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ABSTRACT 

SEQUENCE AND STRUCTURE BASED CLASSIFICATION AND PREDICTION OF 
ANTIMICROBIAL PEPTIDES 

Krista Smith, PhD 

George Mason University, 2021 

Dissertation Director: Dr. Iosif Vaisman 

 

 

In recent years pan-resistant microbes have begun to pose a significant risk, 

particularly in clinical settings. To combat this emerging threat new antimicrobial 

therapies are required. Antimicrobial peptides (AMPs) are a promising, and until 

recently, mostly underutilized resource. A large number of AMPs have been 

experimentally identified and predicted, very few of them are approved for clinical use, 

but thousands more may be hiding in plain sight in various databases. Machine learning 

offers a powerful technique to mine already available protein sequences for those with 

high potential to exhibit antimicrobial properties. This work is focused on creating and 

testing a novel set of descriptors based on reduced amino acid residue alphabets, 

structural, and topological properties of AMPs. These novel descriptors were used in the 
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machine learning models capable of discriminating AMPs from non-AMPs.  Such models 

may be used to screen proteins with known structures for potential antimicrobial activity. 
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INTRODUCTION 

The Significance of Antimicrobial Resistance  

Current antibiotics treatments are quickly becoming less effective as the microbes 

that they are designed to combat acquire resistance. As the usefulness of these first-line, 

and eventually second- and third-line, antibiotics is reduced, clinicians are forced to use 

less effective, more toxic, and more costly therapies. In the United States alone, more 

than 23,000 people die each year as a direct result of antibiotic resistant infections, with 

many more fatalities attributed to complications of these infections. Antibiotic resistant 

microbes lead to longer, and more expensive hospital stays, additional doctor visits and 

lost productivity. While estimates of the economic cost of antibiotic resistance are 

difficult to calculate direct medical costs to individual patients range from more than 

$18,000 to more than $29,000, totaling about $20 billion per year in the United States 

alone. Hospital stays for patients with antibiotic resistant infections are increased by 6 to 

12 days resulting in over $35 billion in lost wages to US households every year.1  

The situation is even more dire in low- and middle-income countries. While high-

income countries have the advantages of sanitation and improved nutrition to reduce the 

effects of infectious disease, developing countries suffer from the burden of poor public 

health facilities coupled with the reduced effectiveness of antibiotics used to mitigate 

these deficiencies. Of particular interest are resistant pathogens associated with neonatal 
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infection. Data suggests that 71% of Klebsilla and 50% of E.coli are resistant to the 

WHO recommended regimen of ampicillin and gentamicin.2 Unlike in first-world 

countries, expensive secondary and tertiary treatments are often unavailable in 

developing countries resulting in increasing morbidity and mortality.3 

Without intervention, the antibiotic crisis will only worsen. Microbes are the most 

adaptable organisms on earth. Over the past 3.5 billion years they have evolved to inhabit 

every environment on the planet, from sub-zero arctic frost to the boiling depths of the 

Atlantic ocean’s thermal vents. It should, therefore, be no surprise that microbes have 

evolved to survive the killing effects antibiotics. Bacteria are masters of adaptation 

allowing them to quickly develop resistance to antimicrobials through selective pressure. 

Conjugation allows resistant bacteria to pass resistance genes contained on plasmids to 

other bacteria that may have never even been exposed to the antimicrobial agent in 

question.  

Coupled with bacteria’s impressive adaptive abilities, antibiotics have become a 

victim of their own success. Further accelerating resistance acquisition, is the non-

judicious manner in which antibiotics have historically been overused and misused. In 

many countries, antibiotics are available over the counter with little to no medical 

guidance. Non-prescription antimicrobial use is more highly correlated with shorter 

courses, as well as inappropriate drug and dosing choices. This inappropriate use of 

antimicrobials has been associated with high levels of community antimicrobial 

resistance. 4 
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Given a microbe’s propensity for adaptation, the question of resistance to any 

given anti-infective is not a matter of if but when. It is for this reason that there is 

constant pressure for the development of new antimicrobials. As of September 2019, 

there were 44 prospective antimicrobials with the potential to treat serious microbial 

infection under clinical trials in the US.4 Historically only 1 to 5 percent of these 

compounds will be approved for clinical use. Furthermore, most of these are 

modifications to one of the already common structural classes of antibiotics. While these 

modifications may induce new activity, they are not a significant shift in the underlying 

mechanism, meaning that they are still susceptible to resistance. Economic and market 

pressures have also contributed to the lagging development of new clinical antimicrobial 

solutions. Antimicrobial drugs are not profitable. They are commonly taken for only short 

courses and sold for low prices when compared to drugs such as those used to treat high 

cholesterol or cancer. Additionally, resistance to these drugs begins to develop as soon as 

they are available for clinical use. If a new drug with significant anti-infective potential is 

developed, it is stored away for only the direst of circumstances, resulting in even less 

profit for the drug company holding the patent. For these reasons, the rate at which new 

antibacterial entities are approved by the FDA has dropped precipitously since 1990. 

Between 1999 and 2008 only 17 new antimicrobials were approved while 34 were 

removed from the market.5  

In addition to the threat to global heath, antibiotic resistant pathogens have been 

identified as a potential biological weapon. A plasmid-mediated multidrug resistant strain 

of Yersinia pestis, as well as a streptomycin resistant strain have been independently 



4 

isolated in Madagascar.6,7 There have been assertions that scientists in the former USSR 

were working on developing weaponized multi-drug resistant strains of Y. pestis.8 The 

CDC has classified Y. pestis as a category A critical biological agent due to its high rate 

of infectivity as well as mortality coupled with the ease with which it may be 

disseminated. Also cited as a potential bioterrorism threat is multi-drug resistant 

tuberculosis. The potential for these agents to cause widespread loss of life and public 

panic have lead the CDC to recommend preparedness through ongoing research to 

improve disease treatment among other interventions.9 

Antimicrobial Peptides 

Antimicrobial peptides (AMP’s) are oligopeptides ranging from 5 to over 100 

amino acids. They were first discovered in 1939 with the extraction of what would later 

be identified as an AMP which was named gramicidin.10,11 Gramicidin was derived from 

a Bacillus strain and showed activity in protecting mice from pneumococci infection and 

later used during World War II to treat wounds and ulcers.12 There are currently more 

than 2500 known amps cataloged in web based AMP databases such as APD3,13 

YADAMP,14 and CAMPR315 with activities ranging from antifungal to insecticidal to 

anti-HIV. Antimicrobial peptides form a major component of the innate immune system 

and are found across every phyla of life. They can vary widely in structure, target 

specificity and mode of attack, making them difficult to characterize.  

The role of computation in AMP classification 

The process of testing peptides for antimicrobial properties in the lab is lengthy 

and expensive. Through the use of machine learning, candidates with higher potential for 
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activity can be identified. Similarly, features that are strongly correlated with 

antimicrobial properties can be identified resulting in more accurate hypothesis regarding 

the design of AMPs. Computational methods can be used to identify the sequential and 

structural components most strongly associated with antimicrobial activity. While 

evidence suggests that AMPs do not assume their final structural conformation until they 

are in contact with the cellular membrane, there has been little research utilizing the 

secondary and tertiary structures of peptides for prediction.  

Machine learning 

Machine learning is a field of computer science that utilizes statistical techniques 

to simulate the ability to learn from data without being specifically programmed. Given a 

well annotated dataset the machine is allowed to find patterns to make decisions. These 

decisions are compared to the ground truth and, using statistical and mathematical 

techniques, the machine modulates the decision-making process in order to make better 

decisions. Machine learning has been used in a number of applications within the field of 

bioinformatics including the prediction of protein-protein interactions,16 classification of 

protein function recognition,17 and prediction of cancer progress and prognosis.18 

Problem Statement and Objectives 

Given the current state of antimicrobial resistance it is imperative that new forms of 

antibiotics be identified. Current processes are inadequate to screen the vast numbers of 

peptides already isolated and do not provide adequate predictive guidance. Furthermore, 

AMP databases do not incorporate an effective mechanism for the encoding of secondary 

and tertiary structures usable for machine learning. This dissertation addresses these 
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issues by first constructing a methodology for expressing three-dimensional peptide 

structures numerically, as well as producing a dataset composed of known AMPs coupled 

with negative peptide sequences. Additionally, a computational model for the prediction 

of antimicrobial activity will be presented. This dissertation offers the following 

contributions to the field: 

1. Description of Antimicrobial peptides: A description of antimicrobial peptides 

including their basic biological and biochemical principles is presented in chapter 

2.  

2. Role of computation in peptide prediction: Background information regarding 

machine learning and its role in AMP classification is presented in chapter 3 

3. Methodology for the encoding of tertiary structures: Data encoding 

methodologies, presented in chapter 4 describe a mechanism for representing 

peptide tertiary structures in a manner accessible for machine learning. 

4. AMP classification: predictive models described in chapter 5 offer a method for 

screening peptides for antimicrobial potential. 

5. Antimicrobial Feature identification: Utilizing feature reduction techniques, the 

predictive model can be used to identify the peptide features most important in 

discriminating AMPs from non-AMP peptides. 
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CHAPTER TWO: RELATED WORK 

 

 
Figure 1 - Typical examples of AMPs based on structural classifications. 

 

Antimicrobial Peptides 

Antimicrobial peptides form a major component of the innate immune system and are 

found across every phyla of life. They can vary widely in structure, target specificity and 

mode of attack, making them difficult to characterize. Most recently, they have been 

classified into four categories based on peptide chain connection patterns. Linear Class I 

(UCLL) consists of peptides lacking any side chain interactions such as human 

cathlicidin LL-37. Class II, side chain linked peptides (UCSS) is composed of those 

peptides with sidechain to sidechain interaction, such as the bacterial lantibiotic 

actagardine. Peptides with sidechain to backbone interactions are placed in class III 
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(UCSB), with daptomycin being a typical example. Finally, peptides in Class IV (UCBB) 

are characterized by backbone to backbone interactions such as the plant AMP kalata B 

[Figure 1]. 

Antimicrobial resistance 

Antimicrobial peptides have coevolved alongside bacteria for millions of years and, as a 

result have developed microbicidal mechanisms more robust against acquired resistance 

than their pharmaceutical counterparts.19,20 Vancomycin, for instance, inhibits 

peptidoglycan synthesis by binding to the D-alanine-D-alanine terminal residues of the 

peptidoglycan pentapeptide linker. This action inhibits cross-linking and lowers the 

strength of the bacterial cell wall resulting in cellular death. However, if the final alanine 

is substituted with a lactase the affinity of vancomycin for the pentapeptide is reduced 

1000-fold rendering the microbe vancomycin resistant.21 Many AMP’s also disrupt the 

cellular membrane, but in contrast to Vancomycin, AMP’s are believed to permeabilize 

the membrane through electrostatic interactions with the anionic lipids commonly found 

in prokaryotic, but not eukaryotic cells.11 When compared to a single amino acid 

substitution, a complete overhaul of the cellular membrane chemistry is a daunting 

evolutionary undertaking.  

Mechanisms of Action  

AMPS exhibit both receptor mediated and non-receptor mediated mechanisms of action. 

The most common non-receptor mediated mechanism of action involves the binding of 

AMPs to the cellular membrane. In general terms, the peptides bind to the surface of the 

cell until a critical threshold has been reached, at which time they self-organize to 
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permeate the membrane. Three primary mechanisms for this permeation have been 

proposed. The carpet model, exhibited by cecropins22 and aurein,23 according to this 

model, peptide monomers accumulate on the membrane surface eventually reaching a 

concentration sufficient to destabilize the phospholipid packing of the membrane leading 

to its eventual disintegration. The Barrel and stave model, as in the case of pardaxin and 

its analogues24 and alamethicin25 this model postulates that the peptides organize across 

the cellular membrane to form a permeation pathway which allows ions to leak from the 

cytosol leading to the disruption of bacterial metabolism. Finally, the toroidal pore 

model, exhibited by and magainins26 and metellins27  in which the peptide and lipid head 

groups of the target membrane align together to form a pore [Figure 2].  

 

 
Figure 2 - Non-receptor mediated modes of action.  Adapted from 28 
 



10 

While membrane interactions are the most notable mechanism of antimicrobial activity, 

AMPS also employ a number of alternative mechanisms including traversing the cell 

membrane to interact with intracellular targets. Pleurocidin, an AMP derived from winter 

flounder, has demonstrated the ability to inhibit intercellular process such as 

macromolecule and RNA synthesis without damaging the cytoplasmic membrane at sub-

lethal concentrations.29 Anionic peptides found in the mucous and serous respiratory 

secretions, as well as cationic, amphipathic AMPs are thought to induce intracellular 

biomass flocculation as the mechanism of bacterial killing.30,31 Other AMPs such as 

buforinII,32 MicrocinB17 33 and certain indolicidin analogs34 have been shown to bind to 

DNA or RNA, inhibiting protein synthesis. These variations in microbial killing 

mechanism demonstrate the versatility of AMPs.  

AMP Target Selection 

The majority of AMP’s target their microbial victims via a non-receptor mediated 

mechanism. Unlike traditional antibiotics these AMPs do not target a specific receptor, 

but instead the more general target of the bacterial membrane. Both gram negative and 

gram positive bacteria exhibit a net negative charge on their outer surfaces due to the 

respective presence of lipopolysaccharides and acidic polysaccharides. Additionally, both 

types of bacteria possess negatively charged inner membranes due to the presence of 

negatively charged phospholipids. This contrasts directly to mammalian cells which 

exhibit zwitterionic phosphatydilcholine on the outer leaflet and negatively charged 

phosphatydilserine on the inner leaflet.35 This facilitates the preferential binding of 

largely cationic AMPs to microbial membranes over mammalian membranes. This theory 



11 

has been studied through the creation of enantiomers of AMPs such as melittin, cecropin, 

magainin and androctonin, which possess identical lytic behavior to their all L-amino 

acid counterparts.36–38  These studies lead to the conclusion that the chirality of the 

peptide is not a critical feature. However, replacement of a single L-amio acid with its D 

enantiomer in melittin results in a change in the amphipathic nature of the peptide and an 

associated loss of antimicrobial activity39 leading to the conclusion that the amphipathic 

structure is critical the AMPs antimicrobial activity.  
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CHAPTER 3: COMPUTATION IN PEPTIDE PREDICTION, CLASSIFICATION 

AND DESIGN 

Protein Structure Prediction 

A great deal of research has been done to develop and refine methods of peptide 

prediction in general and antimicrobial peptide classification specifically. Beginning in 

the late 1980’s neural networks were applied to the problem of secondary structure 

prediction.41 A feed forward network was trained using existing protein structures to 

predict the secondary structure of a local sequence of amino acids. This method achieved 

an accuracy of between 60 and 70%, a significant improvement over contemporary 

methods. Rost and Sandler took advantage of the conserved nature of protein secondary 

structures across protein homologs by training a neural network using multiple sequence 

alignments. The resulting accuracy was improved to between 70-74%.40  

Since 1994 the Protein Structure Prediction Center has hosted the biannual Critical 

Assessment of protein Structure Prediction, or CASP, experiment to allow researchers to 

objectively measure the success of their computational algorithms for protein structure 

prediction. Prediction algorithms have progressively improved, in the first CASP 

competition only about 15% of the most difficult protein structures were predicted 

accurately, compared with nearly 60% in a recent CASP12(2016) competition.41 Many of 

these improvements can be attributed to more powerful computational models utilizing 

machine learning.42,43 
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Protein Encoding 

Previous research to classify peptides as AMP or non-AMP has relied primarily 

upon machine learning algorithms in which the function label is coupled with an 

encoding of the peptide structure. The issue of encoding a variable length peptide 

sequence with complex amino acid interactions into a fixed-length numerical vector is 

not a trivial endeavor. While the use of the complete amino acid sequence seems to be the 

most intuitive method of peptide encoding this method is often unsuitable to machine 

learning as peptides are of varying lengths and most machine learning algorithms require 

fixed length inputs. In order to fully harness the power of machine learning, discrete 

feature vector models for peptide encoding must be developed.  

The simplest discrete model for peptide encoding is the amino acid composition model 

(AAC) 44 in which each peptide is represented by a vector V. 

 
 ! = [$!, $", $#, … $"$] [1] 

Generic equation for a peptide 

 

In which fi is the normalized frequency of each of the 20 naturally occurring amino acids 

in the peptide. Many methods of peptide function prediction have been based on the 

amino acid composition model 45,46 including several for the prediction of AMPs.45–47 

However, this model does not preserve the sequential nature of the peptide resulting in 

limited predictive power. Several concepts have been proposed to address this matter. 

Chos’s pseudo-amino acid composition (PseAAC)48 incorporates a set of discrete 

sequence correlation factors with the 20 values for amino acid composition to partially 

preserve the effects of sequence order while organizing the data in a manner amenable to 
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computational analysis. PseAAC has been used extensively for protein prediction in 

general as well as AMP prediction specifically.47,49–51 

In order to capture the physiochemical nature of the peptide alternative methods have 

incorporated a variety of physiochemical features such as hydrophobicity,50–52 

dissociation constants,50 isoelectric point,50 molecular weight,50 polarity,51,53 secondary 

structure predictors,51,53 molecular volume,53 codon diversity,53 solvent accessibility,51 

normalized van der Waals volume,51 electrostatic charge,51,53 and propensity for 

aggregation.52 

N-gram encoding 

Given an alphabet A, and sequence S, an n-gram is any n-long subsequence of 

consecutive tokens of A. For any sequence S of length N, there are N-(n-2) n-grams. 

More simply, an n-gram is an n item long portion of a longer sequence. The items may be 

words in a sentence, letters in a word or, as in the case of peptide analysis, amino acids or 

structural classifications in a peptide sequence. N-grams are widely used in a wide range 

of disciplines including communication theory, data compression and computational 

biology. The concept of n-grams can be attributed to Claude Shannon’s work on 

information theory. He proposed that, given a training set, one can derive a probability 

distribution for the next item in a sequence of n items. N-gram probability analysis has 

been used in a variety of natural language processing applications such as text 

classification,54 authorship attribution,55 and sentiment analysis.56 In the context of a 

peptide, an n-gram is a contiguous sequence of n-amino acids. N-grams have been 

successfully employed in the field of bioinformatics for protein classification,47,57 
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clustering of genome sequences,58 as well as prediction of antimicrobial peptides.59,60 N-

grams comprised on 3 symbols, or trigrams, have demonstrated success in the prediction 

of antimicrobial peptides in the past60. By comparing the probability profile of an 

unknown peptide to those developed from a positive and negative training set we can 

assess the peptide’s potential for antimicrobial activity. The use of n-grams for protein 

analysis allows for the development of discrete factors to represent the amino acid 

composition of the peptide while maintaining some of the integrity of the original 

sequence. 

Alphabet reduction 

Given an alphabet of 20 amino acids there are 203, or 8000, possible n-grams that can be 

derived from any given peptide. This phenomenon, termed exponential explosion or 

combinatorial explosion, results in a highly sparse dataset in which many of the values 

are zero. In order to minimize the effects of exponential explosion a method of alphabet 

reduction has been employed. This technique utilizes a set of predefined alphabet 

reduction schemes based upon characteristics of the amino acids to group each amino 

acid into one of three groups. In this way the number of potential amino acid combination 

to can be reduced to 33, or 27, simultaneously reducing the amount of sparsity within the 

dataset. It has been found that alphabet reduction schemes using structural similarities 

among amino acids is a viable approach to analyze peptide structures while reducing the 

limitations resulting from limit data sets.61 
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Machine Learning Algorithms 

Binary classification 

There are a number of machine learning algorithms applicable to the prediction of 

peptide activity. Commonly these methods represent a binary classification effort in 

which a molecule is classified as either having antimicrobial activity or not.23,49,50,53,62–66 

The algorithm is first trained on a dataset containing examples from each class. This 

allows the machine to develop a method for pattern recognition that distinguishes 

between the two classes. It is at this time that a comprehensive dataset is required. The 

goal of machine learning is to recognize patterns that generalize to future, unseen, data. If 

the data presented for training is overly specific, or does not contain sufficient levels of 

noise, the classifier will suffer from overfitting. Overfitting results in the ability of a 

classifier to perform well on test data that is highly similar to the training data, but to 

perform poorly on unseen data that may not conform to the specifications of the training 

data. Conversely, underfitting may occur if the sample size is insufficient to represent the 

actual distribution of data or an incorrect training model is used, a linear model is used to 

represent polynomial data, for example.  

Algorithms previously used for the binary classification of AMPs include 

Artificial Neural Networks (ANN), Artificial Neural Fuzzy-Interface-Systems (ANFIS), 

Linear Discriminant Analysis (LDA), Qualitative matrices (QM), Fuzzy K-Nearest 

Neighbor (FKNN), Hidden Markov Models (HMM), Random Forest (RF), and Support 

Vector Machines (SVM).  
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Figure 3 - Overfitting vs underfitting 

 

Artificial neural networks 

Artificial neural networks (ANN) are a type of machine learning framework loosely 

based on biological neurological neural networks. A network of computational neurons, 

also known as perceptions, learn to classify objects by training on a large set of annotated 

examples. The network is made up of several layers of fully connected perceptions. By 

presenting the network with a large number of both positive and negative examples the 

model can learn to perform a task without being explicitly programmed through the 

learned recognition of discriminatory features. A number of previous studies have 

attempted to predict active antimicrobial peptides using quantitative structure-activity 

relationship features (QSAR) with ANN. 66–70  
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Figure 4 - Representative Artificial Neural Network 
 

Artificial Neural Fuzzy-Interface-Systems 

Artificial Neural Fuzzy-Interface-Systems (ANFIS) are a sort of artificial neural 

network which integrates both neural networks and fuzzy logic. ANFIS maps outputs to 

inputs using a set of fuzzy if-then rules coupled with a supervised feed-forward neural 

network. A typical ANFIS is based on five connected network layers. The first layer 

consists of input variables with a membership function to map each point on the input 
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space to a membership value. The second layer is a membership layer checks the weights 

of each membership function. The output of layer 3 represents the rule layer in which 

each node performs the pre-condition matching of the fuzzy rules. Layer 4 is the 

defuzzification layer that provides the output values resulting from the inference of the 

rules. Finally, the fifth layer aggregates all of the values from the previous fuzzy layer 

into single predictive value. An ANFIS created using two trapezoidal membership 

functions and trained on 10 epochs was used with a dataset consisting of aggregation and 

physiochemical distinguish between positive and negative AMPS.71  

 

 

Figure 5 - Representative ANFIS function 
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Linear Discriminant Analysis 

Discriminant analysis is a classification algorithm that attempts to predict the 

group membership of an independent variable based on a linear transformation of a set of 

independent variables. Given an input vector of x the algorithm attempts to define a 

function  

 

 ( = $(%→ ⋅ &→) =	 $(./' ⋅ 0')
'

 
[2] 
Linear Discriminant Analysis function 

 

Where w is a vector of weights that is learned from the training set. Linear 

discriminant analysis is generally faster than other types of classifiers and works well 

with datasets of high dimensionality. Previous research has made use of LDA along with 

physiochemical and peptide composition features.51 

Qualitative Matrices 

A qualitative matrix is a measure of the propensity for each residue at a particular 

position within the peptide. The following equation is used to generate the qualitative 

matrix 

 

 1(),+) =	
2),+
3),+

 
[3] 
Qualitative matrix equation 

 

Where P(i,r) is the probability of reside i at position r, Ei,r is the number of residue r at 

position i and Ni,r is the number of peptides. Lata 2007 developed matrices for the N- and 
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C- terminal amino acids of both antibacterial and non-antibacterial peptides. A weight 

matrix describing the difference between probabilities for each residue at each position 

for antimicrobial peptides compared with non-antimicrobial peptides was developed 

using the following equation: 

 4(),+) =	1-./ − 10123-./ [4] 

Probability weight matrix equation 
 

By developing a score for each peptide using the formula: 

 6789: = 	.4(),+)
4

)5!
 [5] 

Qualitative peptide score 

 

Where L equals the length of the peptide, they were able to predict the class of the 

peptide with an MCC of 0.74 when considering the 15 amino acids of the N and C 

terminus.64 

Fuzzy K-Nearest Neighbor 

FKNN is an implementation of the common K-nearest neighbor algorithm with 

the addition of a fuzzy coefficient to determine the weight of each nearest neighbor’s 

contribution to the membership value. A standard k-nearest neighbor algorithm clusters 

instances into groups of k instances with the goal of minimizing the intra-group 

distribution while maximizing the inter-group distribution. Distances between instances 

may be defined in a number of ways, but Euclidian distance is the most common. KNN 

assigns the same level of importance to each neighbor, assuming that the boundaries 

between classes are perfectly defined by the training set, which is often not the case. The 
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FKNN algorithm incorporates a fuzzy logic membership function designed to weight the 

computed distance between instances where the probability of membership in any given 

class is given by the following equation: 

 

 ;)(1) =
∑ ;)=1'∗>?=1, 1'∗>

3 "
73!8

'5!
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3 "
73!8

'5!

 [6] 

fuzzy KNN equation 

 

Where ;)=1'∗> is the fuzzy membership value of training sample 1'∗ to the i-th class, 

d=1, 1'∗> is the distance between P and peptide 1'∗. Both K and @ are tunable parameters 

defining the number of neighbors to consider for each query peptide and the degree to 

which to weight the distances calculated for each nearest neighbor. The function to 

calculate ;)=1'∗> is dependent upon the desired classification outcomes. The addition of 

this fuzzy logic allows imprecise knowledge to be incorporated into the algorithm and 

results in higher classification success in many applications including protein 

identification and prediction of AMPs.  

The iAMP-2L classification method makes use of a two-tiered FKNN algorithm 

in which peptides are first classified as either AMP or non-AMP using  where ;)=1'∗> is 

defined as: 

 

 ;)=1'∗> = 	 A
1, C$	1'∗	 ∈ 	E)
0, 8Gℎ:9/C6: [7] 

iAMP-2L probability equation 
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With the final class for peptide P being assigned to the class with the highest membership 

value: 

 

 E: = IJKLIM;{;)(1)} [8] 

iAMP-2L classification algorithm 
iAMP-2L classification equation 

 

The second tier of the iAMP-2L algorithm attempts to predict the peptides functional 

group. For this tier [5] is replaced by a multilabel classifier: 

 

 ;)=1'∗> = 	P
1

Q(ℎCG) , C$	1'∗	 ∈ 	E)
0, 8Gℎ:9/C6:

 [9] 

iAMP-2L peptide function prediction algorithm 

 

Where n(hit) is defined as the number of different classes that were hit by 1'∗ during the 

predication phase. This method resulted in an MCC of 0.73 for the prediction of AMP vs 

non-AMP.50 

Hidden Markov Models 

HMMs assume that the process being modeled is a Markov process in which the 

transition states are hidden. A Markov process is a stochastic, memoryless process in 

which the probability of subsequent events depends only on the state obtained by the 

previous event. In a hidden markov model the intermediate states between the input and 

the output are unknow to the user. HMMs can be represented as simple dynamic 

Bayesian models in which adjacent variables are related to each other by some 

probability.  
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HMMs have shown great promise in peptide prediction. HMM models for peptides are 

probabilistic models of amino acid sequences for a particular peptide family. Fjell et al 

developed HMM models for clusters of AMPs that were subsequently used to scan 

Swiss-Prot for additional sequences to add to each cluster. After the addition of a new 

sequence to any cluster an updated HMM model was constructed. In this manner, they 

were able to iteratively add 229 peptides to their AMP database, 195 of which contained 

annotations demonstrating antimicrobial activity.72 

Random Forest  

Random Forest (RF) is an ensemble learning method in which a multitude of decision 

tress are built with the mode of all trees used as the final output. A single decision tree is 

a decision support tool that uses a tree-like model to break complex problems into smaller 

parts based on a given query. Each node divides the training set based on a single feature. 

These features may be nominal or categorical. A simple decision tree describing an 

algorithm to classify the well known Iris dataset is presented in Figure 6. 

In 2001 Brieman introduced the Random forest algorithm which applies the 

concept of bootstrap aggregation by training on a random sample with replacement of the 

full training set. Once training is complete predictions are made on unseen samples by 

taking the mode of the predictions of all trees. As the number of trees in the RF becomes 

larger the generalization error converges at some limit defined by the strength of the 

individual trees and the correlation between them.73 In addition to sample bagging RF 

also utilizes feature sub-selection, using only a sub-set of features to construct each tree 
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and then assessing the accuracy on unseen data. This allows for error estimation, known 

as out of bag error without the need for cross validation or a validation set.74 

RF algorithms can also be used for regression analysis where the tree predictor 

takes on a numerical value as opposed to a class prediction. This application is, however, 

not applicable to this research. RF algorithms have been used successfully to classify 

peptides antimicrobial activity based on the distribution patterns of amino acid properties 

along the sequence75 as well as their basic physiochemical properties51 as well as 

combinations of additional features.76 
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Figure 6 – Decision tree for the Iris Dataset 
 

Support Vector Machines  

Support Vector machines (also called support vector networks77) use a non-linear 

transformation to map input data to a very high dimensional space. By mapping data 

points to successively higher and higher dimensions via a non-linear transformation, a 

hyperplane can eventually be discovered to separate the classes. as illustrated in Figure 7. 

This process, known as kernelling, is especially useful for small, clean datasets, but 

becomes computationally intractable with large or poorly separable datasets. A number of 
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algorithms have been developed for AMP classification via SVM such as ClassAMP,76 

AntiPB,64 iAMPpred,49 and many others.62,66,78–80 

 

 

Figure 7 – Two dimensional SVM using the Iris dataset 
 

Table 1 - MCC values for AMP prediction algorithms 
Prediction 

Algorithm 

Feature Set MCC  

(Test 

Dataset) 

FKNN
50 

 PseAAC & physiochemical properties 0.73 
SVM

53
 PseAAC, NAAC, physiochemical & 

structural 
0.76 
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SVM
49

 AAC, PAAC, NAAC, Physiochemical & 
structural 

0.89 

QM
64

 N- and C- terminus fragments 0.74 
ANN

64
 N- and C- terminus fragments 0.86 

SVM
64

 N- and C- terminus fragments 0.82 
ANN

66
 Aggregation and physiochemical properties 0.74 

SVM
63

 PseAAC 0.83 
ANFIS

71 Aggregation and physiochemical properties 0.94 
DA

51
 Physiochemical and peptide composition 0.74 

RF
51

 Physiochemical and peptide composition 0.86 
SVM

51
 Physiochemical and peptide composition 0.82 

RF
75

 distribution patterns of amino acid properties 0.90 
 

Additional Machine learning Algorithms evaluated in this work 

In an attempt to fully quantify the success of the addition of 3D structural data to the 

AMP dataset a number of additional machine learning algorithms were evaluated in this 

work. The methods for optimization of these algorithms as well as the parameters used in 

this research will be more fully discussed in the methods section. The information 

presented below contains a general description of each algorithm.  

Adaboost 

Adaboost, short for adaptive boosting, is a dynamic allocation algorithm used with other 

machine learning algorithms to improve performance. By assigning higher weights to 

instances that are more difficult to classify correctly and to weak learners that correctly 

classify those instances an ensemble of weak learners is developed that classify instances 

more accurately than individual heuristics or ensembles where a simple mean is used for 

prediction.79  
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GaussianNB 

The GaussianNB classifier is a probabilistic classifier based on applying Bayes' theorem 

that assumes that data features follow a gaussian distribution. The Naïve Bayes classifier 

assumes that all features are independent of each other (hence the term naïve) and 

attempts to generate a function to predict the probability of an unseen instance belonging 

to a certain class based on its features. Naïve Bayes can be generalized using the 

following equation: 

 

 R(ST1|$!, $", … $2) =
R(ST1) ∗ R($!, $", … $2|ST1)

R($!, $", … $2)
 [10] 

Naïve Bayes equation 

 

Since we assume that every feature is independent of every other feature and follows a 

gaussian distribution, we can calculate R($)|ST1) as: 

 

 

R($)|ST1) =
1
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(0) −	;?)"
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[11] 

NB amino acid probability equation  

 

The Naïve Bayes classifier has been used extensively in machine learning as well as for 

the in-silico classification of antimicrobial and anti-cancer peptides.80–82 
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Quadratic discriminant analysis (QDA) 

QDA is a generalization of the linear Discriminant model described above. QDA follows 

that assumption that the measurements from each class are normally distributed but does 

not follow the assumption that the covariances for each class are identical. This allows 

the algorithm to learn non-linear classification boundaries making it more flexible.  

Gradient Boosting Classifier (GBC) 

GBC is a boosting algorithm in the same vein as the AdaBoost algorithm where an 

ensemble of weak learners is developed to produce a strong learning algorithm. Unlike 

the Adaboost classifier, the Gradient boosting classifier iteratively adds additional 

algorithms to reduce the residuals resulting from its predecessor. Each of these new weak 

learners is added to the ensemble algorithm based on the gradient descent optimization 

process. Given an imperfect ensemble learner, f(0), and a perfect weak learner, ℎ(0), 

the gradient boosting algorithm would result in the following equation: 

 

 ( = f=(0) + ℎ(0) = f=@!(0) [12] 

gradient boosting algorithm 
 

Supervised vs Unsupervised Classification algorithms 

Machine learning tasks can be subdivided into supervised learning or 

unsupervised learning tasks. In the case of supervised learning data sets with known 

classification labels are available. These datasets can be subdivided into training, testing 

and validation sets. The chosen model architecture is trained using the training data after 

which a validation score is obtained using the previously unseen validation data. This 
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validation score is used to fine tune the various parameters unique to the chosen 

architecture. Parameters may include learning rates and numbers of layers for neural 

networks, maximum depth and number of estimators for tree-based classifiers or loss and 

normalization functions for many other algorithms. Once the model has been finalized it 

is scored using the testing dataset. This dataset has not been previously seen by the 

classifier and reduces the chances that the parameters have been tuned in a manner to 

overfit to the validation data. There are a number of ways to evaluate the score for a 

learning algorithm which will be discussed in the next section.  

In an unsupervised learning task the true labels for the input data is unknown. In 

these types of tasks clustering algorithms, such as k-nearest neighbors or Agglomerative 

clustering, are used to group instances into clusters with similar properties. The 

classification label of each cluster is dependent upon the user. Since there is no known 

ground truth in an unsupervised learning task, evaluation of the technique is not a trivial 

as counting the number of times that the algorithm’s prediction is correct. Techniques 

such as the measuring reconstruction error of a holdout set or by measuring intra-cluster 

density versus inter-cluster density, also known as the Calinski-Harabaz index.83 

Evaluation of Classification algorithms 

There are a number of metrics that may be employed for the evaluation of a 

classification algorithm. The utility of each of these metrics is based on the purpose of the 

algorithm and the available data. The overriding goal of evaluation is to reduce errors of 

both type I and type II. Type I error, the rejection of a true null hypothesis, or high false 

positive, would result in the classification of a peptide lacking antimicrobial activity as an 
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AMP, while type II error, the failure to reject a false null hypothesis, or high false 

negative, would result in the exclusion of a true AMP from the set of possible peptides 

with antimicrobial activity. Due to the desire to identify as many potential AMPs within 

the set of known peptides I will preferentially attempt to reduce type II errors.  

k-fold cross validation 

Machine learning is a data hungry procedure and only works well with large 

datasets. For this reason, researchers are often loath to reserve valuable training data for 

validation purposes, particularly when the available labeled datasets are already small 

(typically on the order of less than 1000 instances), as is most often the case in biological 

research. In these cases, a technique called k-fold cross validation may be used. Cross 

validation is a resampling technique in which the complete dataset is randomly divided 

into k groups (or folds) of approximately equal size. Each fold is then successively 

treated as the validation set while the algorithm is fit using the remaining k-1 folds. The 

mean squared error (MSE) for each holdout fold is computed resulting in k estimates of 

testing error. The k-fold cross validation error is computed by averaging these error 

values.74 

 

 
1
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k-fold cross validation error 
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Evaluation Metrics 

Confusion Matrix 

A confusion matrix, also called an error matrix, is a graphical representation of 

the performance of an algorithm, typically a supervised learning algorithm. The rows of 

the matrix represent the number of predicted instances in each class while the columns 

represent the true number of instances in each class [Figure 8 - Example confusion 

matrix]. (There is no accepted convention for the construction of a confusion matrix, so 

the rows and columns may be reversed.) 

 

 Predicted Class 

True False 

True Class 

True 
True 

Positive 

False 

Negative 

False 
False 

Positive 

True 

Negative 

Figure 8 - Example confusion matrix 

  

The confusion matrix is the bases for a number of other evaluation metrics that will be 

discussed below.  
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Accuracy 

Accuracy is the degree to which a measurement or specification agrees with a 

reference value.84 In terms of machine learning classification, it is the degree to which an 

algorithm predicts the true class of an instance. It can be calculated as follows: 

 

 SEE = 	
i3 + i1

i3 + i1 + f3 + f1 ∗ 100% [14] 

Accuracy equation 

 

which can be simplified to: 

 

 SEE = 	
G8G_c	7899:7G	R9:?C7GC8Q6

G8G_c	Qa`k:9	8$	R9:?C7GC8Q6	`_?: ∗ 100% [15] 

Simplified accuracy equation 

 

Values may range from 0 to 100 percent with lager representing better classification 

performance.  

Accuracy has the benefit of being an easy to understand metric but is only a 

starting point for algorithm assessment. In unbalanced sample sets, accuracy can be a 

poor measure of prediction success. Consider the goal of predicting cancer given a set of 

medical tests. The sample set consists of 500 individuals, only 30 of which actually have 

cancer. A model that predicts zero cancer diagnosis would be 94% accurate [16], but 

would miss 30 cancer diagnosis, potentially leading to disastrous outcomes (also known 

as high type II error). 
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 SEE = 	
470 + 0
500 ∗ 100% = 94% [16] 

Example of type II error 

 

In these cases, it may be preferable to use a less accurate predictive algorithm to avoid a 

specific type of error.  

Sensitivity and specificity  

Sensitivity and specificity are evaluation metrics devised by Jacob Yerushalmy in 

1947 for the evaluation of binary classifications methods. Sensitivity, also known as the 

recall and true positive rate, measures the number of truly positive instances that are 

classified as positive.  

 

 h:Q6CGCpCG( = 	i1q = 	
i1

i1 + f3 [17] 

Sensitivity Equation 

 

Specificity, also called the true negative rate, is a measure of the truly negative instances 

that are classified as such.  

 hR:7C$C7CG( = 	i3q = 	
i3

i3 + f1 [18] 

Specificity equation 

 

High sensitivity means that few positive instances are overlooked, resulting in few false 

negatives. Conversely, high specificity means that few negative instances are classified as 

positive, resulting in few false positives.85 
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Matthew’s Correlation Coefficient 

The Matthew’s Correlation Coefficient (MCC) is a measure of the quality of a 

binary classification.86 The MCC is considered a good evaluation metric when the 

datasets contain different numbers of instances of each class. MCC can be calculated as: 

 

 TEE = 	
(i1 ∗ 	i3) − (f3 ∗ f1)

W(i1 + f3) ∗ (i3 + f1) ∗ (i1 + f1) ∗ (i3 + f3)
 [19] 

Matthew’s Correlation Coefficient equation 

 

MCC returns values between -1 and 1 with -1 indicating complete disagreement between 

the predicted results and the actual classification, 0 indicates predictions no better than 

chance and 1 represents complete agreement between the predicted and observed classes. 

Receiver operating characteristic curves 

Receiver operating characteristic curves or ROC curves are a graphical 

representation of the classification ability of an algorithm as its discrimination threshold 

is varied. A ROC curve is generated by plotting the true positive rate versus the false 

positive rate at different threshold values. In the case when a classifier returns a real value 

a threshold value is used to determine the cutoff point between a positive classification 

and a negative classification. In these cases, the choice of a threshold will directly affect 

the number of true positive vs false positives. A good classifier, resulting in classes with 

well separated distributions, would generate a ROC curve with a point close to the upper 

left position indicating high specificity (few false negatives) and high sensitivity (few 

false positives). As the classifier become less able to separate the instances based on the 



37 

input the ROC curve will more closely approach the diagonal line from the lower left to 

the upper right indicative of random guessing. A classifier that performs worse than 

guessing will exhibit a convex ROC curve. In this instance, were choice of threshold 

would depend on the purpose of the algorithm and a determination as to the desire to 

suppress type I or type II errors. 

 

 
Figure 9 - ROC curve for classifier able to separate instances with a high degree of success 
 

 
Figure 10 - ROC curve for classifier able to separate instances with a low degree of success 
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CHAPTER 4 - DATASET DEVELOPMENT AND FEATURE EXTRACTION 

Introduction 

Many machine learning algorithms require that the data input into the algorithm be in 

numerical format. Since peptides are a physical structure it is necessary to encode the 

peptide in some way that allows for a numerical representation while maintaining the 

information contained within the sequence and structure of the molecule. We propose a 

method using trigrams to encapsulate the sequence and secondary structure information 

and a set of simplexes to encode the tertiary structure information. In order to reduce the 

number of potential trigrams we also evaluate the use of five different alphabet reduction 

schemes.  

Methods 

In this binary classification setting the learning task is to predict if a peptide possesses an 

antimicrobial property. To achieve this goal, a dataset must be developed that is 

composed of features that numerically describe the peptide and a label. The label 

indicates if the peptide in question is antimicrobial or not and is considered the ground 

truth for the purposes of this experiment. The following section will describe the process 

of developing a data set which includes features that represent the primary, secondary and 

tertiary structure of each peptide.  
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Amp	selection	

While there are a number of publicly available dataset of antimicrobial peptides, 

unfortunately, there are no sample sets that also contain equivalent negative examples. In 

order to generate a complete dataset with both positive and negative samples a number of 

sources were utilized. Below we will describe the selection of both positive and negative 

AMPs included in the dataset. The protein sequences as well as the DSSP sequences for 

each peptide is provided at http://omics.gmu.edu/ssnaap/assets/supplemental.html. 

Positive	set	selection	
 
The information for known antimicrobial peptides was obtained from the cAMP 

database15 The cAMP database contains over 8000 antimicrobial sequences, 757 of which 

have empirically derived structures available. Of these 757 sequences, 213 were excluded 

because the DSSP structure sequences were not available in the DSSP archive. Another 

104 were excluded because they were determined to be either too long or too short. Any 

sequence less than 10 amino acids long were excluded because the information content 

was determined to be too small, while those with greater than 140 were also excluded. 

The longer sequences were excluded because it is believed that since the antimicrobial 

portion of a peptide is generally less than 50 amino acids the additional, non-

antimicrobial, sequence would obscure the active region and confound the learning 

algorithm. An additional 14 instances were removed due to poor overlap between the 

antimicrobial sequence and the DSSP. The final positive set contains 426 known 

antimicrobial peptides with a variety of activity types.  
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Negative	set	selection	
 
A total of 5 negative sets were produced. The decision to generate redundant negative 

data sets was made in order to compensate for the low probability that peptides with 

antimicrobial activity, but that have not been classified as such, may have been included 

in the negative set. By using multiple sets the rare addition of a false negative could be 

offset by the abundance of true negatives. 

Each negative set was made to pair with the positive set by selecting peptide 

fragments with less than 50% sequence identity to any known AMP sequence. The 

negative set was generated using peptide fragments to match the length of its paired 

AMP. All five negative datasets can be found at 

http://omics.gmu.edu/ssnaap/assets/supplemental.html. Similar negative datasets were 

used by previous publications.51,66,77,87 

Feature Engineering 

Amino	Acid	content	
 
Amino acid content for each dataset was calculated using the protein analysis module 

contained within BioPython.15 Amino acid composition of the original sequences can be 

found in Figure 11.  
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Figure 11 - Distribution of amino acids in positive and negative samples. . 
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Figure 12 - Distribution of reduced alphabet amino acids 

 

Alphabet	reduction	
 

Each amino acid sequence was reduced from the standard 20 letter alphabet to a 

three-letter alphabet. 5 different alphabets resulted in 5 sequence iterations. The alphabets 

chosen were previously shown to produce good results in the classification of AMP’s.60 

 

Table 2: Schemes for alphabet reduction  
Letter 1 – B Letter 2 – J Letter 3 - U Grouping 

strategy 

Reduced alphabet A88 CMFILVWY ATHGPR DESNQK Minimized 
mismatch 
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Reduced alphabet B87 CMFILVWY GPATS EKRDNQH BLOSUM & 
Monte Carlo 
method 

Reduced alphabet C89 AVFILPMG DEKR STYCNQHW Chemical 
properties 

Reduced alphabet D90 MHVYNDI QLEKF WPRGSATC Molecular 
recognition 
theory 

Reduced alphabet E91 LASGVTIPMC EKRDNQH FYW BLOSUM & 
deterministic 
reduction 

 

Alphabet	reduction	grouping	strategies	
 
Strategies for amino acid alphabet reduction abound within the biological literature. The 

most simplistic reduction scheme, known as the HP model where H stands for 

hydrophobic and P for polar, consists of only two letters and uses hydrophobicity as the 

decision vector. However, previous research with the HP model has determined that more 

than two residues are required for successful modeling of protein structure.92–94 As a 

result a more detailed pattern than that available from a two letter alphabet is required. In 

addition to those discussed below alphabets based on cassette mutation,95 reduction of a 

binary dendrogram,96 Finite Information Theory with respect to backbone structure,61 

Manhattan and Euclidian distances in the Miyazawa-Jernigan matrix (a matrix of 

pairwise interaction potentials between amino acids),97 and others.94,98–100 

With any reduction in alphabet complexity there is an inherent loss of information 

content. However, as the number of letters in the reduced alphabet decreases, the number 

of n-gram combinations decreases exponentially. Therefore, is in the best interest of this 

research, especially considering the limited dataset, to use as small an alphabet as 
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possible. In a case where there are a vast number of sparse features overfitting is highly 

likely. Due to the fact that only a finite amount of peptide sequence is available and the 

sparse nature of this data, reduction in feature number is necessary to increase the 

statistical significance of the results.  

 

 
Figure 13 - Number of 3-gram combinations as a function of alphabet size 
 

The general strategy for grouping residues into a single monomer rests on the assumption 

that each residue can be placed into a group with other residues with a similar chemical 

or physical characteristic. In order to reduce the number of groups, the individual 

residues in the two groups should interactions similar to each other, but distinct from 

those of residues in the other groups.  

Five different 3 letter alphabet reduction grouping strategies are considered for this work. 

Each of these strategies exploits a different component of amino acid composition, 

structure or homology. These strategies will be more completely discussed below. 
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Reduced alphabet A - Minimized Mismatch 

The minimized mismatch strategy88 is a reduction strategy based on minimizing 

the mismatches between a reduced matrix and the statistical contact potentials of the 

Miyazawa and Jernigan (MJ) matrix versus the number of reduced residues. The MJ 

matrix measures inter-residue contact energies between pairs of amino acids.101 

For this strategy, mismatch is defined as the discrepancy of properties between 

elements and blocks. A reduction algorithm rests on the idea that amino acids can be 

placed in a number of groups in which each group has different physical and chemical 

properties than the others. For example, assume that all residues can be placed in one of 5 

blocks (A, B, C, D or E) based on physical and chemical properties. Elements in one 

group would should have different reactions with each other than they would with 

members outside of the group, but the interactions between, for example, groups A and B 

should be similar for all amino acids in those groups. Furthermore assume that the 

relative interactions between residues in group A and B are less than the interactions 

between residues in group C and D. if a single residue pair in block AB, A(i) and B(j), 

interact more strongly than a residue pair in CD, C(k) and D(l), then this interaction is 

described as a mismatch. The reduction algorithm would attempt to minimize these 

mismatches. 

Using this technique Wang and Wang were able to describe a 3-letter alphabet 

with an average contact overlap of about 0.8. Contact overlap is defined as the number of 

common contacts in the native structure and the lowest energy structure, as determined 
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by a Monte Carlo method described in Xing et al.,102 normalized by the maximal number 

of native contacts.  

Reduced alphabet B – BLOSUM65 & Monte Carlo Reduction 

The BLOSUM64/Monte Carlo Reduction strategy exploits the commonly used 

BLOSUM62 (blocks substitution matrix) originally proposed by Henikoff and Henikoff 

in 1992.103 This matrix represents the log odds ratio of one amino acid substituting 

another in sequences with 62% similarity. A heuristic MC method is used to approach the 

optimal solution by attempting to maximize the similarity score between the reduced 

peptide sequence generated from an initially randomly generated reduction scheme. For 

each iteration of the MC method the groupings of two residues are switched based on a 

Metropolis criterion where the probability of accepting the move is: 

 

 1 = exp(h1BC − h2D%) /i.E  [20] 
Metropolis probability of accepting a move  Blosum similarity strategy – Metropolis criterion 

 

Where Sold is the total similarity score for simplified sequences prior to the switch 

and Snew is the total similarity score for the simplified sequences after the switch. If P is 

larger than a randomly generated number between 0 and 1 the move is accepted if not, 

the move is rejected.  

Approximately 107 MC iterations were required to find the maximum score for 

each possible combination of amino acid groupings. Amino acid groupings consist of the 

number of sets that characterize the number of residues in each group. For example, 

given an alphabet of 3 characters there are 33 sets such as (1,1,18), (1,2,17), (1,3,16) etc. 



50 

The maximum similarity score was calculated for each set and the maximum of all sets 

was chosen as the final reduced alphabet.  

The resulting 3-letter reduced alphabet produced a coverage of about .35 when 

normalized to the coverage provided by a 20 letter alphabet. Coverage is determined by 

comparing a reduced sequence to a known homolog using the BLASTP program. 

Coverage is defined as the number of protein sequence pairs with an aligned score larger 

than an expectation threshold (E-value) divided by the total number of homologous pairs 

(9044 in the SCOP40 database used).  

Reduced alphabet C – Chemical Properties 

Amino acids are grouped based on the charge of their side chain.  The polar amino acids 

are asparagine, cystine, glutamine, histidine, serine, threonine, tryptophan and tyrosine.  

These residues are commonly found on the exterior of the peptide and may form 

hydrogen bonds with other amino acids or external ligands.  The charged amino acids 

group is made up of arginine, aspartic acid, glutamic acid and lysine.  Histidine is not 

considered to be a charged amino acid in this instance because with a side chain pKa of 

~6.0 only the Henderson-Hasselbach equation would predict that only about 10% of the 

residues will be protonated at biological pH.  Charged amino acids are most commonly 

found on the exterior of a peptide proven important to the peptide.  These residues also 

form salt bridges that have proven important to the stabilization of three-dimensional 

peptide structure.  Finally, the hydrophobic amino acids are alanine, isoleucine, leucine, 

methionine, phenylalanine, proline, and valine.  These amino acids are most often found 

buried within the peptide structure or interacting with lipid layer of a membrane. Glycine 
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is included in the hydrophobic group as it is generally considered to be ambivalent, but is 

not polar or charged.     

 
Reduced alphabet D – Molecular Recognition Theory 

This reduction technique is based on work by LB Mekler and the Mekler-Idlis (M-I) pair 

theory104 which states that amino acids may make specific pairwise interactions with the 

amino acid coded for by the reverse complement codon.  Mekler proposed that the 

genetic code contained was able to specify-through space interactions between pairs of 

amino acid residues.   

For example, given the codons for Glutamic Acid are GAA and GAG, their reverse 

complements would be UUC and UCU.  These codons encode the amino acids 

phenylalanine and leucine. Mekler and Idlis identified all of the possible sense–antisense 

amino acid residue partnerships segregated them into three non-overlapping groups 

[Figure 14]. 
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Figure 14 - Non-overlapping sets of Mekler-Idlis amino acid pairs.  Amino acids are represented by their one 
letter designation.  Pink circles indicate polar residues while blue circles indicate non-polar residues. 
 

Reduced alphabet E – BLOSUM50 & deterministic reduction 

Similar to the BLOSUM similarity scoring strategy discussed above, this method clusters 

amino acids based on the BLOSUM50 similarity scores, but it does not make use of a 

Monte Carlo method. Instead, a deterministic method for clustering is devised by first 

calculating the correlation coefficients for all similarity matrix elements for all pairs of 

amino acids using the following equation: 

 E-!,-" =	
∑ T-!,)
"$
)5! ∗ 	T-",)

(∑ T-!,)
"$
)5! ∗ 	T-!,))(∑ T-",)

"$
)5! ∗ 	T-",))

 [21] correlation coefficients 

for all similarity matrix elements 
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After all correlations have been calculated the pair with the highest correlation is placed 

in a group. The next highest correlated pair is either added to the first group, if one letter 

of the pair is in the first group, or separated into a new group. This grouping continues 

until the desired number of groups has been reached. Matrix values for grouped elements 

are calculated based on the average of the constituent matrix elements.  

The resulting peptides with reduced complexity were evaluated much the same way that 

those developed using the BLOSUM64 and Monte Carlo method were evaluated using 

coverage of homologs in the SCOP40 database. The resulting coverage rates for this 

method were lower than those found for the BLOSUM64 method at small alphabets but 

increased rapidly for larger alphabets until the coverage exceeded that of the BLOSUM 

64 method starting at alphabets of greater than 6 letters. 

 The sequences resulting from alphabet reduction produced amino acid analogs 

with distributions visualized in Figure 15 
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Figure 15 - Distribution of Amino Acid analogs 
 

N-gram	generation	
 

Due to the small size of AMP’s when compared to proteins the choice of a 

relatively small N was deemed prudent in order to avoid an unnecessarily high number of 

features when compared to the size of the dataset. Since it has been previously 

demonstrated that the use of trigrams results in a high level of accuracy in using both 

Naïve-Bayes and Decision tree algorithms for the classification of proteins at the family 

level49 the N for this experiment was set to three.  

Using a sliding window method, each full set of 3 consecutive residues was 

considered to be a tri-gram. The numbers of each of the possible 27 tri-grams were 

summed for each peptide. The frequency of each tri-gram was determined by dividing the 

total number of that tri-gram by the number of tri-grams possible in a given sequence 

(M). 

 !!"#$"%&" = #$%&'ℎ − (% − 1) [22] Number of N-grams in a 

peptide 
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 - = 	 /%'()*+!,"#$"%&"
 [23] N-Gram Frequency 

 
Peptide frequencies were then normalized by dividing the frequency of the tri-

gram by the frequency of each individual symbol. 

 	"!"#$!"%&&' =	
""(#

$" ∗ 	$( ∗ $#
 [24] N-Gram likelihood 

Finally the log of the likelihood for each tri-gram was taken and placed into a 

dataset for analysis. 

 &'()*+,&*ℎ''. = log)("!"#$!"%&&') [25] Log of n-gram 

likelihood 
 

 In peptides where there were 0 instances of a particular tri-gram the log 

likelihood is artificially set to 0 to avoid null data. 

Using a log of the likelihood results in a measure centered around 0 in which 

positive numbers represent frequencies greater than chance and negative numbers 

represent frequencies occurring less than would be expected by chance. Tri-grams were 

developed for each amino acid representation [Figure 16] and the structure sequence 

[Figure 18] in the same manner.  
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58 

 

 
Figure 16 - Trigram log odds ratios for sample set 0.   
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Figure 17 - Trigram log odds ratio of all datasets using reduction scheme A 
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Figure 18 – Trigram Log odds ratio of structure data  
 

	Simplex	Generation	
 

To capture the tertiary structure of the peptides in a tabulated form the choice was 

made to analyze the simplexes generated through the use of Delaunay triangulations. 
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Delaunay triangulation on a plane results from the generation of all triangles from a set of 

points in which the circumcircle of each triangle (the circle containing in each point) does 

not contain any other points. In a three-dimensional structure the triangles are replaced by 

polygons and the circumcircles become circumspheres. In the case of peptide 

triangulation, the vertices are represented by each EF atom the resulting Delaunay 

simplex represents four nearest neighbors EFand therefore four nearest neighbor residues. 

Delaunay tessellations have been used in structural analysis of peptides in the past and 

exhibit good potential as a structural description method.105,106 Peptide composition 

analysis of Delaunay simplexes has shown that residues associate in a highly non-random 

manner, with some simplexes appearing orders of magnitude more or less frequently than 

would be expected by chance alone.107 
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Figure 19 - Delaunay triangulates on a plane.  
 

Simplexes were developed using the pyhull package, a python wrapper of qhull 

for the generation of Delaunay triangulations. The resulting 4-residue simplexes for each 

amino acid in the desired peptide were reduced using the designated alphabet and the log 

likelihood of each simplex was calculated in a manner similar to that used to calculate the 

log likelihoods for n-grams.108 In the cases of peptides within the negative set, some 

residues contained within some simplexes may not be contained within the analyzed 

sequence. This is due to the use of sequence fragments for negative comparison. In this 

case, the likelihood of each simplex is calculated based on the entire peptide sequence, 

not just the section under analysis. Log odds ratios for each simplex in sample set 0 can 

be found in Figure 20.  The data for all sample set is located at 

http://omics.gmu.edu/ssnaap/assets/supplemental.html 
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Figure 20 - Log odds ratios for Delaunay simplexes generated by each alphabet reduction, scheme sample set 0.   
 

Results 

Each of the resulting datasets is comprised of 5 reduced alphabets each alphabet 

contains 20 features describing the percentage of each amino acid in the analyzed 

sequence, 27 amino acid sequence features representing the 27 sequence based 3-grams, 

27 secondary structure features representing the 27 3-grams based on the DSSP 

secondary structures and 81 tertiary structure features based on reduced sequence 

Delaunay simplexes  
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Amino	acid	variation	
 

A preliminary analysis of the data shows that there are some significant 

differences between the positive and the negative data sets. For example, cystine is more 

prevalent in the positive peptides compared with the negative peptides, while both 

aspartic acid and glutamic acid are underrepresented in peptides with antimicrobial 

activity [Figure 21]. These results are similar to previously published results.64,65  

 
Figure 21 – Significant Amino acid variation in original sequences  
 

This supports previous research that have also found high percentages of cystine 

in AMPs particularly plant peptides and anti-viral peptides.109,110 The underrepresentation 

of Glutamic and Aspratic acid is likely due to the fact that most AMPs are positively 

charged and would, therefore, lack negatively charged amino acids.  

 
Amino	Acid	n-gram	Variation	
 

Some differences were evident in the log odds ratios of n-grams [Figure 22]. 
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Figure 22 – Significantly different reduced alphabet n-gram sequences 
  

Secondary	Structure	variation	
 

Positive AMPs showed a slightly increased tendency toward coil structures as 

compared with negative peptides, which were comprised of more helical structures 

[Figure 23]. 
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Figure 23 - Distribution of Structures 
 

 
Figure 24 – Significantly different structure Ngrams of AMPs and non-AMP controls 
 

Structural	n-gram	variation	
 

Structural n-grams show slightly more variation that a simple look at composition. 

Trigrams of all three structures appear more often that would be expect in both positive 

and negative samples, with negative samples presenting coil and beta sheet triplets with a 

significantly higher LOR than positive samples.  
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Tessellation	Simplex	Variations	
 
There was a great deal of variation between the different alphabet reduction schemes 

when it came to three dimensional structures represented by simplexes. Schemes A, B 

and C exposed a great deal of variation between the positive and the negative set with 

more than 10 simplexes being significantly different between the positive and negative 

samples [Figure 25].  

Using both reduction scheme A and B we see a large difference in the number of 

simplexes composed of the B and J groups of amino acids, with AMPs generally 

exhibiting a higher LOR of these simplexes than the negative samples.  
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Figure 25 – Simplexes with a significant variation between positive and negative samples 
 

Conclusions  

The structural differences between peptides with and without antimicrobial 

activity indicate that there are some inherent differences between the tertiary structures of 

these peptides. In both reduction scheme A and B we see an increased likelihood of 

simplex composed primarily of the B type amino acid. The B group in both reduction 

schemes is composed of primarily hydrophobic residues. These pockets of 

hydrophobicity have been identified previously and are thought to increase the peptide’s 

ability to interact with the bacterial cellular membrane.111,112 However, a peptide with an 

overabundance of hydrophobic residues is more apt to for self-aggregation. This 

propensity is balanced by a distribution of positive charges at each terminus, limiting the 

aggregation to dimers.113 
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CHAPTER 5 – ALGORITHM DEVELOPMENT AND CLASSIFICATION 

PREDICTION 

Introduction 

This chapter will discuss the process of selecting and validating a machine learning 

algorithm with the intent of predicting amino acid sequences with a high probability of 

antimicrobial activity. Previous research has focused on a small number of potential 

algorithms such as Support Vector Machines, clustering algorithms and small neural 

networks (See Error! Reference source not found. for a complete listing) but have not 

taken more robust algorithms such as boosted ensemble algorithms and multilayer neural 

networks into consideration. In this work we will evaluate the algorithms listed above as 

well as several ensemble and deep learning algorithms.  

Methods 

Algorithm selection 

Each algorithm was screened using the default optimization settings with a ten-

fold cross validation. Accuracy was calculated by dividing the number of correct 

predictions by the total number of instances. Mean accuracies for algorithms across all 

reduction schemes can be seen in Figure 26. The ten algorithms with the highest accuracy 

are presented in Error! Reference source not found..  
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Figure 26 - Accuracy scores for each of the prediction algorithms tested. Algorithms were tested using the default 
optimization parameters. 
 

Table 3 - Models and reduction schemes resulting in highest accuracy 

 

Model optimization 

Each the hyperparameter for each model was optimized using a grid search. The 

hyperparameters and the search space for each parameter used in the grid search are 

Model Number Classifier Sequence 
Reduction 
Scheme 

Mean   Accuracy (%) Median 

1 Extra Trees E 0.879 ±	0.07 0.88 

2 Extra Trees D 0.878 ± 0.07 0.88 
3 Extra Trees A 0.872 ±	0.06 0.87 

4 Extra Trees B 0.867 ±	0.06 0.87 

5 Extra Trees C 0.867 ±	0.08 0.87 
6 GBC E 0.851 ±	0.07 0.85 

7 GBC B 0.845 ±	0.05 0.84 
8 AdaBoost E 0.839 ±	0.06 0.84 

9 AdaBoost A 0.839 ±	0.05 0.84 

10 GBC A 0.833 ±	0.04 0.83 
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found in Error! Reference source not found.. A grid search systematically iterates over 

a multidimensional space of hyper parameters, fitting the model to each combination. The 

grid search only progresses for a set number of iterations, usually not enough to allow the 

model to find convergence. This allows the grid search to iterate over a very large search 

space in a reasonable time frame.  

 

Table 4 - Hyperparameters and Search space for model optimization 
Classifier Hyperparameter Search space 
Extra Trees N_estimators [50,100,200], 

depth [1,3,9] 

GBC N_estimators [50,100,200] 
Learning_rate [0.5, 1.0, 1.5] 
Max_depth [1,3,9] 

AdaBoost N_estimators [50, 100,200] 
Learning_rate [0.5, 1.0, 1.5] 
Algorithm [‘SAMME’, SAMME.R’] 

Gaussian NB Var_smoothing [10-7, 10-9, 10-11] 
 

Once the optimal parameters have been found we can fully train a model using the 

identified parameters [Error! Reference source not found.].  These models do not 

appear to be significantly more accurate than their unoptimized counterparts however, 

this optimization may prove beneficial for feature reduction [ 

Figure 27]. 

 

Table 5 - Optimized Hyperparameters for each Model 

Model 
Number 

Classifier Sequence 
Reduction 
Scheme 

Optimized 
Hypterparameters 

Mean   
Accuracy(%) 

Median 
Score 

1 Extra Trees E N_estimators: 100 0.86 ±	0.06 0.88 
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Max_depth: 9 

2 Extra Trees D N_estimators: 200 
Max_depth: 9 

0.85 ±	0.07 0.86 

3 Extra Trees A N_estimators: 200 
Max_depth: 3 

0.84 ±	0.07 0.85 

4 Extra Trees B N_estimators: 100 
Max_depth: 9 

0.86 ±	0.06 0.88 

5 Extra Trees C N_estimators: 100 
Max_depth: 9 

0.85 ±	0.06 0.86 

6 GBC E N_estimators: 50 
Max_depth: 1 
Learning_rate:1.0 

0.82 ±	0.06 0.83 

7 GBC B N_estimators: 50 
Max_depth:3 
Learning_rate:0.5 

0.86 ±	0.05 0.86 

8 AdaBoost E N_estimators: 50 
Learning_rate:1.0 
Algorithm: Samme.r 

0.80 ±	0.07 0.81 

9 AdaBoost A N_estimators: 210 
Learning_rate:1.0 
Algorithm: Samme.r 

0.84 ±	0.06 0.84 

10 GBC A N_estimators: 50 
Max_depth: 3 
Learning_rate:1.5 

0.83 ±	0.06 0.83 
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Figure 27 - Accuracy of optimized models 
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Figure 28 - AUC graphs for each of the optimized models 
 

Conclusion 

Previous classification efforts have focused on individual classifiers such as SVM 

and a number of simple neural networks. I have found that the use of an ensemble, 

boosted algorithm performs with a higher rate of accuracy than many of these previous 

algorithms with the ExtraTrees Classifier algorithm performing with an accuracy in the 

range of 86 - 88% and an AUC greater than 0.96 across all AMP types. This is 

comparable or superior to most previous work, especially considering that the negative 

set was paired for sequence and structure similarity and that no attempt was made to pre-

define the AMPs by their target organisms. Proceeding chapters will describe efforts to 

refine the algorithms as well as to identify feature within the AMP that may lead to the 

identified activity. Further work has been done to identify algorithms that accurately 

identify specific classes of AMPs such as those with anti-bacterial or anti-parasitic 

activity.  
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CHAPTER 6 – IDENTIFICATION OF RELEVENT FEATURES 

Introduction 

All peptides are composed of amino acids in a specific sequence and spatial 

conformation. It is this sequence and three-dimensional structure that determine the 

functionality of the resulting peptide. One of the goals of this research is to identify 

specific features that are likely to result in antimicrobial activity. The identification of 

such features can lead to more successful identification of naturally occurring 

antimicrobial peptides as well as inform the development of future, synthetic AMPs. 

Initial optimization was done using all of the available features. However, this does little 

to elucidate the importance of individual features for antimicrobial activity. In an attempt 

to identify the features most responsible for antimicrobial activity an attempt at feature 

selection was made.  

Feature selection should not be confused with dimensionality reduction, though 

they do both endeavor to reduce the number of attributes in a dataset. Dimensionality 

reduction, however, is the process of recombining attributes into new features through 

process such as Principle Component Analysis (PCA), which takes advantage of the co-

linearity of features to reduce dimensionality. While often successful, dimensionality 

reduction techniques to not preserve the information inherent within the features 
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themselves rendering it less useful if the goal is to understand the structure of a peptide, 

rather than simply predict its classification.  

Feature selection, also known as variable or attribute selection, is the process of 

selecting a subset of the data that is most relevant to the prediction problem at hand. 

Feature selection can be used to remove unneeded or redundant features from the dataset. 

The remaining features will be those that are most useful in distinguishing an AMP from 

a non-AMP and by extension, presumably the features that endow the peptide with 

antimicrobial activity.  

There are additional benefits to feature selection when it pertains to the ability of 

a classifier to make an accurate prediction. A large number of irrelevant features has the 

effect of forcing the classifier to work harder to identify feature that discriminate between 

the positive and the negative set. This increases computation time and can obscure 

important variations making predictions less accurate and can increase overfitting 

because the classifier makes more decisions based on irrelevant background noise.  

There are a number of feature extraction techniques commonly used in machine 

learning. Wrapper methods treat the feature reduction problem as a search problem. 

Different combinations of features are generated, evaluated and compared to other 

combinations to identify the most accurate subset. A rudimentary wrapper type search is 

undertaken in this research using combinations of the features based on the source of the 

data. The Recursive Feature Elimination (RFE) algorithm is another type of wrapper 

method in which the feature with the lowest rank based on a weighted ranking critera is 

removed over each iteration. However, the resulting feature set (Fm) does not necessarily 



81 

represent the individually most relevent features, but an optimal subset when taken 

together.114  

Methods 

Isolation of feature sets 

The first, rudimentary, attempt was done by using predefined subsets of the input 

data to train the ExtraTrees, GBC and Adaboost algorithms. The subsets were defined 

based on the method of data extraction. Amino acid percentages, sequence n-grams, 

structure n-grams and simplex n-grams were each identified as a ‘subset’. All possible 

combinations of the subsets were considered. Each subset combination was used to train 

and test one of the three most successful classification algorithms (AdaBoost, GBC, and 

ExtraTrees classifiers). It was assumed that if a reduced feature set lead to increased 

accuracy in AMP prediction that the features contained within where, in some way, 

relevant to antimicrobial activity. 

Univariant selection 

 Univariant selection uses a function to select the features most closely related to 

the desired output. Before feature selection, nonvariant features were removed. Using the 

SelectKBest function contained within the sklearn feature selection module a series of K 

features with the highest ANOVA f-value between the label and the feature were 

selected. Four K values [15, 25, 35, and 50] were evaluated for optimal accuracy. Each of 

the resulting features sets were used as the training set for one of the three previously 

defined classification algorithms. 
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Recursive Feature Elimination 

In recursive feature elimination a prediction model is built using the desired classifier 

algorithm. The features are then ranked by their importance to the model.  The least 

predictive feature is dropped, and the model is rebuilt using the remaining features.  This 

process continues in an iterative manner until the desired number of features remains. 

The resulting features are assumed to be those with the greatest relevance to the 

prediction.   

Top Algorithm selection 

The most accurate algorithm was selected and fully trained using the identified feature 

set. This model was then used for subsequent feature analysis.  

Results 

Feature subsets 

The mean accuracies for each combination of subsets for three classification 

algorithms is shown in Figure 29.  
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Figure 29 - Accuracy distribution of models with features selected by feature subsets 
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The models resulting in the top five accuracies are detailed in Error! Reference 

source not found.. The score distributions for the top 5 models are show in Figure 30 

 

Table 6 - Accuracies for feature selection using subset Feature Selection 
Model Reduction 

Scheme 
Features Mean Median 

ExtraTrees E Sequence, Structure & Amino Acid Content 0.88±0.06 0.89 
ExtraTrees D Sequence, Structure & Amino Acid Content 0.87±0.04 0.89 
ExtraTrees A Sequence, Structure & Amino Acid Content 0.88±0.06 0.90 
ExtraTrees B Amino Acid Content 0.88±0.05 0.89 
ExtraTrees C Structure & Amino Acid Content 0.88±0.05 0.89 
GBC E Sequence, Structure & Amino Acid Content 0.84±0.06 0.85 
GBC B All Features 0.84±0.05 0.85 
AdaBoost E Structure & Amino Acid Content 0.84±0.05 0.85 
AdaBoost A Structure & Amino Acid Content 0.84±0.05 0.85 
GBC A Structure & Amino Acid Content 0.84±0.05 0.84 

 

 
Figure 30 – Score distribution for the most accurate models 
 

Univariant selection 

The accuracy distributions for each model with either 15, 25, 35 or 50 selected features 

can be found in Figure 31 and detailed in Error! Reference source not found..  
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Figure 31 - Accuracy distribution of models with features selected by univariant selection 
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Table 7 - Accuracies for feature selection using Univariant Feature Selection 
Model Reduction 

Scheme 
15 features 25 features 35 features 50 features 
Mean Median Mean Median Mean Median Mean Median 

ExtraTrees E 0.70±0.04 0.71 0.70±0.07 0.70 0.70±0.05 0.69 0.70±0.05 0.70 
ExtraTrees D 0.70±0.04 0.71 0.71±0.04 0.72 0.71±0.06 0.71 0.73±0.07 0.71 
ExtraTrees A 0.72±0.06 0.72 0.72±0.05 0.72 0.72±0.04 0.72 0.73±0.05 0.73 
ExtraTrees B 0.72±0.05 0.72 0.72±0.05 0.72 0.71±0.06 0.72 0.75±0.08 0.73 
ExtraTrees C 0.72±0.05 0.72 0.73±0.06 0.73 0.72±0.05 0.72 0.78±0.09 0.77 
GBC E 0.69±0.06 0.69 0.68±0.05 0.67 0.67 ± 0.06 0.68 0.67±0.05 0.68 
GBC B 0.70±0.05 0.69 0.70±0.05 0.69 0.72 ± 0.05 0.71 0.74±0.08 0.73 
AdaBoost E 0.70±0.05 0.69 0.70±0.05 0.69 0.72 ± 0.05 0.71 0.74±0.08 0.73 
AdaBoost A 0.65±0.05 0.66 0.66±0.05 0.66 0.65 ± 0.05 0.66 0.63±0.05 0.64 
GBC A 0.69±0.05 0.68 0.68±0.08 0.68 0.68 ± 0.05 0.68 0.69±0.05 0.68 

 

There were 4 features with a standard deviation of 0 for all reduction schemes. These 

features were removed as they added no discriminatory information to the dataset. (these 

features were all secondary structure features and therefore did not vary from one 

alphabet reduction scheme to the next. [sCHC, sCHB, sBHC, sBHB]).  

While the features selected varied between the different alphabet reduction 

schemes, several amino acid content features were selected for each reduction scheme. 

Amino acid percentages for C, E Q, M, and D were repeatedly within the features 

selected. A complete listing of the features for each feature reduction scheme can be 

found at http://omics.gmu.edu/ssnaap/assets/supplemental.html. If we consider only the 

data used for the 5 most accurate prediction models we find that this technique does not 

produce results that are statistically more accurate than either using the entire data set or 

selecting basic subsets [Error! Reference source not found.]. 

 

Recursive Feature Selection 

Recursive feature selection resulted in the highest accuracies of all of the feature 

selection schemes. The top ten models are detailed in Error! Reference source not 
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found.. Recursive elimination produced the most accurate results. Once again, the amino 

acid composition features were well represented among the selected features, as well as 

features representing the three-dimensional structure. A complete listing of the features 

selected is found at http://omics.gmu.edu/ssnaap/assets/supplemental.html 
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Figure 32 - Accuracy distribution of models with features selected by recursive selection 

 

Table 8 - Accuracies for feature selection using Recursive Feature Elimination 
Model Reduction 

Scheme 
15 features 25 features 35 features 50 features 
Mean Median Mean Median Mean Median Mean Median 

ExtraTrees E 0.86±0.07 0.88 0.87±0.06 0.88 0.87±0.06 0.89 0.88±0.06 0.89 
ExtraTrees D 0.86±0.07 0.88 0.87±0.06 0.88 0.88±0.06 0.89 0.88±0.06 0.89 
ExtraTrees A 0.84±0.07 0.86 0.85±0.07 0.86 0.85±0.07 0.86 0.85±0.07 0.85 
ExtraTrees B 0.86±0.07 0.88 0.88±0.08 0.88 0.88±0.07 0.89 0.88±0.06 0.89 
ExtraTrees C 0.87±0.07 0.88 0.88±0.06 0.88 0.87±0.06 0.88 0.88±0.06 0.88 
GBC E 0.86±0.06 0.87 0.68±0.05 0.87 0.85 ± 0.06 0.86 0.84±0.06 0.85 
GBC B 0.88±0.04 0.88 0.87±0.05 0.88 0.88 ± 0.04 0.88 0.88±0.05 0.89 
AdaBoost E 0.83±0.07 0.84 0.83±0.06 0.84 0.83 ± 0.07 0.84 0.83±0.07 0.84 
AdaBoost A 0.84±0.06 0.83 0.87±0.05 0.87 0.88 ± 0.05 0.89 0.88±0.05 0.88 
GBC A 0.83±0.06 0.84 0.84±0.05 0.84 0.84 ± 0.05 0.85 0.85±0.06 0.85 
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Conclusions 

Feature subsets 

 
All 4 of the feature subsets appear in one of the most accurate models.  However, 

amino acid content appears in every model, while tertiary structure based simplexes only 

appear in a single model.  The importance of the amino acid composition of peptides will 

be further reinforced in the subsequent discussion of other feature selection methods.  

Secondary structure elements also make a strong showing, appearing in 9 of the ten top 

models.  This lends to the conclusion that amino acid content, and by extension 

physiochemical properties, and secondary structures are most relevant to AMP activity.   

Univariate	Selection	

 396 unique features appear in the ten models of interest when features are selected 

using univariate selection. This unexpectedly large number is due to the fact that some 

sample sets may have different features selected for the same model. Many of the 

features most frequently selected result from one of the reduction schemes with schemes 

C and B being highly represented in the most frequent features. It should be noted, 

however, that only one model made use of the C and B reduction schemes, so their high 

rate of appearance should be weighted against the fact that a single appearance one model 

set would result in 100% of the possible appearances. The relatively low accuracy rates 

of models arising from univariate selection lead to the assumption that this feature 

selection technique is not well suited to this machine learning problem. As this algorithm 

disproportionally selects features with larger deviation it will select those features where 

larger deviation is more likely, such as those from the simplex datasets where there are 81 
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potential features as opposed to amino acid content where there are only 20 potential 

features.   

 
Figure 33:Distribution of occurrences of the most common features across the 10 models using univariate 
selection 
 

Recursive Selection 

 
 There are 351 unique features selected using recursive selection.  The features 

most commonly selected in this set represent a greater reliance on structural and amino 

acid content features, consistent with the results from the feature subsets above. 

Recursive feature selection resulted in models with greater accuracy indicating that this 

may be a more applicable feature selection technique for AMP prediction. Once again, 

features from reduction schemes B and C are highly represented in the feature set, though 

this may be an artificially inflated representation due to the small number of models 

utilizing those schema.  



92 

 
Figure 34: Distribution of occurrences of the most common features across the 10 models using recursive 
selection 
 

Algorithm accuracy 

Based on the results from feature selection it is not possible to select a specific 

model with the highest accuracy. We can see, however, that the ExtraTrees model seems 

to perform with the highest accuracy regardless of the features chosen indicating that this 

algorithm is robust enough to detect AMP’s versus non-amps with approximately 89% 

accuracy. Considering that this algorithm accomplished similar accuracy using only 

structural and amino acid content columns it can be deduced that these small secondary 

structures and physiological characteristics are important factors in AMP activity.  
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CHAPTER 7 – LEARNING MODEL ANALYSIS 

Introduction 

 While it is not possible to select a single ‘best’ model, it is still valuable to 

analyze the high performing models.  The ExtraTrees models are approximately 89% 

accurate in AMP prediction, indicating that they have managed to identify some 

important factors in AMP structure. By taking a deeper look at the methods and features 

weights of several of these models a greater understanding of AMP structure can be 

found.   

 In this section several physiological features have been added to the dataset.  

Historically, AMP prediction has been accomplished using these physiochemical 

properties.50,52,53,62,71,75,115 The most commonly cited properties are hydrophobic 

moment,52,62 charge,53,62,75 isoelectric point,50,53,71 aromaticity, aliphatic index, 

hydrophobicity,50,53,71,76,115 and charge density.52 They have been added at this point to 

determine if they can supplement the previously developed sequence and structure based 

models.   

Methods 

Addition of physiochemical properties 

 Six physiochemical features were added to the dataset using the ModlAMP 

library116. The features selected were hydrophobic moment, charge, isoelectric point, 
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aromaticity, aliphatic index, and hydrophobic ratio.  The models previously optimized for 

the original dataset were retrained using the dataset with these physiochemical properties.  

Feature reduction was done as described above. 

  
  
Accuracy testing 

An additional test set was developed using AMPs added to the CAMP database 

since the original datasets were developed. This second test set was developed and 

processed in the same manner as the original test set and shows statistically similar 

feature distribution. Each model was used to predict the label for each set. The accuracy, 

ROC and MCC for each prediction was recorded.   

 

Results 

 
Accuracy testing  

Average accuracies for the initial test sets can be found in Figure 35: Average accuracies 

of each model for the initial test set and the accuracies for the new test set can be found in 

Figure 37.  Accuracies ranged from 0.47 to 0.94 for the original test set and from 0.43 to 

0.93 for the new test set.   

 

 
 



95 

 
Figure 35: Average accuracies of each model for the initial test set 
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Figure 36:Average accuracies of each model for the new test set 
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Accuracy testing with physiochemical features 

Average accuracies for the initial test sets can be found in Figure 37 and the accuracies 

for the new test set can be found in Figure 38.  Accuracies ranged from 0.62 to 0.92 for 

the original test set and from 0.62 to 0.93 for the new test set.   
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Figure 37 - Average accuracies of each model for the initial test set with physiochemical data 
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Figure 38 - Average accuracies of each model for the new test set with physiochemical data 
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Discussion 

When selecting for entire subsets of features, tertiary structure alone seemed to 

provide the least discriminatory information, while amino acid content alone produced 

the best results of any single subcategory with accuracies around 90%. This is likely due 

to the consistently higher than average cystine content found in AMPs. We did, however 

see increased accuracy as additional feature subsets were incorporated into the training 

set. Amino acid content coupled with structure or sequence n-grams acihieved accuracies 

of up to 92% rivaling the accuracies achieved by the optimized feature sets.. Despite the 

fact that physiochemical properties have been traditionally used in AMP prediction, the 

addition of these features did not appear to significantly improve the predictive abilities 

of the machine learning algorithms over those developed with only sequence and 

structure characteristics.  This may be due to the fact that the learning algorithm is able to 

infer the physiochemical properties from the amino acid content features. 

With more robust feature selection methods a variety features are combined to 

produce a dataset that reduces computational complexity while increasing predictive 

ability.  In these models, the percentages of amino acids continue to be highly weighted. 

Percentages of cytosine, aspartic acid and glutamic acid were the most heavily weighted 

features in the most accurate model. High percentages of cytosine contribute to a 

prediction of positive antimicrobial activity while high percentages of glutamic acid and 

aspartic acid contribute to a negative prediction [Figure 39]. Cystine residues allow for 

disulfide bonds which are believed to be integral in the three-dimensional confirmation of 
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the peptide molecule. Disulfide bridges are also involved in the formation of loops of the 

backbone structure. These loops can be exposed on the surface of the peptide and allow 

for interaction with external factors. Factors containing secondary looping structures are 

among the more highly weighted factors in the model [Figure 39], indicating that looping 

structures are important to AMP prediction.  
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Figure 39 - Feature weights for positive and negative predictions 

 

Conversely, the presence of higher percentages of aspartic and glutamic acid 

relate to negative predictions for antimicrobial activity. These amino acids are negatively 

charged at physiological pH and contribute to a negative or less positive charge for the 
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peptide as a whole. The lower prevalence of negative charged amino acids in AMPs 

would explain the fact that they are often cationic. Negatively charged peptides would 

have more difficulty associating with the negatively charged prokaryotic cellular 

membrane.  

We also find that the prevalence of structures with high numbers of beta sheet 

structures are predicted to lack antimicrobial activity. This may indicate the importance 

of helical and looping structures in peptides with antimicrobial activity. Once again, this 

makes sense given that we know that the ability to form amphipathic structures are 

important for antimicrobial activity and the association between a-helical peptides and 

amphipathic character is well established.  
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CHAPTER 8 : AMP-CLASSIFICATION WEB APPLICATION 

Introduction 

To make the previously described encoding and learning algorithms more easily 

accessible to the general biological research community a web based application has been 

developed and is available at http://omics.gmu.edu/ssnaap [Figure 40].  

Operation 

Data Entry 

 The peptide for analysis may be entered in one of 3 ways.   

1. PBD ID 

If the peptide in question is accessible through the protein data bank 

(https://www.rcsb.org/) a PDB id can be directly entered into the application.  

SSNAAP will request the PDB file directly from the API and process the data.  

Users may optially select the start and end residues or may indicate the chain to 

analyze (in the absence of explicit chain identification the A chain will be used. 

2. Direct Upload 

In the case where a user would like to analyze a peptide that is not available 

directly from the PDB, a file in PDB format may be directly uploaded into the 

application.  Data processing will proceed in the same manner as above with the 

same options to refine the peptide to be analyzed. 

3. Sequence and structure input 
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Users may directly enter an amino acid sequence and, optionally, a secondary 

structure sequence. In this case the models that make use of any missing data, 

tertiary structure and potentially secondary structure, and will not be available.   

 

 

Figure 40: Landing page for the SSNAAP web application 
 

Upon submit the application will perform initial data validation and processing. This 

initial validation will ensure that the peptide does not contain any non-standard amino 

acids.  If this is the case the user will be alerted and asked to specify a start or end 

position to rectify the situation. After processing the app will display a graphic indicating 

the amino acid content of the selected peptide. At this point, the user may progress to 

algorithm selection. 
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Algorithm Selection 

 There are three algorithms to choose from within the algorithm selection tab, 

ExtraTrees, GradientBoostedClassifier and AdaBoost. These algorithms have been shown 

to be successful in AMP prediction [citation here to publication]. Users will also select 

from 5 alphabet reduction schemes.  These five schemes are used to reduce the amino 

acid alphabet from 20 residues to 3 residues while maintaining the basic characteristics of 

each residue.  This reduces data sparsity in the final dataset. Finally, the user will select 

the features to be used in construting the data set. There are 4 feature sets that have been 

optimized for AMP prediction using Scikit-learn’s feature selection algorithms.  These 

feature sets consist of features derived from all four feature groups.  Users may also 

manually select one or more of the feature groups. These groups are based on the manner 

in which the data was derived.  Amino Acid composition is simply the percentage of each 

amino acid in the peptide. Sequence n-grams are trigrams of the peptide after alphabet 

reduction.  Secondary structure n-grams are trigrams of the DSSP annotated secondary 

structure.  Finally, Tertiary simplexes are 4 residue simplexes derived from the three 

dimetional structure of the peptide.  These simplexes were developed using the pyhull 

package. 

Users may also choose to use a prediction window.  This feature will allow for prediction 

of a defined number of residues across the entire peptide  

Upon submitting the application will perform the required data processing and prediction. 

A prediction of high or low AMP probability will be returned if a single prediction is 

requested.  In the case of a window prediction, a scatterplot of AMP probabilities will be 
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returned. The user then has the option of downloading the dataset developed by the app 

for further analysis. 
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CHAPTER 9: CONCLUSION AND FUTURE WORK 

This work has developed a method for encoding peptides based on primary, secondary 

and tertiary structures for machine learning and has presented several machine learning 

models to predict generalized antimicrobial activity that rival those available in the 

current literature.   

 Chapter 4 details the development of positive and negative datasets as well as the 

methodology for encoding these datasets into features applicable for machine learning.  

This encoding takes advantage of five alphabet reduction techniques to reduce data 

sparsity.  N-grams were utilized to maintain amino acid sequence composition while still 

enabling the development of numerical features.  N-grams were also used to encode the 

secondary structure of peptides with similar results.  Finally, amino acid simplices 

derived from Delaunay tessellations were similarly simplified using reduced alphabets 

and encoded into numeric log odds ratios. It is believed that this technique for encoding 

the complex structures of peptides can be extended to other computational biological 

questions not limited to AMP identification.  

 Chapter 5 explored the use of multiple machine learning algorithms for 

antimicrobial activity prediction.  It was found that ensemble models such as Extra Trees, 

Gradient Boosted Classifiers and AdaBoost performed with the highest levels of 
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accuracy.  These models were optimized and were found to result in high levels of 

accuracy (86-88%) when used to predict a test set.   

 In chapter 6 the learning models were used to determine relevant features for 

antimicrobial activity.  Using a variety of feature reduction techniques feature sets 

consisting of 15, 25, 35 and 50 relevant features for each alphabet reduction technique 

were generated. These algorithms have been shown successful enough to serve as a 

screening mechanism used in conjunction with wet lab techniques to identify AMPs with 

the potential to supplement the currently available antibiotic and lessen the severity of the 

pending antibiotic crisis.  

 Chapters 7 and 8 detail the development and use of the SSNAAP web site for 

easy application of the leaning models developed in this work. This simple to use web 

based application makes the entire suite of learning algorithms available to researchers 

worldwide. 
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