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Abstract

BAYESIAN DOSE-FINDING PROCEDURE BASED ON INFORMATION CRITERION
AND EFFICACY-TOXICITY TRADE-OFFS

Lei Gao, PhD

George Mason University, 2014

Dissertation Director: Dr. William F. Rosenberger

In dose-finding studies with toxicity-efficacy responses, utility functions and Bayesian

procedures are used to find a single optimal dose with ethical toxicity-efficacy trade-offs.

We demonstrate that the design can have convergence issues when the prior information

is misspecified. We propose to incorporate an information penalty to obtain multiple-dose

allocation with efficient ethical measures. A coefficient is introduced to control the trade-off

between information gain and ethical gain. We conduct simulations using Markov chain

Monte Carlo (MCMC) algorithms to examine the convergence of Bayesian dose finding

designs and investigate their operating characteristics. Different stopping rules are consid-

ered and their benefits are demonstrated by simulation. Guidance on how to select design

parameters are given in two hypothetical trial redesigns.



Chapter 1: Background and Literature Review

1.1 Introduction

A clinical trial is a carefully designed and controlled experiment to test the safety and

efficacy of a drug. Phase I and II trials are generally small, and conducted on multiple

doses. The goal is typically to identify a safe (phase I) and effective (phase II) dose that

can be passed to a large-scale phase III randomized trial. A drug can be marketed only if

it passes all the phases. According to Chuang-Stein and D’Agostino (2007), about 50% of

drugs fail in phase III due to insignificant efficacy or underestimated toxicity, which causes

ethical and economic losses. Therefore, to increase the chance to find effective drugs and

reduce the risks, there is increasing demand for innovative and reliable designs in early

phase trials. In this proposal we examine optimal designs for combined efficacy-toxicity

outcomes.

The goal of dose finding studies in phase I trials, particularly in oncology, is to find

the maximum tolerate dose (MTD) for further confirmatory studies. Researchers have

recognized that the key in these studies is to understand the dose-response relationship

(Gaydos et al., 2006). O’Quigley and Zohar (2006) surveyed several recent dose-finding

studies and called for model-based dose-finding procedures. The information we learn from

an experiment depends on the way patients are assigned to different doses: we wish to obtain

maximum information about the dose-response relationship. Therefore, adaptive sequential

designs are used in practice, in which the information learned from previous assignments

is used to determine later assignments. Bayesian methods have become popular because

they incorporate prior information and update it using data. This can lead to more efficient

learning about the dose-response relationship.

In addition to maximizing the information gain, there are ethical considerations which

1



require that patients not be assigned to highly toxic doses. These may contradict the

information goal, because in designs that have maximum information as their primary

objective, a portion of participants would necessarily be exposed to high doses with high

probability of unacceptable toxicity. Despite the arguable statement that it is the price to

be paid for accruing accurate knowledge about a drug from which a large population can

benefit later, it is unethical to assign participants to potentially toxic doses without even

knowing the risk of toxicity.

The global theme of this dissertation research is to determine appropriate and robust

procedures for dose-response studies from both the information and ethical perspectives.

Specifically, we examine the convergence issue of best intention Bayesian methods through

simulation. We propose an information-based Bayesian procedure. The new method is used

to produce efficient and accurate parameter estimates. Various measures are introduced to

evaluate the new method’s operating characteristics. The rest of the dissertation is orga-

nized as follows. In Chapter 1, we review optimal design theory, the bivariate Gumbel

model and commonly used dose-finding procedures. In Chapter 2, we introduce Bayesian

dose-finding procedures based on the information criterion and examine its convergence

property. In Chapter 3, we discuss an ill-behaved example with best intention Bayesian

designs and propose information-based design as a robust alternative when there is prior

misspecification. In Chapter 4, we discuss different stopping rules and demonstrate their

advantages in simulation. In Chapter 5, we provide guidance on how to select design param-

eters by redesigning two hypothetical trials. We conclude the dissertation with discussion

in Chapter 6.

1.2 Optimal designs for the dose-response relationship

Gaydos et al. (2006) argue that “insufficient exploration of the dose-response relationship

is a shortcoming of clinical drug development, and failure to characterize dosing early is

often cited as a key contributor to the high late-stage attrition rate currently faced by

the industry”. They mention that efficient learning of the dose-response relationship can

2



increase the chance to detect a successful drug and dose, reduce the late-stage attrition rate,

and reduce the clinical development timeline. In this chapter we define the dose-response

relationship and the information gain in the dose-finding context.

1.2.1 Dose-response relationship

We assume that patients from a population respond to a drug according to a identical

distribution. Then the dose-response relationship is commonly defined as the relationship

between doses and the probability of outcomes. Mathematically, it is a map from the

dose space, a subset of R, to [0, 1]r when there are r outcomes. One can use parametric,

semiparametric or nonparametric (Manukyan, 2009) models to represent the dose-response

relationship. This dissertation will focus on parametric modeling.

The models and design methods depend on the type of toxicity measure. If one wants to

determine the MTD, patients enrolled in the study are tested for toxicity. Depending on the

measures, the repones can be binary– toxic or not (Atkinson et al. 2007), ordered–mildly

toxic to severely toxic (Perevozskaya et al. 2003), or counts (Fedorov et al, 2007). Toxicity

can also be time-to-event if the response is not immediate (Yuan and Yin, 2009).

For a binary toxicity response, we assume a Bernoulli distributed random variable,

where Y = 1 denotes toxicity and Y = 0 otherwise. Then the dose-response relationship

is a function that maps the dose x to the toxicity probability P (Y = 1) at that dose. The

function is often assumed to be non-decreasing. A commonly assumed model for the binary

response is the location-scale family:

P (Y = 1;x) = F

(

x− α

β

)

, (1.1)

where F is a distribution function. Typically, F is the logistic function. Sometimes the

toxicity probability does not approach one, then one can use a modified logistic regression

model with upper and lower limiting probabilities (Manukyan and Rosenberger, 2010).

3



1.2.2 Information in designs

We define a design to be a discrete measure on a transformed dose space X = R,

ξ =







x1 x2 · · · xn−1 xn

w1 w2 · · · wn−1 wn






, (1.2)

where xi’s are doses and wi’s are corresponding weights with sum one. The single point

design at x is denoted δx. In practice, the doses are usually preselected and task remains

to determine the proportion of patients assigned to each dose.

In optimal designs, we gauge the information about dose-response using efficiency of

estimation for a specific model. The more accurate the estimation, the more information we

learn about the dose-response relationship. The accuracy can be measured as a confidence

ellipsoid dominated by the Fisher information matrix of the design ξ (1.2):

M(ξ; θ) =
n
∑

k=1

wkI(xk; θ) with Iij(x; θ) = −E

{

∂2 log f(x, θ)

∂θi∂θj

}

. (1.3)

Some investigators have suggested that the Fisher information matrix may not be good

enough to characterize the variance structure with limited sample size. In this case, re-

searchers have suggested investigating higher order terms in the Taylor expansion of the

log-likelihood function (Dette and Grigoriev, 2000).

1.2.3 Design criterion and attainability

From now on we restrict ourselves to the Fisher information matrix as measure of informa-

tion about the dose-response relationship. Then we determine a design, which minimizes

the asymptotic variance ellipsoid, to gain maximum information. We have multiple objec-

tives to minimize: the volume, the mean axis length, the maximum axis length, or the span

along a specified direction. These lead us to the D, A, E and c optimality criteria (Atkinson

4



et al. 2007). We denote the optimal criterion function by Φ(ξ) for the design ξ (1.2) and

summarize the criteria in Table 1.1. We will mainly use D-optimality in the dissertation

research. However, we note that, by minimizing the volume of the asymptotic ellipsoid, the

D-optimality criterion may result in a ellipsoid with disproportionate axes, which may not

give accurate estimation for some parameter components.

Following Whittle (1973), we define the directional derivatives of Φ(M(ξ)) along design

η at ξ as

φ(ξ, η; θ) = lim
α→0

1

α
{Φ(ξ)− Φ(M([1− α]ξ + αη)}. (1.4)

Whittle (1973) show that the directional derivative can be obtained by the following formula:

φ(ξ, η; θ) = −Tr





(

∂Φ

∂M

)T
∣

∣

∣

∣

∣

ξ

M(η)



+ Tr





(

∂Φ

∂M

)T
∣

∣

∣

∣

∣

ξ

M(ξ)



 .

We denote φ(ξ, δx; θ) by φ(ξ, x; θ). Table 1.2 include the directional derivatives for the D,

A, E and c optimal designs.

The relation of the optimum design and its derivatives are given by the generalized

equivalence theorem (Manukyan and Rosenberger, 2010),

1. ξ∗ is an Φ-optimal design, i.e., ξ∗ minimizes Φ;

2. ξ∗ = argminξ maxx φ(ξ, x) ≤ 0;

3. φ(ξ∗, x) ≤ 0. The equality is attained at the design points.

The third item can be used to verify if the optimum is attained.

1.2.4 Example: D-optimal design for the two-parameter logistic model

As an example, we investigate the optimal design for a two parameter logistic model, also

known as the location-scale family model. The MTD can be considered as a quantile
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corresponding to a target proportion of toxicity Γ. If µ is the quantile corresponding to Γ,

it is computed by the equation F ((µ− α)/β) = Γ. Thus µ = α + βF−1(Γ). The reason of

using this canonical form is that

Var(µ̂) = Var(α̂) + Var(β̂)[F−1(Γ)]2 + 2F−1(Γ)Cov(α̂, β̂) (1.5)

has a closed form.

Now we define pi = P (toxicity|x) as pi = F ((z − α)/β) for z ∈ X some dose space in R

and F is a distribution function. For F (x) = ex/(1+ ex), the Fisher information matrix for

a single dose z is

M(δz) =
1

β

[f(z)]2

F (z)[1− F (z)]







1 z

z z2






.

Suppose the optimal design with n support points is given by (1.2) with the correspond-

ing Fisher information matrix given by (1.3). The D-optimal design, ξ∗, minimizes the

volume of the asymptotic variance ellipsoid, which is inversely proportional to the determi-

nant of the Fisher information matrix over Ξ, the space of all discrete measures :

ξ∗ = argmin
ξ∈Ξ

Φ(ξ) = argmin
ξ∈Ξ

log det[M−1(ξ)].

It is well known that local D-optimal designs are supported on two points at the 17.6th and

82.4th percentiles (Atkinson et al. 2007). For α = 0 and β = 1 the optimal points are

ξ∗ =







z1 = −1.5434 z2 = 1.5434

0.5 0.5






,

with F (z1) = 0.1760 and F (z2) = 0.8240.

The c-optimality criterion minimizes [1, F−1(Γ)]M−[1, F−1(Γ)]T , which approximates
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(1.5). Here M− is the generalized inverse of M when M is singular. Wu (1988) shows

that when z = [F−1(Γ) − α]/β and z ≤ z ≤ z̄, the c-optimal design puts weight on

one point z. Otherwise, the design has two support points. To prove the result, Wu

(1988) extends a geometric method, which is proposed by Elfving (1952) to solve the c-

optimal problems for linear models. In particular, Wu (1988) uses the geometric method

to determine the critical points (z, z̄) for a one point design to transition to a two point

design. In the geometric method, they use a transform g and investigate the problem in

the new coordinates (V (z), zV (z)) with V (z) = exp(0.5z)/(1 + exp(z)). Wu (1988) shows

that (z, z̄) is the solution to the system of equations

r(z) = s(z̄, z);

r(z̄) = s(z, z̄),

where s(z1, z2) = [V (z1)z1 + V (z2)z2]/[V (z1) + V (z2)] is the slope of the line that connects

(V (z1), z1V (z1)) to (V (z2), z2V (z2)), and r = z + V (z)/V (1)(z) is the tangent of the curve

(V (z), zV (z)) at z. For example, if α = 0 and β = 1, c = (1, z)T . The resulting solution is

given as follows:

1. When z ≤ z ≤ z̄, the optimal design puts weight 1 on z.

2. Otherwise, the optimal design is







z z̄

1− w w







with

w =
V (z)(z − z)

V (z)(z − z) + V (z̄)(z̄ − z)
.

7



When z = 2.8, w = 0.928. The c-optimal design is







−2.399 2.399

0.072 0.928






.

1.3 Bayesian sequential designs

As we note in Section 1.2.2, the local D-optimal design requires knowledge of the true

parameter. In practice, we do not have such information. Therefore, we need to estimate the

true parameter while conducting the experiment. This leads to the concept of a sequential

design, in which patients are assigned sequentially according to an allocation rule. The

information about the dose-response parameter is updated after every assignment, and the

new information is used to evaluate the allocation rule for the next patient.

There are two approaches to sequential designs. In one approach, we estimate the

parameter by the maximum likelihood estimator. In another approach, we estimate the

parameter by a Bayesian estimator. In this research, we focus on the Bayesian sequential

approach.

1.3.1 Bayesian D-optimal design

For the location-scale family (1.1), Chaloner and Larntz (1989) assume uniform distribu-

tions as the prior distributions for the parameters. They define the Bayesian Φ-optimality

criterion:

Ψ(ξ) = Eθ|πΦ(ξ, θ) =

∫

Φ(ξ, θ) · π(θ|D, η)dθ, (1.6)

where D is the data, Θ(η) is the prior distribution for θ, and π(θ|D,Θ) is the posterior

distribution given data D. We use “Eθ|π” to denote the conditional expectation under

the posterior distribution π(θ|D, η) throughout the paper. This criterion is related to the
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Shannon information (Atkinson et al., 2007).

Chaloner and Larntz (1989) define the corresponding directional derivative to be

D(x, ξ) = Eθ|πφ(ξ, x; θ),

where φ(ξ, x; θ) is the local directional derivative at θ (1.4). Then the Bayesian generalized

equivalence theorem for D-optimality is the equivalence of following three conditions:

1. ξ∗ = argminξ Ψ;

2. ξ∗ = argminξ maxxD(x, ξ);

3. D(x, ξ∗) ≤ 0, ∀x. The equality is attained at the design points.

The last condition in the generalized equivalence theorem is used to determine if a design

attains the optimum.

1.3.2 Bayesian D-optimal sequential design

The Bayesian D-optimal design is constructed iteratively to maximize the Bayesian D-

optimal criterion (1.6). At the n + 1th step, the new patient is assign to a dose xn+1 as

follows (Haines, Perevozskaya, Rosenberger 2003):

xn+1 = argmin
x

Eθ|πn
Φ

(∑n
i=1 I(xi; θ) + I(x; θ)

n+ 1

)

, (1.7)

where πn is the posterior distribution given the data in the first n steps.

Roy, Ghosal and Rosenberger (2009) prove that the procedure in (1.7) converges when-

ever the dose space is restricted by an upper bound or not.

1.3.3 Best intention design

Fedorov et al. (2011) use the term “best intention design” to describe sequential designs

that assign patients to the current best dose according to some measure. They contrast the
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best intention designs to sequential optimal designs in the non-Bayesian context. In this

dissertation, we say a design is a best intention design if it sequentially estimates the toxicity

and/or efficacy probabilities and assigns patients to the dose at which a utility function of

toxicity and efficacy probabilities is maximized or minimized. When the true parameter is

known, the best intention designs assign patients to a unique dose, called a targeted dose,

at which the utility function is maximized or minimized. In contrast, the local D-optimal

design assigns patients to a combination of doses (Roy, Ghosal, Rosenberger, 2009).

The common choices for the utility function can involve the efficacy probability, the

toxicity probability and the distance to the Γth toxicity quantile. For example, Fedorov

et al. (2011) consider the following adaptive Robbins-Monro (ARM) design for finding the

dose with 50% toxicity probability:

xn+1 = argmin
x∈X

∣

∣

∣F (θ̂1n + θ̂2nx)− 0.5
∣

∣

∣ ,

where θ̂1n and θ̂1n are the estimated parameters based on the data at step n. Although one

expects the best intention design to converge to the targeted dose, Fedorov et al. (2011)

show that these designs do not always converge.

1.4 Seamless phase I/II designs

Several issues arise when conducting separate phase I and II trials. First, although re-

searchers carry out phase I studies to protect participants, it may not be efficient due to

limited knowledge of the drug. Second, only limited information from phase I studies is

carried to phase II studies. Third, it ignores the correlation between toxicity and efficacy

probabilities.

Several researchers have made attempts to combine the two studies (Thall and Russell,

1998; Thall and Cook, 2004; Dragalin and Fedorov, 2006; Wang, 2007; Zohar, et al., 2009).

They use bivariate parametric models to represent the dose-response relationship with the
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two responses being probability of efficacy and probability of toxicity. The goals in these

designs are to efficiently estimate the parameters and protect participants by controlling

the toxicity probability. A trial using the Gumbel model with 52 patients can be found in

de Lima et al (2008).

1.4.1 Bivariate D-optimal design

In the attempt to combine phase I and phase II trials, researchers are interested in modeling

the toxicity and efficacy probabilities together. The Gumbel model and bivariate probit

model are bivariate extensions of the logit and probit models.

In a Gumbel model, we have a pair of binary responses (Y, Z), where Y = 1 indicates

efficacy and Z = 1 indicates toxicity. They equal zero otherwise. Let α be a parameter to

characterize the correlation between toxicity and efficacy. We define the function (Dragalin

and Fedorov 2006):

G(y, z) = F (y) · F (z) · {1 + α[1− F (y)][1− F (z)]}, −∞ < y, z < +∞, |α| < 1,

and F (y) is the logistic function F (y) = 1/(1 + e−y).

The efficacy effects can be linear, xE = µE + βE1x (Dragalin and Fedorov, 2006), or

quadratic, xE = µE + βE1x+ βE2x
2 (Thall and Cook, 2004). The toxicity effect is usually

monotone increasing and therefore is assumed to be linear, xT = µT + βTx. Then the cell

probabilities, pyz = Pr(Y = y, Z = z), form a multinomial distribution, given by

p11 = Pr(Y = 1, Z = 1|D = x; θ) = G(xE , xT ),

p10 = Pr(Y = 1, Z = 0|D = x; θ) = G(xE ,+∞)−G(xE , xT ) = F (xE)−G(xE , xT ),

p01 = Pr(Y = 0, Z = 1|D = x; θ) = G(+∞, xT )−G(xE , xT ) = F (xT )−G(xE , xT ),

p00 = Pr(Y = 0, Z = 0|D = x; θ) = 1−G(xE ,+∞)−G(+∞, xT ) +G(xE , xT ).

The Fisher information matrix I(x; θ) is calculated by Dragalin and Fedorov (2006). The
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Fisher information matrix for the design ξ in (1.2) is

M(ξ; θ) =
∑

i

wiI(xi; θ).

In a bivariate probit model (Dragalin, Fedorov, Wu, 2008; Wang, 2007), we need to

model the efficacy and toxicity probabilities. Let V = (VE , VT ) follow a bivariate normal

distribution with variance covariance matrix,

Σ =







1 ρ

ρ 1






,

where ρ is a parameter to characterize the correlation between toxicity and efficacy. We

assume linear effects for both toxicity and efficacy:











xE = µE + βEx;

xT = µT + βTx.

We denote θ = (µE , βE , µT , βT , ρ). We define the function (Dragalin, Fedorov, Wu, 2008),

p11(x) =

∫ xE

−∞

∫ xT

−∞

1

2π|Σ|1/2
exp

{

−
1

2
V Σ−1V T

}

dVTdVE .

If we denote the cumulative distribution function of the standard normal distribution by

F , then the toxicity and efficacy probabilities at dose level x are

pE = F (xE), p10 = F (xE)− p11, p00 = 1− p11 − p10 − p01,

pT = F (xT ), p01 = F (xT )− p11.

All the cell probability pij ’s follow a multinomial distribution.
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1.4.2 Local D-optimal design

Recall that the local D-optimal design minimizes the following

Φ(ξ, θ) = log det
{

M−1(ξ; θ)
}

, (1.8)

over a design space Ξ. Note that once pyz(x; θ) are known, one can derive the D-optimal

design by the following steps:

First, the log-likelihood function of a single observation (Y, Z) at dose x with p param-

eters θ1, . . . , θp is given by

l(y, z, x; θ) = yz log p11 + y(1− z) log p10 + (1− y)z log p01 + (1− y)(1− z) log p00,

with p00 = 1− p11 − p10 − p01.

Second, the Fisher information matrix of a dose point x is

I(x; θ) = E

[

∂l

∂θ

∂l

∂θT

]

,

where

∂l

∂θ
=













∂l
∂θ1
...

∂l
∂θp













=













∂p11
∂θ1

∂p10
∂θ1

∂p01
∂θ1

...
. . .

...

∂p11
∂θp

∂p10
∂θp

∂p01
∂θp

























yz
p11

− (1−y)(1−z)
p00

y(1−z)
p10

− (1−y)(1−z)
p00

(1−y)z
p11

− (1−y)(1−z)
p00













=
∂P

∂θ
· Syz.

Thus,

I(x; θ) = E

[

∂l

∂θ

∂l

∂θT

]

=
∂P

∂θ
E[SyzS

T
yz]

∂P

∂θT
.

Note that
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E[y(1− y)] = E[z(1− z)] = 0, E(y2(1− z)2) = p10,

E((1− y)2(1− z)2) = p00, E((1− y)2z2) = p01,

E(y2z2) = p11.

So

V = E(STS) =













1
p11

+ 1
p00

1
p00

1
p00

1
p00

1
p10

+ 1
p00

1
p00

1
p00

1
p00

1
p01

+ 1
p00













= diag−1(p11, p10, p01) +
1

1− p11 − p10 − p01
J(3, 3, 1)

= P−1 +
1

1− p11 − p10 − p01
J(3, 3, 1),

where P = diag(p11, p10, p01) and J(3, 3, 1) = (1, 1, 1) · (1, 1, 1)T .

In summary,

I(x; θ) =
∂P

∂θ
V

∂P

∂θT
.

One can obtain ∂P/∂θ when P is specified by a model.

Note that V = (P − ppT )−1. When we approaches boundary, p00 or p11 will go to zeros,

which makes the matrix P − ppT singular. For computational consideration, if P − ppT is

singular, we regularized it by the following:

V =











(P − ppT )−1, if |P − ppT | ≥ λ;

(P − ppT + λI)−1, otherwise.

The regularized matrix is invertible because for any n × n matrix B, which may not be
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invertible, we have

(λIn +B)−1 =
1

λ
In −

1

λ2 +Tr(λB)
B,

where In is the n× n identity matrix. In practice, we take λ = 0.000001.

1.4.3 Penalized D-optimal design

The traditional D-optimal design assumes that any dose has the same cost, which could

be ethical cost or monetary cost. However, this may not hold in practice. Dragalin and

Fedorov (2006) introduce a cost function that penalizes doses with high toxicity or low

efficacy. The cost function is

c(x, θ;CE , CT ) = [p10(x, θ)]
−CE [1− p01(x, θ)− p11(x, θ)]

−CT , (1.9)

where CE and CT are user defined constants. We plot the cost c against toxicity probability

pT and efficacy and non-toxicity probability p10 in Figure 1.1. For example, when pT = 0.9

and p10 = 0.1, c = 100. We see that doses with high toxicity and low efficacy are expensive.

The total cost of the design ξ (1.2) is

C(ξ, θ) =
∑

i

wic(xi, θ). (1.10)

The penalized D-optimality criterion minimizes

Φ′(ξ, θ) = det

{

[

M(ξ, θ)

C(ξ, θ)

]−1
}

. (1.11)

As noted in Dragalin and Fedorov (2006), the penalized D-optimal problem can be reduced

to the traditional D-optimal design by applying the transform:

w′(x) =
c(x, θ)

C(ξ, θ)
w(x) , I ′(x, θ) =

I(x, θ)

c(x, θ)
and M ′(ξ, θ) =

M(ξ, θ)

C(ξ, θ)
.
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The directional derivative is

φ(ξ, x) = Tr[M−1
ξ Mx]−

c(x, θ)

C(ξ, θ)
p,

where Mx = I(x; θ), Mξ = M(ξ; θ), and Tr
[

M−1
ξ Mx

]

− p is the directional derivative for

local D-optimal design defined in (1.4).

The generalized equivalence theorem for penalized optimal designs can be modified as

the equivalence of the following three conditions (Dragalin and Federov, 2006):

1. ξ∗ = argminξ det{[M(ξ, θ)/C(ξ, θ)]−1};

2. ξ∗ = argminξ maxx

{

Tr[M−1
ξ Mx]−

c(x,θ)
C(ξ,θ)p

}

;

3. 1
c(x,θ)Tr[M

−1
ξ Mx]−

p
C(ξ,θ) ≤ 0, ∀x ∈ X . Equality is attained at the design points.

1.4.4 Bivariate best intention design

Thall and Cook (2004) consider desirability contours as trade-offs between efficacy and

toxicity to protect patients. The aim of their design is to assign patients to the dose with

the most desirability. By definition in Section 1.3.3, this is a best intention design.

Specifically, Thall and Cook (2004) suppose the efficacy and toxicity probability pair

at dose x is κ(x) = (pE(x), pT (x)) and the clinician chooses three probability pairs to have

the same desirability. Then the three pairs define a equivalent class C from the quadratic

family {κ = (pE , pT ) : pT = a + b/pE + c/p2E , 0 ≤ pE , pT ≤ 1}. Note that the ideal pair is

κ0 = (pE , pT ) = (1, 0). For any pair κp, draw a straight line Lp that joins π0 and πp in the

pE and pT plane. Denote the intersection point of Lp and C by πq. Denote the Euclidean

distance between any point κ and κ0 by ρ(κ). Then the desirability of κp is defined by

δ(κp) =
ρ(κq)

ρ(κp)
− 1. (1.12)
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Therefore, points with greater desirability are closer to κ0. Also, points outside the convex

hull of C and κ0 have negative desirability. Denote the maximum toxicity probability by

αE and the minimum efficacy probability by αT . Then the tradeoff method proceeds at

each step by assigning the patients to the most desirable dose x with the safety and efficacy

constraint:

Pr({θ : pE(x; θi) > 0.2}) > 0.9,

P r({θ : pT (x; θi) < 0.4}) > 0.9. (1.13)

In a Monte Carlo simulation with N samples, the acceptance region at x is approximated

by the following:

1

N

N
∑

i=1

1{pE(x; θi) > 0.2} > 0.9,

1

N

N
∑

i=1

1{pT (x; θi) < 0.4} > 0.9,

where pE(θi) and pT (θi) are the efficacy and toxicity probabilities given the ith simulated

θ of N total simulations.

After assigning n − 1 cohort to doses 1, 2, · · · ,K, denote the assigned dose level by B

and denote the highest assigned dose level by J . The nth cohort is assign as follows:

1. If the highest assigned dose level J is less than K, let A0 = B ∪ {J + 1}. Otherwise,

let A0 = B.

2. Denote the set of dose that satisfies (1.13) by A.

3. (a) If the acceptable dose space A ∩A0 is empty, then terminate the trial.

(b) If the acceptable dose space A∩A0 is not empty, then assign the nth patient to

the dose with the highest desirability in the acceptable dose space.
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1.5 Penalized Bayesian optimal design

The penalized Bayesian D-optimality solves the following equation,

ξ∗ = argmin
ξ

Eθ|π det

{

[

M(ξ, θ)

C(ξ, θ)

]−1
}

. (1.14)

1.5.1 Extension of the generalized equivalence theorem

In local designs, the generalized equivalence theorem can be used to assess the optimality of

a design. Chaloner and Larntz (1989) extended the generalized equivalence theorem to the

Bayesian realm for two parameter logistic models. Haines, Perevozskaya and Rosenberger

(2003) considered a sequential Bayesian design for two parameter logistic models and derived

the generalized equivalence theorem for designs on a restricted space. Dragalin and Fedorov

obtained the generalized equivalence theorem for local penalized designs. To propose a

Bayesian optimal design and its corresponding sequential design, the generalized equivalence

theorem should be extended to the penalized case. This is stated as the equivalence of

following three conditions:

1. ξ∗ = argminξ Eθ|π log det
{

[M(ξ; θ)/C(ξ; θ)]−1
}

;

2. ξ∗ = argminξ maxx Eθ|π

{

Tr[M−1
ξ Mx]−

c(x,θ)
C(ξ,θ)p

}

;

3. Eθ|π

{

Tr[M−1
ξ Mx]−

c(x,θ)
C(ξ,θ)p

}

≤ 0, ∀x ∈ X . Equality is attained at the design points.

Gao and Rosenberger (2013) choose the penalty function to be c(x; θπ), by substituting

θπ for θ, where θπ is the mean of the posterior distribution π of θ. Then the penalized

optimal design is given by:

ξ∗ = argmin
ξ

Eθ|π det

{

[

M(ξ, θ)

C(ξ, θπ)

]−1
}

. (1.15)
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We note that the assumption of a common penalty function is not necessary for one to

obtain the generalized equivalence theorem.

1.5.2 Prior elicitation

Suppose we can obtain a rough knowledge about the parameters from a previous study.

Then we can choose an informative prior such as the Gaussian distribution when we are

confident about parameter estimation, or we can choose less informative priors such as the

uniform distribution when we are not that confident. Once the prior family is chosen, the

question becomes how to choose the associated prior parameters. We note that this is a

problem about the trade-off between estimation bias and estimation variation, which de-

pends on how much confidence one puts on priors. For example, as shown by Lehmann and

Casella (1998, pp 233) suppose X1, · · · , Xn are identically and independently distributed

as N(θ, σ2) with known σ. The prior is N(µ, b2). Then the posterior mean and variance is

given by

E(θ|x) =
nx̄/σ2 + µ/b2

n/σ2 + 1/b2
;

Var(θ|x) =
1

n/σ2 + 1/b2
.

Thus, a large b, which means low confidence about the prior, has low bias towards the prior

µ but high variance. A small b, which means high confidence about the prior, has high

bias but low variance. Because we can approximate the bivariate nonlinear problem with a

normal distribution, we obtain the same conclusion for trials with large sample. Therefore,

the problem of proposing a good prior reduces to the problem of trade-off between bias and

variation.

It is a good idea to address this problem in the context of hierarchical Bayesian modeling,

because a misspecified hyper-parameter has less influence on posterior distributions than

misspecified prior parameters (Theorem 4.5.7, Lehmann and Casella, 1998). Using the
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hierarchical approach, Thall and Cook (2004) propose a method to reduce the influence of

a misspecified prior parameter. Specifically, suppose the ith component of the parameter θ

is normally distributed as πi(θi) = N(η1i, η2i) . Then the mean and variance of pE and pT

are defined as:

mEj =

∫

pE(xj ; θ)π(θ)dθ,

s2Ej =

∫

(pE(xj ; θ)−mEj)
2π(θ)dθ,

mTj =

∫

pT (xj ; θ)π(θ)dθ,

s2Tj =

∫

(pT (xj ; θ)−mTj)
2π(θ)dθ.

Then Thall and Cook (2004) assume s2Ej = 0.5mEj(1 −mEj) and s2Tj = 0.5mTj(1 −mTj)

by a vague beta-distribution argument. They ask the clinician to specify the mean and

standard deviation of pE and pT , denoted m̂yj and ŝyj for y = E, T and j = 1, · · · ,K.

Then the prior parameter η is chosen by:

η∗ = argmin
η

∑

y=E,T

∑

j=1,2,...,K

[myj(η)− m̂yj ]
2 + [syj(η)− ŝyj ]

2 + cη
∑

m 6=n

(η2m − η2n)
2,

where cη is a fixed tuning parameter. Thall, Cook and Estey (2006) also propose two criteria

for a good prior:

1. The prior should be sufficiently non-informative so that the data dominates the design.

2. The prior should be sufficiently informative to avoid ill-behavior at the beginning of

the trial.

In practice, clinicians are not familiar with distribution of pE and pT . Therefore, we need

additional information to obtain the distributions. Chaloner et al. (1993) include interactive
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graphical tools to help the clinician select the prior parameters. Kadane and Wolfson

(1996) suggest asking clinicians a set of questions and then determine the prior parameters.

However, the mean and standard derivation of pT and pE do not map directly to the

parameters of the bivariate models. Alternatively, Rosenberger et al. (2005) demonstrate

that one can map the Γth response quantile µ to the parameter of a logistic model, through

the identity µ = α + βF−1(Γ). They suggest asking clinicians about the 25th and 50th

quantiles.

1.5.3 Safety criterion

Suppose we want to protect the patients by avoiding highly toxic doses. Then we need to

introduce a penalty function c(x, θ), which should satisfy the following properties:

Safe c(x, θ) peaks at high doses with high toxicity;

Economic c(x, θ) peaks at low doses with low efficacy;

Flexible Clinician can configure the penalty towards their preferences;

Consolidated Statisticians can consolidate the penalty function in D-optimal designs.

The penalty function (1.9) introduced by Dragalin and Fedorov (2006) fulfills the safe,

economic and consolidated criteria. Extension of this penalty to the Bayesian realm is

included in Gao and Rosenberger (2012). The desirability function (1.12) introduced by

Thall and Cook (2004) fulfills the safe, economic and flexible criterions.

1.5.4 Bayesian sequential design with penalty

Suppose our dose space X is discrete. We identify the optimal weights of doses based

on the prior information. To do this, we implement the penalized method and substitute

the mean of the priors as the local parameter. After the initial n0 doses are allocated,

we need a sequential procedure to approximate the optimality in (1.15). Instead of using

the first order algorithm to maximize φ(ξ; θ) (Dragalin and Fedorov, 2006), we use the
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idea proposed by Haines, Perevozskaya and Rosenberger (2003). Specifically, suppose the

posterior distribution πn can be inferred through previous responses at step n. Then we

assign a new participant to the dose with maximum increment of penalized information:

xn+1 = argmin
x

Eθ|πn
Φ

( ∑n
i=1 I(xi; θ) + I(x; θ)

∑n
i=1 c(xi; θπn) + c(x; θπn)

)

;

As the above steps are iteratively processed, the adaptive design is expected to converge to

its corresponding optimum design.
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Table 1.1: List of design criteria and their geometric interpretation.

Criterion Φ(M(ξ)) Geometric Interpretation

D log det(M−1) Volume
A Tr(M−1) Average axes length

E λ
(∗)
min Maximum axis length

c cTM−1c Span along c

(∗) Here λmin is the minimum eigenvalue of M(ξ).
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Table 1.2: List of directional derivatives for local D, A, E and c optimal designs.

Criterion
(

∂Φ
∂M

)T
φ(ξ, η; θ)

D −M−1 Tr(M(ξ)−1M(η))− p
A −M−2 Tr(M(ξ)−2M(η))− Tr(M−1(ξ))

E rrT (∗) rTM(η))r + λmin

c −M−1ccTM−1 cTM−1(ξ)M(η)M−1(ξ)c− cTM−1(ξ)c

(∗) Here r is the eigenvector corresponding to λmin.
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Figure 1.1: Cost c as a function of toxicity probability pT and efficacy and non-toxicity
probability p10. Doses with high toxicity and low efficacy are expensive.
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Chapter 2: Bayesian Sequential Designs

In a good sequential design, we want the parameter estimator θ̂n to converge to the true

parameter θ. We also want the design ξn to converge to the optimal design ξ(θ). These

two goals are interactive: on the one hand, assignment of patients depends on the current

estimate of θ; on the other hand, design assignment determines estimation efficiency. The

interaction makes it difficult to determine the convergence. In a bad design, patients may

be always assigned to a single dose and therefore generate bad estimates, which in turn

encourages single dose assignment. To address this issue, several researchers have examined

the conditions to guarantee convergence of parameter estimates and designs for various

models with different optimality. Specifically, Lai (1994), Chaudhuri and Mykland (1993,

1995) and Pronzato (2010a) considered the MLE in nonlinear models withD-optimality. Hu

(1998) and Roy, Ghosal and Rosenberger (2009) considered Bayesian estimates in nonlinear

model and two parameter logistic model with D-optimality respectively. Pronzato (2010b)

considered the MLE in nonlinear models with penalized D-optimality. The convergence of

the Bayesian sequential design for the Gumbel model is still unknown.

Despite the theoretical difficulties, questions related to how to determine an appropriate

procedure for prior elicitation in sequential designs are very important. A unique question

that arises in the context of bivariate response models is the selection of an appropriate

prior for the correlation parameter. In this chapter, we address both the convergence

and prior selection problems using simulation. Specifically, we explore the impact of the

correlation parameter on various designs. Then we propose a prior elicitation procedure for

bivariate models. Last, we examine the impact of different misspecified priors on sequential

procedures.
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2.1 Correlation

In this section, we explore the impact of correlation on the designs, especially on the dose-

response relationship, information measures and optimal designs.

2.1.1 Dose-response relationship

Recall that we assume toxicity and efficacy responses, (Y, Z), are binary and follow a Gumbel

model with linear effects: xE = βE(x− αE) and xT = βT (x− αT ). Thall and Cook (2004)

considered a quadratic efficacy effect. The cell probabilities are given by

p11 = Pr(Y = 1, Z = 1|D = x; θ) = G(xE , xT ),

p10 = Pr(Y = 1, Z = 0|D = x; θ) = F (xE)−G(xE , xT ),

p01 = Pr(Y = 0, Z = 1|D = x; θ) = F (xT )−G(xE , xT ),

p00 = Pr(Y = 0, Z = 0|D = x; θ) = 1− p11 − p10 − p01,

where G is the Gumbel function:

G(y, z) = F (y) · F (z) · {1 + ρ[1− F (y)][1− F (z)]},

and F (y) = 1/(1 + e−y).

Without loss of generality, we examine four scenarios with different toxicity and efficacy

effects. Although the 50th percentile of efficacy are assumed to be smaller than those of

toxicity in the first three scenarios, slopes are different across scenarios. The 50th percentile

of efficacy is assumed to be greater than that of toxicity in scenario 4. Efficacy probabilities

increase faster than toxicity probabilities in scenario 1 and 2. Toxicity probabilities increase

faster than efficacy probabilities in scenario 3 and 4. We standardize the parameters by

fixing the 50th percentile of efficacy and toxicity at −2 and 2 in the first three scenarios and

at 2 and −2 in the last scenario. Figure 2.1 illustrates the toxicity, efficacy and “efficacy

and no toxicity” probabilities for each scenario. The parameters (αE , βE , αT , βT , ρ) are
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(−2, 1, 2, 0.5, 0.5), (−2, 0.5, 2, 0.5, 0.5), (−2, 0.2, 2, 0.5, 0.5) and (−2, 0.2,−2, 0.2, 0.5) respec-

tively. All other scenarios can be represented similarly by applying a linear transformation

to the dose space.

We examine the impact of correlation on the dose-response relationship visually. Note

that the toxicity and efficacy probabilities, pT = p11 + p01 and pE = p11 + p10, are not

dependent on the correlation parameter ρ. The correlation parameter only determines the

individual cell probabilities p11, p10, p01 and p00. We plot p10, the efficacy and no toxicity

probability, for each scenario with different correlation parameters in Figure 2.2. We see

there is not much difference among the p10’s in all scenarios. The maximum difference of

p10’s is about 0.15 in scenario 3.

An interesting question is how many samples are required to obtain a precise estimate for

ρ. We can obtain a crude estimate by treating p10 as an unknown parameter in a binomial

distribution. Then to distinguish the correlation parameter -1 from 1, we need a sample of

(1.96/0.15)2 × 0.35 × 0.65, roughly 40 patients, given that we know the optimal dose for

distinction is at −1. Therefore, we expect the estimation of the correlation parameter to

be poor with a sample size less than 40.

2.1.2 Optimal designs

How much influence the correlation parameter has on optimal designs is an important

problem. To explore this problem, we introduce the following DA-optimal design, and

compare the D-optimal designs to DA-optimal designs.

The DA criterion maximize the information about the toxicity and efficacy parameters

with no intention to learn the correlation parameter. The DA design minimize the following:

Φ(ξ, θ) = log det
{

ATM−1(ξ; θ)A
}

, (2.1)
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where

A =

























1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

























.

The directional derivative is

φ(x, ξ; θ) = Tr
[

(ATM−1A)−1 ·ATM−1I(x; θ)M−1A
]

− 4.

We summarize the D and DA-optimal designs for four scenarios in Tables 2.1 – 2.4. For

each parameter, we calculate the DA information of the D-optimal design, and compute its

relative efficiency with respect to the DA-optimal design. We can see that the information

loss due to the correlation parameter in D-optimal designs is fairly low (about 4%). This

means D-optimal designs are almost as efficient as the DA-optimal designs for the Gumbel

model. Therefore, we can use D-optimal criterion alone and obtain near efficient estimation

about the toxicity and efficacy parameters.

All optimal designs are supported on four points. The design points in DA-optimal

designs are more stretched out than D-optimal designs in scenario 1, 2 and 4, while they

are more squeezed in DA-optimal designs than D-optimal designs in scenario 3. The points

do not change monotonically as ρ increases. For example, the points are stretched out when

ρ gets to −0.5, and squeezed as ρ increases further. The middle points gains more weights

as ρ increases. The DA-optimal designs have even weights when ρ is −1. The DA designs

are similar across ρ’s in scenario 1, 2 and 4.
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2.2 Prior elicitation

There are two different scenarios for prior elicitation. In the first scenario, a group of experts

agree on the range of reasonable percentiles of toxicity and efficacy probabilities. In the

second scenario, each expert provides his/her own opinion. In this dissertation, we only

consider the first scenario. The second is considered in Thall and Cook (2004).

Assume we want to select priors based on a single opinion. As we see in Section 2.1.1, the

efficacy probability pE and toxicity probability pT are determined solely by the efficacy and

toxicity parameters αE , αT , βE and βT . The correlation parameter determines the efficacy

and no toxicity probability p10, which is shown in Figure 2.1.

It is easier to obtain information about toxicity and efficacy parameters. Suppose a

Gumbel model for the dose-response relationship with linear toxicity and efficacy effects.

Using Rosenberger et al.’s (2005) method, we ask the expert about the 50th and 25th

percentiles of efficacy and toxicity, denoted by ED50, ED25, LD50 and LD25. Then the

toxicity and efficacy parameters can be obtained by:

αE = ED50, βE =
G50−G25

ED50− ED25
,

αT = LD50, βT =
G50−G25

LD50− LD25
,

where G25 and G50 are the 25th and 50th percentiles of the standard logistic distribu-

tion. Using normal priors, these quantities are served as mean of the prior distributions of

αE , βE , αT and βT . The standard deviation of the priors are then decided by the experts

preferably with the aid of an interactive graphical tool such as that used by Chaloner, et

al. (1993), or by estimating the prior effective sample size (Morita et al, 2008). The prob-

abilities of toxicity and efficacy are assumed to be monotone, thus the prior for βE and βT

are restricted to be positive.

The correlation parameter cannot be obtained easily. We illustrate this in a special

case shown in Figure 2.2. First, the mode of the efficacy and no toxicity probabilities
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cannot be used to differentiate correlations. For example, the modes are the same across

ρ’s in scenarios 1, 2, and 4. Second, given the knowledge of the true toxicity and efficacy

parameters and the knowledge of the optimal dose, it requires 40 patients to obtain a

clear cut between ρ = 1 and ρ = −1 (Section 2.1.1). The expert is not likely to possess

such accurate information. Therefore, we propose to use a non-informative prior for the

correlation parameter such as the uniform distribution on (−1, 1). In some cases, the

expert is confident about whether the correlation is positive or negative based on clinical

reasons. Then we can use a beta or truncated normal prior that peaks at -0.5 or 0.5

accordingly. The density function of a beta distribution defined on [−1, 1] is proportional

to (1− x)α−1(1 + x)β−1 with mean (α− β)/(α+ β) and mode (α− β)/(α+ β − 2).

2.3 Sequential design

We conduct Monte Carlo simulation to examine the operating characteristics of the sequen-

tial designs as well as sensitivity to misspecified priors. We examine the aforementioned

four scenarios. We propose to use a procedure based on the MLE as a benchmark to test

our Bayesian sequential procedures. Also, we will use different priors for each scenario.

We want to investigate the influence of misspecified priors on the designs and parameter

estimation.

2.3.1 Design specification

We select four doses in the sequential procedure. The doses are selected with similar toxicity

and efficacy probabilities as in Thall and Cook (2004). For each scenario, we compute the

optimal designs that are restricted to four doses. The optimal weights and toxicity and

efficacy probabilities for each dose are included in Table 2.5.

In the simulation, we consider five different priors listed in Table 3.11. Also, we consider

a different and long dose range (−3,−1, 1, 3). We want to see how the designs converge under

different priors and dose ranges.
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2.3.2 MCMC algorithm

Given the priors, there is no closed form expression for the posterior distribution,

π(θ|D) ∝ L(D|θ)π(θ).

Therefore for each assignment, we use the Gibbs sampler (Gelfand and Smith, 1990) to

generate samples (θ(1), . . . , θ(K)) from the posterior distribution. Because the conditional

distributions in Gibbs sampling do not come from any conjugate family, we use Metropolis-

Hastings steps to obtain samples from the conditional distributions. Specifically, we use

Gaussian univariate proposals (Roberts, Gelman, Gilks, 1997) in these steps. For each

parameter, the standard deviation of the Gaussian proposal is tuned with an acceptance

rate about 30%. After visual inspection with a few different initial values, we decided to

use 10000 MCMC samples after 2000 burn-ins. Then the convergence is visually checked

on a preselected sample.

Approximating integrals by averaging over the samples, we assign the (n+ 1)th partic-

ipant to the dose:

x(n+1) = arg max
x∈{x1,...xm}

K
∑

k=1

Φ(ξ ∨ xi, θ
(k)).

We also monitor the maximum a posteriori (MAP) estimator of θ for the sample size of n,

θ̂n = argmax
θ(k)

L(Dn|θ
(k))π(θ(k)).

We will investigate these quantities in simulations in the next section.

2.3.3 Convergence measures

We define a few quantities to evaluate the performance of parameter estimation. This can be

done from two different approaches. In the first approach, the estimates for each parameter
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can be accessed separately. In the second approach, parameter estimation can be assessed

using a scalar function of parameters. For example, the function can be deviance or the

estimated optimal dose in the next chapter.

In the first approach, we denote the MAP estimate of θ at the jth step in the ith trial

by θ̂i,j . Denote the mean estimate at the jth step by θ̄j . Then there are two interesting

quantities to investigate. The first quantity is called “relative ratio”, used to measure the

bias of Bayesian parameter estimator, and defined by

RRj =

∣

∣

∣

∣

θ̄j
θ

∣

∣

∣

∣

.

Also, the mean squared error (MSE) at the jth step is defined by

MSE(θ̂j) =

1000
∑

i=1

(

θ̂i,j − θ
)2

1000
.

Similar to Manukyan (2009), we define the relative root mean squared error (RRMSE) at

the jth step to be

RRMSE(θ̂j) =

√

MSE(θ̂j)

θ
.

In the second approach, assume n patients are assigned and the response is Y n. Let θ̂n

be the parameter estimate. We define the deviance to be

D(Y n, θ̂n) = −2
[

log (L(Y n|θ))− log
(

L(Y n|θ̂n)
)]

,

where θ is the true parameter.

Note that a design converges to the optimal design when its dose allocation weights

converge to the optimal weights. To evaluate the convergence of a design, we define a
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quantity to evaluate the distance between a design to the corresponding optimum design.

Suppose the design has a weight vector w and the optimal weight vector is w
∗. Then we

define

d(w,w∗) =

4
∑

i=1

|wi − w∗
i |.

The reason we use L1 norm is that ||w||L1 = 1 for any w.

In addition to the L1 distance, we consider the information efficiency of a design ξ, given

by

eff(ξ) = exp

{

Φ(ξ∗, θ)− Φ(ξ, θ)

p

}

,

where p is the number of parameter and ξ∗ is the optimal design.

2.3.4 MLE benchmark

We want a benchmark with which we can compare our Bayesian sequential procedure.

Manukyan (2009) conducted simulations and showed that sequential designs with Bayesian

estimates outperform those using the MLE. In his MLE setting, assignments are determined

by criteria using the MLE. Assuming the optimal allocation is known, we propose to assign

patients to attain the optimal allocation and use the MLE to estimate the parameter.

Therefore, the design is optimal regardless of the parameter estimates. We want to see

how efficient the parameter estimates can be given the optimal allocation. This should

set a upper bound for any MLE-type sequential designs because it requires time for these

designs to find the optimal allocation. Then we use this as a benchmark to evaluate how

the Bayesian sequential procedure performs.

The MLE procedure starts by assigning 5 patients to the lowest dose. Assume the

optimal allocation is {w∗
1, . . . , w

∗
n}. The procedure proceeds iteratively as follow:

1. At step j, we have assigned j patients. Denote patient allocation weight by {w1, . . . , wn}.
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2. Determine next assignment xj+1 by argmaxi{w
∗
i − wi; i = 1, . . . , n}.

3. Assign the j + 1th patient to the xj+1th dose, and obtain response yj+1.

4. Obtain the MLE of θ given the data (x1, y1), . . . , (xj+1, yj+1).

We compare the the MLE method with the Bayesian method with prior 1. We conduct

1000 trials and record relevant quantities. The graphical comparison of deviance is included

in Figures 2.3. The MLE method performs uniformly worse than the Bayesian method

because the deviance of the former is far from zero. The RR and RRMSE measures are

included in Tables 2.7 – 2.10. Due to large RRMSE’s, the MLE method produces unstable

estimates at the beginning of a trial. Also, parameters αE and αT in the Bayesian method

converge faster than those in the MLE method. Although the estimates of ρ in the MLE

methods are closer to the true value, the MSE of the MLE method is greater than the

Bayesian method. Overall, the Bayesian method performs better than the MLE method.

2.3.5 Bayesian sequential designs with different dose ranges

Dose range is another factor impacting parameter estimation. Wide dose ranges may lead

to good parameter estimates. Here we compare designs operated on the narrow range

{−3,−2,−1, 0} with those operated on the wide range {−3,−1, 1, 3}. We use prior 1 for

both dose ranges.

First, we look at individual parameter estimates. Tables 2.7 – 2.10 list the RR and

MSE measures for the two methods. When sample size is 25, designs on the wide dose

range perform worse than those on the narrow range for βT . The former gets better than

the latter when the sample size increases from 50 to 200. In scenarios 1–3, estimates

for αT from designs on the wide range are better than those from designs on the narrow

range. In scenarios 2–4, estimates for βE from the former are better than those from the

latter. Both designs perform equally well in estimating αE . Second, we evaluate the overall

parameter estimation based on the deviance included in Figure 2.4. Designs operated on

the narrow range perform uniformly better than those on the wide range. This contradicts

35



what we observe from the individual parameter estimates. Thus, there is a discrepancy

between individual parameter estimates and overall parameter estimates. All the parameter

estimates demonstrate convergence as sample size increases.

In addition to parameter estimation, we examine the convergence of dose allocation.

Both the L1 distance and design efficiency are included in Figure 2.5 for scenarios 1 and 4.

Using the L1 distances, we see that designs on the wide range performs better in scenario

1. It performs worse in scenario 4. We confirm these observations by examining design

efficiency measures. Thus the deviance measure is consistent with the design efficiency

measure rather than measures based on an individual parameter.

We summarize that the design operated on long dose ranges performs better by produc-

ing good individual parameter estimates. However, the advantage does not translate into

better dose allocation or overall learning about the dose-response relationship, especially

when the prior is misspecified in scenario 4.

2.3.6 Sequential design with different priors for correlation

By investigating designs with different priors (Table 3.11), we hope to answer three different

questions: whether the design performs better with informative priors; whether a uniform

prior is better than a normal prior; whether a misspecified correlation prior impacts the

design.

Question 1: Does the design perform better with informative priors?

The deviances are plotted in Figure 2.6. Note that prior 1 is a normal prior and prior

2 is a more informative normal prior with smaller standard deviation. The design with

prior 2 produces smaller deviances and performs better than that with prior 1 in scenario

1. However, when sample size is 50, the design with prior 2 performs worse than that with

prior 1 in scenario 4. Both design perform equally well as sample size increases. Prior 4 is

a uniform prior and prior 5 is a more informative uniform prior with smaller support. The

former performs worse than the latter in scenario 1. However, the former performs much
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better in scenario 4 when priors are misspecified.

We examine individual parameter estimates in Tables 2.7 – 2.10. Comparing priors

1 with 2, we see that estimates of βT start poorly and converge faster in designs with

informative prior. However, estimates of βT are uniformly worse in designs with informative

prior in scenario 4. Comparing priors 4 with 5 in scenario 1, we see that designs with

informative prior perform better. In scenario 4 designs with informative prior perform better

in estimating αE and αT , but perform worse in estimating βE and βT . Thus, we conclude

that informative priors produce better parameter estimates when the priors are slightly

misspecified. However, they can perform badly when the priors are severely misspecified.

We examine dose allocation measures. Comparing priors 1 with 2 in scenarios 1 and

4, the former produces dose allocations that are closer to the optimal dose allocation and

thus performs better than the latter. The former also converges with faster speed and

smaller variations. Comparing priors 4 and 5 in scenarios 1 and 4, the latter performs

better with faster convergence rate and smaller dose allocation variations. Thus we observe

a discrepancy between the overall parameter estimates measured by deviances and the

dose allocation measures. Although the variation within the overall parameter estimates

depends on information of prior and dose allocation variations, it seems that the former is

more essential.

Question 2: Is a uniform prior better than a normal prior?

We compare uniform and normal priors using individual parameter estimates in Tables

2.7 – 2.10. The uniform prior 4 produces larger RRMSE’s and thus performs worst than the

normal prior 1 in estimating αT and βT in both scenarios 1 and 4. Priors 2 and 5 performs

equally well in scenario 1. But normal prior 2 performs better in estimating βE and βT

while uniform prior 4 performs better in estimating αE and αT . We see that one type of

prior is not uniformly better than the other based on individual parameter estimates. We

turn to the overall deviance measure.

We compare normal prior 1 with uniform prior 4 in Figure 2.6. In scenarios 1 and
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4, the former performs uniformly better than the latter due to smaller deviances. Both

priors have similar variation. Comparing normal prior 2 with uniform prior 5 in scenarios

1 and 4, the former performs uniformly better than the latter with smaller deviance and

smaller variation. Therefore, we conclude that the normal prior performs better in overall

parameter estimation.

We examine dose allocation measures in Figure 2.6. Comparing prior 1 with prior 4,

we see that the normal prior performs slightly better with near optimal dose allocation.

Comparing prior 2 with prior 5, the uniform prior performs much better than the normal

prior with near optimal dose allocations and smaller variations. This is due to the more

restricted parameter support of the uniform priors. We summarize that uniform priors

produce stable dose allocation. This is desirable because it leads to better control of the

design. However, normal priors with less informative prior may produce better parameter

estimates and learning about the dose-response relationship.

Question 3: How does a misspecified correlation prior impact the design?

We compare prior 1 with prior 3. Note that prior 1 has correctly specified correlation

while prior 3 has misspecified correlation. First, we examine individual parameter estima-

tion measures in Tables 2.7 – 2.10. The two designs perform equally well in estimating αE ,

αT , βE and βT . Prior 1 outperforms prior 3 in estimating ρ. Second, we look at the overall

parameter estimation measure, i.e., the deviance in 2.6. Prior 3 does not show convergence

in both scenarios 1 and 4. Prior 1 performs better with smaller variation.

According to the L1 distances in Figure 2.6, prior 1 produces better design that is close

to the optimal dose allocation in scenario 1 and 4. However, the design with prior 3 does

not converge to the optimal dose allocation in scenario 1. It appears to converge in scenario

4 with a slow rate. We obtain similar conclusion using the design efficiency measure. We

summarize that design with misspecified correlation may have convergence issue form both

the parameter estimation and the dose allocation perspectives.
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2.4 Conclusion

In this chapter, we investigate optimal designs for bivariate Gumbel models and discuss the

impact of correlation on the information criterion. To conduct Bayesian sequential designs,

we discuss some practical problems such as prior elicitation. To assess the convergence of

parameter estimation, we propose a procedure based on MLE and compare it with Bayesian

procedures.

We examine the convergence of Bayesian sequential designs using simulation. Almost

all designs show convergence with different convergence rates. It is interesting to see a

discrepancy between individual parameter estimates and overall parameter estimates. There

is also discrepancy between dose allocation and parameter estimates. This makes design

comparison a challenging task. By comparing MLE and Bayesian procedures, we learn that

Bayesian methods perform better by producing more accurate parameter estimates. By

conducting designs on wide and narrow dose ranges, we see that the former produces better

estimates for individual parameters at the cost of less stable dose allocation. By conducting

designs with informative and less informative priors, we see that less informative priors

produce better overall parameter estimates. Comparing normal priors to uniform priors,

we see that normal priors are good at producing accurate parameter estimates while uniform

priors may produce stable dose allocation. Finally, we observe non-convergence issues in

some cases when the correlation is misspecified. Because of the inconsistency among all the

measures, we strongly recommend the use of simulations to assess operating characteristics

of adaptive designs and select informative or noninformative priors.
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Table 2.1: Optimal designs for scenario 1, Gumbel model.
Scenario ρ D-optimal design DA-optimal design Efficiency

1 -1

(

−3.41 −0.70 5.24 11.54
0.32 0.28 0.20 0.20

) (

−3.59 −0.54 5.29 11.55
0.25 0.25 0.25 0.25

)

0.97

1 -0.5

(

−3.23 −0.72 5.07 11.50
0.27 0.33 0.20 0.20

) (

−3.59 −0.54 5.10 11.51
0.25 0.25 0.25 0.25

)

0.96

1 0

(

−3.35 −0.78 4.83 11.45
0.24 0.36 0.20 0.20

) (

−3.59 −0.55 4.85 11.46
0.25 0.25 0.25 0.25

)

0.96

1 0.5

(

−3.44 −0.77 4.5 11.39
0.22 0.38 0.20 0.20

) (

−3.58 −0.57 4.49 11.39
0.25 0.25 0.26 0.25

)

0.96

1 1

(

−3.47 −0.69 3.97 11.30
0.21 0.38 0.21 0.20

) (

−3.57 −0.64 3.84 11.29
0.25 0.24 0.27 0.25

)

0.95
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Table 2.2: Optimal designs for scenario 2, Gumbel model.
Scenario ρ D-optimal design DA-optimal design Efficiency

2 -1

(

−5.89 −1.00 2.59 7.44
0.24 0.28 0.26 0.22

) (

−6.29 −1.08 2.76 7.77
0.27 0.24 0.24 0.25

)

0.99

2 -0.5

(

−6.23 −1.27 2.54 7.90
0.20 0.31 0.29 0.20

) (

−6.50 −1.47 2.85 8.09
0.24 0.25 0.26 0.25

)

0.97

2 0

(

−6.22 −1.23 2.51 7.91
0.18 0.32 0.30 0.20

) (

−6.45 −1.56 2.84 8.08
0.23 0.25 0.28 0.25

)

0.97

2 0.5

(

−6.06 −1.15 2.48 7.90
0.17 0.33 0.30 0.20

) (

−6.27 −1.58 2.83 8.05
0.22 0.24 0.30 0.25

)

0.96

2 1

(

−5.80 −1.02 2.40 7.84
0.17 0.32 0.31 0.20

) (

−5.98 −1.52 2.76 7.98
0.20 0.24 0.31 0.25

)

0.96
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Table 2.3: Optimal designs for scenario 3, Gumbel model.
Scenario ρ D-optimal design DA-optimal design Efficiency

3 -1

(

−9.91 −0.48 3.93 10.55
0.19 0.29 0.33 0.19

) (

−9.88 −0.60 4.03 11.14
0.24 0.26 0.27 0.23

)

0.98

3 -0.5

(

−10.32 −0.86 3.63 10.76
0.18 0.31 0.35 0.17

) (

−10.15 −1.09 3.89 11.00
0.23 0.27 0.29 0.22

)

0.98

3 0

(

−11.05 −1.47 3.35 10.80
0.16 0.32 0.37 0.15

) (

−10.91 −1.95 3.64 10.97
0.20 0.30 0.31 0.20

)

0.97

3 0.5

(

−11.67 −1.98 3.11 11.01
0.13 0.34 0.38 0.15

) (

−11.56 −2.62 3.45 11.16
0.16 0.33 0.32 0.19

)

0.97

3 1

(

−11.97 −2.22 2.92 11.12
0.12 0.34 0.39 0.15

) (

−11.83 −2.93 3.30 11.22
0.14 0.34 0.32 0.20

)

0.96
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Table 2.4: Optimal designs for scenario 4, Gumbel model.
Scenario ρ D-optimal design DA-optimal design Efficiency

4 -1

(

−14.78 −2.96 4.85 16.58
0.24 0.28 0.26 0.23

) (

−15.72 −3.15 5.17 17.43
0.27 0.24 0.231 0.26

)

0.99

4 -0.5

(

−16.48 −3.69 5.06 18.45
0.19 0.31 0.30 0.20

) (

−16.94 −4.25 5.77 18.88
0.24 0.25 0.27 0.24

)

0.97

4 0

(

−16.38 −3.56 5.14 18.7
0.18 0.32 0.31 0.19

) (

−16.85 −4.42 5.99 19.09
0.22 0.26 0.28 0.24

)

0.97

4 0.5

(

−15.88 −3.37 5.29 18.92
0.17 0.33 0.32 0.19

) (

−16.42 −4.43 6.2 19.28
0.21 0.26 0.30 0.24

)

0.96

4 1

(

−15.01 −3.1 5.42 19.12
0.15 0.33 0.33 0.19

) (

−15.66 −4.31 6.34 19.47
0.19 0.26 0.32 0.23

)

0.96
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Table 2.5: Design specification for four scenarios, including dose level, toxicity and efficacy
probabilities, D-optimal weights and optimal Φ.

θ Φ Dose (pE , pT ) weight

Scenario 1
(−2, 1, 2, 0.5, 0.5) 16.03 -3 (0.27, 0.08) 0.25

-2 (0.50, 0.12) 0.19
-1 (0.73, 0.18) 0.22
0 (0.88, 0.27) 0.34

Scenario 2
(−2, 0.5, 2, 0.5, 0.5) 19.51 -3 (0.38, 0.08) 0.31

-2 (0.50, 0.12) 0.29
-1 (0.62, 0.18) 0.00
0 (0.73, 0.27) 0.40

Scenario 3
(−2, 0.2, 2, 0.5, 0.5) 20.69 -3 (0.45, 0.08) 0.33

-2 (0.50, 0.12) 0.20
-1 (0.55, 0.18) 0.09
0 (0.60, 0.27) 0.38

Scenario 4
(2, 0.2,−2, 0.2, 0.5) 28.49 -3 (0.45, 0.27) 0.32

-2 (0.50, 0.31) 0.29
-1 (0.55, 0.35) 0.00
0 (0.60, 0.40) 0.39
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Table 2.6: Prior distributions used in the simulation. The prior distributions for βE and
βT are assumed to be positive and they are not normalized in the table.

Prior αE βE αT βT ρ

1 N(−2.5, 1) N(1, 1)+ N(2.5, 1) N(1, 1)+ U [0, 0.7]
2 N(−2.5, 0.22) N(1, 0.22)+ N(2.5, 0.22) N(1, 0.22)+ U [0, 0.7]
3 N(−2.5, 1) N(1, 1)+ N(2.5, 1) N(1, 1)+ U [−0.9,−0.7]
4 U [−5, 0] U [0, 4] U [0, 5] U [0, 4] U [0, 0.7]
5 U [−3.1,−1.9] U [0.4, 1.6] U [1.9, 3.1] U [0.4, 1.6] U [0, 0.7]
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Table 2.7: RR and RRMSE for different number of patients, scenario 1, with different priors
or methods. Simulation based on 1000 replications.

αE βE αT βT ρ

Setting n RR RRMSE RR RRMSE RR RRMSE RR RRMSE RR RRMSE

Prior 1 25 1.05 0.21 1.11 0.42 1.16 0.24 1.05 0.41 0.87 0.59
Prior 1 50 1.03 0.17 1.08 0.32 1.12 0.27 1.05 0.39 0.84 0.59
Prior 1 100 1.02 0.12 1.05 0.23 1.10 0.28 1.02 0.30 0.84 0.58
Prior 1 200 1.01 0.09 1.02 0.16 1.08 0.28 1.01 0.23 0.89 0.52

Prior 2 25 1.21 0.22 0.96 0.10 1.22 0.22 1.37 0.46 0.76 0.64
Prior 2 50 1.19 0.19 0.95 0.12 1.22 0.22 1.19 0.30 0.75 0.63
Prior 2 100 1.15 0.16 0.95 0.12 1.21 0.21 1.05 0.18 0.79 0.59
Prior 2 200 1.11 0.12 0.96 0.11 1.21 0.21 0.97 0.12 0.85 0.53

Prior 3 25 1.05 0.20 1.11 0.42 1.16 0.25 1.06 0.42 1.50 2.50
Prior 3 50 1.04 0.17 1.07 0.33 1.13 0.27 1.03 0.36 1.46 2.47
Prior 3 100 1.02 0.12 1.03 0.22 1.10 0.28 1.02 0.30 1.43 2.43
Prior 3 200 1.01 0.09 1.01 0.14 1.09 0.29 1.01 0.25 1.41 2.41

Prior 4 25 1.04 0.28 1.24 0.68 1.05 0.90 1.79 1.87 0.83 0.61
Prior 4 50 1.01 0.18 1.11 0.36 1.12 0.85 1.35 0.99 0.82 0.60
Prior 4 100 1.01 0.13 1.06 0.24 1.16 0.75 1.13 0.56 0.84 0.58
Prior 4 200 1.00 0.09 1.02 0.16 1.13 0.61 1.06 0.39 0.87 0.54

Prior 5 25 1.08 0.18 1.06 0.36 1.12 0.24 1.06 0.33 0.83 0.59
Prior 5 50 1.05 0.14 1.04 0.28 1.12 0.24 1.00 0.22 0.81 0.60
Prior 5 100 1.03 0.10 1.03 0.22 1.12 0.24 0.97 0.17 0.83 0.58
Prior 5 200 1.02 0.07 1.02 0.16 1.12 0.23 0.96 0.14 0.88 0.52

Wide 25 1.05 0.22 1.15 0.43 1.11 0.29 1.18 0.57 0.84 0.59
Wide 50 1.03 0.19 1.10 0.34 1.09 0.27 1.09 0.37 0.81 0.61
Wide 100 1.01 0.14 1.06 0.23 1.07 0.23 1.03 0.24 0.83 0.59
Wide 200 1.01 0.10 1.03 0.16 1.04 0.19 1.02 0.18 0.86 0.56

MLE 25 0.80 7.59 0.34 33.10 2.61 3.93 4.10 11.28 0.70 1.62
MLE 50 1.02 0.21 1.06 0.36 2.19 3.16 1.44 3.27 0.74 1.41
MLE 100 1.01 0.14 1.03 0.25 1.67 2.10 1.05 0.56 0.84 1.12
MLE 200 1.00 0.09 1.02 0.17 1.28 1.12 1.03 0.39 0.96 0.84
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Table 2.8: RR and RRMSE for different number of patients, scenario 2, with different priors
or methods. Simulation based on 1000 replications.

αE βE αT βT ρ

Setting n RR RRMSE RR RRMSE RR RRMSE RR RRMSE RR RRMSE

Prior 1 25 1.08 0.27 1.22 0.72 1.15 0.22 1.04 0.38 0.79 0.62
Prior 1 50 1.06 0.24 1.12 0.51 1.12 0.26 1.03 0.36 0.81 0.59
Prior 1 100 1.04 0.20 1.04 0.33 1.10 0.29 1.03 0.31 0.82 0.57
Prior 1 200 1.02 0.15 1.01 0.24 1.09 0.29 1.00 0.25 0.87 0.50

Prior 2 25 1.21 0.21 1.60 0.64 1.22 0.22 1.38 0.47 0.66 0.68
Prior 2 50 1.19 0.19 1.43 0.49 1.22 0.22 1.18 0.29 0.71 0.64
Prior 2 100 1.17 0.18 1.26 0.34 1.21 0.21 1.05 0.17 0.77 0.58
Prior 2 200 1.15 0.16 1.13 0.23 1.21 0.21 0.97 0.12 0.82 0.53

Prior 3 25 1.10 0.27 1.21 0.69 1.15 0.24 1.06 0.42 1.48 2.48
Prior 3 50 1.08 0.24 1.11 0.47 1.12 0.27 1.04 0.38 1.44 2.45
Prior 3 100 1.06 0.20 1.05 0.34 1.11 0.28 1.01 0.30 1.42 2.42
Prior 3 200 1.04 0.16 1.02 0.24 1.09 0.29 1.00 0.25 1.41 2.41

Prior 4 25 1.12 0.58 1.21 0.84 1.05 0.89 1.70 1.73 0.85 0.59
Prior 4 50 1.06 0.42 1.08 0.53 1.12 0.82 1.30 0.92 0.83 0.59
Prior 4 100 1.04 0.29 1.04 0.36 1.11 0.70 1.13 0.54 0.87 0.55
Prior 4 200 1.02 0.17 1.02 0.25 1.08 0.55 1.05 0.34 0.90 0.50

Prior 5 25 1.11 0.23 1.20 0.54 1.11 0.23 1.06 0.35 0.81 0.60
Prior 5 50 1.09 0.20 1.11 0.38 1.11 0.23 1.01 0.24 0.83 0.58
Prior 5 100 1.06 0.16 1.05 0.26 1.12 0.23 0.97 0.17 0.86 0.54
Prior 5 200 1.04 0.12 1.01 0.19 1.11 0.23 0.97 0.14 0.87 0.51

Wide 25 1.10 0.28 1.22 0.63 1.09 0.28 1.25 0.63 0.80 0.61
Wide 50 1.07 0.26 1.10 0.40 1.06 0.26 1.13 0.42 0.81 0.60
Wide 100 1.05 0.23 1.04 0.25 1.04 0.23 1.06 0.28 0.81 0.57
Wide 200 1.04 0.19 1.02 0.17 1.03 0.18 1.03 0.19 0.88 0.51

MLE 25 1.78 16.11 16.89 496.77 2.63 3.96 3.87 7.09 0.62 1.59
MLE 50 1.14 1.20 1.07 0.48 2.19 3.14 1.58 3.05 0.79 1.28
MLE 100 1.03 0.41 1.03 0.35 1.48 1.74 1.09 1.02 0.91 0.96
MLE 200 1.02 0.18 1.00 0.25 1.18 0.83 1.04 0.33 0.99 0.70
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Table 2.9: RR and RRMSE for different number of patients, scenario 3, with different priors
or methods. Simulation based on 1000 replications.

αE βE αT βT ρ

Setting n RR RRMSE RR RRMSE RR RRMSE RR RRMSE RR RRMSE

Prior 1 25 1.14 0.29 1.62 1.53 1.15 0.24 1.04 0.39 0.80 0.61
Prior 1 50 1.14 0.29 1.35 1.07 1.11 0.27 1.05 0.38 0.80 0.60
Prior 1 100 1.13 0.28 1.17 0.75 1.09 0.27 1.02 0.29 0.86 0.55
Prior 1 200 1.11 0.26 1.06 0.51 1.08 0.28 1.00 0.23 0.91 0.49

Prior 2 25 1.20 0.21 3.43 2.51 1.22 0.22 1.38 0.47 0.61 0.70
Prior 2 50 1.20 0.20 2.77 1.88 1.21 0.22 1.19 0.30 0.67 0.66
Prior 2 100 1.19 0.20 2.11 1.23 1.21 0.21 1.05 0.17 0.75 0.60
Prior 2 200 1.19 0.20 1.59 0.74 1.21 0.21 0.97 0.12 0.85 0.51

Prior 3 25 1.16 0.29 1.62 1.61 1.16 0.24 1.05 0.41 1.47 2.47
Prior 3 50 1.15 0.28 1.30 1.07 1.14 0.27 1.02 0.34 1.44 2.44
Prior 3 100 1.13 0.28 1.18 0.75 1.11 0.29 1.02 0.33 1.42 2.42
Prior 3 200 1.11 0.27 1.08 0.54 1.09 0.29 1.00 0.24 1.41 2.41

Prior 4 25 1.12 0.80 1.64 1.68 0.97 0.87 1.91 1.99 0.77 0.63
Prior 4 50 1.10 0.74 1.33 1.05 1.07 0.82 1.42 1.11 0.82 0.59
Prior 4 100 1.10 0.65 1.14 0.74 1.10 0.71 1.17 0.57 0.85 0.55
Prior 4 200 1.10 0.54 1.03 0.53 1.09 0.57 1.07 0.37 0.88 0.50

Prior 5 25 1.08 0.20 2.26 1.40 1.11 0.23 1.07 0.37 0.75 0.62
Prior 5 50 1.05 0.16 2.12 1.16 1.12 0.23 1.01 0.23 0.77 0.60
Prior 5 100 1.02 0.12 2.05 1.06 1.11 0.22 0.97 0.17 0.84 0.54
Prior 5 200 1.00 0.08 2.02 1.02 1.09 0.20 0.97 0.14 0.87 0.49

Wide 25 1.17 0.29 1.20 0.86 1.11 0.27 1.27 0.69 0.79 0.61
Wide 50 1.15 0.28 1.09 0.56 1.08 0.24 1.13 0.43 0.82 0.58
Wide 100 1.12 0.29 1.04 0.38 1.06 0.22 1.06 0.28 0.85 0.54
Wide 200 1.10 0.28 1.01 0.26 1.03 0.18 1.03 0.18 0.92 0.48

MLE 25 1.86 3.11 1.35 1.35 2.63 3.94 4.80 10.98 0.64 1.49
MLE 50 1.46 2.32 1.17 0.95 2.12 3.02 1.61 4.26 0.77 1.22
MLE 100 1.45 1.96 1.07 0.73 1.53 1.81 1.05 0.49 0.87 0.95
MLE 200 1.26 1.39 1.01 0.54 1.21 0.95 1.02 0.33 0.95 0.70
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Table 2.10: RR and RRMSE for different number of patients, scenario 4, with different
priors or methods. Simulation based on 1000 replications.

αE βE αT βT ρ

Setting n RR RRMSE RR RRMSE RR RRMSE RR RRMSE RR RRMSE

Prior 1 25 1.15 0.29 1.62 1.53 1.21 0.25 1.02 0.63 0.80 0.60
Prior 1 50 1.15 0.28 1.28 1.02 1.20 0.25 0.98 0.47 0.83 0.56
Prior 1 100 1.13 0.27 1.12 0.71 1.18 0.26 0.96 0.35 0.87 0.52
Prior 1 200 1.10 0.26 1.05 0.52 1.15 0.28 0.96 0.26 0.92 0.43

Prior 2 25 1.20 0.21 3.44 2.52 1.22 0.22 1.92 1.11 0.63 0.68
Prior 2 50 1.20 0.20 2.78 1.88 1.22 0.22 1.45 0.62 0.70 0.63
Prior 2 100 1.19 0.20 2.10 1.22 1.23 0.23 1.16 0.33 0.77 0.57
Prior 2 200 1.19 0.20 1.62 0.75 1.23 0.23 1.02 0.19 0.88 0.46

Prior 3 25 1.15 0.29 1.67 1.63 1.20 0.26 1.08 0.79 1.45 2.45
Prior 3 50 1.14 0.27 1.31 1.01 1.21 0.26 0.97 0.44 1.42 2.42
Prior 3 100 1.13 0.27 1.13 0.70 1.19 0.26 0.95 0.31 1.41 2.41
Prior 3 200 1.12 0.26 1.03 0.52 1.16 0.28 0.96 0.27 1.40 2.40

Prior 4 25 1.11 0.81 1.49 1.44 1.12 0.99 1.45 1.38 0.81 0.60
Prior 4 50 1.09 0.74 1.25 0.97 1.20 0.97 1.25 0.87 0.84 0.57
Prior 4 100 1.10 0.64 1.10 0.70 1.22 0.93 1.13 0.61 0.87 0.51
Prior 4 200 1.07 0.53 1.03 0.52 1.22 0.86 1.06 0.48 0.91 0.45

Prior 5 25 1.06 0.17 2.27 1.38 0.97 0.06 2.04 1.05 0.73 0.60
Prior 5 50 1.04 0.14 2.15 1.18 0.96 0.04 2.01 1.01 0.75 0.57
Prior 5 100 1.01 0.10 2.07 1.08 0.96 0.04 2.01 1.01 0.78 0.54
Prior 5 200 0.99 0.06 2.03 1.03 0.95 0.05 2.00 1.00 0.83 0.46

Wide 25 1.18 0.29 1.17 0.81 1.17 0.28 1.25 1.00 0.83 0.58
Wide 50 1.17 0.29 1.09 0.54 1.15 0.28 1.10 0.58 0.85 0.56
Wide 100 1.15 0.30 1.03 0.37 1.13 0.28 1.03 0.36 0.89 0.52
Wide 200 1.11 0.28 1.00 0.26 1.10 0.28 1.00 0.27 0.91 0.45

MLE 25 3.40 4.90 1.49 2.86 1.60 3.00 1.41 1.44 0.77 1.30
MLE 50 3.28 4.70 1.18 0.99 1.47 2.41 1.18 1.00 0.87 1.05
MLE 100 2.75 3.98 1.07 0.72 1.42 2.08 1.05 0.73 0.98 0.78
MLE 200 2.19 3.11 1.02 0.56 1.31 1.52 1.01 0.52 0.99 0.60
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Figure 2.1: Toxicity, efficacy and “efficacy and no toxicity” probabilities for four sce-
narios. The parameters are (−2, 1, 2, 0.5, 0.5), (−2, 0.5, 2, 0.5, 0.5), (−2, 0.2, 2, 0.5, 0.5) and
(−2, 0.2,−2, 0.2, 0.5) respectively.
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Figure 2.2: Efficacy and no toxicity probabilities for four scenarios. The correlation param-
eter is assumed to be -1, 0 and 1 for each scenario.
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Figure 2.3: The deviance measure in scenarios 2 and 4 for both Bayesian and MLE methods.
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(b) Scenario 2
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(c) Scenario 3
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Figure 2.4: Deviance measure in scenarios 1 – 4 for designs operated on wide and narrow
dose ranges.
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Figure 2.5: Dose allocation measures in scenarios 1 and 4 for designs operated on wide and
narrow dose ranges.
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Figure 2.6: Design measures for scenarios 1 and 4 using different priors.
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Chapter 3: Sequential Designs with Penalty

Model-based Bayesian methods are used to incorporate experts’ opinion, identify an optimal

dose with high efficacy and low toxicity, and reduce the sample size (Thall and Cook, 2004).

In particular, Thall and Cook (2004) consider desirability contours as trade-offs between

efficacy and toxicity to protect patients. The doses with high desirabilities are those with

low toxicity and high efficacy. Their philosophy is to maximize the desirability. To find the

optimal dose, patients are sequentially assigned to the dose with the most desirable utility,

while the utility function is updated with new parameter estimates. We call these “best

intention” Bayesian designs. The term “best intention” was first used by Fedorov et al.

(2011) who examine best intention designs in the frequentist setting.

Although great focus has been put on inventing novel utility functions and stopping rules

in literature, few have examined the convergence of best intention Bayesian designs. On

the one hand, these designs target a single dose, and the targeting depends on estimation of

parameters. However, single dose designs are typically poor at producing good estimates.

It is possible that the selected dose has the least utility. On the other hand, one cannot fully

utilize the dose-response relationship without accurate parameter estimates. Better doses

beyond the preselected dose range may be inferred from the dose-response relationship,

which leads to a more powerful phase III trial. Biostatistician should be aware and cautious

about these facts when devising best intention Bayesian designs.

From a different point of view, we conducted sequential designs in the last chapter to

maximize the information about the dose-response relationship. In practice, difficulty arises

from ethical considerations. A design may be optimal for efficiency or precision, but it may

also allocate participants at a high dose level with high toxicity. Therefore, achieving a

balance between the information gain and participants’ protection becomes important in

these designs. There are some methods to address this problem: the restricted dose space
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method (Mats, Rosenberger and Flournoy, 1998) sets an upper bound for the dose; the

local penalty function method (Dragalin and Fedorov, 2006) penalizes high doses with high

toxicity and low doses with low efficacy through a penalty function. The philosophy in

the information-based methods is to maximize the information gain over a restricted space.

So far we have two different philosophies for best intention design and information-based

design. Therefore, an interesting question is which design philosophy has better performance

with respect to important outcome measures.

In this chapter, we first introduce Thall and Cook’s (2004) method and compare it with

an information-based design. Then we extend the information-based method by considering

a class of penalty functions. Next, we conduct simulations to illustrate possible problems

with the best intention design using the proposed penalty function. Last, we examine

the performance of best intention designs and information-based designs under different

scenarios. In particular, we examine how the penalty function impacts the estimation

convergence rate in Bayesian sequential designs and how the estimation impacts the penalty

function.

3.1 Common Bayesian sequential procedure

During the design stage of a trial, we do not have information on the true parameter value for

the given model. But the clinician may supply vague information about these parameters,

either from preclinical studies or clinical studies with a similar compound. Therefore it is

worthwhile to incorporate this prior information into the design, so that we can efficiently

achieve the clinical goal – identifying a safe and efficacious dose. Also from an ethical

perspective, patients should not be assigned on highly toxic or ineffective doses. Therefore

we have to implement a design to achieve the clinical and ethical goals at the same time.

Bayesian adaptive sequential designs can serve this purpose very well. Instead of assigning

all patients at the same time, we assign them one by one or in groups as we accumulate

information about the true parameters. With more information about the dose-response

relationship, we can have a better chance of selecting doses and protecting participants.
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Suppose the prior distribution density function π(θ) for θ is defined on Θ. Also a penalty

function δ(x; θ) is chosen to achieve certain clinical and ethical goals, so that the optimal

dose x∗ minimizes δ(x; θ). After we initialize n0 patients to the lowest dose x1, a Bayesian

sequential design proceeds iteratively through the following steps:

1. Suppose n participants are assigned to the preselected doses. Their bivariate responses

are collected and denoted by Dn;

2. Obtain the posterior distribution πn(θ|D), and apply some stopping rule. If the stop-

ping rule is triggered or a preseclected maximal sample size N is reached, terminate

the trial;

3. Assign the next participant to the dose that minimizes the expected penalty:

x(n+1) = arg max
x∈{x1,...xm}

∫

Θ
δ(x, θ)πn(θ|Dn)dθ;

4. Obtain the new response (yn+1, zn+1).

It is commonly assumed that, as iterations increase, the Bayesian sequential proce-

dure converges by assigning most patients to the optimal dose x∗ with accurate parameter

estimates. We argue that it is not always the case when the design aims at a single opti-

mal dose. Throughout the paper, we emphasize parameter estimation and exclude stopping

rules. Technical problems such as prior elicitation and Markov chain Monte Carlo (MCMC)

algorithms are deferred to later sections.

3.1.1 Computational issues

The simulation programs are coded in C and run on a Unix cluster with an Intel Xeon CPU

E5440 (2.84 GHz) and Red Hat 4.3.0 operating system. We use gcc version 4.3.0 as the C

compiler. The run time is estimated as 11 hours for λ = 1 and 17 hours for λ < 1 with a

sample size of 200. All the graphics are done in R with the ggplot2 packages version 0.9.3.1

(Wickham, 2009).
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The main algorithm for assignment is included in Section 3.1. It is divided into three

components – generating responses according to the Gumbel model, generating MCMC

samples, and calculating the determinant of the Fisher information matrix.

To generate the response from the Gumbel model, we generate responses from a multi-

nomial distribution with cell probabilities given in Section 1.4.1. To generate samples from

a uniform distribution, we use the random number generator r8 uniform 01 developed by

Burkardt (2006) in the NORMAL library. The seed for the random number generator is

fixed at 1234.

All the mathematical functions can be found in the math.h library included in most C

compilers. Matrices and vectors are coded in the array structure in C. The determinant of a

matrix is obtained by using the Gauss-Jordan elimination method (Fraleigh and Beauregard,

1995). The inverse of a three by three matrix is obtained using the inverse formula (Fraleigh

and Beauregard, 1995). The expression of the Fisher information matrix is given in Section

1.4.2. The MCMC algorithm is given in Section 2.3.2.

3.2 Thall and Cook’s best intention design

Similar to Fedorov et al. (2011), we define a design to be best intention when all patients

are assigned to a single dose given the true parameter. Here penalty functions are used to

measure the trade-off between efficacy and toxicity. An ethical penalty function takes high

values on doses that are toxic or ineffective. An dose is ethically the most desirable when

the penalty is minimized. With only toxicity in tradition phase I trials, the penalty function

measures the distance between a dose and the maximum tolerated dose. Substituting ethical

penalty functions in the common Bayesian sequential procedure, researchers have introduced

many Bayesian designs (Thall and Cook, 2004; Yin et al., 2006; etc.). They are all best

intention Bayesian designs because they are aiming at assigning most patients to the (single)

most desirable dose. In this section, we conduct simulation to compare Thall and Cook’s

(2004) best intention design with our information-based information.
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Recall that Thall and Cook (2004) considered the following toxicity and efficacy effects

in a Gumbel model:

xE = µE + βE1x+ βE2x
2

xT = µT + βTx.

The desirability function is defined in Chapter 1 by:

δ(πq) =
ρ(πp)

ρ(πq)
− 1.

The algorithm starts from the lowest dose and escalates through steps. At each step, a

cohort of three patient are assigned to the dose with the highest desirability according to

the posterior. If the expected toxicity is higher than a critical value, the algorithm stops.

They showed that the trade-off algorithm assigns the most patients to the most desirable

dose. However, because efficiency of estimation is not their primary concern, yet their

algorithm relies on precise parameter estimation, the trade-off method may not be robust

to model misspecification. As a result, the algorithm may not be efficient compared to our

algorithm with respect to participant protection.

3.2.1 Practical criteria

To evaluate the performance of the penalized Bayesian sequential design and Thall and

Cook’s trade-off design, we record the measures from two categories, one related to infor-

mation gain and the other related to toxicity and efficacy trade-off desirability:

1. Expected number of toxicities, i.e. events of Z = 1, denoted by “Toxicity”;

2. Expected number of efficacies, i.e. events of Y = 1, denoted by “Efficacy”;

3. Expected number of efficacies but not toxicities, i.e. events of Y = 1 and Z = 0,

denoted by “Eff-Tox”;
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4. Expected average desirabilities across four doses, denoted by “Desirability” (larger is

better);

5. Expected number of patients assigned to dose with the highest desirability, denoted

by “DesHigh”;

6. Expected precision, log |M(ξ, θ0)|
−1/6, denoted by “Precision” (smaller is better);

7. Expected total cost, C(ξ, θ0), denoted by “Cost” (smaller is better);

8. Expected information loss per cost, |M(ξ, θ0)|
1/6/C(ξ, θ0), denoted by “Info/Cost”

(larger is better).

The last three measures are used in Dragalin and Fedorov (2006). The trade-off design

(Thall and Cook, 2004) is expected to assign most participants to the most desirable dose.

On the other hand, the penalized design (Dragalin and Fedorov, 2006) is expected to achieve

a high Info/Cost ratio, which balances the parameter estimation precision and the ethical

cost.

3.2.2 Simulation with severely misspecified prior

We present an example in which the least desirable dose is assigned for Thall and Cook’s

method. We assume the prior is misspecified in a way that it overestimates the toxicity
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probability. In the Gumbel model, the prior is

µE ∼ N(−0.5, 1.12),

βE1 ∼ N(0.5, 0.92),

βE2 ∼ N(0.1, 1.12),

µT ∼ N(0.25, 0.92),

βT ∼ N(3, 1.72),

α ∼ U [−1, 1],

where the true parameter is (0.5, 0.5, 0.1,−1.5, 0.25, 0). The corresponding desirability un-

der the true parameter is included in Table 3.6.

In a simulation of 300 iterations, Thall and Cook’s method always assigns patients to

dose level 1. Specifically, it assigns 300 patients to the lowest dose. However, although they

claim the method assigns most patients to the most desirable dose, it is not the case in our

setting. The method also gives poor parameter estimation. The parameter are estimated

as (0.05, 0.40, 0.97,−0.90, 1.51,−0.57) at the 300th iteration.

Dragalin and Fedorov’s methods do not have this property. It assigns only 93 patients

to the lowest dose and assigns 123 patients to the highest dose with the most desirability

(Table 3.6). It also yields better estimators after the 300th iteration. The estimation from

two methods are summarized in Table 3.2.

3.2.3 Simulation with mildly misspecified prior

We conduct a simulation study to compare the penalized method with the trade-off method.

We choose a similar setting as Thall and Cook (2004) in which the design sample size is 36

and the initial sample size is 3. We assume the dose-response curve follows a Gumbel model

with true parameter θ0 = (−1.5, 3, 0.5,−0.5, 0.5, 0.5) in scenario 1 and (−1, 1, 0.5,−1, 1, 0.5)
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in scenario 2. The prior distribution is chosen almost the same as in TD2004: µE , βE1, βE2, µT

and βT are independently normally distributed with means and standard deviations (-1.496,

1.113) for µE , (1.180, 0.069) for βE1, (0.149, 1.192) for βE2, (-0.619, 0.941) for µT and

(0.587, 1.659) for βT . The different setting is the correlation parameter α, which is assumed

to follow a uniform distribution on [−1, 1]. All parameters are independently distributed.

Because there are six parameters, it is computationally infeasible to compute six dimen-

sional integrations over the posterior distribution. Thus we employ Monte Carlo methods

to approximate the expectations in a six dimensional space. Specifically, we generate two

chains, each with 5000 θ’s, and approximate the expectation by the average.

The raw dose d is transformed to x in the same way as Thall and Cook (2004): xi =

log(di)−mean(d). Therefore, the dose space X consists of -0.79, -0.10, 0.30 and 0.59 instead

of the four raw doses, 0.25, 0.5, 0.75 and 1. We use the same desirability function defined

in Thall and Cook (2004) and obtain their desirabilities as -0.194, -0.137, 0.021 and 0.161

in scenario 1 and 0.002, 0.031, 0.080 and 0.109 in scenario 2. Their probabilities of efficacy

and toxicity are (0.027, 0.290), (0.142, 0.366), (0.368, 0.414) and (0.611, 0.449) in scenario 1

and (0.186, 0.143), (0.250, 0.249), (0.343, 0.332) and (0.442, 0.399) in scenario 2. The true

parameters are chosen so that the efficacy increases faster than toxicity in scenario 1, and

they have comparable increasing rate in scenario 2.

We implement 5000 simulations for each scenario. One simulation of the penalized

algorithm starts by assigning 3 patients to the lowest dose for a fair game. Then we begin

the iteration in a few steps. Specifically, we estimate the posterior distribution based on

the responses and the prior using MCMC. Then we assign the next patient to an optimal

dose. Also we obtain the bivariate response for each patient according to the true model.

We continue the iterations until all 36 patients are assigned. The trade-off algorithm is

implemented in the same manner as Thall and Cook (2004).

As for the simulation result, we have 5498 simulations in scenario 1 and 5271 simulations

in scenario 2 until the trade-off algorithm produces 5000 complete trials in each scenario.

Table 3.3 includes the results of the two methods for scenario 1 and Table 3.4 for scenario
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2. They perform similarly with respect to protecting the patients, for they result in the

similar Toxicity, Efficacy and Eff-Tox. For desirability considerations, the trade-off method

is expected to outperform the penalized method. However, the penalized method performs

better by putting more patient on the dose with highest desirability in both scenarios. The

penalized method also achieves a higher average desirability than the trade-off method in

scenario 1. When it comes to the precision measure, the penalized method performs better

with more estimation information (or low Precision value) and less cost as expected. As a

result the penalized method has larger and better Info/Cost ratios. Note that our penalized

method has smaller Monte Carlo variations and performs more consistently due to a more

efficient parameter estimation. Overall, the penalized method performs more stably and

provides more information than the trade-off method in our settings. The effect is amplified

when efficacy increases faster than toxicity.

These results have been published in Gao and Rosenberger (2013) and have been re-

ported by Gao at the statistics in Biomedical research conference at National Institute of

Health (NIH) in 2012.

3.3 Penalty function

In this section, we consider a class of penalty function introduced by Dragalin and Fedorov

(2006). Also, we examine local designs with the penalty functions and show how penalty

impacts local designs.

As shown in the introduction, there are two types of penalty function, given by Dragalin

and Fedorov (2006) and Thall and Cook (2004). The former is more complex in the sense

that it uses p10, so it depends on the correlation parameter. Consider a situation where the

correlation is high for drug A and low for drug B, and the drugs share common toxicity

and efficacy parameters. The drugs will have equal penalty using Thall and Cook’s (2004)

method, while drug A has more penalty than drug B using Dragalin and Fedorov’s (2006)
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method. In this dissertation, we use Dragalin and Fedorov’s (2006) penalty function:

c(x, θ;CE , CT ) = [p10(x, θ)]
−CE [1− p01(x, θ)− p11(x, θ)]

−CT .

They did not specify how to choose the constant CE and CT . As in Thall and Cook’s

(2004) trade-off method, we propose to fix CE at 1 and determine CT with experts’ input.

Specifically, we ask experts to provide two probability pairs, (pA10, p
A
T ) and (pB10, p

B
T ), with

equivalent penalty (desirability). Then CT is determined by

CT =
log

(

pA10
)

− log
(

pB10
)

log
(

1− pBT
)

− log
(

1− pAT
) .

For example, if (0.3, 0) and (0.5, 0.2) are selected to be equivalent, then CT is 2.23.

Recall that the penalized D optimality in Dragalin and Fedorov (2006) is:

Φ′(ξ, θ) = det

{

[

M(ξ, θ)

C(ξ, θ)

]−1
}

.

Pronzato (2010b) considered a more flexible criterion:

Φ′′(ξ, θ) = log det
{

[M(ξ, θ)]−1
}

+ λC(ξ, θ),

where λ is introduced to control the compromise between information gain and ethical

penalty: the design criterion puts more weights on ethical goals as λ increases. We rewrite

Dragalin and Fedorov’s (2006) penalized D optimality criterion as:

Φλ(ξ, θ) = (1− λ) log det
{

[M(ξ, θ)]−1
}

+ pλ logC(ξ, θ). (3.1)

When λ = 0.5, it reduces to the criterion of Dragalin and Fedorov (2006). The corresponding
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directional derivative is given by

φλ = (1− λ)
{

Tr[M−1
ξ Mx]− p

}

− λ

{

c(x, θ)

C(ξ, θ)
p− p

}

.

Cook and Wong (1994) and Clyde and Chaloner (1996) showed optimal designs from

weighted criteria are equivalent to designs from a constrained criterion for different models.

Also they considered the relative information efficiency and ethical efficiency:

Effλ(ξ) = exp

(

Φλ(ξ
∗
λ)− Φλ(ξ)

p

)

,

where ξ∗λ is the optimal designs that minimizes the penalized criterion Φλ.

We examine the penalized local D-optimal design with different λ for our four scenarios

in Table 3.5–3.8 with relative information and ethical efficiencies. We see that information

efficiency decreases and ethical efficiency increases as λ increases. The penalty coefficient

λ can be determined by examining the operational characteristics of a series of λ. One of

the operational characteristics is the weight of the most desirable dose, denoted by w∗
c in

Table 3.5–3.8. For example, if the design is required to put at least 50% patients on the

most desirable dose, then we can choose λ = 0.6, 0.8, 0.4 and 0.4 respectively for scenario

1,2,3 and 4.

3.4 Problems with best intention designs when λ = 1

Although it is claimed that best intention Bayesian designs assign most patients to the most

desirable dose, there is a chance that the designs perform poorly by assigning all patients to

the least desirable doses. This can be understood by examining their dynamic nature. In

these designs, assignments are determined by an ethical penalty function, and the quality of

parameter estimates is important: good estimates lead to good assignments, which in turn

lead to more accurate parameter estimates. However, good quality of parameter estimates

rely on accurate prior information and balanced dose allocation. In the worst case scenario,
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a trial starts with a misspecified prior that gives rise to unbalanced dose allocation. The

information from unbalanced data is not sufficient to correct the misleading prior knowledge.

In the end, all patients are assigned to only a few doses, which turn out to be the least

desirable doses. Although the toxicity and efficacy probabilities can be learned at the

allocated doses, much more could have been learned about the dose-response relationship.

The loss is the chance to assign better doses and make better decisions with respect to

further studies.

In this section, we consider best intention designs with λ = 1 in (3.1). We consider

two examples where information-based designs with λ < 1 outperform best intention de-

signs. Also we examine the convergence issue of best intention Bayesian methods through

simulations.

In this section, we conduct simulations to examine the convergence of parameter esti-

mates for the best intention Bayesian design and the information-based design introduced

in Section 3. Two different design settings are given in Examples 1 and 2. Under each

design setting, we run 1000 simulations for both model. In each simulation, we assign 200

patients sequentially according to the Bayesian sequential procedure. Then we examine the

operating characteristic for both designs with different sample sizes. The most interesting

sample size is 50, which is typical for phase I trials. Recall that given the compound penalty

function (3.1), λ = 1 corresponds to a best intention design, while λ < 1 corresponds to an

information based design.

Example 1

Best intention designs can cease to gain new information about the dose-response rela-

tionship once it begins assigning participators to a single dose. Given incorrect parameter

estimates, the dose is probably not optimal. We demonstrate this convergence issue for

the best intention designs here. Four doses are chosen. The prior toxicity is assumed to

increase faster with dose than the true value. The prior efficacy is the same as the true

value. Specifically, the prior mean is (-1.5, 1, -0.25, 3) for (αE , βE , αT , βT ) with standard
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deviation 1. The prior distribution for ρ is a uniform distribution on [-1,1]. The true pa-

rameter is (−1.5, 1, , 3, .6,−0.9). The efficacy, toxicity, “efficacy and no toxicity” probability

and ethical penalty are included in Table 3.9.

Setting λ = 1 and 0.5, we obtain a best intention design and an information-based design.

The dose allocation distributions are included in Figure 3.1(a). In most simulations, all 200

patients are assigned to the lowest dose level in the best intention design, which is the

least desirable dose. There are more balanced assignments in the information-based design.

Because of this, the information-based design has a better ethical performance for the set of

parameters. Given a sample size of 50, the median proportion of toxicity in Figure 3.1(b) is

0.08 for the best intention design and 0.14 for the information-based design. However, the

information-based design has higher proportions for efficacy and “efficacy and no toxicity”

(0.78 and 0.66) than the best intention design (0.64 and 0.60).

The mean MAP estimates θ̂n are plotted against the sample size n for each parameter

in Figure 3.2. For the best intention design, the estimates remain about the same as

the misspecified prior for each n. Unlike in the best intention design, the estimates in

the information-based design tend to converge to the true value. The slope parameter

βT converges faster than the intercept αT . The correlation parameter converges with the

slowest rate.

To illustrate the learning about the dose-response relationship, we estimate the optimal

dose using MAP estimates. We include the distributions of the estimated optimal dose with

n patients for n = 25, 50, 100, and 200 in Figure 3.1(c). The true optimal dose at 0.0 is

not included in any interquartile range. However, the information-based design has closer

estimates than the best intention designs. The estimates from the latter scatter around the

prior optimal dose at −1.1.

In this example, the estimates from the best intention design converge to wrong values

when the design starts assigning patients on a single dose, given the severely misspecified
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prior.

Example 2

In this example, we assume that sponsors decide to launch an early phase trial for they

believe a drug is promising based on non-human experiments. Then this belief can be trans-

lated to an optimistic prior, which assumes strong efficacy and weak toxicity. Therefore,

we will use an optimistic prior to examine the operating characteristics of the designs. We

choose four doses. The prior efficacy is assumed to increase faster with dose than the true

value. Slightly higher toxicity is assumed in the prior. Specifically, the prior mean is (-2.5,

1, 2.5, 1) for (αE , βE , αT , βT ) with standard deviation 1. The prior distribution for ρ is

a uniform distribution on [-1,1]. The true parameter is (−2, 0.2, 2, 0.5, 0.5). The efficacy,

toxicity, “efficacy and no toxicity” probability and ethical penalty are included in Table 3.9.

Setting λ = 1, 0.8 and 0.5, we obtain one best intention design and two information-

based designs. All designs give similar MAP estimates for αE , αT and ρ. However, the

estimates for βE and βT are different. We include the root of mean square error for the

two parameters in Table 3.10. The best intention design (λ = 1) has poor estimates for βE ,

because the RMSE does not change much as the sample size increases from 50 to 200. This

is possibly caused by a small-range dose allocation. The information-based designs (λ = 0.8

and 0.5) have poor estimates for βT with a sample size of 50.

For dose allocation weights, we note that the first dose is the optimal dose. In terms

of simulation medians in Figure 3.3(a), the best intention design assigns most patients

(80%) to the second dose, given a sample size of 50. In contrast, the information-based

designs (λ = 0.5 and 0.8) assign the most participants (42% and 46%) to the optimal dose.

The information-based designs have smaller variation for the first and second dose weights,

meaning that they perform more stably than the best intention design. This is due to more

accurate parameter estimates caused by multiple-dose allocations.

We examine ethical gains by looking at the median proportions of efficacy, toxicity and

“efficacy and no toxicity” in Figure 3.3(b). The information-based design with λ = 0.5
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has the highest efficacy (0.56), followed by the other two designs (0.54 for both). Due to

multiple-dose allocations, the design with λ = 0.5 has higher median toxicity proportion

(0.24) than the other two designs (0.18 for both). All the designs have the same “efficacy

and no toxicity” proportion (0.40).

The optimal doses are estimated using the MAP estimates with n patients for n = 25,

50, 100, and 200. Their distributions are included in Figure 3.3(c). The true optimal dose

at −2.45 is included in all interquartile ranges. However, the information-based designs

have more confidence about the true optimal dose than the best intention design.

We see that the information-based designs have better and more stable dose-allocations

than the best intention design by assigning most participants to the most desirable dose.

They also provide better estimates about the optimal dose given the MAP estimates. The

choice between the two information-based designs requires additional considerations. When

toxicity is a major concern, we prefer to use the design with λ = 0.8 because it produces

smaller number of toxicities. When performance stability is a major concern, we prefer the

design with λ = 0.5.

3.5 Sequential designs with different priors

In this section, we simulate sequential designs to investigate several problems: how information-

based designs compare with best intention designs on different measures; how design op-

erating characteristics change with the support of the prior distribution; how designs with

uniform priors perform compared to normal priors; how do the two types of design perform

with misspecified correlation.

To answer these questions, we conduct simulations using the same scenarios as in the

last chapter. We set λ to be 0.5, 0.8 and 1 for each scenario. We also select five different

priors listed in Table 3.11. We conduct Monte Carlo simulations with 1000 replications for

each scenario. We assign 1000 patients in one replication. After 50 patients are assigned, we

monitor quantities from several aspects: information criteria, event proportions, estimated
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optimal doses, parameter estimates and dose allocation weights.

Question 1: Do the designs converge to the optimal designs respectively?

Convergence can be measured in two ways. The first measure is the L1 distance between

the dose allocation weight of the optimal design and those in simulations shown in Figure

3.4. Here we use prior 1. As the sample size increases, the L1 distance tends to zero

and convergence is better. With a sample size of 50 in scenario 1, the information-based

design with λ = 0.5 has the best and the smallest distance measures. All the designs show

convergence because the distance measures tend to zero as the sample size increases. The

best intention design with λ = 1 converges the fastest. The information-based design with

λ = 0.8 has the slowest convergence rate. In scenario 4, there is a convergence issue with

the best intention design, because the distance measure gets far away from zero when the

sample size increases. However, the information-based designs still show convergence.

The second measure is the penalized criterion Φλ. We expect this measure to converge

to one. We include the distribution of this measure in Figure 3.4. In scenario 1, all three

designs show convergence. We also observe that the best intention design has the lowest

penalized criterion value, due to different scales between the information criterion and the

ethical criterion. In scenario 4, information-based designs show convergence, while the best

intention design appears to converge with the slowest rate.

We conclude that information-based designs converge to the penalized optimal design

regardless of prior misspecification. The best intention converges to the optimal design

when the prior is mildly misspecified, and does not when the prior is severely misspecified.

Question 2: How does the best intention design compare with information-based

designs with respect to operating characteristics?

We investigate this question with a fixed sample size of 50. The operating characteristics

for scenarios 1 and 4 are included in Figure 3.5. We use prior 1. First, we investigate dose

allocation weights. In scenario 1, all designs assign most patients to the last two doses
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that have the least penalty. The best intention design also identifies the optimal dose by

assigning most patients to dose 3. In scenario 4, the design with λ = 0.5 converges to the

optimal dose allocation by assign more patients to optimal dose 1. The design with λ = 0.8

is unstable – although it assigns more patients to dose 1, it also assigns a great number of

patients to dose 4. The best intention design still assigns the most patients to dose 3, which

means the design is the so influenced by the prior information that it is not adapted well

to data.

When it comes to the learning about the dose-response relationship, we investigate the

distribution of the estimated optimal dose in Figure 3.5. In scenario 5, all designs perform

well by having estimates close to the true optimal dose. In scenario 4, the best intention

design performs the worst, by underestimating the optimal dose.

The proportions of events are included in Figure 3.5. In scenario 1, the three designs

perform similarly. We see that designs with λ = 0.5 and 1 have lower toxicity than that with

λ = 0.8. The design with λ = 0.8 has the highest efficacy. As a result, designs with λ = 1

and 0.8 have higher “efficacy and no toxicity” than the rest. In scenario 4, the three designs

perform very similar with similar “efficacy and no toxicity”. The design with λ = 0.5 has

the least toxicity, while the design with λ = 1 has the highest efficacy.

In conclusion, the best intention design performs better when the prior is mildly mis-

specified. However, it may not adapt well to data. When the prior is severely misspecified,

it may cause problems by assigning patients to highly toxic doses. The learning about

the dose-response relationship is also poor in this case. In contrast, the robustness of the

information-based design is less influenced by the prior information, and can provide better

learning about the dose-response relationship and thus better protection.

Question 3: How do different priors affect the operating characteristics of de-

signs?

We consider sequential design with priors 1, 2, 4 and 5 in Table 3.11. In particular,

we examine the dose allocation weights, event proportions, estimated optimal doses and
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parameter estimates in scenario 4. The dose allocation weights for scenario 1 are included

in Figure 3.6. We see that weights of the design with λ = 0.5 are similar across priors,

which shows robustness. The best intention design changes dramatically under different

priors. For example, with the informative prior 5, it incorrectly assigns almost all patients

to dose 3, which is the optimal dose in priori. The assignment becomes more and more

unstable as the prior becomes less and less informative from 2 and 5 to 1 and 4. The design

with λ = 0.8 acts as a compromise between the other two designs – it has balanced dose

allocation, but weights becomes unstable as prior becomes noninformative.

The parameter estimates are included in Figure 3.7. Designs with the prior 1 have very

good estimates about the slopes βE and βT . However, the estimates for αE and αT are

not good, although the information-based designs have slightly better estimates for αE .

Designs with the prior 4 have good estimates for βE and βT . Although the true αE and

αT are contained in the interquartile ranges of the estimates, the ranges are extreme large.

This results in unstable estimates. Designs with the prior 2 overestimate βE . The estimates

for αE and αT are poor for they are stuck at prior values. Designs with the prior 5 have

very good estimates for αE and αT . However, accurate estimates about the slope cannot

be obtained because the true value is below the designated prior support.

The estimated optimal doses are included in Figure 3.8. Because this measure is

based on parameter estimates, we can draw similar conclusion as the last paragraph. The

information-based designs perform better than the best intention design with noninforma-

tive priors 1 and 4. This is due to worse parameter estimates for the best intention designs.

However, there is no difference among the designs with informative priors 2 and 5. The

estimated optimal doses are close to the prior optimal dose with the prior 2. The estimated

optimal doses get better with the prior 5.

We include the event proportions in Figure 3.9. One should immediately notice the great

variation for the best intention design when the prior is 2 or 5. The two sources contributing

to the variation are dose allocation and response variations. Although the best intention

design has little dose allocation variation, for it assigns almost all patients to dose 3, there
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are still great variation from the response. Comparing the prior 4 with prior 5, we see that

dose allocation contributes a little to the event variation. Designs with λ = 0.5 0.8 and 1

perform similarly with different priors.

We conclude that the information-based design with λ = 0.5 is more robust to different

priors with consistent dose allocation weights. Priors are the most influential for the best

intention design where unstable dose allocation is observed. The great variation of responses

makes it difficult to produce precise parameter estimates. Although the estimation variation

can be reduced by imposing informative priors, these priors introduce estimation bias.

Question 4: How does misspecified correlation affect the operating characteris-

tics of designs?

We investigate this problem in scenario 8. We compare prior 1 with prior 3. Note

that the support of ρ is [0, 0.7] in prior 1 and [−0.9,−0.7] in prior 3, while the true ρ is

0.5. Thus, prior 1 has correctly specified prior correlation while prior 3 has misspecified

prior correlation. First, designs with different priors perform equally well in estimating

all paramors except the correlation. This confirms what we observe for information-based

designs in Chapter 2. Second, we are interested in how the correlation parameter affects

dose allocation. Note that patient assignments depend on correlation through the penalty

function. Dose allocation weights are included in Figure 3.10. When λ = 0.8 or 1, We see

that prior 3 leads to more stable dose allocation despite its poor estimates of correlation.

Also, designs with prior 3 assign less patients to the toxic dose 4. However, when λ = 1,

we see that prior 3 prior 1 leads to more stable dose allocation. This supports what we

observed in Chapter 2, where misspecified correlation leads to unstable information-based

designs. The estimated optimal doses are included in Figure 3.10. We see that prior 3 leads

to uniformly better learning about the dose-response relationship due to smaller variation.

This is due to the more informative correlation prior used in prior 3. We summarize that

when the penalty coefficient is close to one, the use of an informative prior for correlation

may be beneficial even if it is misspecified, because an informative prior leads to stable dose
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allocation. However, this dose not apply to information-based designs with small λ.

3.6 Conclusion

In this chapter, two design philosophies are compared. In the best intention design phi-

losophy, patients are assigned to minimize the ethical penalty. In the information-based

design philosophy, patients are assigned to maximize the learning about the dose-response

relationship. The ideal outcome in these designs is to estimate an optimal dose that can be

passed on to future study. A good estimated optimal dose indicates good learning about

the dose-response relationship. Given misspecified priors, we identify the non-convergence

issue with best intention designs using both Thall and Cook’s (2004) or Dragalin and Fe-

dorov’s (2006) ethical penalty functions. In these cases, information-based designs perform

better with more stable estimates of the optimal dose. However, information-based designs

may have ethical issues by assigning patients to highly toxic doses. To solve this problem,

we introduce a penalty coefficient to balance the information goal and ethical goal. It is

shown that a compromise between the two goals can be achieved by tuning the penalty

coefficient. In addition, we examine the impact of different priors to parameter estimation

and dose allocation. We find that informative prior performs well when priors are not mis-

specified. Non-informative priors results in more robust designs when prior misspecification

becomes severe. In our experiment with misspecified correlation, we find that designs with

informative prior leads to stable dose allocation.
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Table 3.1: The assignment after 300 iterations for Thall and Cook (TC)’s method and
Dragalin and Fedorov (DF)’s method.

dose level pE pT Desirability No. assigned by TC No. assigned by DF

1 0.54 0.15 0.68 300 93
2 0.61 0.18 0.87 0 84
3 0.66 0.19 1.01 0 1
4 0.70 0.21 1.09 0 123
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Table 3.2: The parameter estimation after 300 iterations for Thall and Cook (TC)’s method
and Dragalin and Fedorov (DF)’s method.

µE βE1 βE2 µT βT α

True 0.50 0.50 0.10 -1.50 0.25 0
TC 0.05 0.40 0.97 -0.90 1.51 -0.57
DF 0.33 0.13 0.11 -1.48 0.17 0.43
Prior -0.50 0.50 0.10 0.25 3 0
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Table 3.3: Summary of Monte Carlo simulations for scenario 1. The mean and standard
deviation (sd) of the measures defined across the 5000 complete trials are listed for each
method.

Measure Penalized Trade-off
mean (sd) mean (sd)

Toxicity 14.69 (2.80) 14.51 (2.61)
Efficacy 15.36 (3.33) 14.40 (4.89)
Eff-Tox 7.78 (2.92) 7.24 (2.58)

Desirability 0.012 (0.005) 0.0079 (0.019)
DesHigh 22.04 (5.16) 17.55 (10.03)

Precision 29.48 (2.68) 33.78 (3.57)
Cost 14.13 (0.198) 18.83 (9.12)
Info/Cost 0.0024 (0.0002) 0.0018 (0.0005)
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Table 3.4: Summary of Monte Carlo simulations for scenario 2. The mean and standard
deviation (sd) of the measures defined across the 5000 complete trials are listed for each
method.

Measure Penalized Trade-off
mean (sd) mean (sd)

Toxicity 10.68 (2.47) 11.03 (2.69)
Efficacy 11.85 (2.96) 12.07 (3.37)
Eff-Tox 7.1 (2.44) 7.34 (3.54)

Desirability 0.016 (0.004) 0.017 (0.006)
DesHigh 16.40 (6.49) 14.9 (10.30)

Precision 57.46 (4.56) 68.83 (7.01)
Cost 7.17 (1.11) 7.40 (0.20)
Info/Cost 0.0025 (0.0004) 0.0020 (0.0002)
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Table 3.5: Penalized optimal designs for scenario 1, Gumbel model. In the optimal designs,
design points are included in the first row, weights are included in the second row, and
penalty is included in the third row.

Scenario λ Penalized optimal design Φλ Φ0 Φ1 Eff0 Eff1 w∗

c

θ = (−2, 0.5, 2, 0.5, 0.5)

1 0





−6.06 −1.15 2.48 7.9
0.17 0.33 0.3 0.2
10.98 4.57 8.85 30.06



 11.38 11.38 22.19 1 0.03 0.33

1 0.2





−5.69 −1.45 1.82 5.01
0.17 0.38 0.35 0.11
10.22 4.63 7.34 17.26



 11.72 12.2 9.79 0.85 0.35 0.38

1 0.4





−4.99 −1.5 1.45 4.35
0.14 0.45 0.36 0.06
8.85 4.65 6.64 14.72



 10.87 13.19 7.38 0.7 0.57 0.45

1 0.6





−4.46 1.1 4.03 −1.46
0.1 0.33 0.03 0.54
7.89 6.07 13.57 4.63



 9.44 14.47 6.09 0.54 0.74 0.54

1 0.8





−4.06 0.7 3.85 −1.33
0.05 0.26 0.01 0.68
7.23 5.53 12.94 4.6



 7.49 16.56 5.22 0.35 0.88 0.68

1 1





−0.98
1

4.56



 4.56 +∞ 4.56 0 1 1
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Table 3.6: Penalized optimal designs for scenario 2, Gumbel model. In the optimal designs,
design points are included in the first row, weights are included in the second row, and
penalty is included in the third row.

Scenario λ Penalized optimal design Φλ Φ0 Φ1 Eff0 Eff1 w∗

c

θ = (−2, 1, 2, 0.5, 0.5)

2 0





−3.44 −0.77 4.5 11.39
0.22 0.38 0.2 0.2
9.03 3.63 15.03 47.04



 2.12 2.12 39.01 1 0 0.38

2 0.2





−3.16 −0.87 2.39 6.21
0.25 0.43 0.26 0.06
8.03 3.65 8.03 22.2



 5.94 4.7 10.87 0.6 0.23 0.43

2 0.4





−2.58 −0.86 1.52 5.23
0.25 0.42 0.3 0.03
6.24 3.65 5.98 17.97



 6.49 6.35 6.7 0.43 0.54 0.42

2 0.6





0.89 −2.03 −0.85 4.78
0.35 0.28 0.35 0.02
4.86 4.94 3.65 16.13



 6.24 7.86 5.16 0.32 0.74 0.35

2 0.8





−1.38 0.26 4.47
0.52 0.48 0.01
3.98 4.07 14.91



 5.41 9.97 4.27 0.21 0.88 0.52

2 1





−0.63
1

3.62



 3.62 +∞ 3.62 0 1 1
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Table 3.7: Penalized optimal designs for scenario 3, Gumbel model. In the optimal designs,
design points are included in the first row, weights are included in the second row, and
penalty is included in the third row.

Scenario λ Penalized optimal design Φλ Φ0 Φ1 Eff0 Eff1 w∗

c

θ = (−2, 0.2, 2, 0.5, 0.5)

3 0





−11.67 −1.98 3.11 11.01
0.13 0.34 0.38 0.15
10.36 4.89 12.06 45.69



 12.36 12.36 36.1 1 0 0.34

3 0.2





−12.27 −2.15 2.65
0.18 0.46 0.36

10.88 4.87 10.78



 12.11 12.92 8.87 0.89 0.45 0.46

3 0.4





−10.65 −2.41 1.98
0.15 0.54 0.31

9.49 4.85 9.15



 11.08 13.56 7.36 0.79 0.61 0.54

3 0.6





−9.38 −2.58 1.4
0.11 0.64 0.25

8.45 4.85 7.96



 9.63 14.63 6.3 0.64 0.75 0.64

3 0.8





−8.34 −2.63 0.83
0.06 0.77 0.17

7.65 4.85 7.01



 7.71 16.56 5.5 0.43 0.88 0.77

3 1





−2.49
1

4.85



 4.85 +∞ 4.85 0 1 1
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Table 3.8: Penalized optimal designs for scenario 4, Gumbel model. In the optimal designs,
design points are included in the first row, weights are included in the second row, and
penalty is included in the third row.

Scenario λ Penalized optimal design Φλ Φ0 Φ1 Eff0 Eff1 w∗

c

θ = (2, 0.5,−2, 0.5, 0.5)

4 0





−7.9 −2.48 1.15 6.06
0.2 0.3 0.33 0.17

25.42 18.62 23.71 41.39



 11.38 11.38 33.17 1 0.05 0.3

4 0.2





−7.1 −2.5 0.98 2.89
0.2 0.42 0.28 0.09

23.74 18.61 23.31 28.75



 14.23 12.03 23.03 0.88 0.41 0.42

4 0.4





−6.27 −2.54 1.03
0.19 0.52 0.29
22.14 18.61 23.42



 16.13 12.8 21.13 0.75 0.6 0.52

4 0.6





−5.65 −2.63 0.54
0.17 0.62 0.21
21.08 18.59 22.32



 17.59 13.87 20.07 0.61 0.74 0.62

4 0.8





−5.1 −2.71 0.11
0.12 0.76 0.12
20.26 18.58 21.46



 18.57 15.87 19.24 0.41 0.88 0.76

4 1





−2.81
1

18.58



 18.58 +∞ 18.58 0 1 1
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Table 3.9: Design settings for Examples 1 and 2. The efficacy, toxicity, “efficacy and no
toxicity” probabilities and ethical penalty c(x, θ) are included for the prior and true models.

Prior True
level log(dosage) pE pT p10 penalty pE pT p10 penalty

Example 1
1 -1 0.62 0.10 0.58 1.9 0.62 0.08 0.59 1.9
2 -0.5 0.73 0.32 0.54 2.8 0.73 0.11 0.67 1.7
3 0.5 0.88 0.90 0.09 113 0.88 0.18 0.73 1.7
4 1 0.92 0.98 0.02 1921 0.92 0.23 0.72 1.8

Example 2
1 -3 0.38 0.00 0.38 2.67 0.45 0.08 0.41 2.7
2 0 0.92 0.08 0.85 1.27 0.60 0.27 0.41 3.3
3 1 0.97 0.18 0.79 1.55 0.65 0.38 0.38 4.3
4 3 1.00 0.62 0.38 7.05 0.73 0.62 0.25 10.5
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Table 3.10: The root of mean square error for the MAP estimators of βE and βT . The
sample sizes are 50 and 200.

RMSE
Parameter n λ = 1 λ = 0.8 λ = 0.5

βE = 0.2 50 0.29 0.18 0.16
200 0.22 0.11 0.07

βT = 0.5 50 0.16 0.24 0.28
200 0.10 0.11 0.11
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Table 3.11: The priors used in the adaptive designs in Section 3.5.

Prior αE βE αT βT ρ

1 N(−2.5, 1) N(1, 1)+ N(2.5, 1) N(1, 1)+ U [0, 0.7]
2 N(−2.5, 0.22) N(1, 0.22)+ N(2.5, 0.22) N(1, 0.22)+ U [0, 0.7]
3 N(−2.5, 1) N(1, 1)+ N(2.5, 1) N(1, 1)+ U [−0.9,−0.7]
4 U [−5, 0] U [0, 4] U [0, 5] U [0, 4] U [0, 0.7]
5 U [−3.1,−1.9] U [0.4, 1.6] U [1.9, 3.1] U [0.4, 1.6] U [0, 0.7]
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Figure 3.1: Operating characteristics of best intention design (λ = 1) and and information-
based design (λ = 0.5) in Example 1. The events E, T and Et denote efficacy, toxicity and
“efficacy and no toxicity” respectively.
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Figure 3.2: The mean MAP estimates across 1000 simulations for the information-based
design (λ = 0.5) and the best intention design (λ = 1). The estimates of αT and βT in the
best intention design do not converge to the true parameters.
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Figure 3.3: Operating characteristics of the best intention design (λ = 1) and and
information-based designs (λ = 0.5 and 0.8.) in Example 2. The events E, T and ENT
denote efficacy, toxicity and “efficacy and no toxicity” respectively.
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Figure 3.4: Convergence measure for scenario 1 and 4. Relative efficiency is based on the
optimal Φλ and the criterion value in simulations. The distance measure is calculated as
the L1 distance between the dose allocation weight of the optimal design and those in
simulations.
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Figure 3.5: Operating characteristics for scenario 1 and 4.
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Figure 3.6: Dose allocation weights in scenario 4 with priors 1, 2, 4 and 5.
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Figure 3.7: Parameter estimates in scenario 4 with priors 1, 2, 4 and 5.
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Figure 3.8: Estimated optimal dose in scenario 4 with priors 1, 2, 4 and 5.
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Figure 3.9: Event proportions in scenario 4 with priors 1, 2, 4 and 5.
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Figure 3.10: Operating characteristics for priors 1 and 3.
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Chapter 4: Stopping Rules

In adaptive designs, traditional stopping rules are used to stop a seemingly unsuccessful

trial or a trial with strong enough evidence for efficacy earlier than planned. The rules

are devised to protect the patients from excessive toxicity and insufficient efficacy. For

example, Thall and Cook (2004) introduced rules based the posterior probability of toxicity

and efficacy. The design philosophy of adaptively updating the dose-response curve leads us

to consider a different type of stopping rule. Also, the concept of trade-off between efficacy

and toxicity leads us to consider stopping a trial when the desired trade-off is not attained.

In this chapter, we propose to stop a trial when there is enough learning about the dose-

response relationship or when the trial exceeds an efficacy and toxicity trade-off threshold.

We examine stopping rules in simulation.

4.1 Information stopping rules

One information stopping rule is proposed by Zhu (2012):

max
j

∣

∣

∣

∣

∣

θ̂
(n)
j − θ̂

(n−1)
j

θ̂
(n−1)
j

∣

∣

∣

∣

∣

< δ0,

where θ̂
(n)
j is the jth component of parameter estimate with n patients and δ0 is a threshold.

In our case, we may have near-zero estimates, therefore we propose to stop a trial when the

maximum parameter ratio is small.

Ratio criterion: max
j

∣

∣

∣

∣

∣

θ̂
(n)
j − θ̂

(n−1)
j

aj

∣

∣

∣

∣

∣

< δ0, (4.1)
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where aj ’s are preselected parameter weights.

Another information stopping rule is based on the information criterion Φ0. We stop a

trial with n patients if the information criterion is small.

Information criterion: Φ0(ξn; θ̂
(n))− log pn < m0, (4.2)

where Φ0(ξn) is the information criterion for design with n patients, p is number of parame-

ters, and m0 is an information threshold. We call the left hand side the the above inequality

the scaled information criterion.

4.1.1 Example with parameter ratio stopping rules

To illustrate the stopping rules, we examine the dynamics of the adaptive design for scenario

4. We set a = (2.5, 1, 2.5, 1, 1) whose first four components are the same as the prior means

while the last component is amplified. The history of the estimates of αE is plotted in

Figure 4.1 (a). We see that the estimates scatter more in the beginning than in the end,

thus sample size will be reduced if we stop a trial when its parameter estimates stabilize.

The history of the maximum parameter ratio of the first three simulations is plotted in

Figure 4.1. The original ratio is messy due to random noise. We calculate the moving

average of the ratios and plotted them in Figure 4.1 (c).

We apply the stopping rules in Table 4.1. We note that some trials may attain the

stopping criteria in the beginning, therefore we also introduce the minimum sample size

tmin beyond which the stopping rule is applied. Also we introduce the maximum sample

size tmax to force the trial to stop when the stopping rule is not triggered. The stopping

threshold δ0 is chosen so that the the average stopping sample size is maintained at 55. The

simulated stopping times are summarized in Figure 4.2 (a). Rules R01 and R03 are not

restricted so they have extreme stopping times, either too large or too small. R05 and R06

are fixed design with sample sizes 55 and 205.

As we mentioned earlier, the goal of early phase trial is to learn about the dose-response
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relationship. The accuracy of this relationship can be measured by the knowledge of the

estimated optimal dose for given parameter estimates. The closer the estimated optimal

dose to the true one, the better the dose-response relationship is learned. We summarize

the estimated optimal dose of trials with different stopping rules in Figure 4.2 (c). In the

optimal dose plot, we see that R03 has a smaller interquartile range than R05. The average

design with stopping rule R03 performs better than the fixed sample size design R05. This

is likely to be caused by increased sample size of poor trials in R05. Admittedly, R06 with

a fixed sample size of 205 performs the best with the smallest interquartile range. It is the

only one that differentiates the prior optimal dose at -0.376 from the true optimal dose at

-3.086. Comparing R01 with R03 or R02 with R04, one can see that the smoothing of the

ratio curves leads to smaller interquartile range and thus better estimates about the optimal

dose. Thus, a better stopping rule could be developed if one has better smoothing. The

introduction of minimum and maximum stopping time has mixed effects. The restricted

R02 performs better than the unrestricted R01, while the restricted R04 performs worse

than the unrestricted R03.

Interestingly, these results have little to do with the individual parameter estimates,

as shown in Figure 4.2 (b). For example, all the designs R01–R05 have similar estimate

interquartile ranges for individual parameters. However, the (nonlinear) combination of

these estimates gives rise to different optimal dose estimates.

Another question is how the stopping rule affects dose allocation. We summarize the

dose allocation proportions in Figure 4.2 (d). The dose allocations of the trials with stopping

rules resemble those of their fixed sample size counterpart. The only difference is that the

latter, R05, has less extreme values than the former. The proportions of R06 are significant

different from the rest. This is caused by better parameter estimates from the data rather

than from the misspecified prior knowledge.

We conclude from the above observations that stopping rules change the operating

characteristics. With a good stopping rule such as R03, better dose-response relationship is

learned for a given average sample size across simulations. The price is some extreme dose

99



allocations.

4.1.2 Example with information criterion stopping rules

We now turn to stopping rules based on the information criterion given in (4.2). We

examine the same cases as the last example. The stopping rules are detailed in Table 4.2.

The thresholds are chosen so that the average sample sizes are about 50 across simulations.

These stopping rules are expected to have different properties from last set of stopping rules,

because they emphasize the interplay between parameter estimates and dose-allocation.

We summarize the most interesting results in Figure 4.3. First, moving averages of Φ0

are calculated within windows of size five for the first three simulations (Figure 4.3 (a)). The

mean information criterion decreases as the sample size increases. Therefore, the stopping

rule will be effective when enough information is learned from the data. After applying the

stopping rules in Table 4.2, we include the distributions of stopping time in Figure 4.3 (b).

The distributions for the unrestricted rules M01 and M03 are highly skewed. They have

long right tails which almost reach the maximum 205. It indicates slow convergence rate

for the criterion. However, their medians are around 35. Thus half of the trials do not have

sufficient learning about the dose-response relationship, which is shown in Figure 4.3 (c).

The estimated optimal doses of M01 and M03 are dominated by the prior information. The

moving average version M03 has better learning than M01. All the other stopping rules

perform better than these two. Although M02 and M04 have smaller interquartile ranges

than the fixed M05, it is difficult to decide which are better, because the median of M05 is

closer to the true optimal dose than the other two. Comparing with the last example, there

are fewer extreme values in this example. This may be due to less extreme dose allocations

shown in Figure 4.3 (d). For example, the most extreme proportion at dose 1 is 0.7 in this

example versus 0.8 in last example. There are less extreme values above the medians at

dose 4 in this example than in last example. However, the span of the proportions in this

example are larger than the previous example, especially for the unrestricted rules M01 and

M03.
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We conclude that the information criterion stopping rules result can reduce extreme

dose allocations and thus reduce extreme estimates about the optimal doses. However, the

price is large variation of dose-allocation.

4.2 Ethical stopping rule

In Bayesian sequential designs, stopping rules are introduced to stop a trial when toxicity

is too high. We argued in the last section that efficient protection cannot be obtained when

parameter estimates are poor. Therefore, it is a good practice to combine ethical stopping

rules with information rules. In this section, we examine the operating characteristics of

stopping rules with ethical stopping and with combined stopping.

We propose to use the following the MAP criterion for ethical stopping in a trial with

n patients.

MAP criterion: min
1≤i≤k

Φ1(δxi
; θ̂(n)) > e0, (4.3)

where Φ1(δxi
) is the ethical penalty at single dose xi and e0 is an ethical threshold.

A commonly used posterior ethical stopping rule can be proposed.

Posterior criterion: PrΘ( min
1≤i≤k

Φ1(δxi
; θ(n)) > e1|Dn) > p1, (4.4)

where δxi
is a single dose allocation at xi, and θ(n) is a sample from the posterior distribution

supported on Θ. The second term incorporates the belief that the longer the trials, the great

exposure of patients to drugs and thus greater ethical costs.

4.2.1 Example with ethical MAP threshold

We illustrate the ethical stopping rule (4.3) in the same case as the last example. We use

three λ’s 1, 0.8 and 0.5. We assume the clinician decide that the maximal tolerated efficacy-

toxicity trade-off is 4. However, because the true trade-offs at all doses are greater than 4,

101



the smaller the average stopping time, the better a design is. We summarize the stopping

times for the three designs in Figure 4.4(a). Surprisingly, there is not much difference

among the three designs. Designs with λ’s 0.8 and 0.5 perform equally well because they

have similar distribution for stopping times. The design with λ = 1 performs slightly worse

than the other two due to a larger interquartile range. Similar conclusion can be inferred

in Figure 4.4(b). All three designs have almost identical distribution for estimated optimal

dose, except that the design with λ = 1 has a median that is closer to the prior belief.

We consider dose allocation shown in Figure 4.4(c). Recall that the last dose is the most

desirable given the prior information while it is the least desirable given the true parameter.

We observe that most patients are assigned to the truly most desirable dose – dose 1. The

second most assigned patients for the information-based design is dose 4 while it is dose 3 for

the best intention design. We also observe greater and greater variation among assignments

as λ increases. Because of the dose-allocation, we observe that the best intention design

has the least proportions for efficacy, toxicity and efficacy and no toxicity.

If we allow the ethical threshold to vary in (4.3), and calculate the mean stopping sample

size for each threshold and each design, we will obtain the threshold characteristics curves

in Figure 4.3(d). The curves are sigmoid shaped. When the sample size is smaller than 25,

the prior dominates the estimates when all the ethical penalties are thought to be below 4.

When the threshold increases, less and less MAP’s will satisfy the criterion because the true

minimum ethical penalty around 4.48. This can be seen in the plot that after the critical

value is greater than 5, the increasing curve begins to decelerate. However, the three designs

cannot be distinguished in the plot.

In conclusion, the MAP stopping rules can stop a trial early when all doses are not

desirable. When the trials are stopped, the three designs with λ’s 1, 0.8, and 0.5 have

similar average sample sizes. At stop times, the information-based design demonstrates

better dose-response learning than the best intention design because of the better median

estimated optimal dose.

102



4.2.2 Example with ethical posterior threshold

We examine the last stopping rule for the same scenario used in previous example. Here we

set the ethical threshold e1 to be 4 and allow the posterior probability threshold p1 to vary.

This produces the stopping time characteristic curve in Figure 4.5(a). The three curves

for different designs are distinguishable. The best intention design performs the worst and

requires the largest sample size. Surprisingly, the information-based design with λ = 0.8

performs better than that with λ = 0.5.

We set the posterior threshold to be 0.5 and plot the distributions of stopping time in

Figure 4.6(a). The design with λ = 0.8 performs the best with the smallest interquartile

range. The estimated optimal doses at stopping times are summarized in Figure 4.6(c). The

design with λ = 0.5 performs the best with a median that is closest to the Turk optimal

dose. It is followed by the design with λ = 0.8. The best intention design performs still the

worst with a median that is close to the prior optimal dose and the largest distribution span.

The dose allocation is shown in Figure 4.6(e). Still, the best intention design performs the

worst by assign most patients to the dose 3. It also has the largest allocation variation.

The information-based design performs similar in terms of median proportions of assigned

patients on each dose. However, the design with λ = 0.5 has the smallest variation. The

design with λ = 0.8 provides better protection of patients by assigning more patients to

dose 2 and 3 instead of dose 4.

To demonstrate the influence of the correlation parameter on design operating char-

acteristics, we apply the same stopping rule in a different scenario. In this scenario, the

correlation parameter is misspecified and restricted in [−0.9,−0.7]. We call this scenario U2

and the previous scenario U1. The stropping time characteristic curve for U2 is included in

Figure 4.5(b). The difference between U1 and U2 are seen immediately in the plot. Because

of the misspecification, it requires more than 100 patients for U2 to stop while it requires

about 50 patients in U1. Also, the curve of λ = 1 is more distinguishable in U2 than in U1.

To obtain comparable sample sizes, we set the posterior threshold to be 25 for U2, so

that both U1 and U2 have sample sizes around 50. We summertime the stopping times in
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Figure 4.6(b). We observe that there are much grater variation for the design with λ = 1 in

U2 than in U1. The information-based designs suffer less from the misspecified correlation

when one compares U1 with U2 and show more robustness. Also, the information-based

designs performs much better than the best intention designs. The estimated optimal dose

plot in Figure 4.6(b) shows that the U2 has better estimated optimal doses than U1. This

is probably due to the more spread out stopping time in U2 and the fact that correlation

misspecification keeps the orders of Φ1. The design with λ = 0.5 performs slightly better

than the other two designs in U2. In the dose allocation plot in Figure 4.6(f), there is

slightly difference between the designs in U1 and U2. For example, the variations in U2 are

greater than those in U1. Also, there is a small amount of patients assigned on the highest

dose in U1 while there is no assignments on that dose in U2.

4.3 Conclusion

We examine different stopping rules in this Chapter. We notice the discrepancy between

individual parameter estimates and the overall estimated represented by the estimated

optimal dose. We observe that appropriate stopping rules improve operating characteristics

of designs. With information-based stopping rules, a better learning about the dose-response

relationship is obtained without increasing the average sample size. By using a ethical

stopping rule, an unsuccessful trial can be stopped early. We also observe that information-

based designs allow better learning about the dose-response relationship than best intention

designs. To assess the performance of different designs with stopping rule, we propose to

use a characteristic curve. Using this curve, we observe that information-based design may

performs better by stopping earlier when no dose is desirable.
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Table 4.1: Stopping rule settings with ratio criterion (4.1).

Rule moving average δ0 tmin tmax average sample size

R01 No 0.032 5 205 55.2
R02 No 0.032 25 75 54.7
R03 Yes 0.069 5 205 55.48
R04 Yes 0.068 25 75 55.12
R05 Sample size fixed at 55
R06 Sample size fixed at 205
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Table 4.2: Stopping rule settings with information criterion (4.2).

Rule No. moving average m0 tmin tmax average sample size

M01 No 2.7 5 205 55.41
M02 No 2 25 75 54.45
M03 Yes 4.1 5 205 55.42
M04 Yes 2.7 25 75 54.54
M05 Sample size fixed at 55
M06 Sample size fixed at 205
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Figure 4.1: The history of parameter ratios for the first three simulations. The original
parameter estimates and ratios are plotted in (a) and (b) and the moving average ratios in
(c) are calculated in a window of size five.
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Figure 4.2: Operating characteristics with parameter ratio stopping rules in Table 4.1.
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Figure 4.3: Operating characteristics with information criterion stopping rules in Table 4.2.
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(d) Mean sample size vs threshold

Figure 4.4: Operating characteristics with ethical stopping rules based on MAP criterion
in (4.3).
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Figure 4.5: Characteristic curve with ethical stopping rules based on posterior criteria in
(4.4). U1 stands for the scenario with correctly specified correlation. U2 is the scenario
with misspecified correlation.
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(c) Optimal dose estimates (U1)

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−30

−20

−10

0

10

20

0.5 0.8 1

Lambda

O
p
ti
m

a
l 
d
o
s
e

opt_dose Prior True

(d) Optimal dose estimates (U2)

dose1 dose2 dose3 dose4
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(f) Dose allocation (U2)

Figure 4.6: Operating characteristics with ethical stopping rules based on posterior criterion
in (4.4). U1 stands for the scenario with correctly specified correlation. U2 is the scenario
with misspecified correlation.
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Chapter 5: Redesigns

In this chapter, we demonstrate the proposed Bayesian sequential design with penalty by

redesigning two clinical trials in the literature. Specifically, we provide guidance on how to

choose parameters in the design, how to select an appropriate design, and how to introduce

stopping rules.

5.1 The CML trial

A kinase inhibitor Gleevec (STI571) was investigated for treating chronic myeloid leukemia

(CML), in which case patients have higher than normal blood-cell counts. It was hypoth-

esized that the BCR-ABL is a key factor to cause CML and an inhibitor of it can be an

effective treatment (Druker et al. 2001). One of the efficacy responses in the study is com-

plete hematologic response, defined as “reduction in the white-cell count to less than 10,000

per cubic millimeter and in the platelet count to less than 450,000 per cubic millimeter,

maintained for at least four weeks” (Druker et al. 2001). We redesign a phase I trial of

STI571 by using a pharmacokinetics and pharmacodynamics (PK/PD) study to learn prior

information about the drug.

5.1.1 Redesign setting

In a PK/PD study (Peng et al. 2004) with 64 patients, the dose range is selected to be 25 mg

to 1,000 mg. The researchers targeted steady-state of plasma concentrations of 1 µmol/L2,

which exceeds the 50% concentration to inhibit BCR-ABL in vitro. This information can

be used to select the dose range. According to Table 5.1, the criterion is satisfied for at

least 24 hours when doses are above 300 mg. With the dose 85 mg, the criterion is satisfied

for the first 6.6 hours. Also, the white blood cell (WBC) counts drop under the normal
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level when doses are at least 400 mg. This study indicates the dose-response relationship

and provides information about the dose-range we use in the redesign. We therefore select

four doses 85 mg, 200 mg, 400 mg and 800 mg to design a hypothetical phase I study.

The phase I study is considered by Druker et al. (2001) as an dose-escalating design for

treating CML using STI571. A total of 83 patients are assigned to 14 doses varying from 25

mg/day to 1000 mg/day. Several toxicity responses are defined such as nausea, edema, etc.

Among these, a thrombocytopenia toxicity occurs when the platelet count drops below the

normal range. The toxicity responses are ordered from 1 to 4, where 1-2 denote mild and

moderate toxicity and 3-4 denote severe and life-threatening toxicity. We choose complete

hematologic response as our efficacy response and severe thrombocytopenia response as

toxicity response.

We determine the prior information from the PK/PD study (Peng et al., 2004). CML

patients have higher than normal WBC. In the PK/PD study, WBC at day 28 was recorded

for each patient. It is an indication of efficacy when WBC drops below 11×109/L. However,

it is an indication of toxicity when WBC is below 4× 109/L. Peng et al. (2004) construct

relationship between WBC and dose in an Emax model:

log(WBC) = log(Emax) + log

(

1−
x

Ex50 + x

)

+ ǫ, (5.1)

where x is the log-transformed dose, and Emax, Ex50 are PK parameters in Table 5.3. Then

the probability of WBC below 11 and 4 are calculated for multiple doses in Figure 5.1.

The 25th and 50th efficacy quantiles are 75 and 187, while the quantiles for toxicity are

281 and 609. The efficacy parameter should be close to the true parameter for they are

based on the WBC counts. There is more uncertainty about the toxicity parameter. We

hypothesize two additional scenarios where the quantiles are included in Table 5.4. The

parameters are calculated for each scenario and the prior is chosen to be an interval that

contains parameters in all scenarios.

We use the data in Table 5.2 to fit a bivariate response model. Specifically, we fit
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the efficacy and toxicity data separately with logistic regression models using maximum

likelihood estimates. We use logarithms of all raw doses. Because we have dose intervals

and dose pairs in the summary data, we assume the patients are uniformly assigned to the

specific dose ranges. As a result, for the dose interval [d1, d2], we use the integration between

d1 and d2 to estimate the event probability. For the dose pair “d1 or d2”, we assume the

patients are assigned to the two doses with equal probability and obtain the likelihood. The

estimated toxicity parameters are (6.98, 3.43) and the efficacy parameters are (5.10, 3.21).

Because there is no summary data for the combined events, we assume a mild correlation

with ρ = 0.2.

To determine the efficacy-toxicity trade-offs, we assume the two equivalent probability

pairs selected by the clinicians are (0.5, 0) and (0.9, 0.1). Therefore CT = 5.58. With this

penalty function, the optimal doses are 110, 193, 601 and 318 under scenario 1, 2, 3 and

the true value. Then we assume the thresholds of p10 and pT are 0.3 and 0.2 respectively.

This corresponds to a penalty threshold of 11.58. This serves as a futility stopping rule.

5.1.2 Simulation results

We conduct 1000 simulations under the scenarios in Table 5.4. For each scenario, we use

λ = 0.5, 0.8 and 1.0. All the operating characteristics are recorded and we want to select

the best design to be passed to the redesign.

First, we want to select an appropriate λ for the redesign. This can be determined by

multiple factors. One factor is the proportion of different events, which are included in

Figure 5.2. We see that λ = 0.5 performs aggressively with the highest efficacy and toxicity

proportions in scenarios 2 and 3. It raises a concern about safety and thus is not selected

in the design. The designs with λ = 1 and 0.8 are competing in scenario 1-2. However, the

latter performs better than the former for it has higher efficacy and no toxicity. Another

factor is the percentage of patients assigned on the most desirable dose, which is summarized

in Table 5.5. Keeping the penalty on each dose in mind, we see that the design with λ = 0.5

performs better by assigning more patients to the most desirable doses in scenario 1 and 3.
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However, it has the tendency to assign patients to the highest dose level. The design with

λ = 1 performs better in scenario 2 by assigning 95% patients to the most desirable dose.

But it does not perform well in scenario 3 by assign 31% patients to the dose 2 which has

much higher penalty. The design with λ = 0.8 performs equally well across scenarios. The

third factor is how stable the dose allocation is. We plot the distribution of dose allocation

in Figure 5.2. The design with λ = 1 performs extremely stable in scenarios 1 and 2 with

almost fixed dose allocation. However, it becomes quite unstable in scenario 3, which has

wide range of dose allocation. This means the design is more conservative than the other

two information-based designs when the best dose is the highest dose. The two information-

based design performs more stably in scenario 3. The last factor is how much information

is learned from each design. This can be indicated in Figure 5.3. We see that the design

with λ = 0.5 performs the best with close to truth median estimated optimal dose in all

scenarios. It is followed by the design with λ = 0.8. However, the design with λ = 1

performs the worst by having a large interquartile ranges in scenarios 1 and 2 and having

an optimal dose far from the true value. Its insufficient learning about the dose-response

relationship is explained by poorer parameter estimates plotted in Figure 5.3. Based on the

above observation, we choose λ = 0.8 as our design parameter.

We also determine the futility stopping rule based on the ethical posterior criteria pro-

posed in the last chapter. Specifically, we set the minimal efficacy and no toxicity probability

to be 0.3 and maximal toxicity probability to be 0.2. The corresponding threshold is 11.58.

Then we use the following stopping rule:

Pr( min
1≤i≤k

Φ1(δxi
; θ(n)) > 11.58|Dn) > p1,

We need to determine p1 based on the stopping characteristic curves for scenarios 1-3 in

Figure 5.4. Intuitively, the test implies that the minimal ethical penalty is greater than

11.58. Then a 80% power test is roughly corresponds to a p1 at which the mean stopping

sample size is 80%× 83 = 66.4. Thus p1 is 0.375 in scenario 1, 0.25 in scenario 2 and 0.675
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in scenario 3. Thus we choose p1 to be 0.675.

In summary, we choose the design with λ = 0.8 because it gives rise to relatively high

efficacy and no toxicity probability and low toxicity. Also, we use a stopping rule with

p1 = 0.675 so that we can stop the trial early for high toxicity or low efficacy.

5.1.3 The redesign

We implement a redesign with the selected design parameters. Here we conduct 1000

simulations under the true parameter settings. We summarize the operating characteristics

in Figure 5.5. For comparison, we also include the design with λ = 1 and 0.5. None of the

designs stop for futility. It can be seen that the selected design performs the best with the

highest “efficacy and no toxicity” proportion. The true penalty is 9.2, 1.6, 1.3, 7.7 for the

four doses. The selected design assigns the most patients to the most desirable dose. The

overall estimated optimal doses scatter tightly around the true value, which is an indication

of good learning about the dose-response relationship.

We summarize the first simulation as if we were conducting a real design in Table

5.6. The design begins quite conservatively by assigning most patients to the first two

doses, even when there is no toxicity. When 20 patients are assigned, the design begins to

explore higher doses by assigning most patients to high doses. Because there is no toxicity

observed, the design keeps assigning patients to the third dose and assigns only a few to

the highest dose. Finally, the design starts to explore more on the second dose and the

last dose while maintain a relative high assignments on the third dose. The design ends up

with 83% “efficacy and no toxicity” and 3% toxicity. The estimated optimal dose is 341

mg. Comparing with the design with known true parameter, the simulated design shows

convergence to the true optimal design with near optimal dose allocation and estimated

optimal dose.
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5.2 The INFa trial

The dose-response relationship has been examined in an interferon-α-2a (INFa) trial for

treating stage IV melanoma (Zohar et al., 2009). The aim of the study is to obtain the

optimal dose with a limited sample size. We redesign this trial using the information-based

method.

5.2.1 Redesign setting

Because IFNa had been prescribed to patients with other disease before the study was

planned, there were knowledge about the dose range and possible adverse events. The

four doses were selected as 3, 6, 9, 12 MIU/day. High doses with possibly high toxicity

were selected. The efficacy was defined by “complete regression of all the detectable lesions

confirmed by two consecutive evaluations performed at a 4-week interval” (Zohar et al.,

2009). The toxicity was defined to be “ nausea or vomiting (grade 3 and 4) for more than

24 hours” (Zohar et al., 2009). The design was planned with a maximum number of 25

patients.

The investigators decided four plausible scenarios for probabilities of “efficacy and no

toxicity” and “toxicity”, included in Table 5.7. Thall and Russell’s (1998) proportional odds

model was used in the original design. Therefore, there is a certain degree of information

loss when we fit a Gumbel model to the original trinary outcomes. We fit a Gumbel model

to each scenario using the MLE and obtain the estimates (3.00, 1.57, 3.04, 1.62, 0.21) for

scenario 1, (3.01, 1.47, 3.02, 1.63, 1) for scenario 2, (14.78, 0.07, 2.56, 1.00, -1) for scenario 3,

and (22.94, 0.13, 3.02, 0.46, -0.64) for scenario 4. Because of the information loss, we see that

the estimates for the last two scenario do not line up with other scenarios. However, we still

believe the estimates reflect the investigators’ estimation about the scenarios. Therefore,

we restrict the prior to be in the ranges of [2, 23], [0, 2], [2, 4], [0.2, 2] and [-1,1].

To obtain the true dose-response relationship, we use the data in Table 5.8. The MLE

is (3.50, 0.64, 2.10, 2.67, 1). The strong positive correlation is due to a small sample size
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and is rare in practice. Therefore, we assume the true parameter is (3.50, 0.64, 2.10, 2.67,

0.5).

When it comes to the efficacy-toxicity trade-offs, we assume the equivalent pairs are

(0.3, 0) and (0.5, 0.2). This means CT= 2.29. The optimal doses are 9.5, 8.2, 0.27, 0.16 and

2.8 in scenarios 1-4 and the true model, with penalties 9.9, 10.9, 4.3, 34 and 7.2 respectively.

Also, toxicity and “efficacy and no toxicity” probability thresholds are chosen as 0.2 and 0.3,

which corresponds to an ethical penalty of 5.56. Then all the scenarios should be stopped as

early as possible due to greater than threshold penalty. We apply the same futility stopping

rule as in the last trial and determine p1 through simulation:

Pr( min
1≤i≤k

Φ1(δxi
; θ(n)) > 5.56|Dn) > p1.

5.2.2 Simulation results

We conduct 1000 simulations under scenarios 1, 3 and 4. We determine the best design based

on the factors we used in the last example. The first factor is the proportion of events shown

in Figure 5.6. The design with λ = 1 performs uniformly better than the information-based

designs in all scenarios by having the lowest toxicity. It also attains fairly high proportion

of “efficacy and no toxicity” in scenario 3 and 4. The designs with λ = 0.5 and 0.8 gives

rise to relatively high proportions of “efficacy and no toxicity” in scenario 1 at the cost of

even higher toxicity proportions. The second factor is how many patients are assigned to

the most desirable dose shown in Table 5.9. The design with λ = 1 performs conservatively

by assign 80% patients to the first dose in scenario 1 where the third dose is the most

desirable. However, it successfully identify the most desirable dose in scenarios 2 and 3

by assigning almost all patients to the dose. In contrast, the information-based designs

fails to select the most desirable dose and a large number of patients are assigned to the

highest dose. Next, we examine the stability of dose allocation in Figure 5.6. The design

with λ = 1 is not stable in scenario 1. It is very stable in scenarios 3 and 4. Although

it wastes resources by assigning patients to the least desirable dose in scenario 1, it does
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not raise safety issues as we see for the information-based designs. Last, we examine the

learning about the dose-response relationship in Figure 5.7. The information-based design

performs better than the best intention design in scenario 1 with estimated dose closer to

the optimum. This is probably due to a better estimates for αE . The best intention design

performs better in scenarios 3 and 4 with the smallest interquartile ranges for both the

estimated optimal dose and the estimated αE . Therefore, we see that for this over-dosed

trial, the information-based designs do not have any edge over the best intention design,

whose conservative behavior provides better protection. We select the best intention design

for the redesign.

To select the stopping threshold, we consider the 80th quantile of the probability across

simulations:

Pr( min
1≤i≤k

Φ1(δxi
; θ(n)) > 5.56|Dn).

The quantiles are included in Table 5.10. The quantiles start with a value at the beginning of

each simulation due to prior knowledge. It drops after the first six assignments. Therefore,

we set p1 to be 0.8 and effective after 6 patients are assigned.

5.2.3 The redesign

We conduct 1000 simulations with the true parameter. The operating characteristics are

included in Figure 5.8. We see median stopping time for the selected design with λ = 1 is 10,

whereas the median stopping times for the other designs are both 7. The selected design also

demonstrate the greatest protection of patients with the lowest toxicity proportions shown

in Figure 5.8(a). This is due to almost all patients being assigned to the lowest dose level,

whereas about 1/4 of the patients are assigned to the highest dose in the information-based

design. All the design have good learning about the dose-response relationship by providing

accurate estimated optimal dose in Figure 5.8(c). However, the MAP estimates from the

best intention design tends to overestimate the optimal dose as oppose to its conservative
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behavior. This is because we use a criterion that is based on the mean. The information-

based designs have better MAP parameter estimates as the medians of estimates of αE are

closer to the true value. This example shows the discrepancy between the MAP estimates

and the mean estimates in small samples.

We summarize the first simulation as if we were conducting a real design in Table 5.11.

The trial starts by assigning all patients to the first dose even though the efficacy probability

is high. The observed probability of “efficacy and no toxicity” is as high as 0.33 after 6

patients are assigned. Because the posterior probability of futility is 0.76, the trial proceeds

by assigning more patients to the first dose. The probability of “efficacy and no toxicity”

drops from 0.40 to 0.28 when 25 patients are assigned. The futility rule does not apply

because of the low posterior probabilities around 0.4. Due to the low observed toxicity and

relatively high “efficacy and no toxicity”, a dose of 0.91 mg is recommended for further

study.

5.3 Conclusion

In this chapter, we redesign two trials with the aid of simulation under hypothetical scenar-

ios. The information-based design is more aggressive than the best intention design. This

can be useful in a trial where the toxicity is expected to be low and the goal is to estimate

the optimal dose to be passed onto further studies. The best intention design is relatively

conservative by assigning patients to lower dose levels. This usually results in better pro-

tection of patients, especially when the toxicity is expected to be high. However, it does

not provide sufficient learning about the dose-response relationship, which is important in

model-based designs. Therefore, it is possible that decisions based on the best intention

design can be inaccurate. In the INFa trial redesign, despite the small sample size, the fact

that preselected information-based designs do not perform well is likely caused by the use

of noninformative priors.
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Table 5.1: Time above targeted concentration at steady-state. (Peng, et al., 2004)

Dose (mg) 85 200 300 400 600 800 1000

Time Mean 6.6 10.2 32.3 49.3 43.6 62.6 69.3
SD 6.2 10.9 17.3 17.1 15.1 11.4 22.4
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Table 5.2: Efficacy and toxicity data from Druker et al. (2001).
Toxicity - severe to life-threatening thrombocytopenia

dose 25-140 mg 200-300 mg 350-500 mg 600-1000 mg
Response/Pat. Number 0/14 0/23 1/18 7/28

Efficacy - complete hematologic response
dose 25 or 50 85 140 200 or 250 300-1000

Response/Pat. Number 0/6 1/4 1/3 9/16 53/54
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Table 5.3: PK parameters for the Emax model in (5.1) (Peng, et al., 2004).

Parameter log(Emax) log(Ex50) ǫ

Mean 4.06 3.85 0
SD 0.505 0.643 0.693
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Table 5.4: Hypothetical scenario for planning the CML trial.

Scenario ED25 ED50 LD25 LD50 αE βE αT βT
1 75 187 281 609 5.23 1.20 6.41 1.42
2 100 200 400 600 5.30 1.58 6.40 2.71
3 400 600 1000 2000 6.40 2.71 7.60 1.58

Prior [5, 7] [1, 3] [6, 8] [1, 3]
True 116 163 782 1075 5.10 3.20 6.98 3.43
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Table 5.5: Dose allocation for scenarios 1-3.
Mean weight of assigned patients

Scenario λ dose 1 dose 2 dose 3 dose 4

1 1.0 0.08 0.92 0 0
1 0.8 0.31 0.65 0.04 0
1 0.5 0.34 0.47 0.18 0.01

Penalty 5.4 6.9 26 480

2 1.0 0.03 0.95 0.01 0
2 0.8 0.05 0.83 0.11 0
2 0.5 0.18 0.47 0.34 0.01

Penalty 5.0 2.8 9.0 2244

3 1.0 0.03 0.31 0.65 0
3 0.8 0.03 0.07 0.73 0.16
3 0.5 0.03 0.08 0.51 0.37

penalty 212 25 6.8 6.1
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Table 5.6: An example for the redesign. Number of assigned patients, number of events
and estimated optimal dose are included. The optimal dose allocation weights and event
proportion given the true parameter is also included in the table.

n n1 n2 n3 n4 nE nT nENT Optimal dose Raw dose

0 - 10 3 4 3 0 6 0 6 6.64 765
11 - 20 0 1 8 1 9 0 9 6.42 614

21- 45 0 2 21 2 22 1 21 5.94 382
46 - 83 0 11 23 4 33 2 31 5.82 336

Redesign (%) 4 22 66 8 84 4 81 5.82 336
True (%) 0 31 67 1 86 2 83 5.76 318
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Table 5.7: Selected scenarios for planning the INFa trial. Source: personal correspondence
with Dr. Sarah Zohar.

PT at dose P10 at dose
Scenario 3 6 9 12 3 6 9 12

1 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.20
2 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.15
3 0.20 0.30 0.40 0.50 0.25 0.23 0.22 0.20
4 0.30 0.35 0.40 0.45 0.05 0.05 0.05 0.05
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Table 5.8: Data resulted in the INFa trial. Source: personal correspondence with Dr. Sarah
Zohar.

Cohort Patient No. Dose Toxicity Efficacy Efficacy and no Toxicity

1 3 1 0 1 1
2 3 2 2 0 0
3 3 2 1 1 0
4 3 2 0 0 0
5 4 3 2 2 0
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Table 5.9: Dose allocation for scenarios 1, 3 and 4.

Mean weight of assigned patients
Scenario λ dose 1 dose 2 dose 3 dose 4

1 1.0 0.8 0.2 0 0
1 0.8 0.24 0.46 0.06 0.24
1 0.5 0.27 0.36 0.02 0.35

Penalty 24 11.8 10 10.4

3 1.0 1 0 0 0
3 0.8 0.68 0.21 0.04 0.07
3 0.5 0.48 0.30 0.00 0.22

Penalty 6.3 9.9 15 22

4 1.0 0.99 0.01 0 0
4 0.8 0.34 0.35 0.08 0.23
4 0.5 0.33 0.32 0.02 0.34

penalty 48 60 71 81
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Table 5.10: The mean of the simulation posterior threshold probability.

Scenario λ n = 4 n = 7 n = 10 n = 15 n = 20 n = 25

1 1 0.95 0.93 0.93 0.93 0.93 0.93
3 1 0.78 0.73 0.72 0.71 0.72 0.72
4 1 0.95 0.96 0.97 0.99 0.99 1.00
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Table 5.11: Example redesign for the INFa trial. Cumulative dose allocation weights, event
proportion and estimated optimal dose. The optimal dose allocation and event proportion
given the true parameter is also included in the table.

n w1 pE pT p10 optimal dose raw dose Pr(minΦ1 > 5.56|Dn)

6 1 0.50 0.167 0.33 -0.90 0.41 0.76
10 1 0.50 0.10 0.40 -2.2 0.11 0.37
15 1 0.47 0.13 0.40 -0.73 0.48 0.41
20 1 0.40 0.10 0.35 -0.79 0.45 0.41
25 1 0.32 0.08 0.28 -0.09 0.91 0.34

True 1 0.18 0.07 0.16 1 2.8 -
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Figure 5.1: Probability of WBC below 11 and 4 based on simulation using the Emax model
(5.1).
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(f) Scenario 3, dose allocation

Figure 5.2: Proportions of events and dose allocation in scenarios 1-3. Efficacy is denoted
by “E”. Toxicity is denoted by “T”. Efficacy and no toxicity is denoted by “Et”.
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(b) Scenario 1, parameter estimates
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(c) Scenario 2, estimated optimal dose
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(d) Scenario 2, parameter estimates
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(e) Scenario 3, estimated optimal dose
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(f) Scenario 3, parameter estimates

Figure 5.3: Estimated optimal dose and parameter estimates in scenarios 1-3.
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(a) Scenario 1, mean stopping sample size
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(b) Scenario 2, mean stopping sample size
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(c) Scenario 3, mean stopping sample size

Figure 5.4: Mean stopping sample size for scenarios 1-3.
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Figure 5.5: Operating characteristics of the redesign.

137



E T ENT

lll

l

llllllllll

lll

ll l

l

llll

l

l

l

l

llll

l

l

l

l

ll

llll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

ll

llll

l

ll

llllllll

l

ll

l

l

l

lll

l

l

lll

l

l

l

l

l

ll

l

lllllllllllllll

ll

l

lllll

l

l

l

l

l

l

l

l

lllll

l

l

l

ll

ll

l

l

ll

llllll

l

l

l

lllllll

l

l

l

l

l

l

l

l

llll

l

ll

ll

ll lll

l

llllllll

ll

l

llllll

0.00

0.25

0.50

0.75

1.00

0.5 0.8 1 0.5 0.8 1 0.5 0.8 1

Lambda

E
ve

n
t 
p
ro

p
o
rt

io
n

(a) Scenario 1, event proportion

dose1 dose2 dose3 dose4

l

l

llll

l

l

l

l

l

l

l

l

l

llll

l

l

ll

l

l

l

ll

l

ll

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

ll

ll

l

l

ll

l

l

l

l

l

lll

l

l

ll

l

ll

ll

ll

llll

l

l

ll

l

ll

l

llll

l

ll

l

l

l

ll

ll

ll

l

l

lllll

l

ll

l

lll

l

ll

ll

ll

ll

l

lll

l

l

l

l

llll

ll

l

l

l

l

ll

l

l

l

lll

l

llll

l

l

ll

ll

ll

l

ll

l

lll

ll

ll

ll

l

l

l

ll

l

l

ll

l

ll

llll

l

l

l

l

ll

l

l

l

lll

lll

ll

ll

l

ll

lllll

l

l

ll

l

l

l

l

ll

l

l

ll

l

ll

lll

l

l

l

l

l

ll

l

l

l

ll

l

l

ll

l

l

l

l

l

lll

lll

lll

ll

l

l

l

l

l

l

l

lll

l

l

ll

ll

l

l

lll

l

ll

l

l

l

ll

l

ll

l

ll

l

l

l

ll

l

llll

ll

l

ll

l

l

l

l

ll

llll

l

lllll

l

l

l

l

l

llllll

ll

l

ll

l

ll

l

llll

l

ll

ll

l

ll

l

lll

l

l

lllll

l

ll

l

ll

ll

l

l

l

ll

l

l

l

l

l

ll

l

ll

llllllll

ll

lll

ll

l

ll

ll

l

ll

l

l

ll

l

l

ll

l

l

ll

l

lll

l

ll

ll

l

l

l

lll

ll

ll

l

l

l

ll l

ll

l

ll

l

ll

l

ll

ll

ll

ll

l

l

lllll

l

l

l

l

llllll

l

lll

l

l

ll

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

ll

llll

l

l

l

ll

l

l

l

llllll

l

l

l

ll

l

l

l

l

l

llll

l

l

l

l

ll

l

ll

l

l

l

l

l

ll

ll

lllllll

l

lllllll

l

l

l

ll

lllllll

l

l

lll

l

l

l

l

ll

l

lll

l

lll

0.00

0.25

0.50

0.75

1.00

0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1

Lambda

D
o
s
e
 a

llo
c
a
ti
o
n
 w

e
ig

h
t

(b) Scenario 1, dose allocation

E T ENT

l

l

ll

l

l

lll

l

ll

lll

l

l

l

ll

l

l

ll

lll

ll

l

ll

l

ll

l

l

ll

ll

l

ll

l

lllll

ll

lll

ll

l

l

llllll ll

llllll

l llllll

l

l

0.00

0.25

0.50

0.75

1.00

0.5 0.8 1 0.5 0.8 1 0.5 0.8 1

Lambda

E
ve

n
t 
p
ro

p
o
rt

io
n

(c) Scenario 3, event proportion

dose1 dose2 dose3 dose4

ll

l

l

l

lll

l

ll

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lllll

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

llll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

llll

l

l

ll

l

lll

llllllll

l

l

l

l

l

l

l

l

l

l

l

lllll

l

ll

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

llll

ll

ll

l

l

ll

l

l

lll

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

llll

l

l

ll

l

lll

l

l

l

ll

l

l

l

llllll

l

llllllllllllll

llllllllllllll

l

llll

ll

lll

l

llllll

l

l

l

lllllllllllll

l

llllllllll

ll

llllllllllllllll

l

lllllllllllll

l

lllll

l

lllll

l

ll

l

l

l

l

l

ll

l

lll

l

l

l

ll

l

l

l

l

l

l

l

l

llll

l

lllllll

l

l

l

l

l

l

llll

l

l

l

l

l

ll

l

ll

l

l

l

l

l

ll

l

l

ll

l

l

l

ll

lll

l

ll

l

l

l

l

ll

l

l

l

l

l

ll

lll

0.00

0.25

0.50

0.75

1.00

0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1

Lambda

D
o
s
e
 a

llo
c
a
ti
o
n
 w

e
ig

h
t

(d) Scenario 3, dose allocation

E T ENT

l

ll

ll

l

l

lll

l

l

ll

llllll

l

ll

l

ll

ll

l

l

l

llll

l

llllllll

l

l

l l

l

l

llll

lll

l

l

l

l

ll

l

llll

l

llll

l

lllllll

l

lllll

l

lllllllll

l

llllllllllll

l

llll

l

l

l

l

ll

ll

lll

l

l

lllll

l

lllll

l

l

lll

l

l

l

lll

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

lll l

0.00

0.25

0.50

0.75

1.00

0.5 0.8 1 0.5 0.8 1 0.5 0.8 1

Lambda

E
ve

n
t 
p
ro

p
o
rt

io
n

(e) Scenario 4, event proportion

dose1 dose2 dose3 dose4
lll

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

ll

l

lll

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

ll

l

lll

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

ll

l

lll

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l l

l

ll

ll

l

l

l

l

l

l

lll

l

l

l

l

l

ll

l

l

ll

l

l

l

lllll

l

ll

l

l

llll

l

llll

l

lll

l

l

ll

lll

l

l

l

lllllllllll

lll

l

ll

l

l

ll

lll

l

l

l

l

l

l

l

l

lll

ll

l

l

lll

l

l

l

ll

l

ll

l

l

l

lll

l

l

l

l

l

ll

l

l

l

l

ll

l

l

lll

l

ll

llllllllllllllllll

l

l

lll

l

lllll

l

l

l

llllll

l

ll

lllll

l

lllllll

ll

lll

ll

llllllllll

l

l

l

l

l

l

l

lll

l

l

l

l

l

ll

l

ll

l

lll

l

l

l

l

l

ll

llll

l

llll

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

lll

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

lll

l

l

l

l

l

l

lll

l

ll

ll

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

lll

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

lll

l

l

ll

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

ll

l

0.00

0.25

0.50

0.75

1.00

0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1

Lambda

D
o
s
e
 a

llo
c
a
ti
o
n
 w

e
ig

h
t

(f) Scenario 4, dose allocation

Figure 5.6: Proportions of events and dose allocation in scenarios 1, 3 and 4. Efficacy is
denoted by “E”. Toxicity is denoted by “T”. Efficacy and no toxicity is denoted by “Et”.
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(b) Scenario 1, parameter estimates
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(c) Scenario 2, estimated optimal dose
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(d) Scenario 2, parameter estimates
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(e) Scenario 3, estimated optimal dose
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(f) Scenario 3, parameter estimates

Figure 5.7: Estimated optimal dose and parameter estimates in scenarios 1, 3 and 4.
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Figure 5.8: Operating characteristics of the INFa trial redesign.
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Chapter 6: Conclusions

In this dissertation, we examine Bayesian dose-finding procedures using simulation. One

commonly used design philosophy is to find the optimal dose by assigning most patients to

it. The philosophy is adapted by best intention designs. We identify the non-convergence

issue with best intention designs. In the most extreme case, the best intention designs cease

to gain new information about the dose-response relationship once they begin assigning

patients to a single dose. The loss is the additional information for a better understanding

of the drug and more powerful future studies. By proposing to use the information criterion

to maximize the learning about the dose-response relationship, we introduce information-

based designs. These designs are shown to have a better convergence property and better

learning about the dose-response relationship, especially when priors are misspecified. The

enhanced learning leads to better protection of patients due to earlier stopping. Despite

its advantages, the information-based design tends to be aggressive by exploring high toxic

doses. Therefore, a penalty coefficient is introduced to trade off information goal and ethical

goal. Using simulation, we show that a comprise between the two goals can be achieved by

tuning the penalty coefficient. In hypothetical redesigns, we provide guidance on how to

select priors, trade off efficacy and toxicity, and select the best design.

From the philosophical perspective, the information and ethical goals appears to be com-

peting objectives for Bayesian dose-finding studies. The former is achieved across multiple

dose levels while the latter is achieved with a single dose. Behind this, there is the de-

bate about selection between collective ethical goals and individual ethical goals. From the

practical perspective, we demonstrate that the information goal is crucial, because without

efficient parameter estimation, the ethical measure is not reliable and ethical gains cannot

be maximized. In addition, stopping rules are used to introduce further protection. In

model-based designs, stopping rules are usually based on parameter estimation. Therefore
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the information goal is also important for these designs. To obtain a good design, multiple

doses should be explored while patients are protected. And both goals can be weighted and

achieved in a systematic manner using information-based designs.

Admittedly, there are other ways to achieve multiple-dose allocation. For example, one

can conduct a two stage design with the first stage estimating the parameter and the second

stage aiming for the ethically optimal dose. Also, one can assign participants to doses with

probabilities that are proportional to the ethical utilities (Lei, Yuan and Yin, 2011). The

efficiency of parameter estimation and performance stability of these designs need careful

examination.

From the technical perspective, whether a design leads to a stable multiple-dose allo-

cation is an important design criterion. Instead of listing only the mean operating charac-

teristics, biostatisticians need to check stability under different scenarios using simulation

and graphics. The worst case scenario should be addressed in simulation to check designs’

robustness. Also, information-based design should be considered as a gold standard to as-

sess the efficiency of parameter estimation. In this way, reliable designs can be obtained

without producing unexpected outcomes.

A list of contributions include the following:

1. A class of adaptive designs with both the information goal and ethical goal is intro-

duced and explored. The best intention design can be considered a special case of this

class;

2. The convergence issue of best intention design is identified and solutions has been

proposed; An example is given where the best intention design converges to the wrong

dose, yet the information-based designs are effective;

3. Design robustness to prior misspecification and different priors are examined through

simulation;

4. Different stopping rules are considered and used to compare different designs;
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5. Practical guidance on prior elicitation, toxicity-efficacy trade-off specification and se-

lection of design parameters is given in two redesign examples.

Several questions remain unsolved. Theoretical convergence properties of the proposed

information-based design are to be explored. It is interesting to incorporate information

criterion into different models, including the bivarite probit model, survival models and

continual reassessment methods. Different ethical penalty functions may be used, for ex-

ample the ratio of area under curve (Yuan and Yin, 2009). Different stopping criteria may

be explored such as the sequential testing method (Zohar and O’Quigley, 2006).

The issue of appropriate sample sizes for using Bayesian sequential information-based

designs is an open question. Under correctly specified priors, a smaller trial is more feasible,

but this is unknown before the trial. One can simulate the trial under different scenarios and

sample sizes to determine a minimum sample size that will result in reasonable estimates

of the dose-response relationship.
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