
UNDERSTANDING WHAT MAY HAVE HAPPENED
IN DYNAMIC, PARTIALLY OBSERVABLE ENVIRONMENTS

by

Matthew Molineaux
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Gheorghe Tecuci, Dissertation Director

Dr. Mihai Boicu, Committee Member

Dr. Daniel Menasce, Committee Member

Dr. Kenneth De Jong, Committee Member

Dr. David W. Aha, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Summer Term 2017
George Mason University
Fairfax, VA

Understanding What May Have Happened in Dynamic, Partially Observable
Environments

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Matthew Molineaux
Master of Science

Depaul University, 2008
Bachelor of Science

Eckerd College, 2001

Director: Dr. Gheorghe Tecuci, Professor
Department of Computer Science

Summer Term 2017
George Mason University

Fairfax, VA

Copyright c© 2017 by Matthew Molineaux
All Rights Reserved

ii

Table of Contents

Page

List of Tables . vi

List of Figures . vii

List of Algorithms . ix

Abstract . x

1 Introduction . 1

1.1 Motivation Behind Explanation Generation Approach 6

1.1.1 Partial Observability . 6

1.1.2 Occurrence Histories . 8

1.2 Problem Statement . 9

1.3 Contributions . 16

1.4 Organization of the Dissertation . 18

2 Related Work . 19

2.1 Abductive Inference and Explanation . 19

2.2 Representations for Change . 22

2.3 Belief Change . 24

2.4 Model-based Diagnosis . 29

2.5 Planning . 33

2.5.1 Contingent Planning . 33

2.5.2 Real-Time Control and Execution 34

2.5.3 Continual Planning . 35

2.6 Learning Environment Models . 39

3 Problem Representation . 41

3.1 Environment Model . 41

3.1.1 States . 47

3.1.2 Actions . 48

3.1.3 Events . 50

3.1.4 Observations and the Observation Function 52

3.2 Modeled Transition Function . 53

3.3 Goals . 55

iii

3.4 Transition Discontinuities . 55

3.5 Relationship to other Representations . 55

3.5.1 Relationship to First-Order Logic . 55

3.5.2 Relationship to PDDL . 55

3.5.3 Relationship to PDDL+ . 57

4 DiscoverHistory . 58

4.1 Design Decisions . 59

4.2 Motivation . 59

4.2.1 Psychology . 60

4.2.2 Robustness . 60

4.3 Definitions . 61

4.3.1 Predicting States Using an Explanation 64

4.3.2 Plausible Explanations . 65

4.3.3 Hypotheses . 71

4.4 Generating Abductive Explanations . 72

4.4.1 Checking Invariants . 73

4.4.2 Refinement Operators . 73

4.4.3 The FindExtraEvents Subroutine 83

4.5 DiscoverHistory Search Properties . 85

4.5.1 Soundness of DiscoverHistory Search 85

4.5.2 Completeness of DiscoverHistory Search 85

4.6 DHAgent . 89

5 Explanation-Based Belief Management . 92

5.1 Claim . 92

5.2 Related Work . 93

5.3 Comparison with Other Agent Approaches 94

5.4 Experimental Design . 95

5.4.1 Problem Generation . 96

5.4.2 Search Configuration . 97

5.4.3 Setup . 98

5.5 Results . 98

5.6 Discussion . 100

6 Analysis of Efficiency Issues in Explanation . 101

6.1 Differences Between Implementations . 101

6.2 Experimental Evaluation . 102

6.3 Discussion . 104

iv

7 Explanation in a Multi-Agent Domain . 107

7.1 Motivation . 108

7.2 Claims . 108

7.3 Definitions . 109

7.4 MADH . 111

7.4.1 Event Projection . 112

7.4.2 Inconsistency Selection . 113

7.4.3 Refinement Methods . 114

7.4.4 Search Configuration . 115

7.4.5 Autonomous Squad Member Domain 116

7.4.6 Extended Example . 116

7.5 Experiment . 122

7.5.1 Design of the Deductive Explanation Generator 122

7.5.2 Experiment Description . 124

7.6 Results . 125

7.7 Discussion . 127

8 Learning Unknown Event Models . 131

8.1 Motivation . 131

8.2 Claims . 132

8.3 Modeling Surprise . 134

8.4 Recognizing Unknown Events . 134

8.4.1 Generalizing Event Preconditions . 135

8.4.2 Modifying the Environment Model 137

8.5 Evaluation . 138

8.5.1 Search Configuration . 138

8.5.2 Environments . 139

8.5.3 Experiment Description . 140

8.5.4 Results . 141

8.5.5 Discussion . 142

9 Conclusions . 144

9.1 Novel Contributions . 144

9.2 Status of Claims . 145

9.3 Limitations and Future Work . 146

Bibliography . 149

v

List of Tables

Table Page

5.1 Statistical t-test results, comparing the percentage of goals accomplished by

IncuriousAgent and DHAgent in the Hazardous Rovers and Satellites

domains. 99

6.1 Performance of each of the 3 agents at the lowest maximum search depth

with the highest goal achievement rate, along with statistical results. Search

depth indicated by d, execution time by t, and statistical confidence level by

p. 104

7.1 Efficiency results for the ASM Domain . 127

8.1 Average execution time, learning time, and explanation failures found in test

scenarios after 0-5 learning trials. (Sat = Malfunctioning Satellites Mud =

Mudworld) . 141

vi

List of Figures

Figure Page

1.1 Frameworks for goal-based agents. Top shows a goal-based replanning agent.

Bottom shows design of DHAgent. Novel components and relationships

shown in purple. 3

4.1 Example of an inconsistent explanation, with all occurrences shown totally

ordered. Relevant action and event descriptions are given on the right.

Values for the knownbefore and knownafter relations are given in the ti-

meline; for example, the value L0 at the top indicates that the relation

knownbefore((rover-at R), oi, L0) holds. 68

4.2 Excerpt of rover model describing PDDL+ action and event used in timeline. 69

4.3 Example of adding an occurrence. 76

4.4 Example of removing an occurrence. 77

4.5 Example of hypothesizing an initial value. 79

5.1 Comparison of percentage goals accomplished at various difficulty levels. . . 99

6.1 From top to bottom, the charts show performance versus search depth in

the Hazardous Rovers domain with λ = 0.1, 0.2, and 0.3 and the Hazardous

Satellites domain with λ = 0.3. Goal achievement performance is on the left,

execution time on the right. Error bars show 95% confidence intervals. Data

shown for DHAgent using DiscoverHistory1 (blue), DiscoverHistory2

with the change-based metric (red), DiscoverHistory2 with the decision-

based metric (green), and IncuriousAgent (purple). 106

7.1 Robot’s memory near the beginning of an ASM scenario 117

7.2 Representation of gps-observe-location event and model 118

7.3 Inconsistencies after addition of gps-observe-location event 120

7.4 Resulting explanations with computed explanation costs (ASSUMPTION COST

= 10, EVENT COST = 6) . 121

7.5 Explanation before and after projection with computed explanation costs

(ASSUMPTION COST = 10, EVENT COST = 6) 129

vii

7.6 Partial Precision (left) and Partial Recall (right) vs. Observation Count

(ASM Domain) . 130

8.1 Average execution cost incurred by DHAgent with a complete model (green

curve with circles), learned model (blue curve with triangles), and incomplete

model (red curve with squares). Lower is better. 142

viii

List of Algorithms

1 DiscoverHistory. 73
2 Adds Ground Occurrences to Resolve an Inconsistency. 75
3 Removes an Occurrence to Resolve an Inconsistency. 77
4 Creates an initial state assumption to resolve an inconsistency with no prior

occurrence. 78
5 Adds Minimally Bound Occurrences to Resolve an Inconsistency. 80
6 Unifies Inconsistent Occurrences to Resolve an Inconsistency. 81
7 Sets Ordering of Inconsistent Occurrences to Resolve an Inconsistency 82
8 Reorders Third Occurrence in Between Inconsistent Occurrences to Resolve

an Inconsistency . 82
9 Introduces Transition Discontinuity . 83
10 The FindExtraEvents Subroutine . 84
11 DHAgent . 90

12 Multi-Agent DiscoverHistory . 112
13 Deductive Explanation Generator . 123

ix

Abstract

UNDERSTANDING WHAT MAY HAVE HAPPENED IN DYNAMIC, PARTIALLY OB-
SERVABLE ENVIRONMENTS

Matthew Molineaux, PhD

George Mason University, 2017

Dissertation Director: Dr. Gheorghe Tecuci

In this work, we address the problem of understanding what may have happened in a

goal-based deliberative agent’s environment after the occurrence of exogenous actions and

events. Such an agent observes, periodically, information about the state of the world, but

this information is incomplete, and reasons for state changes are not observed. We pro-

pose methods a goal-based agent can use to construct internal, causal explanations of its

observations based on a model of its environment. These explanations comprise a series

of inferred actions and events that have occurred and continue to occur in its world, as

well as assumptions about the initial state of the world. We show that an agent can more

accurately predict future events and states by reference to these explanations, and thereby

more reliably achieve its goals. This dissertation presents the following novel contributions:

(1) a formalization of the problems of achieving goals, understanding what has happened,

and updating an agent’s model in a partially observable, dynamic world with partially

known dynamics; (2) a complete agent (DHAgent) that achieves goals in such environ-

ments more reliably than existing agents; (3) a novel algorithm (DiscoverHistory) and

technique (DiscoverHistory search) for rapidly and accurately iteratively constructing

causal explanations of what may have happened in these environments; (4) an examination

of formal properties of these techniques; (5) a novel method (EML), capable of inferring

improved models of an environment based on a small number of training scenarios; (6)

experiments supporting performance claims about the novel methods described; and (7) an

analysis of the efficiency of two DiscoverHistory algorithm implementations.

Chapter 1: Introduction

Autonomous agents are proliferating quickly as computers become embedded in every aspect

of daily life. Agents are embodied in the real world as autonomous vehicles, interact with

humans in military simulations and games, and are used for complex predictions in agent-

based models. The environments in which they act grow more and more complex as we rely

on them more heavily. In the future, robots will be used in domains such as anti-submarine

warfare, where the world is very hard to perceive and enemies may be present at any time.

Simultaneously, as more robots are deployed, interest in greater autonomy increases. Where

simple reactive or reflex agents were once acceptable, more complex deliberative goal-based

agents are now desired to work in these complex environments. In particular, these agents

must be able to achieve a large range of goals, specified at execution time, without constant

human oversight. These goals must be specified with respect to objects and relationships in

worlds with many objects and relationships. Some deliberative goal-based agents developed

by the artificial intelligence community are already capable of handling large domains with

many objects and relationships, but they do so by making strong assumptions about the

nature of the environment. In fact, most goal-based agent research makes a variety of strong

assumptions that do not hold in more realistic environments. In this work, we specify a

novel agent and techniques capable of operating in larger worlds than comparable research

systems, while relaxing the following assumptions:

1. the static environment assumption, which states that the environment is affected

only by the agent, and by no other actors or natural processes,

2. the full observability assumption, which states that all information that impacts

the agent’s performance can be observed, and

1

3. the known dynamics assumption, which states that all possible environment tran-

sitions are known to the agent in advance.

We assert that goal-based agents that operate in large partially observable, dynamic, par-

tially known environments are a critically important advance. In this dissertation, we

will describe techniques for explanation generation and explanation-based model le-

arning 1 based on DiscoverHistory search that make such agents possible. We will

demonstrate in test environments that a novel goal-based agent that uses these capabilities,

DHAgent, is able to achieve its goals more reliably, and achieve higher accuracy, lower

computational complexity, and through use of fewer resources, when compared to other

goal-based agents using identical knowledge.

In order to achieve its goals, a goal-based agent requires several reasoning capabilities.

The first such capability is planning, a type of reasoning which constructs a series of acti-

ons that cause an agent’s environment to transition from an initial state to one of a space of

desired states, defined by its goal. Early research in artificial intelligence focused on plan-

ning, which is sufficient by itself to accomplish goals in environments that meet the above

assumptions. However, in a dynamic environment, the agent must also be capable of mo-

nitoring the execution of its plans and replanning when they go awry. Here, replanning

is essentially the same problem as planning, but must occur during execution, in response

to developments found by direct perceptions of the environment made by monitoring. In

a partially observable environment, an agent must also perform belief management, to

infer unobservable aspects of a changing state that affect its goals. Finally, partially known

dynamics force an agent to perform model learning to better predict the transitions al-

ong the path to a goal. Existing research has demonstrated goal-based agents that deal

with the static environment assumption through planning, monitoring, and replanning; by

performing belief management and model learning using novel techniques DHAgent will

1Explanation-based model learning is not closely related to explanation-based learning (DeJong and

Mooney 1986; Mitchell, Keller, and Kedar-Cabelli 1986). We consider explanation-based model learning,
which finds novel transition rules that supplement an environment model to correct false predictions. In
contrast, explanation-based learning finds implication rules that supplement a logical domain to simplify
inferences that the domain already supports.

2

relax all three assumptions. Figure 1.1 depicts a standard replanning agent and DHAgent

using these capabilities. Note that DHAgent’s learning cycle need not be synchronous

with its execution cycle.

Learning Cycle Execution Cycle

Execution

Monitoring
Belief

Management

Plan (Re)Planning

Current
Beliefs

Model
Learning

Environment
Model

Environment

Execution Cycle

Execution

Monitoring

Plan (Re)Planning

Current
Beliefs

Environment
Model

Environment

Figure 1.1: Frameworks for goal-based agents. Top shows a goal-based replanning agent.
Bottom shows design of DHAgent. Novel components and relationships shown
in purple.

Belief management techniques estimate the current state of the environment for use

in planning. This task is pivotal because incorrect beliefs cause planner mistakes. A com-

plication to this task for a goal-based agent is the representation of a state using relations

and objects, which is necessary for representing large environments with many types of

information and arbitrary goals. Following Russell and Norvig (2009), we refer to a state

representation based on relations and objects as a structured representation. Structured

representations are strictly more expressive than propositional and feature-value represen-

tations, and allow algorithms the flexibility to work in larger and more complex environ-

ments. Belief management using a structured representation of the environment, however,

3

has received little attention from the academic community. A primary contribution

of this dissertation is the DiscoverHistory search technique, which performs

belief management based on incremental improvements to explanations. Using

DiscoverHistory search as part of a goal-based agent permits the relaxation of the static

environment and full observability assumptions.

Model learning allows an agent to improve a model of its environment during execution

that allows it to achieve its goals. When a goal-based agent does not start with a complete

and correct model of its environment, it may repeatedly construct plans with similar errors.

For example, suppose that a Mars rover agent’s directional sense is skewed by a nearby

magnetic source. If it does not learn to model that effect, the rover’s plans will consistently

move it in the wrong direction. Learning a model that correctly predicts the direction of

movement, however, would allow it to make correct plans. In order to perform this learning,

it is important to understand where and how the agent’s existing model is incorrect. This

leads us to consider an explanation-based model learning technique that responds to

understanding failures by considering revisions to the model. This technique is novel,

as is our method for performing model learning as part of a goal-based agent.

To manage beliefs, our agent performs explanation generation. The technique we

use for this is called DiscoverHistory search, based on the refinement method Disco-

verHistory which explores a search node in a space of explanations. Managing beliefs

by reference to a maintained explanation of the environment ensures that the beliefs of an

agent will, at any time, be consistent with observations made in the past, and its model

of the environment. We assume that a goal-based agent receives structured observations of

its world. For example, an observation might include the literal (at robot p1), which

describes a relationship at between two objects, robot and p1. Explanation generation

constructs an occurrence history consistent with these structured observations, a series

of hypothetical assumptions about the past and past transitions that explain how the en-

vironment might have changed. By forming beliefs derived from an occurrence history, the

agent takes into account unobserved external dynamics that otherwise it would have no

4

knowledge of.

Explanation generation can also help in learning, as the process of constructing occur-

rence histories given real observations provides an opportunity for reflection on and invali-

dation of an agent’s environment model. We will expand in this dissertation on how to use

opportunities in the explanation process to improve the agent’s model.

To clarify these topics, we provide an example of how humans have generated and acted

on explanations to improve the performance of a real world agent. In May 2005, NASA’s

Opportunity rover was crossing a dune on the surface of Mars when its human operators

noticed an inconsistency 2 with their expectations: Opportunity did not move as far as the

operators had projected when ordered to do so (Webster 2005). The operators were not able

to observe the surroundings of the rover fully and precisely, but they nevertheless explained

this inconsistency by assuming that the rover was stuck in loose soil. This explanation

enabled the operators to formulate a new plan to escape from the unobserved loose soil

and continue the mission. As Opportunity was out of contact with its operators for many

hours each day when Mars faced in the opposite direction, this process was time-consuming

and expensive. If Opportunity had been able to perform explanation generation, it would

have had the capability to explain its own circumstances and then act to get itself out of

its predicament, saving time and money.

To summarize, this work is concerned with the development of a goal-based

agent and algorithms that relax three important assumptions: full observability,

static environment, and known dynamics. Unlike prior agents, DHAgent will use

modules for belief management and model learning to overcome these assumptions. Both

capabilities are based on DiscoverHistory search. We will describe and test claims

regarding how reliably DHAgent achieves goals compared to other goal-based agents, as

well as the accuracy and computational complexity of explanation generation, and the

resources required to achieve goals.

2Future sections will address the role of inconsistencies in the explanation process.

5

1.1 Motivation Behind Explanation Generation Approach

In this subsection, we provide additional detail on why we perform explanation generation.

Specifically, we provide additional clarity on how explanation generation supports reasoning

under partial observability and how occurrence histories support learning, as well as other

capabilities of future agents.

1.1.1 Partial Observability

The early history of AI research was characterized by papers that made a great number of

assumptions about the environments with which agents would interact, so as to simplify

the challenges facing early reasoning techniques. Over time, a great deal of work has

gone into modifying algorithms that previously made restrictive assumptions about the

world to operate in more realistic environments. One such assumption is the assumption of

full observability: early planning systems were guaranteed to find plans provided that the

environment was completely transparent. Unfortunately, many interesting domains are not

fully observable.

Today, many researchers focus on relaxing the assumption of full observability. In par-

tially observable domains, planning is more difficult because hidden factors affect the envi-

ronment, so the effects of an agent’s actions may be partially or completely unknown. Most

current research into partially observable planning pursues one of two strategies. Agents

that pursue the first strategy reason about a probabilistic state and probabilistic effects of

actions (e.g., Kaelbling, Littman, and Cassandra 1998; Aberdeen and Buffet 2007; Yoon

et al. 2008; Sanner and Boutilier 2009), and thereby consider the degree of likelihood of

any individual fact being true. Agents pursuing the second strategy reason about a belief

state (e.g., Hoffmann and Brafman 2005; Bryce, Kambhampati, and D. Smith 2006; Al-

bore, Palacios, and Geffner 2009; Palacios and Geffner 2009), which is a composite state

representing a large set of states that the agent might be in. Both of these approaches have

disadvantages. Probabilistic reasoning requires that a knowledge engineer specify the prior

probability of all propositions that may be satisfied; these probabilities are often specified

6

arbitrarily, because accurate data is unavailable or too expensive to obtain. Furthermore,

most modern probabilistic reasoning systems also fail to abstract over properties of a state

and objects present in it, which causes their speed to sharply decrease in more complex

domains where the number of properties tracked grows exponentially. Agents that pursue

the second strategy, acting in a space of belief states, have a similar problem. The space of

belief states, which encompasses all possible worlds, grows exponentially with the number

of unknown facts. Therefore, in complex domains, these techniques tend to fail as well.

Unless they refuse to consider unlikely scenarios, which entails some measure of risk, all

probabilistic reasoning systems must fall into this trap as well.

We are committed to demonstrating that our agents can be successful working with

larger, more realistic environment models. By investigating a new technique which avoids

these pitfalls, we sidestep the complexity issues that restrict existing techniques to smaller

environments. This is done through a design decision fundamentally different from both

approaches discussed above. Each earlier approach is fundamentally anticipatory : techni-

ques using either strategy must consider the space of states that might occur in the future.

Our techniques deal with partially observable worlds retrospectively. Explanation genera-

tion occurs during execution rather than before it, so much more information is available.

This extra information reduces the space of possibilities greatly. The primary disadvan-

tage of this approach is that our agents must start interacting with the world without first

preparing for all possibilities. When compared to existing methods that analyze all future

possibilities, this is dangerous; however, in the larger domains we consider, the strategy of

considering all futures becomes intractable. Therefore, the only logical course is to accept

some measure of risk.

To summarize, explanation generation techniques aim to support agents that reason

about hidden information in large partially observable worlds while avoiding the exponential

explosion that occurs when considering all possible states the agent might be in. Addressing

this hidden state is necessary to improve prediction in realistic domains and thereby to

improve overall rate of success at achieving goals.

7

1.1.2 Occurrence Histories

Explanation generation is based on finding occurrence histories, sequences of actions and

events that underlie the progression of the environment. Sensors provide information about

the environment state, but not the actions and events that explain why successive obser-

vations are different. However, knowing the actual changes that occurred is powerful. We

anticipate that knowledge of occurrence histories will have the following anticipated bene-

fits for autonomous agents: (1) occurrence histories highlight gaps in an agent’s knowledge

where observations do not match up with expected events, (2) occurrence histories can show

how multiple actors separately influence the state, and (3) occurrence histories provide the

skeleton for a human-readable narrative. Of these, we will demonstrate the first and second

benefit. We do not, however, show how the second benefit can increase performance of an

agent. Examination of the third benefit is left for future research.

Occurrence histories may include gaps where no cause can be inferred for some event.

Such gaps make clear that there is some unknown dynamic in the environment which the

model does not account for. Knowledge of these gaps can be used to improve environment

models over time by targeting these gaps for learning. We will test this hypothesis within

the scope of this dissertation, and demonstrate how model learning in response to occurrence

history gaps can improve the execution performance of an agent.

Causal links between occurrences are apparent in occurrence histories where the effect

of one occurrence is a condition of a later one. By tracing these causal links backward in

time, it becomes possible to attribute an event to one or more particular actors who caused

it. This would otherwise be impossible when an agent’s actions are temporally distant from

the intended changes. This causal attribution gives evidence as to the intentions of those

actors, which can be analyzed through an intent recognition or plan recognition process.

In this dissertation, we will analyze the accuracy of our explanation generation techniques

at attributing actions to actors. However, we will not determine the impact of performing

plan recognition based on those actions, a study we leave for future work.

8

Finally, we anticipate that occurrence histories could form the basis of an agent capa-

bility to construct a narrative about its experiences. In general, narratives are based on

a describing a series of events, whether real or fictional. We expect this capability to be

useful in communications with humans in the future. However, this dissertation does not

provide evidence for this; see Future Work in section 9 for more discussion.

In summary, we expect histories of occurrences to support model learning, attribution of

actions, and construction of narrative. Thus, creating such histories is of great importance

to autonomous agents and merits study.

1.2 Problem Statement

The central contributions of this dissertation are the the DiscoverHistory se-

arch technique, which generates explanations of the environment an agent inha-

bits, and DHAgent, an agent that uses DiscoverHistory search to achieve goals

in partially observable, dynamic, partially known environments. In this section,

we provide a clear statement of the problems addressed by DiscoverHistory search and

DHAgent in formal language, which provides a clear breakdown of the problem of achie-

ving goals into multiple subproblems. We follow this with a discussion of what guarantees

can be made regarding those problems. In the following section, we give a more detailed

discussion of the specific claims this dissertation will defend and the contributions made.

We model an environment Σ as having a state space S, an action space A, and an event

space E. An agent α interacts with its environment by receiving a sequence of deterministic,

noiseless observations o = {o0, o1, o2, . . . }, and acting upon the environment through a series

of actions aα = {a1, a2, . . . }. An observation o is generated by a deterministic, noiseless

function Obs(s), where s is an instantaneous environment state. The first state for which

the agent receives an observation is called the initial state, s0.

Changes in the environment are modeled as a transition function λ : S×A→ S. This

function describes how actions and events cause the environment to transition to new states.

Actions are intended by an agent (either α or some other agent), and occur only when an

9

agent decides they should. Events do not appear in the definition of the transition function

because they are caused deterministically. We assume that in any state when one or more

events apply, only the null action ∅ may occur. From the perspective of a reasoning agent,

actions of other agents are termed exogenous actions. Events occur deterministically

when their conditions are met; an event must occur directly after an action or other event.

An environment model MΣ defines a transition function λα and observation function

Obsα that are available to the agent. When the environment model is incomplete or incor-

rect, λα will not match the true environment transition function λ, and an agent predicting

future states based on it will sometimes be incorrect. For more details, see Chapter 3.

Problem 1 (Goal Achievement Problem)

Let α be an agent in an environment Σ, and ax be a sequence containing all exogenous

actions taken in Σ by agents other than α. The goal achievement problem for α is as

follows:

• Given: a (possibly incomplete) model of Σ (MΣ), a stream of deterministic noiseless

observations obs, and a boolean goal function over the state space g : S → {T, F},

• Find: an action sequence aα that cause the environment Σ to transition to some state

sg such that g(sg).

More formally: let a be a sequence containing all actions that take place in environment

Σ during some time period, starting with the action a0 taken in s0. Sequences aα and ax

are subsequences of a; all entries in a not in aα and ax must be the null action ∅. To

succeed, the agent must arrange that the actions in a cause Σ to transition to a goal state:

g(λ(λ(. . . λ(λ(s0, a0), a1), . . . , an−1), an))→ T .

Notice that α never has access to the set of exogenous actions ax, even though those

actions may affect its plans. Furthermore, as the environment model may be incomplete,

the agent may never be certain what state has occurred based on the observations it is given.

However, the problem requires that a property hold for a state that has occurred. Therefore,

there is no sound algorithm that solves this problem for all environments. Instead, we study

approximate solutions. These solutions either assume the model is complete or attempt to

10

provide iteratively improved approximations to the transition model so that soundness can

be reached in the limit.

This problem definition avoids common assumptions described earlier. The problem is

partially observable through a sequence of observations, rather than assuming the agent

has access to the states. The problem is dynamic due to the presence of exogenous actions

and events. Finally, the agent’s access to a possibly incomplete model of the environment

rather than its true transition function results in partial knowledge of dynamics.

In order to solve the goal achievement problem, we break it into three subproblems,

which we will describe now. First, we must be able to find a plan that will (at least in some

possible world) achieve its goals. We expect that this plan may not succeed, but executing

such a plan may nonetheless be helpful, either through decreasing the number of steps ne-

cessary to reach the goal, or providing new information about the environment. Planners

that work under restrictive assumptions are well understood and easily available. We pro-

pose to use a standard solution to this type of problem, together with other algorithms that

compensate for its inadequacies in the presence of partial observability, dynamic transitions,

and an incomplete model. A standard continuous planning problem can be described as

follows:

Problem 2 (Continuous Planning Problem)

• Given: a complete environment model MΣ, a current state sc, search knowledge ks,

and a goal function g : S → {T, F},

• Find: a plan (sequence of actions) aα,i = [aα,i, aα,i+1, . . . aα,i+m] in the environment Σ

that will reach the goal state assuming the state is correct and no outside actions occur,

i.e., g(λ(. . . λ(λ(sc, aα,i), aα,i+1), . . . , aα,i+m))→ T .

As many fast planners require advice beyond the transition function to achieve reaso-

nable results, the goal achievement problem includes search knowledge ks to describe any

static body of information, not related to a specific planning scenario, used by a planner to

guide its search.

11

As we intend to apply a planner that solves this problem as part of the solution of Pro-

blem 1, we need to contend with its flawed assumptions. As this problem assumes knowledge

of the entire state, we must attempt to approximate it based on observations received; this

is the task of belief management. We will also improve the internal environment model

so that it better approximates a complete environment model; this is the model learning

task. Accomplishing these two tasks can be done by solving the hypothesis generation

problem and hypothesis-based model learning problem.

The hypothesis generation problem requires an agent to manage its beliefs in order to

infer occurrence histories and state information that are consistent with its environment

model, received observations, and past actions. The output of explanation generation is

a set of hypotheses about the environment, each of which consists of a set of unproven

logical statements about the environment, including statements about the occurrence of

events and exogenous actions, and a set of initial state assumptions, and a set of transition

discontinuities that describe gaps where the occurrence history does not match the model.

A plausible hypothesis, taken together with the agent’s actions and environment model,

must imply the observations received. The space of possible hypotheses is written H.

Problem 3 (Hypothesis Generation Problem)

• Given: a (possibly incomplete) environment model MΣ, observations of the environ-

ment o = [o0, o1, . . . om], an action history ah = [ah,1, ah,2, . . . ah,n] containing actions

taken by α, and a total order ≺ describing the temporal ordering of actions and obser-

vations,

• Find: a set of plausible hypotheses Hα such that ∀h ∈ Hα : h ∪ ah ∪MΣ |= o.

Supposing that an environment model is incomplete, the transition function it represents

must be incorrect for one or more states, by definition. Problem 3 accommodates this

by allowing discontinuities, which describe where an occurrence history is not consistent

with the model. If a hypothesis is correct with respect to all initial state assumptions

and exogenous action assumptions, but still has discontinuities, the model itself must be

12

incorrect. This is the basis for a definition of the model learning problem. We search for

small revisions to the model that add extra events to the occurrence history, eliminating the

discontinuities. If the discontinuities are a representative sample, such changes can improve

the accuracy of explanation, as well as the efficiency and reliability of plans that use the

same model. For more details, see Chapter 8.

Problem 4 (Model Learning Problem)

• Given: a (possibly incomplete) environment model MΣ, a set of transition discontinui-

ties d, observations of the environment o, and an action history ah,

• Find: a new model M ′Σ, such that for some hypothesis h with no discontinuities, h ∪

o0 ∪ ah ∪M ′Σ |= o.

We have stated that Problem 1, the goal achievement problem, can be approximately

solved by splitting it into three separate problems: Problem 2, the continuous planning

problem; Problem 3, the hypothesis generation problem; and Problem 4, the model learning

problem. Due to the approximate and highly uncertain nature of all these problems, we

can rarely make any kind of guarantee of success. However, a notion of increased success

drives all of our work. Therefore, we present here arguments for why an agent design based

on solving the continuous planning problem, the hypothesis generation problem, and the

hypothesis-based model learning problem will succeed under certain restrictive assumptions.

First, we argue that under certain conditions, explanation generation that improves an

agent’s knowledge must lead to success in a partially observable, static environment.

Argument 1

Assuming a complete environment model in a partially observable, static, connected envi-

ronment (where every state is reachable from every other state, and no exogenous actions

occur), it is possible for an agent to solve the goal achievement problem by iteratively ap-

plying a solution to the continuous planning problem to its current beliefs, executing the

resulting plan, and applying a solution to the hypothesis generation problem to change its

13

beliefs whenever it reaches a state that it could not predict, until its goal is reached. Each

plan made by the agent will, according to its predictions, reach the goal, from the definition

of the continuous planning problem. Therefore, every plan that does not reach the goal fails

to match its predictions, and thus the observations found when executing that plan contain

new information. The agent must continue executing plans until it reaches its goal, and the

goal will always be attainable because the environment is connected. Therefore, as long as

the agent fails to reach its goal, the available information in its observations must increase.

The explanation generation method forms hypotheses based on the available observati-

ons. As the information in those observations increases, the number of plausible hypotheses

reduces. As no new information enters the environment (because it is static), the agent must

eventually either know the entire state of the environment, because only one hypothesis is

possible, or reach its goal by making plans with incomplete knowledge. Once the complete

state of the environment is known, the agent should be able to predict the results of all future

actions. This means that a plan returned will, by definition, be correct, since the agent’s

beliefs are correct. Therefore, its new plan will reach the goal.

Next, we argue that the same solution works even in a dynamic environment, given

further assumptions.

Argument 2

Assuming a complete environment model in a partially observable, dynamic, connected en-

vironment (where every state is reachable from every other state, and exogenous actions

occur), the solution of argument 1 still applies, but the information present in the envi-

ronment can increase due to the actions of other agents. Therefore, the agent might never

obtain enough information to be guaranteed to reach the goal.

If we assume that information is introduced to the environment more slowly than the

agent gains it, then the agent will eventually find the correct state of the environment, as

in argument 1. More generally, we can assume that there is some knowledge about the

environment that can be attained despite its dynamic nature, which is sufficient to make the

agent more likely to make forward progress than not (i.e., reduce the number of plan steps

14

necessary to achieve its goal). Given this assumption, the agent’s actions will cause it to

converge to a goal state.

To understand this assumption, consider a predator-prey scenario. The predator wants

to kill the prey, but the prey is always moving, and is faster than the predator. Usually

its location is not observable to the predator and new information (the prey’s actions) are

entering the environment all the time. Many other features of the environment, such as

feeding areas, weather, and light availability may be constantly changing and not observable;

the predator has no hope of ever determining the true state of the environment. However, if

the predator obtains a certain critical piece of information, the location of the prey’s nest, a

simple plan to lie in wait is likely to succeed despite the many unknowns in the environment.

Therefore, the assumption of sufficient knowledge to progress is satisfied, and the

predator can accomplish its goal of killing the prey.

Third, we show that under certain conditions, explanation generation that improves an

agent’s knowledge and model learning that improves an agent’s model must lead to success

in a partially observable, dynamic, partially known environment.

Argument 3

Assuming an incomplete environment model and a connected, dynamic environment, it is

possible to solve the goal achievement problem using the method described in argument 2,

with the additional application of a solution to the hypothesis-based model learning problem

in response to transition discontinuities. We distinguish two cases. In the first, sufficient

knowledge can be attained by the agent to progress toward a goal, even based on the

current, incomplete environment model. This reduces our argument to argument 2.

In the second case, it is possible for the agent to obtain sufficient knowledge to progress,

but must correctly predict some transitions that the current environment model does not. If

neither is true, and sufficient knowledge to progress will not be available, no guarantee can

be made.

In the second case, the agent will be unlikely to make progress until it improves its mo-

del. In order to obtain a complete model, we assume that, with some frequency, it makes

15

observations before and after a transition that its internal model predicts incorrectly. Furt-

hermore, we must assume that sufficient information is gained about these transitions during

an agent’s attempts to reach its goal to eliminate hypotheses with incorrect discontinuities

(as a correct hypothesis cannot be conjectured before learning). Under these assumptions,

the agent will generate more and more examples of the discontinuities over time. Each

time model learning occurs, the new model M ′Σ will correctly predict a larger and larger

percentage of transitions (by the definition of the hypothesis-based model learning problem).

Eventually, the environment model will correctly predict enough transitions that sufficient

knowledge to progress is attainable, by the definition of case 2, and argument 2 applies.

In many practical situations, including the environments discussed later in this paper,

the assumptions these arguments are based on do not hold. However, these arguments give

us some intuition as to the limits of performance and what we can hope to achieve. We

will rely on experimental evidence in future chapters to give us a picture of how well these

techniques succeed under weaker assumptions.

1.3 Contributions

The contributions of this dissertation are as follows:

1. We introduce novel formalizations for the goal achievement problem, hypothesis ge-

neration problem, and hypothesis-based model learning problem (see Section 1.2).

2. We introduce a new algorithm, DiscoverHistory, used in a search process to form

hypotheses about the past in partially observable, dynamic environments (see Chap-

ter 4). DiscoverHistory search is a general solution to the hypothesis generation

problem; its accuracy is equivalent to a state of the art deductive method, and it

reduces execution time requirements by 95% in the ASM domain with respect to this

method (see Chapter 7).

3. We describe sufficient conditions under which DiscoverHistory search is a sound

16

and complete solution to the hypothesis generation problem (see Section 4.5).

4. We introduce a new general method for acting to achieve goals in large partially

observable, dynamic environments with partially known dynamics, DHAgent (see

Section 4.6). DHAgent solves the goal achievement problem, and in our experiments

achieves 20-63% more goals than a typical replanning agent in the Hazardous Rovers,

and Hazardous Satellites domains (see Chapter 5).

5. We introduce a novel general method, the Explanation-Based Model Learner

(EML), for inferring improved environment models based on explanations of what has

occurred in a partially observable, dynamic, partially known environment. EML is

the first general solution to the hypothesis-based model learning problem, and achieves

90% of an optimal performance improvement within 5 learning trials in the Mudworld

and Satellites domains (see Chapter 8).

6. We present experiments demonstrating the performance improvements described for

DHAgent, DiscoverHistory, and EML. (see Chapters 5, 7, and 8)

7. We present a parametric analysis of the computational efficiency of two implementa-

tions of the DiscoverHistory algorithm (see Chapter 6.

In this dissertation, we use experimental evidence to defend three claims about the

quality of the solutions found by the new techniques DHAgent, DiscoverHistory, and

EML:

Claim 1

Belief management using DiscoverHistory search causes the goal achievement perfor-

mance (number of goals achieved successfully) of DHAgent in a partially-observable, single-

agent context to improve relative to a traditional replanning agent, IncuriousAgent, which

uses a more naive belief management strategy.

Claim 2

DiscoverHistory search is faster than a deductive strategy, DEG, for generating and

17

maintaining explanations of exogenous actions in a dynamic, partially observable, multi-

agent environment, and maintains comparable accuracy.

Claim 3

Our novel explanation-based model learning algorithm, EML, infers successively improved

environment models that reduce the execution cost incurred by DHAgent in accomplishing

goals in dynamic, partially observable environments.

1.4 Organization of the Dissertation

Chapter 2 will discuss related work. Chapter 3 discusses definitions and representations

used throughout the dissertation. Chapter 4 introduces the central explanation generation

technique, DiscoverHistory search, and DHAgent, an agent that solves the goal achie-

vement problem. Chapter 5 discusses the suitability of DiscoverHistory search for belief

management, including an empirical investigation of the goal achievement performance of

DHAgent, addressing Claim 1. Chapter 6 describes an analysis of DiscoverHistory’s

efficiency. Chapter 7 discusses the accuracy of explanations generated by DiscoverHis-

tory search in a multi-agent environment, and addresses Claim 2. Chapter 8 introduces

our novel model learning algorithm, EML, and provides empirical results demonstrating its

efficacy at improving performance in a domain, addressing Claim 3. Chapter 9 reviews our

claims and contributions, and discusses limitations and extensions planned for future work.

18

Chapter 2: Related Work

In this chapter we survey related work that defines pivotal concepts, resembles our own,

and provides algorithms for solving similar problems. We cover the following topics: Ab-

ductive Inference and Explanation, which provides context and logical underpinnings for

explanation generation; Representations for Change, which covers ideas on how to represent

dynamic worlds; Belief Change, which discusses how an agent should revise and update its

beliefs after taking actions and making observations; Model-Based Diagnosis, which des-

cribes how to reason about systems that do not act as anticipated; and Planning, which

describes agents that construct plans to achieve goals given descriptions of their environ-

ment.

2.1 Abductive Inference and Explanation

According to John and Susan Josephson (1996), abduction is “a form of inference that goes

from data describing something to a hypothesis that best explains or accounts for the data”.

In general, abductive inference can be described as a procedure which infers possible causes

for observed evidence. Explanation, therefore, is an abductive procedure.

Abductive inference has been classified into multiple categories by Eco (1983) and Tha-

gard (1993), as reported by Schum (2001). Eco’s categorization is based on a notion of

degree of creativity. From least to most creative, his categories are: overcoded, referring to

single-step inferences that use prior knowledge without ambiguity, as when only one event

is possible; undercoded, referring to single-step inferences that use prior knowledge with am-

biguity, as when multiple alternative events may have occurred to cause the same observed

evidence; and creative, which refers to single-step inferences without prior knowledge, as

19

when no known event might cause the observed evidence, but nevertheless an event is po-

sited which did. In addition to these three categories, Eco describes meta abduction, which

refers to a recursive inference procedure that allows support that cannot be immediately

found to be inferred by abduction itself.

Thagard’s classification of abductive inference is based on the types of information that

are inferred. Thagard describes simple abduction, in which unobserved properties of some

object are given as explanation for the presence of an unusual property of an observed

object; existential abduction, in which the existence of some unobserved object is posited

in order to account for an observed object having an unusual observed property; analogical

abduction, in which a hypothesis is refined or extended to include additional explanatory

information, based on prior experience; and rule-forming abduction, in which generalization

theories are formed that allow one to perform inference at the point that inference is needed.

According to this taxonomy of abductive inference, we are concerned particularly with

algorithms that perform overcoded, undercoded and meta-abduction using simple and ex-

istential techniques. There’s a long tradition in artificial intelligence of reasoning using

abductive inference, going back at least to Pople’s (1973) system for generating logical

hypotheses.

Levesque (1989) gave a formal semantics for a logical operator EXPLAIN, which con-

ducts abductive inference over beliefs . Morgenstern and Stein first recognized the problem

of explanation as it applies to sequences of actions (1988). In this work, they suggest that a

reasoning process of explanation complements the reasoning process of temporal projection,

and that explanation should be conducted whenever prior predictions prove false. They pro-

vided an early formalization of both temporal projection and explanation based on a simple

temporal logic that resembles a subset of the situation calculus.

Shanahan (1993) examined a problem he referred to as temporal explanation or post-

diction, in the context of the situation calculus. He defined temporal explanation as “rea-

soning backwards in time from events to causes.” This definition is effectively equivalent to

our own, and Shanahan asserts that the problem is “as important as prediction” and is “a

20

fundamental mode of reasoning in its own right.” Essentially, he argues that explanation

should be given more attention as a basic style of reasoning. Shanahan considers both

deductive and abductive modes of inference, but argues that abduction is the more natu-

ral approach and deduction must simulate abduction to perform explanation. Shanahan

points out that many questions remain, including which predicates should be abducible,

why some facts demand explanation, and how to deal with the situation where multiple mi-

nimal consistent explanations exist. A robot created by Shanahan (1996) performs sensor

data assimilation using this process (see Section 2.5.3).

The scientific discovery system STAHL (Rose and Langley 1986), the planning/interpre-

tation system GORDIUS (Simmons and Davis 1987), and the case-based reasoner CHEF

(Hammond 1990) all share a focus on abductive explanation of failures in their own out-

puts and repairing them. The overall goal of adding explanation to each was to produce a

stronger result by adding a metareasoning algorithm that found inference failures and fixed

them. Each system conducts explanation by doing a search within the space of the internal

data structures created by that system.

Work in abductive inference that is most closely related to ours includes the Inductive

Process Modeling precedure of Bridewell et al (2008) and Forbus and Falkenhainer on Self-

Explanatory Simulations (1990). Both methods construct explanations made up of processes

based on a model of possible processes, given a time series of world states to explain. These

systems are highly advanced in their ability to operate in continuous worlds and generate

explanations based on events, but their representations are specialized to, in the first case,

continuous descriptions of the world, and, in the second case, qualitative descriptions.

AbRA (Bridewell and Langley 2011) also incrementally constructs explanations. It can

perform online plan recognition, a sequential task, but does not infer specific occurrences

based on a domain model. UMBRA (Meadows, Langley, and Emery 2013) performs plan

understanding by incrementally constructing explanations, and infers an agent’s beliefs, de-

sires, and intentions to explain observed actions, rather than inferring occurrences to explain

observed states. As, for example, Ram (1993) and Leake (1995) have noted, these tasks are

21

likely to be highly important to a range of cognitive agents. However, their requirements

differ significantly from the task of inferring occurrences that explain observations.

We will discuss further systems that perform abductive reasoning to find explanations

for observed evidence as part of the research field model-based diagnosis (see Section 2.4).

2.2 Representations for Change

There are many frameworks and representations in Artificial Intelligence for reasoning about

dynamic systems and environments. We survey here those representations which provide

important context for our own work, in particular those representations which describe ways

of reasoning about more complex environments.

The situation calculus (McCarthy and Hayes 1969) is one of the earliest and most influ-

ential frameworks for describing change over time in Artificial Intelligence. This framework

describes the world in terms of situations, which correspond to discrete time points; fluents,

which are facts about or properties of situations; and actions, which move the described

world from one situation to the next. All fluents in the situation calculus include an argu-

ment describing the situation they refer to, so that one can state that a fact was true at

one time (in one situation), and later false (in another situation). The effects and precondi-

tions of actions, as well as constraints between fluents, are described by rules in first-order

logic. Through use of these rules, as well as a logic reasoner or theorem prover, questions

about the values of fluents in situations following the application of a sequence of actions

can be answered via a proof procedure. Doing so is called projection, and is a critical step

in the planning process. However, planners using the situation calculus for projection are

highly inefficient compared to modern algorithms. Logical frameworks such as the situation

calculus are primarily useful for proving theorems about change.

Allen’s interval logic (Allen 1984) solved the problem of concurrency by describing the

world in terms of time intervals and fluents that hold over them rather than actions that

cause situations to change. Allen’s logic introduced the term occurrence, a general term

for all types of change, including actions, processes, and events. The most important novel

22

feature of Allen’s logic is abstract time periods called intervals and a basic set of relations

that range over them. These interval relations allow the expression of constraints between

occurrences, as well as the expression that facts hold during intervals rather than at specific

time points or in the “eternal now” corresponding to non-temporal logic. This provides a

foundation for a great deal of work in logic and explanation, but does not address issues of

time measurement and cannot easily express instantaneous change, which is easily handled

by the situation calculus.

The AI planning community works with representations of change as well, which are

somewhat different due to their focus on efficiency. It has been argued (H. J. Levesque and

Brachman 1984) that there is an inevitable tradeoff between the tractability of a represen-

tation language and its expressiveness. In the planning community, therefore, somewhat

less expressive representations are used that are less computationally complex. The Action

Description Language (ADL), created by Pednault (1987), is a popular and influential re-

presentation used in the AI planning community. Pednault (1989) described the language

as a compromise between efficiency and expressiveness; in particular, he provides a conver-

sion to the situation calculus, showing that it is strictly less expressive, but also much more

succinct, and allows for more powerful and efficient inference.

A successor language to ADL, the Planning Domain Definition Language (PDDL), pro-

vides the basis for the most common formalisms used in the planning community today. An

extended language, PDDL+, created by Fox and Long (2002; 2006), includes change repre-

sentations based on models of actions, events, and processes. In PDDL+, processes describe

continuous change, and events cause discrete change. While PDDL+ processes take some

amount of time to occur, events are instantaneous, just like executed actions. Both proces-

ses and events can occur due to exogenous causes. PDDL+ does not represent intervals,

due to its lineage from the situation calculus; however, because planning languages make

no restriction on planner implementation, it is not necessary for a system using PDDL+ to

maintain the computationally expensive global situations of the situation calculus.

23

2.3 Belief Change

When an agent takes actions and receives observations, it needs to change its beliefs about

the world. Belief revision is the process of minimally updating an agent’s beliefs in response

to receiving new information, which may contradict its prior beliefs. This process was

initially described by the logical theorists Alchourrón, Gärdenfors, and Makinson (1985),

who defined a set of constraints referred to as the AGM postulates that any reasonable

operator for updating beliefs should follow. While much useful work follows the AGM

postulates, Darwiche and Pearl (1997) showed that belief revision operators that follow

them do not necessarily describe a rational process when used in an iterated update cycle;

in response, they proposed a new model for iterated belief revision. However, belief revision

by itself is not appropriate for agents interested in maintaining beliefs about a changing

world.

Updating beliefs in response to the world changing is a different process, called belief

update, codified by Katsuno and Mendelzon (1991). Belief update has been recognized as

equivalent to finding the state following an action given the action and prior state, also

known as the task of progression (Del Val and Shoham 1994; Liberatore 2000; Lang 2007).

However, Lang (2007) showed that Katsuno and Mendelzon’s definition of belief update

does not properly model changes in beliefs about the past, and therefore cannot be used to

perform correct inferences in response to sensing actions or observations. Lang suggested

that this is a separate task, called reverse update, and invented two operators for performing

this task that correspond to rational algorithms for postdiction (determining what was true

in the past) and goal regression (determining whether an expression will be true after a

sequence of actions). However, neither the original belief update nor either reverse update

provides any guidance as to how to choose what beliefs to give up when contradictions

occur.

Dupin de Saint-Cyr and Lang (2002; 2011) suggested a new operator for belief mo-

dification, called belief extrapolation, which is based on a notion of explanation. Belief

24

extrapolation describes how to find a minimal set of changes to the truth of propositions

that take place during a history, an ordered list of observations. Each possible state path

consistent with the observations is called a trajectory. Once a set of trajectories is found,

the problem of deciding what to believe can be reduced to determining which trajectory

is most preferred; the state at the end of the most preferred trajectory should be belie-

ved. Dupin de Saint-Cyr and Lang provide a list of possible trajectory preference relations.

These include number of changes, a relation that minimizes the number of times any varia-

ble’s value changes during a trajectory; change set inclusion, which minimizes the number

of time points at which changes occur; inclusion of changing fluents, which minimizes the

number of distinct state properties that change; and penalty, in which each type of fluent

change is assigned a cost, and that cost is minimized across the trajectory. Chronologi-

cal minimization, a technique from research on nonmonotonic logic, prefers trajectories in

which changes are made as late as possible; its reverse is anti-chronological minimization.

Finally, the event penalty preference relation requires that changes occur as the result of

events or event sequences; the relation minimizes the cost of those sequences, where each

event has an associated cost. The choice of preference relation determines what explanati-

ons are accepted, and therefore what is believed by the agent. Like belief revision, belief

extrapolation helps decide what to believe when new beliefs contradict old beliefs; like be-

lief update, belief extrapolation accommodates belief change due to changes in the world.

Dupin de Saint-Cyr and Lang (2011) identify strong connections with work on dynamical

diagnosis, some of which might be construed as instances of the belief extrapolation model;

however, belief extrapolation is defined only for the case of propositional databases. This

work provides strong theoretical results, but falls short of practicality, providing no notion

of legal transitions or intentionality, nor any implementations.

Boutilier and Becher (1995) described a logical framework that supports the definition

of abductive rationales for belief revision. This relationship is established without violating

the traditional definition of belief revision codified in the AGM postulates due to Alchourrón

et al (1985). The belief revision operators described by Boutilier and Becher modify the

25

beliefs of an agent by choosing those beliefs implied by the most preferred explanation that

predicts a new observation (i.e., a new belief to be adopted). Boutilier and Becher showed

how this notion captures the reasoning performed in early diagnosis systems that did not

reason about causality. Boutilier refers to causal explanations as being an important area

for extensions to this work.

Boutilier (1995) extended this framework with a description of a belief update operator

based on abduction, arriving at a generalized update operator that finds possible successor

worlds using both revision and update . Although this new operator incorporates a notion

of events, it does not reason about history. Instead, Boutilier (1998) created an iterated

belief semantics by which an agent could maintain a qualitative ranking over all possible

worlds. This ranking, described first by Friedman and Halpern (1994), is also referred to as

an epistemic state, because it constitutes knowledge about an agent’s own beliefs. Based on

the epistemic state, an agent can be said to believe, at any time, facts that are true in the

intersection or union of all maximally plausible worlds. Neither Boutilier nor Friedman and

Halpern commit to a particular ranking method, preferring to establish frameworks useful

for any such ranking. An agent is required to fully update and rank all possible worlds

after every observation, at high computational cost. Unlike our work, none of Boutilier’s

contributions consider the possibility of event sequences between observations or concurrent

events, nor do they generalize beyond propositional logics.

Many agents use a process of projection for maintaining their beliefs, which means de-

termining all possible states of the world by inferring a first-order logic expression that is

consistent with all possible occurrences following an initial state, also described in first-order

logic. Simple and efficient procedures exist for doing so in deterministic, fully observable

closed worlds, and in this setting the problem has been shown to be equivalent to a series

of relational database updates (Reiter 1987b). However, it is more difficult in partially

observable worlds, where belief update at execution time may be necessary. Provably cor-

rect and efficient local projection algorithms exist for certain specialized cases (De Giacomo

and H. J. Levesque 1999; Liu and H. J. Levesque 2005), but in general the complexity of

26

full projection in these environments is unknown. Projection results in provably correct

descriptions of the world under certain assumptions, and therefore is used by most plan-

ning algorithms, which prize correctness above efficiency. Use of projection in contingent

and conformant planners is primarily responsible for their high computational complexity

(Albore, Palacios, and Geffner 2009; Bonet and Geffner 2012), due to the need to represent

the large number of possible future states of a conditional planning problem.

Liu and Levesque (2005) showed that progression is tractable despite incomplete know-

ledge under the assumption that all actions have only local effects. This assumption requires

that actions change only properties of objects named in those actions parameters, and is

violated by any domain in which agents can influence objects they did not intend to. Vassos

and Levesque (2007) extend their theory to apply to the Situation Calculus with functional

fluents.

Son and Baral (2001) devised a set of algorithms that maintain an approximation of

an uncertain world state. Use of these approximations substantially reduces the theoretical

complexity of planning problems (Baral, Kreinovich, and Trejo 2000), but planning based

on such approximated states is not guaranteed to succeed, even when a feasible plan exists.

These approximated states, known as ω-approximations, incorporate all facts that can be

unambiguously determined from a short history of length ω. Each fluent in these approx-

imations is assigned a value “true”, “false” or “uncertain”. In the least complex version,

0-approximation, successor states are computed by finding all possible worlds that could re-

sult from the application of an action, and assigning “uncertain” as the value of any fluent

that has different values in two of those possible worlds. At higher levels of approxima-

tion, more computation is performed to try to determine the value of a fluent. Specifically,

the values of fluents are determined by projecting the effects of the prior ω actions in all

possible worlds consistent with the prior state that occurred ω time steps prior. Then the

value “uncertain” is assigned to any fluent that has different values in two of the resulting

possible worlds.

Amir and Russell (2003) introduced the term logical filtering, which is equivalent to a

27

specific form of belief update consistent with new beliefs based on observations rather than

actions. They show that logical filtering can not in general be performed in polynomial

time, but give several restrictions under which it can. Their algorithms function in nonde-

terministic, partially-observable domains described in propositional logic. Logical filtering

has been observed (Liu and H. J. Levesque 2005) to be a form of progression, and therefore

provides no explanatory power.

Shahaf (2007) described a novel system, C-Filter, which performs logical filtering based

on a logical circuit representation. During execution, this filtering process represents the

value of each state property by a pointer into an and-or tree with leaves in the values of

the initial state. The complexity of determining truth therefore grows with time. This does

represent the belief state compactly with respect to enumerative state representations, but

requires frequent expensive inferences. This system works correctly in partially-observable

worlds with deterministic actions, but is not extended to deterministic events or concur-

rency.

Petrick and Bacchus (2002) described the PKS system, based on traditional planning

algorithms, which uses a specialized domain representation. Instead of describing how

actions affect the world, they describe what an agent should know after executing the

actions. This reduces belief update to an efficient fully observable projection problem, but

requires extra human knowledge to be inserted into the domain a priori. It’s not clear how

much effort is required to generate this type of domain knowledge. In general, it is probably

not reasonable to describe all belief changes a system should undergo in complex domains.

A formal account of the reasoning involved in such a knowledge-centric theory is given by

Patkos and Plexousakis (2009).

Problems analogous to belief update are researched in probabilistic settings under the

terminology of Partially Observable Markov Decision Processes and reasoning under un-

certainty (e.g., Lovejoy 1991; Kaelbling, Littman, and Cassandra 1998). Similar problems

with continuous dynamical systems are dealt with in the state estimation literature (e.g.,

Åström 1965; Choi, Guzman-Rivera, and Amir 2011). While such techniques are certainly

28

appropriate for a large class of problems, we seek to limit the size of the body of related

work surveyed here, and the techniques studied in these fields are not directly applicable to

the problems studied here.

2.4 Model-based Diagnosis

The problem of diagnosis focuses on finding what components have failed in a modeled

system, given a sequence of observations. This is analogous to the general problem of ex-

plaining how states have changed, because every environment can be described as a system,

and surprising events are much like faults. In diagnosis, a set of faulty components explain

why a system fails, whereas incorrect assumptions can explain why an agent fails to predict

surprising events. There is a long tradition of abductive reasoning in the diagnosis commu-

nity, and recent diagnostic systems solve problems in changing worlds that are isomorphic

to a belief change problem.

Historically, diagnosis has been conducted using one of three methods. The first, rule-

based diagnosis, is the type of reasoning generally conducted by expert systems. To

perform this type of reasoning, a large rule base of deductive rules that reason from symp-

toms to causes is generated in advance, and the diagnostic system computes the closure

of these rules with known information (i.e., symptoms) about the system to be diagno-

sed. This closure includes a set of possible causes, which may or may not be ranked. In

the late 1970s and 1980s, several groups attempted to conduct diagnosis without such an

exhaustive rule base, using only models of the system and its components, and observations

of its behavior. Motivations for this included simplifying the task of building new diagnostic

systems (Genesereth 1984), modeling human diagnostic reasoning (Reggia, D. Nau, and P.

Wang 1983), criticism of production rules in existing systems (Reggia 1978), applicability

to novel symptoms (Davis 1984), reusability of knowledge among related domains (Davis

1984; Genesereth 1984) and ease of maintenance (Davis 1984). Most of these early systems

(e.g., De Kleer 1976; Genesereth 1984; Davis 1984; Hamscher and Davis 1984) were later

29

described as performing consistency-based diagnosis (Reiter 1987a), because the diag-

noses generated were required to be consistent with observations of the system’s behavior.

In contrast, the term abductive diagnosis was coined to refer to diagnosis algorithms for

generating diagnoses that explain or imply all observations made (e.g., Reggia, D. Nau,

and P. Wang 1983; Console and Torasso 1990). Consistency-based systems only model the

intended behavior of a system, and therefore only output a description of what components

are not operating as intended. Abductive diagnosis systems, in contrast, model unintended

behavior as well, which is necessary to obtain the explanatory power associated with these

systems.

Early diagnosis research emphasized the importance of new representations and the

type of information that should be modeled. Genesereth (1984) claimed that his DART

Program, an “automated diagnostician” used deep theories of the structure of devices rather

than “shallow” rules. Hamscher and Davis (1984; 1984) and De Kleer and Williams (1976;

1987) used models of the structure and behavior of digital circuits to identify faults. Finally,

Reggia, Nau, and Wang (1983) used a bipartite graph to describe the relationship between

causes and symptoms. These new representations were intended to capture underlying

characteristics of the represented domains, rather than human expertise about how to fix

them.

Early diagnostic systems did not represent time or changes occurring within the systems

modelled; each system was modeled as a static set of relationships. This was a fundamental

limitation, as a concept of time is necessary to represent causation. Dvorak and Kuipers

(1989) created a system called MIMIC , which performed abductive diagnosis of a run-

ning system using qualitative simulation. They were motivated by the need to perform

diagnosis of critical systems without shutdown, and the need to model the dynamics of

ongoing processes. The MIMIC system was also innovative in its incremental construction

of hypotheses over time. If multiple faults occurred during MIMIC’s monitoring, they

could be added to an existing hypothesis. However, the nature of qualitative simulation

restricted MIMIC, in that it was unable to predict the timing of changes. Furthermore,

30

MIMIC required two simplifying assumptions: first, that only one fault occurred at a time,

and second, that faults could not cascade. Therefore, we do not consider this a solution to

the hypothesis generation problem.

Friedrich and Lackinger (1991) extended Reiter’s diagnostic formalism for reasoning

about temporal model-based diagnosis using a notion of failure intervals, motivated by

the notion of transient failures. They also provided a method for ranking diagnoses based

on Markov Decision Processes. Unlike Dvorak and Kuipers, they provided no system or

algorithms for inferring temporal faults.

Cordier and Thiébaux (1994) created the first diagnostic framework for reasoning about

the history of a system as a sequence of events. They claimed many benefits from this,

including a common representation for exogenous events, expected events, and actions ta-

ken for diagnostic purposes; a clear description of a system’s history; simple expression

of constraints via event preconditions; and the applicability of techniques from automated

planning research, such as the expression of preferences. Cordier and Thiébaux introduced

several preference criteria over event-based diagnoses, including the “most probable diag-

nosis” criterion, which prefers diagnoses with the greatest likelihood, where likelihood is

the product of event likelihoods; the “shortest diagnosis” criterion, which prefers diagnoses

containing fewer events; and the “least redundant diagnosis” criterion, which prefers diag-

noses that do not contain (as a subset) smaller diagnoses. This framework introduces a

number of useful concepts for reasoning about past events, but unlike DiscoverHistory,

is incapable of reasoning about simultaneous events.

Gamper’s (1996) PhD thesis describes a system for generating Abstract Temporal Diag-

noses (ATD) based on a detailed temporal reasoning framework. This system is capable of

reasoning about modelled processes that explain observations described using qualitative

temporal relationships. In Gamper’s work, the term “process” is used to refer to well-

understood series of (lengthy) events. These diagnoses construct rich minimal-commitment

temporal networks that can be used to identify an underlying cause for a long series of

observations taken during many different processes; in demonstration, the system is applied

31

to diagnose cases of Hepatitis B at a rate much higher than a prior system, Hexaxpert-

1. The ATD system uses only forward-chaining inference, based on sets of pre-generated

assumptions, to come up with its theories. Therefore, while the ATD system is capable

of generating diagnoses that reason based on events, it requires an explicit framework of

possibilities to do so, and cannot generate diagnoses from arbitrary models. This is limiting

as it requires generation of problem-specific knowledge, and is thus unsuitable for use as

part of an autonomous agent.

Thielscher (1997) provides an alternative theory of dynamic diagnosis for diagnosing

dynamic systems. Thielscher’s theory, based on the Fluent Calculus, accommodates causal

information apart from actions. The theory makes no distinction between natural events

and exogenous actions for this purpose.

Recent innovations (e.g., S. A. McIlraith 1998; Sohrabi, Baier, and S. McIlraith 2010;

Iwan 2001) have extended and applied diagnosis techniques to the problem of agents whose

actions may fail. In this work, action histories are found that resolve contradictions by

assuming the occurrence of faulty actions and/or missing assumptions about the initial

state. Gspandl et al (2011) also use the diagnoses found to manage beliefs about the system,

which informs some kind of task accomplishment technique. This work describes an agent,

IndiGolog, that uses a belief management technique similar to DiscoverHistory search.

However, their belief management is based on a notion of “invariants” and “variations” that

have no analogue in the environment and transition knowledge used by DiscoverHistory,

so it’s not clear how they can be compared. Furthermore, IndiGolog is not comparable to

DHAgent, as it does not achieve goals. Instead, it finds actions that execute “some sketchy

high-level non-deterministic program” (Giacomo et al. 2009). In summary, work on belief

management in IndiGolog is based on similar motivations to our work on DHAgent and

DiscoverHistory, but solves a different set of problems that are non-equivalent.

32

2.5 Planning

Work in planning generally attempts to find optimal (least-cost) plans to achieve a goal

as efficiently as possible. The planning problem is closely related to the problem of con-

structing an explanation about the past: the solution to a planning problem is a sequence

of desired occurrences (i.e., actions) which are expected to take place in the future, whereas

the solution to an explanation problem is a sequence (i.e., history) of occurrences that have

already happened. In this section, we briefly discuss contingent planning systems, which

approach the problem of deciding how to act in partially observable worlds using compu-

tationally intensive methods; as well as two approaches to creating systems that monitor

the environment during execution, maintain rational beliefs about the world, and replan as

necessary: real-time control and continual planning systems.

2.5.1 Contingent Planning

Contingent planners find tree-structured plans for partially observable domains that branch

on observations. These plans can be executed by taking the appropriate branch every time

an observation arrives, and can be proved optimal. Because they do not replan (mostly),

these systems will only generate a plan for domains where success can be guaranteed. In

hazardous domains, where some possible initial state leads to unavoidable failure, no plan

will be generated that works for the other states. In order to be correct, these systems

must consider every possible initial state. This is highly computationally expensive, and

these algorithms do not scale to large domains where many possible initial states exist.

Modern contingent planners include POND (Bryce, Kambhampati, and D. Smith 2004),

MBP (Bertoli and Cimatti 2002), Contingent-FF (Hoffmann and Brafman 2005), and CLG

(Albore, Palacios, and Geffner 2009).

Shani and Brafman (2011) described the SDR planner, which maintains beliefs by re-

considering facts from the past and initial state through a regression process. Unlike other

contingent planners, SDR considers only a small, randomly selected subset of the possible

33

initial states in its planning, reducing computational overhead. Because it approximates

the possible states of its (partially observable) environment, SDR must change its beliefs

at execution time. SDR senses its environment to ensure that the preconditions of its next

action to be executed are not met; when sensed information contradicts its beliefs, it gives

them up and constructs a new set of possible initial states, as well as a new plan that

succeeds in those states. Because it only performs sensing occasionally, SDR may persist

with incorrect beliefs after they could have been rejected. As with other approximation ap-

proaches, SDR may generate plans that lead to dead-ends in some domains. SDR attempts

to solve a limited version of the goal achievement problem described in Chapter 1, with no

support for learning. Its dependence on planning techniques that propositionalize the envi-

ronment, however, are essential to its strategy; as a result, it runs out of memory on large

problems. Furthermore, it does not recognize the concept of deterministic events we use,

nor general observations, using instead a sensing action formalism. As such, it constitutes

an interesting attempt at a related problem, but is not directly comparable.

2.5.2 Real-Time Control and Execution

Existing research on real-time control and execution in Artificial Intelligence typically

employs a reactive planning foundation, where the agent decides on an action and executes

it immediately (Musliner et al. 2008; R. Goldman et al. 2002; Kabanza, Barbeau, and St-

Denis 1997). Sometimes, the systems decide on the action to be executed by using planning

heuristics. Sometimes, they generate a complete plan, off-line, that achieves the goal, and

then execute the plan. These systems can not operate in situations where some possible

worlds cause inevitable failure.

The Cooperative Intelligent Real-time Control Architecture (CIRCA) is an autonomous

planning and control system that builds and executes safety-preserving plans in the face

of unpredictable events (Musliner, Durfee, and Shin 1993). CIRCA includes a Reaction

Planner which devises a plan to accomplish mission goals while avoiding or preventing

failures. The Reaction Planner takes in a problem description that specifies the initial state

34

of the world, a set of goal states that the planner attempts to reach, a distinguished failure

state that the planner must avoid, and a set of transitions that move the world from one state

to another. Unlike most planning systems, CIRCA reasons about uncontrollable sources

of changes, such as environmental disturbances, failures, and adversaries. The transition

models also include timing characteristics that specify how fast the various transitions can

occur. The Reaction Planner uses formal verification techniques to check its plans and

ensure that failure is not reachable.

2.5.3 Continual Planning

Continual planning refers to the overall process of creating a plan, and then monitoring and

maintaining it during execution. This larger problem has been recognized for many years

as essential to the overall problem of robot control, and in general to the problem of acting

in complex worlds (e.g., Fikes, Hart, and Nilsson 1972; Ambros-Ingerson and Steel 1988;

desJardins et al. 1999).

The first continual planning system was the controller of SHAKEY (Fikes, Hart, and

Nilsson 1972), a famous robot that performed planning using a system called STRIPS and

monitoring using a system called PLANEX. This early system could recognize contradictions

between the observed world state and the expected effects described for its actions (i.e.,

discrepancies) and perform replanning in response.

The Integrated Planning, Execution, and Monitoring (IPEM) system (Ambros-Ingerson

and Steel 1988) went beyond this by revising its plan when discrepancies were recognized;

IPEM began executing actions during planning, as soon as an action was added to the

plan whose preconditions were already met, and continued to revise the plan as execution

occurred, either because preconditions of a later action were simply not yet met, or because

a precondition of a later action was altered, as by an exogenous event.

In two 1995 papers, Sooriamurthi and Leake (Sooriamurthi and Leake 1995; Leake

1995) described an architecture for goal-based interactive explanation that is designed to

perform explanation to recover from failures during action execution. This architecture

35

used a case-based component to generate explanations based on the situation encountered,

and was demonstrated in a scenario where an action to drive to the airport fails due to a

bad battery. However, no serious studies were ever performed with this architecture, and

some details of its operation are unclear.

The Continuous Planning and Execution Framework (CPEF) (Myers 1999) was descri-

bed as a first step in the development of a planning system that employs plan generation,

execution, monitoring, and repair capabilities to solve complex tasks in unpredictable and

dynamic environments. CPEF assumes that plans are dynamic, that is, they must “evolve”

in response to the changes in the environment. CPEF employs HTN planning and plan

repair capabilities using SIPE-2 (Wilkins 1988).

CASPER (Knight et al. 2001) uses a continuous planning approach to achieve a high

level of responsiveness in dynamic planning situations. Its planner maintains a model of

expected future states for monitoring purposes. Based on incoming observations, CASPER’s

goals can change at any time, triggering a replanning process.

Warfield et al (2007) presented a system called RepairSHOP that performs plan repair

in response to unexpected changes that prevent execution of the plan. RepairSHOP uses a

general and expressive data structure called GoalGraph to represent causal links between

actions and nonprimitive task in a hierarchical task network, which permits efficient de-

tection of causal link failures. When failures are detected, only the failed portions of the

hierarchical task network must be replaced, resulting in minimal changes to the existing

plan at low computational cost.

Göbelbecker et al (2011) describe a continual planner that represents probabilistic in-

formation in the description of actions and sensors. This system switches between two

planners, one of which, a classical planner, ignores probabilistic information for the sake

of efficiency. A second planner, which uses probabilistic information, employs a factored

representation of the domain to solve subproblems only when needed. Like other continual

planners, this system performs a belief revision step during execution to inform replanning.

Unfortunately, most Continual Planning systems have historically been associated with

36

robots or specific domains, and have very complex architectures compared to other AI

planning systems. Due to this complexity, and the unavailability of most existing systems,

there are no comparisons of the performance of these existing systems, and it’s unclear how

to perform such a comparison. While many of these strategies focus on repairing the plan

when observations indicate that it cannot succeed, ignoring other environment changes,

they may not go far enough. Explanation allows an agent to infer facts that can not be

directly observed, allowing an agent to project problematic situations before problems can

be observed directly. Many other papers describe continual planning systems without the

use of explanation (Ayan et al. 2007; X. Wang and Chien 1997; Erol, Hendler, and D. S.

Nau 1994; Yoon, Fern, and Givan 2007; Kambhampati and A. 1992; Myers 1996; Schoppers

1987; Verfaillie and Schiex 1994; Bernard et al. 1998; Talamadupula et al. 2010; Wyatt

et al. 2010; Kraft et al. 2008).

Continual Planning with Explanation

A small number of continual planning systems have incorporated explanation in a planning

and execution agent for the purpose of improving performance in partially observable dom-

ains. As such, these agents are in some ways similar to DHAgent. However, none of them

applies to the goal achievement problem motivated and described in Chapter 1, and the

agents created are not directly comparable to DHAgent.

In some sense, Dvorak and Kuipers’ (1989) MIMIC system, a qualitative diagnostic

system, is a continual planning system. Although it is limited to monitoring an existing

physical system, and taking actions only for diagnostic purposes, its diagnostics do change

its understanding of the world. However, this system cannot be applied to the more general

goal achievement problem.

Beetz and McDermott’s (1994) XFRM system acts upon complex policy-like plans that

express conditionals and loops. While it does not construct these plans automatically, it

does modify them automatically in a knowledge-intensive process requiring detailed models

of all faults that may be encountered by the agent. Explanations in XFRM are constructed

37

to explain problems found while projecting the consequences of plans from a plan library.

XFRM uses a representation of undesirable states that it uses to test future states found in

the projection process. To avoid these forbidden states, XFRM conducts explanations that

describe why the states would arise during execution of the plan; this explanation process

discovers faults, which are used by a separate component to repair the plan. This capability

is not used online, so XFRM is incapable of representing failures due to unexpected events

or actions, and does not solve the same problem as DHAgent.

Shanahan and Witkowski controlled a Khepera robot through interleaved planning,

planning execution, and perception steps, all implemented in logic (Shanahan 2000; Shana-

han and Witkowski 2000). This agent used a description of the world based on Shanahan’s

extensions to the Event Calculus. Its perception process essentially conducts belief revision

using an abductive explanation process that assimilates sensor data. This work is described

as preliminary, demonstrated only in an office environment described as static and small.

No empirical analysis is made of this agent, but the problem it solves is similar to the goal

achievement problem in a static environment.

Eiter et al (2007) described an approach to optimistic planning , which generates plans

that succeed in at least one possible world. They implement a very optimistic type of

monitoring that only requires action when it is certain that the plan will leave a space

of preferred trajectories described in domain knowledge. Because of this, their optimistic

planner may execute multiple actions along trajectories that are very unlikely to succeed,

even after detection becomes possible. Eiter et al claim that this is an important step to

reduce the cost of monitoring. Explanations in this system only describe a prior time point

when a discrepancy first occurred, and not the cause of the discrepancy. Exogenous events

are not represented at all.

None of these approaches to continual planning with explanation are entirely satisfying,

and there is still a clear need for further research into agents that use explanatory knowledge.

38

2.6 Learning Environment Models

Related work on learning environment models focuses on models of an agent’s action. Pa-

sula et al. (2007) describe how an agent can learn models of a world with realistic physics,

modelled stochastically and with noise, but fully observable. Zhuo et al (2010) describe

LAMP, which infers a sophisticated deterministic action model representation including

conditionals and universal quantifiers, from executed plan traces, to reduce software engi-

neering effort. They report it was accurate with ablated information. Mourao et al (2012)

employ a two-step learning process to boost the accuracy of models learned from noisy plan

traces. Our work differs from these prior studies in its focus on exogenous events.

Several studies address the task of explaining surprises in the current state. SWALE (Le-

ake 1991) uses surprises to guide story understanding and goal-based explanation to achieve

understanding goals. Weber, Mateas, and Jhala’s (2012) GDA agent learns explanations

from expert demonstrations when it detects a surprise, where an explanation predicts a

future state obtained by executing an adversary’s expected actions. Hiatt, Khemlani, and

Trafton (2012) describe an explanatory reasoning framework that identifies and explains

surprises, where explanations are generated using a cognitively-plausible simulation process.

In Ranasinghe and Shen’s (2008) Surprise-Based Learning process an agent learns and refi-

nes its action models, which can be used to predict state changes and identify when surprises

occur. Nguyen and Leong’s (2009) Surprise Triggered Adaptive and Reactive (STAR) fra-

mework dynamically learns models of its opponents’ strategies in response to surprises.

None of these systems infers improved environment models, so they are not applicable to

the hypothesis-based model learning problem described in Chapter 1.

Several methods exist for learning environment models such as action policies, opponent

models, or task decomposition methods for planning (e.g., Zhuo et al. 2009). Techniques

also exist for learning other types of models under different assumptions. Inductive Pro-

cess Modeling (Bridewell et al. 2008) can learn process models from time series data, and

predict the trajectories of observable variables. Qualitative Differential Equation Model

39

Learning (Pang and Coghill 2010) methods can be used to study real-world non-interactive

dynamic systems. Reverse Plan Monitoring (Chernova, Crawford, and Veloso 2005) can

automatically perform sensor calibration tasks by learning observation models during plan

execution. In contrast, we address the problem of inferring models of exogenous events for

use in subsequent prediction, planning, and explanation in an execution environment.

In model-free reinforcement learning (Sutton and Barto 1998), agents learn environment

models. Our work differs in that it is goal-oriented rather than reward-driven, and thus it

allows frequent goal change without requiring substantial re-learning of a policy.

40

Chapter 3: Problem Representation

Building on the problem definitions given in chapter 1, we present a syntax and semantics

for the data and knowledge used by our algorithms. In particular, this chapter will pro-

vide concrete meanings for the terms environment model, action, event, process, transition

function, observation, observation function, goal, and transition discontinuity as used by

our algorithms. We will then describe and justify deviations from the languages PDDL,

PDDL+, and first-order logic on which it is based.

3.1 Environment Model

Each of the four problems addressed in this dissertation requires an environment model

MΣ. Here, we give a definition for the environment models to be used in this dissertation.

This model describes:

1. an ontology of possible world states, incorporating:

(a) a list of object types, described as symbols;

(b) a list of functions, described as a function symbol followed by a tuple of argument

types, and a value type;

(c) a list of relations, described by a relation symbol followed by a tuple of argument

types;

(d) a mapping from functions to default values;

2. a set of event models, each describing a class of possible events, including:

(a) conditions that trigger those events, described as sentences of first-order logic

that require relationships and properties between objects in a state, and inequa-

lities between environment properties, and

41

(b) effects of those events on the world state, described as new values taken by

specific environment relationships and properties when an event occurs;

3. a set of action models, each describing a class of possible actions, including:

(a) conditions under which an action may be caused to occur by a given agent,

described as sentences of first-order logic, and

(b) the effects of those actions on the world state, described as new values taken by

specific environment relations and functions when an event occurs;

4. a finite subset of the relation and function symbols that describe observable relations

and functions; and

5. a finite subset of the relation and function symbols that describe static relations and

functions.

We will now make this more precise using formal definitions; the environment model

includes statements based on a restricted first-order logic formalism, as do other languages

based on PDDL. The alphabet of this language consists of:

• parentheses (and), which are used for grouping;

• variables, which are denoted by symbols starting with a question-mark, such as ?x,

?y, or ?loc;

• real and integer constants, denoted using their base 10 representation, e.g., 1001

or 3.1415

• an enumerated set of object constant symbols, which are used to refer to objects

in the environment;

• an enumerated set of type symbols, which categorize environment objects;

• the type symbols Int and Real, which refer to integer and real numbers, respectively;

42

• the binary logical operator symbols and and or;

• the unary logical negation operator symbol not;

• the equality symbol eq and inequality symbol neq;

• numeric comparison symbols <, >, <=, >=, and =;

• an enumerated set of relation symbols or predicate symbols, which are used to

describe relationships between objects;

• an enumerated set of function symbols, which are used to describe functions over

objects and numbers;

• an unbounded set of object symbols, which consist of all symbols not relegated to

one of the above categories.

A variable definition assigns a variable a type. If x is a variable, and T is a type, x -

T is a variable definition.

A constant definition assigns an object constant a type. If c is a constant, and T is

a type, c - T is a constant definition.

An environment model describes object constants, relations, and functions using the

following:

1. A type symbol list describes available types. The set Ty, the set of types in the

environment model, consists of these, as well as the standard types Int and Real.

2. A list of object constant definitions specifies the list of object constants OC, and

defines the mapping constantType : OC → Ty. For example, the object constant

definition adam - Person implies both adam ∈ OC and constantType(adam) 7→

Person.

3. a list of relation definitions, which name a relation and describe its legal arguments.

These are defined as follows: if P is a relation symbol and X is a list of variable

definitions, (P X) is a relation definition. This defines:

43

• the list of relation symbols Rs,

• a mapping relationArity : Rs → I+ (I+ being the set containing all positive

integers), which describes how many objects are referred to by a relation, and

• a mapping relationArgType : Rs × I+ → Ty, which gives the types of relation

arguments.

For example, (nearby ?p1 - Place ?p2 - Place) is a relation definition descri-

bing how to refer to relationships between two objects of type Place. Given a mo-

del including this definition, we have nearby ∈ Rs, relationArity(nearby) 7→ 2,

relationArgType(nearby, 1) 7→Place, and relationArgType(nearby, 2) 7→Place.

4. a list of function definitions, each of which names a function, describes its legal

arguments, and describes its return type. These are defined as follows: if f is a

function symbol and X is a list of variable definitions, and T is a type, (f X) - T is

a relation definition. This defines:

• the list of function symbols Fs,

• a mapping functionArity : Fs → I0+ (I0+ being the set containing all positive

integers and 0) that describes how many objects are arguments to the function,

• a mapping functionArgType : Fs× I0+ → Ty, and

• a mapping functionReturnType : Fs→ Ty that describes the types of relation

arguments.

For example, (distance ?p1 - Place ?p2 - Place) - Real is a function definition

describing how to refer to the real-valued function distance over two objects of type

Place. Given a model including this definition, we know the following:

distance ∈ Fs, functionArgType(distance, 1) 7→ Place,

functionArity(distance) 7→ 2, functionArgType(nearby, 2) 7→ Place,

functionReturnType(nearby) 7→ Real.

44

Terms in our language consist of all object constant symbols, all real and integer con-

stants, all variables, all object symbols, and the boolean values True and False. The set

of all terms is denoted Te. The function type : Te→ Ty describes the type of a term. We

do not define terms to include functions, as is standard in first-order logic; this is consistent

with other work in PDDL.

A relation instance groups a relation symbol with terms of the appropriate num-

ber and type. This has the form (P t1 t2 . . . tn), where P is a relation symbol, and

t1, t2, . . . , tn are terms. A relation instance is legal iff relationArity(P) 7→ n ∧ ∀i ∈

1 . . . n type(ti) = relationArgType(P, i). We denote the relation type of a relation in-

stance ri using the function relationType(ri) = P . We denote its arguments using the

function relationArgs(ri) = t1, t2, . . . , tn. For example, given the above relation defini-

tion (nearby ?p1 - Place ?p2 - Place) and objects Washington and Baltimore

such that type(Washington) 7→ Place and type(Baltimore) 7→ Place, the relation

instance (nearby Washington Baltimore) is legal (regardless of whether it is true).

For this instance, we have relationType((nearby Washington Baltimore)) = nearby

and relationArgs((nearby Washington Baltimore)) ={Washington, Baltimore}.

The relation instances (nearby Washington) and (nearby Washington Baltimore

Arlington) are not legal, because the arity of the nearby relation does not match the

number of arguments. The relation instance (nearby Washington 10.5) is not legal,

because the type of 10.5 (Real) does not match the required argument type, Place, of

the second argument to the relation nearby.

A function instance is defined analogously; it has the form (f t1 t2 . . . tn), where f is a

function symbol and t1, t2, . . . , tn are terms. A function instance is legal iff functionArity(f)

7→ n ∧ ∀i ∈ 1 . . . n type(ti) = functionArgType(f, i). We denote the function type of

a function instance fi functionType(fi) = f , and the arguments functionArgs(fi) =

t1, t2, . . . , tn.

45

We define three types of literals: relation literals, function literals, and compa-

rison literals. A relation literal is either a relation instance or its negation, e.g., (not

(nearby Washington Baltimore)).

A function literal has the form (eq fi v), where fi is a function instance and v

is a term called the value term. A function literal is legal iff legal(fi) ∧ type(v) =

functionReturnType(functionType(fi)). For example, given the above function definition

(distance ?p1 - Place ?p2 - Place) - Real and objects Washington and Baltimore

such that type(Washington) 7→ Place and type(Baltimore) 7→ Place, the function li-

teral (eq (distance Washington Baltimore) 10.5) is legal (regardless of whether it is

true). The function literals (eq (distance Washington) 10.5) and (eq (distance Wa-

shington Baltimore Arlington) 10.5) are not legal, because the arity of the distance

relation does not match the number of arguments. The function literal (eq (distance

Washington Superman) 10.5) is not legal, because the type of Superman does not ma-

tch the required argument type, Place, of the second argument to the relation distance.

Similarly, (eq (distance Washington Baltimore) Arlington) is not legal, as the type

of Arlington does not match the required return type, Real, of the function distance.

A comparison literal has the form (Comp fi cv) where Comp is one of the comparison

symbols {neq, <, >, <=, >=}, fi is a function instance, and cv is a term called the

comparison value term. A comparison literal is legal iff

legal(fi)

∧ (Comp = neq

∨ functionReturnType(functionType(fi)) ∈ {Real, Integer}).

This permits the statement of legal comparisons such as (<= (distance Washington

Baltimore) 100.0). With the inequality symbol, this can also be used for non-numeric

functions. Given the function definition (nearestCity ?p - Place) - Place, the compa-

rison literal (neq (nearestCity Washington) Baltimore) is legal. We deem examples

of illegal comparison literals to be unnecessary at this point.

We define several functions over literals. For a literal l, the function target(l) gives

46

the function or relation instance the literal refers to. The function value(l) gives the value

term of a function or comparison literal; for a relation literal, it gives the value False if the

literal is negated, and the value True otherwise. The function ltype(l) gives the function

type of a function or comparison literal’s function instance, or the relation type of a relation

literal’s relation instance. Finally, the function comp(l) gives the comparison symbol for a

comparison literal. For all other literals, comp(l) 7→ ⊥.

We now inductively define the term formula.

1. Any literal is a formula.

2. The negation of any formula φ, (not φ) is a formula.

3. Given two formulas φ and ψ, (and φ ψ) and (or φ ψ) are formulas.

4. Given a variable x and a formula φ that includes x, (forall x φ) and (exists x φ)

are formulas.

As is standard for PDDL, all variables that are not otherwise bound are assumed to

be existentially quantified. Therefore, every formula is also a logical sentence. Typical

first-order logic semantics apply to all formulas.

A few more necessary definitions:

1. A ground literal is a literal containing no variables.

2. The function vars returns the unique set containing all variable symbols present in

an expression.

3. A substitution is a mapping {x1 7→ t1, x2 7→ t2, ...xn 7→ tn} from variables to terms,

typically written as θ.

4. The function apply replaces each xi in an expression with the corresponding term ti.

3.1.1 States

A state is a function that assigns a legal value (i.e., a non-variable term) to every legal

ground function and ground relation in the environment model. In general, a complete

47

state may never be known, and tends to represented implicitly rather than explicitly. An

environment model does not include states, but specifies a space of states through a set of

relation definitions and function definitions.

A ground relation has the form (P c1 c2 . . . cn), where P is a relation symbol,

and c1, c2, . . . , cn are non-variable terms. A ground relation is legal iff relationArity(P) 7→

n ∧ ∀i ∈ 1 . . . n type(ci) = relationArgType(P, i). Legal values for a ground relation in a

state are true and false.

A ground function has the form (f c1 c2 . . . cn), where f is a function symbol, and

c1, c2, . . . , cn are non-variable terms. A ground function is legal iff functionArity(f) 7→ n∧

∀i ∈ 1 . . . n type(ti) = functionArgType(f, i). Legal values for a ground function with sym-

bol f in a state are all non-variable terms c such that type(c) = functionReturnType(f).

Formally, we say that G is the set of all ground functions and relations, and C is the set

of non-variable terms. Then, a state is a function state : G → V that assigns each ground

function and relation a (legal) value.

States give truth values to formulas; semantically, a non-negated ground relation literal is

true in a state iff the state assigns it the value True; a negated ground relation literal is true

iff the state assigns it False. Ground function literals are true iff the value term matches the

value the state assigns to the function instance. Ground comparison literals are true iff the

comparison holds when the function instance is replaced with its state assigned value. For

example, if the state assigns the ground function (distance Washington Baltimore)

the value 32.0, the comparison literal (<= (distance Washington Baltimore) 10.0)

is false, but the comparison literal (<= (distance Washington Baltimore) 100.0) is

true. Standard variable substitution semantics and boolean operators govern the truth of

larger formulas.

3.1.2 Actions

Actions are instantaneous occurrences, intended by an agent, that affect the state of the

environment. In general, for an action to occur in a state, that state must trigger no events,

48

the action must be executable by a specific performer, and that performer must decide to

perform the action. The conditions for executability are given by an action’s preconditions,

which may refer to the performer of the action as well as features of the environment.

The environment model does not include actions directly, but instead describes models

of actions. An action model is a tuple

〈name, params, perf, pre, eff〉

Here, param is a list of variable definitions that describe the parameters of the action,

representing values are chosen by the agent performing an action; perf is a variable repre-

senting the agent who performs the action; pre is a formula describing the states in which

the action is possible; and eff is a list of effects describing how the environment changes

in response to the action. We will use a functional notation, i.e., name(am), param(am),

perf(am), pre(am) and eff(am) to refer to these aspects of an action model am.

We define two types of effects: relation effects and function effects. Relation

effects are described as either a relation instance or its negation. For instance, (nearby

Washington Baltimore) and (not (nearby Washington Baltimore)) are legal re-

lation effects, that express a change to the truth of the relation (nearby Washington

Baltimore). We say that the relation instance referred to by a relation effect e is its tar-

get and we denote this with the functional notation target(e). Similarly, a relation effect

has a target value, which we will describe as value(e) 7→ False if the effect is negated, or

value(e) 7→ True otherwise.

A function effect has the form (set fi v), where fi is a function instance and v is a

term describing the effect’s target value. A function effect is legal iff legal(fi) ∧ type(v) =

functionReturnType(functionType(fi)). For example, (set (distance Washington

Baltimore) 10.5) would be a legal example of a function effect. We describe the target

of a function effect e as target(e) 7→ fi and its target value as value(e) 7→ v.

For an action model am to be legal, the variables referred to by pre(am) must be unam-

biguously determined by the action model’s parameters and performer, and the variables

49

found in eff(am) must be a subset of those found in the precondition, parameters, and

performer. The first condition ensures that actions are unambiguous given an assignment

to their parameters by a performer. Formally,

∀s ∈ S ∀θDom(θ) = vars(params(am)) ∪ {perf(am)} =⇒
∃<=1θ

′s.t.Dom(θ′) = Dom(θ) ∪ vars(pre(am)) ∧ s |= pre(am).

The second condition ensures the same for the effects. Formally,

vars(eff(am)) ⊂ vars(params(am)) ∪ vars(pre(am)) ∪ {perf(am)}.

An action is a tuple 〈am, θ〉, where am is an action model, and θ is a substitution such

that Dom(θ) ⊂ vars(params(am)) ∪ vars(pre(am)) ∪ {perf(am)}. A ground action is

one in which θ maps all variables in params(am) to non-variable terms. Only a ground

action is executable. Semantically, a ground action is executable for an actor α in a

state s if its preconditions hold, i.e., s |= apply(θ, pre(am)), and the mapping theta gives α

as the performer, i.e., apply(θ, perf(am)) = α. The result of performing this ground action

is a new state s′, which is identical to s except that the value of each ground relation or

function in an effect e ∈ eff(am) is updated to value(apply(θ, e)).

3.1.3 Events

Events are instantaneous occurrences, not directly caused by any agent, that affect the state

of the environment. An event must occur immediately when its conditions are met, and at

no other time.

Like actions, events are not directly included in an environment model. Instead, an

environment model includes a set of event models, each of which is a tuple

〈name, params, pre, eff〉.

The definitions of these are the same as those given for actions. We will use a functional

notation, i.e., name(em), param(em), pre(em) and eff(em) to refer to these components

of an event model em.

50

For an event model em to be legal, the variables referred to by pre(em) must be unam-

biguously determined by the event model’s parameters, and the variables found in eff(am)

must be a subset of those found in the precondition and parameters. The first condition

ensures that events are unambiguous given an assignment to their parameters. Formally,

∀s ∈ S ∀θDom(θ) = vars(params(em)) =⇒
∃<=1θ

′s.t.Dom(θ′) = Dom(θ) ∪ vars(pre(em)) ∧ s |= pre(em).

The second condition ensures the same for the effects. Formally,

vars(eff(em)) ⊂ vars(params(em)) ∪ vars(pre(em)).

An event is a tuple 〈em, θ〉, where em is an event model, and θ is a substitution such

that Dom(θ) ⊂ vars(params(em)) ∪ vars(pre(em)). A ground event is one in which θ

maps all variables in params(em) to non-variable terms. A ground event is triggered in a

state s iff s |= pre(em). When one or more events are triggered in a state s, their effects are

applied simultaneously to arrive at a new state s′. The state s′ is identical to s, except that

the value of each ground relation or function in an effect of a triggered event is updated to

the value given by that effect. Note that it is illegal for an environment model to specify

event models such that some state s triggers two events with contradictory effects.

Why We Represent Deterministic Exogenous Events

Here, we make an aside to describe the reasoning behind representing exogenous events as

deterministic. Many other researchers focus on probabilistic exogenous events, and think

that deterministic exogenous events appear to be conditional action effects. Modeling events

as deterministic is in line with the PDDL+ formalism (Fox and Long 2006) and in keeping

with the tradition of natural events (sometimes referred to as natural actions) in the diag-

nosis and action theory communities (Pinto 1994; Pinto 1997; Reiter 1996). Conditional

effects on actions, as described in the planning literature (Pednault 1988), occur determinis-

tically as part of an action. Unlike conditional effects, deterministic events can be triggered

by any action, or another event; modeling the same information as effects of actions would

51

require the domain author to consider the effects of all series of events that could ever

happen following an action’s execution. Therefore, the size of an equivalent domain model

using conditional effects rather than events would be exponential in the number of events

represented originally.

The advantages of representing exogenous events as deterministic instead of nondeter-

ministic are twofold: (1) we can determine (predictively or after the fact) the exact time

when events must occur, reducing the set of potential explanations for a given series of

observations and (2) interacting effects can combine without causing an explosion in the

number of actions or events considered. Unpredictability in environments under our re-

presentation arises only from hidden facts, not a “choice” made by an environment as to

whether an event will occur. Representing exogenous events as deterministic is a restrictive

assumption that may limit the applicability of our approach; we believe, however, that

many interesting and realistic domains can be represented as deterministic, as actions can

still cause unpredictable branching of possible futures.

3.1.4 Observations and the Observation Function

In this work, an observation is a set of assignments of a legal value to ground functions

and ground relations in the environment model. This is similar to the state definition, but

observations do not range over all legal ground relations and functions.

To succinctly represent the observation function, we describe a set Ob of observable

relation and function symbols and a set St of static relation and function symbols. These

are subsets of the relation and function symbols specified by the relation and function

definitions. For each observable function symbol, a default mapping default : Ob 7→ NV T

gives a default value for that function as a non-variable term of that function’s value type.

We assume that every non-static observable ground relation in a state valued True, and

every non-static observable ground function with a non-default value, is communicated as

an assignment in an observation of that state. An initial observation is assumed to contain

assignments for all static non-default ground functions and relations.

52

This representation is in line with our assumptions; there is a simple, information-

preserving transformation from any environment model with a noiseless, deterministic ob-

servation model Obs(S) to an environment model in which some relationship and property

types are always observable and the rest are never observable. This transformation works

whether or not observations are given in the language of the environment model:

1. Define a new environment, Σn, containing the relation definitions, function definitions,

actions, and events, and processes of the original environment Σ.

2. For every relation definition rd and function definition fd in Σ, add to Σn a new

relation definition rdob or function definition fdob with a unique relation of function

symbol type and identical input and output types.

3. Add a relation definition rd or function definition fd to Σn that encodes every type

of information output by Obs(s) that is not described by relation and/or function

definitions in Σ.

4. Add the new relation and function symbols to the set Ob, but none of the originals.

5. Add event models to Σn that produce the output of Obs(s) and are conditioned on

the original properties and relationships.

Step 5 of this transformation effectively compiles the observation function into the tran-

sition function.

3.2 Modeled Transition Function

The environment model is used by an agent to describe an internal transition function

λα : S×A→ S as specified in the introduction, although it may not be the same transition

function as the actual environment. This transition functions is defined by the application

of the effects of all events that are triggered in a state s, or, if no events are triggered,

the application of an agent’s action. It is illegal for an agent to perform an action in a

53

state that triggers one or more events; we assume that if two or more agents attempt to

perform actions in the same state, they will be executed in a nondeterministic order, with

any triggered events resulting from an earlier action occurring before the next action.

Formally, a ground action ga with model am and substitution θ is legal for a performer

α in a state s when its preconditions are met by s, the action substitution θ maps the action

performer to α, and no event is triggered in s:

legal(〈am, θ〉, α, s) ≡
s |= apply(θ, pre(am))

∧ apply(θ, perf(am)) 7→ α

∧ ∀〈em, θEV 〉 ∈ E s 6|= apply(θEV , pre(em)).

The special action ∅, which has no effects, is legal in any state that triggers at least one

event:

legal(∅, s) ≡ ∃〈em, θEV 〉 ∈ E s |= apply(θEV , pre(em))

We can define the set of effects that must occur in a state s given an action a that is

performed (legally) in s:

effectsIn(s, a = 〈am, θACT 〉) ≡apply(θACT , eff(am)) ∪
{ev = 〈em, θEV 〉 ∈ E|apply(θEV , eff(em))}.

Note that, as it is illegal for an environment model to specify event models such that

some state s triggers two events with contradictory effects, the function effectsIn yields a

one-to-one mapping from ground functions and relations to values. We now exploit this to

define the transition function.

The internal transition function yields a state, which is itself a function over ground

relations and functions. This function can now be defined for all legal actions:

λα(s, a)(g) =

effectsIn(s, a)(g) if g ∈ Dom(effectsIn(s, a))

s(g) otherwise

54

3.3 Goals

Goals are sets of states, which are described by formulas in the environment model language.

We say that the agent has achieved its goal g when the current environment state s entails

that formula: s |= g.

3.4 Transition Discontinuities

A transition discontinuity is an interval during which an internal transition function does

not hold. These discontinuities are used to describe a belief that the transition function can

not accurately describe the observed behavior of the system during some period of time.

For more information, see Chapter 8. That is to say, for some enumerated discontinuous

state-action pairs {〈s1, a1〉, . . . , 〈sn, an〉}, an internal transition function λα, and a true

environment function λΣ, a transition discontinuity asserts that ∀i ∈ 1 . . . n λα(si, ai) 6=

λΣ(si, ai).

3.5 Relationship to other Representations

3.5.1 Relationship to First-Order Logic

The logical language used here to represent states, goals, and transition discontinuities is a

restricted first-order logic formalism. In particular, we do not allow functions to be terms

inside of relations or free variables. Nevertheless, we feel that the subset of first-order logic

we support is meaningfully large, and slightly larger than much other work in planning,

which does not support representation of functions at all.

3.5.2 Relationship to PDDL

Adoption of PDDL varies widely among researchers, as there are many different subsets

different groups find important. Our language includes some of the more advanced features

of PDDL (D. M. McDermott 2000; Fox and Long 2003), including numeric values, typing,

55

functions, quantifiers, and disjunctive preconditions. In supporting non-numeric functions,

we go beyond the de facto PDDL standard; researchers familiar with SAS+ planning,

which is based on state variables with non-binary domains, have noted (Helmert 2009) the

reduction in representation size and reasoning time this affords; our desire to represent large

domains compactly has led us in the same direction.

We do not represent the plan constraints or preferences expressible in PDDL3 (Gerevini

and Long 2006), as they do not seem to impact belief management or model learning.

We also ignore some other, more common extensions: we choose not to model conditional

effects as they are redundant with events, which are more compact, as we argued earlier.

Translation from a domain with conditional effects to one with events is trivial (but not

vice-versa). Axioms, which represent rules for derivation from basic facts, we also do not

represent. In general, these are considered quite useful by the knowledge-based reasoning

community at large, but they are not necessary to demonstrate our techniques.

Another divergence from standard PDDL research is in specifying a list of observable

predicate and function symbols. One standard way to represent partially observable worlds

in planning domains is to supplement them with sensing actions (e.g., Golden and D. Weld

1996; Baral and Son 1997; D. S. Weld, Anderson, and D. E. Smith 1998). This allows small

numbers of observable literals to be observed using explicit actions. This is convenient for

contingent advance planning, where all possibilities can be thought out in advance, because

each sensing action provides one bit of information, causing a single branch in that plan.

In contrast, we consider the problem of large domains where a great deal of information is

observable, even when most is hidden. Explicit sensing actions would be very tedious for

obtaining tens of bits of information repeatedly. Therefore, we make the assumption that

an agent receives all observable information about the environment periodically as part of

its standard interaction, but some properties of the state are not observed.

56

3.5.3 Relationship to PDDL+

PDDL+ (Fox and Long 2006) introduced a concept of events and processes for purposes of

temporal planning. While we have taken the concept of events from this work, processes,

which are necessary for representation of continuous time, are not described herein, as

they are not necessary to defend the claims made in this dissertation. However, this is an

important area for future research.

57

Chapter 4: DiscoverHistory

As stated in Chapter 1, the hypothesis generation problem is intended to find plausible

hypotheses about the history of an environment. A hypothesis consists of a set of unproven

logical statements about the environment, including statements about the occurrence of

events and exogenous actions, and a set of initial state assumptions, and a set of transition

discontinuities that describe gaps where the occurrence history does not match the model.

A plausible hypothesis, taken together with the agent’s actions and environment model,

must imply the observations received.

A description of the hypothesis generation problem follows:

• Given : a (possibly incomplete) environment model MΣ, observations of the environ-

ment o = [o0, o1, . . . om], an action history ah = [ah,1, ah,2, . . . ah,n], containing actions

taken by α, and a total order ≺ describing the temporal ordering of actions and obser-

vations,

• Find : a set of plausible hypotheses Hα such that ∀h ∈ Hα : h ∪ ah ∪MΣ |= o.

To our knowledge, no existing techniques solve this problem. Some techniques exist

for solving similar problems, primarily differing in the hypothesis and environment model

representation, (e.g., Sohrabi, Baier, and S. McIlraith 2010; Iwan 2001; Gspandl et al. 2011;

Shani and Brafman 2011). None of these work on problems with the large state spaces

and structured representations we address, nor do they consider transition discontinuities.

In this section, we describe the novel algorithm DiscoverHistory, and discuss how it is

used to find plausible explanations. We will define formal conditions for plausibility,

and the relationship between a plausible explanation and plausible hypothesis. We will

also describe conditions under which DiscoverHistory search is a complete and sound

solution to the hypothesis generation problem. Finally, we will describe DHAgent, and

how it uses DiscoverHistory search to manage its beliefs.

58

4.1 Design Decisions

In devising a solution to the explanation generation problem for large environments, we

considered several characteristics a good solution should have, which we describe here.

The space of plausible hypotheses is at least as large as the space of possible states an

agent might be in, as some hypotheses describe occurrences that converge on an identical

state. In general, a partially observable environment will have a state space of size ex-

ponential in the number of hidden fluents. Enumerating this space poses both space and

computation time problems, even it might lead to more correct behavior; instead, we con-

centrate on finding a smaller set of hypotheses which are optimistic. This means that the

assumptions made in those hypotheses are minimal.

As described in Chapter 1, our intended agent must make frequent use of explanation

generation in order to manage its beliefs. As a solution to the explanation generation

problem is computationally expensive, we would like to take advantage of the frequent calls

by devising an incremental solution which builds on the results of solutions to related

problems.

Finally, we make a commitment to use a structured representation for the environment

model MΣ, as detailed in Chapter 3. Other work in finding beliefs consistent with histories,

such as the work done by Dupin de Saint-Cyr and Lang (2011), tends to rely on a propo-

sitional representation. However, the propositional description of an example environment

model that describes 100 hidden fluents is of size 2100. While methods we consider still have

scaling problems, even describing an instantiated problem using propositional methods is

futile in large environments.

4.2 Motivation

Before we get into details of the algorithm, there are two particular sources of motivation

for research into explanation generation that shed light on the problem and what it means

to solve it. The first is psychological, and describes what a similar process is like in the

59

human mind. The second comes from a notion of what it means for an agent to be robust.

4.2.1 Psychology

We are interested in developing agents that can understand or make sense of what is happe-

ning to themselves and around themselves, even when the environment is obscured and con-

stantly changing. By constructing occurrence histories, an agent creates a logical sequence

of events to explain to itself why the changes it observes happened, thereby understanding

them better. According to psychological research, humans constantly perform an analogous

task. This self-explanation has been likened to telling ourselves stories about what’s going

on. Psychologists refer to this phenomenon as “narrative construction of reality” (Bruner

1991). According to Bruner, “we organize our experience and our memory of human hap-

penings mainly in the form of narrative”. According to this research, we as humans are

subject to a continuous stream of sensory information, most of which we continually forget;

what we remember is our interpretation of what happened, the “events of the day”, even

though those events exist to us only because we infer them. For example, the concept of

a thunderstorm is one that cannot be perceived all at once. Over time, a person perceives

flashes of light, interpreted as lightning, hears loud booms, interpreted as thunder, and feels

the cascade of rain falling down. Later, he will not remember the exact sensations, but will

remember getting caught in a thunderstorm, which is an explanation he constructs about

what happened in the world to cause his immediate sensations. The central thesis of this

dissertation is that by generating explanations like this one, an agent is able to quickly

understand what is happening or has been happening in its environment, and that this

ability improves an agent’s ability to achieve goals, beyond similar agents with a poorer

understanding of their environments.

4.2.2 Robustness

Webster defines robust (n.d.) as “capable of performing without failure under a wide range

of conditions”. This quality can be particularly elusive for intelligent agents, for which the

60

range of conditions they are expected to work in is often much larger and more complicated

than is initially understood. In general, as agents address more and more general conditions,

they are almost guaranteed to fail, as their programming becomes more complex and handles

fewer scenarios. However, it is possible to learn from failures and avoid repeating them. If

we consider robustness as a goal that agents should strive to attain, identifying failures and

not repeating them should help. Through explanation generation, and agent can identify

its failures, and recognize the reason for them. This allows the agent to make new plans

that do not repeat the same failures.

4.3 Definitions

We introduce the term occurrence to refer to an inference or assumption about the envi-

ronment at a particular time. An observation occurrence is a pair of the form 〈obs, id〉

where obs is an observation. An action occurrence is a pair of the form 〈a, id〉 where a is

an action. Finally, an event occurrence is a pair 〈e, id〉 where e is an event. In all of the

occurrence forms, id is a unique identifying symbol that differentiates multiple occurrences

of the same action, event, or observation.

Occasionally, we will also talk about the inferences of literals via occurrences. An

inferred literal occurrence ilo = 〈inferred, l, id〉 indicates that the literal l is inferred to

be true.

Two further types of occurrences are more abstract: initial state assumptions and transi-

tion discontinuity assumptions. An initial state assumption is of the form 〈initial, i, v, id〉,

and a transition discontinuity assumption is of the form 〈discontinuity, i, v, id〉 where

i is function instance or relation instance and v is a value that can be assigned to that

instance. An initial state assumption describes an assignment believed to hold in the initial

state; a transition discontinuity assumption describes an assignment that contradicts the

transition model, as it is associated with no model of an action or event. These occurrences

have no conditions, and cannot be inferred from other occurrences, which is why we refer to

them as assumptions. Note that all occurrences of exogenous actions are also assumptions,

61

but not actions present in the action history ah.

An explanation is a description of all occurrences that an agent infers have taken place

that can be used for inferring believed world states. Formally, we describe an explanation

as a tuple χ = 〈O,D,R,C〉, where O is a finite set of occurrences. D ⊂ O is a finite set

of defeasible occurrences, which can be removed from the history. R describes an ordering

over O via a set of pairs 〈oi, oj〉 with the semantics oi occurs earlier than oj . Finally, C is

a set of inequalities and equations that describe relationships between terms referred to by

occurrences in O. We denote the set of all explanations (plausible and not plausible) as X.

In order to formalize the order of occurrences in χ, we define the ordering relation ≺χ,

which is the transitive closure of the set of statements {oi ≺χ oj |〈oi, oj〉 ∈ R}.

In order to simplify reasoning about action and event preconditions, we will split each

action and event model into a set of models, based on the disjunctive normal form repre-

sentation of its preconditions, and replace all universally quantified formulas with expanded

conjunctions that include each possible instantiation of the universally quantified variables.

For this reason, we assume that numeric variables, which have an infinite range, are never

universally quantified, and that the all object symbols in the environment are identified in

the initial observation. In this manner, we obtain a set of action and event models that

define an equivalent transition function and have preconditions consisting of a conjunction

of literals.

Now we define the functions knownbefore, constrainedbefore and knownafter, which are

used to determine environment state and detect inconsistencies in an explanation. We use

knownbefore(i, o, v) and knownafter(i, o, v) to refer to the value v of a relation or function in-

stance i immediately before or after occurrence o ∈ O, and we use constrainedbefore(c, i, o, v)

to refer to a constraint on the value of a relation or function instance i immediately before

an occurrence o ∈ O.

For an action or event occurrence, knownbefore(i, o, v) depends on its function and re-

lation literal preconditions. For an action occurrence o = 〈a = 〈am, θ〉, id〉, the precondi-

tions pre(o) are defined pre(o) ≡ apply(θ, pre(am)). For an event occurrence o = 〈ev =

62

〈em, θ〉, id〉, pre(o) ≡ apply(θ, pre(am)). We also define the “precondition” of an inferred

literal occurrence ilo = 〈l, o〉 as pre(ilo) ≡ {l}. Due to the translation performed earlier, we

can treat pre(o) as a set of literals. For all action, event, and inferred literal occurrences,

knownbefore(i, o, v) ≡ ∃l ∈ pre(o) : target(l) = i ∧ value(l) = v ∧ comp(l) = ⊥. Compari-

son literals are handled by the function constrainedbefore. For action, event, and inferred

literal occurrences, constrainedbefore(c, i, o, v) ≡ ∃l ∈ pre(o) : target(l) = i ∧ value(l) =

v ∧ comp(l) = c.

We similarly define eff(o) and knownafter(i, o, v) for action and event occurrences based

on effects. For an action occurrence o = 〈a = 〈am, θ〉, t〉, the effects eff(o) are defined

eff(o) ≡ apply(θ, eff(am)). For an event occurrence o = 〈ev = 〈em, θ〉, t〉, eff(o) ≡

apply(θ, eff(am)). Then, we have knownafter(i, o, v) ≡ ∃e ∈ eff(o) : target(e) = i ∧

value(e) = v. Inferred literal occurrences do not have effects, so given an inferred lite-

ral occurrence ilo, we know that knownafter(i, ilo, v) ≡ ⊥.

We must also define knownafter and knownbefore for initial state assumptions and tran-

sition discontinuity assumptions. For these, it’s only important that the mappings hold

subsequently. Therefore, for an initial state assumption isa = 〈i, v, t0〉 or a transition dis-

continuity assumption tda = 〈i, v, t〉 we have knownafter(i′, isa, v′) ≡ i = i′ ∧ v = v′ and

knownbefore(i′, isa, v′) ≡ ⊥.

For an observation occurrence, the closed world assumption applies. Therefore, the

relations knownbefore and knownafter are defined for all literals whose types are in Ob, as

follows:

knownbefore(i, obs, v) ≡ knownafter(i, obs, v) ≡
∃l ∈ obs : target(l) = i ∧ value(l) = v)

∨ ((6 ∃l ∈ obs : target(l) = i) ∧ itype(i) ∈ Ob ∧ v = default(itype(i))).

We say that an occurrence o is relevant to a instance i iff:

relevant(i, o) ≡ ∃v knownafter(i, o, v) ∨ ∃v knownbefore(i, o, v)

∨ ∃c, v constrainedbefore(c, i, o, v).

For purposes of determining action executability, we define the performer of an action

63

occurrence perf(〈〈am, θ〉, id〉) ≡ apply(θ, perf(am)).

4.3.1 Predicting States Using an Explanation

We now define a mapping from the natural numbers to occurrences in an explanation

that describes when those occurrences would happen consistent with a transition function

λα. This mapping is described by the function occurs : X × N → 2A∪E∪O. The function

occurs(χ = 〈O,D,R,C〉, t) gives all occurrences in O happening at a time t. It is defined

such that the initial observation and all initial state occurrences occur at time 0, and

each other occurrence happens at the first natural number after which its predecessors

have occurred, subject to the limitation that actions cannot happen until after events have

completed. We will now define occurs(χ, t) inductively.

occurs(χ = 〈O,D,R,C〉, 0) ≡ {obs0} ∪ {〈initial, i, v, id〉|〈initial, i, v, id〉 ∈ O}

Based on this, we define the functions earlierOccs(χ, n) and nextOccs(χ, n)

earlierOccs(χ, n) ≡
n−1⋃
n′=1

occurs(χ, n′)

nextOccs(χ = 〈O,D,R,C〉, n) =

{o ∈ O|o 6∈ earlierOccs(n) ∧ ∀o′ ∈ O : ¬(o′ ≺χ o) ∨ o′ ∈ earlierOccs(n)}

occurs(χ, n) =

{
nextOccs(χ, n) 6 ∃〈e, id〉 : e ∈ E ∧ 〈e, id〉 ∈ nextOccs(χ, n)

{o ∈ nextOccs(χ, n) | o is not an action occurrence} otherwise

We next define the relationship between an instance i and the last occurrence o in an

explanation χ to affect it before a time t:

mostRecentEffect(i, o, χ, t) ≡ ∃v, n : knownafter(i, o, v) ∧ n < t ∧ o ∈ occurs(χ, n)

∧ ∀o′ ∈ O : (∀w : ¬knownafter(i, o′, w)) ∨ o = o′

∨ (o′ ∈ occurs(χ, n′) ∧ ¬(n < n′ < t))

A projected state gives all beliefs that are implied by an explanation χ just before

time t. It consists of all literal assignments that are supported by χ. A logical sentence

formed by the conjunction of these assignments is true in the possible world described by

a plausible explanation at a time t, where all assumptions in χ are correct. The projection

64

of occurrences in χ at time t is given by:

proj(χ, t) = {(i, v)|∃o : knownafter(i, o, v) ∧mostRecentEffect(i, o, χ, t)}.

The full projected state, with defaults, is given by:

projectedState(χ = 〈O,D,R,C〉, t)(i) =

v if (i, v) ∈ proj(χ, t)

default(itype(i)) 6 ∃w : (i, w) ∈ proj(χ, t)

In plain English, proj(χ = 〈O,D,R,C〉, t) gives the set of all literals implied to be true

after occurrences in O that precede the time t, except those literals that are changed by

some subsequent occurrence that also precedes t.

Projected events are the set of events that must happen at occurrence point t because

their preconditions are met in the projected state proj(t):

projectedEvents(χ, t) = {〈e, t〉 | projectedState(χ, t) ` pre(e)}.

These definitions support belief management, by giving the beliefs consistent with an ex-

planation, and forward projection (a.k.a. prediction or causal deduction) of explanations

from a set of assumptions.

4.3.2 Plausible Explanations

In this section, we define what it means for explanation to be plausible. In a plausible

explanation, all event occurrences have proximate causes. A proximate cause of an event

occurrence 〈e, id〉 is an immediately preceding occurrence o that triggers the event e by

causing an effect that establishes its precondition. It must be an occurrence o that satisfies

the following condition with respect to an explanation χ:

proximateCause(o, o′ = 〈e, id〉, χ) ≡
∃i, v : knownafter(i, o, v) ∧ (knownbefore(i, o′, v) ∨ ∃c : constrainedbefore(c, i, o′, v))

∧ 6 ∃o′′ ∈ O : o ≺χ o′′ ∧ o′′ ≺χ o′

Because action occurrences do not necessarily occur when their conditions are met, but

65

rather when a performer intends them to, action occurrences do not have proximate causes.

Similarly, observations have no proximate causes, as they are not triggered by occurrences.

An inconsistency in an explanation χ = 〈O,D,R,C〉 is a tuple 〈i, o, o′, v, c〉 where

o ∈ O is the prior occurrence (written prior(n) = o) and o′ ∈ O is the next occurrence

(written next(n) = o′), i is a relation or function instance given different values by the

effects of o and preconditions of o′, v is a value referred to by o′, and c ∈ Comp ∪ {=}

describes the relationship between i and v in o′. The space of inconsistencies is denoted N.

To help in formalizing the conditions that cause an inconsistency, we first define a

relationship between an occurrence o and the most recent prior occurrence o′ in χ to affect

a function or relation instance i:

priorEffect(i, o, o′, χ = 〈O,D,R,C〉) ≡
o, o′ ∈ O ∧ ∃w : knownbefore(i, o, w)

∧ ∀u : 6 ∃o′′ ∈ O : knownafter(i, o′′, u) ∧ o ≺χ o′′ ∧ o′′ ≺χ o′

An inconsistency describes a contradiction between a pair of occurrences; these con-

tradictions can occur for several different reasons. The following definition formalizes

all necessary and sufficient conditions that cause an inconsistency n in an explanation

χ = 〈O,D,R,C〉, written n ∈ Inconsistencies(χ):

1. An occurrence o′ requires that an instance i have a value w, but the most recent prior

occurrence (o) to affect i set its value to some other term v.

priorEffect(i, o, o′, χ) ∧ knownafter(i, o, w) ∧ knownbefore(i, o′, v) ∧ v 6= w

=⇒ 〈i, o, o′, v,=〉 ∈ Inconsistencies(χ)

2. An occurrence o′ requires that an instance i have a value that meets some condition,

via a comparison literal, and the most recent prior occurrence o to affect i gave it a

value that does not meet that condition.

priorEffect(i, o, o′, χ) ∧ knownafter(i, o, w) ∧ constrainedbefore(c, i, o′, v)

∧ 〈w, v〉 6∈ c ∧ 〈c, w, v〉 6∈ C
=⇒ 〈i, o, o′, v, c〉 ∈ Inconsistencies(χ)

66

3. An instance i with default value default(itype(i)) = d is required by a precondition

of an occurrence o′ to have a non-default value v, and no preceding occurrence is

relevant to i.

∀o ∈ O : ¬priorEffect(i, o, o′, χ) ∧ knownbefore(i, o′, v) ∧ v 6= default(itype(i))

=⇒ 〈i, obs0, o′, v,=〉 ∈ Inconsistencies(χ)

4. An occurrence o′ requires that an instance i with default value default(itype(i)) = d

have a value that meets some condition, via a comparison literal, the default value d

does not meet that condition, and no preceding occurrence is relevant to i.

∀o ∈ O : ¬priorEffect(i, o, o′, χ) ∧ constrainedbefore(c, i, o′, v)

∧ default(itype(i)) = d ∧ 〈d, v〉 6∈ c ∧ 〈c, d, v〉 6∈ C
=⇒ 〈i, o, o′, v, c〉 ∈ Inconsistencies(χ)

Notes on the definition of inconsistency:

• A pair of occurrences need not be ordered with respect to one another to be inconsis-

tent.

• A literal l with a variable may contradict a legal interpretation of l (i.e., if some other

legal interpretation of l contradicts it).

Example 1

Suppose that a rover R attempts to move after its wheel has, unobserved, become stuck.

Figure 4.1 illustrates part of an inconsistent explanation χ corresponding to this situation.

Four occurrences are ordered by this explanation, including two observations (oi and oi+3),

a navigate action (oi+1), and a rover-moves event (oi+2). These occurrences are totally

ordered by χ such that on ≺χ on+1. After the rover-moves event, the rover R is expected

not to be at location L0, and to instead be at the location L1, but the subsequent observation

contradicts this.

Exactly one inconsistency exists between the occurrences in this group: 〈(rover-at R),

67

oi+2, oi+3,L0,=〉. For reference, Figure 4.2 gives the action and event model behind the

occurrences in this example.

(ROVER-AT R)

L0

L0
L1

L0

oi

oi+1

oi+2

oi+3

obsk, id48

(NAVIGATE R EAST), id50
 (action occurrence)

(ROVER- MOVES R EAST), id51
 (event occurrence)

obsk+1, id49

Inconsistency

Figure 4.1: Example of an inconsistent explanation, with all occurrences shown totally or-
dered. Relevant action and event descriptions are given on the right. Values for
the knownbefore and knownafter relations are given in the timeline; for example,
the value L0 at the top indicates that the relation knownbefore((rover-at R),
oi, L0) holds.

Some inconsistencies in an explanation χ may be ambiguous. An ambiguous inconsis-

tency is one that would be resolved in multiple ways by applying different legal substitutions

θ to unbound variables in χ.

An explanation χ = 〈O,D,R,C〉 is strictly plausible for an explanation generation

problem with action history ah, observations o, and ordering ≺ iff:

1. There are no inconsistencies in χ.

2. Every event occurrence 〈e, id〉 ∈ O has a proximate cause in O.

3. Simultaneous preconditions and effects do not contradict. For all i, o, o′, v, w, n:

68

knownafter(i, o, v) ∧ knownafter(i, o′, w) ∧ o, o′ ∈ occurs(χ, n) ` v = w,

knownbefore(i, o, v) ∧ knownbefore(i, o′, w) ∧ o, o′ ∈ occurs(χ, n) ` v = w,

4. For all t ∈ N , the events in projectedEvents(t) must be in O.

5. O contains all observations and the action history: O ⊃ ah ∪ o.

6. The ordering ≺χ is consistent with ≺.

7. All actions a ∈ O not in the action history are exogenous (performed by another

agent).

8. All actions a ∈ O are totally ordered by ≺χ.

9. No occurrence in O contains a variable.

In summary, an explanation χ must describe an uninterrupted causal network with no

(:action navigate
:parameters (?r - rover ?dir - dir)
:precondition

(and (available ?r) (>= (energy ?r) 8) (eq (energy ?r) ?e)
(eq (- ?e 8) ?e2))

:effect (and (attempting-move ?r ?dir) (set (energy ?r) ?e2))
)
(:event rover-moves
:parameters (?r - rover)
:precondition

(and (attempting-move ?r ?dir) (not (blocked ?r))
(eq (rover-at ?r) ?src) (compass-points ?r ?magDir)
(real-direction ?dir ?magDir ?trueDir)
(can-traverse ?r ?src ?dest ?trueDir) (visible ?src ?dest)

)
:effect

(and (set (rover-at ?r) ?dest)
(not (attempting-move ?r ?dir)))

)

Figure 4.2: Excerpt of rover model describing PDDL+ action and event used in timeline.

69

inconsistencies, and the identities of all participants in all occurrences must be known, for

χ to be strictly plausible.

A relaxed version of this concept is ambiguous plausibility. To be ambiguously

plausible, explanation χ = 〈O,D,R,C〉 must meet all conditions for strict plausibility

except for conditions 1 and 9, which are replaced by:

1. There are no unambiguous inconsistencies in χ.

9. There is at least one substitution θ that binds all variables in O, meets all constraints

in C, and resolves all inconsistencies in χ.

We will now show that a strictly plausible explanation with no transition discontinuity

assumptions corresponds to a sequence of state transitions given by the environment model’s

transition function, and that the corresponding states visited would produce the observa-

tions received. We do so by showing that (1) each action occurrence point corresponds to

a correct state transition, (2) each event occurrence point corresponds to a correct state

transition, and (3) the state corresponding to an observation occurrence is consistent with

the literals given by that observation.

We claim that for every action occurrence 〈a, id〉 in the occurrences O of a strictly

plausible explanation χ = 〈O,D,R,C〉, the internal transition function holds for projected

states before and after. Formally, 〈a, id〉 ∈ occurs(n) =⇒ λα(projectedState(t), a) =

projectedState(t+1). This follows from the definition of the internal transition and projected

state functions, both of which keep states static except for effects of new occurrences. We

know that for any n such that 〈a, id〉 ∈ occurs(n), 〈a, id〉 must be the only occurrence with

effects in occurs(n), because χ is defined to have no discontinuities, occurs(n) is defined

never to contain both action and event occurrences, inferred literal occurrences do not have

effects, and action and observation occurrences are totally ordered by conditions 6 and 8

of strict plausibility. Finally, an initial state assumption can not be in occurs(n), because

all initial state assumptions are in occurs(0) with obs0, which is ordered with respect to

70

every action occurrence. Therefore, only the effects of that action will be different between

projectedState(t) and projectedState(t+ 1).

We similarly claim that for every time t such that there is no action occurrence 〈a, id〉

in an explanation, the internal transition holds for the special action ∅ and projected sta-

tes before and after, or, formally: ∀t | @〈a, id〉 ∈ occurs(t) : λα(projectedState(t), ∅) =

projectedState(t+ 1). We know by the fourth condition of strict plausibility that all events

in projectedEvents(t) must be in χ. We further know that no event occurrence 〈e, id〉 can be

in a strictly plausible explanation without also being in projectedEvents(t), because, by de-

finition, 〈e, id〉 would have a precondition l ∈ pre(〈e, id〉) not met by projectedState(t).

This would mean either that (a) the most recent occurrence o to affect target(l) be-

fore t satisfied knownafter(target(l), o, w) ∧ w 6= value(l), by the first part of the defini-

tion of projectedState(t) or (b) no occurrence prior to t affected target(l) and value(l) 6=

default(itype(v)), by the second part of the definition of projectedState(t). Either causes

in an inconsistency, which by condition 1, cannot be in a strictly plausible explanation. By

the definition of λα, therefore, the following state λα(projectedState(t), ∅) must be consistent

with the effects of the events in projectedEvents(t). Since no other occurrences can affect

the value of projectedState(t+1) but not projectedState(t), they will otherwise be the same.

Finally, we claim that for a strictly plausible explanation χ = 〈O,D,R,C〉 all observa-

tion occurrences 〈obs, id〉 ∈ O contain literals consistent with projectedState(t). This is the

case because if some literal l ∈ obs were not consistent, 〈obs, id〉 would participate in an

inconsistency with the prior affecting occurrence, and no inconsistencies are present in a

strictly plausible explanation.

4.3.3 Hypotheses

To solve the explanation generation problem requires finding a hypothesis from which the

observations can be derived. We’ve shown that the explanation matches up with a le-

gal sequence of transition for a strictly plausible explanation with no transition discon-

tinuities. The assumptions of such an explanation form such a hypothesis. Using the

71

assumptions, we can reconstruct the occurrences of a strictly plausible explanation by ad-

ding in the action history, and then progressively adding the events based on the value

of projectedEvents(t) for each consecutive occurrence point. Adding in the transition dis-

continuities requires only that we replace λα with a modified function, λ′α, that delegates

to λα(projectedState(t), ∅)(i) except at each transition discontinuity 〈discontinuity, i, v, id〉,

where we have 〈discontinuity, i, v, id〉 ∈ occurs(t) =⇒ λ′α(projectedState(t), ∅)(i) = v.

4.4 Generating Abductive Explanations

This section describes how to search a space of explanations for plausible explanations.

We describe our search technique via the typical breakdown of expansion algorithm, ter-

mination condition, order of traversal, and heuristics. DiscoverHistory is an algorithm

for node expansion in explanation search. In general, to solve the explanation generation

problem, search must continue until at least one plausible explanation is discovered. In this

dissertation, we will examine iterative deepening and best-first traversal orders. We leave

discussion of specific heuristics for best-first search to later chapters.

Each node in the search is an explanation; internal nodes are implausible explanations.

DiscoverHistory generates successor nodes by choosing an inconsistency i in the current

explanation χ = 〈O,D,R,C〉 and finding a set of refined explanations X based on χ that

do not have that inconsistency.

Algorithm 1 shows the algorithm DiscoverHistory, which inputs an explanation χ,

environment model MΣ, and refinement operators Π; and outputs a set of refined explana-

tions X. In each invocation of DiscoverHistory, a single inconsistency of an explanation

is addressed in all possible ways, or, if no inconsistencies are present, the function FindEx-

traEvents adds all projected events to the explanation (to satisfy plausibility condition

4). The refinement operators Π are a set of functions π : X× 2MΣ ×N → 2X. Discover-

History maintains invariants by filtering out child explanations χ′ that do not meet them,

on line 10.

72

4.4.1 Checking Invariants

The ordering relation ≺χ will become inconsistent if any cycle is added to R, causing an

occurrence o to precede itself, i.e., o ≺χ o. As such, the function InvariantsMet checks

for this problem, and DiscoverHistory discards any explanation in which such a cycle

has been created as impossible.

Constraints on variables in O may be added that cannot be satisfied simultaneously; for

example, the constraints 〈<,?x, 2〉 and 〈>,?x, 5〉 will not be satisfied by any mapping for

?x. InvariantsMet also checks for this, and returns false for any explanation containing

variables whose values can no longer be satisfied.

4.4.2 Refinement Operators

Refinement operators are responsible for finding new “child” explanations that are mostly

identical to a “parent” explanation, but avoid an inconsistency present in the parent. In

order to have a complete search, all possible ways of avoiding the inconsistency must be

found.

Choice of which refinement operators to use is a key difference between various Disco-

verHistory search techniques.

Algorithm 1: DiscoverHistory.

1 Procedure DiscoverHistory (χ,MΣ,Π)

2 begin
3 if Inconsistencies(χ) = ∅ then
4 χ←FindExtraEvents (χ)

5 if Inconsistencies(χ) = ∅ then return {χ}
6 i← Select(Inconsistencies(χ))

7 X ← ∅
8 for π ∈ Π do
9 X ← X ∪ π(χ,MΣ, i)

10 return {χ′ ∈ X|InvariantsMet(χ′)}

73

Adding a Ground Action or Event Occurrence

Let χ be an explanation with an inconsistency n = 〈i, o, o′, v, c〉, where v is a non-variable

term. One way to resolve the inconsistency is to show that some occurrence changed the

value of the instance i to v between the preceding event o and the following event o′. This

occurrence must be an event o′′ relevant to i such that o ≺χ o′′ ≺χ o′.

We define the set of ground actions and events that can resolve an inconsistency n in

this way as:

groundResolvers(MΣ, n = 〈i, o, o′, v, c〉) ≡〈am, θ〉 ∈ A

∣∣∣∣∣
params(am) ⊂ Dom(θ) ∧ apply(θ, perf(am)) 6= α

∧∃e ∈ apply(θ, eff(am)) : target(e) = i

∧ value(e) = w ∧ 〈w, v〉 ∈ c

⋃
〈em, θ〉 ∈ E

∣∣∣∣∣
params(em) ⊂ Dom(θ)

∧∃e ∈ apply(θ, eff(em)) : target(e) = i

∧ value(e) = w ∧ 〈w, v〉 ∈ c

Note that the only actions included in groundResolvers are exogenous. Whenever we

add an action, we must order it with respect to all other actions. As existing actions are

ordered, this is done by ordering the new action between a pair of consecutive actions. The

refinement operator AddGround : X×2MΣ×N → 2X (Algorithm 2) is responsible for using

these to create child explanations.

Example 2

Continuing Example 1, the event rover-moves has an effect that causes the rover to

enter a different location, so it could be added to resolve the inconsistency 〈(rover-at R),

oi+2, oi+3,L0,=〉 introduced in Example 1. In order for this to work, a new occurrence must

be added between oi+2 and oi+3 (see Figure 4.3). AddGround creates a child explanation

with added occurrence onew = 〈(rover-moves R West), id52〉. It also adds new ordering

constraints 〈oi+2, onew〉 and 〈onew, oi+3〉. There is a new inconsistency in the resulting

74

Algorithm 2: Adds Ground Occurrences to Resolve an Inconsistency.

1 Procedure AddGround(χ = 〈O,D,R,C〉,MΣ, n = 〈i, o, o′, v, c〉)
2 begin
3 X ← ∅
4 for ae ∈ groundResolvers(MΣ, n) do
5 id← new identifier

6 o′′ ← 〈ae, id〉
7 O′ ← O ∪ {o′′}
8 R′ ← R ∪ {〈o, o′′〉, 〈o′′, o′〉}
9 if ae ∈ A then // ae is action

10 for {a′, a′′ ∈ O|a′, a′′ ∈ A ∧ a′ ≺χ a′′ ∧ @a′′′ ∈ A : a′ ≺χ a′′′ ≺χ a′′} do
11 R′′ ← R′ ∪ {〈a′, o′′〉, 〈o′′, a′′〉} // total ordering of actions

12 X ← X ∪ {〈O′, D,R′′, C〉}
13 else // ae is event

14 X ← X ∪ {〈O′, D,R′, C〉}
15 return X

explanation χ2 (see Figure 4.3). The new inconsistency occurs because another precondition

of the rover-moves event requires that the value of relation literal (attempting-move

R West) be True, but it is False after the most recent relevant occurrence, obs0. This

inconsistency, 〈(attempting-move R West), obs0, onew, True〉, could be eliminated by

calling DiscoverHistory on χ2, typically as a result of further search.

Removing an occurrence

Another possible way to resolve an inconsistency 〈i, o, o′, v, c〉, where o and/or o′ is defeasible,

is to create a new explanation in which either o or o′ is removed.

The function RemoveOcc : X × 2MΣ × N → 2X accomplishes this by creating new

explanations without o or o′, provided that they are defeasible. However, this is not quite

enough, because removing an event occurrence with preconditions that are met (i.e., ∃t :

o′ = 〈e, id〉∧o′ ∈ occurs(t)∧proj(t) |= pre(o)) in its state causes a new problem not marked

by an inconsistency. In order to change the explanation such that o′ is no longer projected,

RemoveOcc must ensure that at least one of its preconditions is prevented from being met.

75

(ROVER-AT R) (ATTEMPTING-
MOVE R WEST)

L0 FALSE

L0
L1

L1 TRUE
L0 FALSE

L0 FALSE

oi+2

onew

oi+3

(ROVER- MOVES R EAST), id51
 (event occurrence)

(ROVER- MOVES R WEST), id52
 (event occurrence)

obsk+1, id49

New inconsistency

Resolved

.

.

.

.

.

.

obs0 obs0, id0

Figure 4.3: Example of adding an occurrence.

In this situation, RemoveOcc adds an inferred literal occurrence to the child explanation

ilo = 〈¬l, occ(o)〉. This causes an inconsistency to occur for any descendant explanation

that implies o. See Algorithm 3 for a definition of RemoveOcc.

Example 3

RemoveOcc can resolve the inconsistency previously addressed in example 1. To do so, it

creates a child explanation χ3 containing all events in χ other than oi+2.

Note that no inconsistencies are generated by removing it (recall from example 1 that

the rover really did not move). Next, the preconditions are examined to look for a pre-

condition which could explain why oi+2 might not have occurred. Two preconditions on

oi+2 are shown in Figure 4.4: (eq (rover-at R) L0) and (not (pit-at L0)). Two

new explanations are created, each negating one precondition: χ4 has the inferred literal

occurrence 〈inferred, (pit-at L0), id53〉, and χ5 has the inferred literal occurrence 〈initial,

(neq (rover-at R) L0), id54〉. Figure 4.4 shows the two possible outcomes of removing

oi+2 (without the new inferred literal occurrences).

76

Algorithm 3: Removes an Occurrence to Resolve an Inconsistency.

1 Procedure RemoveOcc(χ = 〈O,D,R,C〉,MΣ, n = 〈i, o, o′, v, c〉)
2 begin
3 X ← ∅
4 if o ∈ D then
5 X ← X ∪ {〈O/{o}, D/{o}, R, C〉}
6 if o′ ∈ D then
7 for l ∈ pre(o′) do
8 id← new identifier

9 ilo← 〈inferred,¬l, id〉
10 X ← X ∪ {〈(O/{o′}) ∪ {ilo}, D/{o′}, R, C〉}
11 return X

(PIT-AT L0) (ROVER-AT R)

L0

L0

FALSE L0
L1

L0

obs0

oi+2

oi+3

obs0, id0

(ROVER- MOVES R EAST), id51
 (removed event occurrence)

obsk+1, id49

.

.

.

obsk, id48 oi

Alternative
Inconsistencies

Resolved

oi+1
(NAVIGATE R EAST), id50
 (action occurrence)

Figure 4.4: Example of removing an occurrence.

77

Hypothesizing a Ground Constant Value Mapping in the Initial State

Given an inconsistency n = 〈i, obs0, o, v,=〉, where an occurrence requires an unaltered

ground instance i with itype(i) ∈ Ob to have a non-default constant value of v, a new

initial state assumption isa = 〈i, v, t0〉 will resolve n.

The function AssumeInitial : X × 2MΣ ×N → 2X (see Algorithm 4) is responsible for

producing an explanation with the correct assumption added.

Algorithm 4: Creates an initial state assumption to resolve an inconsistency with
no prior occurrence.

1 Procedure AssumeInitial(χ = 〈O,D,R,C〉,MΣ, n = 〈i, o, o′, v, c〉)
2 begin
3 if itype(i) ∈ Ob ∧ o = obs0 ∧ c 6∈ Comp ∧ vars(v) = ∅ then
4 id← new identifier

5 isa← 〈initial, i, v, id〉
6 return {〈O ∪ {isa}, D,R ∪ {〈isa, o〉 | o ∈ O}, C〉}
7 else return ∅

Example 4

The explanation χ4, introduced in example 3 has the inconsistency 〈(pit-at L0), obs0,

occi+2, True,=〉. This inconsistency has the characteristics required for hypothesizing an

initial state assumption, because a pit-at literal is not observable. Therefore, the discre-

pancy can be resolved by adding the initial state assumption 〈Initial, (pit-at L0), True,

id55〉, as shown in Figure 4.5.

Adding a Minimally Bound Event or Action

This refinement method is much like AddGround, but requires adding an occurrence that

is ground just far enough to resolve an inconsistency.

To determine the minimal binding necessary, we introduce the most general satisfier

function, MGS(e, c, i, v), which returns a tuple 〈θ, con〉 such that θ is a substitution mapping

78

(PIT-AT L0)

TRUE

TRUE

o0

oi+2

initial, (PIT-AT L0), TRUE, id54

.

.

. Resolved

inferred, (PIT-AT L0), TRUE, id53

Figure 4.5: Example of hypothesizing an initial value.

from variables to terms, and con is a list of constraints on variables in θ, in the form of

tuples 〈c, u, w〉 where c ∈ Comp is a comparator, u is a variable, and w is a term. We define

MGS by example:

MGS((set (energy ?r) ?v),=, (energy R1), 30)

= 〈{?r 7→ R1, ?v 7→ 30}, ∅〉
MGS((set (energy ?r) ?v),=, (energy R1), ?e96)

= 〈{?r 7→ R1, ?v 7→ ?v96}, ∅〉
MGS((set (energy ?r) ?v), <=, (energy R1), 30)

= 〈{?r 7→ R1, ?v 7→ ?v36}, {〈<=, ?v36, 30〉}〉
MGS((set (energy ?r) ?v), <=, (energy R1), ?e96)

= 〈{?r 7→ R1, ?v 7→ ?e96}, {〈<=, ?v36, ?e96〉}〉
MGS((set (energy ?r) 40), <=, (energy R1), ?e96)

= 〈{?r 7→ R1, ?e96 7→ ?e153}, {〈>=, ?e153, 40〉}〉
MGS((set (energy ?r) 40), <=, (energy R1), 30) = ⊥

79

We define the set of minimally bound actions and events that can resolve an inconsis-

tency n as:

minimalResolvers(MΣ, n = 〈i, o, o′, v, c〉) ≡
{〈〈am, θ〉 ∈ A, con〉|∃e ∈ eff(am) : MGS(e, c, i, v) = 〈θ, con〉}
∪ {〈〈em, θ〉 ∈ E, con〉|∃e ∈ eff(em) : MGS(e, c, i, v) = 〈θ, con〉}

We now define the AddMinimal function (Algorithm 5), which will resolve inconsis-

tencies using minimally bound occurrences.

Algorithm 5: Adds Minimally Bound Occurrences to Resolve an Inconsistency.

1 Procedure AddMinimal(χ = 〈O,D,R,C〉,MΣ, n = 〈i, o, o′, v, c〉)
2 begin
3 X ← ∅
4 for 〈ae, con〉 ∈ minimalResolvers(MΣ, n) do
5 id← new identifier

6 o′′ ← 〈ae, id〉
7 O′ ← O ∪ {o′′}
8 R′ ← R ∪ {〈o, o′′〉, 〈o′′, o′〉}
9 C ′ ← C ∪ con

10 if ae ∈ A then // ae is an action

11 for {a′, a′′ ∈ O|a′, a′′ ∈ A ∧ a′ ≺χ a′′ ∧ @a′′′ ∈ A : a′ ≺χ a′′′ ≺χ a′′} do
12 R′′ ← R′ ∪ {〈a′, o′′〉, 〈o′′, a′′〉} // total order of actions

13 if perf(o′′) is a variable then
14 C ′ ← C ′ ∪ {〈6=, perf(o′′), α〉} // ensure not α action

15 X ← X ∪ {〈O′, D,R′′, C ′〉}
16 else if perf(o′′) 6= α then
17 X ← X ∪ {〈O′, D,R′′, C ′〉}
18 else X ← X ∪ {〈O′, D,R′, C ′〉} // ae is an event

19 return X

80

Unifying Inconsistent Occurrences

In some cases, an inconsistency n = 〈i, o, o′, v, c〉 exists, but there is some substitution θ

of variables in o and o′ such that knownafter(i, o, apply(θ, v)). In this case, the function

UnifyInconsistent applies the bindings to the explanation, and the occurrences “come to

agreement”, resolving the inconsistency. See Algorithm 6.

Algorithm 6: Unifies Inconsistent Occurrences to Resolve an Inconsistency.

1 Procedure UnifyInconsistent(χ = 〈O,D,R,C〉,MΣ, n = 〈i, o, o′, v, c〉)
2 begin
3 X ← ∅
4 for e ∈ eff(o) : MGS(e, c, i, v) 6= ⊥ do
5 〈θ, con〉 ←MGS(e, c, i, v)

6 χ′ ← 〈apply(θ,O), apply(θ,D), apply(θ,R), apply(θ, C) ∪ con〉
7 X ← X ∪ {χ′}
8 return X

Set Ordering of Inconsistent Occurrences

In some cases, an inconsistency n = 〈i, o, o′, v, c〉 exists when o and o′ are unordered. If

the inconsistency o′ came before o, the conditions of n would not be met. In this case, the

function OrderInconsistent adds an ordering constraint to a child explanation to avoid the

inconsistency. See Algorithm 7.

Reorder Third Occurrence

In some cases, an inconsistency n = 〈i, o, o′, v, c〉 exists between occurrences o and o′, but

a third occurrence o′′, already in the explanation, would come between them and resolve

the inconsistency in some plausible explanation. This is much like adding an occurrence

to come in between two inconsistent occurrences, but in this case the third occurrence has

already been created.

81

Algorithm 7: Sets Ordering of Inconsistent Occurrences to Resolve an Inconsis-
tency

1 Procedure OrderInconsistent(χ = 〈O,D,R,C〉,MΣ, n = 〈i, o, o′, v, c〉)
2 begin
3 X ← ∅
4 if ¬(o ≺χ o′) then
5 X ← X ∪ {〈O,D,R ∪ {〈o′, o〉}, C〉}
6 return X

To determine this, the function ReorderThird must find an occurrence o′′ in the expla-

nation that can be bound to satisfy the requirements of o′, and can be reordered to come

in between o and o′. See Algorithm 8

Algorithm 8: Reorders Third Occurrence in Between Inconsistent Occurrences to
Resolve an Inconsistency

1 Procedure ReorderThird(χ = 〈O,D,R,C〉,MΣ, n = 〈i, o, o′, v, c〉)
2 begin
3 X ← ∅
4 for o′′ ∈ O do
5 if ¬(o′′ ≺χ o) ∧ ¬(o′ ≺χ o′′) then
6 for e ∈ eff(o′′) : MGS(e, c, i, v) 6= ⊥ do
7 〈θ, con〉 ←MGS(e, c, i, v)

8 R′ ← apply(θ,R) ∪ {〈o, o′′〉, 〈o′′, o′〉}
9 C ′ ← apply(θ, C) ∪ con

10 χ′ ← 〈apply(θ,O), apply(θ,D), R′, C ′〉
11 X ← X ∪ {χ′}
12 return X

Note that in some cases, the outside occurrence o′′ does not actually need reordering to

come in between; the function is named for the more general case in which it will reorder

o′′ if necessary.

82

Introduce Transition Discontinuity

Any inconsistency can be resolved through the addition of a transition discontinuity as-

sumption. Transition discontinuity assumptions are extremely powerful because they allow

an occurrence with an arbitrary effect to be placed anywhere in the explanation. It’s also

dangerous, because every discontinuity makes the explanation less accurate.

The refinement method IntroduceDiscontinuity is responsible for creating an appropri-

ate discontinuity and ordering it with respect to the inconsistent occurrences. See Algorithm

9.

Algorithm 9: Introduces Transition Discontinuity

1 Procedure IntroduceDiscontinuity(χ = 〈O,D,R,C〉,MΣ, n = 〈i, o, o′, v, c〉)
2 begin
3 id← new identifier

4 C ′ ← C

5 if c ∈ Comp then
6 var ← new variable

7 type(var)← itype(i)

8 C ′ ← C ∪ {〈c, var, v〉}
9 tda← 〈discontinuity, i, v, id〉

10 return {〈O ∪ {tda}, D,R ∪ {〈o, tda〉, 〈tda, o′〉}, C ′〉}

4.4.3 The FindExtraEvents Subroutine

Requirement 4 of a plausible explanation (see Section 4.3.2) states that all events that

would be projected to occur by the explanation must occur. This ensures that deterministic

events that must happen are inferred, even when the observations provide no evidence of

them. The function FindExtraEvents adds these to an explanation, by examining the

difference between occurs(t), the events in an explanation that happen at time t, and

projectedEvents(t), the set of events whose preconditions are met at time t. New events

added by FindExtraEvents are ordered with respect to occurrences at t − 1 to ensure

83

that each has a proximate cause. To support ambiguous explanations, no event is added

when an existing partially unbound event could be further bound to arrive at it. We detail

this in Algorithm 10.

As some events predicted by the current assumptions might contradict available obser-

vations, and DiscoverHistory introduces no alternate search path when extra events are

added, all events added by FindExtraEvents are made defeasible by adding them to D.

This allows the event to be later removed, with the caveat that its removal must be justified

(see description of the RemoveOcc operator).

Algorithm 10: The FindExtraEvents Subroutine

1 Procedure FindExtraEvents (χ = 〈O,D,R,C〉)
2 begin
3 O′ ← O

4 D′ ← D

5 R′ ← R

6 n← 0

7 while |occurs(χ, n)| > 0 do
8 n← n+ 1

9 χ′ ← 〈O′, D′, R′, C〉
10 for e = 〈em, θ〉 ∈ {e|e ∈ projectedEvents(χ′, n) ∧ e is an event occurrence}

do
11 if @e′ = 〈em, θ′〉 ∈ occurs(χ′, n) : θ′ ⊂ θ then
12 O′ ← O′ ∪ {e}
13 D′ ← D′ ∪ {e}
14 R′ ← R′ ∪ {〈o, e〉|o ∈ occurs(χ′, n− 1) ∧ ∃p ∈ pre(e) : eff(o) |= p}
15 return 〈O′, D′, R′, C〉

84

4.5 DiscoverHistory Search Properties

4.5.1 Soundness of DiscoverHistory Search

To be sound, we must show that a solution to the explanation generation problem based on

DiscoverHistory only returns correct results. We showed in sections 4.3.2 and 4.3.3 that

a strictly plausible explanation corresponds to a hypothesis that meets the definition found

in the explanation generation problem. We can therefore construct a sound solution by

specifying that a search returns all strictly plausible explanations found, and subsequently

transforms them to hypotheses from which the observations can be unambiguously derived.

For each ambiguously plausible explanation χ = 〈O,D,R,C〉, there are one or more sub-

stitutions θ that bind all variables to a legal value and resolves all inconsistencies without

adding ordering constraints, by condition 9. Finding a strictly plausible explanation from

an ambiguously plausible explanation χ is possible by performing repeated applications of

the refinement operators UnifyInconsistent and ReorderThird. Therefore, we will use

an ambiguously plausible explanation to represent the set of strictly plausible explanations

reachable by applying UnifyInconsistent and ReorderThird until no variables remain, as

well as the hypotheses found by transforming those strictly plausible explanations. There-

fore, by representational equivalence, a solution to the explanation generation problem is

also sound if it is defined as returning all ambiguously plausible explanations found.

4.5.2 Completeness of DiscoverHistory Search

For explanation generation, we define completeness to mean that if at least one hypothesis

exists that could be returned for an explanation generation problem, at least one hypothesis

is returned that is correct.

For the most general case, we can construct a DiscoverHistory search technique

whose refinement methods include OrderInconsistent and IntroduceDiscontinuity. Any

85

inconsistency can be resolved by this refinement method without introducing new incon-

sistencies. To do so, we first construct the base explanation, an explanation with incon-

sistencies corresponding to what is unknown in the initial problem. The base explanation

is denoted χ0 = (〈o ∪ ah, ∅, {〈occi, occj〉|occi, occj ∈ o ∪ ah ∧ occi ≺ occj}, ∅〉). The base

explanation with events is χ1 = FindExtraEvents (χ0). Given |Inconsistencies(χ1)| = n

and |O| = s, a strictly plausible explanation χ∗ will be found within s× (n+1) applications

of DiscoverHistory to child explanations generated.

To demonstrate why, first note that all inconsistencies in Inconsistencies(χ1) will be of

the form n = 〈i, o, o′, v, c〉 where o′ is an observation. Event preconditions will not be incon-

sistent with other occurrences, because they were generated based on the projectedState

function, which agrees with prior occurrences by definition. Action preconditions are ba-

sed only on static, observable functions and relations, and are not executable when their

preconditions are not met. Therefore, action preconditions are never inconsistent with ear-

lier occurrences. Next, we note that IntroduceDiscontinuity can be applied to avoid any

inconsistency in Inconsistencies(χ1), introducing a new transition discontinuity assumption

tda and explanation χ2. By definition, tda affects only one instance, so there can be at

most one new inconsistency in Inconsistencies(χ2) between any other occurrence o ∈ O and

tda = 〈discontinuity, i, v, id〉, for a total of s inconsistencies.

Each new inconsistency can be resolved in one refinement, creating no other new incon-

sistencies. No event after o′ will be inconsistent with tda, because the existence of n indicates

that o′ is relevant to i. Therefore, any resulting inconsistency n1 = 〈i, tda, o′′, w, c can be

resolved by the OrderInconsistent method, which will create a new explanation χ3 with

o′′ ≺ tda. The explanation χ3 will have no new inconsistencies, because OrderInconsistent

creates none. A maximum of s calls to OrderInconsistent are therefore necessary for each

inconsistency n ∈ Inconsistencies(χ1).

IntroduceDiscontinuity will be called at most n times, introducing at most s× n new

inconsistencies. OrderInconsistent is called once for each new inconsistency. In total, Dis-

coverHistory must be called a maximum of s× (n+ 1) times, resulting in an explanation

86

with no inconsistencies, χ∗.

The plausibility conditions are met by χ∗ for the following reasons:

1. By the prior argument, there are no inconsistencies remaining in χ∗.

2. All events in χ1 are added by FindExtraEvents. As FindExtraEvents adds only

events in projectedEvents(t), these are all events with proximate causes. No event

occurrences are added or removed by IntroduceDiscontinuity or OrderInconsistent,

and no ordering constraints 〈o, e〉 are added where e is an event, so all events in χ∗

come from χ1, and each still has a proximate cause in χ∗.

3. The explanation χ1 contains only actions and events that would occur in a possible

world according to MΣ. We know that the effects of these actions and events will

not contradict, because otherwise the environment model MΣ would be illegal (as

described in Section 3.1.3). We further know that the preconditions of events can not

disagree, because the preconditions of all simultaneous events generated by FindEx-

traEvents are implied by a single state which maps each instance to a single value.

All discontinuities created by IntroduceDiscontinuity set the value of an instance i to

the value required by the next action or observation that occurs later. Two simultane-

ous discontinuities tda1, tda2 ∈ occurs(n) for an instance i would have the same next

action or observation, so by definition, knownafter(i, tda1, v) ≡ knownafter(i, tda2, v).

4. All events in projectedEvents(χ1, t) are in χ1 due to the application of FindExtra-

Events. The same events are in χ∗. The discontinuities in χ∗ are order constrained

such that they do not affect the state prior to occurrences other than the following

observation. Therefore, no new events are in projectedEvents(χ∗, t) that are not also

in projectedEvents(χ1, t).

5. The base explanation χ0 is defined as including the occurrences in o ∪ ah. Neither

FindExtraEvents, IntroduceDiscontinuity, nor OrderInconsistent removes any

87

occurrences from an explanation, so the occurrences of χ0 are a subset of the occur-

rences in χ∗.

6. The base explanation χ0 = 〈O,D,R,C〉 is defined as including in R all constraints in

≺. Therefore, as neither FindExtraEvents nor any refinement method can remove

constraints from an explanation, χ∗ includes the same constraints. Therefore, ≺χ∗ is

consistent with ≺.

7. The explanation χ1 includes no actions aside from the action history. The refine-

ment methods IntroduceDiscontinuity and OrderInconsistent cannot add actions.

Therefore, the explanation χ∗ contains no actions that are not in the action history.

8. The explanation χ1 contains only actions in ah, which are totally ordered by ≺.

Neither IntroduceDiscontinuity nor OrderInconsistent adds actions. Therefore, all

actions in χ∗ are totally ordered by ≺∗χ.

9. The base explanation χ0 contains no variables, and neither FindExtraEvents nor

OrderInconsistent adds variables. IntroduceDiscontinuity adds variables only to

resolve a discontinuity with an inequality, which will not occur, as all inconsistencies

in Inconsistencies(χ1) involve the preconditions of observations.

Any DiscoverHistory search that includes the refinement methodsOrderInconsistent

and IntroduceDiscontinuity, searches all nodes less than or equal to n distance away, and

returns all strictly plausible explanations, will return χ∗. Therefore, such a search is a sound

solution.

A solution found in this manner, without finding reasons within the model for surpri-

sing observations, may be of low quality, as it does not infer any action or initial state

assumptions that might help with prediction. However, it does at least find the hidden

impact of predictable events. We refer to χ∗ as the incurious explanation, as it does not

posit reasons for expectation failures. However, in some cases, when no exogenous events

or hidden initial state features have caused an observable effect, the incurious explanation

88

is reasonable; in these cases, χ1 = χ∗. In these cases, search will often be considered

unnecessary.

It is also interesting to consider a related property, which we will call dynamic-aware

completeness. An explanation generation solution is dynamic-aware complete when, for

every explanation generation problem with at least one plausible hypothesis without discon-

tinuities, the search returns at least one plausible hypothesis without discontinuities. The

incurious explanation is not considered a solution under this definition, as it will in all in-

teresting cases contain discontinuities. Unfortunately, a proof of this is beyond the scope of

this work. While experimental results have shown that it is often possible, dynamic-aware

completeness is not yet proven. We are also interested in the question of whether the order

in which inconsistencies are resolved affects the reachability of individual explanations. Our

intuition is that it does not, at least for certain refinement sets which encompass all possible

one-step changes. However, this remains unproven as well.

4.6 DHAgent

DHAgent is an important contribution of this dissertation, which demonstrates how to use

managed knowledge together with planning to improve execution performance of an agent.

Algorithm 11 shows the DHAgent top-level algorithm, which inputs a list of goals to accom-

plish, then begins a loop of observing (line 11) and acting in (line 10) an environment. At

any given time, DHAgent has a single maintained explanation, 〈O,D,R,C〉, that is modified

by adding new actions it takes and observations it receives, as well as all projectedEvents

that would be expected based on its current assumptions (lines 12-14). To manage its beliefs

about the environment, DHAgent computes the newest projected state in every loop itera-

tion (line 23) based on its current explanation. Whenever this explanation is found to have

inconsistencies, a DiscoverHistory search is run (line 17) to find descendant explanations

that are plausible. Whenever the explanation is modified, the plan is also recreated (line

24), as its assumptions have been violated. In order to maintain execution guarantees, the

89

search termination condition may sometimes cause the search to terminate without finding

a solution. In recognition of this, on line 22, the algorithm reboots its explanation whenever

search returns no results.

Algorithm 11: DHAgent

1 Procedure DHAgent(MΣ, g)

2 begin
3 obs0 ← ReceiveObservation()

4 O ← {obs0} D ← ∅ R← ∅ C ← ∅
5 S ←projectedState(〈O,D,R,C〉,∞)

6 π ← Plan(S, g)

7 i← 1

8 while π 6= ∅ do
9 ai ←Pop(π)

10 ExecuteAction(ai)

11 obsi ←ReceiveObservation()

12 O ← O ∪ {ai, obsi}
13 R← R ∪ {〈obsi−1, ai〉, 〈ai, obsi〉}
14 〈O,D,R,C〉 ←FindExtraEvents(〈O,D,R,C〉)
15 if Inconsistencies(〈O,D,R,C〉) 6= ∅ then
16 k ← 0 Xnew ← ∅
17 Xnew ← DiscoverHistory-Search()

18 if Xnew 6= ∅ then
19 〈O,D,R,C〉 ←First(Xnew)

20 D ← O \ ({obsj | j ∈ 0 . . . i} ∪ {aj | j ∈ 1 . . . i})
21 else
22 〈O,D,R,C〉 ← ({obsi}, ∅, ∅, ∅)
23 S ←projectedState(〈O,D,R,C〉,∞)

24 π ←Plan(S, g)

25 i← i+ 1

DHAgent is designed to start with a simple explanation, based on the closed world

assumption, and add complexity as observations indicate its current assumptions are incor-

rect. This design is intended to produce reactive, resilient behavior in domains with many

possible but unlikely worlds. In such domains, the high number of hidden facts causes

90

planning for all possible worlds to be intractable. For example, although sand pits may be

ubiquitous on Mars, a Mars rover could not reason about all possible such pits. Indeed, by

assuming sand pits are everywhere it might remain stuck in one place, never moving for

fear of falling in. Instead, DHAgent would initially assume that the ground is safe, but be

prepared to revise its assumptions when new evidence is observed.

The incremental nature of DHAgent is implemented by using its current explanation

as a basis for a new search (see line 17). So as to ensure that DHAgent is able to

recover from past mistakes, all occurrences found in a search are made defeasible before the

next search starts (see line 20). Therefore, when DHAgent has an existing explanation χ

with correct assumptions based on prior searches, a new search will have a head start and

complete faster. However, when the existing explanation χ has incorrect assumptions, the

new search can retract them.

We have purposely left out a description of a specific DiscoverHistory search used

by DHAgent; several will be discussed in the coming chapters.

91

Chapter 5: Explanation-Based Belief Management

Having described DiscoverHistory and discussed performing belief management using

DiscoverHistory as part of DHAgent, we seek to show that this is a reasonable strategy

that yields performance improvements when solving the goal achievement problem. To focus

on belief management, we consider a constrained version of the goal achievement problem,

in which the environment model MΣ is assumed to be complete, and no external agents

affect the world. The environments examined in this chapter are partially observable and

dynamic, due to the occurrence of events, but the dynamics are fully known.

In this chapter, we describe and defend claims that DiscoverHistory search increases

the performance of DHAgent when compared to a replanning agent that can not change

its assumptions or infer any unobserved facts. The experimental study in this chapter was

previously published with colleagues Kuter and Klenk (2012).

5.1 Claim

In this section, we compare DHAgent’s performance and knowledge of the world to a

replanning agent that does not perform explanation. Instead, this second agent, which we

refer to as IncuriousAgent, bases its plans on the projected state as predicted by the

incurious explanation, defined in Chapter 4. This is consistent with past work on belief

revision operators, which make only the minimal changes necessary to be consistent with

contradictory explanations. The only difference between IncuriousAgent and DHAgent

is in the construction of a state for use in replanning; like DHAgent, it observes each

time it takes an action, and replans whenever its expectations are violated by the newest

observation.

92

We now repeat the first of the three claims presented in Chapter 1, which we provide

experimental evidence for in this chapter.

Claim 1

Belief management using DiscoverHistory search causes the goal achievement perfor-

mance (number of goals achieved successfully) of DHAgent in a partially-observable, single-

agent context to improve relative to a traditional replanning agent, IncuriousAgent, which

uses a more naive belief management strategy.

The goal achievement performance of an agent is defined as the percentage of reque-

sted goals it is able to achieve in a given scenario. This metric is chosen as the ability to

accomplish goals is typically important to an agent’s user, and it shows the downstream

consequences of failure to manage information wisely. Agents that don’t recognize their

mistakes will repeat them, and eventually be trapped by them. IncuriousAgent is desig-

ned to be typical of agents that take an ad-hoc approach to belief management, and serves

as a proxy for a family of online replanning agents that are not made available for scientific

comparison.

5.2 Related Work

For the convenience of the reader, we briefly summarize some of the most relevant related

work introduced in Chapter 2, and differentiate from it.

DHAgent’s revision of its beliefs based on an explanation is nearly consistent with

Dupin de Saint-Cyr and Lang’s (2011) description of a belief extrapolation operator using

the event penalty ordering. However, the belief extrapolation operator is defined only for

propositional environments, and has not, to our knowledge, been implemented and studied

experimentally.

Prior research in diagnosis or explanation of action sequences has examined an analogous

problem, sometimes referred to as diagnosis of discrete-event systems. While this diagnostic

work represents both environments and actions, it is divorced from the decision making

93

of an agent. This removes the need to examine several important issues. Due to this

agent connection, the DiscoverHistory solution considers the need for incrementality,

recognition of exogenous events, and inference of the environment state.

Sohrabi et al (2010) suggested that many diagnostic problems can be accomplished by

using a planner to construct a series of actions that match the events. While no existing

systems have been shown to do this for general explanation procedures, this strategy can

be extended to work with deterministic events and a stream of observations, for purposes

of comparison to DiscoverHistory, when the number of possible initial states is low (see

Chapter 7 for further discussion).

5.3 Comparison with Other Agent Approaches

Compared to planning algorithms for partially observable worlds, DHAgent is very flexible,

as it tries to achieve success in worlds where success may be impossible, and is able to reason

about domains with many possible worlds, unlike modern planners.

Gspandl et al (2011) described an agent, IndiGolog, capable of managing its beliefs based

on history-based diagnoses similar to the explanations generated by DiscoverHistory

search. IndiGolog executes high-level robotic programs rather than planning as DHAgent

does; it’s an online agent framework that represents the environment model, agent, and

reasoning techniques as part of a common code base. Additionally, the authors state that

its applicability to domains of higher complexity is limited. While the work is similar in

spirit, the specific problems addressed are different.

Unlike typical contingent and conformant planning agents (e.g., Hoffmann and Brafman

2005; Albore, Palacios, and Geffner 2009; Bertoli and Cimatti 2002; Bryce, Kambhampati,

and D. Smith 2004), DHAgent does not project a belief state consisting of all possible

futures. Instead, it makes a set of reasonable assumptions about the initial state; effectively,

it chooses to believe in the one maximally plausible world, and project only the consequences

of that world. We represent transitions as deterministic, so all projections created by

a planner result in one possible world after each set of actions. This means that plans

94

generated by DHAgent are not guaranteed to reach a goal state. However, this is not

necessarily a handicap: in the domains we examine, there is no correct plan (contingent or

conformant) that achieves a goal state in all possible worlds. The role of DiscoverHistory

is to revise the belief set such that the belief state always contains one maximally plausible

world, which is a highly efficient strategy compared to full projection.

The SDR planner (Shani and Brafman 2011), based on contingent planning techniques, is

similar to DHAgent in that is considers only a small number of possible worlds at a time.

However, it assumes environment models that represent sensing actions and contingent

effects; this limits its ability to address a large number of initial states.

5.4 Experimental Design

We examined the performance of DHAgent in the context of planning and execution in

two hazardous partially-observable domains. Unlike standard domains in common use,

these domains have been engineered to have a very large number of possible worlds and

include events that will happen in some possible worlds and not others. Thus, events will

occur at execution time that can not be predicted in advance without considering all possible

worlds. We believe that this provides more realistic difficulties than existing domains. These

domains are also hazardous, in the sense that states can be reached from which a goal can

not be achieved. The initial observation of each problem in these domains is consistent with

many possible worlds, some of which are unsolvable. This is important because traditional

techniques have trouble dealing with large numbers of possible worlds, or rely on being able

to find a complete advance plan that is guaranteed to succeed. Our technique is resilient

to these problems. However, no modern planner intended for of reasoning about uncertain

environments was able to successfully plan for any of these problems despite extensive

testing, including SDR (Shani and Brafman 2011), Contingent FF (Hoffmann and Brafman

2005), CLG (Albore, Palacios, and Geffner 2009), MBP (Bertoli and Cimatti 2002) and

POND (Bryce, Kambhampati, and D. Smith 2004).

95

Hazardous Rovers is a navigation domain with hidden obstacles inspired by the difficul-

ties encountered by the Mars Rovers, and based on the Rovers domain from the International

Planning Competition (IPC) 2002 Long and Fox 2003. Specifically, individual locations may

be windy, sandy, and/or contain sand pits, which the rover cannot observe directly. Sandy

locations cause the rover to be covered in sand; while covered in sand, the rover cannot

perceive its location or recharge. Sand pits stop the rover from moving; the rover can dig

itself out at a high energy cost. Windy locations clear the sand off of the rover, but due to

a malfunction, may confuse the rover’s compass, causing it to move in the wrong direction.

Rovers must maintain their energy level. Each movement action costs energy, and rovers

can no longer accomplish goals if their energy runs out. Recharging can only be performed

when the rover is in the sun. Goals in this domain are based on simply navigating to a

target location at least four actions away. However, based on an initial observation, it is

always possible that the rover is surrounded by overshadowed sand pits, so no sequence of

actions is ever guaranteed to succeed.

Hazardous Satellites is based on the Satellite domain from IPC 2002. The objective in

each scenario is to acquire images of various phenomena using various specialized instru-

ments and transmit them to Earth. Our additions to this domain include various causes of

satellite malfunction: supernovae, which can damage sensitive instruments that are pointed

toward them; fuel leaks, which cause fuel reserves to diminish rapidly; and motor malfuncti-

ons, which delay a satellite’s turn to a new perspective. When fuel reserves are depleted, no

further goals can be accomplished. It will sometimes be impossible to obtain a clear target

image due to a supernova, so no sequence of actions is guaranteed to succeed.

5.4.1 Problem Generation

We wrote a problem generator for each domain that randomly creates an initial state in-

cluding both observable and hidden facts and goals. For the Hazardous Rovers domain,

each starting state contained 3 rovers, and a goal for each rover that required it to move

to a new destination. Goal destinations were generated randomly such that the rover must

96

cross at least 3 distinct locations to accomplish its goal. Each scenario took place on a 6

× 6 grid of locations connected in the four compass directions. Hidden state was assigned

independently for each location and condition with frequency λ. In all, there are 108 non-

observable binary fluents in this domain, which means that a total of 2108 possible states

are consistent with each observation.

Each randomly-generated Hazardous Satellites problem included 3 satellites and requi-

red the attainment of 8 image acquisition goals. Each image target was chosen randomly

from a set of 20. Targets were associated with supernovae, fuel leaks, and motor malfuncti-

ons based on a frequency λ. In all, there are 60 non-observable binary fluents in this domain,

so 260 possible states correspond to each observation.

5.4.2 Search Configuration

For this experiment, DHAgent searched the space of available explanations for a closest

explanation which is minimally distant, among all strictly plausible explanations, from

a root explanation. This is done by using an iterative deepening search whose increasing

depth bound k, is based on distance from the root explanation, which is DHAgent’s prior

explanation. That is to say, at each step of the iterative deepening search, a depth-first

search is conducted that returns all strictly plausible explanations with distance d such that

d < k. “Distance” here is defined as the number of times a refinement operator has been

applied to an explanation; an explanation of depth d is therefore an explanation resulting

from d recursive applications of refinement operators to the prior explanation found by

DHAgent. The first explanation found by search is therefore the closest explanation, as

no explanation with depth greater than d can have been found before an explanation of

depth d in an iterative deepening search. This definition of distance, based on refinements

from a root explanation is used for three reasons: (1) basing on the current explanation

allows DiscoverHistory search to be used for incremental updates, which is desirable for

continual planning systems. (2) The definition permits an efficient search. (3) Considered

as a belief management operator, it makes sense for a DiscoverHistory search to find

97

the minimum necessary changes to its current belief structure.

Search terminates when k reaches a maximum depth bound kMAX if a strictly plausible

explanation has not been found. This ensures that search always returns within a reasonable

amount of time (the resulting search finishes in polynomial time), but also results in a

search that is not a complete solution of the explanation generation problem. Allowing for

this kind of failure, we believe, is a reasonable tradeoff for the execution time savings, if

the failure is not too frequent. As the dynamics of the environment are known, for this

experiment DHAgent used only the refinement operators AddGround, RemoveOcc and

AssumeInitial described in Chapter 4. Selection of an inconsistency to resolve at each

search node was done randomly. For this experiment, the value of kMAX was 6.

5.4.3 Setup

We randomly generated 25 problems in each domain, and recorded the percentage of goals

achieved by IncuriousAgent and DHAgent on each problem. A simulator executed the

actions requested by each agent based on the domain’s transition function and the ground

truth initial state generated for each problem. Observations were generated and provided

to each agent based on an observation model. The correct transition model and observation

model were provided to each agent, as well as the generated goals, but the ground truth

initial state was withheld.

For the Hazardous Rovers domain, we used four values for λ, the frequency of hidden

state information: 0.0, 0.1, 0.2, and 0.3; in the Hazardous Satellites domain, we used one

value: λ = 0.3. A search depth bound of 7 was used in all of our experiments, i.e.,

DHAgent’s search for explanations returned no results if all plausible explanations were

more distant than 7 recursive refinements from the prior explanation.

5.5 Results

Table 5.1 shows a comparison of the performance of DHAgent and IncuriousAgent.

Statistical results are based on a two-tailed t-test with paired samples, which showed that

98

Table 5.1: Statistical t-test results, comparing the percentage of goals accomplished by In-
curiousAgent and DHAgent in the Hazardous Rovers and Satellites domains.

Domain IncuriousAgent DHAgent t-test

Hazardous Rovers (λ = 0.1) 65.3% 78.7% 0.001

Hazardous Satellites (λ = 0.3) 52.5% 76.0% < 0.001

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3

Hazardous
Rover Domain
Performance

(% Goals
Accomplished)

Difficulty (Hidden State Probability)

DHAGENT

INCURIOUSAGENT

Figure 5.1: Comparison of percentage goals accomplished at various difficulty levels.

DHAgent statistically outperformed IncuriousAgent in both domains. As the only

difference between the two agents is the use of explanation, it’s clear that the use of Dis-

coverHistory search improved performance. This shows that abductive explanation of

state events can improve performance over replanning alone in partially-observable dynamic

environments.

To further examine the impact of hidden state on performance, we increased the dif-

ficulty of the Hazardous Rovers domain by varying the probability of hidden states. Fi-

gure 5.1 compares the performance of the two agents at 4 difficulty levels: λ = 0.0, 0.1, 0.2,

and 0.3. At λ = 0.0, the closed world assumption is correct; as expected, we see perfect

performance from both agents since no explanation is necessary. As the probability of the

closed world assumption being inaccurate increases, both agents perform more poorly, but

DHAgent continued to significantly outperform IncuriousAgent. At λ = 0.3, DHA-

gent accomplished goals 50% more often than IncuriousAgent. Differences between

them were statistically significant for all λ > 0.0.

99

5.6 Discussion

Results of our experiments show that DHAgent does indeed achieve more goals than Incu-

riousAgent, which supports our claim. Furthermore, our results in the Hazardous Rovers

domain show that a higher percentage of fluents for which the closed world assumptions

are incorrect cause a higher gap between DHAgent and IncuriousAgent’s performance.

This supports the idea that the more correct an agent is, the less likely it is to get stuck

in a dead end. Based on this work, we expect similar results to hold in other partially

observable domains where hidden state can affect the outcome of an agent’s actions in ways

that are eventually observable; DHAgent’s strategy is appropriate when its observations

increase its information about the environment, and is conversely not useful when the effects

of its actions are themselves hidden. Other strategies, such as constructing and pursuing

a contingent plan from the start, will likely yield better performance when the number of

possible initial states is limited.

100

Chapter 6: Efficiency Issues in Explanation

In Chapter 5, we demonstrated that DiscoverHistory search can improve performance.

However, this improvement must come at a cost; search can be computationally expensive,

and will always be more expensive than not doing it. However, we take the position that

performance improvements can be worth the price. While search is well-known to have an

exponential worst-case complexity, heuristics and bounds can lower these computational

demands in practice. Here, we analyze the execution time of DiscoverHistory in our

sample domains to get a sample of practical costs.

In this chapter, we examine the practical computational requirements of two imple-

mentations of DiscoverHistory with different performance characteristics, and analyze

the computational efficiency of each for explanation generation in the Hazardous Rovers

and Hazardous Satellites domains. We also investigate the performance impact of a second

distance metric on DiscoverHistory search.

6.1 Differences Between Implementations

In this section, we describe in more detail two implementations of DiscoverHistory,

which we refer to as DiscoverHistory1 and DiscoverHistory2. When we wish to refer

to characteristics of the family, we will simply say DiscoverHistory.

DiscoverHistory1 and DiscoverHistory2 differ in how they maintain the structure

of the partial ordering R over occurrences. DiscoverHistory1 search maintains a data

structure as part of an explanation that maps each relation and function instance to a par-

tially ordered list of all occurrences relevant to it. When events are added, they must be

ordered by this structure, and the list allows DiscoverHistory1 to determine compatible

101

orderings. Using this instance map, DiscoverHistory1 can quickly determine all incon-

sistencies, by iterating over pairs of occurrences that differ in value. However, requiring

that R be ordered increases the branching factor when adding events.

DiscoverHistory2 search, in contrast, enumerates the set of all possible events as a

preprocessing step, and determines when they occur, assigning a time to each one. The

ordering R is defined as a comparison of the values of this function, time : O → N, between

occurrences. Computation of the list of inconsistencies is slower for DiscoverHistory2

than for DiscoverHistory1, because the state must be projected. DiscoverHistory2,

however, does not spend time maintaining the occurrence ordering, and the branching factor

of DiscoverHistory2’s search space is greatly reduced: DiscoverHistory2 considers

only the set of possible event occurrences Eposs during search, instead of the larger set E

containing all occurrences that can be described. Finally, DiscoverHistory2 incurs extra

overhead in the pre-enumeration of the set Eposs.

We previously defined distance between explanations (see Section 5.4.2) based on the

number of changes (i.e., refinements) made to reach a new explanation from a root explana-

tion. The search method used here, which is the same as described in the prior experiment,

employed a search bound based on distance so as to find a closest explanation first. In

this experiment, we consider a second definition of distance between explanations based

on the number of decisions made (i.e., when one branch is selected from among several)

in finding a new explanation. This new distance metric “fast tracks” explanations that

are refined unambiguously, because only one possible refinement leads to a legal explana-

tion. Both metrics make use of the search tree, in that the first explanation found in an

iterative-deepening or breadth-first search is guaranteed to be a closest explanation.

6.2 Experimental Evaluation

In this evaluation, we compare DHAgent using DiscoverHistory1, DiscoverHistory2

using the change-based metric, and DiscoverHistory2 using the decision-based metric,

as well as IncuriousAgent on the problems described in our last evaluation. We report

102

results for Hazardous Rovers with λ = 0.1, 0.2, and 0.3, and for Hazardous Satellites

with λ = 0.3. Metrics reported in this study include goal achievement performance and

computational efficiency. Search using DiscoverHistory1 and DiscoverHistory2 are

identical to the search description from Section 5.4.2, i.e., an iterative deepening search with

random inconsistency selection that terminates when the first strictly plausible explanation

is found or after a maximum depth bound kMAX is reached. The depth of an explanation

is measured using either a change-based or decision-based metric for determining distance

from a root explanation, as described earlier.

To examine the behavior of the DiscoverHistory implementations in these domains,

we ran the four agents on each of the four problem sets using 5 different values for the

maximum search depth kMAX . For each problem, we recorded both execution time and

number of goals achieved. The results of these evaluations are depicted in Figure 6.1. A

quick glance at these graphs shows two important behaviors: DiscoverHistory2 achieves

the highest performance at every maximum plausibility bound, and the time required by

DiscoverHistory1 tends to increase dramatically as the maximum plausibility bound

increases. Based on this alone, DiscoverHistory2 appears to be a better choice. However,

the two plausibility metrics confound the results slightly, since a search using the decision

count plausibility metric may require a higher bound to reach optimal performance than

one using the change count metric. Therefore, we compared the algorithms by first finding

the minimum value of maximum search depth at which each agent reached maximum goal

achievement performance. Whether a particular agent reached maximum performance was

determined by matching it against the highest absolute performer on that set of scenarios

using a 1-tailed paired sample t-test with a 95% confidence threshold. When the null

hypothesis of equal means could not be rejected, that agent was said to have reached

maximum goal achievement performance. Then we compared the time required for that

achievement across all agents.

Table 6.1 shows the results of this comparison. DiscoverHistory2 shows a clear,

large advantage in the Hazardous Rover domain. On the Hazardous Satellites benchmark,

103

Table 6.1: Performance of each of the 3 agents at the lowest maximum search depth with
the highest goal achievement rate, along with statistical results. Search depth
indicated by d, execution time by t, and statistical confidence level by p.

Domain DiscoverHistory1 DiscoverHistory2 DiscoverHistory2

using change using decision
metric metric

Hazardous d = 7 d = 7 d = 3
Rovers t = 157 t = 15.1 t = 13.5
λ = 0.1 Loses, p = .0002 Loses, p = .003 Wins

Hazardous d = 7 d = 7 d = 5
Rovers t = 213 t = 19.2 t = 19.6
λ = 0.2 Loses, p = .0002 Tied Tied

Hazardous d = 7 d = 9 d = 5
Rovers t = 269 t = 19.3 t = 19.0
λ = 0.3 Loses, p = .0003 Tied Tied

Hazardous d = 5 d = 7 d = 5
Satellites t = 13.3 t = 14.6 t = 14.5

λ = 0.3 Wins Loses, p < .0001 Loses, p < .0001

DiscoverHistory1 statistically outperforms DiscoverHistory2. However, the percen-

tage difference in execution time is small. We see, therefore, that neither of the implemen-

tations considered has a clear performance advantage in all domains.

6.3 Discussion

We’ve shown that the DiscoverHistory2 implementation based on pre-enumeration and

a representation of ordering R based on integers is, for at least one domain, much more

computationally efficient than one based on DiscoverHistory1, although both are able

to achieve comparable levels of goal achievement performance. We believe that the greater

efficiency of DiscoverHistory2 in the Hazardous Rovers domain is primarily due to the

reduced branching factor.

Significantly, we found that in both domains and for each DiscoverHistory version,

a depth bound of 9 was sufficient to achieve optimal performance. In general, if such

a reasonable depth bound can be found, it can be used to constrain the computational

104

requirements of DiscoverHistory.

105

Domain Goal Achievement Execution Time
vs. Search Depth vs. Search Depth

Hazardous
Rovers
λ = 0.1

Hazardous
Rovers
λ = 0.2

Hazardous
Rovers
λ = 0.3

Hazardous
Satellites
λ = 0.3

Figure 6.1: From top to bottom, the charts show performance versus search depth in the Ha-
zardous Rovers domain with λ = 0.1, 0.2, and 0.3 and the Hazardous Satellites
domain with λ = 0.3. Goal achievement performance is on the left, execu-
tion time on the right. Error bars show 95% confidence intervals. Data shown
for DHAgent using DiscoverHistory1 (blue), DiscoverHistory2 with the
change-based metric (red), DiscoverHistory2 with the decision-based metric
(green), and IncuriousAgent (purple).

106

Chapter 7: Explanation in a Multi-Agent Domain

In this chapter, we describe a revised version of DiscoverHistory, Multi-Agent Disco-

verHistory (MADH), and investigate the accuracy and efficiency with which it identifies

actions of other actors in a multi-agent environment, which is a highly important capability

in both collaborative and competitive settings. The study reported here were previously

published with colleague David Aha (Molineaux and D. W. Aha 2015).

Efficiency of search for multi-agent explanations tends to be lower in practice than for a

single-agent environment, because changes caused by other agents can happen at any time.

The pre-enumeration strategy discussed in Chapter 6 for reducing branching factor and

simplifying maintenance of the ordering R does not work in a multi-agent setting, because

the number of possible actions and events is too high to efficiently compute. Furthermore,

there are more consistent explanations, because another agent can choose among many

similar actions with similar effects. Therefore, in this chapter we explore techniques for

speeding up search by using heuristics, inconsistency selection, and more frequent addition

of projected events into an explanation.

This chapter is organized in the following fashion: first, we describe our motivation for

examining explanation generation in a multi-agent domain, then we describe our claim that

a search using MADH is faster and more accurate than other strategies. We follow this by

discussing differences between DiscoverHistory and MADH that increase efficiency in

a multi-agent domain. We then present the multi-agent environment Autonomous Squad

Member, which we use for our investigation, and give an extended example of the operation

of MADH in ASM. Finally,we then present an evaluation of MADH that supports our

claim. For comparison, we show accuracy and efficiency results for a forward-chaining

explainer called Deductive Explanation Generator (DEG) suggested by work in diagnosis.

107

7.1 Motivation

In many domains, it is desirable for a cognitive agent to collaborate or compete with other

agents, especially humans. In general, this requires the agent to understand what other

agents are doing. This task may be non-trivial, particularly in partially observable envi-

ronments. Because many modern robotic sensors can only gather information at discrete

intervals, a cognitive agent for real-time environments should be able to infer the occur-

rence of an action taken by another agent from observations that precede and follow it. This

requires the agent to perform a diagnostic or explanatory task, inferring actions, events,

and processes that explain its observations. For example, an agent performing alongside an

army patrol would, when the patrol suddenly comes under fire, recognize that other team

members are taking cover, and execute appropriate actions to help.

7.2 Claims

Claim 2

MADH search is faster than a deductive strategy, DEG, for generating and maintaining

explanations of exogenous actions in a dynamic, partially observable, multi-agent environ-

ment, and maintains comparable accuracy.

We examine this claim in order to determine the efficacy of DiscoverHistory search

in a multi-agent environment. The constraints of the environment forced us to redefine Dis-

coverHistory somewhat, resulting in MADH, but the basic principles remain the same.

Unlike prior experiments, where we measured the effectiveness of the overall agent, this

experiment examines the accuracy and efficiency of explanation generation itself. In order

to measure accuracy, we assume the dynamics are fully known. Learned dynamics cannot

be compared to true occurrences reliably, as different representations found in learning may

prove equivalent in terms of prediction.

108

7.3 Definitions

For purposes of describing improvements to search, we now redefine an explanation to add

an element corresponding to the history of the search path that led to it. Formally, the rede-

fined explanation is of the form χ = 〈O,D,R,C, V 〉, where the elements O,D,R, and C are

defined as before. The new element is a list of revisions V = [v1, v2, . . . , vn], where v1 is the

oldest revision and vn the newest. Each revision is a tuple vn = 〈fn, O−n , O+
n , θn, R

+
n , C

+
n 〉,

that describe the difference between parent and child explanations. Semantically, a revi-

sion describes the changes made by a refinement method or other explanation-modifying

function, such as FindExtraEvents, with respect to a parent explanation. Individual

items are as follows:

1. f is the specific function that performed this modification

2. O−n is a list of occurrences removed

3. O+
n is a list of occurrences added

4. θn is a substitution performed to all occurrences

5. R+
n is a list of ordering constraints added

6. C+
n is a list of constraints added

Formally, given an explanation χn = 〈On, Rn, Dn, Cn, Vn〉 and a child created from it

χn+1 = 〈On+1, Rn+1, Dn+1, Cn+1, Vn+1〉, the following relationships hold in the final re-

vision of Vn+1:

O−n+1 = On+1/apply(θn+1, On)

O+
n+1 = apply(θn+1, On)/On+1

R+
n+1 = Rn+1/Rn

C+
n+1 = Cn+1/Cn

For purposes of maintaining this history, all refinement methods, as well as FindEx-

traEvents, must add an entry to the revision list of a child explanation corresponding to

109

the specific changes made by that method to the child with respect to its parent. From this

point on, we assume that all refinement methods do this, as it is not difficult to construct

modified refinement methods that maintain this history.

We can now define the newest assumption of an explanation χ = 〈O,D,R,C, V 〉, which

is a unique assumption occurrence in the current explanation that was added more recently

than any other assumption occurrence in the history, as well as more recently than any

revision by FindExtraEvents. If FindExtraEvents is more recent than any addition

of an assumption occurrence, there is no newest assumption. We shall now define this

formally through induction. In this definition, we use the functions last(L), which returns

the last item of the list L, first(S), which returns an arbitrary item in a set S or the first

value in a list S, and butlast(L), which returns a copy of a list L with its last item removed.

newestAssumption(χ = 〈O,D,R,C, V 〉) ≡
mostRecentIn(butlast(V), last(V), assumptions(O))

mostRecentIn(V, v = 〈f,O−, O+, θ, R+, C+〉, U) ≡
⊥ if f = FindExtraEvents

apply(θ,mostRecentIn(butlast(V), last(V), U) if U ∩O+ = ∅

first(U ∩O+) otherwise

This states that the newest assumption is the most recent occurrence according to the

revision history that is found in the assumption list. The relation mostRecentIn is defined

recursively, such that if no occurrence in the input set U was added in the last revision, the

substitution θ is applied to whatever occurrence was most recent before that revision. If the

most recent revision was created by a call to FindExtraEvents, then mostRecentIn has

no solution, which is indicated by the return value ⊥. If an occurrence in U is also in the

list of added occurrences, however, it is returned. Note that the call to the function first is

actually unambiguous for all described refinements, as no refinement adds more than one as-

sumption at a time. For example, suppose an assumption o was added in revision vn−3 of an

explanation χ = 〈O,D,R,C, V 〉, and no further assumptions were added in vn−2, vn−1 or vn.

The function newestAssumption(χ) would return apply(θn, apply(θn−1, apply(θn−2, o))).

110

We also formally define the concept of an ambiguous inconsistency. As we said before,

an ambiguous inconsistency is one that can be resolved through multiple legal substitutions

θ to an explanation χ. The formal statement of this is as follows:

resolutionsBySubstitution(χ, n) ≡
UnifyInconsistent(χ, n)

∪ {χ′ = 〈O,D,R,C, V 〉|χ′ ∈ ReorderThird(χ)

∧ last(V) = 〈f,O−, O+, θ, R+, C+〉 ∧R+ = ∅}
ambiguous(n, χ) ≡ |resolutionsBySubstitution(χ, n)| > 2

We can also now formally define the set of unambiguous inconsistencies (abbreviated

UI) in an explanation:

UI(χ) ≡ {n|n ∈ Inconsistencies(χ) ∧ ¬ambiguous(n, χ)}

We define the function totallyOrdered : S, {I × I → {T, F}} → {T, F} over sets and

ordering functions to return true iff the ordering function orders every element of the set

with respect to every other. Formally,

totallyOrdered(S,≺) ≡ ∀i, i′ ∈ S, i ≺ i′ ∨ i′ ≺ i.

7.4 MADH

Algorithm 12 describes MADH. There are three differences between the definition of MADH

here and the definition of DiscoverHistory in algorithm 1. The first two are new con-

ditions for adding projected events to the explanation. On line 3, we see the first new

condition, which requires that the newest assumption be totally ordered with respect to ob-

servations and participate in no unambiguous inconsistencies. This causes projected events

to be added every time a new assumption is “ready”. When this condition is met, the ne-

west assumption has reached its peak predictive power; if that assumption is correct, events

derived from it are likely to be in the explanation. Adding those events through FindEx-

traEvents is easier and faster than inferring them through search. The reason why this

is done for the newest assumption only should become clear when we discuss inconsistency

111

selection.

The second condition, on line 5, requires that there be no unambiguous inconsistencies

in χ. This is the case because we shall expect search using MADH to return ambiguously

plausible explanations rather than strictly plausible explanations.

The third difference from DiscoverHistory is the reference to a selection function

MASelect, which specifies a particular order for resolution of inconsistencies. We will

detail this function in Section 7.4.2.

Algorithm 12: Multi-Agent DiscoverHistory

1 Procedure MADH (χ,MΣ,Π)

2 begin
3 if a = newestAssumption(χ) ∧ @n ∈ UI(χ) : prior(n) = a ∨ next(n) = a then
4 χ←FindExtraEvents (χ)

5 else if UI(χ) = ∅ then
6 χ←FindExtraEvents (χ)

7 if UI(χ) = ∅ then
8 return {χ}
9 i←MASelect(Inconsistencies(χ))

10 X ← ∅
11 for π ∈ Π do
12 X ← X ∪ π(χ,MΣ, i)

13 return {χ′ ∈ X|InvariantsMet(χ′)}

7.4.1 Event Projection

New conditions on calls to FindExtraEvents are useful for two reasons: they enable

a search for ambiguously plausible explanations, and speed up search. As described in

Chapter 4, ambiguously plausible explanations can represent a set of strictly plausible ex-

planations. Since all members of that set are solutions to the explanation generation pro-

blem, it often does not make sense to choose among them when the set can be compactly

represented.

112

Search speedup from calling FindExtraEvents results from a reduction in the number

of inconsistencies that must be resolved. Suppose an assumption a causes a large number of

events, several of which have direct effects on observations in o. If FindExtraEvents is

called only after all inconsistencies have been worked out, each causal chain of events from

a to o must be found through search to remove all inconsistencies. However, if FindEx-

traEvents is called as soon as a is fully bound, only a single causal chain of events from

a to o must be found. In order to take advantage of this, we also modify the inconsistency

selection process to bias it toward resolving inconsistencies in one particular event chain.

7.4.2 Inconsistency Selection

Selection of inconsistencies can have a large impact on search efficiency. We assume that

the order of resolution for inconsistencies does not impact search completeness. If this is

true, efficiency should be the main criterion for choosing which inconsistency to resolve in

a particular node. Choice of inconsistency can affect both the branching factor and depth

of search, as some resolutions cause more commitments to be added to an explanation

(potentially reducing search depth), and some inconsistencies have more possible resolutions

than others (affecting branching). To intelligently select among these inconsistencies in

the large explanation space caused by multiple agents, we consider a specific inconsistency

selection method, MASelect. MASelect considers inconsistencies in the following order,

stopping with the first non-empty set:

1. Inconsistencies with a single resolution (causing no immediate branching) or none

(causing termination of that search path).

2. Unambiguous inconsistencies involving the newest assumption.

3. Unambiguous inconsistencies for which the most recently added event is the next

occurrence.

4. Unambiguous inconsistencies.

113

5. Ambiguous inconsistencies.

Whenever multiple inconsistencies are considered, an inconsistency with the fewest refine-

ments (i.e., which causes the least branching in search) is selected for refinement.

Inconsistencies with a single resolution are practically free in search, as they cause no

branching. When there are no such inconsistencies, the selecting process drives toward

identifying a consistent assumption that is ordered with respect to all observations. If

an assumption has already been found, refining inconsistencies involving that assumption

will help constrain it, reducing the possibility of incorrect events. If it has not, choosing

an inconsistency that has the most recently added event as its next occurrence pushes

up a chain toward an assumption. Once such an assumption is found, event projection

can be used to deduce all events that result from it, which quickly reduces the remaining

inconsistencies.

Unambiguous inconsistencies are ordered before ambiguous inconsistencies because of

the larger branching factor of ambiguous inconsistencies and in order to preserve ambiguity

where it does not affect the set of occurrences in an explanation. This allows an ambigu-

ously plausible explanation to stay uncommitted with respect to values when there is no

information to base that commitment on.

7.4.3 Refinement Methods

In order to reduce the branching factor, MADH search uses AddMinimal rather than

AddGround, and does not maintain a total ordering among related occurrences. To support

creating orderings as necessary, the OrderInconsistent refinement method is used. Due to

the introduction of variables by AddMinimal, the refinement methods UnifyInconsistent

and ReorderThird are necessary to create substitutions where required. Finally, the re-

finement methods used in prior experiments, AssumeInitial and RemoveOcc, are also

included.

114

7.4.4 Search Configuration

In order to maximize efficiency, we use best-first search with MADH with a domain-

independent heuristic function. Search terminates when the first ambiguously plausible

explanation is found, returning that single explanation. We examine a single heuristic

function, in which the cost of an explanation is calculated based on plausibility and effi-

ciency. Plausibility is measured as the sum of three metrics:

• Age is calculated as the number of observations between the earliest occurrence added

during the current search and the current time. It measures how long something must

have gone unnoticed for this explanation to be correct. This reflects a bias that a

more recent mistake is more likely than an older one, which might have been noticed

earlier.

• Precedence ambiguity is calculated, for each event and action, as the number of

observations that have no precedence relationship with that occurrence. Formally,

precedence-ambiguity(occ) = |{obs|obs ∈ o ∧ obs 6≺ occ ∧ occ 6≺ obs|. MADH requi-

res that this be 0 in an ambiguously plausible explanation, as each event must have

a proximate cause and actions and observations are totally ordered. Therefore, an

explanation with a lower precedence ambiguity is less distant from a solution.

• Assumption cost is counted as ASSUMPTION COST for each exogenous action and

each initial state assumption in the current revision history. It measures how many

distinct factors were unknown prior to search. This component rewards parsimony.

In combination, these three metrics guide the search toward more plausible explanations,

but there is no guarantee of optimality.

The efficiency component of the explanation cost function includes two factors:

• Search depth is equal to the depth of an explanation in a search tree. Use of search

depth prevents recursive applications of refinement operators that do not change plau-

sibility from dominating the search space. While incorporating search depth prevents

an infinite recursion, it is not intended as a significant heuristic component.

115

• Event load penalizes events added by the AddMinimal refinement. This is counted

as EVENT COST for each event in the revision history. This biases the search toward

explanations with fewer abductively inferred events, which reduce search depth with

earlier application of event projection.

Use of this heuristic function is intended to decrease search times in a large environment

for which possible occurrences cannot be enumerated. In the future, we would like to

examine multiple possible weightings for each of these metrics, to determine how such

weightings affect search time in different domains.

7.4.5 Autonomous Squad Member Domain

The Hazardous Rovers and Hazardous Satellites domains discussed in Chapter 5 are single

agent, and are not easily modified to include relations and functions that can be affected by

an external agent. To investigate the accuracy and speed of MADH, therefore, we consider

a new environment called Autonomous Squad Member (ASM).

In this environment, a robot assists an army patrol by following and carrying equipment,

which requires the robot to monitor what patrol members are doing. In this domain, acti-

ons include team member movement, change of team member postures, firing of weapons,

communication by gesture, and directions to subordinates. Modeled events include change

of GPS coordinates, arrival at a destination, completion of a directive, auditory and visual

observation of activities by humans, and injury and death due to gunfire. This domain is

complex enough to be fairly challenging, requiring frequent explanation to understand what

actions underlie environment changes caused by team members and enemies.

7.4.6 Extended Example

In order to give a comprehensive picture of how MADH works, this extended example

gives detail on the knowledge maintained by the agent, the output of refinement methods,

selection of an inconsistency, and computation of heuristic values.

We start near the beginning of a scenario, where one team member of the patrol has just

116

started to walk away from the starting location. So far, the robot has started to follow the

team leader, labelled as member1, and made three successive observations of the environ-

ment. When the fourth observation arrives, it yields two surprising observations: (1) a team

member, labelled member2, is reported to be at an unnamed location (generic label unk-

location) rather than the starting location (labelled locstart), as the robot expected;

and (2) team member member2 is reported to be somewhere along the route route1.

Using MADH, the agent attempts to modify its explanation to explain the unexpected

observations. Figure 7.1 lists parts of the robot’s memory before MADH begins, including

the existing explanation that the robot has been maintaining, partial observations, and the

discovered inconsistencies.

Initial Explanation

Occurrences
obs0: ... (object-location member2 locstart) ...
ah,1: (follow robot1 member1)
obs1: ...
obs2: ... (reported-location member2 locstart),

(reported-route member2 no-route) ...
obs3: ... (reported-location member2 unk-location),

(reported-route member2 route1) ...

Ordering

obs0 ≺ ah,1.

ah,1 ≺ obs1.

obs1 ≺ obs2.

obs2 ≺ obs3.

Constraints: None.

Inconsistencies

〈(reported-location member2 unk-location), obs2, obs3,True,=〉
〈(reported-route member2 route1), obs2, obs3,True,=〉

Figure 7.1: Robot’s memory near the beginning of an ASM scenario

117

The first inconsistency is selected, because it leads to only one child explanation. This

child is generated byAddMinimal, which adds a new event of type gps-observe-location,

representing an update received by the robot from a patrol member’s GPS transponder. The

event reports a label for a known location a patrol member is near, and a label for any na-

med route the patrol member may be following. The event is partially bound to match the

inconsistent literal as well as static literals. Figure 7.2 gives a complete representation of

the event model and event.

Event Model

(:event gps−observe−location
:precondition

(and (on−team ?teammate ?team)

(is−robot ?self)

(on−team ?self ?team)

(eq (object−location ?teammate) ?loc)

(eq (person−route ?teammate) ?route)

(or (neq (reported−location ?teammate) ?loc)

(neq (reported−route ?teammate) ?route)))

:effect

(and (set (reported−location ?teammate) ?loc)

(set (reported−route ?teammate) ?route)))

Event

Type: gps-observe-location
Preconds: (on-team member2 team1) (is-robot robot1)

(on-team robot1 team1)
(object-location member2 unk-location)
(person-route member2 ?route56); (is-route ?route56)
(not (reported-location member2 unk-location))

Effects: (reported-location member2 unk-location)
(person-route member2 ?route56)

Constraints: None.
Signature Tuple: (gps-observe-location member2 team1 robot1

no-location ?route56)

Figure 7.2: Representation of gps-observe-location event and model

118

This event is ordered after obs2 and before obs3 by AddMinimal. In addition to mem-

ber2 and unk-location, several other values are bound to model variables based on static

observable function and relation instances. Several new inconsistencies are found in this

new explanation (shown in Figure 7.3). Each corresponds to a literal from the preconditions

or effects of the added event that does not match other occurrences:

1. The route being followed by member2 is referenced by the precondition of the gps-

observe-location event, and represented as the literal (person-route member2

?route56). The value of this literal has not been assigned by any previous occurrence,

and the default value is no-route.

2. Preconditions of the gps-observe-location event state that the value ?route56

must be of type route. However, it is as yet unassigned to any value, so the precon-

dition is not met. This inconsistency also contradicts the default assumption.

3. A precondition of the gps-observe-location event indicates that the location of

member2 is unknown, but it is known at the time of the initial observation, observa-

tion1.

4. The occurrence observation4 indicates that member2 is reported to be following

route1, which contradicts the effect of the gps-observe-location event which

places it on the route ?route56. This information is represented by the literal

(reported-route member2 route1).

To select an inconsistency for refinement, MADH first considers inconsistencies with

only one possible refinement; there are none. Second, it considers unambiguous incon-

sistencies relating to the most recently added assumption; none exists. Third, it considers

unambiguous inconsistencies for which the most recently added event in the next occurrence;

this includes inconsistencies 1 and 4. Among these, inconsistency 1 is selected because it

has the fewest possible refinements.

MADH applies refinements to this inconsistency to obtain refined explanations, as fol-

lows: AddMinimal creates a child explanation with a move action, because the move action

119

〈(person-route member2 ?route56), obs0,
(gps-observe-location member2 team1 robot1 unk-location ?route56)〉

〈(is-route ?route56), obs0,
(gps-observe-location member2 team1 robot1 unk-location ?route56)〉

〈(reported-route member2 route1),
(gps-observe-location member2 team1 robot1 unk-location ?route56),
obs3〉

〈(object-location member2 unk-location), obs0,
(gps-observe-location member2 team1 robot1 unk-location ?route56)〉

Figure 7.3: Inconsistencies after addition of gps-observe-location event

has a literal in its effects of type person-route. RemoveOcc returns no explanations, be-

cause neither the prior occurrence nor the next occurrence is defeasible. AssumeInitial

returns a child explanation containing an initial state assumption, because person-route

is not observable, and the prior occurrence is obs0. UnifyInconsistent returns a child

explanation containing the substitution ?route56 7→ no-route, as no-route is the de-

fault value for person-route. OrderInconsistent returns no explanations, because obs1

and the gps-observe-location event are already ordered. ReorderThird also returns no

explanations, as no existing event has an effect of type person-route. In total, the refi-

nement methods result in three modified explanations. A representation of these, omitting

the information carried over from the initial explanation, is shown in Figure 7.4.

Further along one of these search paths, an explanation is found that is close to being

ambiguously plausible, as it includes a move assumption that has no unambiguous inconsis-

tencies, and all occurrences are ordered. At this point, event projection must be performed,

to ensure that all events that should be caused by changes to the explanation are added.

This causes two events to occur, of the type human-sees. While these events have no

observable effect on the state, they intuitively provide the information that the other patrol

members must know what member2 is doing. Figure 7.5 shows the explanation before and

after projection.

120

Explanation 1

Occurrences
e1: (gps-observe-location member2 team1 robot1

unk-location ?route56)
a2: (move member2 ?dest57 ?route56 ?tm58 ?origin59 ?act60)

Precedence

obs0 ≺ a2.

a2 ≺ e1.

obs2 ≺ e1.

e1 ≺ obs3.

Constraints: ?route56 != no-route, ?dest57 != locstart

Computed Cost :

2 (precedence ambiguity) + 10 (assumptions) + 2 (depth) + 6 (event load) = 20

Explanation 2

Occurrences
e1: (gps-observe-location member2 team1 robot1

unk-location ?route56)
isa2: 〈initial, (person-route member2 ?route56), True〉

Precedence

isa2 ≺ ah,1. isa2 ≺ obs1.
isa2 ≺ obs2. isa2 ≺ obs3.
isa2 ≺ e1. obs2 ≺ e1.
e1 ≺ obs3.

Constraints: None.

Computed Cost : 3 (age) + 10 (assumptions) + 2 (depth) + 6 (event load) = 21

Explanation 3

Occurrences
e1: (gps-observe-location member2 team1 robot1

unk-location ?route56)

Precedence

obs2 ≺ e1.

e1 ≺ obs3.

Constraints: None.

Computed Cost : 2 (depth) + 6 (event load) = 8

Figure 7.4: Resulting explanations with computed explanation costs
(ASSUMPTION COST = 10, EVENT COST = 6)

121

After projection, no unambiguous inconsistencies remain, and search returns the ex-

planation produced by projection. After more observations are received, new information

may cause the destination of the move action, ?dest57, seen in Figure 7.5, to be bound.

However, the activity id, ?act60, is not present in any observable literals, so it will re-

main unbound indefinitely, with no consequence to the robot’s understanding of what is

happening.

7.5 Experiment

7.5.1 Design of the Deductive Explanation Generator

Efficiency results in the diagnosis of discrete-event systems indicate that use of automated

planners to solve diagnosis problems is currently the most efficient solution (Grastien et al.

2007). To ensure that generated plans satisfy a sequence of observations rather than a

distant goal, Sohrabi et al. (2010) demonstrated the addition of a special advance action to

a planning problem; it forces a planner to generate plans that explain all observations. This

approach is not directly applicable to the incremental problem, which requires modification

of an existing action sequence rather than construction of a new one, as well as the insertion

of deterministic events.

We follow the example of Sohrabi et al. with the Deductive Explanation Generator

(DEG) (Algorithm 13), a system which uses the principle of an advance action in a forward

search to maintain a set of strictly plausible explanations. In a single planning step, a

forward state-space planner considers every possible action whose preconditions are met and

projects its consequences. Analogously, DEG finds a set of possible actions that could have

been performed after each new observation is received, and then generates new explanations

corresponding to the combination of each action with each explanation it maintains. Then,

consequences are projected for each explanation using FindExtraEvents. DEG retains a

subset of the resulting explanations that have no inconsistencies, and therefore explain the

new observation, as the successor explanation set. Note that DEG does not posit any initial

122

state assumptions. However, this is not a handicap in the ASM domain, where the initial

default assumptions are correct. If this were not the case, DEG would be at an extreme

disadvantage due to needing to guess the entire initial state before applying a forward search

technique.

Because the branching factor becomes large, the full set of explanations generated by

DEG can exceed the available memory space. To avoid this, DEG retains only a subset

XMAX of the possible explanations found. These are selected uniformly at random among

the plausible explanations found after each observation, and the rest are discarded. Thus,

there is no guarantee that DEG will continue to find plausible explanations indefinitely. If

no plausible explanation can be found, DEG stops trying to explain and thereafter returns

the last non-empty explanation set found. The problem DEG has here is analogous to the

memory space problems that plague typical planners in large domains.

DEG is designed to consider all reasonable assumptions, and unless it drops explanations

to save memory space, it always finds an explanation with no false positives.

Algorithm 13: Deductive Explanation Generator

1 Procedure DEG (X,MΣ, i)

2 begin
3 X ′ ← ∅
4 for χ = 〈O,D,R,C, V 〉 ∈ X do
5 t← t|obsi−1 ∈ occurs(χ, t)
6 for a ∈ A do
7 if projectedState(χ, t) |= pre(a) then
8 χ′ ← 〈O ∪ {a}, D,R ∪ {〈obsi−1, a〉, 〈a, obsi〉}, C〉
9 X ′ ← X ′ ∪ {FindExtraEvents (χ′)}

10 X ′ ← X ′ ∪ {FindExtraEvents (χ)}
11 X ′ ← {χ′ ∈ X ′|χ′ is strictly plausible}
12 if |X ′| > XMAX then
13 X ′ ←RandomSubset(X ′, XMAX)

14 return X ′

123

To interoperate with the environment, DEG uses a minimally modified version of DHA-

gent that maintains a set of explanations X. On each iteration, this modified DHAgent

replaces its existing explanation set X by the value returned in a call to DEG with the

current set X, the environment model MΣ, and the variable i indicating the index of the

most recent observation.

7.5.2 Experiment Description

Performing frequent explanations in a real-time environment is a challenging goal, due to

the expected computational expense of the task. Typically, a deductive strategy is assumed

to be faster than an abductive one. We therefore present an investigation of MADH’s

efficiency. To assess our claim, we examine the efficiency of DEG and MADH on a series

of random runs from scenarios defined in the ASM domain. Variation across these runs

primarily comes from the choices made by the simulated human patrol members, who make

decisions based on frequent replanning in a nondeterministic hierarchical task network, and

act in a nondeterministic order when executing actions.

We measure accuracy with respect to a ground truth explanation generated with kno-

wledge of the team members’ actions. Each event and exogenous action in an inferred

explanation is paired with a matching occurrence in the ground truth explanation, if any

exists. A generated occurrence that matches no occurrence in the true explanation is a false

positive. Conversely, an occurrence from the true explanation that matches no occurrence

in the true explanation is a false negative. An event or action in the generated explanation

that matches an event or action from the true explanation is a true positive. Two events or

actions match iff some interpretation of each is identical in all preconditions, effects, and

its performer, and each is ordered in the same way with respect to observations and other

shared occurrences. A match is partial if some variables in the generated action or event

must be bound to achieve equality.

Based on these definitions, we measure accuracy using a modified version of precision and

recall. Under this definition, each true positive resulting from a partial match is discounted

124

by the ratio of (1) the number of variable substitutions necessary to achieve equality to (2)

the number of variables in the original action or event model. We call this the match ratio,

and define a true positive ratio that sums this for all matches. The true positive ratio is

similar to the partial precision and recall scoring used in Meadows, Langley, and Emery

2013. Using this definition, our accuracy metrics are:

partial precision =
true positive ratio

true positives+ # false positives

partial recall =
true positive ratio

true positives+ # false negatives

We define efficiency as the number of seconds required to perform explanation on the

test machine, which is a virtual machine using 4 Xeon X5650 CPUs and 24GB of physical

memory. Each iteration was allocated 4GB of process space and 1 CPU.

7.6 Results

A typical state in the ASM domain is described by 400 literals; 3 external agents (i.e.,

squad members) were present in the scenario, and by the end of a run, MADH’s explana-

tion typically included more than 100 actions and 400 events. We ran each experimental

condition 10 times with the same initial state in the ASM domain, with a different random

seed causing distinct behaviors. We used parameter values of EVENT COST = 6 and AS-

SUMPTION COST = 10 in our experiments, which for the ASM domain results in similar

ranges for the age, assumption cost, precedence ambiguity, event load, and search depth

metrics; no one metric strictly dominates.

DEG is time and memory-intensive at some XMAX values and achieves lower precision

and recall at others. With an infinite value for XMAX, DEG would necessarily achieve a

higher precision and recall than MADH due to its exhaustive strategy; however, testing

has shown that high memory usage at this level inevitably causes failure. Therefore, we

instead report on the following conditions:

125

• DEG-10, using DHAgent and DEG with XMAX set to 10

• DEG-30, using DHAgent and DEG with XMAX set to 30

• MADH, using DHAgent and MADH

Figure 7.6 plots the average partial precision and partial recall of the most accurate

explanation found by each agent as explanations change over time. The x-axis of each plot

describes the number of observations explained so far. MADH, represented by the solid blue

line, achieves similar partial precision and recall to DEG-30. The accuracy of DEG-10 de-

creases quickly (relative to the other conditions). In some runs, DEG-10 failed to maintain

a plausible explanation; its random sample is too small to provide sufficient generality to

always find a plausible explanation. Subsequently, it repeatedly reported previously found

explanations, which decreased in accuracy as more occurrences accumulated.

These graphs also show that no experimental condition achieves a partial recall value far

above 0.8; this is because some of the true events and actions in the world occur away from

the robot, where their effects cannot be directly observed. Although these events might be

inferred based on later observations, achieving near-perfect recall is highly unrealistic.

To perform a statistical comparison, we compared the ranges of the 95% confidence

interval for mean partial precision and recall between conditions at each point on the curve.

In each comparison, MADH eventually reaches a turning point, after which it always out-

performs DEG, maintaining a lower bound for mean partial precision or recall greater than

the upper bound of DEG-10 and DEG-30 for all later observations. For partial precision

and DEG-30, that turning point occurs at 36 observations; for partial precision and DEG-

10, 12 observations; for partial recall and DEG-30, 63 observations; for partial recall and

DEG-10, 42 observations. As MADH significantly outperforms DEG with a small margin,

it seems fair to say that MADH’s accuracy is at least comparable to that of DEG.

Comparing the efficiency of these conditions (Table 7.1) highlights the major advantage

to using MADH. The differences shown are highly significant, with p < .001. While a large

enough body of unambiguous explanations can maintain reasonable accuracy, it is highly

126

Table 7.1: Efficiency results for the ASM Domain

Experimental Con-
dition

Average Time
Spent Genera-
ting Explanati-
ons (minutes)

Average Time
Spent per
Observation
(seconds)

Average Time
Between Novel
Observations

DEG-10 94.01 45.2
DEG-30 425.6 176.1 45.5
MADH 5.4 2.2

inefficient. In contrast, MADH’s intelligent search techniques reduce explanation time to

a relatively short interval. However, even when maintaining relatively few explanations,

DEG is too slow for realistic use. The average interval between novel observations in the

ASM domain is 45 seconds. The DEG-10 condition would consume nearly all of that

time, leaving no time for replanning and other activities. The DEG-30 condition takes

even longer, meaning that several novel observations would be received while the agent was

considering a previous observation.

In summation, our investigation has shown the effectiveness of MADH in a large, parti-

ally observable multi-agent domain. We have supported our claim that MADH is capable

of maintaining a comparable level of accuracy to a deductive explanation generator at far

lower time requirements. We believe that the reason for higher performance here is the high

number of actions, which increases the branching factor of a deductive search relative to an

abductive search, which generally has a higher cost per search node to perform inference.

While this data covers only one domain, we expect to see similar results in any domain with

a large number of possible actions, or a large number of possible initial states.

7.7 Discussion

We introduced a revised version of DiscoverHistory, MADH, that can efficiently explain

actions in the execution context we used in our study. Efficiency results indicate it may

be fast enough for some real-world environments, and its accuracy is competitive with a

1Some runs stopped explaining early due to inability to maintain plausible explanations

127

deductive approach. However, its performance is to some degree dependent on a heuristic

function that requires more investigation.

The results gathered support our claim of efficiency for MADH. Clearly, there is a com-

putational tradeoff in DEG between accuracy and speed. Given that DEG is considerably

slower even when highly inaccurate, MADH’s accuracy and speed are a major improvement.

While only one domain has so far been tested, it appears clear that a large number of possi-

ble actions slows down DEG unreasonably, and we expect to observe similar speed benefits

in other partially observable multi-agent domains with large numbers of actions.

128

Explanation Before Projection

Occurrences
event1: (gps-observe-location member2 team1 robot1

unk-location route1)
action2: (move member2 ?dest57 route1 600 locstart ?act60)

Precedence

observation3 ≺ event2.

action2 ≺ event1.

event1 ≺ observation4.

Constraints: ?dest57 != locstart

Computed Cost : 10 (assumptions) + 4 (depth) + 6 (event load) = 20

Explanation After Projection

Occurrences
action2: (move member2 ?dest57 route1 600 locstart ?act60)
event1: (gps-observe-location member2 team1 robot1

unk-location route1)
event2: (human-sees member1 ?act60)
event3: (human-sees member3 ?act60)

Precedence

observation3 ≺ action2.

action2 ≺ event1.

event1 ≺ observation4.

occ(event1) = occ(event2) = occ(event3)

Constraints: ?dest57 != locstart

Computed Cost : 10 (assumptions) + 5 (depth) + 6 (event load) = 21

Figure 7.5: Explanation before and after projection with computed explanation costs
(ASSUMPTION COST = 10, EVENT COST = 6)

129

Figure 7.6: Partial Precision (left) and Partial Recall (right) vs. Observation Count (ASM
Domain)

130

Chapter 8: Learning Unknown Event Models

This chapter concerns the usage of DiscoverHistory in a learning context. We motivate

research into explanation-based model learning. We describe the notion of surprise as it

relates to an agent, and the implications of surprise for learning. We then describe use of

DiscoverHistory search to generate examples for learning, and present a novel technique,

Explanation-based Model Learning (EML), for learning models of unknown events that

cause surprise. We investigate the performance of EML in a modified version of DHAgent

through simulation studies, and report that executing plans based on learned environment

models incurs significantly reduced execution cost in comparison to executing plans based

on the original environment model. Material in this chapter was previously published at

AAAI 2014 (Molineaux and D. W. Aha 2014).

To our knowledge, the problem of learning models for deterministic events has not been

discussed by other researchers. Other agents have shown performance in learning transition

models; for example, the entire body of reinforcement learning research is based on this

idea (Sutton and Barto 1998). In planning research, some systems have been investigated

that learn models of actions (e.g., LAMP (Zhuo et al. 2010)). The unique factorization of

the transition function we use supports partial learning of exogenous dynamics in a large

domain. Other agents that learn a transition model either do not support learning in

a relational representation (e.g., reinforcement learning) or do not support domains with

hundreds of fluents (e.g., LAMP).

8.1 Motivation

Most studies on planning and reasoning assume the availability of a complete and correct

domain model, which describes how the environment changes. In this chapter, we relax the

131

completeness assumption; events occur in our environments that the agent cannot predict

or recognize because its model does not describe them. For example, surprises can occur

due to incomplete knowledge of events and their locations. In the fictional “The Princess

Bride” (W. Goldman 1973), the main characters entered a fire swamp with three types of

threats (i.e., flame spurts, lightning sand, and rodents of unusual size) for which they had no

prior model. They learned models of each from experience, which they used to predict and

defeat future examples. Surprising realistic events can also occur while an agent monitors

an environment’s changing dynamics. Consider an autonomous underwater vehicle (AUV)

that detects an unexpected underwater oil plume for which it has no model. A default

response might be to immediately surface (requiring hours) and report it. However, if the

AUV first learns a model of the spreading plume, it could react to the projected effects

(e.g., by identifying the plume’s source).

Surprises in real-world environments can cause failures in robots. Autonomous response

to failures would allow them to act for longer periods without oversight. Some surprises

can be avoided by increased knowledge engineering, but it is often impractical due to high

environment variance, or events unknown to a designer. In these cases, an agent has enough

knowledge to construct plans and achieve goals in ordinary circumstances, but surprising

events may prevent an agent from succeeding. Therefore, we consider how to learn in

response to such surprises. In particular, we employ a novel variant of FOIL (Quinlan

1990), FOIL-PS, to learn models of unknown exogenous events in partially observable,

deterministic environments. We employ this learning mechanism in DHAgent to reduce

execution cost (a measure of resource expenditure) in two partially observable, partially

known domains (see Section 8.5.2.

8.2 Claims

In this chapter, we investigate Claim 3 introduced in Chapter 1, repeated here:

132

Claim 3

Our novel explanation-based model learning algorithm, EML, infers successively improved

environment models that reduce the execution cost incurred by DHAgent in accomplishing

goals in dynamic, partially observable environments.

EML is designed to solve the hypothesis-based model learning problem introduced in

Chapter 1:

• Given : a (possibly incomplete) environment model MΣ, a set of transition discontinui-

ties d, observations of the environment o, and an action history ah,

• Find : a new model M ′Σ, such that for some hypothesis h with no discontinuities,

h ∪ o0 ∪ ah ∪M ′Σ |= o.

In other studies, we chose to measure explanation generation’s impact on performance

through goal achievement, which we believe is a primary metric of importance for goal-based

agents. However, it proved insufficient for a learning study for a simple reason: agents

need examples to learn from. Hazardous domains restrict goal achievement percentages

by setting traps for the agent, and these same traps restrict the agent’s experience of the

environment. Therefore, to increase the agent’s interaction with the environment, we choose

domains and metrics that cause substantial interaction, even when the agent performs

poorly. Specifically, execution cost is a general description of how many resources and how

much effort are expended by the agent in accomplishing a goal. A poor quality solution

requires more resources and effort, and thus requires more interaction with the environment.

As EML constitutes the first attempt at this type of learning, we make several as-

sumptions about the nature of the learning problem which we would like to relax in later

work:

1. We assume that the incomplete model omits only events, and is complete with respect

to relations, functions, and actions, and the observation function.

2. We assume that the incomplete model is sufficient to create plans for all goals which

the agent must satisfy.

133

Assumption 1 ensures that only events need be the target of learning. Assumption 2 ensures

that the agent can learn while attempting to achieve goals, which we would expect to be

the case for a realistic agent. The experiment presented in this chapter introduces domains

that support these assumptions.

8.3 Modeling Surprise

We now define surprise as it affects DHAgent, in order to clarify our approach. Infor-

mally, we say that a generic agent is surprised whenever an observation contradicts its

expectations. This is constantly the case in DHAgent, however; contradiction of expec-

tations in DHAgent leads to inconsistencies in its explanation, which leads DHAgent

to search for a new, improved explanation. As such, it’s able to change its expectation,

and understand why that observation occurred. However, in some cases, the only plausible

explanations found may include transition discontinuities, because the model does not des-

cribe the events that take place. In such cases, DHAgent does not truly understand what

has happened, as the transition discontinuity is standing in for some missing transitions it

doesn’t know about. Therefore, we say that DHAgent is surprised when the best expla-

nation found includes transition discontinuities, and we consider the problem of inferring a

new model that accounts for those surprises.

8.4 Recognizing Unknown Events

The first step in our approach is to recognize when an unknown event, not represented

in MΣ, has taken place. To do so, DHAgent searches for a minimally discontinuous

explanation χmd that has fewer transition discontinuities than any other. Under the

assumption that the simplest explanation is the best, the transition discontinuities in χmd

ought to correspond to unknown events. This search is a best-first search based on a

cost function that weighs refinement steps that add transition discontinuities (cost 10)

much more heavily than other refinements (cost 1). The first explanation found in a search

134

(which is, by definition, of minimal cost) is an approximation of the minimally discontinuous

explanation χmd. To ensure manageable execution times, we employ a cost bound, set to

50 in our experiments. When this bound is reached, the search returns without solution.

8.4.1 Generalizing Event Preconditions

After determining when unknown events occur, creating a model of their preconditions

requires generalizing over the states that trigger them. EML uses a novel technique, FOIL-

PS (Projected States), which we adapted from the FOIL algorithm (Quinlan 1990) for this

purpose. FOIL is useful for learning models because it outputs a set of logical clauses,

which can be easily converted into the conditions of an event model. However, FOIL is

designed to infer clauses that predict relations in a propositional database; instead, we wish

to infer clauses that are satisfied in some projected states and not others. As described

in Section 4.3.1, a projected state is a conjunction of literals which are true at a certain

time, according to an explanation. These states are found by projecting the effects at

each occurrence point of a minimally discontinuous explanation χmd. FOIL-PS infers the

conditions of a hypothetical unknown event by finding clauses that are satisfied in projected

states that are associated with a transition discontinuity (i.e., these projected states could

have triggered the unknown event), and are contradicted in other projected states. The

input to FOIL-PS consists of a set of positive example bags, and a set of negative examples.

Each positive example bag contains a collection of states that are projected during a single

discontinuity, and different bags are associated with different discontinuities. All other

states encountered are negative examples.

EML maintains a set of minimally discontinuous explanations X, one for each completed

training scenario. To infer events that cause l, where eff(tda) = {l} for at least one transi-

tion discontinuity, it finds a set of bags of projected states that occur between the minimum

and maximum times of each discontinuity, as each of those states may have triggered a

hypothetical unknown event eu. We define the minimum and maximum discontinuity time

135

for a transition discontinuity formally as:

minimumTime(χ, tda = 〈discontinuity, i, v, id〉) ≡ min({n|tda ∈ occurs(χ, n)})
maximumTime(χ, tda = 〈discontinuity, i, v, id〉) ≡

min({n|n > minimumTime(tda) ∧ ∃o ∈ occurs(χ, n) : knownbefore(i, o, v)}

These state that the minimum time of a transition discontinuity is the time at which

it is projected in an explanation, and the maximum time is the time at which the next

relevant occurrence is projected.

A positive example bag for a transition discontinuity assumption tda, then, is the set of

projected states that fall in the interval between these times:

peb(tda) = {projectedState(t) | minimumTime(tda) < t < maximumTime(tda)}

To learn a model for events that cause l, we give FOIL-PS a set of positive example

bags corresponding to each transition discontinuity that causes l in all explanations in X.

The negative examples are all the remaining projected states. Thus the positive example

bags for some set of training explanations X and surprising literal l are:

peb(l,X) =

peb(tda)

∣∣∣∣∣
∃χ = 〈O,D,R,C, V 〉 ∈ X :

∃tda = 〈discontinuity, i, v, id〉 ∈ O :

v = target(l) ∧ i = value(l)

 .

The negative examples consist of all other states:

ne(l,X) = {projectedState(t)|occurs(t) 6= ∅} \
⋃

peb(l,X).

To find the triggering conditions for an event causing p, FOIL-PS searches the space of

possible clauses that satisfy zero states in ne(p,X) and at least one state in each bag in

peb(p,X). The initial clause used is {¬p}, and each node in the search tree adds one literal

from its parent node.

As this search is costly, FOIL-PS does not consider literals that produce negative

information gain according to FOIL’s definition. Also, we restrict the number of zero

information-gain literals to be added to a clause: FOIL-PS defines the search cost of a

clause as the number of zero information gain additions made in the nodes leading to it,

136

and conducts an iterative deepening search to find only clauses with the minimal search

cost. The first clause returned by each level of the search is one that covers the maximum

number of positive example bags of any clause found within the search cost. Search repeats

with the same cost until sufficient clauses are found to cover all positive example bags. If

sufficient clauses cannot be found, search is repeated with an incremented cost.

8.4.2 Modifying the Environment Model

Each clause output by FOIL-PS is used to construct a learned event model whose condition

is the clause output, and whose effect is the single ground literal believed to be inconsistent.

To take an example from the Princess Bride, suppose DHAgent takes the point of the view

of a hero, Westley, who observes a distressed damsel, Buttercup, sinking rapidly into the

earth. FOIL-PS is given positive example bags including all projected states between the

last time Buttercup was not sinking, and negative examples consisting of all other projected

states Westley can remember. The inconsistent literal is (sinking-rapidly Buttercup).

FOIL-PS outputs the clause:

(and (not (sinking-rapidly Buttercup))

(location Buttercup ?loc)

(sandy-location ?loc)),

EML then constructs a new learned event:

(:event new-event51

:precondition (and (not (sinking-rapidly Buttercup))

(location Buttercup ?loc)

(sandy-location ?loc))

:effect (sinking-rapidly Buttercup))

EML adds constructed events to the environment model, which is used for planning

and explanation in future scenarios. Ideally, the set of events that are inferred to cause

a literal l will match the actual events that cause the condition modeled by l. However,

FOIL-PS will not always initially find a correct set of models, so EML updates the model

periodically, after each scenario is completed.

137

If the learned event models fail to cover all environment events causing l, then l may be

found to be inconsistent in a future χmd. When an inconsistent literal is found in the χmd

of the most recent scenario, all previously learned events that cause it are removed from the

model and new models are learned from scratch. Conversely, if the learned event models co-

ver situations that do not trigger any event causing l, an event will be erroneously predicted,

likely resulting in an inconsistent explanation. Thus, we created a DiscoverHistory refi-

nement method, AbandonModel that retracts a previously learned event model, removing

it from the inconsistent explanation and marking it as invalid. This refinement incurs less

cost (5) than a transition discontinuity assumption, so that it’s easier for DiscoverHis-

tory to abandon an event than to add a discontinuity that resolves an inconsistency with

a learned event. However, AbandonModel still costs much more than other refinements, to

discourage premature abandonment. After an event model is abandoned, the causes of that

model’s effect must be re-learned (based on all explanations in X).

Each of the failures discussed above will cause useful new examples to be added to

peb(l,X) or ne(l,X) that are not compatible with the current event definition. Therefore,

when new learned models cause poor performance, their performance is likely to subse-

quently improve.

As currently defined, EML cannot acquire exogenous event models with function literals

or function effects, and cannot model inequalities or numeric relationships, which we leave

for future work. Also, EML cannot acquire models of actions.

8.5 Evaluation

We evaluate EML’s ability to learn improved environment models, as determined by reduced

execution cost incurred by DHAgent using the learned models.

8.5.1 Search Configuration

This experiment uses DiscoverHistory as described in Chapter 5. As mentioned earlier,

search attempts to find minimally discontinuous explanations by performing a best-first

138

search based on a cost metric, using DiscoverHistory for expansion. Refinement methods

include AddGround, RemoveOcc, AssumeInitial, IntroduceDiscontinuity, and the new

refinement, AbandonModel. Search terminates when a strictly plausible explanation is

found or the cost bound (50) is reached. An inconsistency with the fewest child explanations

was always chosen for refinement.

8.5.2 Environments

This experiment is designed to show that EML can improve the performance of DHAgent

when starting from a good, but incomplete, environment model. This has implications for

increased robustness in goal-based agents. For this reason, we assume that the agent’s model

is sufficient to create initial plans in each environment, despite incompleteness. Currently,

DHAgent gains examples for learning only through interaction with the environment du-

ring the process of attempting to achieve a goal.

Unfortunately, this hampers DHAgent in certain domains, including those we used in

prior experiments. In the Hazardous Rovers and Hazardous Satellites domains, DHAgent

has only relatively short interactions with the environment when its model is incomplete,

because it is unable to avoid trap states from which a goal is unreachable. Instead, for

this experiment, we use domains in which an agent will never fail to achieve its goal, but

unknown events can reduce the agent’s performance. These unknown events increase the

execution cost of a plan, and an agent with an incomplete model will not plan to avoid them.

However, an improved environment model should allow the agent to generate plans with

reduced execution cost. Our study will therefore show that learning is occurring through

reduced execution cost.

We tested our EML/DiscoverHistory/DHAgent strategy in two new deterministic,

partially observable, single actor domains. While in the future we intend to explore the

efficacy of this strategy in larger multi-agent domains with more unknown dynamics, these

suffice for a test of learning capability. Each domain contains one event that is not part

of the agent’s model, and is based on a world state that is not directly observed. While

139

no explicit learning goals exist, execution cost in each domain is lower when planning with

knowledge of the unknown event.

The first domain, Malfunctioning Satellites, is based on an International Planning Com-

petition (IPC) 2002 (Long and Fox 2003) domain in which a set of satellites have instruments

that can obtain images in many spectra, and goals consist of taking various images. Per-

formance is judged based on the time required to achieve all goals. One time unit is used

to turn a satellite to a new position, and 10 to repair a satellite lens. The unknown event

causes a satellite’s lens to break when taking an image of an excessively bright object. The

fact that the object is too bright for the camera lens is hidden to the agent, but bright

objects cause an observable lens flare during calibration.

The second domain, MudWorld, based on the IPC 2002 Rovers domain, employs a

discrete grid on which a simulated robot moves in the four cardinal directions. All goals

describe a destination to which the robot must move; in generated test problems, all desti-

nations were chosen such that the shortest path from starting point to destination required

at least four steps. The robot observes its location, and its only obstacle is mud. Each lo-

cation can be muddy or not; the robot cannot observe mud directly, but it deterministically

receives a related observation when entering a location adjacent to one that is muddy. If

it enters mud, its movement speed is halved until it leaves. However, its initial model does

not describe this decrease in speed, so it is surprised when its speed decreases.

In both domains, execution cost is based on time taken in the simulated environment to

achieve a goal. Our experiment tests the claim that DHAgent will incur smaller execution

costs over time when using improved environment models learned by EML.

8.5.3 Experiment Description

For each domain, we randomly generated 50 training and 25 test scenarios. In Malfunctio-

ning Satellites, the initial state of each scenario has 3 satellites with 12 instruments rand-

omly apportioned among them. Each scenario includes 5 goals requiring that an image of

a random target be obtained in a random spectrum. MudWorld scenarios consist of a 6x6

140

Table 8.1: Average execution time, learning time, and explanation failures found in test
scenarios after 0-5 learning trials. (Sat = Malfunctioning Satellites Mud =
Mudworld)

Learning
Trials

Execution Time
(Seconds)

Learning Time
(Seconds)

Explanation
Failures

Sat Mud Sat Mud Sat Mud
0 43.9 3.5 N/A N/A 1.80 2.24
1 183.3 3.8 0.16 51.8 0.93 0.78
2 186.5 3.5 0.28 40.5 0.57 0.23
3 171.8 3.5 0.24 2.3 0.41 0.14
4 171.5 3.3 0.18 13.9 0.41 0.03
5 160.1 3.3 0.21 0.7 0.36 0.03

grid with random start and destination locations. Each location may contain mud with

40% probability.

We ran 10 replications per domain, in each of which we used a random set of 5 training

scenarios. Before the first training scenario was run, DHAgent’s initial performance with

the incomplete model was evaluated using each of the 25 test scenarios. Then, after each

training scenario, the final explanation found by DHAgent was kept, and added to a set

X of known explanations. If any transition discontinuities were found in this explanation,

EML was executed to infer a new environment model, which was used in each of 25 test

scenarios to evaluate the performance of DHAgent with the new model.

8.5.4 Results

Figure 8.1 displays the average execution cost incurred in each domain by DHAgent (blue

with triangle markers), an “optimal” version with a complete model (green with circle

markers), and a non-learning baseline (red with square markers). The vertical axes depict

the simulated time required to complete the test scenarios, while the horizontal axes depict

the number of training scenarios provided.

In each domain, DHAgent’s performance increased by more than 90% of the difference

between its original performance and the optimal performance within 5 trials. After training

on only one scenario in each domain, its average performance is significantly higher than

141

0

5

10

15

20

25

0 1 2 3 4 5

Ti
m

e
 T

ak
e

n
 t

o
 C

o
m

p
le

te

Training Scenarios Completed

Complete Learned Incomplete

Malfunctioning Satellites MudWorld

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

0 1 2 3 4 5

Figure 8.1: Average execution cost incurred by DHAgent with a complete model (green
curve with circles), learned model (blue curve with triangles), and incomplete
model (red curve with squares). Lower is better.

when using the initial environment model (p < .05).

Table 8.1 shows average wall clock time spent during execution and learning per dom-

ain, and the number of explanation failures. The number of explanation failures trends

downward, and learning time appears to decrease in MudWorld. However, execution time

initially increases in Malfunctioning Satellites. Review of individual trials indicates that

this is caused by learning initial models that are inefficient to reason with. We conclude

that while explanation and planning clearly improve performance with learning, wall clock

time can suffer and is an interesting subject for future study.

8.5.5 Discussion

We described a new model learning technique, EML, based on minimally discontinuous

explanations found in DiscoverHistory search. We also showed a new version of FOIL,

FOIL-PS, which infers concepts based on bags of positive examples. We investigated im-

provements to execution cost incurred in this environment by DHAgent when using EML,

142

and found that DHAgent’s performance improved rapidly based on EML’s learned envi-

ronment models, given a small amount of example data.

This experiment supports our claim that EML infers successively improved environ-

ment models that reduce the execution cost incurred by DHAgent in dynamic, partially

observable environments. While the MudWorld and Malfunctioning Satellites domains are

not standard, they are based on typical domains used in planning research, and are supple-

mented with sufficient new events as to create the desired learning environment. We expect

these results to generalize to other problems in which (1) sufficient knowledge is available

in an initial incomplete model to construct plans for all goals, (2) all actions and states are

represented by the initial incomplete model, and (3) all conditions of unknown events are

observable or can be inferred through explanation. The speed of learning in such domains

will likely be affected by the length of time between an unknown event and its impact on

the agent’s observations; our existing experiments have not investigated this effect. Furt-

hermore, these experiments are not sufficient to demonstrate that EML will successfully

learn in the presence of multiple unknown events that occur simultaneously.

These conditions are fairly restrictive, and further research is necessary to mitigate

these problems. However, we believe that the initial framework and proof of concept for

this learning method are promising. While complete knowledge is hard to provide, agents

with a sound base model which they can extend safely and autonomously would greatly

increase the robustness of modern agents.

143

Chapter 9: Conclusions

In this final section, we detail the major novel contributions made, the status of our claims,

and future research directions based on limitations of the current work.

9.1 Novel Contributions

In this dissertation, we described a number of novel scientific contributions, including:

1. a novel formulation of the goal achievement problem, and three subproblems: conti-

nuous planning, hypothesis generation, and hypothesis-based model learning,

2. the new algorithm DiscoverHistory, designed to be used in a search to generate

hypotheses,

3. sufficient conditions under which DiscoverHistory search is sound and complete,

4. a new general method for goal achievement, DHAgent, that incorporates Disco-

verHistory search,

5. a new general method for hypothesis-based model learning based on DiscoverHis-

tory explanations,

6. experiments investigating claims of performance improvement based on DHAgent,

DiscoverHistory, and EML

7. a parameteric analysis of computational efficiency of DiscoverHistory based on two

differing implementations

144

9.2 Status of Claims

We presented three claims in Chapter 1, which we investigated in subsequent chapters.

Our first claim stated that belief management using DiscoverHistory search cau-

ses the goal achievement performance of DHAgent in a partially observable, single-agent

context to improve relative to a replanning agent. In chapter 5, we defined IncuriousA-

gent, an agent that performs naive belief management, and compared it experimentally

with DHAgent, showing that in two partially observable, single-agent domains with a high

number of initial states, DHAgent achieved more goals than IncuriousAgent. We also

found that the performance gap increased as the likelihood of default assumptions being

correct decreased, which supports the notion that DHAgent’s improved performance is due

to correct explanations. We expect these results to generalize to other partially observable,

single-agent domains with a large number of possible initial states, so long as unexpected

action outcomes eventually impact the agent’s observations.

We also reported on the inability of multiple modern goal-based agents to process pro-

blems at the complexity level of our test domains successfully.

Our second claim stated that MADH search, a faster version of DiscoverHistory

search for multi-agent environments, is faster than DEG for generating explanations of

exogenous actions in a dynamic, partially observable, multi-agent environment, while main-

taining comparable accuracy. In Chapter 7, we introduced the deductive explanation ge-

nerator (DEG), which performs forward search through the space of explanations. This

system was designed not to run out of memory, as so many systems seem to do when faced

with large relational states. We compared the accuracy and efficiency of explanation genera-

tion between DEG and MADH-based search. Results showed a tradeoff between accuracy

and speed for DEG, but the MADH search proved faster than DEG, while maintaining

equivalent accuracy. We expect to see similar speed improvements and accuracy in other

partially observable multi-agent environments with large numbers of possible exogenous

actions.

Our third claim stated that our novel explanation-based model learning algorithm,

145

EML, infers successively improved environment models that reduce the execution cost in-

curred by DHAgent in accomplishing goals in dynamic, partially observable environments.

In Chapter 8, we described a concept of minimally discontinuous explanations that could be

found by DiscoverHistory search, and a learning algorithm, EML, that infers new event

models based on them. We then investigated a version of DHAgent that uses EML in two

partially observable, dynamic environments. Results showed that execution cost incurred

by DHAgent was greatly reduced in successive trials based on learning event models with

EML, achieving 90% of the maximum possible improvement after only five learning trials.

In general, we expect this learning technique to need only a small number of examples of

a single surprising event to infer an improved model in a single-agent partially observable

environment, provided that the effects of that event are observed quickly. We expect to

see decreased performance related to a delay between the event and the observation of its

(possibly downstream) effects. Furthermore, multiple simultaneous events might slow the

learning process; this needs further investigation. This technique does not yet generalize

to learning models depending on relationships and functions not present in its model, or

exogenous actions. Furthermore, DHAgent will not generate sufficient learning examples

for EML to infer an improved model if the model provided is not complete enough to plan

for received goals. Despite all of these restrictions, initial experiments are promising, and

we expect future work in this area to yield strong results.

9.3 Limitations and Future Work

There are several areas where we see this research continuing in the future. We list some

of them here.

Relaxing Additional Assumptions An original goal of our work on DiscoverHis-

tory and DHAgent was to be able to explain the effects of continuous processes on the

environment based on time-series observations. As yet, the applicability of DiscoverHis-

tory in continuous environments is limited. Noise is also a significant issue; all of our

146

environments are noise-free, and DiscoverHistory is not currently designed to tolerate

noisy observations at all. Finally, DiscoverHistory currently has no means of describing

or reasoning about nondeterministic or probabilistic events. These are important areas for

general extension in the future.

Theoretical Results We have assumed that the order in which inconsistencies are re-

fined does not affect reachability of explanations. While this seems intuitive, it has yet

to be proven, and almost certainly depends on the specific refinement methods in use. A

theoretical result describing what refinement methods allow inconsistencies to be resolved

in any order would help in understanding the guarantees that can be made in explanation.

Furthermore, we have not yet conducted an analysis of the computational complexity

of DHAgent, DiscoverHistory search, or EML. Such an analysis would help the larger

community to understand the properties of the algorithm better.

Experimentation with Search Heuristics In Chapter 7, we introduced a complex

heuristic based on five different metrics that could be explored further. There may be a

large space of possible explanation cost metrics, and different weighted combinations may

be superior in different environments. A large parameter study is needed to understand the

impact of these metrics.

Learning Extensions Learning with EML assumes that an explanation failure is due to

an unknown event(s); as a result, it may incorrectly infer a transition discontinuity when the

true explanation is not found (e.g., due to computational constraints). Conversely, search

may sometimes find an incorrect explanation when ambiguous observations are received,

causing it to ignore an opportunity for learning. Reducing these false positives and false

negatives is a future research topic.

Extending EML to learning general environment model components, including action

models and process models, as well as inferring the presence of latent relationships, is a

long-term goal.

147

Narrative Generation We anticipate that occurrence histories could form the basis of

an agent capability to construct a narrative. Humans often communicate in this fashion,

describing our experiences and justifying our actions in terms of sequences of events that are

temporally and causally related. The capability to do so is called narrative intelligence

by some in the artificial intelligence community (Blair and Meyer 1997; Mateas and Sengers

1999; Mateas and Sengers 2003; Riedl 2004), and narrative dialogue in the psychological

literature, where the formation of the capability in young children has been identified and

studied (Nelson 1993). While an occurrence history does not have all the qualities of

narrative, it does meet the basic requirements of a narrative fabula, described by Riedl

(2004) as the “events of the story world that make up the content of the narrated material”.

To make a true narrative, this must be layered with a sjužet, or “discourse that relates

some of the events in the fabula”, which we do not approach but believe is enabled by

the construction of the fabula. By constructing occurrence histories, we describe the world

in a form that humans naturally use and are comfortable with. Therefore, an agent that

generates these should be better able to communicate with a human than one that does not.

We have not yet studied this, but if successful, this would argue for centrality of explanation

generation in many agent systems.

148

Bibliography

Aberdeen, D. & Buffet, O. (2007). Concurrent probabilistic temporal planning with policy-
gradients. In Proceedings of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS’07). Providence, RI.

Albore, A., Palacios, H., & Geffner, H. (2009). A translation-based approach to contin-
gent planning. In Proceedings of the Twenty-First International Joint Conference on
Artificial Intelligence (pp. 1623–1628).

Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic, 510–530.

Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23,
123–154.

Ambros-Ingerson, J. & Steel, S. (1988). Integrating planning, execution and monitoring. In

Proceedings of the Seventh National Conference on Artificial Intelligence (pp. 83–88).

Amir, E. & Russell, S. (2003). Logical filtering. In Proceedings of the International Joint

Conference on Artificial Intelligence (Vol. 18, pp. 75–82). Lawrence Erlbaum Associ-
ates Ltd.

Åström, K. J. (1965). Optimal control of Markov processes with incomplete state informa-

tion. Journal of Mathematical Analysis and Applications, 10 (1), 174–205.

Ayan, F., Kuter, U., Yaman, F., & Goldman, R. P. (2007). HOTRiDE: hierarchical ordered

task replanning in dynamic environments. In F. Ingrand & K. Rajan (Eds.), ICAPS-07

Workshop on Planning and Plan Execution for Real-World Systems (pp. 31–36).

Baral, C., Kreinovich, V., & Trejo, R. (2000). Computational complexity of planning and

approximate planning in the presence of incompleteness. Artificial Intelligence, 122 (1),
241–267.

Baral, C. & Son, T. C. (1997). Approximate reasoning about actions in presence of sensing
and incomplete information. In Proceedings of the International Logic Programming
Symposium (ILPS 97) (pp. 387–401).

Beetz, M. & McDermott, D. (1994). Improving robot plans during their execution. In Pro-

ceedings of the Second International Conference on AI Planning Systems (pp. 3–12).

149

Bernard, D., Dorais, G., Fry, C., Jr, E., Kanefsky, B., Kurien, J., . . . Williams, B. (1998).
Design of the remote agent experiment for spacecraft autonomy. In Proceedings of the
IEEE Aerospace Conference.

Bertoli, P. & Cimatti, A. (2002). Improving heuristics for planning as search in belief space.

In Artificial Intelligence Planning Systems (pp. 143–152).

Blair, D. & Meyer, T. (1997). Tools for an interactive virtual cinema. Creating Personalities
for Synthetic Actors, 83–91.

Bonet, B. & Geffner, H. (2012). Width and complexity of belief tracking in non-deterministic
conformant and contingent planning. In Proceedings of the Twenty-Sixth AAAI Con-
ference on Artificial Intelligence.

Boutilier, C. (1995). Generalized update: Belief change in dynamic settings. In Proceedings

of the International Joint Conference on Artificial Intelligence (Vol. 14, pp. 1550–

1556). Lawrence Erlbaum Associates Ltd.

Boutilier, C. (1998). A unified model of qualitative belief change: A dynamical systems

perspective. Artificial Intelligence, 98 (1), 281–316.

Boutilier, C. & Becher, V. (1995). Abduction as belief revision. Artificial Intelligence, 77 (1),
43–94.

Bridewell, W., Langley, P., Todorovski, L., & Džeroski, S. (2008). Inductive process mo-

deling. Machine Learning, 71 (1), 1–32.

Bridewell, W. & Langley, P. (2011). A computational account of everyday abductive in-
ference. In Proceedings of the Thirty-Third Annual Meeting of the Cognitive Science
Society (pp. 2289–2294).

Bruner, J. (1991). The narrative construction of reality. Critical Inquiry, 18 (1), 1–21.

Bryce, D., Kambhampati, S., & Smith, D. (2004). Planning in belief space with a labelled
uncertainty graph. In AAAI Workshop on Learning and Planning in Markov Decision
Processes.

Bryce, D., Kambhampati, S., & Smith, D. (2006). Planning graph heuristics for belief space

search. Journal of Artificial Intelligence Research, 26 (1), 35–99.

Chernova, S., Crawford, E., & Veloso, M. (2005). Acquiring observation models through

reverse plan monitoring. In Progress in Artificial Intelligence (pp. 410–421). Springer.

Choi, J., Guzman-Rivera, A., & Amir, E. (2011). Lifted relational kalman filtering. In
Proceedings of the Twenty-Second International Joint Conference on Artificial Intel-
ligence (pp. 2092–2099). AAAI Press.

150

Console, L. & Torasso, P. (1990). Integrating models of the correct behavior into abductive

diagnosis. In Proceedings of the European Conference on Artificial Intelligence (ECAI)

(pp. 160–166).

Cordier, M. & Thiébaux, S. (1994). Event-based diagnosis for evolutive systems. In Procee-

dings of the Fifth International Workshop on Principles of Diagnosis (DX-94) (pp. 64–

69).

Darwiche, A. & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelli-

gence, 89 (1), 1–29.

Davis, R. (1984). Diagnostic reasoning based on structure and behavior. Artificial Intelli-

gence, 24 (1), 347–410.

De Giacomo, G. & Levesque, H. J. (1999). Projection using regression and sensors. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI-99) (Vol. 1, p. 160). Morgan Kaufmann Publishers. Stockholm, Sweden.

De Kleer, J. (1976). Local methods for localizing faults in electronic circuits. Massachusetts
Institute of Technology.

De Kleer, J. & Williams, B. (1987). Diagnosing multiple faults. Artificial Intelligence, 32 (1),
97–130.

DeJong, G. & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine

Learning, 1 (2), 145–176.

Del Val, A. & Shoham, Y. (1994). Deriving properties of belief update from theories of

action. Journal of Logic, Language and Information, 3 (2), 81–119.

desJardins, M. E., Durfee, E. H., Ortiz Jr, C. L., & Wolverton, M. J. (1999). Survey of

research in distributed, continual planning. AI Magazine, 20 (4), 13–22.

Dupin de Saint-Cyr, F. & Lang, J. (2002). Belief extrapolation (or how to reason about

observations and unpredicted change). In International Conference on Principles of

Knowledge Representation and Reasoning (pp. 497–508).

Dupin de Saint-Cyr, F. & Lang, J. (2011). Belief extrapolation (or how to reason about

observations and unpredicted change). Artificial Intelligence, 175 (2), 760–790.

Dvorak, D. & Kuipers, B. (1989). Model-based monitoring of dynamic systems. In Procee-

dings of the Eleventh International Joint Conference on Artificial Intelligence (Vol. 2,

pp. 1238–1243). Morgan Kaufmann Publishers Inc.

Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In

The Sign of Three: Dupin, Holmes, Peirce (pp. 198–220). Indiana University Press.

151

Eiter, T., Erdem, E., Faber, W., & Senko, J. (2007). A logic-based approach to finding
explanations for discrepancies in optimistic plan execution. Fundamenta Informaticae,
79 (1), 25–69.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN Planning: Complexity and Expressivity.
In Proceedings of the National Conference on Artificial Intelligence. Retrieved from
http://www.cs.umd.edu/∼nau/papers/aaai94.ps

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972). Learning and executing generalized robot

plans. Artificial Intelligence, 3 (4), 251–288.

Forbus, K. & Falkenhainer, B. (1990). Self-explanatory simulations: An integration of qua-
litative and quantitative knowledge. In Proceedings of the Eighth National Conference
on Artificial Intelligence (pp. 380–387).

Fox, M. & Long, D. (2006). Modelling mixed discrete-continuous domains for planning.

Journal of Artificial Intelligence Research, 27 (1), 235–297.

Fox, M. & Long, D. (2002). PDDL+: Modelling continuous time-dependent effects. In Pro-
ceedings of the Third International NASA Workshop on Planning and Scheduling for
Space.

Fox, M. & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal

planning domains. J. Artif. Intell. Res.(JAIR), 20, 61–124.

Friedman, N. & Halpern, J. Y. (1994). A knowledge-based framework for belief change.
Part II: revision and update. In Proceedings of the Fourth International Conference
on Principles of Knowledge Representation and Reasoning (KR’94) (pp. 190–201).
Morgan Kaufmann Publishers. San Francisco, CA.

Friedrich, G. & Lackinger, F. (1991). Diagnosing temporal misbehavior. In IJCAI (pp. 1116–

1122).

Gamper, J. (1996). A temporal reasoning and abstraction framework for model-based di-

agnosis systems (Doctoral dissertation, Rheinisch-Westfalsche Technische Hochschule

Aachen).

Genesereth, M. (1984). The use of design descriptions in automated diagnosis. Artificial

Intelligence, 24 (1), 411–436.

Gerevini, A. & Long, D. (2006). Preferences and soft constraints in PDDL3. In ICAPS

Workshop on Planning with Preferences and Soft Constraints (pp. 46–53).

Giacomo, G., Lespérance, Y., Levesque, H. J., & Sardina, S. (2009). IndiGolog: A high-level
programming language for embedded reasoning agents. Multi-Agent Programming:
31–72.

152

http://www.cs.umd.edu/~nau/papers/aaai94.ps

Göbelbecker, M., Gretton, C., & Dearden, R. (2011). A switching planner for combined task
and observation planning. In Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence (AAAI-11).

Golden, K. & Weld, D. (1996). Representing sensing actions: The middle ground revisited.
In Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth
International Conference (KR’96) (pp. 174–185). Morgan Kaufmann Publishers.

Goldman, R., Haigh, K., Musliner, D., & Pelican, M. (2002). MACBETH: a multi-agent
constraint-based planner. In Proceedings of the 21st Digital Avionics Systems Confe-
rence (Vol. 2). IEEE.

Goldman, W. (1973). The Princess Bride. Pan Macmillan. Retrieved from https://books.

google.com/books?id=IIx0PgAACAAJ

Grastien, A., Anbulagan, A., Rintanen, J., & Kelareva, E. (2007). Diagnosis of discrete-event
systems using satisfiability algorithms. In Proceedings of the National Conference on
Artificial Intelligence (Vol. 22, 1, p. 305). Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.

Gspandl, S., Pill, I., Reip, M., Steinbauer, G., & Ferrein, A. (2011). Belief Management for
High-Level Robot Programs. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence.

Hammond, K. J. (1990). Explaining and Repairing Plans That Fail. Artificial Intelligence,
45, 173–228.

Hamscher, W. & Davis, R. (1984). Diagnosing circuits with state: An inherently undercon-
strained problem. In Proceedings of the National Conference on Artificial Intelligence
(Vol. 84, pp. 142–147).

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks. Arti-

ficial Intelligence, 173 (5-6), 503–535.

Hiatt, L. M., Khemlani, S. S., & Trafton, J. G. (2012). An explanatory reasoning framework
for embodied agents. Biologically Inspired Cognitive Architectures, 1, 23–31.

Hoffmann, J. & Brafman, R. (2005). Contingent planning via heuristic forward search with
implicit belief states. In Proceedings of the Fifteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS-05) (pp. 71–80).

Iwan, G. (2001). History-based diagnosis templates in the framework of the situation cal-
culus. KI 2001: Advances in Artificial Intelligence, 244–259.

Josephson, J. & Josephson, S. (1996). Abductive Inference: Computation, Philosophy, Techno-
logy. Cambridge University Press.

153

https://books.google.com/books?id=IIx0PgAACAAJ
https://books.google.com/books?id=IIx0PgAACAAJ

Kabanza, F., Barbeau, M., & St-Denis, R. (1997). Planning control rules for reactive agents.

Artificial Intelligence, 95 (1), 67–113.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101 (1), 99–134.

Kambhampati, S. & A., J. H. (1992). A validation structure based theory of plan modifica-
tion and reuse. Artificial Intelligence, 55, 193–258.

Katsuno, H. & Mendelzon, A. O. (1991). On the difference between updating a knowledge
base and revising it. In Proceedings of the Second International Conference on Prin-
ciples of Knowledge Representation and Reasoning (pp. 387–394).

Klenk, M., Molineaux, M., & Aha, D. W. (2013). Goal-driven autonomy for responding to

unexpected events in strategy simulations. Computational Intelligence, 29 (2), 187–
206.

Knight, R., Rabideau, G., Chien, S., Engelhardt, B., & Sherwood, R. (2001). CASPER:
Space exploration through continuous planning. IEEE Intelligent System, 70–75.

Kraft, D., Baseski, E., Popovic, M., Batog, A. M., Kjær-Nielsen, A., Krüger, N., . . . Steed-
man, M. (2008). Exploration and planning in a three-level cognitive architecture. In

Proceedings of the International Conference on Cognitive Systems (CogSys).

Lang, J. (2007). Belief update revisited. In Proceedings of the Twentieth International Joint

Conference on Artificial Intelligence (pp. 2517–2522).

Leake, D. B. (1991). Goal-based explanation evaluation. Cognitive Science, 15 (4), 509–545.

Leake, D. B. (1995). Toward goal-driven integration of explanation and action. Goal-Driven
Learning, 455.

Levesque, H. J. (1989). A knowledge-level account of abduction. In Proceedings of the Ele-

venth International Joint Conference on Artificial Intelligence (Vol. 2, pp. 1061–1067).
Morgan Kaufmann Publishers.

Levesque, H. J. & Brachman, R. J. (1984). A Fundamental Tradeoff in Knowledge Repre-
sentation and Reasoning. Laboratory for Artificial Intelligence Research, Fairchild,
Schlumberger.

Liberatore, P. (2000). A framework for belief update. Logics in Artificial Intelligence, 361–
375.

Liu, Y. & Levesque, H. J. (2005). Tractable reasoning with incomplete first-order knowledge
in dynamic systems with context-dependent actions. In Proceedings of the Internati-
onal Joint Conference on Artificial Intelligence (Vol. 19, p. 522).

154

Long, D. & Fox, M. (2003). The 3rd international planning competition: Results and ana-

lysis. J. Artif. Intell. Res.(JAIR), 20, 1–59.

Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observed Markov

decision processes. Annals of Operations Research, 28 (1), 47–65.

Mateas, M. & Sengers, P. (1999). Narrative intelligence. In Proceedings of the AAAI Fall

Symposium on Narrative Intelligence (pp. 1–10).

Mateas, M. & Sengers, P. (Eds.). (2003). Narrative Intelligence. Amsterdam: J. Benjamins
Pub.

McCarthy, J. & Hayes, P. J. (1969). Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4, 463–502.

McDermott, D. M. (2000). The 1998 AI planning systems competition. AI Magazine, 21 (2),
35.

McIlraith, S. A. (1998). Explanatory diagnosis: Conjecturing actions to explain observations.
In Proceedings of the International Conference on Principles of Knowledge Represen-
tation and Reasoning (pp. 167–179). Morgan Kaufmann Publishers.

Meadows, B. L., Langley, P., & Emery, M. J. (2013). Seeing beyond shadows: Incremental
abductive reasoning for plan understanding. In AAAI Workshop: Plan, Activity, and
Intent Recognition (Vol. 13, p. 13).

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generali-

zation: A unifying view. Machine Learning, 1 (1), 47–80.

Molineaux, M., Klenk, M., & Aha, D. (2010a). Planning in dynamic environments: Exten-
ding HTNs with nonlinear continuous effects. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence.

Molineaux, M., Klenk, M., & Aha, D. (2010b). Goal-driven autonomy in a Navy strategy
simulation. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial In-
telligence (pp. 1548–1554).

Molineaux, M. & Aha, D. W. (2014). Learning unknown event models. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI Press.

Molineaux, M. & Aha, D. W. (2015). Continuous explanation generation in a multi-agent
domain. In Proceedings of the Third Annual Conference on Advances in Cognitive
Systems (p. 1). Atlanta, Georgia.

Molineaux, M., Kuter, U., & Klenk, M. (2012). DiscoverHistory: Understanding the past
in planning and execution. In Proceedings of the 11th International Conference on

155

Autonomous Agents and Multiagent Systems, Volume 2 (pp. 989–996). International
Foundation for Autonomous Agents and Multiagent Systems.

Morgenstern, L. & Stein, L. A. (1988). Why things go wrong: A formal theory of causal
reasoning. In Proceedings of the Seventh National Conference on Artificial Intelligence
(p. 518). AAAI Press.

Mourao, K., Zettlemoyer, L. S., Petrick, R., & Steedman, M. (2012). Learning strips ope-
rators from noisy and incomplete observations. ArXiv Preprint ArXiv:1210.4889.

Musliner, D. J., Durfee, E. H., & Shin, K. G. (1993). CIRCA: A cooperative intelligent
real-time control architecture. IEEE Transactions on Systems, Man and Cybernetics,
23 (6), 1561–1574.

Musliner, D. J., Pelican, M. J. S., Goldman, R. P., Krebsbach, K. D., & Durfee, E. H.
(2008). The evolution of CIRCA, a theory-based AI architecture with real-time per-
formance guarantees. In Proceedings of the AAAI Spring Symposium on Architectures
for Intelligent Theory-Based Agents.

Myers, K. L. (1996). Advisable planning systems. In A. Tate (Ed.), Advanced Planning
Technology. AAAI Press.

Myers, K. L. (1999). A continuous planning and execution framework. AI Magazine, 20 (4),
63.

Nelson, K. (1993). Events, narratives, memory: What develops. Memory and Affect in De-
velopment, 26, 1–24.

Nguyen, T.-H. D. & Leong, T.-Y. (2009). A surprise triggered adaptive and reactive (STAR)
framework for online adaptation in non-stationary environments. In AIIDE.

Palacios, H. & Geffner, H. (2009). Compiling uncertainty away in conformant planning

problems with bounded width. Journal of Artificial Intelligence Research, 35 (1).

Pang, W. & Coghill, G. M. (2010). Learning qualitative differential equation models: a

survey of algorithms and applications. The Knowledge Engineering Review, 25 (01),
69–107.

Pasula, H. M., Zettlemoyer, L. S., & Kaelbling, L. P. (2007). Learning symbolic models of
stochastic domains. Journal of Artificial Intelligence Research, 309–352.

Patkos, T. & Plexousakis, D. (2009). Reasoning with knowledge, action and time in dyna-
mic and uncertain domains. In Proceedings of the International Joint Conference on
Artificial Intelligence (Vol. 9, pp. 885–890).

Pednault, E. P. (1987). Toward a mathematical theory of plan synthesis (Doctoral disserta-

tion, Stanford University, Stanford, CA, USA).

156

Pednault, E. P. (1988). Extending conventional planning techniques to handle actions with
context-dependent effects. In Proceedings of the National Conference on Artificial
Intelligence.

Pednault, E. P. (1989). ADL: Exploring the middle ground between STRIPS and the situ-
ation calculus. In Proceedings of the First International Conference on Principles of
Knowledge Representation and Reasoning (pp. 324–332). Morgan Kaufmann Publis-
hers.

Petrick, R. & Bacchus, F. (2002). A knowledge-based approach to planning with incomplete
information and sensing. In Proceedings of the International Conference on Artificial
Intelligence Planning Systems.

Pinto, J. A. (1994). Temporal reasoning in the situation calculus (Doctoral dissertation,

University of Toronto).

Pinto, J. A. (1997). Integrating discrete and continuous change in a logical framework.

Computational Intelligence, 14 (1), 2–13.

Pople, H. (1973). On the mechanization of abductive logic. In Proceedings of the Third

International Joint Conference on Artificial Intelligence (pp. 147–152).

Powell, J., Molineaux, M., & Aha, D. (2011). Active and interactive learning of goal se-
lection knowledge. In Proceedings of the Twenty-Fourth Florida Artificial Intelligence
Research Society Conference.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5 (3),
239–266.

Ram, A. (1993). Indexing, elaboration and refinement: Incremental learning of explanatory

cases. In Case-Based Learning (pp. 7–54). Springer.

Ranasinghe, N. & Shen, W. (2008). Surprise-based learning for developmental robotics.
In Learning and Adaptive Behaviors for Robotic Systems, 2008. LAB-RS’08. ECSIS
Symposium on (pp. 65–70). IEEE.

Reggia, J. (1978). A production rule system for neurological localization. In Proceedings of

the Annual Symposium on Computer Application in Medical Care (p. 254). American
Medical Informatics Association.

Reggia, J., Nau, D., & Wang, P. (1983). Diagnostic expert systems based on a set covering

model. International Journal of Man-Machine Studies, 19 (5), 437–460.

Reiter, R. (1987a). A theory of diagnosis from first principles. Artificial Intelligence, 32 (1),
57–95.

Reiter, R. (1987b). On closed world data bases. In Readings in Nonmonotonic Reasoning

(pp. 300–310). Morgan Kaufmann Publishers.

157

Reiter, R. (1996). Natural actions, concurrency and continuous time in the situation cal-
culus. In Proceedings of the International Conference on Principles of Knowledge Re-
presentation and Reasoning (pp. 2–13). Morgan Kaufmann Publishers.

Riedl, M. O. (2004). Narrative Planning: Balancing Plot and Character (Doctoral disserta-

tion, North Carolina State University).

Robust. (N.d.). https://www.merriam-webster.com/dictionary/robust. Retrieved March 26,
2017.

Rose, D. & Langley, P. (1986). Chemical discovery as belief revision. Machine Learning,

1 (4), 423–452. doi:10.1023/A:1022870800276

Russell, S. & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd). Upper
Saddle River, NJ, USA: Prentice Hall Press.

Sanner, S. & Boutilier, C. (2009). Practical solution techniques for first-order MDPs. Arti-

ficial Intelligence, 173 (5-6), 748–788.

Schoppers, M. (1987). Universal plans for reactive robots in unpredictable environments. In

Proceedings of the International Joint Conference on Artificial Intelligence (pp. 1039–

1046).

Schum, D. A. (2001). Species of abductive reasoning in fact investigation in law. Cardozo
Law Review, 1645–1682.

Shahaf, D. (2007). Logical filtering and learning in partially observable worlds (Master’s

thesis, University of Illinois at Urbana-Champaign).

Shanahan, M. (1993). Explanation in the situation calculus. In Proceedings of the Internatio-

nal Joint Conference on Artificial Intelligence (Vol. 13). Lawence Erlbaum Associates.

Shanahan, M. (1996). Robotics and the common sense informatic situation. In Proceedings

of the European Conference on Artificial Intelligence (pp. 684–688). Pitman.

Shanahan, M. (2000). Reinventing shakey. In Logic-Based Artificial Intelligence (pp. 233–

253). Springer.

Shanahan, M. & Witkowski, M. (2000). High-level robot control through logic. In Inter-

national Workshop on Agent Theories, Architectures, and Languages (pp. 104–121).
Springer.

Shani, G. & Brafman, R. (2011). Replanning in domains with partial information and
sensing actions. In Twenty-Second International Joint Conference on Artificial Intel-
ligence.

158

https://dx.doi.org/10.1023/A:1022870800276

Simmons, R. & Davis, R. (1987). Generate, test and debug: Combining associational ru-
les and causal models. In Proceedings of the 10th International Joint Conference on
Artificial Intelligence (pp. 1071–1078). Milan, Italy.

Sohrabi, S., Baier, J., & McIlraith, S. (2010). Diagnosis as planning revisited. In Proceedings
of the International Conference on the Principles of Knowledge Representation and
Reasoning (pp. 26–36).

Son, T. C. & Baral, C. (2001). Formalizing sensing actions: a transition function based

approach. Artificial Intelligence, 125 (1), 19–91.

Sooriamurthi, R. & Leake, D. B. (1995). An architecture for goal-driven explanation. In

Proceedings of the Eighth Florida Artificial Intelligence Research Symposium (pp. 218–

222). Eckerd College.

Sutton, R. & Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press.

Talamadupula, K., Benton, J., Kambhampati, S., Schermerhorn, P., & Scheutz, M. (2010).
Planning for human-robot teaming in open worlds. ACM Transactions on Intelligent
Systems and Technology (TIST), 1 (2), 14.

Thagard, P. R. (1993). Computational Philosophy of Science. MIT Press.

Thielscher, M. (1997). A theory of dynamic diagnosis. Linkoping Electronic Articles in

Computer and Information Science, 2 (11).

Vassos, S. & Levesque, H. (2007). Progression of situation calculus action theories with
incomplete information. In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (Vol. 7).

Verfaillie, G. & Schiex, T. (1994). Solution reuse in dynamic constraint satisfaction pro-

blems. In Proceedings of the National Conference on Artificial Intelligence (pp. 307–

312).

Wang, X. & Chien, S. (1997). Replanning using hierarchical task network and operator-
based planning. Recent Advances in AI Planning, 427–439.

Warfield, I., Hogg, C., Lee-Urban, S., & Munoz-Avila, H. (2007). Adaptation of hierarchical
task network plans. In Proceedings of the Twentieth International FLAIRS Conference
(FLAIRS-07).

Weber, B. G., Mateas, M., & Jhala, A. (2012). Learning from demonstration for goal-driven
autonomy. In Proceedings of the National Conference on Artificial Intelligence.

Webster, G. (2005). NASA’s rovers continue martian missions. Retrieved from http : / /

marsrover.nasa.gov/newsroom/pressreleases/20050524a.html

159

http://marsrover.nasa.gov/newsroom/pressreleases/20050524a.html
http://marsrover.nasa.gov/newsroom/pressreleases/20050524a.html

Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). Extending graphplan to handle
uncertainty & sensing actions. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (pp. 897–904). AAAI Press.

Wilkins, D. E. (1988). Practical Planning: Extending the Classical AI Planning Paradigm.
San Mateo, CA: Morgan Kaufmann.

Wilson, M., Molineaux, M., & Aha, D. W. (2013). Domain-independent heuristics for goal
formulation. In Twenty-Sixth International Florida Artificial Intelligence Research So-
ciety Conference. AAAI Press.

Wyatt, J. L., Aydemir, A., Brenner, M., Hanheide, M., Hawes, N., Jensfelt, P., . . . Prono-
bis, A. (2010). Self-understanding and self-extension: A systems and representational

approach. IEEE Transactions on Autonomous Mental Development, 2 (4), 282–303.

Yoon, S., Fern, A., Givan, R., & Kambhampati, S. (2008). Probabilistic planning via deter-
minization in hindsight. In Proceedings of the Twenty-Third National Conference on
Artificial Intelligence (Vol. 2).

Yoon, S., Fern, A., & Givan, R. (2007). FF-Replan: A baseline for probabilistic planning. In
Proceedings of the International Conference on Automated Planning and Scheduling
(pp. 352–359).

Zhuo, H. H., Hu, D. H., Hogg, C., Yang, Q., & Munoz-Avila, H. (2009). Learning HTN met-

hod preconditions and action models from partial observations. In IJCAI (pp. 1804–

1810).

Zhuo, H. H., Yang, Q., Hu, D. H., & Li, L. (2010). Learning complex action models with

quantifiers and logical implications. Artificial Intelligence, 174 (18), 1540–1569.

160

Biography

Matthew Molineaux received a Bachelor of Science from Eckerd College in St. Petersburg,
Florida in 2001. He received a Master of Science in Computer Science from Depaul Uni-
versity in Chicago, Illinois in 2008. From 2003 to 2007, he worked for ITT as a research
scientist, supporting the Naval Research Laboratory AI Center in Washington, DC. From
2007 to today, he has worked as a Senior Computer Scientist at Knexus Research Corpo-
ration. In this position, he has served as Team Lead and Principal Investigator on various
internal projects, and also supported the Naval Research Laboratory AI Center.

Selected Papers:

Molineaux, M. and Aha, D. W. (2015). Continuous explanation generation in a multi-
agent domain. In Proceedings of the Third Annual Conference on Advances in Cognitive
Systems (p. 1). Atlanta, Georgia.

Molineaux, M. and Aha, D. W. (2014). Learning unknown event models. Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI Press.

Klenk, M., Molineaux, M., and Aha, D. W. (2013). Goal-driven autonomy for responding to
unexpected events in strategy simulations. Computational Intelligence, 29 (2), 187–206.

Wilson, M., Molineaux, M., and Aha, D. W. (2013). Domain-independent heuristics for goal
formulation. Twenty-Sixth International Florida Artificial Intelligence Research Society
Conference. AAAI Press.

Molineaux, M., Kuter, U., and Klenk, M. (2012). DiscoverHistory: Understanding the
past in planning and execution. Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, Volume 2 (pp. 989–996). International
Foundation for Autonomous Agents and Multiagent Systems.

Powell, J., Molineaux, M., and Aha, D. (2011). Active and interactive learning of goal
selection knowledge. Proceedings of the Twenty-Fourth Florida Artificial Intelligence
Research Society Conference.

Molineaux, M., Klenk, M., and Aha, D. (2010b). Goal-driven autonomy in a Navy strategy
simulation. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence (pp. 1548–1554).

Molineaux, M., Klenk, M., and Aha, D. (2010a). Planning in dynamic environments:
Extending HTNs with nonlinear continuous effects. Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence.

161

	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	 Introduction
	Motivation Behind Explanation Generation Approach
	Partial Observability
	Occurrence Histories

	Problem Statement
	Contributions
	Organization of the Dissertation

	 Related Work
	Abductive Inference and Explanation
	Representations for Change
	Belief Change
	Model-based Diagnosis
	Planning
	Contingent Planning
	Real-Time Control and Execution
	Continual Planning

	Learning Environment Models

	 Problem Representation
	Environment Model
	States
	Actions
	Events
	Observations and the Observation Function

	Modeled Transition Function
	Goals
	Transition Discontinuities
	Relationship to other Representations
	Relationship to First-Order Logic
	Relationship to PDDL
	Relationship to PDDL+

	 DiscoverHistory
	Design Decisions
	Motivation
	Psychology
	Robustness

	Definitions
	Predicting States Using an Explanation
	Plausible Explanations
	Hypotheses

	Generating Abductive Explanations
	Checking Invariants
	Refinement Operators
	The FindExtraEvents Subroutine

	DiscoverHistory Search Properties
	Soundness of DiscoverHistory Search
	Completeness of DiscoverHistory Search

	DHAgent

	 Explanation-Based Belief Management
	Claim
	Related Work
	Comparison with Other Agent Approaches
	Experimental Design
	Problem Generation
	Search Configuration
	Setup

	Results
	Discussion

	 Analysis of Efficiency Issues in Explanation
	Differences Between Implementations
	Experimental Evaluation
	Discussion

	 Explanation in a Multi-Agent Domain
	Motivation
	Claims
	Definitions
	MADH
	Event Projection
	Inconsistency Selection
	Refinement Methods
	Search Configuration
	Autonomous Squad Member Domain
	Extended Example

	Experiment
	Design of the Deductive Explanation Generator
	Experiment Description

	Results
	Discussion

	 Learning Unknown Event Models
	Motivation
	Claims
	Modeling Surprise
	Recognizing Unknown Events
	Generalizing Event Preconditions
	Modifying the Environment Model

	Evaluation
	Search Configuration
	Environments
	Experiment Description
	Results
	Discussion

	 Conclusions
	Novel Contributions
	Status of Claims
	Limitations and Future Work

	Bibliography

