationships.

Many proposed ideas have been inspired by observing how people or animals learn, but no claims
are made that this is a cognitive theory. It is hoped, however, that the presented outline of the
theory will be helpful for fostering our understanding of learning processes in general, and for

implementing more advanced leaming systems.

3, THE ROLE OF EXPLANATION IN LEARNING

a well-known fact that it is difficult to learn anything without understanding it. At the early
stage of development humans, of course, acquire a lot of information by rote, but among mature
individuals rote learning plays a minor role. Understanding, in tumn, is a result of self-creating or
receiving a satisfactory explanation. The notion of explanation, however, needs clarification.

In explanation-based learning (Mitchell, Keller and Kedar-Cabelli, 1986; DeJong and Monney,
1986; DeJong, 1986 and 1988; ), an explanation is the process of deductively applying the



leamer’s prior knowledge (domain knowledge and an abstract definition of the goal concept) to
demonstrate that a given example is an instance of the goal concept. The obtained proof is then
used to restructure the learner’s concept definition, to make it more efficient or useful

(“operational”).

In inductive learning, producing some form of an “explanation” of the observed facts is the main
purpose of leaming. Through induction, a scientist builds a theory explaining an observed
phenomenon, or a medical researcher develops a general description of a disease (Michalski,
1983). In the latter case, such a description, especially if it is stated in terms of causal relations, is
is a form of “explanation” of the disease and of the patient’s symptoms.

In the field of machine learning, inductive learning has been implemented in several forms. In
empirical inductive learning, generated “explanations” are simple generalizations of the given facts
or examples. These facts or examples are typically expressed in terms of attributes that are selected
a priori. Such generalizations hardly deserve to be called explanations. For example, the rule “if
there is smoke, there is fire” may be a generalization of some observations, but it does not give a
“real” explanation of the phenomenon. Only in knowledge-based induction, i.e., constructive
induction or abduction (see sec. 4), can the result of learning be a “true” explanation. This is
because such induction is capable of creating descriptions in terms of high level concepts and/or
causal relationships (e.g., Hoff, Michalski and Stepp, 1983; Mehler, Bentrup and Riedesel, 1986;
O'Rorke, Morris and Schulenburg, 1989).

It is clear that the word explanation can be used in several senses, and it is not easy to capture its
meaning formally. The Webster’s Third International Dictionary states that “an explanation is an act
or process of explaining,” and that it “consists in successfully comparing a new phenomenon with

an older and more familiar one.” While such an “explanation” of explanation sounds intuitively
correct, in order to make it computational, one needs to better specify the meaning of “comparing”
in this definition.

It appears that one can adequately capture the meaning of “comparing” by assuming that it means a
demonstration that the new phenomenon is a logical consequence of the old familiar one. Thus, the
process of explanation involves proving such a logical consequence, i.e., it involves deduction.

We postulate that creating an explanation of some observation involves in general constructing two
components (Michalski and Ko, 1988 and Michalski and Watanabe, 1988):

+~an explanatory hypothesis, which, together with a reasoner’s background knowledge, entails the
observation (“strongly” or “weakly”), and

« an explanatory structure, which demonstrates this entailment.

where a “strong” entailment means a logical entailment, and a “weak” entailment means a plausible
or probabilistic entailment.

To illustrate the above components, let us use an example concerning the U.S. space shuttle
Challenger disaster on January 28, 1986, and Richard Feynman’s experiment to explain the reason
for this disaster. During a launch of a shuttle there are always vibrations that cause the rocket
joints to move a little. Inside the joints are the so-called O-rings, which are supposed to expand to
make a seal. However, if the O-rings do not expand, hot gas would escape through the joints,
which could start a fire. Thus, if the O-rings lose their resiliency just for a second or two, this
could cause an accident. .

In a televised meeting of the presidential commission investigating the accident, Richard Feynman
made the famous O-ring ice-water demonstration. He put a sample of the rubber from the O-rings
in a clamp, and submerged it for a while in a glass of ice-water. Then he took the rubber out, and
showed that when the clamp was undone, the rubber did not spring back.



Thus, the experiment showed that the rubber of the O-rings loses resiliency at low temperatures.
This information is what we previously described as explanatory hypothesis. To explain the
accident one also needs the above mentioned (background) knowledge, that if the rings lose
resiliency, hot gas can escape through the O-rings, which, in turn, can cause the observed fire,
and the rocket explosion. One also needs to know that on the morning of the launch, the
temperature was 29 OF, which is low. The sequence of reasoning steps that lead from the
explanatory hypothesis combined with background knowledge to the phenomenon being explained
is called the explanatory structure.

Defining Explanation

We call an observation, a process, or anything that is supposed to be explained, the explanatory
target (ET). To explain an ET to an agent (or to oneself) one needs to show that the explanatory
hypothesis (EH), plus the agent’s background knowledge (BK) entails the ET. As we stated
before, the sequence of steps demonstrating this entailment is the explanatory structure (ES). In
brief, ES demonstrates that EH and BK strongly or weakly entails ET, which we write as:

EH & BK I> ET )

In some situations, the explanatory hypothesis does not need to be constructed, because the
background knowledge itself entails ET. In the example about the Challenger accident, if it were
well known that the rubber used in O-rings loses resiliency at low temperatures, there would have
been no need for Feynman’s demonstration. In such situations, the explanatory structure simply
demonstrates that:

BK I>ET @)

In the most general case, the background knowledge may be incorrect or inconsistent with respect
to an observation, and the total explanatory hypothesis may also involve modifications of the
background knowledge. In such a case, instead of BK, we would have a modified BK*:

EH & BK* I>ET 3)

For example, suppose that in the Challenger example, the background knowledge includes an
erroneous belief that nothing could be wrong with the O-rings. In this case, the explanatory
hypothesis would include not only the knowledge that the rubber O-rings are not resilient at low
temperatures, but also a correction of the erroneous belief.

»

The explanatory hypothesis (in the Challenger example, “the rubber of O-rings loses resiliency at
16w temperatures™) may be obtained in several ways. It may be obtained through an experiment,
and a generalization of the results. In our example, the observation “the rubber loses resiliency in a
glass of ice-water” can be generalized to “the rubber loses resiliency at low temperatures” (thus, it
will lose resiliency when exposed to the cold air). Such a process of making generalized statements
solely on the basis of experimental observations is empirical induction.

To come up with the idea to make such an experiment, however, one needs to perform
knowledge-based induction, i.e., constructive induction (see section 4). The background
knowledge might involve rules, such as:

“If there is a leak, the gas escapes through. If the gas is very hot, and gets in
contact with flammable material, then it might cause a fire.”

A fire has been observed. By reasoning backward (from consequences to premises), one would
hypothesize that there might have been a leak. What could cause a leak? Many things could cause a
leak. For example, if rubber of the O-rings would shrink due to vibrations, and did not spring
back, this would cause a leak. Since properties of materials change with temperature, let us then
see how the rubber of O-rings behaves in the kind of temperature observed on the day of the flight.



Conducting such reasoning leads one to the idea of making an experiment, like the one made by
Feynman.

An alternative way to get the explanatory hypothesis is to deduce it from a general theory. In our
example, it would be a theory about the behavior of different rubber materials at different

temperatures.

Finally, the explanatory hypothesis can be received directly from a source of information. For
example, Feynman, instead of making a demonstration, might have referred to a technical
document stating the properties of this specific rubber material. This is a form of learning by
instruction. (Of course, the information in the document could have been a result of prior

experiments).

The above methods of creating an explanation of observations correspond to basic strategies of
learning - learning by empirical induction, constructive induction, by deduction, and by

instruction, respectively.

Types of Explanation

We distinguish between two basic types of explanation, one in which the explanatory hypothesis is
not needed because background knowledge is sufficient to explain the ET, and the second in
which explanatory hypothesis has to be created through some form of plausible inference
(empirical induction, constructive induction or analogy). Accordingly to these two cases we have
two types of explanation:

o derivational (or deductive) explanation, which consists only of an explanatory structure
demonstrating through deductive reasoning that the knowledge already possessed (knowledge
supplied by some source plus the agent’s prior knowledge) implies the explanatory target , and

o hypothetical (or inductive) explanation, which consists of an explanatory hypothesis and an
explanatory structure demonstrating that this hypothesis together with the leamer’s background
knowledge implies the explanatory target. The explanatory hypothesis is created by inductive
reasoning or analogy (which can be viewed as induction and deduction combined).

Learning processes that involve making primarily derivational explanations are called analytic.
Their main result or purpose is restructuring prior knowledge into a form that is better in some
sense (e.g., more efficient, easier to understand, or operational), or strengthening the belief in
prior knowledge. This form of learning has also been called “learning at the symbol level”
- (Dietterich, 1986).

Leamning processes that involve making primarily inductive explanations are called synthetic. Their
main result or purpose is to hypothesize new knowledge, ie., knowledge not contained in the
deductive closure of the leamer’s background knowledge. This form of learning has also been
called “learning at the knowledge level” (Dietterich, 1986). Synthetic learning methods can, in
turn, be classified into empirical induction (in which the role of prior knowledge is limited), and
constructive induction (in which prior knowledge plays a significant role).

One may ask how these ideas relate to skill acquisition through practice, since such processes seem
to involve little reasoning. This question can also be extended to learning in connectionist systems
or genetic algorithms. The above learning processes do not explicitly execute any symbolic rules
of inference. However, by comparing the input information (e.g., training examples or practice
exercises) with the observed behavior on new cases, one can say that, from the conceptual
viewpoint, the above processes do implicitly perform operations that are logically equivalent to
those of generalization, analogy or specialization. For example, the famous Pavlov’s experiments
have shown that dogs can perform instinctively certain limited generalizations of sound, smell or
other signals, without any reasoning. Connectionist systems, as well as genetic algorithms are
clearly capable of generalization, specialization or analogy, though again, not in an explicit form.



In the next section we use the above ideas to compare synthetic and analytic paradigms, and then to
describe the multistrategy constructive learning.

4. BASIC TYPES OF LEARNING

Inference-based learning theory treats leaming as an inference process that involves input facts and
the learner’s prior knowledge. If the results of this inference are evaluated as important, they are
stored for future use, and this completes a single leaming process. The major type of inference
involved in a learning process defines the leaming strategy. The lowest level strategy is when there
is no inference done by the leamer, and the inputs are stored as they are received (direct knowledge
implantation or rote learning). The next level strategy is when there is only a selection of
information from and/or syntactic transformation of the source information (learning by
instruction). The above two forms involve little knowledge transformation (inference) on the part
of the leamner and are not central research topics in the field of machine learning. We will,
therefore, concentrate here only on forms of leamning that involve a substantial transformation of
the source knowledge, specifically analytic and synthetic.

Before we discuss these two major strategies in more detail, let us briefly classify leaming
processes on the basis of the form of lfmowledge that a learner starts with, and the form of

knowledge acquired. From this viewpoint, learning methods can be classified into four basic
classes:

DD (Declarative to Declarative) - The initial knowledge is in a declarative form, and the derived
knowledge is also in a declarative form. For example, in explanation-based generalization
(Mitchell, Keller and Kedar-Cabelli, 1986), the initial knowledge is an example (a declarative
description of some fact or observation with an associated class) plus the learner’s
background knowledge (domain knowledge, goal concept plus some domain-independent
knowledge, i.e., relevant inference rules). The deductively derived output is “operational”
knowledge (knowledge in the form useful for a given application). Another example is
empirical induction from examples, where the input is typically a collection of observations

stated in a declarative form, and the output is a generalization, also stated in such a form.
Knowledge compression (reformulation) is also an example of DD leaming.

DP (Declarative to Procedural) - The initial knowledge is in a declarative form, and the derived
knowledge is in a procedural form. For example, advice taking or automatic programming
are forms of the DP analytic method, because the input is some advice or a program
specification typically in declarative form, and the output is a procedure for actually
accomplishing the desired task (e.g., Bierman, Guiho and Kodratoff, 1984, Amarel, 1986;
Mostow, 1986). Acquiring new skill can also be viewed as a DP leaming task in which the
initial knowledge includes a mental representation of what one should be able to do and
observed results of trying, and the output knowledge is the improved control mechanism.

PD (Procedural to Declarative) - The initial knowledge is in a procedural form, e.g., an algorithm
or a process developing in time, and the output is in a declarative form, e.g., 8 declarative
description of this algorithm or process. If the input is a complete process, and the produced
description just builds a “true” declarative description of it, then we have PD analytic
learning. On the other hand, if a learner generalizes a description beyond the observable
process, then we have a synthetic PD learning. Program SPARC that discovers rules for
predicting sequences of objects is an example of synthetic PD leaming (e.g., Dietterich and
Michalski, 1986; Michalski, Ko and Chen, 1987).

PP (Procedural to Procedural) - The starting knowledge is procedural, as is the derived
knowledge. Skill improvement with practice, automatic program optimization and the
analogy-based program transformation are examples of PP leamning.



As shown above, this classification cuts across both synthetic and analytic methods, and is useful
for characterizing a variety of leaming processes.

In the previous section we made a distinction between derivational and hypo}hetical explanations
and, based on it, defined the synthetic and analytic leaming processes. We will now analyze these
two major types of leaming in greater detail, and then discuss the proposed approach, multistrategy
constructive learning, which attempts to provide a unifying framework for both of them.

1.1 Analytic 1 .
As mentioned earlier, analytic leaming involves an analysis of the input information in terms of the
learner’s relevant prior knowledge (domain-dependent and domain—indepqndent), and then creation
of desirable knowledge on the basis of this analysis. The primary type of inference engaged in this
process is deductive, although in more recent versions of explanation-based leaming, there can be
some inductive inference involved also. A “pure” analytic learning method performs only a truth-
preserving knowledge transformation, and thus the validity of the derived knowledge depends
entirely on the validity of the input information and the background knowledge. If the initial
knowledge is valid, so is the derived knowledge. Such pure analytic learning creates no “new”
knowledge, but a more useful reformulation or specialization of the initial knowledge (i.e., the
Rarner’s prior knowledge, plus input information, such as a concept example supplied by a

t¢cher).
Explanation-based learning

The most well-known form of analytical leaming is explanation-based learning (Mitchell, Keller
and Kedar-Cabelli, 1986; DeJong and Mooney, 1986). Other forms include “operationalization”
(Mostow, 1983) and automatic program synthesis (e.g., Bierman, Guiho and Kodratoff, 1984).

Let us analyze explanation-based leaming (EBL) in terms of the ideas presented above. In EBL,
given an instance of a concept, the leamer first determines an explanatory structure (proof)
showing that the instance is indeed an example of the concept. An abstract concept definition
(‘goal concept”), relevant domain knowledge and domain-independent knowledge (inference rules)
are assumed to be known to the leamer a priori. All these components constitute what we call
" learner’s background knowledge. The produced explanatory structure is then used to create a
reformulation of the concept definition, so that it is more useful (“operational”) for classifying
future instances. This operational concept description is a generalization of the original instance and
a specialization of the abstract concept definition. The underlying assumption is that future concept
inStances to be classified will be in the same form as the initial (training) instance.
Thus, (pure) EBL assumes that the learner’s background knowledge (BK) is adequate to establish
an explanatory structure explaining a given instance (i.e., the explanatory target ET), and there is
no need for an explanatory hypothesis. The learner only seeks the explanatory structure that
demonstrates that

BKI=ET @

holds, where I= denotes logical (strong) entailment. The explanatory structure can be in the form
of a proof tree generated by a theorem prover showing that the abstract concept definition (goal
concept) is satisfied by a given example. The explanatory structure is then used to develop more
effective knowledge. For example, in the ARMS system (Segre, 1987), given an initial plan for
joining two assembly components, an example provided by a teacher and BK describing simpler
goals, the system determines a more effective plan for joining components.

In short, in EBL, the learner relies primarily on BK, and the example serves as a focus of attention
for leaming. Once an explanatory structure is established, it is used to generalize the input example
to the extent that the created operational knowledge BK* still subsumes ET, i.e., BK* I=ET.

10



If BK is inadequate (inconsistent, incomplete or intractable), an explanatory structure cannot be
established without postulating change in the background knowledge or hypothesizing some new
knowledge. Thus, the applicabiltiy of this approach and the validity of its results depend on
whether the background knowledge is complete and valid.

Constructive deduction

While studing properties of constructive induction (see next section) it occured to us that one could
formulate a symmetric form of learning, which we call constructive deduction. This form uses
background knowledge to deductively transfrom input information to a more abstract description,
more general description or both. Creating a more abstract description is called abstraction; while
creating a more general description by deduction is called deductive generalization. In both cases,
learning involves applying truth-preserving rules of inference (domain-dependent or domain-
independent) to the input information. Abstraction transfers a description of an entity from a more
specific language to a less specific, in which certain details are ignored. Generalization extends the
set of entities that are referred to in a description. These two processes often co-occur, and this is
probably the reason why these two terms are sometimes confused.

For example, transforming a statement “My workstation has a Motorolla 25-MHz 68030
processor” to “My workstation is quite fast” is an abstraction. To make such a transformation, one
needs (domain-dependent) background knowledge that a processor with the 25-MHz clock speed
is quite fast, and therefore the computer can be viewed as quite fast. On the other hand,
transforming a statement “John lives in Fairfax, Virginia” to “John lives in the United States” is a
deductive generalization, because the set of locations where John lives is extended. This isa
deductive generalization, because the resulting statement is a logical consequence of the initial input
description and background knowledge. To make such a transformation one needs domain-
dependent background knowledge that Virginia is a part of the United States, and that if somebody
lives in some subarea, which is a part of a greater area, then the person also lives in the greater
area. The last piece of knowledge is a special case of the transitivity of set membership, which is
domain independent knowledge. For a more discussion of deductive generalization, see (Michalski
and Zemankowa, 1989). Finally, consider a transformation of a statement "John has two cats,
Kicia and Vicia, in his appartment” into "John has pets in his residence.” This trasformation

involves both abstraction and deductive generalization.

To simply characterize the difference between an abstraction and a generalization, consider an
expresssion d(A)=p ()
which states that a descriptor (an attribute or predicate) takes value p for the set of entities A.

Changing (5) to a statement in which d and/or p is .substituted by a more abstract/general

descriptor is an abstraction. Changing (5) to a statement in which A is replaced by a larger set is a
generalization (can be deductive or inductive, depending on the meaning of d).

Inference rules used in constructive deduction may change the terms used in a description from low
level observable concepts to highly abstract and/or general concepts. This way, constructive
deduction is a vehicle for creating abstract descriptions. Notice, that constructive deduction
generates knowledge that is a logical consequence of given premises (input information and the
background knowledge), and therefore its pure form does not introduce elements of uncertainty.
It can introduce uncertainty, if the rules of inference are plausible rather than crisp. Because
constructive deduction uses deduction as the primary form of inference, it is classified as a form of
analytic learning.

4,2 Svnthetic 1 in

In synthetic learning, the system strives to create desired knowledge by hypothesizing it through
some form of inductive inference. Although the primary inference type involved is inductive, a

synthetic learning process always involves also some deductive inference (e.g., to test whether a
generated hypothesis accounts for an observation).
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Unlike deduction, induction has been a subject of a long-standing debate, and different authors
have defined it in different ways. One view is that it is merely empirical reasoning from particulars
to universals without using prior knowledge. Another view is that induction includes every
inference process under uncertainty, i.e., any “nference that is not strictly deductive (e.g., Holland
et al, 1986). These two views seem to be extreme points of a spectrum. The first one is t00
narrow, as it does not reflect the basic scientific thought on this subject going back to Aristotle,
which characterizes induction as the fundamental inference underlying any process of creating new
knowledge (see the reference under Aristotle). The second view seems to be overly general, as it
includes processes such as approximate deduction. Our view is that induction is simply a process
opposite of deduction. While deduction is a derivation of consequents from given premises,
induction is a process of hypothesizing premises that entail given consequents. Strict deduction 1s
truth-preserving, and strict induction is falsity-preserving. The intersection of these two types 1§
tautological inference, which is both truth-preserving and falsity-preserving (i.e., equivalence

preserving).

Empirical reasoning from particulars to universals, which we call empirical inductive
generalization, is a simple, knowledge-poor, form of reasoning from effects to premises. As we
show below, it can be viewed as a reasoning that traces backward certain domain-independent
rules of inference (“generalization rules™; Michalski, 1983).

A more general form is constructive induction, which may trace backward both domain-dependent
rules, as well as domain-independent background knowledge rules. In this formulation,
constructive induction includes constructive inductive generalization, which uses BK rules to create
higher level generalizations, constructive inductive specialization, which uses BK to hypothesize
specializations (Michalski and Zemankowa, 1990; see an example below), and abduction, aform
of reasoning introduced by Peirce in his classic and very influential treatise on Elements of Logic
(see the reference under Peirce).

Abduction, as defined by Peirce, also called by him retroduction, is “the operation of adopting an
explanatory hypothesis ...that would account for the facts (or some of them).” Here is an exerpt
from his treatise (chp. 11, sec.1):

The surprising fact, C, is observed;
But if A were true, C would be a matter of course
Hence, there is reason to suspect that A is true.

Thus, abduction is creating a hypothesis that would entail the observation ("..if A were true, C
would be a matter of course”). it is interesting to observe that this definition is equivalent to the
definition of induction, if one interprets the undefined concept of "explanatory hypothesis" more
broadly, namely that it can be in the form of a generalization. In this sense, this definition includes,
as a special case (probably unintentionally), empirical inductive generalization. Clearly, a
generalization of an observed fact must account for the fact. For example, suppose one observes
that a particular painting of Polacci was sold very high, and hypothesizes that perhaps all paintings
of Polacci are very expensive. If such a generalization is adopted as true, then the statement that the
particular Pollaci's painting is expensive would be "a matter of course.”

As we show below, in Peirce’s abduction a hypothesis is created by "tracing backward" certain
domain-dependent rules. Because constructive induction places no constraints on what type of
background knowledge rules are employed, it can create causal explanations or other explanatory
hypotheses, as well as inductive generalizations.

The initial formulation of constructive induction (Michalski, 1983) emphasized using domain
knowledge to develop new concepts or attributes, beyond those supplied in the input. Depending
on the type of domain knowledge involved, the new concepts so created can serve as explanatory
hypotheses. Therefore, in general, the idea of constructive induction includes a knowledge-based
creation of explanations, and this has led us to the use of the term “constructive induction” in the
current form. Both, empirical inductive generalization and constructive induction can be viewed as
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forms of “reverse” reasoning, as opposed to deduction that can be viewed as “forward” reasoning.
Therefore, we find it conceptually more attractive to consider them as two forms of inductive
inference, rather than to view them as totally distinct forms of inference.

There is another issue related to abduction. Peirce was not very concerned with the issue of a

preference criterion for choosing an explanatory hypothesis. This issue, however, is important

when there is more than one hypothesis that explains the given facts. Thus, in general, a

grefe[rgnce criterion has to be included as an important component of processes of creating
ypotheses.

In view of the above, our general formulation of inductive inference is that, given an observation
statement (OS) and background knowledge (BK), the reasoner searches for a hypothesis (H),
consistent with BK, such that H & BK strongly or weakly entails OS, which we write as:

"H&BK I> OS ©)

and that the hypothesis satisfies a preference criterion. The preference criterion expresses the
desirable properties of the hypothesis from the viewpoint of the reasoner's goals. For example, the
reasoner may have a preference (or a bias) for a simpler hypothesis, and/or more plausible one
according to the BK, and/or a hypothesis that uses concepts easy to test, etc. A preference
criterion may also allow to generate an inconsistent and/or incomplete hypothesis, if such a
hypothesis is more effective for its expected use. For example, we usually prefer to use the
Newton's laws of motion, although they are, in general, less consistent with the facts than
Einstein's theory.

By identifying H with explanatory hypothesis EH and OS with explanatory target ET, equation (6)
becomes identical to (1), which characterizes the concept of explanation. Thus, the above shows
that induction can be viewed as a process of creating explanations that satisfy some preference
criterion. We distinguish between two basic types of induction:

 Empirical induction, in which the system creates an inductive hypothesis primarily on the basis
of the given facts, that is without much use (or need) of domain-dependent background
knowledge BK. Empirical induction involves primarily domain-independent generalization
rules. Domain-dependent knowledge plays only a supportive role, for example, that of
providing the constraints on the set of possible attribute values, specifying relations that hold
among these attribute values and influencing the preference criterion.

e Constructive induction (knowledge-based induction), in which the process of creating a
hypothesis depends strongly on the domain-dependent background knowledge, as well as
domain-independent .

In the literature, the terms empirical induction and inductive generalization are often viewed as
equivalent. This view is not correct, because inductive generalization can not only be empirical, but
also constructive, that is, it may involve a significant amount of domain knowledge. For example,
creating a general scientific theory describing a class of entities (e.g., creating a physical law) is a
form of inductive generalization, but may not be what we would call an empirical induction,
because it may involve concepts far beyond the observables. Another example is a generalization of
the statement “I saw John in his office on Monday, Wednesday and Sunday evenings” to “John is
an unusually hard working employee.” The second statement is a constructive inductive
generalization, but strictly speaking is not an empirical induction. This is because to generate such
a hypothesis one also needs to know about the work of other employees and to know that being in
one’s office in the evenings means working beyond normal expectations.

Finally, one should note that induction and generalization are two different processes. As indicated
earlier, just as induction does not always produce a generalization, generalization is not always
inductive (Michalski and Zemankova, 1989).
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Let us now consider in greater detail empirical and constructive inductive learning.

Empirical inductive learning

In empirical inductive learning, BK is small and inadequate for constructing an explanatory
structure for a given observation(s). The learner generalizes examples observed to create a
consistent and complete description of them in terms of concepts used in describing observations
(or closely related ones). Such a description implies the observed facts and, thus, can be viewed
formally as an explanatory hypothesis, EH (an “ empirical “ generalization or explanation).

In machine learning, programs constructing empirical generalizations typically use only descriptive

concepts that are selected from among those used in describing original observations. Such
“surface” induction is called selective induction .

In learning from examples, P denotes a description that characterizes all positive examples and
none of the negative examples (assuming that they are distinct). There can be many Ps which
consistently and completely characterize a given finite set of examples, and therefore empirical
learning needs some preference criterion for judging such admissible hypotheses. The essence of
practical implementations of empirical learning is determining the simplest or most efficient
expression for P. :

The above describes a crisp empirical induction, which creates generalizations that strongly (or
strictly) imply the observations. For example, after observing that John has come to various
meetings punctually, one might hypothesize that he always comes to meetings punctually. The
crisp empirical induction is falsity-preserving (if the input includes a false statement, the
generalization is necessarily false). Another form is soft empirical induction that produces
generalizations that weakly imply the observations. The latter form of empirical induction is not
necessarily falsity-preserving. For example, observing someone coming late to a meeting several
times, one might generalize that this person usually comes late to meetings.

Statements produced by empirical induction are usually not causal explanations, because they do
not typically involve any causal relationships, but only correlations. They tend to be used,

owever, as explanations in everyday reasoning. For example, a person may ask, “Why is this
ennis table green?” and someone may answer, “All tennis tables are green." This is not a “real”
explanation, but people give such answers as “explanations.”

Empirical induction has been the most active research area in machine leaming, and there are many
successful implementations of empirical leamning programs. Most of them either generate rules
[e.g., the AQ-based family of programs (Michalski, 1973)], or decision trees [the ID3-based
family of programs (Quinlan, 1979)].

Constructive induction

In constructive induction (Michalski, 1983), the leamer uses domain-dependent as well as domain
independent background knowledge to hypothesize concepts and/or relations that characterize input
information. The hypothesized concepts can be generalizations of the input facts, can be causal
explanations of the facts, or they can be specializations of the input knowledge. If the engaged
background knowledge involves causal dependencies that are “traced back,” then the created
hypothesis provides a causal explanation of the observation(s). If the input is general knowledge
rather than specific facts, constructive induction involves using background knowledge to
.hypothesize lower level or more specific knowledge (which implies the more general one). To
illustrate the latter, suppose that input information is that azalias grow in Virginia. From that
general knowledge, one my hypothesize that azalias may also grow in Fairfax, a city in Virginia.
This type of reasoning is called inductive specialization (Michalski and Zemankowa, 1989).

As we mentioned earlier, we view inductive inference as a general form of inference that includes
empirical generalization and constructive induction. Such a view is consistent with a long tradition
of science - starting with views of Aristotle, as expressed in his fundamental treatise Posterior
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Analytics (see reference under Aristotle). Such a view is also quite satisfying intellectually, because
it treats both empirical induction and constructive induction as different forms of reverse reasoning,
namely as a reasoning from effects to premises that imply them. Such premises can be
generalizations or causal descriptions. A simple form of constructive induction can be characterized

as follows.
Given:
« Background knowledge consiting of domain-dependent rules
(Forall pe P, Q(e,p) ==> (Forall te T, S(e, 1)) @)
where Q(e, p) and S(e, t) are certain predicates,

and domain-independent rules used in empirical induction, such dropping a condition, climbing
generalization tree, etc. (Michalski, 1983).

« Input S(e, t1), S(e, t2), S(&, t3)s--» where t, t2,t3,..€ T.
Hypothesize:
Forall p e P,Q(e, p) ®

For example, suppose one believes that being well-organized, i.e., consistently well-orgapized
over time, implies the ability to come to meetings punctually. If one observes John coming to
several meetings punctually, then one might constructively hypothesize that John is well-
organized.

As another example, suppose that one believes that being hardworking implies working after
hours. If one sees several students from the Al Center working after hours a few times, then one
might hypothesize that all students of the Al Center are hardworking. In these examples one can
see how constructive induction may involve both empirical generalization (over the students), and
an abduction of an abstract concept (“hardworking”).

To show that the above form includes abduction, consider a classic example of abductive inference
presented by Peirce (see reference under Peirce):

Given

BK: Location(bean, BAG) ==> Color(bean, white)
("Beans in this BAG are white")

Input: Color (Beanl, white)
("Color of Beanl is white")

Determine

Hypothesis: Location(Beanl, BAG), i.e., "Beanl is from the BAG".

As one can see, the above inference can be interpreted as "tracing backward" a domain-dependent
rule. For another illustration of abduction consider, for example, the problem of recovery from
failed proofs (Cox and Pietrzykowski, 1986; Duval and Kodratoff, 1990). In these works, the
system abductively creates the minimal hypothesis needed for completing a proof by "tracing
backward" certain domain knowledge rules.

In general, constructive induction is reasoning that may trace backward and/or forward certain
domain-independent rules (e.g., rules of generalization), and/or domain-dependent rules
(expressing domain knowledge), so that the result is a hypothesis that together with BK entails the
initial input. Thus, constructive induction can be viewed as the most general form of induction, and
abduction as a special type of such constructive induction.
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A major limitation of inductive learning (empirical or constructive) is that it produces hypotheses
that may be incorrect, because induction is not, in general, a truth-preserving inference. Even if
the input facts are all correct, the produced generalization may not be correct. On the other hand,
analytic learning, if it is based on strict deduction, guarantees that the improved knowledge is
correct.

It may be interesting to point out a certain symmetry between synthetic (inductive) and analytic
(deductive) methods. Analytic leaming produces correct knowledge only to the extent to which the
learner’s initial knowledge (handcrafted into the system, or induced from cases) is correct and
complete. If the initial knowledge is incorrect or incomplete, the results may be incorrect also. On
the other hand, empirical inductive learning may also produce provably correct results. This is the
case when the set of input facts (examples) is correct and complete, in the sense that it spans all
representative examples (this does not necessarily mean the whole space of examples). Such a
situation is described, for example, in (Michalski and Negri, 1977), where an inductive learning
program produced provably correct rules for distinguishing between a win and draw positions in a
chess endgame. Analytic and synthetic methods are not mutually exclusive, but are overlapping;
methods that perform an equivalence-preserving knowledge transformation are both analytic and

synthetic.

The uncertainty of inductive inference is a property inherently connected with any process of
knowledge creation, including all scientific activities, and cannot be avoided in principle. The
certainty of deduction is based on the certainty of the premises, but the premises have originally
been created by induction.

5. A MULTICRITERION CLASSIFICATION OF LEARNING PROCESSES

Learning processes can be classified according to many criteria. Among particularily relevant
criteria are the type of learning strategy used, the research orientation, the type of knowledge
representation employed, the application area, etc. Classifications based on such single criteria
have been discussed in (Carbonell, Michalski and Mitchell, 1983) and (Michalski, 1986).

This section proposes a classification of learning processes that is based on several interrelated
criteria (Figure 2). In one general stucture, the classification shows basic characteristics of all
major machine learning approaches and paradigms. Its primary purpose is to help the reader to get
a general view of the whole field of machine leamning.

As any classification, the classification can be judged by the degree to which it illustrates important
distinctions and relations among various categories. The categories presented are not to be viewed
as having precisely delineated borderlines, but rather as labels of central tendencies that can
transmute from one to another by differently emphasizing various principal components. This
interpretation reflects our view of multistrategy leaming as an integration of basic inference
processes, which are combined in different ways appropriately for the task. The classification
criteria include the primary purpose of the leamning method, the type of input information, the type
of primary inference employed, and finally, the role of the learner's prior knowledge in the
Teaming process.

As discussed above, from the viewpoint of the primary purpose, learning methods can be
classified into synthetic and analytic. The primary purpose of synthetic methods is to create new or
better knowledge. The primary purpose of the analytic methods is to transform the prior
knowledge into a better form, so that is can better serve some goal. The knowledge so transformed
does not allow the learner to solve more problems, but to solve them more effectively.

If the input to a synthetic learning method are examples classified by an independent source of
knowledge, for example, a teacher, an expert, or an "oracle,” then we have learning from
examples. When the input are facts that need to be described or organized into a knowledge
structure by the learner itself, then we have learning from observation. The latter is exemplified by
leaming by discovery, conceptual clustering and theory formation.
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The primary type of inference used in synthetic learning is induction. As described in section 4.1,
inductive learning can be empirical (BK-poor) or constructive (BK-intensive). Most work in
empirical induction has been concemed with empirical generalization of concept examples using
attributes selected from among those present in the descriptions of the examples (hence, such
induction is sometimes called "selective” ; Michalski, 1983). Another form of empirical learning
includes quantitative discovery, in which learner constructs a set of equations characterizing given
data. Leaming methods employed in neural nets or genetic algorithms are also viewed as forms of
empirical inductive leaming. They typically rely on relatively small amounts of BK, and their
primary inference type is inductive. This inference, however, is not executed in an explicit way,
like in typical symbolic methods, but in an implicit way.

In contrast to empirical induction, constructive induction is knowledge-intensive, as it uses BK to
create high-level characterizations of the input information. This input information can be in the
form of low level specific facts or already generalized descriptions. As described above, abduction
can be viewed as a form of constructive induction, which "traces backward" certain domain-

dependent knowledge rules.

‘For completness, let us mention that there are two other classifications of inductive methods, not
shown in this classification. One is based on the way facts or examples are presented to the leamer.
If examples are presented and processed all at once, then we have one-step or non-incremental
inductive leaming. If they are processed one by one, or in portions, and the system may have to
modify the hypothesis after each input, we have an incremental inductive leaming.

The second classification is based on the method of interpreting or matching instances with concept
descriptions. Mathing an instance with a concept description can be done in a direct way, or can
employ a substantial amount of background knowledge and inference. For example, case-based or
exemplar-based methods employ matching procedures that allow the system to recognize new
examples that do not directly match any past example (e.g., Bareiss, Porter and Wier, 1990).
Such a process can be characterized as a "dynamic" induction that is performed during the
matching process (or the recognition process). Learning methods based on the two-tiered concept
representation (Bergadano et al., 1990) also use a sophisticated matching procedure. In general,
they can employ any type of inference in matching an instance with a concept representation
(Iylichalski, 1990).

Analytic methods can be divided to those that are guided by an example in the process of
knowledge reformulation (example-guided) and those that start with a specification (specification-
guided). The former category includes explanation-based leaming (e.g., DeJong et al. 1986),
explanation-based-generalization (Mitchell et al., 1986), and explanation-based specialization
(Minton, 1986; Minton et al., 1987). The primary inference method in analytic learning is
deduction. If deduction is based on axioms ("domain theory"), then it is called axiomatic.
Explanation-based generalization can be viewed as an example of an axiomatic method, because it
is based on a pure deductive process that utilizes complete and consistent background knowledge.

This knowledge playes the role analogous to the axioms in formal theories.

Analytic methods that involve deductive transformations of description spaces and/or imperfect
background knowledge and/or plausible rules of deductive inference are classified as methods of
nconstructive deduction.” This class also includes abstraction, as it utilizes background knowledge
to create descriptions at a lower level of detail, while basically preserving the truth of the
description. Results of abstraction are typically statements expressed in a higher level language.

Another form of constructive deduction is deductive generalization that creates more general
statements, in the sense that they include more entities. Such statements are logically implied by the
source statements, in contrast to statements generated by inductive generalization, which imply the
source statements. These two processes are put into a dotted rectangle, to indicate they do not seem
to correspond to any major current research areas. They are simply suggested as potential research
areas, as a result of making the above classification. This can be viewed as a kind of the
"Mendeleiev periodic table effect." .

.
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In general, constructive deduction is a knowledge-based process of transforming descriptions from
one representation space or language to another, which preserves information important for an
assumed goal. Abstraction is classified as a constructive deduction, which transforms a description
at a high level of detail to a description at a low level of detail, while preserving the truth of the
relations and/or properties relevant to the assumed goal. In other words, while reducing the total
information content of the original description, abstraction preserves the information important to
performing an implicitly or explicity defined goal. Depending on the goal, a given description can
be abstracted in many different ways. Each such process is essentially deductive, as it is not
supposed to introduce or hypothesize any information that is not contained in the initial description
or information source, or which cannot be deductively inferred from it using the learner's BK.
The difference between constructive deduction and what we call axiomatic deduction is that the
former emphasizes a change in the representation space or language, and may use a variety of
knowledge transformations, rather then strictly logic-based formal methods. A "pure” constructive
deduction is truth-preserving; however, in general, it can involve rules of plausible reasoning, and
in this case ceases to be truth-preserving.

As mentioned before, abstraction is sometimes confused with generalization. Note that
generalization transforms descriptions along the set-superset dimension and may be falsity-
preserving, as in the case of inductive generalization, or truth-preserving, as in the case of
deductive generalization (Michalski and Zemankowa, 1990; see also below). In contrast,
abstraction transforms descriptions along the level-of-detail dimension, and is truth-preserving
with regard to the characteristics of the entity(ies) important for the assumed goal. While
generalization often uses the same description space (or language), abstraction typically involves a
change in the representation space (or language). The reason why generalization and abstraction are
frequently confused may be attributed to the fact that many processes include both of them.

Deductive generalization is concerned with making generalizations that are logical deductions from
the base knowledge. It differs from abstraction as it moves from considering a set to considering a
superset, and typically uses the same representation formalism. For example, transforming a
statement " George Mason University is in Fairfax" to "George Mason University is in Virginia” is
a deductive generalization. In contrast, changing a high resolution digitized satellite image of
Fairfax into a low resolution image is a simple form of abstraction. A more sophisticated
abstraction would be to use the high resolution image and appropriate BK to create a map of
Fairfax, which emphasizes important (according to the goal) aspects of the area. Research on
problem representation, transformation of problem representation spaces, determination of a
representative set of attributes, deductive transformation of a knowledge base, and related topics
&an be classified under the rubric of constructive deduction.

Systems that combine several basic strategies are called multistrategy learning systems. In parallel
to multistrategy systems, one can also distinguish multirepresentation learning systems (not shown
in the classification). Such systems would employ various forms of constructive deduction or
induction to create and use representations at different levels of abstraction, and/or apply different
description languages in the process of learning. The use of these descriptions and languages
would depend on the task at hand and on the application domain. Such systems thus are capable of
changing the representation of the original problem statements. The importance of this area has
been acknowledged very early by pattern recognition researchers (Bongard, 1970), as well as by
Al researchers (Newell, 1969; Amarel, 1970). Nevertheless, it received relatively little attention
during recent years. Among notable exceptions are (Amarel, 1986; Mozetic, 1989)

Summarizing, one can distinguish three pairs of reasoning and learning mechanisms. Each pair
contains two opposite processes, and is concern with different aspects of reasoning and knowledge
transformation. Two of these pairs have been relatively well-explored in machine learning:
deduction/induction and generalization/specialization. The third pair, which has been relatively less
studied, consists of abstraction and its reverse, which may be called concretion (Webster's
dictionary defines it as being a process of concretizing something).
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Figure 2. A multicriterion classification of learning processes.

These three types of mechanisms can be combined in different ways, giving some classical, well
known reasoning mechanisms and some less known. The classical ones include inductive
generalization and deductive specialization. Less investigated are inductive specialization,
abstraction, deductive generalization, inductive concretion and other.

The above "grand" classification appears to be the first attempt to characterize and relate to each
other all major methods and subareas of machine leaming within one general scheme. As such, this
attempt may suffer from various weaknesses and imprecision, and can be criticized on various
grounds. Its primary purpose is to try to help the reader, especially a novice in this field, to view
different learning mechanisms and paradigms as parts of a one general structure, rather than as a



collection of unclearly related components and research efforts. By analyzing this classification, the
reader may be stimulated to improve it or to develop a new, more adequate one.

6. MULTISTRATEGY COOPERATIVE LEARNING

The ideas presented above have shown the relationships among different forms of explanation and
different types of learning. They have shown, in particular, the relationship between the two most
active and complementary methodologies for building leamning programs: empirical learning, which
primarily exploits data, and analytical learning, which primarily exploits prior knowledge. While
both these methodologies are useful for some domains of application, most practical learning
problems seem to fit neither the empirical nor the analytic paradigm. This is because most practical
problems involve to a significant extent both prior knowledge and new facts, and the prior

knowledge is often incomplete and/or not totally correct.

This section discusses a general approach to learning that attempts to unify several learning
approaches and to build a leamning system of much greater capability than those using only one
type of approach. The proposed multistrategy cooperative learning integrates empirical learning,
constructive induction, learning by instruction, explanation-based learning and conceptual
clustering. Ultimately, it is intended to integrate also learning by analogy and case-based reasoning

(which can be viewed as a form of analogical reasoning).

Given a fact or an observation, one can distinguish five types of relationship between the fact and
the learner’s prior knowledge. First, the fact may be new or partially new to the learner, neither
confirming nor disconfirming the learner’s prior knowledge, or, if it is not economical to test for
this property, one assumes that the fact is new. Second, the fact may contradict some segment (a
rule or a rule set) of the learner’s prior knowledge. Third, the fact may be implied (or may imply)
some segment of the learner’s prior knowledge. Fourth, the fact may be similar in certain respects
(in terms of abstract relations, rather than low level attributes) to some segment of the learner’s
knowledge. Fifth and finally, the fact may be already known to the learner (i.e., strictly match
some knowledge segment).

Current empirical and constructive induction systems are concerned primarily with handling the
first and the second cases. “Pure” explanation-based leamning is concemed with handling the third
case. The more recent methods of explanation-based leaming attempt to address situations in which
the learner’s knowledge is insufficient (first case), or inconsistent with the prior knowledge
(second case), or the prior knowledge is intractable (first case). Learning by analogy and case-
based reasoning are concemed with handling the fourth case. Very few symbolic leamning systems
handle the fifth case other than by ignoring such inputs (Slimmer and Granger, 1986). In neural
networks and genetic algorithms a repetition of the input is not ignored, but those systems do not
have the ability to recognize that the input is repeated.

Our work on the MCL learning methodology is intended ultimately to handle all five cases in an
integrated fashion. Thus, to explain how this methodology works, one needs to explain how it
would handle all these cases. Before we move to this topic, however, we first need to introduce
the knowledge representation to be used in the proposed methodology.

Knowledge representation

A multistrategy cooperative leaming system (briefly, an MCL learner) has to be able to represent
and use knowledge created by different learning strategies. This means, in particular, that it has to
be able to employ knowledge created by one learning process as an input to another learning
process. The other learning process may be using the same learning strategy or a different
strategy. As mentioned earlier, learning with such a property is called the closed-loop leaming.
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Another property of a constructive learner concerns its reaction to repetitive information.
Traditional symbolic leaming methods typically use a knowledge representation (e.g., rules or
semantic networks) that does not change if a new instance repetitively satisfies the given concept
description. A constructive leamer needs a representation that could change even if an instance is
shown to satisfy a concept description. The reason is that such cases should be used for increasing
a degree of confirmation of the concept description. An MCL leamner should also be able to
decrease such a degree in some situations.

To satisfy the above requirements, we assume that the basic component of the learner’s
background knowledge (BK) is a parameterized association rule (PAR), whose general form is:

CTX: AS: L-PREMISE <-—> R-PREMISE: M-Parameters )]

where

L-PREMISE and R-PREMISE denote the left and right sides of a PAR, respectively. They are
expressed as conjunctive statements or terms. The statements may include internal disjunction and
terms may be compound (Michalski, 1983).

<-—> denotes a bi-directional association, which is instantiated into a more specific relationship
according to AS.

AS stands for the association specification, which defines the type and properties of the
association. An association can be instantiated to many specific types and defined with different
degree of precision. For example, AS may state that the association is an implication between
statements or a mutual dependency between terms. A term dependency is, e.g., that “smoking is
related to lung cancer.” When more knowledge about this dependency is obtained, the association
may become a functional dependency, €.8., that “smoking two or more packs a day shortens the
life span by 10 years on the average.” In general, the association may be a strong (logical) or weak
(plausible or probabilistic) implication or equivalence, mutual dependency between terms, equality,
correlation, causal relationship, decision assignment, precedence relation, and other. AS may
include a quantification expressed in the from of an ordinary quantifier or a numerical quantifier
(Michalski, 1983). A numerical quantifier may state, e.g., that there are two or more objects in a
set S to which the PAR applies or that there are specifically three objects in S to which the PAR
applies. When AS is not specified, the association takes a default meaning. The default meaning

may be that if the premises are statements, then the association is implication; and if the premises
are terms, it is mutual dependency (Collins and Michalski, 1989).

(‘( denotes a context for the association, that is a characterization of the conditions under which
the!PAR applies. When the CTX is not specified, a default context is assumed.

M-Parameters (merit parameters) represent numerical or qualitative properties of the association,
which characterize its strength in both directions, the number of times the association has been
satisfied or not satisfied by input events, and other parameters, such as those introduced in the
theory of plausible reasoning (Collins and Michalski, 1989). Each time a PAR is evoked and either
satisfied or not satisfied, the appropriate parameters are updated.

An input fact may match the whole or part of either premise, or both premises of a PAR. For
example, a description of an object may match the left premise, and its classification by a teacher
may match the right premise. PARs are organized into segments. A segment is collection (a
“parset”) of rules that are related in some way. For example, a segment may describe a single

concept or a few closely related ones. Segments may be (statically or dynamically) organized to
larger units, called schemas.
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This form of knowledge representation is based on ideas stated in the theory of human plausible
reasoning proposed by Collins and Michalski (1989), and in the annotated predicate calculus
(Michalski, 1983). In particular, the PAR is a generalization of the rules for mutual implication
and term dependency. The concepts used in PARs (attributes, relations, etc.) are organized into
dynamic hierarchies, such as described in that theory.

Although PARs are significantly more general than productions used in genetic algorithms (e.g.,
Holland, 1986 and 1987), they share with them the property of having some numerical score(s)
attached to them. PARs permit one to represent a large class of descriptions and relationships. For
example, a single PAR may represent a condition-action rule, such as “if the second valve is
broken, call a mechanic”; a term dependency, such as “pressure and volume are inversely
proportional "; a causal relationship, such as “if the pressure goes beyond 3 atmospheres, this
indicator will move up”; a quantified implication, such as “ 60% of objects observed have property
P”, as well as ordinary implications or equivalences.

Qutline of the method

We will now outline our preliminary ideas about how an MCL leamer might learn in different
situations, in particular, how it could react to the above described different types of relationship
between an input, background knowledge (BK) and a learning goal. We assume that the input
consists of information (e.g., a fact, a concept example or a rule) supplied by an external source,
or information resulting from an impass in processing of an input according to some strategy. In
the latter case, processing of the input may involve activating another leaming strategy. For
example, in the process of determining if a fact is implied by BK (i.e., in attempting to explain the
fact), the leamner finds that some parts of it are explainable by BK, and some other parts may
_ represent new information. The parts that are explainable are processed by an analytical learning
strategy, and the parts that are new may activate a synthetic leamning process.

We assume that the general Jeaming goal (a2 default goal) is to derive any “useful” information from
the input, make sense of it and assimilate it into the knowledge base. More specific learning goals,
such as to generalize facts to generate a rule, to create a conceptual classification of facts, to
reformulate a part of BK into a more efficient knowledge, to determine new knowledge on the
basis of an analogy between the input and some past knowledge, etc. are supplied from a
supervisory control system. ’

Presented ideas are concerned only with aspects of building or updating a knowledge base, and not
with issues of using the knowledge for problem solving. Given input information, the learner
determines which of the five cases above (“processing methods”) is involved. The rules and
segments in BK are indexed in various ways to facilitate this process. The leamer performs a
“deductive” matching of the information with BK to determine if it satisfies (or is satisifed by)
some rule, or at least is consistent with the rules. Such a matching is called “deductive” because it

may involve several steps of deduction.

A limited amount of resources is available for this process, and if they are exceeded, a failure is
communicated. In such a case, the information is assumed to be (pragmatically) new to the system.
Rule generalization or specialization is done by applying various inference rules, such as those
described in (Michalski, 1983). Any input is first evaluated for "relevance” to the leamer's goal(s).
Such an evaluation is based on a quick classification of the input to some category, and the
category is related to the goal(s). If the input passes such a "relevance test," a learning process is
activated.

1. The input represents pragmatically new information

In this case, the leamer searches for the part of BK that is “sufficiently related” to the input
information. For example, it may be a part describing the concept being exemplified by the input.
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If this effort succeeds, the relevant part is generalized, so that it accounts for this information and

possibly other information that was stored previously. The input is also evaluated for “importance”

:ihnd, if it passes an importance criterion, it is stored (this is called learning with partial memory of
e past).

If there is no knowledge “sufficiently related” to the input, the input is stored without involving
the importance criterion, and the control is passed to strategy 4. In general, this case handles

situations that require some form of synthetic learning (empirical leaning or constructive
induction), or merely leaming by instruction.

2. The input contradicts some part of the learner’s background knowledge

The system identifies the part of BK that is contradicted by the input information, and then attempts
to modifies this part. If this modification involves too much restructuring, and/or the confidence in
the input is low, no change to this part of BK is made, but the input is stored. When some part of
BK has been restructured to accommodate the input, the input is also stored, but only if it passes
an “importance criterion.” If contradicted knowledge is a specific fact, this is noted, and any
knowledge that was generated on the basis of the contradicted fact may have to be revised. In
general, this case handles situations requiring a correction of BK through some form of synthetic
leaming and, generally, managing inconsistency.

3. The input is implied by, or implies a part of the background knowledge

This case represents a situation when it is determined that there is a part of BK that accounts for the
input, or is a special case of it. The learner creates a derivational explanatory structure that links the
input with the involved BK part. Depending on the learning goal, this structure can be used to
create a new (“operational”) knowledge that is more adequate for future handling of such cases. If
the new knowledge passes an “importance criterion,” it is stored for future use. This mechanism is
related to the ideas on the utility of explanation based-learning (Minton, 1988).

If the input represents a “useful” result of a problem solving activity, e.g.,” for given state x, it
was found that the best action is y”, then storing such a fact as a rule is similar to chunking in
SOAR (Laird, Rosenbloom, and Newell, 1986). If the input information (e.g., a rule supplied by a

teacher) implies some part of BK, then an “importance criterion” is applied to it. If the input passes .-

this criterion, it is stored, and an appropriate link is made to the part of BK that is implied by it. In
general, this case handles situations requiring some form of analytic leamning, in particular,
explanation-based leaming..

4. The input evokes an analogy to a part of the background knowledge

This case represents a situation when the input does not match any prior fact or rule exactly, nor is
closely related to any part of BK in terms of low level properties, but there is a similarity between
the fact and some part of BK at a higher level of abstraction. That is, unlike in case 1, in which the
system tries to directly match the fact with a knowledge segment, in this case, the matching is done
using abstract attributes or relations. An analogy is established, and explored in the context of the
learner's goals. For example, an input describing a lamp may evoke an analogy to the part of BK
describing the sun, because both lamp and sun match in terms of an abstract attribute “produces
light.” Knowing that the sun produces heat, and that there is often a mutusal dependency between
light and heat (Collins and Michalski, 1989), a learner may hypothesize that the lamp may also

produce heat.
5. The input is already known to the learner

This case occurs when the input matches exactly some part of BK (a stored fact, a rule or a
segment). In such a situation, a measure of confidence associated with this part is updated.
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In summary, in multistrategy cooperative learning, any act of receiving information may activate a
learning process. The learner employes deductive inference when an input fact is consistent with,
implies, or is implied by the prior knowledge, analogical inference when it is similar to some part
of past knowledge, and inductive inference when there a need to generalize knowledge or
hypothesize new knowledge. It also learns when input facts confirm its knowledge, by reinforcing

current beliefs.
7. SIMPLE EXAMPLE: Learning the Concept of a Cup

To illustrate briefly some of the ideas described above, let us use a well-known example of
learning the concept of “cup” (Mitchell, Keller and Kedar-Cabelli, 1986). The example is
deliberatly oversimplified, so that major ideas can be presented in a very simply way (Figure 3).

The top part of the figure presents an abstract concept definition (abstract CD) for the concept
“cup,” the domain rules, a description of an example of a cup (specific object description or
specific OD), an abstract object description (abstract OD), and an operational concept description
(operational CD). An abstract concept definition describes the concept of "cup" in abstract/general
terms, while an abstract object definition describes the specific object in such terms.

The bottom part of the figure summarizes information that is assumed to be given and to be learned
using different learning approaches: constructive deduction (abstraction), explanation-based
leaming, empirical induction, construc ive induction (in cases of generalization and abduction), and
the proposed multistrategy cooperative leamning. For simplicity, some details are omitted, and the
example does not illustrate the mechanism of updating the strength of the rules, nor analogical
reasoning. Figures 4, 5 and 6 give more details about some of the learning processes, specifically,
about abstraction, constructive generalization and abduction.

A more practical, but less general example is described in (Ko and Michalski, 1989). It shows
how a system learns a general schema for creating a plan for putting together simple assemblies,
for example, a bell. The schema is developed by an incremental improvement and testing of
intermediate schemas.

8. CONCLUSION

The aims of this work are to create a theoretical framework for characterizing and unifying basic
learning strategies, and to develop an experimental integrated learning system based on it. The
proposed MCL methodology stems from the inference-based theory of learning that considers
learning as an inference process, whose useful results are stored for future use. This process
involves input information, the learner’s prior knowledge, and the goal of leamning. It may employ
any kind of inference - deductive, analogical or inductive. Among important assumptions for this
work are that a learning system should be capable of acquiring knowledge from any input and be
able to use knowledge gained in one learning task in any new leaming task (i.e., be capable of the
“closed-loop” leaming).

The MCL methodology is intended ultimately to include capabilities for empirical learning,
chunking, constructive induction, learning by instruction, reinforcement learning, explanation-
based learning, conceptual clustering, learning by analogy and case-based reasoning.
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Abstract CD:

Open-vessel(obj)
Open-vessel(obj)

Domain rules:

Up-concave(obj)

Cup(obj)
Stable(obj) Liftable(obj)
Stable(obj) Liftable(obj)

Has-flat-bottom(obj)

Is-light(obj) &
Has-handle(obj)

Example (Specific OD):

Up-concave(CUP1) & Has-flat-bottom( curl) & Is
& Color(CuP1) =red& Owner(CUP1) = RSM & Made

-light(cup1) & Has-handle(CUP1)
-of(cup1) = glass &...<---> Cup(CUP1)

Abstract OD:

Open-vessel(CUP1) & Stable(CUP1) & Liftable( cUP1) & ... <---> Cup(CUP1)

Operational CD:

Up-concave(obj) & Has-flat-bottom(obj) & Is-light(obj) & Has-handle(obj) <---> Cup(obj)

Constructive Deduction
(Abstraction)

Explanation-
based Learning

Empirical Induction

Constructive Induction
(Generalization)

Constructive Induction
(Abduction)

Multistrategy
Cooperative
Learning

OD and CD denote object and conc
avariable. BK' denotes some parti
ributes and the type of the attributes. Operators b

Given:

Example
Domain rules

Abstract CD
Domain rules
Example

Examples
Partial BK'

Domain rules
Example(s)

Example(s)
Abstract CD

®~ XN VvV

<

T, rn

Abstract OD

Operational CD

Operational CD

Abstract CD

Domain rules

Any of the above and other combinations, depending on
what is the input, what the leamner knows already
and what is to be learned

t descritpion, respectively. C

and K denol

UP1 stands for a specific cup; obj denotes
background knowledge, .g., a specification of the value sels of the aut-
te deduction and induction, respectively.

Figure 3. Learning various aspects of the concept of “cup” using different strategies.
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Learning Process: EX&DR--> 0D

1 1 Example
?Xi’ﬁfr'z‘ffi':f, )Dedumo" Domain rules l< Abstract OD
. Given:
1. INPUT
New Example:

Up-concave(CUP1) & Is-light(CUP1) & Has-handle(CUP1) & Owner(CUP1)=RSM &
Color(CUP1)=red & Made-of(CUP1)=glass & Has-flat-bottom(CUP1) <----> Cup(CUP1)

2. BACKGROUND KNOWLEDGE

Domain rules  Open-vessel(obj) Stable(obj) Liftable(obj)
Up-concave(obj) Has-flat-bottom(obj) Is-light(obj) &
Has-handle(ot

Other Relevant Knowledge
Container(obj) <---- Open-vessel(obj) & Stable(obj)

3. GOAL ,
To derive an abstract description of this example.

STEPS:
1. Determine relevant domain rules
2. Apply the rules to the given example and create an abstract OD

Learned:

An abstract OD:
Cup(CUP1) <---> Open-vessel(CUP1) & Stable(CUP1) & Liftable(CUP1) &...

After applying other relevant knowledge, even more abstract OD can be created:
Cup(CUPD) <---> Container(CUP1) & Liftable(CUP1) &...

Figure 4. An illustration of abstraction.
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Learning Process: EX&DR --> AC
Constructive Generalization Example(s) }<  AbstractCD
Domain rules
Given:
1. INPUT
Examples::

Up-concave(CUP1) & Is-light(CUP1) & Has-handle(CUP1) & Owner(CUP1)=RSM &
Color(CUP1)=red & Made-of(CUP1)=glass & Has-flat-bottom(CUP1) <—--> Cup(CUP1)

Up-concave(OBJ2) & Is-heavy(OBJ2) & Has-handle(OBJ2) & Owner(OBJ2)=RSM &
Color(OBJ2)=grey & Made-of(OBJ2)=wood & Has-flat-bottom(OBJ2) <----> Jar(OBJ2)

Up-concave(OBB) & Is-light(OBJ3) & Made-of(OBJ3)=glass & Has-flat-bottom(OBJ3)
No-handle(obj) <---->Jar(OBJ3)

2. BACKGROUND KNOWLEDGE

Cup(obj)
Unknown / \
Abstract CD
Open-vessel(obj) Stable(obj) Liftable(obj)
Open-vessel(obj) Stable(obj) Liftable(obj)
Domain rules ?
Up-concave(obj) Has-flat-bottom(obj) & Is-light(obj) &

Made-of(obj)=hard-material Has-handle(obj)

Other relevant knowledge
Made-of(obj)=hard_material <---- Made-of(obj)=glass
Made-of(obj)=hard_material <---- Made-of(obj)=wood
Is-light(obj) =/= Is-heavy(obj)

3. GOAL
To create an abstract description of the concept of cup.

STEPS:
1. Analyze the relationship between the input and the BK in the context of GOAL

2. If the current abstract description of the cup BK is incomplete, hypothesize additional rule(s),
to make it complete

Learned:
An abstract concept description:
Cup(obj) <---- Open-vessel(obj) & Stable(obj) & Liftable(obj)

Figure 5. An illustration of constructive generalization
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Learning Process: EX&AC -->DR
Abduction Example(®) |« Domain rules
Given:
1. INPUT
An example:

Up-concave(CUP1) & Is-light(CUP1) & Has-handle(CUP1) & Owner(CUP1)=RSM &
Color(CUP1)=red & Made-of(CUP1)=glass & Has-flat-bottom(CUP1) <----> Cup(CUP1)

2. BACKGROUND KNOWLEDGE

Cup(obj)
Abstract CD / T \
Open-vessel(obj) Stable(obj) Liftable(obj)
Open-vessel(obj) Liftable(obj)
Incomplete T
domain rules
Up-concave(obj) Is-light(obj) & Has-handle(obj)

Other relevant knowledge

Stable(obj) <~~/~~~> Owner(obj) & Color(obj) (no mutual dependency)
Stable(obj) <~~~~> Type-of-bottom(obj) (mutual dependency)
Type-of-bottom(obj) = {uneven, flat, leg-supported,...}
Type-of-bottom(obj) = <value> ==> Has-<value>-bottom(obj)

3. GOAL
To determine domain knowledge that justifies the abstract concept definition.

STEPS:

1. Analyze the relationship between the input and the BK in the context of GOAL

2. 1f the BK is insufficient, hypothesize additional domain rule(s), that are
consistent with example and BK.

What is learned :

A new domain rule:
Stable(obj) <== Has-flat-bottom(obj)

Figure 6. An illustration of abduction.



An important component of the MCL methodology is the cognitive theory of plausible reasoning
(Collins and Michalski, 1989), which provides a formal structure for implementing various forms
of such reasoning. In the complete implementation of the MCL, plausible reasoning is supposed to
play a double-level function. The first-level function is to generate lines of reasoning that relate the
input information to the leamer's background knowledge and goals, and determine the most
plausible conclusions. These conclusions are to be stored as results of learning, and integrated with
the test of the learner's knowledge. The second-level function is to generate, on request,
explanations of the results of leaming in terms of high-level human-oriented concepts and
structures. It is our strong believe that an advanced learning system should not only be able to
learn, but also to explain to human counterparts what knowledge it acquired or modified during
any leaming process. When a leamning system is a part of knowledge system (e.g., an expert
system), the explanatory capabilites for learning should be integrated with explanatory capabilities
for the system's performance. It may be worth mentioning, that while a significant amount of
research has been done on the development of explanatory capabilities for performance of
knowledge-based systems (e.g., Tanner, 1990), relatively little has been done so far on the
development of explanatory capabilites for learning systems.

"Po demonstrate some aspects of MCL learning, a prototype system, called NOMAD, has been
implemented (Ko, 1989). NOMAD is a planning system that learns from planning experiences,
and has been developed in connection with the Intelligent Explorer (IEX) project at the GMU
Center for Artificial Intelligence. In the future work we plan to explore the utility of the INDUCE 4
program for incremental structural learning (Mehler, Bentrup, and Riedesel, 1986), and the
DISCIPLE integrated leaming system (€.g., Tecuci and Kodratoff, 1990) for implementing an
MCL system.

The presented ideas are at an early state of development, and many issues have not been resolved.
For example, future resaerch should address the question of the development of a flexible control
of the execution of different leaming strategies, handling input information whose different
components need to be processed separately, but in a globally coordinated way, the access and
manipulation of a large collection of parameterized association rules (PARs), or the methods for
updating and using various parameters associated with PARs. Future research may also explore
the utility of genetic algorithms in the MCL methodology. A genetic algorithm might be used, e.g.,
for evolutionary optimization of many parameters involved in MCL.

In closing, our goals in developing the MCL methodology are to explore research issues involved
in the integration of different leamning strategies, and to understand how various strategies can best
be utilized in different learning situations. This understanding may give insights into learning
processes in general, and help to build more powerful and efficient multistrategy learning systems.

Such systems are needed for many practical tasks in which a learning system starts with inadequate
knowledge, and needs to use facts or experience to extend or improve it in a goal-oriented way.
There are two general areas where such systems may be particularily useful: extraction of
knowledge from large databases and knowledge acquisition for expert and advisory systems. In
both these areas, to derive useful knowledge no single learning strategy is usually sufficient, and
knowledge learned must be understandable by a human user. Among specific application tasks one
can list all kinds of diagnostic problems, decision making, planning systems, system design,
economical prediction, resource management, robot navigation, automated assembly, and sensory
signal interpretation.
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