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Abstract

A SEMI-SUPERVISED MACHINE LEARNING APPROACH FOR ACOUSTIC MONI-
TORING OF ROBOTIC MANUFACTURING FACILITIES

Jeffrey Bynum

George Mason University, 2019

Thesis Director: Dr. Jill Nelson

Diagnosing characteristic industrial equipment characteristic behavior non-invasively

and in situ is an emerging field of study. An algorithm was developed to acoustically

monitor mechanical systems with minimal data labels. The methodology was evaluated

using a semiconductor device manufacturing process, consisting of a Selective Compliance

Assembly Robot Arm (SCARA) system, via an embedded microphone array. Combined un-

supervised and supervised data analysis techniques to identify critical processes for eventual

life-cycle tracking, was demonstrated. A spectrogram-based convolutional neural network

performed primary robotic motion segmentation with an average accuracy of 85% using

ground-truth validation data. Subsequent unsupervised analysis using similarity metrics

as well as k-means clustering on engineered features had mixed success in distinguish-

ing secondary robotic actuations. A semi-supervised technique was viable to differentiate

characteristics in robotic motions with limited available labeled data. Data visualizations

demonstrated potential limitations in engineered feature separability as well as probable

error sources. Further refinement is required for better segmentation accuracy as well as

identifying features that represent secondary characteristics in manufacturing systems.



Chapter 1: Introduction

Industrial manufacturing systems must maintain fabrication tolerances as well as meet

production capacity requirements [3]. These systems demand persistent monitoring and

maintenance due to progressive mechanical wear. Conventional approaches traditionally

relied on operator oversight and experience for monitoring system health; however, remote

monitoring techniques are increasingly applied. Remote techniques allow flexibility for

monitoring inaccessible fabrication environments as well as providing continuous produc-

tion diagnostics. Moreover, remote monitoring techniques can robustly fuse complex data

features for better understanding behind normal and damaged system states.

Industrial robots are complex mechanical systems that combine components such as

motors, bearings, housings, linear rails, and brakes. These systems typically perform a

variety of actuations generalized in 3D Cartesian space. As exampled in robotic manu-

facturing platforms such as in Figure 1.1, a series of these primary motions describe a

process. Actuations for robotic systems can include y-axis (base movement), x-axis (arm

extension/retraction), and z-axis (body extension/retraction) motions. Primary motions

can be further subdivided into separate, secondary subclasses. Each subclass describes a

physically different actuation along the same axis of travel. For example, motion from point

A to point B [class label 1(a)] and motion from point B to point A [class label 1(b)] describe

two potential subclasses. These subclass actuations are combined sequentially depending

on process.

These primary motion classes (x, y, z) contain various engaged mechanical hardware over

different, discernible sequences. Audible motion characteristics stemming from differences

in system dynamics, could possibly be captured through non-invasive, audio recordings.

Deviations in system dynamics coupled with corresponding changes in harmonic content
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may indicate progressive component damage. While secondary actuations are similar, each

motion class generates distinct acoustic emissions from differing mechanical responses.

Figure 1.1: SCARA and Cartesian reference frame used (reprinted from [1] with
permission from Cambridge University Press)

This work investigates a semi-supervised machine learning approach to isolate and clas-

sify acoustic signals corresponding to robotic actuations. The problem consists of two pri-

mary elements including segmenting actuation signals from audio recordings, followed by

unsupervised similarity analysis of captured segmentations for further characterization. The

study addresses unmet research needs by investigating challenges of acoustic health moni-

toring in a realistic manufacturing settings with limited labeled data. These techniques can

be applied to understand system health and eventual life-cycle assessment.
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Chapter 2: Prior Work

While monitoring industrial components using auditory characteristics has been studied,

numerous practical challenges for monitoring systems in realistic environments remain. Sev-

eral recent comprehensive literature surveys have outlined various trends in remote health

monitoring [3–5]. Several challenges are noted for diagnosing changes in mechanical sys-

tems including: robustness to noise artifacts, acoustic event detection, feature extraction

methods, and automated damage detection algorithms.

With regards to acoustic monitoring, distinct audio features used to classify events as

well as damaged mechanical states are often difficult to determine. Signal features corre-

lating with damage are often weak in amplitude compared to other recorded operations

[6] and deviations reflecting damage are not fully understood. While mechanical faults are

known to influence system behavior, often reflected in the frequency spectra [6–8], phys-

ical phenomena varies with degradation type. Bearing faults, for example, exhibit stress

waves influencing high frequency system dynamics [9], which may not be reflected in other

mechanical fault behavior.

Expert knowledge is often required to generate features and categorize audible dynamics

corresponding to mechanical wear. Moreover, unique features must be separable, distinc-

tive, and representative for audio signature classification [3, 10–13]. There have been a

variety of studies on generating such features [3, 10, 11, 14, 15], however these features are

typically domain dependent. Damage classification typically involves tuning features corre-

sponding to ground truth and altered states; however, data driven methods are more robust

to capturing changing dynamics [9] as well as allowing for practical implementation outside

of traditional numerical models [4].

Employing modern machine learning methods [4], including deep neural networks, can
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allow for better feature representations as well as relationships between features and under-

lying characteristics [16–18]. Broadly, machine learning architectures for health monitoring

can be divided into a feature extraction and classification stage. Features can be extracted,

using time-frequency characteristics [3, 10], or automatically learned through deep auto-

encoders or deep neural-network architectures [3]. A recent survey outlined features derived

from mechanical faults in rotating industrial machinery could be classified using neural net-

work, k-Nearest Neighbors (k-NN), and Support Vector Machine (SVM) methodologies [3].

The remainder of prior work is divided into sections based on primary challenges found in

similar literature. Features and their applications to structural health monitoring and audio

classification are discussed followed by harmonic data smoothing. Spectrogram features as

well as convolutional neural networks are subsequently introduced. Two main subbranches

of convolutional neural networks - event detection and damage identification - are discussed.

Similarity analysis and data clustering sections are introduced. Potential contributions from

this study, addressing unmet research needs, are noted at the end of the chapter.

2.1 Feature Engineering

Unique audio signatures used to classify damaged mechanical states and acoustic events are

not easily generalized or understood across various applications [6]. Simplistic techniques

to isolate noise (waveform data not correlated with damage), including band-pass filtering,

can unintentionally decrease acoustic emission information corresponding to damage [6].

A comprehensive survey for multidisciplinary audio feature extraction and related pro-

cessing is presented in [14]. Dennis (2014) provided a comprehensive overview between

traditional speech recognition literature and environmental sound events including the mo-

tivation behind sound as a 2D data type [11]. Relationships between audio features and

acoustic event detection as well as environmental event classification were further explored

in [11]. Extensive potential parameters exist for audio-based classification and structural
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health monitoring domains; these features often rely on prior assumptions and expert intu-

ition [3, 10,11,14].

An extensive list of audio features for different domain spaces are presented in [14] and

[15]. Features are typically domain dependent [14], [11]; however, similar descriptors exist in

health monitoring, speech processing, and sound event classification fields. Several authors

including [14] discuss data dimensionality reduction with relevance to audial feature vectors.

Manually extracted features are generalized to temporal, statistical, and spectral con-

tent. Specific features includes Mel-frequency cepstral coefficients (MFCCs), zero-crossing

rate, auto-correlation coefficients, energy metrics, as well as spectral characteristics [3, 10].

Spectral shapes are commonly used for describing instrumental sound characteristics includ-

ing spectral skewness and spectral kurtosis as well as amplitude and peak frequency content.

Other temporal features are listed including attack, sustain, and decay for structured audio

content [14].

Most commonly, damage is characterized in the time-frequency domain through spectral

measures captured in Short-Time Fourier Transform (STFT) descriptors [3, 6, 19]. In one

study, structural damage was determined through changing patterns within peak harmonic

content [19]. Higher-order Fourier moments such as spectral skewness and spectral kurtosis

were used in various studies as features in fault classification [4]. Spectral peaks often

contain unique descriptor sets for audio signatures [12]. A list of frequency based features

used in several studies for fault diagnosis were presented in [4]. Temporal-spectral feature

vectors were successfully in conjunction with Deep Neural Networks (DNNs) and SVMs [4].

In one study, frequency based features including spectral kurtosis and cross-correlation

have identified bearing wear using k-NN clustering [3]; these features have additionally

captured faults related to gear-box degradation as well as gear cracking [3].

Ubhayaratne et al. (2017) discussed progressive wear in sheet metal fabrication using

frequency descriptors in audio [8]. Researchers were able to track progressive tooling wear,

citing an unmet research need via adapting acoustic emission. Literature studies vary in

specific frequency and temporal characteristics with regards to progressive tooling wear;
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shifting high or low frequency components that correspond to damage is debated through-

out literature. Acoustic signatures from progressive wear potentially occur at harmonic

ranges not detectable by humans. The author concluded that time-domain features are not

necessarily representative since drastic signal changes are usually coupled with faults, not

progressive wear. Peak amplitudes, peak frequency, root-mean-square were used as damage

identifying features, projected on Hilbert space. The study suggested frequency changes

corresponding with damage were more discernible than features embedded in raw waveform

information alone.

Glowacz (2018) classified three damaged motor states using non-invasive acoustic mea-

surements [20]. The author used absolute difference methods for Fast Fourier Transform

(FFT) estimates between damaged and undamaged states. Peak frequency components

were vectorized and used in an artificial neural network (ANN) classifier. The author noted

the non-invasive procedure could classify damage; however, generalizing results to other

problems would be difficult since spectrum analysis was directly tied to specific motor dy-

namics. Guillen et al. (2018) similarly used features derived from STFT responses to

identify induction motor faults via current responses [21].

Statistical features including kurtosis and skewness were correlated with bearing faults

in one study [22] in addition to crest factor [7]. Skewness, spectral features, and principal

components were used to diagnose faults in rotating machinery [3]. Authors noted signal

correlation analysis could be used to determine damaged and healthy signal states [19].

Certain features are debated in literature for practicality in noisy environments. While

MFCC features are typically used in a variety of sound classification literature, their use-

fulness decreases outside speech processing research [11]. According to [11], Lower-level

descriptors have outperformed MFCCs in sound event classification with high corruptive

noise. Moreover, typical methods such as MFCCs, Hidden Markov Models (HMM), Gabor-

filters, MPEG-7 descriptors have difficulty classifying unstructured, environmental sound

data. The author specifically notes that lower order cepstral coefficients are adversely af-

fected by noisy data.
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Bach et al. suggested that other feature sets, such as amplitude modulation, can out-

perform MFCCs with noise corrupted signals in speech detection [23]. Their work relied on

an SVM trained to recognize speech with corrupting background noise. While the study

was successful in detecting speech in urban environments, the authors cited the need for

generalized features in realistic environments. According to the authors, current data sets

are not necessarily representative of practical, varied noise conditions.

Some limitations exist with manual feature extraction. Firstly, harmonic features are of-

ten predicated on prior knowledge and generalized assumptions for specific problems. Com-

prehensive audial descriptors presented in [14] are sometimes dictated by external factors

such as audio structural composition (periodicity, stationarity) and environmental noise.

Secondly, while statistical and spectral moments, such as crest factor, skewness, and kurto-

sis, have identified machine degradation, variations in specific parameters are intrinsically

tied to non-generalizable systems; induction motor fault dynamics, for example, is funda-

mentally different than gear-wear damage characteristics.

Automatic feature generation can provide more generalizable features at the cost of

practical intuition. According to some authors including [4], manually created feature sets

are somewhat problem specific coupling specificity with expert intuition. Deeper networks

allow richer, more complex relationships between features [4,24]. Moreover, deeper architec-

tures are often robust with respect to noise [4]. Expert crafted features are less generalized

especially in spectral domains [10]. These methods, however, have less physical intuition

[3].

2.2 Spectral Smoothing

Corruptive noise was cited as a primary challenge across domains for acoustic signal classi-

fication. Damage identification, speech recognition, as well as bio-medical signal processing

have used optimal filter design to improve estimation and feature extraction. These studies

discuss improvements to spectral content through auto-regressive smoothing.
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While a detailed description of smoothing filters and their applications are presented in

[25], Savitzky-Golay filters have been used to filter acoustic signals in mechanical damage

applications [26,27]. Savitzky-Golay filtering fits a polynomial, with a specified degree, to a

data series by minimizing mean-squared error [25]. The smoothing technique retains peak

harmonic content as well as high frequency dynamics.

The authors in [28] isolated instances of gear pitting using spectral kurtosis identifica-

tion. Their research demonstrated an optimal denoising filter, applied to signal residuals,

demonstrated improvements to isolating damage instances in high noise and signal inter-

ference conditions. The optimal filtering, through Weiner Filtering, allowed resonant fre-

quencies corresponding to non-stationary signals to be maintained compared to lower order

filtering methods.

Authors in [29] cited the effects from ARMA and associated auto-regressive techniques

on signals corresponding to gear tooth faults. The study demonstrated filtering procedures,

based on auto-regressive and minimum entropy deconvolution metrics, could improve signal

kurtosis in gear tooth signals. The filtering measures augmented gear tooth fault identifi-

cation by retaining impulse Characteristic gear spalling in the spectral domain.

In other domains, spectral smoothing can improve characteristic features. One study

demonstrated that ARMA techniques can be applied to physical data to better estimate

spectral characteristics with noise [30]. The authors noted situations where autoregressive

techniques can be applied such as spectral estimates with definitive peak structure. Other

studies have applied least-squares denoising procedures on noisy ECG signals using spectral

smoothing while retaining relevant peak information [31, 32]. The method has improved

spectral content estimation in noisy, semi-periodic structures [32, 33]; however, spectral

content can be over-smoothed, or under-smoothed, which can change relative peak width

and intensities [33]. Peiyang et al. (2015) outlined regressive techniques employed in EEG

signals [34].

Several auto-regressive methods were introduced to improve speech recognition under

noisy conditions [12,35]. Smoothing spectral responses can improve formant discovery [12].
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An auto-regressive, sliding window approach was introduced to emphasize spectral charac-

teristic peaks [35]. Reducing spectral valleys improved speech representation significantly in

their study. Spectral smoothing has increased format identification in noisy speech signals

[36].

Martin (2001) described noise influence on Power Spectral Density (PSD) for speech

signals [37]. Recursive mean-squared estimation was used to compensate for non-stationary

noise allowing for better representation of speech PSD. The method employed a 256-point

recursive window with smoothing length of 0.2 seconds. The paper discussed some affects

from smoothing spectral content. Frequency peaks are widened altering harmonic structure.

PSD smoothing coupled with a novel algorithm were able to capture weak sounds and

distinguish PSD of non-stationary noise.

Generalized filter strategies, such as auto-regressive models, could benefit feature ex-

traction in noisy environments. These smoothing procedures are employed across various

disciplines to augment and amplify relevant signal characteristics.

2.3 Convolutional Based Spectrogram Approaches

A typical method when applying deep learning methods to acoustic data involves mapping

1D audio waveforms to 2D spectrogram images. Using STFT procedures, overlapping fre-

quency content over short segments of time can estimate temporal-frequency content in

audio data. This data representation can capture evolving harmonic content over time -

often being exploited with convolutionally stacked auto-encoders or convolutional neural

network classification [11].

Dennis (2014) introduces a motivation behind 2D representations of chaotically struc-

tured sounds [11]. One dimensional waveform representations tend to capture less informed

spectral content than 2D images. Audio context is important – both in capturing events with

discrete windowing procedures as well as sound event structure. Fanioudakis and Potamitis

(2017) additionally described sound as a multidimensional data type [38]. Acoustic events
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can be represented as a 2D matrix using a STFT representation or a 3D representation

where colorized pixels describe sound intensity.

Sound events, as defined by [11], encompass sound with definable harmonic content

including spectral edges. An example outlining spectral edges is presented in Figure 2.1.

Due to varied distributed harmonic content in the frequency domain and diffuse noise,

acoustic events demonstrate visual gradients in spectrograms. The mapped data-type al-

lows 2-Dimensional object detection algorithms or other image based learning strategies to

capture spectral characteristics.

Figure 2.1: Example of spectral edge in spectrogram

Similarities and differences between spectrograms and image content are further noted

in [11]. Based on the mixing principal of sound, the highest energy signal is recorded.

Diffuse noise can potentially mask spectral information. This fundamentally differs from

image data. In images, overlapping objects may obscure each other whereas audio sources

are additively mixed. While the author in [11] presents a robust sound event recognition

algorithm based on localized spectrograms features, they admit noise may adversely affect
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sound event detection. Random noise masking can be easily misclassified as a sound event

from similar spectral energies. This may be impossible to avoid in high noise environments

with wide-band energies observed in spectrograms. Moreover, audial objects differ from

image objects since content is frequency invariant (no rotational component). Similar to

images, gradient of pixel transitions in spectrograms are more distinguishable than STFT

data alone (analogous to pixels). Typically, spectrogram classification adapting image pro-

cessing architectures involves normalization. The author in [11] re-scaled spectrograms

intensity to [0, 1] range. The author notes varying color scale can better distinguish events;

color pixel distributions can provide another potential avenue for spectrogram classification.

Temporal frequency content, described by edges in spectrograms can be captured by

complex machine learning architectures such as convolutional neural networks. A convo-

lutional neural network (CNN) can be generally described as a neural network with one

or more hidden, convolutional layers [39, 40]. Analogous to neural network classification,

neurons are initialized with weights and biases and are updated using back-propagation

minimization between an input and target output [40]. However, convolutional layers are

added to map higher dimensional features in input data to fully connected neurons for

classification, regression, etc. The convolutional kernels are learned feature maps, allow-

ing dimensionality reduction of input data through parameter sharing, see Figure 2.2 [41].

Kernel mapping can capture local, spatially invariant characteristics including edges and

textures, relating to global patterns from inputs [39]. Parameter reduction through convo-

lution, stride, and pooling operators are discussed in [39,42]. Further derivations including

back-propagation, stochastic gradient descent, and activation functions are presented in

[39].

Relu layers are often added after convolutional layers in order to increase non-linearities

between input-output mapping [39]. The added non-linear representation better captures

invariant features and characteristic of inputs. ReLu layers, in practice, have outperformed

other non-linear mapping functions by retaining gradients otherwise reduced. An optimizing
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Figure 2.2: Example of convolutional kernel as parameter sharing

method is then used to minimize loss between an input and its target output using back-

propagation, typically using stochastic gradient decent with a small subset of training data

[39]. This technique estimates gradients for parameter updating rather than unstable effects

for gradient updates on single training examples. Parameters are subsequently learned from

input-output mapping directly rather than tuned from expert intuition.

CNNs often contain an immense amount of hyper-parameters required for training;

however, some studies effectively trained spectrogram based CNNs with minimal hyper-

parameters. The authors [9] demonstrated that a CNN could capture distinguishing fea-

tures, despite noise and limited pre-processing. Lee et al. (2016) summarized that a non-

optimal hyper-parameterized network was still valid and could result in high classification

accuracy [9]. Hyper-parameter studies are required for optimal architectures; however, these

studies are not evidently observed throughout literature. One study introduced particle

swarm methods to select architecture and learning parameter [4]. Another study described

12



CNN architecture considerations for audio classification [10]. Hyper-parameters were cho-

sen in one study based on a simple method of convergence speed [43]. Hyper-parameters

are often multivariate and difficult to optimize; [9] lists several studies addressing hyper-

parameter selection.

CNNs are a supervised machine learning method, requiring labelled training data. This

requirement tends to limit implementation since labeled data describing a variety of systems

states often does not exist. Several studies address class imbalances between damaged and

healthy states [3, 4, 4, 24]; not many examples of faults are known [4]. Zhang et al (2012)

describes data-set scarcity for non-structured environmental sounds as well as the associated

cost from procuring labeled data-sets [44]. The authors in [44] subsequently present a

method to augment an existing labeled data-set using a semi-supervised machine learning

method.

While effective for handling complex and locally related input features, Aĺıas (2016) out-

lined several limitations for direct implementations of spectrograms and spectrogram-based

CNN architectures for classifying audio content [14]. Firstly, harmonic content is generally

complex in the frequency axis, often requiring transforms for optimal kernel mapping for

spatially linking useful features. Additionally, deeper architectures have less intuitive un-

derstanding due to high dimensional feature spaces and associated connections. Moreover,

over-fitting with respect to area-specific domains, is a concern. Dropout can provide one

method to limit DNN over-fitting concern [43].

Spectrograms have been used extensively in different domains stemming from two key

areas in relation to this study: event detection and damage classification. Event detection

broadly describes isolating and detecting sound events, including speech, through features

localized in spectrograms. CNN-based damage classification literature incorporates differ-

entiating spectrograms of damaged and healthy system states.
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2.3.1 Event Detection

Many literature studies cite challenges with capturing events in spectrograms through fea-

ture analysis. CNNs, as well as stacked convolutional auto-encoding networks, are com-

monly employed to distinguish definable events, speech, and environmental sounds from

corruptive, non-stationary noise. Acoustic event detection, or classification of spectrogram

elements present in non-speech signals, was outlined in [45] and [11]. The authors in [45]

outlined how relevant features detected in spectrograms using convolutional architectures

could outperform deep non-convolutional architectures.

Binary classification studies between targeted audio events and null events are discussed

in [11]; classification tasks in unlabeled spectrograms are non-trivial. Typically, sound

events are shorter in duration than the recorded waveform. Windowing spectrograms for

potential audio event detection is complicated due to non-optimal window sizes, generalized

for a variety of signal events.

The authors [44] noted higher dimensional CNN and image representations of audio

data outperforms other classification algorithms with high noise content. The authors also

introduced a procedure to divide an arbitrary spectrogram into smaller segmentations for

identifying and classing audio events using CNNs.

Analogously, [46] adopted existing architectures, including AlexNet and GoogleNet, for

classifying audio events in spectrograms as images. The authors demonstrated limitations

behind directly adapting image processing based CNNs. Spectrogram inputs have a rectan-

gular aspect ratio – often significantly different than traditional square CNN inputs. The

authors noted and applied an adaption between rectangular and square input spectrogram-

images. Cross recurrent plots of the audio segments augmented classification and provided

another visualization tool. In summary, Recursive Convolutional Neural Nets (RCNNs)

rejected noise stemming from mixed signal sources – outperforming typically used CNNs

and RNNs.

Compared to speech and music audio classification, certain environmental sounds are
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chaotically structured [11, 44, 46–48] with wider frequency and amplitudes [44]. Environ-

mental sounds are often non-stationary and non-periodic [44, 48]. Complex noise shapes,

non-stationary events, and aperiodic structures are present in speech and environmental

sound literature [44]. Machine learning methods have analogously been used to classify

sounds in these domains [44,49].

One author defines specific structural differences between speech and environmental sig-

nals [11]. Environmental sounds often have a lower signal to noise ratio with uncontrolled

corruptive noise and microphone isolation with respect to target audio. Sound events typ-

ically contain more distinctive spectrogram visualizations than speech based on impulsive

and harmonic content. These advantages can overcome limitations in speech processing

literature using image-like content.

CNN processing environmental sounds was discussed in several papers including [50].

These authors similarly adapted image processing architectures for spectrogram-derived

information. Ozer (2018) noted the lack of prescribed CNN architectures for environmental

sounds – the authors used an initial kernel map of 11x11 for their classification tests [50].

Adapting object recognition CNNs successfully classified environmental audio events [46].

Typical speech processing literature is insufficient to handle more exotic audio struc-

tures [47]. Environmental sounds have particular traits, often exhibiting non-repeatable

phenomes which limits traditional feature generation [48]. A comprehensive taxonomy in

audio features for environmental sounds is presented in [48]. Chachada and Kuo (2014)

discussed discrete, frame-based audio classification where features can be extracted from

windowed audio segments [48]. Since these sounds are arbitrarily time-varying, optimal

windowing is often unfeasible. Gabor filter maps along with feed-forward neural network

architectures successfully classified environmental sound sources.

One study demonstrated spectrogram derived features outperformed traditional MFCC

mappings under windowed audio data [47]. The authors noted numerous potential features

including statistical and spectral domains. Local features, or features in smaller windowed

segments, contained more useful information than global spectral features due to noise and
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temporal characteristics in environmental sounds. The study concluded that spectrograms

retained useful information with minimal pre-processing for environmental sounds. Dis-

cussions concerning spectrogram windowing with higher classification accuracy stemming

primarily from increased frequency resolution. The authors demonstrated that k-NN clus-

tering could successfully classify environmental sound segments.

Specific concerns and justifications for using convolutional neural networks (CNN) in

urban (environmental) sound classification were presented in [51]. The paper introduced a

number of potential decisions and parameters required for spectrogram driven CNN as well

as training data creation. Piczak, the author, briefly discussed the generation of training

data of spectrograms of events; audio data split into overlapping segments could provide

adequate information for training. Frequency invariance was adjusted based on kernel

dimensionality.

Other domains have addressed similar challenges with isolating audio events in noisy

spectrogram signals. Fanioudakis (2017) described challenges when determining bird sounds

in larger spectrograms [38]. Deep neural architectures were used coupling spectrogram rep-

resentations as images and existing image processing architectures (ImageNet, U-net). The

authors rescaled and normalized spectrogram windows to adapt prior architectures. Using a

user-defined dataset, the authors were able to determine binary event/null event within un-

labeled spectrograms. The researchers introduced a novel bounding box validation method

where overlapping bounding box areas to ground truth bounding boxes were compared.

Using algorithms for localization, the authors managed to achieve roughly 67% accuracy

when identifying bird vocalizations in larger spectrograms.

While deep neural network architectures have proven effective in classifying audio con-

tent, future challenges are noted in [11]. Classifying sound event literature often lacks prac-

tical implementation. Unstructured audio environments containing non-stationary noise,

competing audio sources, and unforeseen challenges limit current effectiveness.
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2.3.2 Damage Identification

CNN variants have been used to diagnose fault data in mechanical systems [22, 24, 52].

Both in vibration data, stemming from in-contact sensor placement, and acoustic emission

sources, the studies demonstrate how system characteristics are determined through deep,

convolutional architectures. CNNs with auto-encoding layers detected bearing faults [3, 4].

Lee et al. (2017) described a method of diagnosing semi-conductor process faults [43].

Fault visualization from multivariate sensor data was additionally discussed. The paper cites

successful fault identification using a CNN auto encoder to learn complex representations.

One study mentioned in [4] described a CNN model to classify four rotating machinery

conditions using discrete Fourier transforms from accelerometer signals.

Another study successfully diagnosed rotating machinery faults [24]. The authors de-

scribed limitations in understanding with deep-learning architectures – presenting new

methods for visualizing features. A “t-distributed stochastic neighbor embedding” method

was proposed to understand practical implications behind CNN kernels. Due to convolu-

tional layer mapping from inputs to classifiers, these features are not fully understood. The

spectral content, inherent in learned CNN kernels, tended to contain different frequency

peak information among lower level convolutions.

2.4 Similarity Analysis

Other research domains have addressed challenges in distinguishing audio content between

similar sources. Relevant to progressive damage, similarity metrics between gradually decay-

ing segments are more difficult to capture. Rather than rapid changes in system dynamics

often arising from impulse phenomena generated from catastrophic faults, temporal-feature

relationships are not properly understood. The following studies suggest methods to un-

derstand similarity metrics in audio signatures in biologic and music identification fields.

A novel feature set for clustering non-stationary, frequency dependent signals was pre-

sented in [53]. The authors describe bird call recordings are often corrupted by wind, other
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noise sources, as well as other bird species. The authors present a method to distinguish

similar audio signatures with cross-correlating spectrograms. Singular value decomposition

(SVD) based features were calculated as a metric for similarity and adequate enough for

complex, non-stationary classification. Authors note that spectrogram similarity alone had

a decrease in performance compared to raw data signals. Lower dimensionality feature

vectors from SVD outperformed traditional features including MFCC.

Other methods introduced to visually identify similarities between different audio wave-

forms have been introduced [54, 55]. These works characterized audio segments through

self-similarity analysis. MFCC features were extracted from partial spectrogram segments

from the full-length waveform. Each feature vector from the partial segmentations were

compared to each other segmentation – resulting in a cosine similarity heatmap. The

authors then used the mapping as both a visual tool and similarity comparison between

waveforms.

2.5 Clustering

Unsupervised approaches attempt to group data instances based on inherent patterns. Ex-

tracted features in audio content [56] may naturally cluster based on separability in high

dimensional sub-spaces. Clustering methods, such as K-means, use distance metrics de-

rived between a centroid, or a central region of data, and instances of data [57]. While the

centroid locations are initially randomized, the number of centroids are predetermined.

The K-means clustering algorithm has key fundamental operations: 1) initialize centroid

locations; 2) minimize centroid distances to partitioned data (Equation 2.1); 3) update

centroid locations; and 4) repeat steps 2-3 until solution converges. The centroid-to-data

distance can be defined by various metrics including the cosine similarity - or the angular

distance between vector components, see Equation 2.2 [58, 59]. Using the angular metric

is sometimes referred to as spherical k-means clustering [60]. Spherical clustering distance

metrics are shown to outperform euclidean distances in high dimensional spaces [61]. A
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detailed description of the spherical k-means algorithm is presented in [61].

argmin
xc∈X

D(xi, xc) (2.1)

The angular distance, D(xi, xc), between the feature vector and the iteratively com-

puted centroid clusters describes one minus the angle between the feature vector xi and the

centroid xc. The set of all possible centroids is X. Cluster membership is assigned based on

minimum cluster distance; the entire process can be replicated which removes possibilities

of local minima occurring during minimization [59].

D(xi, xc) = 1− xi · xc′√
(xi · xi′)(xc · xc′)

(2.2)

Certain metrics exist for validating data separability when clustering data with varying

centroid amounts. A silhouette value S(i), represented in Equation 2.3, describes inherent

similarity between observations and their assigned cluster [62]. The variable a(i) is the mean

euclidean distance between observations (i) and an arbitrary cluster. The other variable

b(i) describes the minimum average euclidean distance between observations and all other

clusters. The denominator argument max(ai, bi) describes the silhouette score as a nor-

malized similarity ratio. This score describes a metric to describe the relationship between

cluster assignments as well as neighboring clusters [62]. A higher silhouette score suggests

high similarity, approaching the value one, between observations and cluster assignments.

As the silhouette ratio decreases, observations are equally as likely to be classified in other

cluster assignments. This metric assumes relative spherical and separable clusters.

S(i) =
b(i)− a(i)

max(a(i), b(i))
(2.3)

Another metric used to determine optimal centroid (k) amounts involves computing the

sum of squared error (SSE) between observation to centroid distances [63, 64]. The SSE
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metric, outlined in Equation 2.4, estimates an optimal centroid determination by measuring

differences in error between observations (x) in a cluster (k) and the centroid (ỹk). The

variable n describes the total number of centroids. Typically referred to as an ’elbow curve’

or the ’elbow method,’ the cluster tightness (SSEk) rate decreases as more centroids are

introduced for k-means clustering. A threshold for the SSE rate, indicated by a relative

plateau in error reduction while more centroids are added, is noted as possible optimal

k-centroid selection.

SSEn =
∑
k

∑
x∈k
||x− ỹk||2, k = 1, 2, 3..., n (2.4)

Bach et al. (2009) demonstrated that clustering algorithms could be applied to au-

dio source separation problems [65]. The authors used a similarity matrix as a metric to

define separability in speech sources within spectrograms. Spectral mixing problems can

be addressed by clustering algorithms, however, the authors proposed a spectral clustering

method can outperform, linear and separable k-means clustering approaches.

Autonomous classification of audio events using neural network architectures was also

studied in [56]. While the published results are preliminary, a proposed audio source sepa-

ration procedure using a combination of a deep network architecture and k-means clustering

was employed. The study documents how unsupervised spectrogram features could be ex-

tracted from an encoding layer in a deep auto-encoder network and clustered to determine

different audio sources. The two-fold approach suggested extracted spectrogram features

allowed for separable classification.

There are limitations associated with clustering methods. Clustering procedures often

lack physical intuition [3] partially do to high dimensional feature spaces. While generally

regarded as an unsupervised classification method, clustering procedures often require priori

assumptions for healthy and damaged states as well as labeled validation data.
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2.6 Research Contribution

Overall, a general survey of prior work indicated that deep neural networks, particularly

CNN variants, are viable and effective for segmenting acoustic signals. Furthermore, stud-

ies indicate that extracted features, present in both spectrogram and unmapped signal

domains, contain viable information relevant for audio classification; however, the use of

such approaches for remote health monitoring, particularly with respect to unsupervised

learning approaches, is currently emerging in literature.

In this work, a semi-supervised analysis of robotic actuation signatures from acoustic

recordings is presented. A two-fold methodology attempts to segment acoustic charac-

teristics attributed to motion for eventual progressive damage identification and analysis

in noisy, industrial environments. Convolutional neural networks are combined with un-

supervised similarity analysis to quantify instances of robotic motions embedded within

recordings of a manufacturing facility. The method attempts to capture deviations in sys-

tem behaviour potentially relating to progressive, mechanical degradation. To develop and

evaluate this methodology, recordings from a SCARA-series (Selective Compliance Assem-

bly Robot Arm) (Figure 1.1) were leveraged for network training and testing, as well as for

assessment of subsequent similarity analysis. These robots are widely used in electronics

manufacturing for tasks such as material transitioning [1].

The study is organized into the following chapters: preliminary findings; an outlined

methodology including data-set development; testing and validation of the proposed method-

ology; a discussion of results; and potential motivations for future work.
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Chapter 3: Preliminary Findings

The behavior of the SCARA-series robot was used as a basis for evaluating a remote moni-

toring methodology. As previously mentioned, primary SCARA actuations can be general-

ized as a series of movements in Cartesian coordinates, as depicted in Figure 1.1. Limited

acoustic emission and associated operator intuition of z-axis motion acoustics limited the

study’s scope to discern y- and x- axis actuations. Primary motions are further divided into

subclasses based on various actuations along the same axis of travel. For example, base

robot motion from location(s) A to B, A to C, and B to A would represent three distinct

subclasses for a single primary class.

Visual analysis of primary actuation spectrograms describe uniqueness present in har-

monic content. This suggests that each signature may be potentially distinguishable through

supervised machine learning, however, occur at different frequency ranges and different vari-

ations in power. For instance, y-axis motions are visually observable in a band ranging from

0-20 kHz, see Figure 3.1a, while x-axis motions are observable from 23-24 kHz, see Figure

3.1b.

Analogous to the methodology described in proceeding sections, recordings were made of

various a SCARA actuations, in situ, in a physical manufacturing bay. The manufacturing

bay contained a single SCARA-type tool. Each motion class had a duration of approx-

imately one second; however, the exact number of secondary actuation classes were not

known. As a result, it was impractical to attempt to classify them through a supervised

machine learning approach, given the lack of relevant labeled training data. The ability

to distinguish these secondary classes through feature-space analysis of segmentations is

presented later.

Simplistic techniques to isolate noise and actuation characteristic information through

filtering was omitted. Based on possibility of unintentionally decreasing relevant acoustic

22



(a) Y-axis actuation spectrogram (b) X-axis actuation spectrogram

Figure 3.1: Actuation spectrogram examples

emission [6] and inability to correct for wide-spectrum environmental noise in preliminary

experiments, no pre-processing steps were applied to acoustic signal waveforms. Further-

more, extensive signal filtering would bias resulting approaches to the specific data-set rather

than a generalized methodology.

Preliminary work was conducted to investigate classification of primary SCARA motions

through artificial neural network (ANN) models. Analogous to the procedures outlined in

later chapters, segmented training data consisting of primary SCARA motions was labelled

and inputted to varying ANN architectures. Two architectures were evaluated: a shallow

network consisting of a single hidden layer (Figure 3.2a) and a deeper network comprised of

three hidden layers (Figure 3.2b). The duration of primary actuations (∼ 1 second) and the

sampling frequency necessary to capture x-axis motions (48 kHz) lead to network inputs of

49153 amplitude values, impractical for such shallow ANN models. The input dimension

was subsequently reduced through engineered feature extraction. Analogous to subsequent

evaluations, 10% of the training data was withheld for validation.

Training and testing data was created correlating robotic motion with aligned video

recordings and spectrogram visualizations of corresponding audio waveforms. Only primary

motions were obtainable in scale where identifiable visual features in spectrograms, along
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with operator authentication of associated features, were used as the basis of training data.

A smaller subset of labeled subclass validation data, analogously created using aligned video

and audio waveforms, was used for secondary analysis presented in subsequent sections.

A final training set of 692 audio recordings for each x-axis, y-axis, and noise instances

were collected, with a waveform length of 49153 points. A validation set (10% of withheld

training data) consisting of 77 segmentations in each class were used. To reduce potential

overfitting from class size imbalances, motion classes were capped to the minimum number

of segmentations recorded (y-axis motion) and sampled without replacement to reach the

identical size. The process is analogously discussed in the subsequent chapters.

(a) Shallow ANN architecture (b) Deeper ANN architecture

Figure 3.2: Neural Network Architecture Classification Preliminary Attempts

A shallow network consisting of a single hidden layer (3.2a) and a deeper network com-

prised of multiple hidden layers (3.2b) was used for analysis. Fifteen neurons were used in
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(a) Shallow architecture confusion ma-
trix (1 hidden layer)

(b) Deeper architecture confusion ma-
trix (3 hidden layers)

Figure 3.3: Confusion matrices for shallow/deep network classification

the initial neural network models which corresponded to an analogous number of input fea-

tures. A confusion matrix was derived between predicted and classified primary actuation

classes, depicted in Figure 3.3.

Lower energy actuations (x-axis) were consistently confused with noise states, see Fig-

ure 3.3a. Even with more dense architectures, the result was furthered with only a slight

improvement possibly indicating overfitting rather than increased classification accuracy.

These tests suggested a more sophisticated architecture was required due to complex re-

lationships present in actuation signals and drastic variations between harmonic content.

2D Convolutional architectures were subsequently adopted as a basis for classification as

demonstrated in subsequent sections.

25



Chapter 4: Methodology

A semi-supervised data analysis approach is developed to extract and classify acoustic

signatures from a SCARA system. A dbx RTA-M microphone captured audio process

data in a manufacturing bay containing a single SCARA-type robotic tool. Four-minute

unlabeled, audio recordings containing SCARA actions spanning various semiconductor

manufacturing processes are captured and used for all training data. An eleven-minute

audio recording, aligned with corresponding video data, is used as final validation data

since ground-truth labels are established based on operator authentication.

A convolutional neural network is designed and trained to perform initial segmenta-

tion of primary motion classes from an unlabeled spectrogram. Using normalized image-

like spectrograms, see Figure 3.1, y-axis, x-axis, and noise actuation signatures are used

for initial segmentation. However, due to limited available labels for subclasses, training

data could only be divided into primary groups due to CNN’s requiring large data-sets

for learning relavant features. Since the actuation signatures share visually similar fea-

tures in primary actuations, a methodology to create spectrogram-based training data for

course segmentation is presented. The visual information present in spectrograms may al-

low complex, contextual harmonic features to be learned, more robustly against corrupting,

non-stationary environmental noise for initial segmentation tests.

Due to the lack of subclass actuation data labels, subsequent unsupervised analysis at-

tempts to group segmentation results into known subclasses from a smaller, ground truth

dataset. Temporal, statistical, and spectral features, based on damage and audio classifica-

tion literature are extracted from each primary segmentation. These features are normalized

allowing for a standardized comparison due to different scales present. Principal component

analysis subsequently reduces dimensionality for maximum variances inherent in derived

feature sets. K-means clustering then separates primary robotic motions into a specified
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number of clusters. SSE, silhouette, and visual observations are determined for a clustering

validation metric. Cosine similarity analysis analogously attempts to find patterns between

segmentations allowing for an alternative visualization of subclass similarity.

4.1 Dataset Development

Rather than direct analysis of the time-series waveforms, audio signals were transformed

into spectrograms and treated as pseudo-images. Normalized spectrogram intensities at

specific time-frequency locations allowed for an analog to pixel representations in an image.

This image-like data format enabled representation of events with a diverse range of spatial

features, such as harmonic edges (see crest features in 3.1a).

A training data-set was created using collected audio recordings in conjunction with

operator authentication. Fixed signal length spectrograms were labeled as x-axis, y-axis,

and idle/noise motions as depicted in Figure 3.1. Indicators for each motion class, based

on visual observation, guided training spectrogram derivation. Events containing neither

visual indicator are designated as noise.

As previously stated, data-set creation for SCARA acoustic data held certain limitations.

While recordings were assumed to span all potential subclasses, subclass imbalances present

in each primary motion were possible. Second, visual indicators of lower energy motions

(z-axis) were not observable in spectrogram representations and were therefore omitted in

the training set. Lastly, ground truth data for motion subclasses was not readily available

for fine-grained, CNN training segmentations.

Spectrograms were generated using a Blackman-Harris window of 4096 waveform data

points, overlap of 2048 data points, and 8096 Discrete Fourier Transform (DFT) points.

Input spectrograms were fixed with 4097 (height) x 25 (width) dimensions, with regards

to the resulting binned spectrogram intensities. These dimensions stemmed from under-

standing of the smallest known event size (1.1 seconds). Due to the fixed length of the

spectrogram input and variability between subclass y-axis motion duration, some training

examples were unintentionally split into overlapping sections. While introducing redundant
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information potentially biases network training by overfitting, several other benefits may

be introduced. The variation in training set may outweigh bias introduced in redundant

overlapping sections, as mentioned in [51]. Moreover, the CNN will realistically encounter

similar, partially obscured spectrograms during segmentation in operation.

The final training set consisted of 1360, 769, 1181 training examples of noise, y-axis,

and x-axis motions, respectively. Training example sizes were kept constant. For example,

training a 3-class classifier CNN between y-axis, x-axis, and noise used 769 examples as the

maximum training set size; the other classes were randomly sampled, without replacement,

to match the minimum training set amount. Keeping the training data count consistent

further prevented overfitting bias. A smaller dataset containing labeled motion subclasses

was used to evaluate the unsupervised similarity aspect of the overall approach. This

video aligned data consisted of 78 y-axis motions and 194 x-axis motions. Y-axis actuation

subclasses with labels 1(a), 1(b), 2, 3(a), 3(b), 4, and 5 had the following quantities of 19,

10, 10, 21, 7, and 6, respectively. X-axis actuation subclasses with labels 1, 2, 3, 4, 5, 6, 7,

and 8 had the following quantities of 49, 49, 19, 19, 21, 21, 8, and 8, respectively.

Spectrogram normalization was first used to limit spectrogram variability. Across 3000+

test spectrograms, minimum and maximum temporal-frequency bins values were calculated

and used as boundaries. All training and test spectrogram intensities were subsequently

re-scaled from a minimum bound of -14.68 and maximum bound of 5.89 to values between 0

– 255, making the spectrograms a more image-like data type and enabling a wider range of

network activation functions. A similar mapping procedure was successfully implemented

in [11].

4.2 Supervised Actuation Detection

To the authors’ knowledge no established CNN architecture exists for spectrogram train-

ing as reaffirmed in previously mentioned studies. Moreover, due to domain-specific re-

quirements, other spectrogram specific architectures were unsuitable for direct application.

Due to the high resolution and frequency dependent spacing in training spectrograms, an
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empirical study was conducted to evaluate general trends among candidate CNN archi-

tectures. A hyperparameter sensitivity study addressing convolutional kernel dimensions

was performed; however, an exhaustive parameter search for an optimal architecture was

considered outside the scope of the current work and requires future study.

Three architectures were used to understand whether varying convolutional kernel di-

mensions had measurable impacts on primary spectrogram segmentation. The architectures

chosen were primarily based on similar construction including hidden layer dimensions and

kernel sizes; however, a comprehensive parameter study for determining optimal CNN archi-

tecture sizes were considered outside the scope of the current work and requires future study.

Specifically, general trends in symmetric and asymmetric filter sizes for highly rectangular

spectrograms were explored. Padding, kernel, and layer dimensions were determined based

on reducing dimensionality to a minimized, 1-D, fully connected softmax layer. Each archi-

tecture was of comprised of six hidden, convolutional layers. While literature studies vary

on optimal network size using CNNs for spectrogram analysis, 4-6 stacked hidden layers

were common in spectrogram based classification exampled in [66–71].

Network parameters held constant after empirical evaluation are listed here. The train-

ing rate for stochastic gradient descent with momentum (SGDM) was held to 0.001. The

maximum epoch number was held at 1000 while minibatch size was kept constant at 64

samples. Max pooling layers were intentionally omitted with all tested architectures. While

the down-sampling procedure provided feature translational invariance, the reduction in pa-

rameters also decreased the potentially learn-able feature space and degraded performance.

These behaviors were discussed in [72–75]. To reduce the computation time of segmenta-

tion, a stride corresponding to 5 temporal-frequency bins, or 0.264 seconds, was specified.

While a CNN may benefit from over-fitting prevention, such as dropout, these steps were

omitted for simplicity; as stated in the future work section, such augmentations require a

separate and thorough study.The complete list of CNN parameters is presented in Tables

4.1,4.2, and 4.3. An illustration of an example architecture (Architecture #3) is provided

in Figure 4.1.
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Figure 4.1: Example of CNN convolutional layers in architecture (#3). Generated using
the resource presented in [2]

4.2.1 Architecture #1

The first tested architecture was based on CNNs developed for image processing, with

square kernels applied to the asymmetric spectrogram inputs [38,46]. Smaller initial kernel

sizes (5x5) were used to understand the effects of rectangular kernel dimensions. While

smaller than ImageNet (11x11) and GoogleNet (7x7) first layer kernel dimensions [76],

the architecture was generally representative of smaller, local features embedded in the

spectrogram’s time-spectral relationship.

4.2.2 Architecture #2

For the second architecture, a 9x7 input kernel was chosen due to the minimum spacing

between features in an observed “cupping” phenomena present in x-axis motions (Figure

3.1b). This was considered the smallest asymmetric kernel dimension to completely capture

the visual signature in training data.

30



Table 4.1: CNN Architecture # 1

Layer Type Dimension Depth Stride (h,w) Padding (h,w)

1 Input 4097x25 - - -

2 Conv 5x5 50 [3,1] [4,2]

3 ReLU - - - -

4 Conv 5x5 50 [2,1] [3,1]

5 ReLU - - - -

6 Conv 5x5 50 [2,2] [2,1]

7 ReLU - - - -

8 Conv 5x5 75 [3,2] [1,1]

9 ReLU - - - -

10 Conv 3x3 100 [3,2] [0,0]

11 ReLU - - - -

12 Conv 3x3 100 [1,1] [0,0]

13 ReLU - - - -

14 Fully Connected - - - -

15 Softmax - - - -

16 Classification - - - -

4.2.3 Architecture #3

This architecture demonstrates the highest asymmetry tested. An initial 25x5 kernel di-

mension with large vertical strides attempted to capture more frequency dependence among

temporal-frequency bins. However, the horizontal component of kernel filters should capture

some temporal harmonic content.

In order to evaluate effectiveness of each architecture and potential bias to underlying

testing and training data, k-fold validation is conducted. Five partitions of data are used,

where four groups are used for CNN training and one group is withheld for evaluation.

These five groups consist of 153 samples for each class (totalling 459) randomly sampled

without replacement from 765 samples of the initial dataset. This process is repeated five

times, for each architecture, so that sensitivity to underlying data can be estimated [77].

Averaging correct and incorrect classifications between noise, y-axis, and x-axis motions

can better indicate architecture performance for comparison.
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Table 4.2: CNN Architecture # 2

Layer Type Dimension Depth Stride (h,w) Padding (h,w)

1 Input 4097x25 - - -

2 Conv 11x9 50 [2,1] [3,4]

3 ReLU - - - -

4 Conv 9x7 50 [2,1] [1,3]

5 ReLU - - - -

6 Conv 7x5 50 [2,2] [1,2]

7 ReLU - - - -

8 Conv 5x3 75 [2,2] [0,1]

9 ReLU - - - -

10 Conv 3x3 100 [2,3] [1,1]

11 ReLU - - - -

12 Conv 3x3 100 [2,3] [0,0]

13 ReLU - - - -

14 Fully Connected - - - -

15 Softmax - - - -

16 Classification - - - -

4.2.4 Segmentation and Validation

Once trained, the CNN would be tested on withheld training data and finally on the afore-

mentioned ground-truth, labelled spectrogram. To match training data normalization, the

new spectrogram data would be normalized similarly to training spectrograms. The highest

outputted softmax probability of the softmax network layer provided the basis for classifi-

cation.

Overlapping segmentations shared between classes would become potentially problem-

atic. To handle class bounding box overlap between x- and y- actuations, any overlapping

boundary times were averaged. While a simplified approach, the method allowed for a

separation of independent segmentations. Other bounding box methods such as fuzzy clas-

sification are possible and are a potential avenue for future work. An empirical classification

method based on bounding box area, analogous to the methodology presented in [38], was

used for validation. The architecture(s) with the highest empirical classification accuracy
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Table 4.3: CNN Architecture # 3

Layer Type Dimension Depth Stride (h,w) Padding (h,w)

1 Input 4097x25 - - -

2 Conv 25x5 50 [2,1] [4,2]

3 ReLU - - - -

4 Conv 15x3 50 [2,1] [3,1]

5 ReLU - - - -

6 Conv 5x3 50 [2,2] [2,1]

7 ReLU - - - -

8 Conv 3x3 75 [2,2] [1,1]

9 ReLU - - - -

10 Conv 3x3 100 [3,2] [0,0]

11 ReLU - - - -

12 Conv 3x3 100 [2,1] [0,0]

13 ReLU - - - -

14 Fully Connected - - - -

15 Softmax - - - -

16 Classification - - - -

would be used for remaining unsupervised analysis.

4.3 Unsupervised Analysis

4.3.1 Feature Engineering

Once segmented into primary motion classes via CNN, the corresponding audio waveforms

are further discriminated through unsupervised analysis via feature extraction. Derived

from corresponding audio waveforms with varying lengths, features are calculated from

time, statistical, and spectral domains. These features include peak amplitude, average

amplitude, mean square, root-mean square, zero-crossing rate, variance, standard deviation,

kurtosis, crest factor, skewness, and k-factor. The feature list is presented in Table 4.4 while

equations are displayed in Table A.1 in the Appendix.

Frequency data between 4 kHz – 24 kHz was empirically known to contain the most

useful discriminating, harmonic information between actuations based on operator intuition;
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however, comparing peak frequency content became immediately problematic due to motion

complexity and diffuse noise concerns. As shown in Figure 4.2a, relevant peak finding

in the presence of wideband noise is almost impossible due to the variation in spectral

content between subclass samples. While optimal filtering techniques would require further,

comprehensive study, a widely adopted acoustic smoothing technique was implemented

[26, 27]. Savitzky-Golay filtering [25], with a 3rd order model and 101 regressive points,

was used to filter spectral content. While not considered an optimal filtering strategy, the

general implementation of spectral smoothing yielded improvements to understanding and

estimating actuation spectral content, as shown in Figure 4.3.

Peak estimates were difficult to directly compare due to spectral distribution even after

filtering. As shown in Figure 4.3, even smoothed frequency responses demonstrated visual

indicators with differing peak content including peak locations, magnitudes, width, promi-

nence and quantity. Typical peak finding procedures were insufficient to capture seemingly

discriminate frequency content through energy signatures. After numerous attempts, peak

amplitude(s) features were intentionally omitted. Spectral moments were subsequently used

as a metric for evaluation and considered more robust despite corruptive noise. Analogous

to the statistical features from the time domain response, kurtosis, crest factor, k-factor,

and skewness were applied on the FFT response data between 4 kHz – 24 kHz. These new

features described statistical moments in the spectral domain. The procedure demonstrated

filtered spectral statistics could retain observable, discriminating information between sub-

classes, as presented in Figure 4.4. A final concatenated feature set is shown in Table

4.4.

These feature sets were normalized, using max-min normalization, to remove potential

bias arising from features with varying scales in subsequent analysis [78,79]. Principal com-

ponents were computed to find features of maximum variance for clustering and similarity

analysis. Principal components were chosen to represent at least 95% of the variability

present in the feature set. The equation for calculating the required principal component

number is presented in equation 4.1. Sigma σi represents a principal component while N
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Table 4.4: Unsupervised Features

Temporal & Statistical Features Spectral (FFT) Features

Kurtosis Kurtosis

Skewness Skewness

Crest Factor Crest Factor

K-Factor K-Factor

Mean -

Variance -

Standard Deviation -

Mean Square -

RMS -

Peak Amplitude -

Zero-crossing rate -

represents a predetermined, satisfactory threshold.

Nthreshold =
Σk
i=1σi

Σn
i=1σi

(4.1)

4.3.2 Similarity and Clustering Analysis

After feature extraction, unsupervised methods are evaluated for assessing similarity be-

tween segmented subclasses. Cosine similarity, or the inner product between subclass fea-

ture spaces, is calculated and compared against known subclasses. Seven y-axis and eight

x-axis actuation subclasses were observed in the labelled ground-truth data-set. Calculat-

ing similarity metrics between each segmentation is presented in Equation 2. Theta, θσi,σj ,

describes the angle between feature space vectors from segmentations i and j, respectively.

Plotting these cosine-similarities allow for a heat-map visualization between feature vectors

from each segmentation.

θσi,σj = arccos(
σi · σj
||σi|| ||σj ||

) (4.2)
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(a) FFT Response (class 1(a))
(b) FFT Response - Spectral Distribution
(class 1(a))

Figure 4.2: Frequency Response and Spectral Distribution (No Smoothing)

Principal component plots are used as a visualization tool to assess the validity of cluster-

ing results. K-means clustering was used to further delineate primary motion segmentations

based on the extracted feature set. While other works discuss the k-means algorithm in

depth [80–82], the clustering procedure attempts to minimize distances between translatable

centroid locations for a set of feature vectors describing actuation subclasses. This distance

is computed as an angular distance between actuation feature vectors from Equation 2.2.

Minimizing the distances between centroid(s) and features from actuations determines clus-

ter membership to each feature-set. SSE and silhouette graphs assess clustering validity.
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(a) Class 1(a) Filtered Spec-
tral Response

(b) Class 2 Filtered Spectral
Response

(c) Class 3(a) Filtered Spec-
tral Response

(d) Class 3(b) Filtered Spec-
tral Response

(e) Class 4 Filtered Spectral
Response

(f) Class 5 Filtered Spectral
Response

Figure 4.3: FFT and associated spectral responses for y-axis subclasses

(a) Class 1(a) Spectral Distribution (b) Class 1(b) Spectral Distribution

Figure 4.4: Spectral distribution comparison between y-axis subclass 1(a) and 1(b)
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Chapter 5: Results

5.1 Supervised Classification

To test effectiveness of each architecture, k-fold cross validation was performed with five

partitions of 153 samples per class. These results were averaged and displayed in Figure

5.1. Notably, architectures had nearly identical performance with high classification be-

tween all actuation groups. This result could suggest over-fitting bias from limited feature

variability within training examples. While additive noise within training classes provided

some temporal-frequency variability, limited spatial variance from spatial edges may have

unintentionally biased architecture performance. This result, however, indicates that the

architectures were not sensitive to withheld training set groups.

(a) Architecture #1 (b) Architecture #2 (c) Architecture #3

Figure 5.1: Validation of Architectures - k-fold Cross Validation

Due to the sliding window nature of the spectrogram inputs, a classification accuracy

metric based on bounding box area was employed, based on the work in [38]. Overlapping

false-positive and false-negative areas were calculated from differences between labeled ac-

tuation locations in a validation spectrogram and CNN classification results. Waveform
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segments shared by known actuation duration and classification were recorded as overlap-

ping area percentage. Actuation data not captured by classification resulted in a false-

negative area percentage. Audio segments incorrectly classified as actuations resulted in a

false-positive area percentage. The results from each architecture was presented in Tables

5.1 and 5.2.

Table 5.1: Validation on Ground Truth Spectrogram (y)

Architecture Overlapping Area False Positive Area False Negative Area

1 67.8% 1.4% 6.4%

2 55.3% 2.5% 8.7%

3 87.1% 1.2% 2.6%

Table 5.2: Validation on Ground Truth Spectrogram (x)

Architecture Overlapping Area False Positive Area False Negative Area

1 67.3% 12.0% 12.3%

2 91.4% 20.2% 3.5%

3 84.2% 14.6% 6.3%

Tables 5.1 and 5.2 highlight architecture differences discerning x-axis and y-axis mo-

tions. Architecture #3 demonstrated the highest overlapping area percentage in y-axis

classification, while architecture #2 had the lowest classification accuracy for y-axis mo-

tions. Architecture #2 falsely classified 8.7% percent of spectrogram data as y-axis motions

while missing nearly 45% of known actuation duration. Architecture #3 additionally held

the lowest false positive and false negative area during y-axis classification. Architecture #1

did not outperform other architectures. Results for x-axis motions differed. While architec-

ture #1 was still clearly inferior, architecture #2 showed the highest accuracy in capturing

x-axis actuations. However, the increase in accuracy was accompanied by the highest false
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positive rate.

The results suggest that classification accuracy is somewhat dependent on kernel dimen-

sions. Highly asymmetric spectrogram input kernels demonstrated the best compromise in

accuracy for y and x-axis classification. The result in Table 5.1 suggests that harmonic

complexity in y-axis motions was better captured with skewed kernels with dominating

frequency content. Smaller kernel dimensions demonstrated a lower classification accuracy

with respect to discriminating known y-axis actuations. However, this trend is not followed

with x-axis actuations - harmonic content may be captured with smaller kernel dimensions.

Figure 5.2 describes the difficulty in delineating feature edges with bounding box meth-

ods. While the method cleanly identified 87.1% of y-axis motions (architecture #3), y-axis

segmentations corrupted by noise artifacts degraded classification accuracy, particularly

near the boundaries of actuation transitions otherwise described as between manipulator

movement and idle states.

Figure 5.2: Poor classification around actuation transitions with wideband noise
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The trained CNN architectures had difficulty distinguishing differences between x-axis

motions from y-axis motions, especially during event transitions. This may be due to

several phenomena including the similar feature-space stemming from both events. This

may have led to segmentation bias during y-x transitions; spectrograms with overlapping x/y

transitions were biased towards probability of y-axis motions (architecture #3) or towards x-

axis motions (architecture #2). Sharp, wideband noise arising from neighboring mechanical

phenomena during production processes, often seen as spikes in spectrograms (see 5.3) were

captured in both x- and y-axis segmentations. These artifacts were observed to influence

classification including false positive percentages in each segmentation.

Figure 5.3: Wideband noise effects on x-axis classification accuracy

The results suggest a supervised approach to actuation classification from acoustic sig-

nals is feasible, given sufficient training data and accounting for the necessary asymmetry
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of the convolutional layers. subclass actuations, comprising each course training set, should

additionally contain similar spectrogram features, such as spectral edges, for a generalized

parent class. Moreover, these primary class features should be distinctive for multi-class

classification, i.e. y-axis motions should be harmonically distinct to x-axis motions as well

as noise. These assumptions demonstrated relative segmentation success in course labeled

actuation data.

An exhaustive hyper-parameter search to determine optimal convolutional kernels and

network topology would increase classification accuracy. Unforeseen noise artifacts and

other factors not experienced in the CNN training set may have additionally contributed to

an architecture not fully representative of SCARA subclasses. Furthermore, deficiencies in

subclass quantities may have unintentionally biased accuracy towards dominant sub-groups

in training data.

Due to its more consistent performance, CNN architecture #3 was used for the analysis

of the unsupervised methodology. The trade-off in x-axis classification overlap was accept-

able given the higher y-axis classification accuracy along with lower false positive and false

negative percentages among certain classification tests.

5.2 Unsupervised Clustering

5.2.1 Y-axis Similarity Analysis

Cosine similarity analysis was conducted between each segmentation for y-axis motions,

illustrated as a heat-map visualization of similarity in Figure 5.4. A numeric score of zero

indicates perfect similarity, exampled by the shaded blue region, describing a segmenta-

tion’s similarity with itself. As dissimilarity between segmentations increases, the numeric

similarity score increases towards an increasing red-shaded region.

An evaluation of this similarity yields several insights. Actuation subclasses 1(a) and

1(b) are mechanically similar and consequently share high similarity scores. These sub-

classes are additionally dissimilar to nearly all other actuation groups. Actuation subclass
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2 is relatively similar to other motions in its category; however, it shares some similar-

ity with subclass 4. Subclass actuation 5 is distinctly dissimilar from the other actuation

subclasses. Subclass 3(a) and 3(b) are not clearly distinguished through cosine similarity

despite having mechanically similar operation. Notably, several outliers are present in each

subclass, potentially due to incorrect segmentations or noise-corrupted results.

Figure 5.4: Y-axis cosine similarity

Figure 5.4 illustrates several notable trends within SCARA audio data. Firstly, some

classes are relatively inseparable, such as groups 1(a) and 1(b), possibly indicating applied

featureset may not fully distinguish differences between each class. Slight variations in
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manipulator travel corresponding to separate sub-processes, labelled by manufacturing op-

erators, may not have distinguishing characteristics warranting sub-process classification

with given features. This result suggests that user-labels corresponding to sub-processes

are coupled with feature fidelity (either manual or automatic); less noise with more distin-

guishing features allows more narrow classification between primary classes.

5.2.2 Y-axis Clustering Analysis

After similarity analysis, k-means clustering was employed to autonomously separate pri-

mary classes. Principal component analysis was conducted on normalized segmentation

features before applying k-means clustering. Six principal components comprised 96.2%

variability in the feature set. The first and second principal components were subsequently

plotted with respect to their corresponding subclass labels in Figure 5.5. A secondary vi-

sualization adding the 3rd principal component is displayed in Figure 5.6. These results

would be additionally compared to the heat-map presented in Figure 5.4.

From initial visual inspection, certain groups were naturally clustered with their re-

spective segmentation labels as described in Figure 5.5. Firstly, actuations 1(a) and 1(b)

shared a similar, inherent cluster. Occupying the rightmost portion of the principal com-

ponent graph, the cluster demonstrated some level of separateness with class 1(a) holding

a slightly higher 2nd principal component score than class 1(b). Classes accounting for

mechanically similar operation may therefore have a characteristic feature set; while some

observable separability was shown, further refinement in features may increase sparsity be-

tween subclasses. Actuation 5 was observably separable from other subclasses. Exampled

by its relative cluster location, its principal components tended to cluster at bounds from

subclasses 1-4. Other subclasses such as 2, 3(a), and 4 share less definable feature spaces

primariyl stemming from variablity in class 3(b).

Figures 5.6a and 5.6b show an alternative, 3-Dimensional representation to Figure 5.5.

These plots depict a 3D scatter plot, with the 3rd highest principal component, added for

spatial depth. Colored polyhedrons are bounded at vertices corresponding to the motion
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Figure 5.5: Y-axis principal component scatter plot (2D)

sub-classes. Polyhedron face colors additionally match sub-class marker colors pertaining

to motion labels. Figures 5.6a and 5.6b are identical, however, offer rotated perspectives.

Subclass 3(a) has the highest observable feature space variance; other sub-class motion

relationships may be potentially obscured. To demonstrate this effect, Figures 5.7a and 5.7b

describe identical visualizations omitting the 3(a) class polyhedron region. Immediately,

sub-class regions are better isolated from other groups. While regions containing 3(a),

1(a)/1(b), 2/4, and 5 are better distinguished without the 3(a) boundary, classes 2 and 4

remain visually coupled.

Figures 5.8, 5.6, and 5.10 illustrate k-means clustering attempts versus known labels
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using varied centroid quantities. While perfectly separated clusters were not observed in 3-

centroid or 7-centroid k-means attempts, certain trends became evident. Firstly, actuations

1(a) and 1(b) shared a dominant cluster with a few outliers contributed from class 3(a)

in 3-centroid clustering, as depicted in Figure 5.8. A second cluster primarily grouped

subclass actuations 2-5 while a third cluster captured actuations sparsely populating the

highest, 2nd principal component ranges. These actuation feature vectors, clustered in the

3rd cluster, may have contributed to potential outliers from improper segmentation as well

as corruptive noise.

A 3D visualization of clustering assignments with three centroids, expanding on Figure

5.8, is portrayed in Figures 5.9a and 5.9b with rotated perspectives. Cluster assignments are

outlined by the colored polyhedron regions, while the ground-truth labels for each subclass

are indicated by marker color and style. These figures further demonstrate that outliers and

variability in groups 3(a) and 3(b) influenced cluster assignment as visually demonstrated

by black and red-shaded polyhedrons.

Increasing the centroid quantity to the number of known actuation subclasses (7), did not

visually yield improvements, as shown in Figure 5.10. For visual clarity, 3D visualizations

were omitted. By introducing more centroids, subclasses became over-segmented rather

than identifying more secondary motions; however, some results matched three-centroid

k-means results. The majority of subclasses 1(a) and 1(b) remained classified as a single

grouping. Moreover, a centroid observably tended to group subclass 5, with additional

outliers from other subclasses. Another cluster, noted by the black marker color, visually

grouped feature space outliers from other motions. The cluster suggests that these points

may have negatively affected clustering accuracy at lower centroid designation due to their

spatial differences from other classes.

Clustering validations for y-axis subclasses are presented in SSE and silhouette score

graphs, presented in Figures 5.11 and 5.12. The SSE rate observably decreases after four

centroids are introduced, as depicted in Figure 5.11. This trend somewhat mimics the

highest silhouette scores between two, three, and four centroids, shown in Figure 5.12. The
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highest silhouette score is 0.6 which corresponds with two centroids. This result suggests

that two clusters contain the highest similarity within observations in their respective cluster

and could be optimal ’k’ designation.

The silhouette score reflects visual observations in principal component plots, such as in

Figures 5.9a and 5.9b. Two dominant clusters are seemingly formed: a cluster incorporating

subclass 1(a) and 1(b) and a cluster incorporating other subclasses. Potential feature space

outliers as well as limited separation between classes may have decreased the silhouette

ratio.

Analogous to mixed accuracy in similarity analysis, inseparability in subclass segmenta-

tion suggests other contributing factors. Noise artifacts may have contributed to potential

feature set outliers. Both PCA and k-means are sensitive to noise, stemming from calculated

features, suggesting a more robust algorithm could better reject variations present in seg-

mentation. Sparcity not present in overlapping feature spaces suggests k-means could not

adequately delineate subclass separation effectively. Other features as well as fuzzier classi-

fication attempts may increase unsupervised, subclass segmentation; however, the method

showed promise when identifying certain key actuation sub-classes.
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(a) 3D PCA visualization: Perspective #1

(b) 3D PCA visualization: Perspective #2

Figure 5.6: Principal component scatter plot (3D) overlaid with polyhedron clusters
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(a) 3D PCA visualization (removal of 3(a) class): Perspective #1

(b) 3D PCA visualization (removal of 3(a) class): Perspective #2

Figure 5.7: Principal component scatter plot (3D) overlaid with polyhedron clusters
(removal of 3(a) visualization)
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Figure 5.8: Y-axis k-means clustering results (3 centroids)
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(a) 3D PCA visualization of K-means clustering (3 centroids):
Perspective #1

(b) 3D PCA visualization of K-means clustering (3 centroids):
Perspective #2

Figure 5.9: 3D visualization of PC space with polyhedron clusters as K-means class
assignments
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Figure 5.10: Y-axis k-means clustering results (7 centroids)

5.2.3 X-axis Similarity Analysis

X-axis segmentations were subsequently analyzed using cosine similarity analysis, as de-

scribed in Figure 5.13. Compared to y-axis segmentations, most x-axis segmentations were

not as easily separable into the 8 known actuation sub-classes. The majority of blue-

shaded regions and high similarity scores suggests that the x-axis motion features do not

contain enough discriminating information across neighboring classes. Considering the re-

duced power in acoustic signals as well as manifesting in a smaller frequency band than

y-axis motions, the similarity scores suggest the chosen feature set may not fully represent

x-axis motion subclasses for proper delineation. Wideband, high-power corrupting noise
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Figure 5.11: Sum of Squared Error (SSE) between Plot: y-axis motions

as well as chosen user-label fidelity may have contributed to dissimilarity across subclass

samples. Some outlier segmentations were identified due to their higher dissimilarity scores,

particularly in sub-classes 1 and 2.

5.2.4 X-axis Clustering Analysis

Similar to the y-axis clustering, x-axis actuations were grouped using the k-means algorithm

with angular distance metrics. The two highest principal components, depicted in Figure

5.14, depict the general inseparability of these subclasses. Overlapping subclass features can

be further visualized in Figures 5.16a and 5.16a. Plotting bounded regions of only x-axis
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Figure 5.12: Silhoutte score: y-axis motions

motion subclasses 1 and 5, demonstrates separability limitations.

Large overlapping principal component regions between subclasses effectively limited

any practical segmentation as demonstrated in 8-centroid segmentation. While Cluster

#3 captures possible x-axis segmentation outliers in Figure 5.15, over-segmentation was

observed from relative inseparability of extracted features. This result mirrors high cosine

similarity scores across all x-axis subclasses.
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Figure 5.13: x-axis cosine similarity
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Figure 5.14: x-axis principal component plot
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Figure 5.15: X-axis k-means clustering results (8 centroids)
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(a) 3D PCA visualization of K-means clustering (3 centroids):
Perspective #1

(b) 3D PCA visualization of K-means clustering (3 centroids):
Perspective #2

Figure 5.16: 3D visualization of PC space with polyhedron clusters as K-means class
assignments (X-axis motions)
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SSE and silhouette scores for x-axis clustering, displayed in Figures 5.17 and 5.18, sug-

gest three to four centroids could be an optimal selection for ’k.’ The SSE rate observably

decreases after four clusters while the silhouette ratio peaks at three centroids. These met-

rics, however, may take into account the variability of the motion subclasses which could

be grouping outlier regions, see Figure 3.1b, rather than actual motions.
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Figure 5.17: SSE graph: x-axis sub-classes

59



2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Centroids

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

S
ilh

o
u
e
tt
e
 S

c
o
re

Figure 5.18: Silhouette graph: x-axis sub-classes
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Chapter 6: Discussion

Several potential error sources were noted which may have negatively affected results. Each

portion of the methodology had specific potential improvements.

This study presents three potential CNN architectures; however, relationships between

convolutionally derived features and actuation spectrograms requires a comprehensive, hyper-

parameter study. While potentially sub-optimal, the architectures introduced, demon-

strated feasibility. A comprehensive exploration of asymmetric convolutional kernels is

needed for spectrogram-based CNN architectures.

Sub-optimal neural network architectures may have contributed to reduced classifica-

tion accuracy. Furthermore, the relatively limited training set may have unintentionally

contributed to segmentation error from overfitting using data-intensive methods such as

convolutional neural networks. The analyzed methodology assumed that subclass quantities

were constant within each coarse, parent class training set; however, unbalanced subclasses

used for training parent classes may have biased segmentations.

The proposed semi-supervised methodology is also dependent on the bounding box ap-

proach to handling overlapping segmentations, which could potentially be improved. Seg-

mentation transitions were partially obscured by nose in some examples and limited clas-

sification accuracy in validation spectrogram examples. While y-axis and x-axis motions

occurred independently, each actuation had a short transition window representing ma-

nipulator acceleration and deceleration. Spectrograms augmented with significant noise at

transition stages, as visualized in spectrograms, tended to have lower classification accuracy.

The accuracy, stemming from calculated softmax probabilities, became biased towards y-

axis motions. For example, actuations sometimes misclassified actuation transitions in

spectrograms obscured by short-time, wideband noise. This result suggests visual features
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in noise, including high energy vertical spectrogram bands, may improperly bias classifi-

cation to a primary class. More robust bounding algorithms, such as fuzzy classification

methods, may address this concern.

The method assumes actuations do not occur simultaneously which limits direct gener-

alizing for concurrent actuation identification problems. CNN based spectrogram semantic

segmentation may address this augmented requirement, however, suffers similar limitations

when developing a characteristic training set with limited known harmonic elements from

each actuation.

Noise inherent to the dataset proved to be a consistent challenge with CNN processing

methods. Better segmentations may be possible with a cleaner training and testing data;

however, the study demonstrated that the proposed method robustly rejected a significant

amount of noise artifacts in several subclass segmentation instances. Moreover, omitting

preprocessing helps generalize this method to other, practical implementations for manu-

facturing environments.

Both 2D and 3D visualizations demonstrate potential limitations with the chosen feature

set. Separation in the segmentation feature-space ultimately determined k-means cluster-

ing accuracy. The engineered features chosen were demonstrated in similar applications;

however, their use may require additional work for domain specific implementation. Sub-

class motions demonstrated visually similar principal component spaces. These actuations,

specifically subclasses 1(a) and 1(b) or subclasses 3(a) and 3(b), shared similar mechanical

operation and suggested the chosen engineered feature set could not perform direct sepa-

ration. This result was compounded with clusters and associated centroids pertaining to

subclasses 2-4; actuations with mechanically different operation, including actuations 3(a)

and 4, were classified the same cluster.

Non-stationary noise present in the experimental manufacturing environment tended to

corrupt spectral features significantly, including peak definition and overall energy. Optimal

filtering may present one potential improvement; smoothing spectral responses yielded an

empirical improvement for harmonic features such as spectral moments. Spectral features
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such as peak content required significant a priori knowledge for understanding prominence,

width, magnitude, and quantity inherent in each subclass example. Spectral moments,

therefore, were considered as a generalized alternative for describing harmonic information.

Wavelet decomposition coefficients could serve as another alternative to filtered spectral

content. Convolutional autoencoding networks present another method over manual feature

generation.

A more robust clustering algorithm or non-linear dimensionality reduction technique

might remove some dependency on feature-space separateness. Feature-space outliers pos-

sibly corresponding improper segmentations, or high-energy noise artifacts, conceivably

reduced k-means accuracy further. Due to the wide variance of subclass 3(a), other me-

chanical processes may have been unknowingly and sympathetically captured by acoustic

recordings during movements contributing more noise.

Moreover, user-defined labels stemming from operator intuition may be too subtle for

separation with the proposed feature set and limited validation data knowledge. Suggested

in comparision between x-axis actuation subclasses, fidelity in subclass clustering is coupled

to characteristics and separability of underlying features.
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Chapter 7: Conclusion

A remote monitoring methodology, based on semi-supervised data analysis techniques and

acoustic data, was demonstrated. A supervised convolutional neural network architecture

was developed to isolate primary actuation instances from an arbitrary length spectrogram.

Using ground-truth, labeled spectrogram data, 87.1% of y-axis and 84.2% of x-axis motions

were successfully segmented. Due to the lack of labeled training data, overfitting bias

may have lowered classification accuracy. Asymmetric convolutional kernels yielded higher

relative accuracy, however, requires further exploration.

An unsupervised analysis, based on cosine similarity and k-means clustering with an

angular distance metric, subsequently distinguished primary y-axis actuations into higher

fidelity subclasses. X-axis motions subclass segmentations were not observably separable

based on lower power signals coupled with the generalized feature set used. Features,

primarily comprised of temporal, statistical, and spectral content, demonstrated certain

subclass segmentation from primary motions; however, were not observably separable for

all subclasses in both cosine similarity and clustering visualizations. Despite limitations,

including challenges with mechanically similar actuation subclasses, and noisy segmentation

classification, the proposed methodology demonstrated feasibility in practical mechanical

environments.

Future developments, including automatic feature generation through convolutional au-

toencoding networks, may increase characteristic feature separation allowing for more dis-

tinctive, inherent subclass clusters. Non-linear data reduction methods may provide another

alternative to separating characteristic features from classes. Moreover, more robust cluster-

ing algorithms could compensate for mechanically similar subclasses as well as overlapping

principal component spaces.
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Appendix A: Feature Equations

Table A.1: Unsupervised Features

Parameter Equation

Mean 1
N−1

ΣN
i=1xi

Variance 1
N−1

ΣN
i=1|xi − x̄|2

Standard Deviation
√

ΣN
i=1(xi−x̄)2

N−1

Mean Square 1
N

(x2
1 + x2

2 + ... + x2
n)

RMS
√

1
N

(x2
1 + x2

2 + ... + x2
n)

Peak Amplitude max(|x|)

Kurtosis
1
N

ΣN
i=1(xi−x̄)4

( 1
N

ΣN
i=1(xi−x̄)2)2

Skewness
1
n

Σn
i=1(xi−x̄)3

(
√

1
n

Σn
i=1(xi−x̄)2)3

Crest Factor max(|x|)√
1
N

(x21+x22+...+x2n)

K-Factor max(|x|) ∗
√

1
N

(x2
1 + x2

2 + ... + x2
n)

Zero-crossing Rate 1
N

Σn−1
i=1 |(yi+1 − yi)|; y ∈ {0, 1}where yi = (xi > 0)

Spectral Response (Y) Y (k) = 2| 1
L

Σn
j=1x(j)(e(−2πi)/n)(j−1)(k−1)|

Spectral Kurtosis
1
n

Σn
i=1(Yi−Ȳ )4

( 1
n

Σn
i=1(Yi−Ȳ )2)2

Spectral Skewness
1
n

Σn
i=1(Yi−Ȳ )3

(
√

1
n

Σn
i=1(Yi−Ȳ )2)3

Spectral Crest Factor max(|Y |)√
1
n

(Y 2
1 +Y 2

2 +...+Y 2
n )

Spectral K-Factor max(|Y |) ∗
√

1
n
(Y 2

1 + Y 2
2 + ... + Y 2

n )
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