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Abstract 

MODELS PREDICTING EFFECTS OF MISSENSE MUTATIONS IN 
ONCOGENESIS 

KanakaDurga Addepalli, Ph.D. 

George Mason University, 2014 

 Dissertation Director: Dr. Iosif I. Vaisman 

 

The recent avalanche in high-throughput genotyping, next generation sequencing 

technologies and re-sequencing of cancer genomes has revolutionized the field of 

cancer genomics. It has generated a humungous amount of mutational data and 

changed the way the cancer is being studied. Identification and characterization 

of these mutations and their mutational effect has become one of the major goals 

of cancer research. We present here a computational geometry approach based 

on the application of Delaunay tessellation derived four-body statistical potential 

function where the potentials are directly derived from the high-resolution 

protein x-ray crystallographic structures utilizing their atomic coordinates. 

Proteins and their mutants are characterized by potential topological scores and 

profiles, which measure the relative change in the overall sequence-structure 

compatibility. Residual scores and profiles are generated which quantify 

environmental perturbations from wild-type amino acids at every mutational 
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position. We also present here an integrated database of human cancer missense 

mutations linked to their 3D structures, which has been created with the whole 

motivation of building a one stop shop of human missense mutations data sets 

huge and versatile enough to be used for training and testing of machine learning 

methodologies. With protein data from this database, we illustrate the use of 

potential topological cores and residual profiles in the prediction of mutational 

effects on protein structure and function and generating predictive models using 

machine-learning algorithms. We successfully apply supervised learning to 

training sets of protein mutants and generate models, which make statistically 

meaningful predictions of effects of missense mutations on cancer proteins. 
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Introduction 

Serious efforts are being made in the field of cancer research to develop 

predictive models, which accurately estimate cancer development and genetic 

susceptibility of cancer patients. There have been numerous intensive 

translational research initiatives that make genomic, proteomic, and pre-clinical 

knowledge available to decision makers in the clinical research and clinical 

practice arenas. These programs have markedly improved the understanding of 

the cancer research community of the molecular processes leading to the 

initiation and progression of cancer and has shifted the kind of approach 

followed for therapy by targeting the effects of underlying genomic events 

driving the pathophysiology of cancer rather than previously used crude 

procedures like radiotherapy and chemotherapy. Deciphering the underlying 

molecular basis and genetic patterns of cancer will certainly help improve early 

cancer diagnosis and treatment. Working towards this, the recent progress in 

next generation sequencing technologies has revolutionized the field of cancer 

genomics. These advances in high-throughput genotyping and next generation 

sequencing have generated a humungous amount of human genetic variation 

data and therefore changed the way the genetic basis for human complex traits, 

including disease risk, is studied. 
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Cancer And Mutations In Human Genome 
 
It is not a trivial task to identify genetic variants responsible for a complex 

multigenic disease such as cancer where the phenotype is defined by a 

combination of different genes and environmental factors effecting gene 

expression. The process of transforming a normal cell to a cancerous cell 

involves a series of complex genetic changes and single nucleotide 

polymorphisms are the most common types of genetic variations found in 

human cancers. Identification and characterization of these variants can provide 

an insight of the process involved and a basis for assessing susceptibility to 

cancer and an optimal choice of treatment required. This is being accomplished 

through various cancer genome-sequencing strategies and technologies[1], [5]. 

Systematic re-sequencing of the cancer genome has revealed genetic changes 

that may be responsible for lung, breast and colorectal cancers.[6], [5], [7] 

 

A number of cancer somatic genome sequencing projects have been producing a 

flood of enormous mutational data. Making portions of the data open and 

accessible to the research community has made it possible for researchers 

worldwide to start analyzing the data and identifying genetic alterations in 

human cancer genomes as well as in normal genomes. Characterizing human 

cancers has become feasible even at the protein level and at a much lower cost in 

lots of cancer patients[8], [9]. Some of the large-scale efforts focusing on a ‘start 

to finish’ characterization of cancer at different levels and emphasizing a lot on 
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sequencing techniques are, TCGA (The Cancer Genome Atlas)[10] funded by the 

National Cancer Institute (NCI) and the National Human Genome Research 

Institute (NHGRI), COSMIC (Catalogue of Somatic Mutations in Cancer)[11] a 

database of somatic cancer mutations run by the Cancer Genome Project, based 

at the Wellcome Trust Sanger Institute and ICGC (International Cancer Genome 

Consortium)[12] an international organization coordinating genomic projects 

globally and providing collaboration among the world's leading cancer and 

genomic researchers, with an aim to generate comprehensive catalogues of 

genomic abnormalities in tumors from different cancer types. 

These huge initiatives and many more smaller cancer genome sequencing 

projects have shed light onto the heterogeneity of different cancers showing that 

each has a set of mutations, which differ not just between cancer types or 

between individual to individual but also are intertumoral as well as 

intratumoral [13]–[15], [7]. This certainly calls for more systemic analysis of 

cancer genome mutations with large number of mutations identified in each 

gene. The tumor sequencing techniques will help clinicians and oncologists to 

demarcate and differentiate between tumor types and subtypes and therefore 

assist in formulating better diagnostic methods and treatments for cancer 

patients. Data from these variation studies would be of minimal use in 

understanding complex diseases unless the genetic variations are identified, 

characterized and interpreted. The effects of these mutations, especially the 

disease causing mutations, need to be annotated and evaluated accurately to 
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understand and relate them to cancer susceptibility and get a clinical relevant 

interpretation [16], [17]. 

The trend has shifted to studying the phenotyped clinical subjects with cancer 

and sequencing their genomes, transcriptional profiles and also few proteomic 

patterns, to extract the most informative and easily interpretable protein-coding 

fractions of the genome, and identifying the Single Nucleotide Polymorphisms 

(SNPs) or Mutations. Mutations within protein coding regions are of particular 

importance owing to their potential to give rise to amino acid substitutions that 

affect protein structure and function, which may ultimately lead to a disease 

state. It is of immense value to distinguish mutations as functionally relevant or 

irrelevant while identifying the disease mutations. A mutation within coding 

regions producing an amino acid substitution is called missense mutation. It 

gives rise to structural variations, which lead to functional 

disruptions/phenotypic variations in the protein and ultimately instigate a 

disease. Such mutations altering structure and function provide insight into the 

specific molecular mechanism responsible for the disease state. Analysis of such 

mutational profiles also provides insight into understanding the relationship 

between protein sequence and function. It has been shown that about 95% of 

mutation in common solid tumors such as colon, breast, brain or pancreas, are 

single base substitutions, out of which 90.7% are missense mutations[18]. In 

earlier studies, Sjoblom et al.[19] and Wood et al.[7] observed that missense 

mutations accounted for ~80% of the 1963 distinct somatic mutations found 
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after the removal of germ-line nucleotide polymorphisms. This clearly shows 

that missense mutations play a major role in oncogenesis. Shi and Moult[20] 

also observed that missense mutations in known cancer genes have a high 

impact on in vivo protein function. Missense mutations can affect the structure 

and/or function of the protein by having a dramatic effect on stability, hydrogen 

bonds, conformations and many other properties of proteins. Missense 

mutations are thought to be important factors contributing to the genetic 

functional diversity of encoded proteins [21]–[23] and have been identified 

recurrently in cancer genomes, hence are the most investigated group of 

mutations [14], [18], [7], [24].  

Effects on Protein Function 
 

The impact of these missense mutations on a protein’s function can vary 

depending on there positions in the protein, their actual function and even on 

the mutant amino acid [25]. Several researchers have worked on developing 

computational methods to predict the effects of missense mutations on the 

function of the protein[26]–[36], [37, p. -], [38].  

Predictive methods not only point out the effects of the mutations on the protein 

functions but also shed light on gene prioritization. They help in sorting the 

genes, which are more likely or play active role in causing a functional impact on 

the protein when mutated. Accurate predictions will help in minimizing the set 

of missense mutations to be characterized experimentally, in the process saving 

efforts, time and money. In fact, labels such as ‘driver’ mutations and ‘passenger’ 
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mutations have been used in literature to describe the fact that not all mutations 

found in the cancer genes are involved or play active role in tumorigenesis. The 

mutations that confer a selective growth advantage to the tumor cell are called 

‘driver’ mutations. It has been estimated that each driver mutation provides only 

a small growth advantage to the cell, on the order of a 0.4% increase in the 

difference between cell birth and cell death. However, over many years, this 

slight increase can result in a large mass containing billions of cells[39]. It is still 

a significant challenge and is being seriously pursued to identify driver versus 

passenger mutations[40]. When it is not clear which of the mutations are driver 

mutations or passenger, a reasonable and an intuitive approach is to have a set 

of recurrent or overrepresented mutations in genes, i.e. each gene having at least 

a 100 mutations. This kind of a data set has been shown to support prediction 

assessment studies performed by Gnad and et al. [40]. In the first part of this 

dissertation we leverage this theory and collect as many mutations as possible 

against each gene published in different large-scale cancer gene databases 

globally. The first task towards this effort was to create an integrated database, 

IDHCMM, Integrated Database of Human Cancer Missense Mutations by 

integrating Missense mutations from widely used comprehensive cancer 

projects/databases such as TCGA, ICGC, and COSMIC. The IDHCMM database 

is described in detail in Chapter 1. 

In this dissertation we explore a computational geometry approach based 

statistical scoring method, which uses a Delaunay tessellation-derived four-body 
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potential function to predict the functional impact of missense mutations. This 

potential is derived via an approach that uses the atomic coordinates of non-

homologous, high-resolution protein structures. Since changes in protein 

structure effects protein function, it follows that the relative structural 

differences between variant proteins (i.e., single point mutants) and their wild 

type counter parts also correlate with the corresponding relative functional 

changes. We use a statistical scoring method for quantifying environmental 

perturbations expected to occur at all positions in a folded protein structure due 

to a particular amino acid replacement. Variants will be characterized by 

specifically focusing on perturbations at the mutated residue position and at the 

six structurally nearest positions.  

Predictive methods 
 
The plausible effects of missense mutations could range from affecting the 

protein stability to perturbing the protein interactions and cellular localization. 

An increasing number of computational tools are being developed to determine 

structurally and functionally unfavorable mutations. These predictive methods 

can be grouped based on the approach taken. Some are observation based, some 

probabilistic and some based on machine learning methods with wider set of 

attributes and training sets [21], [41], [34], [42], [36]–[38]. Most of them are 

based on sequence homology/ evolutionary sequence conservation methods 

[31], [43] while some include few structural attributes and some are based on 

physiochemical attributes. There are some prediction methods, which utilize a 
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combination of methods and their feature attributes. Supervised machine 

learning algorithms, such as support vector machines (SVMs) and Random 

Forest (RF) train models that perform a binary classification of single amino 

acid mutations in proteins as either neutral or deleterious to function. However, 

it is frequently the case that the functional effect of a polymorphism on a protein 

resides between these two extremes. Shi and Moult [20] established that 

destabilization of three- dimensional structure is the major molecular 

mechanism underlying driver missense mutations, therefore destabilizing 

mutations should preferably be determined by a structure-based approach. 

 
The choice of features in any predictive method is of utmost importance as it 

decides the usefulness as well as the limitations of the method. No single method 

can consider all possible structural and functional features of a protein. This 

would not be feasible. For example, SIFT uses sequence homology to classify 

amino acid substitutions as tolerated or deleterious and prediction is based on 

conservation built purely on orthologous protein alignments. It does not 

distinguish intrinsically disordered regions and it has been recently observed 

that SIFT predictions have more false negatives on annotated disease mutations 

in disordered, solvent accessible and non-conserved regions [44].  

So not all methods can assume a ‘complete picture’ in order to predict the effects 

of missense mutations. Traditionally there have been two classes of predictive 

methods, sequence conservation based and Structure and /or sequences based 

methods. 
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Sequence based methods 
 
Sequence based methods exploit the evolutionary conservation of bases 

assuming that mutations in conserved positions in a multiple sequence 

alignment, across homologs tend to affect the protein structure and function 

drastically. It is also assumed that a disease-causing missense mutation in the 

current population is also disease-causing in homologous genes in other living or 

extinct species, or in other words the fitness landscape is constant [45]. An early 

observation that disease-associated missense mutations were overabundant at 

the evolutionarily conserved positions led to the use of multiple sequence 

alignment to help analyze missense mutations [46][47]. Protein multiple 

sequence alignments performed in different sequence based methods are 

relatively informative and provide reasonable sensitivity and specificity to 

missense prediction analysis when they have a significant alignment depth, i.e. 

have sampled enough sequences across evolutionary spread. These methods are 

then carefully constructed and curated to distinguish between positions that are 

functionally constrained and distinguish between different effects of different 

mutations. Therefore the variables that could effect the prediction of these 

algorithms include the genes involved, the number of sequences involved in the 

alignment, the evolutionary distances among species, the algorithm used and the 

importance of absolute amino acid conservation versus relatively conserved 

mutant amino acid [48]. Different approaches are designed to achieve this goal 
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ranging from simply listing the different amino acid residues present at that 

position, estimating the likelihood of the position being functionally constrained 

through phylogenetic tree based methods [49], calculating average BLOSUM62 

scores for all amino acid pairs present in a mutation position [46] and measure 

the physicochemical variation that has been evolutionarily tolerated at the 

mutation position [50]. There are typically two steps in performing a 

conservation-based prediction, first choosing appropriate homologous 

sequences to build the multiple sequence alignment as the selection of sequences 

plays a major role in the accuracy of the prediction. A very shallow alignment 

depth is not informative where as high alignment depth may include very distant 

homologs and may deviate the prediction results. The second step is to evaluate 

the alignment. Different approaches have been used such as positional 

conservation measures, scoring functions, conservation of physicochemical 

properties (Align-GVGD [50],  MAPP [51]). 

Some of the earliest predictive methodologies are sequence based such as SIFT 

[43], MAPP [51] and PMut [52], which calculate sequence weights based on 

phylogenetic relationships between sequences, Align-GVGD [50] uses an 

approach based on conservation of amino-acid physicochemical properties, and 

other tools such as PolyPhen [53] and  SNAP [54] use heuristic algorithms. 

Mutation Assessor [31] has a more elaborate conservation-based approach and 

has been seen to be yielding constantly high performance and prediction 

specificity. It distinguishes between conservation patterns within aligned 
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families (conservation score) and sub-families (specificity score) of homologs 

and so attempts to account for functional shifts between subfamilies of proteins. 

These are described in detail in the later sections of this dissertation. 

Disadvantage of Sequence based methods are that they need diverse set of 

sequences and provide no insight into the nature of the underlying functional 

effect. Predictions using sequence conservation based methods are some times 

erroneous when some benign mutations are counted as deleterious and vice 

versa. This happens due to the presence of what are called Compensatory 

Pathogenic Deviations (CPDs). Compensatory changes in other sites of the same 

protein or its interaction partner may make a damaging mutation benign in 

other species. If this CPD is present in the sequences included in the multiple 

sequence alignment, the mutations might be wrongly predicted to be benign. A 

high prevalence of CPDs has been observed by a number of studies [55], [56]. 

Another disadvantage of these methods is the inability to rate the effect of the 

missense mutations. A very less damaging mutation could segregate within the 

populations at high frequencies, in such a case the corresponding amino-acid 

position will be conserved in the phylogeny and the mutations in that position 

may be predicted as highly damaging by conservation based methods. 

Sequence and/or Structure based methods 
 
 
Structure based methods examine the three-dimensional structural 

consequences of missense mutations and rely on the assumption that the 

function of a protein depends on the fundamental physiochemical properties 
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that can be derived only from the protein structure. Studying the relation of 

missense mutation to protein structure is a good approach for learning about 

protein structure and function and has been shown useful for structure based 

drug design [57]. Use of structural features provides direct insights into the role 

of mutations in molecular functions of the protein. Protein structures provide a 

detailed atomic level information and a mechanistic insight into why an amino 

acid change results in a change in protein properties or why a mutant has a 

damaging effect on protein function [58].  

Although many combinations have been used in different structure based 

predictive methods, there seem to be three main strategies, namely, decision 

tree based classifiers, data vectors analyzed by machine learning algorithms to 

generate classifiers and molecular dynamics simulations. Decision tree based 

classifiers work with a set of features best extracted from the crystal structure of 

the protein such as, binding site, solvent accessibility, enzymatic site etc. The 

mutation is predicted to affect the protein function if the mutation violates an 

empirically determined condition. PolyPhen [53] is an example of this approach. 

A disadvantage of decision tree based methods is that they are not good at 

combining marginal results from two or more inputs [44]. This hurdle is crossed 

by machine learning algorithms such as Support Vector Machine (SVM), which 

can analyze multiple data types and consider joint effects of multiple inputs. 

Most of the methods are using multiple sources of both structural and 
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phylogenetic information, in a single classifier, to improve upon the prediction 

accuracy or performance.  

PolyPhen-2 [32], PMut [52], MUPro [59], I-Mutant 2.0 [60], SNPs3D [61], LS-

SNP [62], PhD-SNP [63], SNAP [64], MutPred [65] and nsSNPAnalyzer [66] are 

some examples of predictive tools that integrate both sequence and structural 

features and use machine learning algorithms, for predictions. PMut and SNAP 

use neural networks, SNPs3D, LS-SNP and PhD-SNP and I-Mutant 2.0 use 

SVMs, PolyPhen-2 uses Naïve Bayes, MutPred and nsSNPAnalyzer use Random 

Forest etc. There are other methods, which use other machine learning 

algorithms such as HMMs (Panther) or specifically designed custom algorithms. 

These combined classifiers though do not have high predictive accuracy have 

high success rate at predicting damaging mutations. 

There has been a lot of emphasis on predictive tools, which predict the change in 

stability caused by a missense mutation. Shi and Moult [20] established that 

destabilization of three-dimensional structure is the major molecular 

mechanism underlying driver missense mutations, therefore destabilizing 

mutations should preferably be determined by a structure-based approach. 

Approximately 70% of monogenic disease mutations and 60% of very damaging 

germ-line missense mutations act through destabilization of protein three-

dimensional structure, rather than via direct effects on molecular function [20] 

[67]. There are a lot of structure-based tools developed, which measure the 

change in folding free energy. Traditionally, Molecular Dynamics has been the 
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most straightforward way to estimate the folding free energy. But since 

Molecular Dynamics is computationally very extensive, lot of other functions 

that are not computationally very intensive, have been developed. These include 

purely statistical, empirical or knowledge-based energy functions. Examples of 

such tools are AUTO-MUTE [68], PoPMuSiC-2.0 [69], FoldX [70], CUPSAT 

[71], MultiMutate [72], Dmutant [73] etc. An overview of these tools is found in 

Table 1. There are methods, which do not look into energy functions but infer the 

proteins structural properties from its sequence such as MUPro [59], I-Mutant 

2.0 [60]. 

However, some studies [74] showed that combining sequence and structure 

information can increase prediction accuracy to a certain degree. This gave rise 

to ‘integrated analysis’ where methods and approaches were developed where 

both sequence and structure inputs were either together to predict the 

mutational effects. The advantage of integrated analysis approach is that it can 

handle some uncertainty within each input parameter and does not require each 

method to output a perfect binary classification. 

Machine learning algorithms 
 
Machine learning algorithms are widely used for classification purposes in 

complex bioinformatics methods and approaches [75], [76]. The aim of using 

machine learning algorithms is to train a computer system to distinguish i.e. 

classify a set of test cases based on known examples, which is the training set. 

Typically for the machine learning methods, features related to missense 
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mutations are extracted, a classifier is trained using label-clear mutations and 

then classifications for the unknowns on the trained classifiers are performed. 

Automated learning from training data set is a reasonable alternative to tuning 

of empirical rules manually. Automated methods can explore more efficiently as 

to how the attributes of each mutation can be utilized to produce an optimal 

prediction. Machine learning methods can easily be cross-validated too. 

Machine learning approaches learn more complex nonlinear functions of input 

mutation, protein sequence, and structure information, than fitting a linear 

combination of energy terms. They are more robust in handling of outliers than 

linear methods, thus, explicit outlier detection used by empirical energy function 

approaches is not needed. Another advantage of machine learning algorithms is 

that they are not limited to using energy terms; they can easily leverage any 

relevant information. A good machine learning algorithm should have a good 

quality training set as the performance of the classifier depends a lot on the 

training from the training set. The training data set should represent the space 

of possible cases. This space of possible cases is too huge in case of missense 

mutations, therefore making it hard to formulate a benchmark variation dataset. 

Machine learning methods include several widely different approaches such as 

support vector machines, neural networks, Bayesian classifiers, random forests 

and decision trees. The quality of results of each predictor depends upon how 

the training has been done, what features are used to describe the phenomenon 

and optimization of the method.  
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It has been seen in case of functional predictors of missense mutations, that a 

combinations of methods and approaches yields better predictions. This calls for 

an increased number of features included for prediction. Caution has to be taken 

here and only features that best capture the effects of missense mutations should 

be incorporated to avoid the problem of dimensionality, which means that much 

more data is needed when the number of features increases.  

The volume of the feature space grows exponentially with the dimensionality 

such that the data become sparse and insufficient to adequately describe the 

pattern in the feature space. Another problem which could arise is the ‘over 

fitting’ which means that the learner, due to sparse data, complex model or 

excessive learning procedure, describes noise or random features in the training 

dataset, instead of the real phenomenon. It is crucial to avoid ‘overfitting’ as it 

leads to decreased performance on real cases [77]. There are different statistical 

techniques to evaluate the machine learning algorithms, cross-validation being 

the most popular of these. Some of the other are random sampling and leave one 

out validation. Random sampling has a problem that the same cases may appear 

more than once in the test set and others not at all. Leave out one validation is 

computationally very intensive. As the name implies, one case at time is left for 

validation while the remaining cases are used for training. The computational 

requirements may be prohibitive with large datasets. A lot of the machines 

learning predictors are binary classifiers, but it is possible to have more than 2 

classes of outputs.  
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Decision tree is a classifier for generating a pruned or unpruned decision tree 

and it is a mapping of observations to classification. The decision tree represents 

the classifier as a tree structure in which each node represents a decision based 

on an attribute value, and it leads to a set of predictive rules that can be 

interpreted easily [37].Decision trees are built with an inner node representing 

the variable, an arc to the child, representing a possible value of the variable and 

a leaf for the predicted value of target variable using the values of the variables 

represented by the path from the root. Dobson et al. [78] and Krishnan and 

Westhead [37] used decision trees in there predictive studies. 

 

The Bayesian network uses various search algorithms and quality measures to 

find a minimum set of direct dependencies that together explain the observed 

correlations in the data. The best Bayesian network is the one that models the 

observed data using a measure of scoring metric, a trade-off between complexity 

and accuracy. Linear regression analysis relates the output with the linear 

combination of single/multiple input features [79]. Naive Bayes is the simplest 

Bayesian classifier. It is built upon the assumption of conditional independence 

of the predictive variables given the class [75]. PolyPhen-2 uses a Bayesian 

approach and is based on two Bayesian probabilistic models. 

 

Support vector machine (SVM) is a learning algorithm, which from a set of 

positively and negatively labeled training vectors learns a classifier that can be 



18 
 

used to classify new unlabeled test samples. SVM learns the classifier by 

mapping the input training samples into a possibly high dimensional feature 

space, and seeking a hyperplane in this space which separates the two types of 

examples with the largest possible margin, i.e., distance to the nearest points. If 

the training set is not linearly separable, SVM finds a hyperplane, which 

optimizes a trade-off between good classification and large margin i.e. larger the 

margin, the better the generalization of the classifier. One important feature of 

SVMs is that computational complexity is reduced because data points do not 

have to be explicitly mapped into the feature space. Instead SVMs use a kernel 

function, to calculate the dot product of data vectors in feature space, obtained 

from a map from input space to feature space. The linear classification or 

regression function is computed from the Gram matrix of kernel values between 

all training points. Only data points with positive weight in the training dataset 

affect the final solution—these are called the support vectors. PHD-SNP, 

MuStab, MUpro, LS-SNP, SNPs3D, SAPRED, I-Mutant 2.0 and Scpred are some 

of the SVM based tools to predict functional impact of missense mutations. 

 

Random Forest is a classifier consisting of an ensemble of unpruned 

classification or regression trees created by using bootstrap samples of the 

training data and random feature selection in tree induction. It is trained to 

optimally combine the heterogeneous sources of predictors using a curated 

training dataset prepared from the SwissProt database. In the training stage, an 
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RF builds a committee of decision trees and in the test stage it averages the 

results from all trees as the final output. In the tree-growing procedure, a 

random subset of attributes is selected at each node and the best one is used for 

splitting [65]. 

 

An Artificial Neural Network (ANN) is an information processing model that is 

able to capture and represent complex input-output relation- ships. It is a 

network of non-linear processing units that have adjustable connection 

strengths, hidden layers and the discrimination is mainly based on feed-forward 

networks using the back propagation-learning rule [76]. It learns and classifies a 

problem through repeated adjustments of the connecting weights between the 

elements. The goal of the method is to find a good input-output mapping, which 

can then be used to predict the test set [79]. SNAP, SNPdbe, PoPMuSiC-2.0, 

PMUT, MUpro, PoPMuSiC-2.0 and I-Mutant are some of the neural networks 

based tools to predict functional impact of missense mutations. 

 

Mutational Data Sets 
 
The performances of most of the predictive methods employing machine 

learning algorithms have a strong dependency on training data sets, i.e. the 

selected set of neutral and disease-causing missense mutations. It is not a 

straightforward task to generate an optimal set of either deleterious or neutral 

mutations for any predictive analysis, as there cannot be a uniform definition of 
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functionality across all the proteins. Protein function is context dependent, and 

so is the effect of a missense mutation on the protein function. Missense 

mutations may directly affect the normal function of proteins by altering binding 

sites in proteins such as protein, nucleic acid, ligand or ion binding sites. Protein 

function may also be affected by missense mutations that alter protein stability, 

protein aggregation or posttranslational modifications. In either case, where 

protein malfunction occurs, disease may result. Cases with experimentally 

validated known functional effects, which represent the real world i.e. having a 

distribution of the missense mutations closely resembling the distribution in the 

real world data, would form the ideal benchmark dataset. Datasets used for 

training or testing the predictive methods should be large enough to cover 

mutations related to all the features included (sequence based or structure 

based) and to have predictive statistical power. The datasets need to be non-

redundant and need to contain both disease-causing and neutral mutations. 

A dataset has been released recently, VariBench [80], which is a benchmark 

database suite comprising of variation datasets for testing and training methods 

for variation effect prediction. VariBench can be used for developing, optimizing, 

com- paring and evaluating the performance of computational tools that predict 

the effects of variations. 

Gnad et al [40] observed that when CHASM was run using a test data set, which 

did not have mutations matching COSMIC mutations, the accuracy of CHASM 

dropped from 89% to 50%. CHASM was explicitly trained on COSMIC 
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mutations. They also observed that on a data set, which included only oncogenic 

driver mutations, CHASM showed a poor performance. This was thought to be 

because of, CHASM being trained to predict both tumor suppressor mutations as 

well as oncogene mutations. This clearly shows the importance of training set 

used to train various different predictors. Thusberg et al. [81] observed that poor 

performance by the predictive methods they tested in their study was not 

because of the differences in the size of the data sets but was because of other 

factors such as differences in the type of data. 

 

Overview of Predictive tools 
 
An overview of different predictive methods is presented below. 

1. SIFT(  
 
One of the earliest tools developed in this area, SIFT, (Sorting Intolerant From 

Tolerant) [43], uses sequence homology to classify amino acid substitutions as 

tolerated or deleterious and prediction is based on conservation built purely on 

orthologous protein alignments. Owing to its impressive predictive power and 

simplicity, SIFT continues to be used as a benchmark for other methods and 

approaches. SIFT considers the position at which the change/mutation occurred 

and the type of amino acid change. Given a protein sequence, SIFT chooses 

related proteins and obtains an alignment of these proteins with the query. SIFT 

uses Dirichlet mixtures extracted from these protein multiple sequence 

alignments (PMSAs) to create position specific scoring matrices (PSSM) and 
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score missense substitutions. Based on the amino acids appearing at each 

position in the alignment, SIFT calculates the probability for each of the 19 

amino acid changes to be tolerated relative to the most frequent amino acid 

being tolerated. If this normalized value is less than a cutoff, the substitution is 

predicted to be deleterious. However, such a prediction could be unreliable if 

there are few homologs available. Better predictions are obtained if the users can 

provide their own curated alignments. SIFT scores of ≤0.05 are usually taken as 

indicative of deleterious substitutions. However, the authors point out that in 

some situations higher or lower cutoffs might give a more accurate result for 

binary deleterious/neutral classifications [43]. The method is easy to install and 

use. An overview of SIFT workflow is shown in Figure1 below, taken from SIFT 

publication by Kumar et al. [33]: 
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Figure 1: SIFT Workflow 

 

1.1. B-SIFT  

B-SIFT, Bi-directional SIFT [82] is a modified version of SIFT algorithm that 

utilizes protein sequence alignments with homologous sequences to identify 

functional mutations based on evolutionary fitness. B-SIFT attempts to 

classify both gain- and loss-of-function mutations. By calculating SIFT scores 

for both the mutant and wild-type alleles, it identifies potential gain-of-

function mutations where the mutant residue is more similar to those found 

in homologous proteins.  

 

2. PolyPhen(  
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PolyPhen (Polymorphism Phenotyping) [32] demonstrated that the combination 

of structural and evolutionary attributes, improve prediction. It predicts possible 

impact of an amino acid substitution on the structure and function of a human 

protein by using straightforward physical and comparative considerations. It 

uses a rule-based cutoff system to classify variants. It initially characterizes the 

input missense mutations by various, sequence, structure, and phylogeny based 

descriptors. The sequence-based characterization includes SWALL database 

[83] annotations for sequence features, a transmembrane predictor TMHMM 

[84] and PHAT [85] transmembrane-specific matrix score for substitutions at 

predicted transmembrane regions, the Coils2 program [Lupas et al., 1991] for 

prediction of coiled coil regions, and the SignalP [86] program to predict signal 

peptide regions. Phylogenetic information is derived by constructing a profile 

matrix from aligned sequences by the PSIC (Position-Specific Independent 

Counts) software [87]. The structural descriptors are obtained by mapping the 

missense variant onto the corresponding or similar protein and then using the 

DSSP program [88] for secondary structure information, solvent-accessible 

surface, and j–c dihedral angles. In addition, PolyPhen calculates the normalized 

accessible surface area and changes in accessible surface propensity resulting 

from the amino acid substitution, change in residue side chain volume, region of 

the Ramachandran map, normalized B factor, and loss of a hydrogen bond 

according to the Hbplus program [McDonald and Thornton, 1994]. The SWALL 

database annotations are utilized in the structure analysis such that the program 



25 
 

checks whether the substitution site is in spatial contact with critical residues 

annotated to be involved in forming binding sites or active sites. Additionally, 

the contacts of the substituted residue with ligands or subunits of the protein 

molecule are checked. After characterizing the variant, PolyPhen applies 

empirically derived rules based on the characteristics to predict whether a 

missense variant is damaging or benign. Figure2 below shows PolyPhen’s query 

processing flowchart, taken from its publication by Ramensky et al. [53]: 

 

 
Figure 2: PolyPhen query process workflow 

 

PolyPhen-2 differs from the early tool PolyPhen-1 in the set of predictive 

features, alignment pipeline, and the method of classification [53]. PolyPhen-2 

uses eight sequence-based and three structure-based predictive features, which 

were selected automatically by an iterative greedy algorithm. The sequence-
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based features include PSIC scores and MSA properties, and position of 

mutation in relation to domain boundaries as defined by Pfam [89]. The 

structure-derived features are solvent accessibility, changes in solvent 

accessibility for buried residues, and crystallographic B-factor. Majority of these 

features involve comparison of a property of the wild-type (ancestral, normal) 

allele and the corresponding property of the mutant (derived, disease-causing) 

allele, which together define an amino acid replacement. However, when there 

are not enough structural parameters, its classification is based predominantly 

on comparative analysis. Thus, structural attributes are complementary to 

evolutionary ones, rather than overlapping. PolyPhen2 predicts the effect of 

mutation using a naive Bayesian classifier.  

 

3. MAPP(  
 
MAPP, (Multivariate Analysis of Protein Polymorphism) [51] considers the 

physicochemical variation present in a column of a protein sequence alignment 

and, on the basis of this variation, predicts the impact of all possible amino acid 

substitutions on the function of the protein. MAPP quantifies constraint in terms 

of biochemical properties rather than substitutions. Analysis rests on two 

complementary ideas: 1. That, differences in standard physicochemical 

properties between the “wild-type” amino acid and the missense mutation are 

the root cause of functional impairment; and 2. that evolutionary variation 

among orthologs in the affected position is a sample of the physicochemical 
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properties that are tolerated at that position. MAPP was designed using these 

two ideas as a premise, and which quantifies the physicochemical variation in 

each column of a multiple sequence alignment and calculates the deviation of 

candidate amino acid replacements from this variation. The greater the 

deviation, the higher is the probability that a replacement impairs the function 

of the protein, and the greater is its predicted effect on the function of the 

protein. MAPP uses quantitative scales measuring six physicochemical 

properties to evaluate missense variants: (1) hydropathy [90] (2) polarity [91] 

(3) charge [91] (4) side-chain volume (Zamyatin 1972); (5) free energy in alpha-

helical conformation [92] and (6) free energy in beta-sheet conformation [92].  

MAPP consists of seven steps, shown in the MAPP analysis workflow in Figure3 

taken from the MAPP publication by Stone et al. [51]. First it builds a multiple 

alignment of orthologs or closely related paralogs; distant paralogs are excluded 

to avoid including evolutionary variation that specifies functional differences. 

The sequences’ evolutionary relationships are inferred by standard likelihood 

analysis, which also yields the branch lengths in substitutions per site, for the 

tree. Based on the topology and branch lengths of the tree, weights are 

calculated for each sequence that control for phylogenetic correlation among the 

sequences. Multiplication of the weights with the fraction of sequences carrying 

a particular amino acid yields the alignment summary. This is interpreted by 

using a matrix of physicochemical property scales. The result is an estimate of 

the physicochemical constraints on each position in terms of the mean and 
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variance of the property distributions observed in its alignment column. The 

statistics are stated to be biologically meaningful; the mean hydropathy value at 

a position estimates its hydrophobic character, while the variance measures the 

strength of that constraint. Deviations from the alignment column are obtained 

for each possible variant by calculating its property difference from the mean 

and dividing by the square root of the variance. This statistic is interpreted as a 

signed measure of constraint violation. To compute a single score measuring the 

violation of constraint across all properties, it first decorrelates the properties 

themselves by using a principal component transformation. The decorrelation 

gives rise to a new coordinate system in which each axis is a principal 

component; the distance from the origin to any variant is the variant’s 

decorrelated impact score. An impact score is thus assigned to every possible 

variant in the protein. A high impact score identifies a potentially deleterious 

variant by virtue of its physicochemical dissimilarity to the observed 

evolutionary variation, whereas low-scoring variants are less likely to 

compromise protein structure or function. 
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Figure 3: MAPP Analysis Steps 

 

MAPP can distinguish intermediate from negative variants and allows a 

continuous classification, because its impact scores are widely spread across the 

sub-functional spectrum. MAPP outperforms SIFT in distinguishing positive 

from deleterious variants, even for the data set upon which SIFT was trained 

(LacI). MAPP’s predictive accuracy is complemented by the interpretability of its 

impact scores, which provide a transparent rationalization of predictions in 

terms of physicochemical properties. Each variant’s impact score can be 

dissected into individual components that measure property-specific constraint 

violations effectively assigning a rationale to every prediction. 
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4. AlignGVGD( 
 
Align-GVGD [50] is a freely available, web-based program that combines the 

biophysical characteristics of amino acids and protein multiple sequence 

alignments to predict where missense substitutions in genes of interest fall in a 

spectrum from enriched deleterious to enriched neutral. Align-GVGD is an 

extension of the original Grantham differences to multiple sequence alignments 

and true simultaneous multiple comparisons. The biochemical variation at each 

alignment position is converted to a Grantham Variation score (GV). The 

difference between these properties and those of the variant amino acid being 

assessed are calculated and a Grantham Difference score generated (GD). These 

values are used, as a measure of how likely the substitution is to be deleterious 

or neutral on a classification spectrum. Align-GVGD requires an alignment as 

input. Predictions are found to be highly varied depending on the alignment 

used. Using highly divergent sequences in an alignment can introduce gaps and 

will result in all amino acids being classed as neutral at that position. In an 

attempt to overcome the problem of all amino acids being classed as neutral at a 

position because of the use of highly divergent sequences in an alignment that 

introduce gaps, manually curated alignments are available to use which contain 

8-14 orthologous sequences from a range of species. These alignments cover 

ATM, BRCA1, BRCA2, CHEK2, TP53, MLH1, MSH1, MSH6, PMS2, RAD51 and 

XRCC2. These alignments have been carefully constructed to provide the correct 

amount of sequence divergence whist also using computational algorithms to 
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improve sequence coverage and reduce the number of gaps. When using Align-

GVGD on the genes listed the provided alignments should always be used 

(http://agvgd.iarc.fr/alignments.php). For each of these gene alignments, the 

user must select the species depth of the alignment. For example for BRCA1, the 

alignment can span species from human to frog, human to puffer fish or human 

to sea urchin. The depth of the alignment will influence sequence diversity over 

the sites and thus effect the prediction. Mutation interpretation software, 

Alamut (version 2.1 - Interactive Biosoftware, Rouen, France), supplies 

alignments to the Align-GVGD. A-GVGD, can be used to identify sets of 

missense mutations that are either enriched for deleterious mutations or 

enriched for neutral mutations. However, A-GVGD does not account for the 

possibility that sequence variation that has been permissible during the 

evolution of BRCA1 in one group of non-human vertebrates is not permissible in 

human BRCA1. It also does not take into account that the nucleotide 

substitution underlying a missense variant may interfere with mRNA splicing or 

have some other deleterious effect at the level of DNA or RNA [50]. 

 

5. nsSNPAnalyzer 
 
nsSNPAnalyzer, [66] is a web-server implementing a machine-learning method 

that combines the biophysical characteristics of amino acids and protein 

multiple sequence alignments to predict where missense substitutions in genes 

of interest fall in a spectrum from enriched deleterious to enriched neutral. 

Align-GVGD is, an extension of the original Grantham difference to multiple 



32 
 

sequence alignments and true simultaneous multiple comparisons. 

nsSNPAnalyzer takes a protein sequence and the accompanying nsSNP as 

inputs. The input protein sequence is searched against the ASTRAL database 

[93] for homologous protein structures, and calculates three types of 

information from user’s input: (i) the structural environment of the SNP, 

including the solvent accessibility, environmental polarity and secondary 

structure (ii) the normalized probability of the substitution in the multiple 

sequence alignment using the SIFT method and (iii) the similarity and 

dissimilarity between the original amino acid and mutated amino acid. The 

program then uses a Random Forest classifier trained by a dataset prepared 

from the SwissProt database to classify the variant to be disease-associated or 

functionally neutral. Figure4, taken from nsSNPAnalyzer publication [66] shows 

the workflow. 
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Figure 4: nsSNPAnalyzer Workflow 

 

Two inputs are mandatory: protein sequence in FASTA format and the nsSNP 

identities to be analyzed. An nsSNP is denoted as X#Y, where X is the original 

amino acid in one letter, # is the position of the substitution (starting from 1), 

and Y is the mutated amino acid in one letter. Multiple nsSNPs in a protein need 

to be separated by new-line characters in the input. In addition to the two 

mandatory inputs, an accompanying protein structure file in PDB format can be 

uploaded, if the users want their own structure to be used. The output includes 

several calculated features of the nsSNP: (i) predicted phenotypic class (disease-

associated versus neutral); (ii) a hyperlink to the homologous structure with a 

SCOP identifier; (iii) the normalized probability of the substitution calculated by 
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the SIFT program; (iv) area buried score, a measure of the solvent accessibility; 

(v) fraction polar score, a measure of environmental polarity related to hydrogen 

bond formation; (vi) secondary structure (helix, sheet and coil); and (vii) the 

structural environment class, a discrete environment class definition by 

combining features (iv)–(vi). The area buried score and fraction polar score are 

calculated by the ENVIRONMENT program [94], and the secondary structure is 

calculated by the STRIDE program [95]. 

 

6. SNPs&GO 
 
SNPs&GO [96] is a web server for the prediction of human disease-related single 

point protein mutations, based on support vector machines. SNPs&GO is an 

SVM classifier based on the local sequence environment of the mutation, 

features derived from sequence alignment, prediction data provided by the 

PANTHER classification system [97] and a functional-based log-odds score 

calculated considering the GO classification. The main novelty of SNPs&GO is 

the use of functional GO terms. The final input vector consists of 52 values, 40 

components encode for the mutations and sequence local information (Seq); 

four inputs concern features derived from sequence profile plus an extra one (a 

bit) codifying the presence/absence of the features themselves (Prof); four 

values represent selected parameters of PANTHER (prediction output plus an 

extra node encoding the presence/ absence of PANTHER output) (PANTHER); 

two components encode for the GO log-odd score (LGO) and for its 
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presence/absence (LGO). Results that are obtained adopting a cross validation 

procedure under different implementation conditions on the same 

training/testing set. Performance is measured by computing different scoring 

indexes: Q2, the overall accuracy; P(D), the rate of correct predictions for the 

disease- related mutations (D); Q(D), the coverage (number of correctly 

predicted mutations) for the disease-related mutations; P(N), the rate of correct 

predictions for the neutral mutations (N); Q(N), the coverage for the neutral 

mutations; AUC, an estimate of how the predictor is different from a random 

predictor characterized by AUC =0.5. The study states that with increasing 

complexity of information, the performance is enhanced, suggesting that in 

addition to the sequence profile, the LGO data derived from GO annotation 

improves the ability to discriminate neutral and disease-related SNPs. 

SNPs&GO3d is an extension of SNPs&GO including information extracted from 

protein 3D structure. It is stated that although SNPs&GO3d has been tested on a 

smaller set of mutations, it results in a better accuracy with respect to the 

sequence based method. It predict deleterious single point mutations 

considering in a unique framework protein structure information, used for the 

prediction of stability changes in I-Mutant [60] [98], and protein sequence, 

evolutionary and functional information, used in the recently developed 

SNPs&GO algorithm [96]. The final input vector consisted of 52 elements, 20 

components encoding for the mutations (Mut); 21 features representing local 

protein structure (Structure Environment); 5 features derived from sequence 
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profile (Prof); 4 features from the output of PANTHER method (PANTHER); 2 

elements encoding the number of GO terms associated to the protein and the GO 

log-odd score (LGO). It differs from SNPs&GO only in the 21 elements encoding 

for the local protein structure environment (Structure Environment). These 

replace the 20 elements encoding for the sequence environment used by the 

sequence-based SVM predictor. 

 

7. SNAP  
 
SNAP (Screening for Nonacceptable Polymorphisms), [54] [64] is a neural 

network-based method for the prediction of the functional effects of non-

synonymous SNPs. It perhaps spans the most comprehensive feature space [40]. 

SNAP needs only sequence information as input, but benefits from functional 

and structural annotations, if available. The method utilizes evolutionary 

information from PSI-BLAST [99] frequency profiles and PSIC [87], transition 

frequencies for mutations, biophysical characteristics of the substitution, 

secondary structural information, and relative solvent accessibility values 

predicted by PROFsec/ PROFacc [100] [101], chain flexibility predicted by 

PROFbval [102], protein family evolutionary information, and information 

about domain boundaries from Pfam [89], and SwissProt annotations to classify 

a missense variant. The training sets for the NN were constructed from Protein 

Mutant Database (PMD) data complemented by a set of neutral 

pseudomutations generated by the authors of the method as described in 
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Bromberg and Rost. A  number of networks were trained before the optimal 

architecture and feature space were obtained for each data set. The only feature 

that was not altered in the network selection process was the presence of two 

output nodes, each ranging from 0 to 100. The difference between two outputs, 

sampled at a particular cutoff, determined the classification of the mutant. When 

additional features no longer improved performance window length, hidden 

node number, learning rate and momentum were varied. Further runs were only 

attempted if any of the changes stimulated an increase in overall accuracy. The 

results of these runs determined the architecture and input vectors for the final 

networks. As an input SNAP takes the wild-type sequence along with their 

mutants. A comma-separated list gives mutants as: XiY, where X is the wild- 

type amino acid, Y is the mutant and i is the number of the residue (i = 1 for N-

terminus). X is not required and a star (*) can replace either i or Y. Any 

combination of characters following these rules is acceptable; e.g. X** = replace 

all residues X in all positions by all other amino acids, *Y = replace all residues 

in all positions by Y. Users may provide a threshold for the minimal reliability 

index (RI) and/or for the expected accuracy of predictions that will be reported 

back. These two values correlate so when both are provided, the server chooses 

the one yielding better predictions. For each instance SNAP provides a reliability 

index (RI), i.e. a well-calibrated measure reflecting the level of confidence of a 

particular prediction. As an output, for each mutant, SNAP returns three values: 

the binary prediction (neutral/non-neutral), the RI (range 0–9) and the 
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expected accuracy that estimates accuracy on a large dataset at the given RI (i.e. 

accuracy of test set predictions calculated for each neutral and non-neutral RI. 

 In a cross-validation test on over 80 000 mutants, SNAP identified 80% of the 

non-neutral substitutions at 77% accuracy and 76% of the neutral substitutions 

at 80% accuracy. This constituted an important improvement over other 

methods. The improvement rose to over ten percentage points for mutants for 

which existing methods disagreed. Possibly even more importantly SNAP 

introduced a well-calibrated measure for the reliability of each prediction. This 

measure will allow users to focus on the most accurate predictions and/or the 

most severe effects. The most important single feature for SNAP prediction is 

conservation in a family of related proteins as reflected by PSIC scores [87]. 

SNAP depends on many tools owing to its extensive feature space and is 

therefore not easy to install compared to other tools. For limited set of mutations 

it is preferable to use its website { https://www.rostlab.org/services/snap/} 

 

8. PMUT 
 
PMUT [52] is a software aimed at the annotation and prediction of pathological 

mutations and is based on the use of neural networks (NNs) trained with a large 

database of neutral mutations and pathological mutations. PMUT uses different 

kinds of sequence information to label mutations, and the neural networks to 

process this information. PMUT server works at two different levels 1. It 

retrieves information from a local database of mutational hotspots and 2. It 
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analyzes a given SNP in a specific protein. The first input to PMUT is either the 

sequence of the protein or its SwissProt/trEMBL code. The user has to select the 

mutation site and whether to analyze a single mutation, which is the default or 

to perform a complete mutation scan at this position. PMUT can simulate 

massive single-point mutation along the whole sequence (Mutation Hot-Spot 

analysis), helping to detect regions where mutations are expected to have a large 

pathological impact. Irrespective of the selection, the program retrieves a series 

of parameters describing the mutation [103][104] from (1) its internal databases, 

(2) PHD output [101] and (3) multiple alignments. The latter are either 

introduced by the user [e.g. from the PFAM database] or automatically 

generated by the program from a two-iterations PSI-Blast run on a non-

redundant SwissProt/trEMBL database. Two neural networks are implemented 

as predictor engines, a large one with 1 hidden layer, 20 nodes and 15 

descriptors and a small one with 20 nodes, no hidden layer and with 3 

parameters. Results are displayed in the form of various text files and, when the 

structure is experimentally known, 2-D and 3-D plots are also available. It 

provides a very simple output: a yes/no answer and a reliability index (0-9). 

Additionally, the program allows users to retrieve all the intermediate 

information (alignments, Blast and PHD outputs, etc.) used in PMUT 

predictions. The cross-validated performance of the method is 84 % overall 

success rate, and 67 % improvement over random. PMUT also has a database, 

PMUT Database, which comprises of pre-computed mutation profiles of all the 
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proteins in the 90% identity cluster of the PDB database. All the residues of each 

protein were mutated to all 19 possible alternative amino acids. The mutation 

matrix is manipulated to define mutation hot spots in different ways: 1. 

Maximum, mean and minimum pathogenicity indexes in each mutation site, 2. 

the pathogenicity index associated with the mutation to Ala (alanine-scanning) 

of all the residues and 3. the maximum, mean and minimum pathogenicity 

indexes associated with the genetically accessible mutations (i.e. those implying 

only one nucleotide change) in each position of the protein. PMUT is freely 

accessible through a web interface at the Molecular Modeling and 

Bioinformatics website (http://mmb2.pcb.ub.es:8080/ PMut/). A limited 

version of PMUT Predictor providing a hot spot analysis is also avail- able as a 

web service running according to the BioMoby standard 

(http://www.biomoby.org; http://www.inab.org). 

 

9. PhD-SNP 
 
PhD-SNP (Predictor of human Deleterious Single Nucleotide Polymorphisms) 

[63] is a prediction method based on single-sequence and sequence profile based 

support vector machines trained on SwissProt variants. The single-sequence 

SVM (SVM-Sequence) classifies the missense variant to be pathogenic or neutral 

based on the nature of the substitution and properties of the neighboring 

sequence environment. The profile-based SVM (SVM-Profile) utilizes sequence 

profile information taken from MSAs, and classifies the variant according to the 
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ratio between the frequencies of the wild-type and substituted residue. A 

decision tree algorithm chooses which one of the two SVMs described above is to 

be used at each case based on the occurrence of wild- type and mutant amino 

acids at the given position. The PhD-SNP SVM input is build in three steps: for a 

given mutation the substitution form the wild-type residue to the mutant is 

encoded in a 20 elements vector that have -1 in the position relative to the wild-

type residue, 1 in the position relative to the mutant residues and 0 in the 

remaining 18 positions; a second 20 elements vector encoding for the sequence 

environment is build reporting the occurrence of the residues in a windows of 19 

residue around the mutated residue; Both the frequency of the wild type 

(Fi(WT)) and mutated (Fi(MUT)) residues at position I are evaluated from the 

sequence profile. The latest version of PhD-SNP uses the same input described 

for the SVM-Sequence method and 4 more profile based features. The sequence 

profile is calculated according to the procedure used for the SVM-Profile method 

but in this case the input vector is composed by the frequencies of wild-type and 

mutant residues, the number of aligned sequences and the conservation index in 

the mutated position. The output consists of a table listing the number of the 

mutated position in the protein sequence, the wild-type residue, the new residue 

and if the related mutation is predicted as disease-related (Disease) or as neutral 

polymorphism (Neutral). The RI value (Reliability Index) is evaluated from the 

output of the support vector machine. 

10. SNPs3D 
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SNPs3D [61], [105] is a web resource and is organized into three modules, each 

one accessible via a separate simple search window on the user interface. One 

module generates lists of candidate genes for any specified disease, based on an 

analysis of the relationship between the disease and genes, as reflected in the 

literature making use of simple text mining techniques. Concept profiles are 

constructed for each disease and for each gene. Each concept, a disease or a gene 

is represented by an ordered list of words and terms most closely associated with 

the concept. The set of words and terms is complied from the contents of the 

approximately 80,000 PubMed abstracts that have been manually associated 

with one or more human genes in the NCBI Entrez Gene database, using natural 

language processing. The second module provides an interactive graphical gene-

gene network, built from literature associations, known protein-protein 

interactions from BIND (Biomolecular Interaction Network Database), and 

existing pathways (KEGG). The third module provides information on the 

relationship between non-synonymous SNPs and protein function. SNP/protein 

function relationships are derived by two methods ([58], [67], [105]), one using 

principles of protein structure and stability, the other based on sequence 

conservation. Access to details of both analyzes is provided through the web 

interface. Both methods mentioned above make use of a machine-learning 

algorithm, the support vector machine (SVM), to assign each SNP as deleterious 

or non-deleterious to protein function. The SVMs are trained on monogenic 

disease data. Five parameters: probability of accepting that amino acid 
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substitution, entropy, mean entropy, standard deviation of the entropy and the 

entropy Z score, were used as features to train a SVM.  Bootstrapping, with 30 

SVMs for each method, was used to obtain the accuracies and confidence limits. 

That is, each SVM was trained on data points drawn randomly from the disease 

and control sets, with the total number of points equal to the size of each set. 

The training and testing procedure was repeated 30 times. Details of the analysis 

of each SNP are provided via the user interface. For the profile model, a user can 

inspect the protein MSA from which the result is derived. For the 

structure/stability model, feature values (for example, surface accessibility, 

electrostatic interactions and hydrophobicity) are provided, as well as an 

interactive molecular graphics interface powered by Jmol, displaying the 

affected residue in its three dimensional structural context is provided. SNPs3D 

had a pre-complied candidate genes lists for a set 76 diseases, taken from the 

NCBI online book, 'Genes and Disease' at the time of its publication. 

 

11. stSNP 
 
Structure SNP [106] is a webserver, which provides the ability to analyze and 

compare human nsSNP(s) in protein structures, protein complexes and protein–

protein interfaces, where nsSNP and structure data on protein complexes are 

available in PDB, along with the analysis of the metabolic data within a given 

pathway. StSNP allows users to analyze data using different inputs, by utilizing 

different search capabilities, by keyword, NCBI protein accession numbers, PDB 
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IDs and NCBI nsSNP ids quickly retrieve targeted information. StSNP utilizes 

three major data sources: (1) Protein sequences from NCBI, (2) the reference 

and nsSNPs locations from NCBI’s dbSNP and (3) structures and sequences 

from the PDB. A pre-calculated list of structural modeling templates found by 

BLAST has been generated for every protein sequence, and stored in a database 

for quick retrieval. stSNP enables researchers to map nsSNPs onto protein 

structures by comparative modeling of structure with nsSNPs using MODELLER 

and visualize their structural locations by using the multiple structure-sequence 

viewer. Pathway information is provided from KEGG database. The modeling 

part of StSNP is interactive and allows the user to choose a template from the 

list, select particular mutations to be modeled, calculate the model and 

subsequently visualize the superimposition of the models and template in the 

Friend software application applet.  

 

 
Figure 5: stSNP Workflow 
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12. PoPMuSiC 
 
PoPMuSiC [107] the first version is an efficient tool for rational computer-aided 

design of single-site mutations in proteins and peptides. It evaluates the changes 

in stability of a given protein or peptide under all possible single site mutations, 

either in the whole sequence or user specified region and returns a list of most 

stabilizing or destabilizing mutations or of the mutations that do not effect 

stability. Two types of queries can be submitted. The first option allows to 

estimate the changes in folding free energy for specific point mutations given by 

the user. In the second option, all possible point mutations in a given protein or 

protein region are performed and the most stabilizing or destabilizing 

mutations, or the neutral mutations with respect to thermodynamic stability, are 

selected. For each sequence position or secondary structure the deviation from 

the most stable sequence is evaluated, which helps to identify the most suitable 

sites for the introduction of mutations. It uses different combinations of 

database-derived potentials according to the solvent accessibility of the mutated 

residues. The input for PoPMuSiC is the wild type protein or peptide structure in 

PDB format. First it computes the effective potentials from a set of known 

protein structures. It then reads the coordinates of the protein to be mutated 

from the PDB file, positions the average side chain centroids and computes the 

backbone torsion angle domains. Then it mutates that position with the 19 other 

amino acids and evaluates the changes in folding free energy caused by these 

mutations. These mutations are then classified as a function of smallest folding 
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free energy changes in absolute value. The output contains the number of 

mutations that are most destabilizing, most stabilizing or neutral. By default 

mutations are performed on the whole sequence but the user can limit the 

specified regions. Figure6, taken from the PoPMuSiC publication [107] shows a 

schematic description of PoPMuSiC workflow. PoPMuSiC-2.0 [69] is a neural 

network based tool which has the same basic idea as that of its first version 

stated above, but has a newly designed energy function. It has a whole new set of 

24 statistical potentials, as well as terms modeling the volume changes upon 

mutation, and express the folding free energy change as a single linear 

combination of these terms, with weighting coefficients that depend on the 

solvent accessibility.  

 

 
Figure 6: PopMuSiC Workflow 
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They assume that the weighting coefficients have a sigmoid shape, identified 

using neural network, to reproduce the smooth transition between the core and 

the surface of the proteins and to generalize the step functions used in the 

original version. Mutations whose impact on stability of the protein structure 

has been measured experimentally were taken from ProTherm database [108]. 

Different interactions contributing to protein stability are described by a set of 

statistical potentials, extracted from a database of known protein structures. It 

uses 24 different potentials, with n ranging from 2 to 7 and grouped in several 

subsets according to their complexity. They can be divided into two major 

classes: local and non-local potentials, which describe the correlations between 

descriptors attached to residues close to each other along the sequence, or close 

to each other in space, respectively. Another parameter used to predict the 

mutant stability is the volume difference between the mutant and wild-type 

amino acids. The estimated stability change upon mutation is expressed as a 

linear combination of the 26 energy functions and proportionality coefficients. 

The neural network is trained on a 5-fold validation. The performances are 

assessed using the root mean square error and the Pearson correlation 

coefficient between the measured and predicted values of the folding free energy 

changes. 

 

13. MutPred 
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MutPred is a Random Forest-based classification method that utilizes 

several attributes related to protein structure, function, and evolution. It 

predicts molecular cause of disease/deleterious mutations. MutPred builds upon 

SIFT and a gain/loss of 14 different structural and functional properties along 

with PSI-BLAST, transition frequencies and Pfam profiles [89]. For instance, 

gain of helical propensity or loss of a phosphorylation site. It was trained using 

the deleterious mutations from the Human Gene Mutation Database [2] and 

neutral polymorphisms from SwissProt [3]. In MutPred, structural descriptors 

include prediction of secondary structure and solvent accessibility by the 

method PHD [100], transmembrane helix prediction by TMHMM [Krogh et al., 

2001], coiled-coil structure prediction by MARCOIL [Delorenzi and Speed, 

2002], stability prediction by I-Mutant 2.0 [Capriotti et al., 2005], B-factor 

prediction [Radivojac et al., 2004], and disorder prediction by DisProt [Peng et 

al., 2006]. Function-related attributes include predictions of DNA-binding 

residues [Ahmad et al., 2004], catalytic residues, calmodulin-binding targets 

[Radivojac et al., 2006], and posttranslational modification sites [Daily et al., 

2005; Iakoucheva et al., 2004; Radivojac et al., 2010]. A collection of five data 

sets of human amino acid substitutions were constructed from online databases 

and the literature. Four of these data sets composed of disease-associated 

mutations (Cancer, Kinase, HGMD and SPd), whereas the remaining data set 

contains inherited, putatively neutral polymorphisms. To discriminate between 

disease-associated mutations and neutral polymorphisms, MutPred applied and 
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compared support vector machine (SVM) and random forest (RF) classifiers, 

which were evaluated using per-protein 10-fold cross-validation. Since RFs 

performed better than the SVMs, further analyses and the predictive model, 

MutPred, were based on these classifiers. MutPred modeled the loss and gain of 

each structural and functional property directly via posterior probabilities, 

thereby directly enabling estimation of the contribution of a gain/loss of a given 

property in order to deduce the underlying mechanism of disease. The output of 

MutPred contains a general score (g), i.e., the probability that the amino acid 

substitution is deleterious/disease-associated, and top 5 property scores (p), 

where p is the P-value that certain structural and functional properties are 

impacted. Scores with g > 0.5 and p < 0.05 are referred to as actionable 

hypotheses; Scores with g > 0.75 and p < 0.05 are referred to as confident 

hypotheses; Scores with g > 0.75 and p < 0.01 are referred to as very confident 

hypotheses. 

 Current version of MutPred, at the time of writing this dissertation, 1.2, 

has some updates which include replacing SIFT score by a more stable version of 

code that calculates evolutionary conservation, the I-mutant software replaced 

by a more stable MUpro [59], by the Baldi group and the training data set 

updated to contain 39,218 disease-associated mutations from HGMD and 

26,439 putatively neutral substitutions from Swiss-Prot. 

 

14. FastSNP 
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FastSNP [109] is a web-based application, which prioritizes SNPs according to 

12 phenotypic risks and putative functional effects, such as changes to the 

transcriptional level, pre-mRNA splicing, protein structure, etc. It extends, with 

recent findings and a decision tree, the strategy of Tabor et al. who studied the 

functional effects of polymorphisms and presented a prioritization strategy that 

associates the relative risk of a SNP with its location and the type of sequence 

variants. FastSNP uses a decision tree, stated to be complete in the sense that it 

considers all known functional roles of a SNP in a gene, to assess the risk 

of a SNP into 1 of 13 types of the functional effects, each of which is 

assigned a risk ranking number between 0 and 5. A high risk rank implies 

a high-risk level. It uses eight services that provide databases and analytical 

tools to predict functional effects for SNP prioritization. dbSNP [110] provides 

the location of a SNP in a gene and its alleles, allele frequency and context 

sequence, Ensembl provides a cross-reference/alternative data source for 

dbSNP, TFSearch [111] predicts if a non-coding SNP alters the transcription 

factor-binding site of a gene, PolyPhen [53] predicts if a non-synonymous SNP 

alters an amino acid in a protein resulting in structural changes (damaged or 

benign) in a protein, ESEfinder [112] predicts if a synonymous SNP is located in 

a exonic splicing enhancer motif, which would diminish the motif with a 

different allele, Rescue ESE [113] provides a cross-reference/alternative data 

source for ESEfinder, FAS-ESS [114] predicts exonic splicing silencer for each 

SNP allele and SwissProt provides the information about protein domains to 



51 
 

determine if a SNP causes an alternative splicing that leads to a protein domain 

being abolished. UCSC Golden Path [115] and NCBI Blast [116] are two services 

for quality control of candidate SNPs and haplotype database from HapMap 

[117] is used for further reducing the number of candidate genes for genotyping. 

A unique feature of FASTSNP is that the prediction of functional effects is always 

based on the most up-to-date information, which FASTSNP extracts from the 

above mentioned 11 external web servers at query time using a team of re-

configurable web wrapper agents. These extendable web wrapper agents 

automate web browsing and data extraction and can be easily configured 

maintained and extended with a tool that uses a machine-learning algorithm. 

The input format has three different methods, ‘Query by Candidate Gene.’ where 

user can choose to specify a gene symbol, SNP reference cluster ID (rsid), or a 

chromosome position as the query. User can select the transcripts of the queried 

gene, if SNPs are coding or non-coding and the allele frequency. Once a final set 

of candidate SNPs is selected, FASTSNP performs the SNP prioritization and 

return the prioritization results in a risk ranking report, and provide a function 

report for each candidate SNP. The second method is ‘Query by SNP’ which 

allows the user to specify a single SNP rsID or upload an excel file containing 

their entire candidate SNPs for prioritization. In the third method it accepts 

novel SNP sequences along with the position and the substitution, as input. The 

function analysis module consists of three agent pipe-lines corresponding to 

decision paths in the decision tree. The first pipeline is for non-coding SNPs. The 
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input sequence pair will be sent to TFSearch to obtain the predicted 

transcription factor-binding sites. The second pipeline handles non-synonymous 

SNPs. In this pipeline, the agent queries PolyPhen to obtain its prediction on 

whether the SNP will alter an amino acid in a protein and result in structural 

changes (damaged or benign) in the protein. The third agent pipeline obtains 

information to predict if the alternative splicing caused by a synonymous SNP 

may abolish a protein domain. FASTSNP performs the necessary post-

processing for the data returned from the agent pipelines and submits the 

results to the prioritization module, which then classifies the SNP, assigns it a 

risk ranking according to the decision tree, and compiles the results into a 

function report. The function report on a SNP contains seven sections on the 

SNP’s functional effects, namely (i) genomic information, presents the nearby 

sequence, the alleles and the allele frequency among different ethnic groups; (ii) 

functional effects summary, presents the risk assessment; (iii) transcription 

regulatory, shows the predicted transcription factor binding sites generated or 

disrupted by the different SNP alleles; (iv) alter- native splicing regulatory, 

reports exonic splicing enhancer/ silencer motifs changed by the SNP alleles 

leading to exon skipping or inclusion; (v) mRNA/protein domain effects, 

presents all spliced forms of mRNAs and protein variants extracted from 

GenBank. The protein domains that the SNP locates in are highlighted; (vi) 

protein structure effects, reports whether the SNP may cause a significant 

structural change in a protein; and (vii) SwissProt feature table, provides 
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information regarding other known mutations or variations of the translated 

protein of mRNAs related to the SNP. Some of these sections are specific to 

coding or non-coding SNPs and they will appear or not appear in the function 

report accordingly. Figure7 taken from the FastSNP publication [109] shows 

data flow of FastSNP. 

 

 
Figure 7: FastSNP Data Flow 

 

15. Bongo 
 
Bongo, Bonds ON Graph [118] is based on graph theoretic measures that analyze 

the likelihood of a missense mutation to cause diseases by affecting its 

corresponding protein structures. It considers a target protein as a residue–

residue interaction graph in which vertices represent residues and edges 

represent interactions between residues, and applies graph theoretic measures 



54 
 

to estimate the topological change due to single point mutations. The novelty lies 

in the application of a graph theory concept, vertex cover, by which key residues 

are identified for analyzing structural effects of single point mutations. For a 

target mutation, Bongo identifies two sets of key residues from the residue 

interaction network of its corresponding wild-type and mutant protein structure. 

Then, Bongo quantifies the structural effect of the mutation via comparing the 

difference of the two key residue sets. Bongo derives the interaction graph of a 

protein by considering each residue as a vertex and each residue-residue 

interaction, including hydrogen bonds, π–π, π–cation, and hydrophobic 

interactions, as an edge. The weight on each edge differs according to the total 

number of cross-secondary structure interactions as well as number of 

interactions with individual residues. The interactions are then normalized 

between the two secondary structures by dividing the weight with the total 

number of cross-secondary structure interactions. Based on the weighting 

scheme, Bongo defines the key residues as the minimum weighted vertex cover, 

which represents the minimum necessary residues to establish the interaction 

network. Then it uses a selection scheme, which adopts an approximation 

algorithm based on the greedy principle to identify the key residues. Bongo first 

uses Andante to model the mutant-type protein structure by rearranging the side 

chain around the mutation site. The structural effects of a mutation are then 

analyzed by comparing the wild-type and mutant-type key residues, denoted as 

Kwt and Kmt, respectively. If a key residue in Kwt is not found in Kmt, then it is 
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considered to be affected by the mutation. Consequently the overall impact of a 

mutation is calculated according to the key residues affected by the mutation. On 

deriving the impact value, Bongo considers mutations with I>1 to cause 

structural effects, which is the criterion calibrated over mutations in the p53 

core domain. Bongo has been calibrated using experimental data on the tumor 

suppressor p53 core domain. Figure8, taken from its publication [118] shows the 

Bongo work flow. 

 

 
Figure 8: Bongo Work Flow 

 

While identifying disease-associated nsSNPs, it is stated that Bongo yields 

similar accuracy as PolyPhen with a PPV (positive predictive value) of 78.5% to 

77.2% and a NPV (negative predictive value) of 34.5% and 37.6% respectively. 
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16. Panther(  
 
Panther, Protein ANalysis THrough Evolutionary Relationships [119][120] is a 

comprehensive software system for inferring the functions of genes based on 

their evolutionary relationships. It is a database of phylogenetic trees of protein-

coding gene families from all kingdoms of life. Phylogenetic trees of gene 

families form the basis for PANTHER and these trees are annotated with 

ontology terms describing the evolution of gene function from ancestral to 

modern day genes. PANTHER is composed of two main components: the 

PANTHER library (PANTHER/LIB) and the PANTHER index (PANTHER/X). 

PANTHER/LIB is a collection of “books,” each representing a protein family as a 

multiple sequence alignment, a Hidden Markov Model (HMM), and a family 

tree. Hidden Markov models (HMMs) are constructed for all families and 

subfamilies, which can be used for genome annotation projects. The 

PANTHER/LIB HMMs are used as a statistical method for scoring the 

“functional likelihood” of different amino acid substitutions on a wide variety of 

proteins. Panther predictions have a score based on an alignment of 

evolutionarily related proteins. Estimates are incorporated with the 

development of the Substitution Position-Specific Evolutionary Conservation 

(subPSEC) scores utilizing more sophisticated alignments based on hidden 

Markov models from protein families, in the PANTHER database. The primary 

mission of the PANTHER database is to organize genes into families and 

subfamilies and to classify them according to inferred function. Much of the 
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organization achieved by this database relies on making PMSAs across a large 

number of gene subfamilies and families. The alignments are obtained from the 

PANTHER library of protein families based on Hidden Markov Models (HMMs). 

The subPSEC score describes the amino acid probabilities, in particular, 

positions among evolutionarily related sequences, and the values range from 0 

(neutral) to about -10 (most likely to be deleterious). The cutoff for classifying a 

missense variant to be pathogenic can be defined by the user, but it is advised to 

use a cutoff of -3 for classification. One important limitation, however, is that 

PANTHER’s PMSAs generally cover only the most conserved portions of genes, 

limiting the fraction of missense substitutions to which it can be applied.  

 

17. LS-SNP 
 

LS-SNP [62] is a genomic-scale, computational pipeline that 

comprehensively maps human nsSNPs in NCBI’s dbSNP database onto protein 

sequences in the SwissProt/TrEMBL databases, functional pathways and 

comparative protein structure models, and predicts positions where nsSNPs 

destabilize proteins, interfere with the formation of domain-domain interfaces, 

have an effect on protein-ligand binding or severely impact human health. The 

automated computational pipeline consists of three modules: In the first 

module, it extract the genomic locations of human SNPs from dbSNP and maps 

these SNPs onto human protein sequences in SwissProt/TrEMBL to identify the 

SNPs that result in an amino acid residue substitution. The primary output of 
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the SNP-to-protein mapping module is a list of protein sequences from 

SwissProt/TrEMBL and the positions of all amino acid residue substitutions 

produced by the SNPs found in dbSNP. In the second module, each of the 

SwissProt/TrEMBL protein sequences are input into MODPIPE, an automated 

system for comparative protein structure modeling, Sequence–structure 

matches are identified by aligning the PSI-BLAST profile of each sequence (built 

with 10 iterations and E-value cutoff 0.0001) against a library of candidate 

template sequences extracted from PDB and by scanning the sequence against a 

database of template profiles with IMPALA (Schaffer et al., 1999). Each 

significant alignment (E-value cutoff 0.0001) that covers distinct regions of the 

target sequence is chosen for modeling. Models are calculated for each of the 

sequence–structure matches using the default ‘model’ routine of MODELLER 

(Sali and Blundell, 1993). A statistical scoring function is used to assess each 

model (Melo et al., 2002). The output of the sequence-to-structure module is a 

collection of fold assignments, alignments of target sequences and template 

structures, comparative structure models for SwissProt/TrEMBL sequences and 

mutated sequences, and model assessments. In the third module, the output of 

the first two modules is used to help compute a variety of annotations for human 

nsSNPs. The nsSNPs are annotated with respect to genomic sequence, protein 

sequence, protein structure and function to identify nsSNPs that generally 

impact human health and specifically nsSNPs that interfere with the formation 

of domain–domain interfaces or have an effect on protein–ligand binding. 
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Finally, it combines a rule-based approach to identify putatively destabilizing 

nsSNPs and a supervised machine learning approach to identify nsSNPs likely to 

have an impact on human health. To identify destabilizing effects on protein 

structure, four structural rules are applied that are based on the preferences of 

each amino acid residue type to be in any of the secondary structure and solvent 

accessibility states. DSSP program [88] is used to compute secondary structure 

state and solvent accessible surface area at each position. Destabilization is 

predicted when Relative solvent accessibility, RSA is <25% and difference in 

accessible surface propensities is >0.75; (2) RSA is >50% and difference in 

accessible surface propensities is >2; (3) RSA is <25% and formal charge change 

(histidine is assigned a +1 charge); (4) the variant involves a proline in a helix. 

Interference with domain–domain interface formation or protein–ligand 

binding is predicted when any of the four conditions listed above occur at a 

putative domain–domain interface or ligand binding site. To find such nsSNPs, 

template residues at domain–domain interfaces and in proximity to small 

molecule ligands are identified using PIBASE and the LIGBASE table (Stuart et 

al., 2002) of MODBASE, respectively. A template residue is considered to be at 

an interface if it is within 6 Å of an atom in an adjacent domain. It is considered 

to be ligand binding if it is within 5 Å of a HETATM (i.e. an atom not covalently 

bonded to the protein, not in one of the standard 20 residue types, nor in a water 

molecule) in the PDB structure. Figure9 taken from LS-SNP publication [62], 

shows the LS-SNP computational pipeline. 
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A supervised machine learning approach is applied next, that combines 

information from multiple sources: amino acid residue side chain properties, 

comparative structure models of the SwissProt/TrEMBL sequences and mutated 

sequences and evolutionary properties extracted from MSAs. 

 

 
   Figure 9: LS-SNP Work Flow 

 

To compute evolutionary properties based on amino acid residue conservation 

and substitution likelihoods, an MSA for each SwissProt/TrEMBL protein 

sequence is constructed via iterative search of NCBI’s nr database using the 

SAM-T2K algorithm. For each nsSNP, 13 features are computed using a variety 
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of programs, including MODELLER, MODPIPE (Sanchez and Sali, 1998), DSSP 

(Kabsch and Sander, 1983), and SAM (Krogh et al., 1994). Two new features that 

measure strain when a mutant side chain is introduced into the native sequence 

are added; the strain is quantified by the number of violated spatial restraints 

used in the construction of the mutant model. A support vector machine (SVM) 

was trained and evaluated using a 3-fold cross-validation protocol. The SVM 

classifies each example with a discriminant score where negative scores predict 

disease association while positive scores predict a neutral or positive nsSNP. The 

absolute value of the score provides a confidence measure for the prediction. 

18. topoSNP 
 

 topoSNP [121][122], topographic mapping of Single Nucleotide 

Polymorphism is a  database that provides an online resource for analyzing non-

synonymous SNPs derived from the Online Mendelian Inheritance in Man 

(OMIM) database and other nsSNPs derived from dbSNP, and be mapped onto 

known 3D structures of proteins. The web interface produces an interactive 

visualization of disease and non-disease associated non-synonymous single 

nucleotide polymorphisms (nsSNPs) and displays geometric and relative 

entropy of SNPs calculated from multiple sequence alignment as obtained from 

the Pfam database as well as manually adjusted multiple alignments obtained 

from ClustalW. TopoSNP classifies each nsSNP site into three categories based 

on their geometric location: those located in a surface pocket or an interior void 

of the protein, those on a convex region or a shallow depressed region, and those 
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that are completely buried in the interior of the protein structure. It attempts to 

gain an insight by correlating geometric locations of disease SNPs and the 

degree of their conservation in the protein family. The geometric sites are 

determined using the alpha shape theory, which is based on a weighted 

Delaunay tessellation scheme from which topological and metric 

properties of the molecular shapes are extracted. Once classified, SNPs are 

mapped to known SNP sequences using a hidden Markov Model to 

determine whether or not the mutation occurs on a conserved or more 

variable residue. It has been found that disease-associated nsSNPs found 

in the interior of proteins are more likely to be conserved and that nsSNPs 

not in the interior have no strong tendency to occur at a conserved or non-

conserved residue. It was also found that compared to control nsSNPs, 

88% of disease-associated nsSNPs (derived from the online mendelian 

inheritance in man (OMIM) database) are more likely to be located in 

well-formed surface pocket or void locations. In an attempt to overcome 

the fact that relatively few alleles can be mapped to 3-D protein structures, 

a bootstrap method was used to calculate 95% confidence intervals.  

 

 

Integrated Predictive Methods 
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1. Condel  
 

Condel, CONsensus DELeteriousness score [123] of missense mutations, is a 

weighted average of the normalized scores from multiple methods.  The idea 

behind it is to integrate the output of computational tools aimed at assessing the 

impact of non synonymous SNVs on protein function. To do this, it computes a 

weighted average of the scores (WAS) of these tools. The scores of different 

methods are weighted using the complementary cumulative distributions 

produced by the five methods on a dataset of approximately 20000 missense 

SNPs, both deleterious and neutral. The probability that a predicted deleterious 

mutation is not a false positive of the method and the probability that a 

predicted neutral mutation is not a false negative are employed as weights. 

 

The original idea for developing Condel was to integrate into a unified 

classification, the outputs of five tools: SIFT, Polyphen2, MAPP, LogR Pfam E-

value and MutationAssessor. First, the five methods are used to score and 

classify HumVar, a comprehensive dataset of deleterious and neutral mutations. 

Then, the outputs of the five methods are combined in four different ways. It was 

found that a weighted average of the normalized scores (WAS) of the five 

methods outperforms each individual tool—and the other three combining 

operations assayed—in the task of classifying SNVs as deleterious or neutral. The 

process of integrating the scores of individual methods in the WAS uses the 

probabilities of the complementary cumulative distribution of scores produced 
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by each method to compute their weights. The score of each method is thus 

penalized in an inverse manner with respect to its confidence. Subsequently, it 

infers both a consensus prediction and a score. In order to operate with 

comparable scores, the internal scores of MAPP, Logre, and MutationAssessor 

were normalized to values between 0 and 1 and the complement of the SIFT 

probability was taken as the normalized score of this tool. 

Four datasets were obtained from different sources: HumVar, HumDiv and two 

datasets containing only deleterious mutations. First, two datasets, HumVar and 

HumDiv, obtained from the website of PPH2, composed of positive and negative 

examples, were used to run five programs aimed at separating deleterious from 

neutral missense SNVs and assessing the performance of different ways to 

integrate their outputs. The other two datasets containing only deleterious 

mutations, were used to assess whether the WAS correlated with the recurrence 

of cancer mutations and with the degree of impairment of the biological activity 

caused by the mutations. All the five tools were run on the four datasets and 

their outputs were integrated. After running the five tools on HumVar and 

HumDiv, the complementary cumulative distributions of the scores of 

deleterious and neutral mutations produced by each tool were constructed. The 

corresponding receiver operator characteristic (ROC) curves were also built. The 

dependence of their accuracy with respect to their sensitivity was assayed to 

determine the optimal cutoff of each tool. A cutoff the score that produced the 

sensitivity yielding the maximum accuracy at classifying each dataset was 
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selected. Four different ways to integrate the outputs of the tools in these two 

data- sets were assayed: a simple vote score (SVS), a simple average score (SAS), 

a weighted vote score (WVS), and a weighted average score (WAS). Integration 

was pursued at two levels: classification and score. At the first level, the 

classifications of different methods were integrated by using both an SVS and a 

WVS. At the second, the internal scores calculated by each method to achieve a 

classification were combined through an SAS and a WAS. For a predicted 

deleterious mutation, the weight—the probability that it is not a false positive—

increases with the score, thus inflicting a higher penalty on scores that are closer 

to the cutoff and lower costs to scores closer to the tail of the complementary 

cumulative distribution of true neutral mutations. For a mutation predicted to 

be neutral, the lower the score, the smaller the weight—the probability that it is 

not a false negative— and thus, the higher the penalization. Condel scripts can be 

downloaded and run locally. Condel scores can be derived for a limited set of 

specified mutations via the corresponding web application. The Ensembl 

database provides position-specific Condel predictions that combine SIFT and 

Polyphen-2 for every possible amino acid substitution in all human proteins. 

 

2. Carol 
 

CAROL, Combined Annotation scoRing tool, [124] is a combined functional 

annotation score of non-synonymous coding variants which combines 

information from 2 predictive tools: PolyPhen-2 and SIFT, in order to improve 
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the prediction of the effect of non-synonymous coding variants. In this scoring 

method, a weighted Z method that combines the probabilistic scores of 

PolyPhen-2 and SIFT were used. Two dataset pairs, positive (known disease-

causing) and negative (postulated non-disease-causing) were used to train and 

test CAROL using information from the dbSNP: ‘HGMD-PUBLIC’ and 1000 

Genomes Project databases. To compare PolyPhen2.0 and SIFT scores, the 

probability of the complement of the SIFT scores was calculated. The scaled 

scores range between 0 and 1, in which scores closer to 1 indicate that the amino 

acid substitution is deleterious, and scores closer to 0 that it is neutral. The 

CAROL algorithm is based on a weighted Z method, which combines the 

probabilistic score for each annotation tool. For investigative purposes 

PANTHER and Genomic Evolutionary Rate Profiling (GERP) were incorporated 

into the functional annotation tool, but it is stated that PolyPhen-2 and SIFT 

produced the most robust combination. The authors state that CAROL has 

higher predictive power and accuracy for the effect of non-synonymous variants 

than each individual annotation tool (PolyPhen-2 and SIFT) and benefits from 

higher coverage. 

 

3. dbNSFP 
 

dbNSFP  [125] [126] is a database developed for functional prediction and 

annotation of all potential non-synonymous single-nucleotide variants (nsSNVs) 

in the human genome. Its current version, ver 2.0 is based on the Gencode 
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release 9 / Ensembl version 64 and includes a total of 87,347,043 nsSNVs and 

2,270,742 essential splice site SNVs. In its first version, the genes and their 

corresponding codons were determined based on CCDS version 20090327, 

latest version based on the human reference sequence build hg18. It compiles 

prediction scores from six prediction algorithms, SIFT, Polyphen2, LRT, 

MutationTaster, MutationAssessor and FATHMM, three conservation scores, 

PhyloP, GERP++ and SiPhy and other related information including allele 

frequencies observed in the 1000 Genomes Project phase 1 data and the NHLBI 

Exome Sequencing Project, various gene IDs from different databases, 

functional descriptions of genes, gene expression and gene interaction 

information, etc. The database is separated into two parts, dbNSFP_variant and 

dbNSFP_gene. The former focuses on variant annotations including prediction 

scores and conservation scores, and the latter focuses on gene annotations. As to 

variant annotation, the database has expanded its SNV collections not only 

based on a more up-to-date GENCODE 9 annotation but also included all 

potential essential splice site SNVs (ssSNVs), which are another type of 

candidate variants in exome sequencing studies. To facilitate filtering common 

SNVs observed in human populations, allele frequencies from the 1000 

Genomes Project phase 1 data (Abecasis et al. 2012) and the NHLBI Exome 

Sequencing Project data (Fu et al. 2013) were also added. Figure10 taken from 

dbNSFP publication shows summary of functional prediction scores and 

conservation scores. 
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Figure 10: dbNSFP summary of functional prediction scores and conservation scores 

 

In the original version, the PhyloP [127] scores were extracted from the placental 

subset of the precomputed phyloP44way scores [Pollard et al., 2010] provided 

by the UCSC Genome Browser. Original SIFT scores were got from ANNOVAR 

[128], which were originally from a local database format of SIFT 4.0.3. Original 

LRT scores (LRTori) were downloaded from the LRT Webserver. Polyphen2 

scores were manually queried and downloaded as ~500 batches from its batch 

query server with default query settings. MutationTaster scores were queried 

from its Webserver (http:// www.mutationtaster.org/) using its batch query Perl 

scripts. Each nsSNP had links to, chromosome number, physical position on the 

chromosome as to hg18 (1-based coordinate), reference nucleotide allele (as on 
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the 1 strand), alternative nucleotide allele (as on the 1 strand), reference AA, 

alternative AA, physical position on the chromo- some as to hg19 (1-based 

coordinate), gene name, gene Entrez ID, CCDS ID, reference codon, position on 

the codon (1, 2, or 3), degenerate type (0, 2, or 3), AA position as to the protein, 

coding sequence (CDS) strand (+ or -), estimated nonsynonymous-to- 

synonymous-rate ratio (o, reported by LRT), PhyloP score, PhyloP prediction, 

SIFT score, SIFT prediction, Polyphen2 score, Polyphen2 prediction, LRT score, 

LRT prediction, MutationTaster score, MutationTaster prediction. The 

Spearman’s rank correlation coefficients (RCCs) and the Pearson’s correlation 

coefficients were calculated for each pair of the methods. The program BPCAfill 

was used to impute the missing scores in dbNSFP. A companion search program 

is provided to search for a nsSNP a chromosome position or a gene. By default, 

the program searches all chromosomes with the positions according to the 

human genome reference sequence hg18. The search program now supports vcf 

format for the input file. Users can specify both the chromosomes to search for 

and the reference sequence version. Some dbNSFP contents can also be accessed 

through variant tools, ANNOVAR, KGGSeq, UCSC Genome Browser's Variant 

Annotation Integrator, Ensembl Variant Effect Predictor and HGMD.  

 

4. F-SNP 
 

F-SNP [129], [130] is a database which provides integrated information 

about the functional effects of SNPs obtained from 16 bioinformatics tools and 
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databases. The functional effects are predicted and indicated at the splicing, 

transcriptional, translational, and post-translational level. As such, the F-SNP 

database helps identify and focus on SNPs with potential pathological effect to 

human health. Each SNP is examined for deleterious effects with respect to each 

functional category (i.e., protein coding, splicing regulation, transcriptional 

regulation, and post-translation – as shown in the top part of the figure). 

Another distinguishing feature of the F-SNP database is its integration of 

human-disease databases to facilitate identification of potential disease-causing 

SNPs as genetic markers in association studies. The F-SNP database provides a 

web interface that takes as input either a disease, a gene, a genomic region or a 

SNP identifier. 

The sources of the dataset of human SNPs and their annotations are the dbSNP 

(build 126) ,NCBI Entrez Gene and Ensembl (release 42) databases. To link 

SNPs with specific genes, for each gene, SNPs located along the gene region 

(including 5 kb upstream and 5 kb downstream) were identified. To link 

candidate genes with the 85 diseases the dataset of a gene-disease map from 

NCBI’s OMIM database was downloaded. 

For each category a series of tests is executed to determine whether the 

SNP has a functional impact. First the type (coding, intronic etc.) of the genomic 

region is identified, using data from dbSNP and Ensembl. Once this is 

determined, other tests are performed, TFSearch (ver. 1.3) and Consite are used 

to identify transcriptional regulatory SNPs in promoter regions; The Ensembl 
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(release 42) and GoldenPath databases are used to identify SNPs in other 

transcriptional regulatory regions (e.g. microRNA, cpgIslands); KinasePhos, 

OGPET (ver. 1.0) and Sulfinator are used to examine post-translation 

modification sites. In addition, genomic regions that are conserved across 

multiple species are identified using GoldenPath. To assess if a SNP has a 

deleterious effect on protein coding, it first must be located on a coding region. 

Ensembl is used to examine if this is a Nonsense mutation, in which case the 

SNP is considered to be deleterious. Otherwise – if the SNP is a Missense 

mutation, it is further tested by five different tools (PolyPhen, SIFT, SNPeffect, 

SNPs3D, LS-SNP to check if the non-synonymous substitution is deleterious. 

Figure11 taken from F-SNP publication shows a list of all the bioinformatics 

tools and databases integrated in it.  

 

 
Figure 11: Bioinformatics tools and databases integrated into F-SNP 
 



72 
 

A majority vote between these tools concludes the process, and identifies the 

SNP as either having a potentially deleterious functional impact (denoted 

functional in the figure) or not. Figure12 shows the Decision procedure for 

functional SNP assessment in F_SNP. 

 

 
Figure 12: F-SNP decision procedure 
 

Cancer Specific Prediction tools 
 

1. Mutation Assessor  
 
Mutation Assessor [31] is a computational protocol based on an elaborate 

conservation-based approach. The use of evolutionary information in Mutation 

Assessor differs from other sequence-based predictors. It distinguishes between 

conservation patterns within aligned families (conservation score) and sub-

families (specificity score) of homologs and so attempts to account for functional 

shifts between subfamilies of proteins. The novelty of the approach, as stated by 
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the authors, is in exploiting the evolutionary conservation in protein subfamilies, 

which are determined by clustering multiple sequence alignments of 

homologous sequences on the background of conservation of overall function. 

Given a mutated protein name and a mutated residue position, the 

computational protocol searches for sequence homologs, builds a multiple 

sequence alignment, clusters sequences into subfamilies and scores a mutation 

by global and sub-family specific conservation patterns. Mutations affecting 

either type of conserved residue are likely to be functional. Based on the 

assumptions that evolutionarily unfavorable residues are not observed or 

observed less frequently than neutral or critically important residues, while 

critically important residues are conserved in diverse evolutionary settings and 

that the distribution of residues in any (aligned) sequence position of a protein 

family can be treated independently of other positions, the protocol uses the 

entropy of the residue distribution in an alignment column as a measure of 

residue conservation and estimates the mutation impact, named the 

conservation score, using the difference of the entropy caused by the mutation. 

To refine the assessment of conservation patterns, patterns of a subtler type are 

considered, in which the evolutionary constraint on a residue type in a particular 

position is not constant in the entire family, but only appears to operate in a 

protein subfamily. A combinatorial entropy approach id used to quantify 

subfamily conservation patterns which simultaneously determines protein 

subfamilies, by clustering, and residues, called specificity residues, which 
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characteristically differ between these subfamilies. Specificity residues are 

conserved within a subfamily but differ between subfamilies presumably 

encoding functional diversity. Interestingly, specificity residues were found to be 

predominantly located in binding interfaces on the protein surface implicating 

them in protein interaction [131].For example, a D125N mutation in CDKN2A 

(cyclin-dependent kinase inhibitor 2A) from liver cancer is scored as deleterious 

by Mutation Assessor, because this residue is absolutely conserved as D in 

mammalian homologs, but is scored as neutral by other methods that include 

more distant homologs, such as those of fishes, where the wild-type residue is N. 

The co-crystal of CDKN2A with cyclin-dependent kinase-6 (CDK6) shows that 

D125 is at the binding interface of the two proteins, close to Serine 155 (4.9A) of 

CDK6. Loss of this negative charge in the D125N mutant may substantially alter 

the binding affinity and so promote tumorigenesis [40]. Figure12 taken from 

Mutation Assessor publication [31] shows the work flow. 
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 Figure 13: MutationAssessor Work Flow 

 

The clustering algorithm groups the sequences of a protein family alignment 

into distinct subfamilies, so as to minimize the sequence diversity within 

subfamilies and to maximize the overall difference between subfamilies at a 

select number of ‘specificity’ positions. To quantify the entropy difference 

resulting from a mutation that affects conserved residue patterns in protein 

subfamilies, it (i) determines distinct sequence subfamilies from protein family 

alignments and (ii) computes a specificity conservation score in analogy to the 

family conservation score mentioned above. The conservation and the specificity 

scores are then averaged to get the combined score of the functional impact, 

functional impact score (FIS) that gave a higher prediction accuracy in the 

validation tests, as assessed in the context of evolutionary patterns in a multiple 



76 
 

sequence family alignment. The validation of FIS was done on experimentally 

tested TP53 mutations and found that the functional impact score is correlated 

with experimentally measured functional impact of mutations and the score is 

higher for mutations that result in ‘loss of function’ and in ‘gain of function’ of 

TP53. The scoring function was validated by separation of a large set of disease-

associated variants from common (benign) polymorphisms with the accuracy of 

79% and the area under the curve (AUC) 0.86 in the receiver-operation-

characteristic (ROC) analysis for a two-class distinction. The predictive power of 

the score for cancer mutations from COSMIC database was assessed by 

separating assumed to be driver mutations (1800 recurrent mutations - 

observed in two or more samples and 700 highly recurrent mutations - observed 

in 5 or more samples) from assumed to be passenger mutations (8200 single 

mutations - observed only in one sample). The maximal separation accuracies 

are 69% (AUC 0.75) for recurrent vs. single and 78% (AUC 0.84) for highly 

recurrent vs. single. Mutations in multiply mutated genes and mutations in 

known cancer genes tend to have significantly higher functional impact scores 

than control sets. 

 

2. CanPredict   
 
CanPredict [132] [42] is a web application built using the Gene Ontology and 

data from the SIFT [43] and LogR.E-value metric [133], that predicts cancer-

associated missense mutations with a very low false-positive rate. It allows users 
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to determine if particular mutations are likely to be cancer-associated. As an 

input a single full-length RefSeq protein sequence or accession and multiple 

associated mutations can be submitted. The impact of each mutation is 

measured using two known methods: Sorting Intolerant From Tolerant (SIFT) 

and the Pfam-based LogR.E-value metric. The SIFT algorithm uses similarity 

between closely related proteins to identify potentially deleterious changes. SIFT 

scores <0.05 are predicted to be deleterious and only SIFT scores with a median 

information content score <3.25 are included for predictions since higher values 

likely indicate unreliable SIFT scores. The Pfam-based logR.E-value score, 

derived from values provided by the HMMER 2.3.2 software, predicts whether a 

mutation will alter protein function by determining the difference in fit of a wild-

type version of the protein to a particular Pfam model. A third method where the 

log-odds scores, the Gene Ontology Similarity Score (GOSS) [42], are calculated 

to represent the relative frequency with which a Gene Ontology (GO) term was 

used to annotate cancer or non-cancer gene sets. Scores from these three 

algorithms are analyzed by a random forest classifier, which then predicts 

whether a change is likely to be cancer-associated. The training data set used to 

construct the classifier, downloaded from COSMIC database, composed of 200 

randomly selected known somatic cancer mutations and 800 non-cancer, non-

synonymous variants. The non-cancer variants were selected randomly from 

SNPs stored in dbSNP with a minor allele frequency >20%. RF classifiers divide 
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a large pool of data into smaller subsets based on characteristics of each datum. 

Figure13 taken from CanPredict website shows the work flow. 

 

 
Figure 14: CanPredict Work Flow 

 

Further validation of the classifier was achieved by performing a cross-validation 

experiment in which a group of known variants was entirely excluded from the 

training process during the construction of the classifier. The out-of-bag error, 

an internal measure of the rate of misclassification of the classifier, was 

determined to be 3.19% suggesting that the classifier is very effective. Results of 

the analysis are returned to the user in a summary page. There is also a link 

directing users to a detailed description of the scores produced from each metric. 

Within the submission summary is a prediction from the classifier indicating 

likely cancer, likely non-cancer or not determined. 
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3. CHASM 
 

CHASM, Cancer-specific High-throughput Annotation of Somatic 

Mutations [23] is a computational method that identifies and prioritizes the 

missense mutations most likely to generate functional changes that enhance 

tumor cell proliferation. It is an open-source software, a collection of Python and 

C++ programs that takes a list of somatic missense mutations as input and ranks 

them according to their likely tumorigenic impact. The reasoning for creating 

CHASM was to train a classifier with improved specificity by representing 

passenger missense mutations not by high MAF nsSNPs, as done previously, but 

rather by in silico simulations using mutation profiles that reflected tumor type 

as well as mutation context. The classifier was trained on 49 predictive features. 

Feature selection was done with a protocol based on mutual information, which 

is a generalized version of correlation that does not make assumptions about 

linear relationships between two variables of interest. The authors claim that 

some of the features have not been used previously for missense mutant function 

prediction. These features include the average nucleotide-level conservation of 

the exon in which a mutation occurs in 17-way vertebrate Multiz alignments, 

estimated by PhastCons; SNP density (the number of SNPs in the exon where 

the mutation occurs, normalized by exon length); and frequency of missense 

change type in the COSMIC database of somatic variation in cancer. The driver 

mutation data set comprised of 2,488 missense mutations previously identified 

as playing a functional role in oncogenic transformation from breast, colorectal, 
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and pancreatic tumor re-sequencing studies [7], [19], [134] and the COSMIC 

database. The synthetic passenger mutations were generated in these genes in 

silico, using an algorithm that recapitulated the type of base substitutions found 

in brain tumors. Genes that were mutated as the substrate for the in silico 

generation of synthetic mutations were purposefully chosen. This increased the 

likelihood that the new classifier would detect mutations that were extraordinary 

rather than detect genes that were extraordinary. Before training, all features 

were standardized with the Z score method. To avoid overfitting, known driver 

mutations and synthetic passenger mutations were divided into two partitions, 

one for feature selection and one for classifier training. The mentioned features 

and data sets were used to design a new classifier using two state- of-the-art 

machine learning methods, SVMs, and Random Forests. Although both methods 

were able to define good classifiers, the Random Forest proved superior and was 

used for the analyses. The final score yielded for each mutation is the fraction of 

an ensemble of ‘‘decision trees,’’ specifically classification and regression trees, 

each of which uses a hierarchical set of rules to decide whether a mutation is a 

driver or a passenger that voted for the passenger class. A forest with 500 trees, 

and default parameters were used to run the classifier. Random Forest classifier 

performance was assessed by two threshold-independent measures, receiver 

operating characteristic (ROC) and Precision-recall (PR) curves. CHASM yielded 

AUCs (area under the curve) of 0.91 and 0.79 for ROC and PR, respectively. 

CHASM was compared and proved to be superior to other methods, including 



81 
 

PolyPhen’s PSIC score, SIFT, CanPredict, KinaseSVM in the fraction of 

mutations that could be evaluated, specificity, sensitivity, and precision. 

 

4. CanDrA 
 

CanDrA, Cancer Driver Annotation, is a tool that predicts missense driver 

mutations based on a set of 95 structural and evolutionary features computed by 

over 10 functional prediction algorithms such as CHASM, SIFT, and 

MutationAssessor. Two missense mutation datasets, GBM and OVC, were 

curated from those reported in COSMIC (V58), TCGA, and the CCLE project. 

Passenger mutations were selected from hyper-mutated samples, which have 

deficiency in DNA damage repairing and have much higher fractions of 

passenger mutations than non-hyper-mutated samples. In summary, four 

stringent sets were formed: GBM.S1, GBM.S2, OVC.S1 and OVC.S2. These sets 

were used as independent test sets to measure CanDrA’s performance against 

those of other tools. To represent commonality across cancer types, a cancer-

type-specific set was constructed with expanded set of drivers and passengers 

using the empirical rules. For a given cancer type, missense mutation is called a 

driver mutation if it occurs in a gene mutated in this cancer type and 1) it is 

observed in at least 3 primary tumor samples (regardless of cancer type), or 2) 

its site intersects at least 4 mutations (including indels, dinucleotide or 

trinucleotide mutations), or 3) it is centered in a 25 bp region that intersects at 

least 5 mutations in the COSMIC database. Passenger mutations of a cancer type 



82 
 

were chosen as those that occur only once in primary tumor samples of this 

cancer type, not in any COSMIC cancer census gene, and do not coincide with 

any other mutations within a 31-bp window in the entire COSMIC database. By 

combining the above putative drivers and passengers for each cancer type, two 

expanded datasets were formed: GBM.Ex and OVC.Ex. They were used as 

training sets for feature selection and supervised training. For each missense 

mutation, 95 features were acquired from four data portals: CHASM’s SNVBOX 

[135] , ENSEMBL Variant Effect Predictor [136], Mutation Assessor [31] and 

ANNOVAR [128]. Among them are UniProtKB annotations, evolutionary 

conservation scores, protein physicochemical properties, sequence context 

indices, and functional impact scores computed by algorithms such as SIFT [43], 

PolyPhen-2 [53], CONDEL [123], Mutation Assessor [31] , PhyloP [127] , 

GERP++ [137]  and LRT [138]. The predictive performance of each feature was 

evaluated based on the Mann–Whitney U test and the area under the curve 

(AUC) of the receiver operating characteristic curve. The feature combinations 

were assessed using a hybrid feature selection algorithm. The feature set that 

achieved the maximum AUC in cross-validation was selected as the optimal set. 

CanDrA classifies a mutation into 3 categories: driver, no-call, and 

passenger, based on scores computed by the SVM. The SVM method used by 

CanDrA is more robust against the COD than other classifiers, including the 

random forest algorithm used by CHASM. According to the score distributions, a 

mutation is classified as a driver if its score is greater than the 90th percentile of 
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those of the passenger mutations in the training set, as a passenger if its score is 

less than the 10th percentile of those of the driver mutations, or as a no-call 

otherwise. In addition, CanDrA computes a confidence score for each prediction, 

defined as the fraction of mutations that have more extreme scores in the same 

class in the training data. These confidence scores are thus significant P values 

estimated from the empirical class-wise score distribution in the training 

dataset. CanDrA was trained using the optimal set of 21 features, and evaluated 

the performance on the two independent validation datasets (GBM.S1 and 

GBM.S2). CanDrA achieved AUCs of 0.911 and 0.941, respectively, which 

compared favorably with those obtained from either CHASM (0.890 and 0.923, 

respectively) or MutationTastor (0.892 and 0.909) respectively. For evaluating 

its performance on the two independent validation datasets (OVC.S1 and 

OVC.S2) CanDrA was trained using 22 features. On both sets, CanDrA achieved 

AUCs of 0.953, which again compared favorably to those of either CHASM 

(0.936 and 0.940) or MutationTastor (0.910 on both test sets). 

 

5. mCluster 
 

mCluste [139] is a framework for identifying and elucidating functionally 

important protein-altering mutations. The mCluster analysis leverages somatic 

mutation data from large-scale discovery projects and combines it with curated 

data from both cancer and germline mutation databases. The mCluster approach 

is based on the hypothesis that functionally significant mutations will fall into 
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clusters more frequently than functionally insignificant ones. Disease mutations 

are by definition functionally significant, and cancer mutations should also be 

enriched for functional mutations because driver mutations are under positive 

selection. If the hypothesis is correct, then real cancer and disease mutations 

should fall in clusters more frequently than nsSNPs or simulated random cancer 

mutations. mCluster projects all of these mutations onto a comprehensive set of 

conserved protein domains and identifies candidate domain hotspots (clusters): 

conserved locations that are enriched for mutations across multiple proteins. 

This can identify important protein regions, suggest functionally significant 

mutations, and provide insight into how mutations may exert their effects. 

Figure14 taken from the mCluster publication [139] shows its workflow. 
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Figure 15: mCluster Work Flow 

 

The datasets used contained missense somatic mutations from the COSMIC 

database, from cancer genome sequencing projects, the SwissProt database 

using ‘‘Mutagen’’ as the keyword and from dbSNP database with corresponding 

reference protein sequences retrieved from the RefSeq database. Germline 

disease mutations were extracted from the SwissProt database using ‘‘Variant’’ 

as the keyword. Passenger mutations were simulated by randomly introducing 

missense mutations into the 1,898 coding sequences in which mutations were 

identified by Wood et al. [7]. Mutations were generated by applying the 

nucleotide context-specific mutation rates observed in colorectal cancer samples 

[19], and only missense changes were kept. The Pfam domain boundaries of the 
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coding sequences were retrieved from Unison and domains predicted using 

Hmmsearch [140]. Boundary coordinates were used to extract domain-specific 

subsequences, which were then aligned to the Pfam HMM profiles using 

Hmmalign [140]  to generate multiple sequence alignments. Mutation clusters 

were identified as sets of mutations located in the same column in a Pfam 

domain alignment. The size of a cluster is the total number of mutant samples 

for cancer mutations and number of unique mutations in case of germline 

mutations. The mCluster score reflects the probability of observing a cluster of a 

given size given the number of available positions in a domain and the total 

number of mutations observed. The mCluster score is an important aid to the 

interpretation of mutation clusters. By taking into account the total number of 

mutations observed in a domain it can indicate the significance of each cluster 

regardless of variation in sequencing coverage and mutation rates. 

 The scoring scheme considers all positions equally likely to be mutated. Within 

a given domain, clusters were ranked by their sizes in a decreasing order, and 

then a step-down approach, which improves the ability of the score to 

distinguish real cancer and germline disease mutations from simulated random 

mutations. Pathways enriched for genes with mutations in high-scoring clusters 

relative to genes with any mutations in conserved domains are identified by 

Fisher’s Exact Test. The results showed that the class of variants that fell most 

frequently within conserved protein domains was germline disease mutations, 

which are all expected to have significant effects on protein function. 
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Furthermore, nsSNPs and random cancer mutations, which are not enriched for 

functional variants, fell within conserved domains least frequently. Cancer 

mutations from COSMIC and resequencing studies fell within domains with 

intermediate frequencies, consistent with them consisting of a mixture of 

functional and nonfunctional variants. 

 

6. transFIC 
 

TransFIC, TRANSformed Functional Impact for Cancer [141],  is a method to 

transform Functional Impact scores taking into account the differences in basal 

tolerance to germline SNVs of genes that belong to different functional classes. 

This transformation allows to use the scores provided by well-known tools 

(e.g. SIFT, Polyphen2, MutationAssessor) to rank the functional impact of 

cancer somatic mutations. Mutations with greater transFIC are more likely to be 

cancer drivers. TransFIC takes as input the Functional Impact Score of a somatic 

mutation observed in cancer provided by one of the aforementioned tools. It 

then compares that score to the distribution of scores of germline SNVs 

observed in genes with similar functional annotations (for instance genes with 

the same molecular function as provided by the Gene Ontologies). The score is 

thus transformed using the Zscore formula. The result is that mutations in genes 

that are less tolerant to germline SNVs are amplified, while the scores of 

mutations on relatively tolerant genes are decreased.  
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The approach attempts to rank cancer somatic mutations and is based on the 

observation that genes with dissimilar functions show different tolerance to 

germline variants, measured as the distribution of functional impact scores 

of variants accepted during human evolution. This was called the baseline 

tolerance of genes. Then the functional impact scores of mutations provided by 

three well known tools were transformed using this baseline tolerance and 

compared with the performance of the transformed score and the original score 

in separate sets of variants enriched for driver mutations (positives) and 

passenger mutations or polymorphisms (negatives). The rationale behind the 

transformation is that if two mutations with the same FIS affect genes with 

different germline tolerance to functional SNVs, the impact of the mutation on 

the least tolerant gene is expected to be greater than its impact on the most 

tolerant one. Genes with essential cellular functions would appear on the lower 

end of the functional impact score scale, while genes whose malfunction can be 

compensated for by diverse mechanisms or does not lead to very deleterious 

phenotypes are located at he upper end of the FIS scale. The dataset used 

consisted of all SNVs detected by the 1000 Genomes project within the genomic 

sequences of 1197 individuals. Ensembl Variant Effect Predictor was then used 

to detect nsSNVs and to get their SIFT, PolyPhen2.0 scores. Corresponding 

MutationAssessor FISs were obtained via MA webAPI service. Four systems of 

functional annotation were used to partition the dataset of SNVs and form pools 

of functionally related genes, they were the GOBP and GOMF categories, the CP 
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annotations and Doms. First the functional impact for all germline SNVs 

detected in the human population (1000 Genomes Project) are computed using 

SIFT, PolyPhen2.0 and MA. Next a measure of baseline tolerance to germline 

SNVs is computed for each protein coding gene. This is done by pooling all genes 

with GOMF terms shared by the gene in question and computing the means and 

standard deviations of the FISs of the nsSNVs that affect them. Figure15 taken 

from TransFIC publication [141] shows its work flow. 

 

 
Figure 16: TransFIC Work Flow 

 



90 
 

Three categories (low, medium and high impact) were devised, into which 

somatic mutations could be classified based on their transformed FIS. A 

condition of using at least 20 nsSNVs pooled from genes within the same 

functional group(s), to compute the baseline tolerance of a gene needs to be 

fulfilled. Nine proxy datasets were arranged for the evaluation. The transformed 

FIS of all somatic mutations was computed for all the nine proxy datasets. To 

assess the performance of each FIS (or transformed FIS) in identifying likely 

functional somatic mutations, the Matthews correlation coefficient (MCC) and 

overall accuracy (ACC) yielded by the classification of positive and negative cases 

in each proxy dataset were computed. It was found that the transformed FIS 

outperforms the original FIS on all nine proxy validation sets. TransFIC of 

CHASM also outperformed the original CHASM scores. 

TransFIC can be run using transFIC server, which implements the TransFIC of 

SIFT, Polyphen2 and MutationAssessor. Alternatively, it is possible to download 

a PERL script that computes transFIC for these same tools. While the webserver 

takes as input the genomic coordinates (hg19) and nucleotide change of the 

somatic mutation, the PERL script receives SIFT, PPH2 and MA scores to 

compute the corresponding TransFIC.  

 

7. MuSiC 
 

MuSiC, Mutational Significance in Cancer, [142] a comprehensive mutational 

analysis pipeline that uses standardized sequence-based inputs along with 
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multiple types of clinical data to establish correlations among mutation sites, 

affected genes and pathways, and to ultimately separate the commonly abundant 

passenger mutations from the truly significant events. The primary goal of 

MuSiC is to separate the significant events, which are likely drivers for disease 

from the passenger mutations present in mutational discovery sets using a 

variety of statistical methods. The integration of analytical operations in the 

MuSiC framework is stated to be widely applicable to a broad set of tumor types 

and offer the benefits of automation as well as standardization. As input MuSiC 

needs a few basic elements such as the mapped reads in BAM format, predicted 

or validated SNVs and indels in mutation annotation format (MAF), a set of 

regions of interest and any relevant numeric and/or categorical clinical data. The 

user interface allows users to (1) apply statistical methods across the cohort to 

identify significantly mutated genes and (2) identify significantly altered 

pathways and gene sets, (3) investigate the proximity of amino acid mutations 

within the same gene, (4) search for gene- based or site-based relationships and 

correlations between the mutations themselves, (5) correlate mutations to 

clinical features, and (6) cross-reference the findings with relevant databases, 

such as Pfam, COSMIC, and OMIM. MuSiC currently consists of seven analysis 

modules and an eighth execution module, ‘‘MuSiC Play,’’ which runs each 

analysis module sequentially. MuSiC Play parses the input and output of each of 

the individual modules and then produces a composite summary of all executed 

modules. MuSiC includes a number of tools to help identify significant 
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mutations and relationships in a cancer mutation dataset: SMG for computation 

of background mutation rate in your dataset and identification of significantly 

mutated genes, PathScan for Identification of significantly altered gene sets 

and/or pathways using KEGG or other databases, Proximity to search for 

mutations physically near one another at the DNA or protein level to identify 

mutation hotspots, COSMIC-OMIM for comparison of your mutations with 

those submitted to COSMIC and OMIM databases, Mutation-Relation for 

Detection of co-occurring or mutually exclusive mutation relationships between 

genes and Clinical Correlation tool for correlating of gene mutation status with 

categorical or quantitative clinical data, such as tumor subtype. 

For every mutation found in the input MAF file, information related to this 

mutation is gathered from both the COSMIC and OMIM databases. Relevant 

information is ascertained by relating the genomic coordinate (COSMIC) or the 

amino acid change (COSMIC and OMIM) associated with the variant to all 

database entries. A database entry must lie within the user-specified number of 

bases (default = 5) or amino acids (default = 2) of the MAF variant to be 

considered as a ‘‘nearby’’ match. The thresholds for ‘‘nearby’’ matches are 

viewed as adequate for taking into account the different definitions of reference 

sequences and gene transcripts that may be used by different contributors to the 

databases. Alternatively, ‘‘exact’’ matches are direct overlaps in both the location 

and base/amino acid change of a variant in the MAF and a mutation found in 

the database. If only the location (the genomic coordinate or amino acid 
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position) of a variant match a database entry but not the nucleotide or amino 

acid change, these matches are deemed ‘‘position’’ matches. All discoveries 

based on these database queries are appended to the input MAF file as extra 

columns. For each queried database, the tool further prints an output summary 

which tallies the types of matches found throughout the entire data set using 

that database. MuSiC can not only analyze mutations at the single gene level i.e. 

using the SMG ‘significantly mutated genes’ test, it also integrates the pathscan 

algorithm [143] for mutation analysis at the pathway level. Another module in 

MuSiC is the mutation relation test (MRT) module, which tests whether 

mutations in any two genes act concurrently (positive correlation) or exclusively 

(negative correlation). Finally, the clinical correlation test (CCT) module tests 

for correlations between mutations and clinical features. 

 

8. SPF-Cancer  
 

SPF-Cancer, [30] is disease specific, SVM machine learning 

approach to predict cancer-causing missense variants. The input features of 

the algorithm (SPF-Cancer) include: the amino acid mutation, its local sequence 

environment, sequence-profile derived features, the output of PANTHER 

algorithm and a cancer-specific functional-based log-odd score calculated 

considering the GO slim ontology. The final input vector consists of 51 values: 40 

components encoding for the mutation and the local sequence environment 
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(Seq) - the first 20 out of 40 explicitly define the mutation by setting to –1 the 

element corresponding to the wild type residue and to 1 the newly introduced 

residue, the last 20 input values encode for the mutation sequence environment 

(again the 20 elements represent the 20 residue types); 5 inputs features derived 

from sequence profile (Prof); 4 elements vector from the PANTHER output; 2 

elements encoding for the number of GO slim terms associated to the protein 

sequence and the GO slim log-odd score (LGO). For each mutation: the 

frequency of the wild type, the frequency of the mutated residue, the number of 

totally and locally aligned sequences and a Conservation Index (CI) for the 

position at hand are derived, the more a residue is functionally important the 

more is conserved over evolution. The 4 elements vector from PANTHER output 

is composed by the probability of deleterious mutation, the frequencies of the 

wild-type and new residues in the PANTHER family alignment and the number 

of independent counts. The Gene Ontology log-odds score (LGO) is computed to 

derive information related to the correlation among a given SAPs effect (cancer-

causing and neutral) and the protein function. The dataset contains SAPs (Single 

AminoAcid Polymorphisms) data from different sources. Cancer-causing 

variants are selected from breast, colorectal, pancreatic tumor resequencing 

studies [7], [19], [134] and COSMIC database that are provided with CHASM 

package. Neutral variants are from SwissProt database or generated by CHASM. 

Other disease-related variants are non “neoplasms” disease-related variants 

annotated in SwissVar database. The Support Vector Machine (SVM) classifies 



95 
 

SAPs (Single AminoAcid Polymorphisms) in cancer-causing (desired output set 

to 0) and neutral polymorphism (desired output set to 1). The SVM output is a 

number between 0 and 1 and the decision threshold has been set to 0.5. The 

results obtained with our SVM methods are evaluated using a cross-validation 

procedure. The accuracy measures are calculated using a 2-fold cross validation 

procedure. A MCC (Matthews correlation coefficient) is defined, the coverage 

(sensitivity) for each discriminated class is evaluated, the probability of correct 

predictions P (or positive predictive values) is computed and finally, a reliability 

score to each prediction is assigned. Other standard scoring measures, such as 

the area under the ROC curve (AUC) and the true positive rate (TPR = Q(s)) at 

10% of False Positive Rate (FPR = 1-P(s)) are also computed. 

 

Some of the other published studies that review different predictive tools are, 

Ohanian et al. [144],  Tavtigian et al. [44], Thusberg et al. [145], Castellana et al. 

[146], Karchin [147], Gnad et al.[40], Gong et al. [41], Stefl et al. [21], Krishnan 

et al. [148]. A list of all these tools and additional tools is presented in Table 1 

below.  
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Table 1: List of functional impact predictive tools 
Method Custom Decision tree SVM RF HMMs NN 
Features  Property  
Sequence based Custom       

SIFT  PhD-SNP  PANTHER SNAP 
MAPP  SNPs&GO    
Mutation 
Assessor 

     

Align-GVGD       
Panther      

Protein Stability   MuStab    
Using SIFT   SPF-Cancer CanPredict   SNPdbe 

   VEST   
   CHASM   

Sequence and/ 
or Structure 
based 

Custom       
 PolyPhen MUpro  topoSNP  PoPMuSiC-2.0 
 PolyPhen 2 LS-SNP   PMUT 

  SNPs3D   MuPro 
  SAPRED    
  SNPs&GO 3D    

  CanDrA    
HOPE      

Using SIFT MutPred   nsSNPAnalyzer   

Using PolyPhen FastSNP      
Protein Stability /  
Folding Free energy 
(∆∆G) 

  I-Mutant 2.0    

  Scpred    

Structure based Custom PoPMuSiC      
stSNP       

CC/PBSA      
Bongo      

Protein Stability /  
Folding Free energy 
(∆∆G) 

SDM   AUTO-MUTE  PoPMuSiC-2.0 

CUPSAT     I-Mutant 
FoldX/FOLDEF      
ERIS      
MultiMutate      
Dmutant      
Scide      
Sride      
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Comparative Analysis of Predictive methods 
 
 

Functional prediction of missense mutations can be extremely useful in 

clinical genetics. Functional predictions can assist in identifying previously 

unknown causes of Mendelian diseases [149]. There are a lot of cancer 

diagnostic genetics test being developed to test the presence of certain mutations 

in the patients’ genes or genomes, which can help decision making during 

diagnosis or treatments to follow. However, there has been a general conclusion 

that these predictive methods are not accurate enough to be relied on for clinical 

decision-making but can be very useful when combined with other traditional 

genetic methods [44], [150].  

 
 
Predictive methods, their coverage and their scores cannot be compared on the 

same lines as the predictions and their accuracy vary depending on the type of 

features selected, test data sets used and scoring methods employed. When 

methods are originally published the authors provide some performance 

measures, which cannot be comparable to other methods due to the difference in 

the approach followed. There cannot be any one measure that can accurately 

assess and compare the performance of different predictive tools. Comparing 

multiple methods is problematic because there is no standard classification 

system used to categorize the predicted functionality of the variants needed to 

provide a statistical measure of performance of the methods. For example, 

sequence conservation based methods would have low classification confidence 
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in cases where the aligned homologs show low sequence diversity at the same 

time structure based methods would have low confidence where the predictions 

are based on modeled structures [40]. With an increase in number of predictive 

tools, some comparative assessment has been done on these predictive tools. We 

summarize those reviews below. 

• Gnad et al [40] assessed a group of eight predictive tools namely, SIFT, 

PolyPhen-2, SNAP, mCluster, log RE, Condel, Mutations Assessor and 

CHASM. They based their assessment on three test data sets and a negative 

(neutral) data set. The first data set was a set of likely cancer driver 

mutations from COSMIC database. Their second data set was created from 

recurrent somatic mutations in colorectal carcinoma from TCGA, and the 

third set created from recurrent unique mutations found in breast or colon 

cancer. The neutral set of mutations was of likely non-deleterious variants 

from germ-line SNPs found in dbSNP, with a minor allele frequency of 

atleast 0.25 to avoid rare deleterious mutations and errors. The criteria of 

selecting these datasets was supported by an initial scoring of all variants 

using SIFT. Important takeaways from their results are that CHASM, 

Mutation Assessor, PolyPhen-2, SIFT, Condel and SNAP were able to score 

most of the variants. CHASM yielded the highest accuracy with the recurrent 

mutations COSMIC data set but not with other datasets. Mutation Assessor 

yielded consistently highest results and scores except against CHASM with 

COSMIC mutations. These differences in performance reflect the training 
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and testing data set bias. Examining combinations of predictors showed that 

combinations of SIFT, PolyPhen-2 and Mutation Assessor gave better results 

compared to other combinations. No combination improved on Mutation 

Assessor alone. Likely misclassifications were discovered in predictions by all 

the predictors including Mutation Assessor, so no single predictor can be 

named the best. It is clear that machine learning- based approaches are 

essentially affected by this problem. It is perhaps more practical to develop 

multiple specific algorithms for different classes of mutations, instead of 

develop a “one-size-fit-all” approach. 

• Thusberg et al. [81] tested the performance of nine widely used pathogenicity 

methods namely, MutPred, nsSNPAnalyzer, Panther, PhD-SNP, PolyPhen, 

PolyPhen2, SIFT, SNAP and SNPs&GO. They used two datasets, one 

pathogenic dataset and the other a neutral mutations dataset. The 

pathogenic data set was created from the PhenCode database records, which 

were also annotated as disease causing in Swiss-Prot database, registries in 

IDbases and from 18 individual locus specific databases. The neutral data set 

used was taken generated from dbSNP, containing human non-synonymous 

coding SNPs with an allele frequency > 0.01 and chromosome sample count 

>49. These were further divided into two subsets, one which had a 3d 

structure available in PDB (to test the methods involving structural 

information) and second subset containing pathogenic mutations not present 

in Swiss-Prot (to probe the effect of using Swiss-Prot derived data). The 
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corresponding neutral set was just a subset of the original neutral mutations. 

All the methods were run on default parameters and outputs converted into 

binary predictions. They used six different measures to evaluate the 

performance of the predictors, namely accuracy, precision (or positive 

predictive value, PPV), specificity, sensitivity, negative predictive value 

(NPV) and Matthews correlation coefficient (MCC). Correlations between the 

program outputs were calculated by counting all of the common cases and 

those predicted correctly and using Spearman’s rank correlation coefficient. 

The performance of all methods was generally worse except for sensitivity. 

SNPs&GO performed best in terms of accuracy (0.82), precision (0.90), 

specificity (0.92), and MCC (0.65), but sensitivity was higher in six other 

methods, and MutPred, Panther, PolyPhen2b, and SNAP performed better in 

terms of NPV. nsSNPAnalyzer performed worst in terms of MCC (0.19), 

accuracy (0.60), NPV (0.60), and precision (0.59). The two versions of 

PolyPhen have very similar overall performance; however, PolyPhen2 is 

recommended because the quality measures are more balanced. NPs&GO 

performed best also in the structural subcategory considering accuracy, 

precision, specificity, and MCC, and MutPred was the best method in terms 

of sensitivity and NPV [81]. Overall, they found SNPs&GO and MutPred to be 

clearly the most reliable predictors for their dataset of genetic variants. The 

two best performing predictors include both protein structural or functional 

and MSA-derived information in the prediction. They conclude that there is 
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no single method that could be rated as best by all parameters. 

Complementary methods could be combined in a metaserver to yield more 

reliable predictions. 

• Hicks et al. [151] state that in order to predict missense mutation 

functionality, the users should consider optimizing both the algorithm and 

sequence alignment employed. They found that a given algorithm did not 

necessarily perform best using the alignment provided by the creator of the 

algorithm. For example, the PolyPhen-2 algorithm reported higher 

sensitivities in all four genes using alignments other than its own and SIFT 

had a slightly higher AUC when provided the Align-GVGD alignment 

containing only orthologs. The three algorithms SIFT, PolyPhen-2, and Xvar 

all had a high sensitivity, but low specificity implying these algorithms may 

overcall neutral variants deleterious. 

• Castellana et al. [146] aimed at measuring the degree of congruency and 

consensus among a set of tools they tested namely, SIFT, PolyPhen-2, VEP, 

MutationAssessor, Carol and Condel. Owing to the intrinsic diversity of the 

numerical results of the predictors (different scales and different algorithms), 

they opted to compare the categorical outcomes thereby evaluating the 

degree of agreement of their results. Congruent classifications, namely, those 

exhibiting low scores were more commonly observed than high scores. 

Comparing the derived predictions (Carol and Condel), they observed a high 
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level of uncertainty and that the consensus algorithms may yield results that 

substantially contrast the predictions that they derive from. 

• Chan et al. [152] compared computational methods that use evolutionary 

conservation alone, amino acid (AA) change alone, and a combination of 

conservation and AA change in predicting the consequences of 254 missense 

variants in 5 genes (CDKN2A, MLH1, MSH2, MECP2, and TYR). They tested 

four predictive methods, BLOSUM62, SIFT, PolyPhen and A-GVGD. Their 

tests gave concordant results for only 63% of the variants. However, when 

this occurred, the overall predictive value increased to 88%. 

• Wei and et al. tested six predictive tools, namely, SIFT, PolyPhen, PMut, 

SNPs3D, PhD-SNP, and nsSNPAnalyzer. They conclude that the top 

predictive methods are PolyPhen, SIFT, and nsSNPAnalyzer, which have 

similar performance. They also found that when different combinations of 

programs were used, the consensus of 5 programs (SNPs3D excluded) gave 

the best total accuracy (73%). 

 

The overall conclusion of assessing various predictive tools is that predictions 

obtained using different predictive tools should be interpreted in context with 

caution, as they can be affected by the extreme sensitivity of specific algorithm 

settings used, by the ‘training’ datasets used and by the availability of 

supplementary information (e.g. orthologous sequences, 3D structures or gene 

ontology data). Several of the methods are very specific, and might analyze the 
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same single feature. However, they may have different points of view for 

analyzing the same property. For example, structural changes may originate 

from changes in side-chain size, hydropathy, altered contact-forming properties, 

aggregation, or introduced disorder. 

Different groups of methods closely correlate and complement each other and 

are individually or in combination are suited for different types of functional 

assessment. It has been suggested in studies that although confidence in a result 

may be increased if concordant results are obtained with a number of programs, 

but some pathogenic variants may be missed. At the same time, having less 

stringent criteria, such as requiring any single program to be stringent towards 

deleterious mutations, would increase the chances that all the true positives will 

be detected but may also result in more false-positive results. Also, it needs to be 

considered that having similar outputs could be a result of similarity of inputs 

for some combinations of programs and this does not necessarily equate with 

greater prediction accuracy [144]. 

 

Protein Stability Predictors 
 

With more than 80% of disease associated missense mutations affecting 

the stability of proteins by several kcal/mol [67], there has been a rush in 

designing predictive methods focusing only on effects of missense mutations on 

protein stability and thereby its function. Protein stability predictions have been 

approached by predicting the structural effects of mutations using 1. molecular 
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mechanics approaches, 2. empirical energy functions, which are fitted to 

experimental data using weighted terms incorporating physical and statistical 

factors with structural knowledge and 3. machine learning methods such as 

support vector machines (SVMs) and neural networks as well as statistical 

potential energy functions which are derived using statistical analysis of 

information from different databases. The empirical rules that affect protein 

stability may include the elimination of hydrogen bonds, diminished 

hydrophobic interaction, loss of a salt bridge, introduction of the buried charged 

residue, loss of a disulfide bond, backbone strain caused by substitution of 

glycine to another residue, or change to proline [153] [122]. Also other damaging 

effects of missense mutations, such as ligand binding, catalysis, allosteric 

regulation, and post-translational modification, as the causes of functional 

disruption can also be closely tied to the stability effect. There are many tools 

that focus on predicting effects on protein stability such as FOLD-X [70], Site 

Directed Mutator (SDM) , AUTO-MUTE [68], CUPSAT [71], MultiMutate [72], 

Dmutant [73], I-Mutant 2.0 [60], PoPMuSiC-2.0 [69], MUpro [59], SCide [154], 

SCPRED [155], SRide [156]etc.  

Such tools can certainly assist in refining and improving prediction accuracies, 

for example, DMutant improves structure-derived potentials of mean force for 

structure selection and stability prediction. SCide identifies of stabilization 

centers in proteins. SCPRED predicts protein structural class for sequences of 
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twilight-zone similarity. SRide is a server for identifying stabilizing residues in 

proteins. 

1. AUTO-MUTE 
 

AUTO-MUTE [68] uses a four-body, knowledge-based, statistical contact 

potential. The program calculates an empirical, normalized measure of the 

environmental perturbation for substitutions. For its models, each feature vector 

representing a mutant includes input attributes obtained by applying a 

computational mutagenesis that utilizes a four-body, knowledge-based, 

statistical contact potential. This amino acid distance potential applies the 

inverse Boltzmann principle and is derived via Delaunay tessellation of protein 

structures, a classical computational geometry tiling technique that objectively 

identifies quadruplets of 3D nearest neighbor residues. This feature vector is 

then used to estimate the effect of the mutation by considering the spatial 

perturbation inflicted by the mutation upon its nearest neighbors in the 3D 

structure. 

 

2. CUPSAT 
 

CUPSAT, Cologne University Protein Stability Analysis Tool, [71] predicts 

the difference in free energy of unfolding between wild-type and mutant 

proteins, ∆∆G, using structural environment-specific, atomic potentials and 

torsion-angle potentials derived from nonredundant protein structures obtained 

from PISCES webserver. For the atom potentials, a radial pair distribution 
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function with an atom classification system has been used. The atoms are 

classified into 40 different types (9) according to their location, connectivity 

and chemical nature. Boltzmann’s energy values are then calculated from the 

radial pair distribution of amino acid atoms. The torsion-angle potentials are 

derived from the distribution of protein backbone Φ and ψ angles for all the 

amino acids in the dataset. After calculating Boltzmann’ energy values, a 

Gaussian apodization function (11) was applied to assign favourable energy 

values for the neighbouring orientations of observed Φ- ψ combinations. The 

secondary structure specificity of mutations and mean-force potentials were 

implemented and the amino acids were classified into helices, sheets and others, 

then amino acids belonging to each of these secondary structure elements were 

further subdivided according to their solvent accessibility thereby constructing 

the prediction model. 

 

3. SDM 
 

SDM [157] Site Directed Mutator, is a statistical potential energy function 

developed to predict the effect that SNPs will have on the stability of proteins. It 

predicts the effect that single point mutations have on protein stability, based on 

knowledge of observed substitutions that have occurred in homologous proteins 

and which are encoded in environment-specific substitution tables. SDM 

calculates a stability score, which is analogous to the free energy difference 

between a wild-type and mutant protein. SDM uses the local structural 
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environment of the wild-type and mutant residues to calculate the stability 

score. The structural parameters that are used to define the local structural 

environment of amino acid residues are main chain conformation, solvent 

accessibility and hydrogen bonding class. SDM output therefore includes the 

local structural environment of the wild-type and amino acid residues. The 

stability score indicates the predicted effect of the mutation on protein stability. 

A negative score indicates that the mutation is destabilitzing whereas a positive 

score indicates that the mutation is stabilizing. ∆∆G less than -2.0 or greater 

than 2.0 is classed as highly stabilizing and is predicted to be disease-associated. 

 

4. DFIRE-Dmutant 
 

DFIRE-Dmutant [73] uses a statistical potential approach with a 

distance-dependent, residue-specific, all-atom, and knowledge-based potential 

for protein structure-based predictions. The distance dependence of the pair 

probability distribution of the reference state is an averaged distribution over all 

residue or atomic pairs. 

 

5. FoldX 
 

FoldX [70] [158] is an empirical force field that was developed for the rapid 

evaluation of the effect of mutations on the stability, folding and dynamics of 

proteins and nucleic acids. The core functionality of FoldX is the calculation of 

the free energy of a macromolecule based on its high-resolution 3D structure. It 
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is based on an empirical potential approach that uses an energy function derived 

from a weighted combination of physical-energy terms, statistical-energy terms, 

and structural descriptors calibrated to fit experimental ∆∆G values.  An 

important difference between FoldX and other force fields is the crude entropy 

estimation that is used to obtain a measure of the free energy. Entropy 

calculations usually involve large simulations of the conformational freedom of 

the side chains and the backbone of the protein. In FoldX the entropic penalty 

for fixing the backbone in a given conformation, is derived from a statistical 

analysis of the phi–psi distribution of a given amino acid as observed in a set of 

non-redundant high-resolution crystal structures. This entropy is scaled by (i) 

the accessibility of the main chain atoms and (ii) energetics of hydrogen bond 

interactions made by the corresponding residue or its direct neighbors. 

FoldX and Dmutant are the only programs that return negative ∆∆G values for 

stabilizing mutations and positive values for destabilizing mutants. 

 

6. I-Mutant2.0 
 

I-Mutant2.0 [60] is a support vector machine (SVM)-based tools. The 

services use either a protein structure or a sequence as input. I-Mutant2.0 can 

be used both as a classifier for predicting the sign of the protein stability change 

upon mutation and as a regression estimator for predicting the related ∆∆G 

values. I-Mutant2.0 has been trained to accomplish four different tasks: (i) 

 Prediction of the direction of the protein stability changes upon single point 
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mutation from the protein tertiary structure (a classification task); (ii) 

 Prediction of the ∆∆G value of the protein stability changes upon single point 

mutation from the protein tertiary structure (a function approximation task); 

(iii)  Prediction of the direction of the protein stability changes upon single point 

mutation only from the protein sequence (a classification task); and (iv) 

 Prediction of the ∆∆G value of the protein stability changes upon single point 

mutation only from the protein sequence (a function approximation task). For 

the classification task and for assigning the ∆∆G values, it identifyies two labels: 

one represents the increased protein stability (∆∆G > 0, label is +), the other is 

associated with the destabilizing mutation (∆∆G < 0, label is -). The input vector 

consists of 42 values. The first two input values account, respectively, for the 

temperature and the pH at which the stability of the mutated protein was 

experimentally determined. The next 20 values (for 20 residue types) explicitly 

define the mutation (-1 is set to the element corresponding to the deleted residue 

and 1 to the new residue, all the remaining elements are kept equal to 0). Finally, 

the last 20 input values encode the residue environment that is a ‘spatial 

environment’ when the protein structure is available or the nearest sequence 

neighbors, when only the protein sequence is available.  

 

7. MultiMutate 
 

MultiMutate [72] uses a four-body scoring function based on Delaunay 

tessellation of proteins to predict the effects of single- and multiple-residue 
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mutations on the stability and reactivity of proteins. Each amino acid is 

represented by a single point located at the centroid of the atoms in its side 

chain (including the Cα atom). α represents the type of the tetrahedron based on 

the backbone chain connectivity of the four participating amino acids. There are 

five tetrahedron types possible, and α takes one of the values 0,1,2,3 or 4 

corresponding to these types [159]. The total score of a protein is then defined as 

the sum of the log-likelihood ratios of all tetrahedra in its Delaunay tessellation. 

The method calculates the change in how well packed the residues are in the 

wild-type protein and in the mutant. Score values between 0.5% and -0.5% are 

classified as negative and it can be interpreted in a relative sense and compare 

and quantify two otherwise similar conformations based on how well one of 

them is packed better than other. This method uses the structure of the WT for 

the mutant as well, changing only the sequence. It uses the side chain center 

representation compared to the Cα atoms representation and use an increased 

cutoff on the Delaunay edges of 12 A � when scoring mutations. With the above 

settings the change in total score between the WT and the mutant protein is 

calculated. A positive change is when the mutant score is more than the WT 

score and indicates that the mutant is more stable than the WT, while a negative 

change indicates lower stability. The change is score is represented as the 

fraction of change, given as percentage, to the sum of the scores of the 

tetrahedra that see any change due to the mutations. If the percentage change is 

below 0.1% in absolute value, it is assumed there is no change. The authors also 
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correlate increased (decreased) activity with a negative (positive) change in the 

total score based on he intuition that well-packed proteins are typically not 

highly active, and hence the high total score is correlated with less activity. This 

is however based on a very limited data set. 

 

8. MUpro 
 

MUpro [59],predictions of protein stability changes upon mutations, is a set 

of machine learning programs to predict how single-site amino acid mutation 

affects protein stability. It has two machine learning methods: Support Vector 

Machines and Neural Networks. One advantage of this method is that it does not 

need tertiary structures to predict protein stability changes. First the methods 

predict whether a mutation will increase or decrease the stability of protein 

structure. Second, it uses a machine learning to predict directly the ∆∆G 

resulting from single site mutations. These methods use different methodologies 

and input information somewhat differently. For instance, prediction of ∆∆G 

uses regression methods, while prediction of sign uses classification methods. 

From the protein sequence it uses a local window centered around the mutated 

residue as input. To estimate the performance on unseen and nonhomologous 

proteins, this method removes the mutations associated with the homologous 

proteins and splits the remaining mutations by individual proteins. It uses the 

leave-one-out cross validation for the SVM thus empirically estimating how well 

the method can be generalized to unseen and nonhomologous proteins. The 
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methods are evaluated on a large dataset containing 1615 mutations using 20 

fold cross validation procedure. Under this procedure, the dataset is split evenly 

into 20 folds. Any one fold is used as test dataset, another remaining 19 folds are 

used as training dataset. Thus there are 20 pairs of testing and training datasets. 

For each pair, the SVM and neural network are trained on the training dataset 

and tested on the testing dataset. The performance on all test datasets are 

combined and reported as the performance of tested methods.  

 

Other programs which could help the predictive methods are SCide [154],  

Scpred [155] and SRide [156] which identify stability centers from sequence 

data. SCide attempts to identify stability centers within experimentally 

determined protein structures. Stabilizing, cooperative, long-range contacts 

identified by SCide are formed between regions that are sequentially well 

separated or that are part of different subunits within a complex. Scpred locates 

stability-center elements that impart stability via cooperative, long-range inter- 

actions. Scpred uses a neural network to predict stabilizing residues in 

conjunction with sequence information for the protein under study and its 

homologues. SRide combines several methods to identify residues expected to 

play key roles in stabilization. It analyzes tertiary structures, rather than primary 

structures, and the evolutionary conserved residues contained within. A residue 

is predicted to be stabilizing if it is surrounded by hydrophobic residues, exhibits 
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long-range order, has a high conservation score, and, if it is part of a stability 

center. 

Computational geometry methods 
 

Given a protein and its amino acid sequence, one can represent it using methods 

drawn from computational geometry. Each amino acid is considered as a single 

point in 3D space using numerical coordinates from PDB, with the whole protein 

then represented by a 3D graph where the nodes are the amino acids and the 

edges connect to the nearest amino acids. Once a protein is represented 

numerically/graphically features can be extracted, which can be used for 

classification of unlabeled mutants. For further processing, amino acids are 

abstracted in terms of their alpha carbon atomic coordinates. Each protein, that 

is, an amino acid sequence, is thus a sequence of corresponding alpha carbons. 

It can be concluded from the previous sections, that protein stability 

predictors will be more useful based on the fact that 80% of disease associated 

nsSNPs are protein destabilizing and sequence and structural information or 

features together give better predictive values to most of the published predictive 

methods. This also stands true based on the fact that amino acids residues affect 

each other and also the whole structure of the protein. One of the widely used 

form of simplified inter-residue potentials is the contact potential in which 

amino acids interact if they are spatially located within a certain distance from 

each other [160], [161]. Packing has an importance equal to that of 

hydrophobicity in determination of protein stability [162]. The packing of a 
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protein interior can be closely approximated in most cases as a series of short-

range, nearest-neighbor interactions [163]. Contact potentials when calculated 

for pairs of amino acids reflect structural parameters such as bond lengths, bond 

angles, and charges. These potentials reflect contact preferences and are thus 

useful for evaluating sequence-structure compatibility and can yield reliable 

predictions of folding free energy for datasets of mutations [164]. Pairwise, 

triplet and quadruple based higher order residue interactions play a crucial role 

to attain the stable conformation of the protein structures. Higher order residue 

interactions also contribute to the potential energy landscape of proteins [165]. 

Potentials based on pair-wise interactions have been successfully applied for 

predicting protein fold recognition, protein structure predictions, assembly 

mechanism and stability [166]. Higher order contact potentials, based on 3-

residue or 4-residue structural neighbors, provide more interaction details that 

are not captured in residue pairs. Higher order interactions have be used to 

improve accuracy of fold recognition and generic structure analysis [95], [159]. 

Four nearest neighbor residues forming quadruplets can characterize 

functionally important clusters, such as metal binding motifs, thereby allowing 

the detection of familial relationships between proteins [167]. These nearest-

neighbors have been defined subjectively in based on arbitrary criteria and 

therefore the affects of the potentials calculated in such methods strongly 

depend on the criteria chosen. Delaunay tessellation method is applied to 

objectively define all quadruplets in a protein; this is further discussed in the 
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next section. The method provides an objective definition of nearest neighbors, 

thereby removing the dependency of the results on arbitrary cutoffs used to 

define neighbors. Enhanced performance of four-body potentials based on 

Delaunay simplices was observed and thought to provide a natural, 

mathematically rigorous decomposition of the network of fully three-

dimensional interactions [168]. 

Voronoi polydedron and Delaunay tessellation 
 
 

Voronoi tessellation was introduced to the field of protein structure by 

Finney and Richards [169]. A 3D structure of a protein is represented by a set of 

points in 3D space, whose coordinates include Cα carbons of the residues 

forming the protein. Voronoi tessellation partitions the 3D space into a set of 

convex polyhedra, each containing a single Cα atom, such that the interior 

points of each polyhedron are closer to their corresponding Cα atom than any 

other in the system. Given that each point represents an amino acid (either the 

position of the carbon alpha or the center of mass of the side chain), the Voronoi 

polyhedron defines the “influence zone” around a given residue and represents 

the volume available for that residue. The equivalent tessellation of Delaunay 

comprises polyhedra whose edges connect the centers of Voronoi polyhedra and 

meet at a common vertex. This results is an aggregate of space-filling irregular 

tetrahedra, called Delaunay simplices. Vertices associated with each Delaunay 

simplex objectively define a set of four nearest-neighbor residues without any 

explicit dependence on an adjustable distance parameter. Figure 17(a) shows a 
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Voronoi tessellation, constructed by drawing the bisecting lines between that 

point and all other points in the set and then finding the smallest polyhedron 

defined by these lines. Figure (17b) shows Voronoi tessellation obtained by 

forming polyhedrons for all points in the set. Delaunay tessellations are 

constructed by adjoining points/residues whose polyhedra have a common edge, 

shown in Figure 17(c). Delaunay simplices then give ensembles of four nearest 

neighbor residues. Although Voronoi and Delaunay tessellations represent the 

same information or are completely determined by each other, Delaunay 

tessellations have the decisive advantage that 3D Delaunay simplices are always 

tetrahedral with four residues, whereas Voronoi polyhedra have variable 

numbers of faces and edges. 

 

 
Figure 17: Voronoi diagram and Delaunay tessellation;  
Voronoi polyhedron and Delaunay tessellation (a) The bisecting line between a given point and all the 
other points in the set is drawn, and then the smallest polyhedron defined by these lines is drawn; this is 
the Voronoi cell of the particular point. (b) When repeated for all points in the set, the Voronoi tessellation 
is obtained (thick purple lines). (c) The Delaunay tessellation of the set of points (thick red lines) is 
obtained by drawing all the segments between points that share a common Voronoi face. (Figure modified 
from Poupon [2004] [170]) 
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Delaunay tessellation of the protein structure can be performed using the 

Quickhull algorithm [171] given the PDB coordinates file. The Quickhull 

algorithm produces a Delaunay tessellation by computing the convex-hull i.e. 

the smallest convex containing specific points, from a set of points.  

Voronoi diagrams and their derived variants have been used often for the 

study of protein structures, protein-protein interactions, packing of protein core, 

packing at the interface with water, protein cavities, assessing the quality of 

protein crystal structure [170], [172]. Voronoi tessellations were first performed 

to estimate the density of globular proteins by calculating volumes around atoms 

in them. Volumes around atoms were used to analyze the packing geometry of 

residues inside proteins and to compare proteins [173]. In addition, void 

volumes may be calculated from Voronoi tessellations and reflect heterogeneous 

density of proteins. Chakravarty et al. [174] found that the creation of voids 

when mutations are introduced correlated with a decrease in protein stability. 

More recently Voronoi tessellations have also been used for discriminating 

thermophilic and mesophilic proteins [175], study the dynamics of the 

internal protein cavities [176] and also compare the level of intracellular 

organization between wild-type and mutant populations of cells supporting the 

notion that centrioles play a role in generating or maintaining global cellular 

organization [177].  

Voronoi and Delaunay tessellations provide a framework for calculating 

empirical statistical potentials. Singh et al. derived five classes of every four 



118 
 

neighboring Cα atoms and developed a four-body potential to evaluate 

sequence-structure compatibility for solving the inverse protein folding problem 

[178]. This potential has been successfully tested for inverse protein folding 

[179], fold recognition [180], decoy structure discrimination [181][159], protein 

design [182], protein folding on a lattice [183], mutant stability studies [168], 

computational mutagenesis [184], protein structure similarity comparison [185], 

and protein structure classification [186].This statistical potential was further 

used in another study to predict stability changes in proteins caused by 

mutations [167]. Barenboim et al. [187] observed that the four-body statistical 

potential of polymorphic proteins with disease-associated nsSNPs (daSNPs) was 

on average significantly lower than the four-body statistical potential of the 

proteins with neutral SNPs (ntSNPs). topoSNP [121] is a Delaunay tessellation 

based method predicting disease association of nsSNPs. Multimutate is also a 

four-body scoring function based on Delaunay tessellation of proteins to predict 

the effects of single- and multiple-residue mutations on the stability and 

reactivity of proteins. Both these methods have been detailed in the “Overview of 

Predictive Tools” section.  

Geometrical parameters of a tetrahedral 
 
 

To analyze the correlations between the structure and sequence of 

proteins, Singh et al. [178] introduced a classification of Delaunay simplices 

based on the relative positions of vertex residues in the primary sequence. Two 

residues were defined as distant if they were separated by one or more residues 
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in the protein primary sequence. Simplices were divided in to five nonredundant 

classes and the differences between them were investigated by using geometrical 

paramets of tetrahedral, such as volume and tetrahedrality. class {4}, where all 

four residues in the simplex are consecutive in the protein primary sequence; 

class {3,1}, where three residues are consecutive and the fourth is a distant one; 

class {2,2}, where two pairs of consecutive residues are separated in the 

sequence; class {2,1,1}, where two residues are consecutive, and the other two 

are distant both from the first two and from each other; and class {1,1,1,1} where 

all four residues are distant from each other. They state that any particular 

protein usually contains all five classes. 

Tetrahedrality is a measure of the degree of distortion of the Delaunay 

simplices in a given protein from the ideal tetrahedron and is calculated as 

follows:  

                    � �  ∑ ��� �  �	
�/15 � � �
��	            

 

where li is the length of the i-th edge, and � is the mean length of the edges of the 

given simplex. The tetrahedrality of the different simplex classes was calculated 

for 103 protein chains with high crystallographic resolution, no apparent 

structure similarity, and low sequence homology. The distribution of the 

tetrahedrality shows that classes {4} and {2,2} have the lowest tetrahedrality, 

suggesting that these classes possibly occur in regular protein motifs such as 

alpha-helices. This hypothesis was verified by comparing the simplex classes 

with secondary structure assignment (helices, beta-strands, and coils) [178]. 
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Statistical Potential 
 

  A topological score or total potential of a protein can be calculated based 

on the amino acid composition of the four nearest neighbor residues or 

quadruplets that are defined by the Delaunay tessellation. The maximum 

number of all possible quadruplets of natural amino acid residues is 8,855 

assuming that the composition of Delaunay simplices is order independent and 

preference unbiased. Given a four-body potential function and the Delaunay 

tessellation of a protein structure of interest the total potential or topological 

score of the protein is obtained by summing the log-likelihood scores of all the 

amino acid quadruplets whose representative points form the vertices of 

tetrahedra in the tessellation. The log- likelihood for each quadruplet is defined 

as 

 qijkl � log�fijkl / pijkl
  

where fijkl  represents the frequency of quadruplets containing residues i,j,k,l in a 

representative training set of high-resolution protein structures with low 

primary sequence identity, and pijkl is the frequency of random occurrence of the 

quadruplet.  

An individual residue potential or residue environment score is computed for 

each amino acid position by summing the log-likelihood scores of only the 

tetrahedral/simplices that use the representative point of the residue as a vertex, 

generating a potential profile for the protein [178], [188]. The topological scores 
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have been used for identifying tertiary packing motifs and functional signature 

motifs common to structures belonging to the same protein family [167].  

Assuming minor structural differences and hence similar tessellations between a 

mutant (generated by amino acid substitutions at one or more positions) and the 

wild type protein, the total potential and potential profile of the mutant can be 

derived from the tessellation of the wild type structure. Missense mutations may 

cause structural rearrangements in proteins, which could give it a slightly 

different potential score than the wild-type protein. By altering amino acid 

identities at points representing residue positions, which have been mutated, the 

alternative quadruplet compositions of tetrahedra utilizing these points as 

vertices in the tessellation changes their log-likelihood scores and leads to a new 

total potential and potential profile for the mutant protein.  

 A scalar residual score as well as a vector residual profile, defined as the 

difference between the mutant and wild-type (wt) total potentials and potential 

profiles, respectively, characterize each protein mutant and can be utilized in 

predicting effects of mutations on the protein structure and function.  

This approach was implemented by Carter et al. [168] to predict the stability 

of mutants. In a study by Vaisman and Masso [184, p. -1] a comprehensive 

mutational profile for HIV-1 protease was generated. This profile gave the mean 

potential score differences of all possible 19 substitutions at each residue 

position. Such profiles provide insight into the hydrophobicity of residues. The 

distribution of the residue potential scores indicates that low scores are 
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associated with surface residues, which have less structural neighbors, and high 

scores with residues in the hydrophobic core, which are structurally important 

for maintaining the conformation of a protein [168], [184, p. -] 

 

Objectives and Dissertation Format 
 
General areas in need of improvement for the development of better 

classification approaches seem to be: 1. experimentally validated and unbiased 

training sets of disease causing or deleterious mutations quantitatively 

phenotyped at both the organismal and molecular level; 2. identification and 

characterization of new mutational attributes beyond sequence composition, 

structure and evolutionary conservation) that improve classification accuracy 

and 3. new computational approaches need to be developed that improve 

classification accuracy when similar attributes and training sets are used. The 

following chapters in this dissertation shed light on all the three issues.  

The introduction section describes elaborately the motive and reasoning behind 

this particular research and its advantages. It details the important role played 

by missense mutations in causing functional effects leading to different cancers, 

different efforts undertaken by many global scientific leaders in collecting data 

from cancer genomes and the variants identified in comprehensive databases 

and data warehouses and their data structures.  It also elaborates the need to 

predict the functional impact of missense mutations in human cancers, 

describes the present state of art predictive methods being used to assess the 
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effects of the missense mutations. A comparative analysis based on various 

publications is also presented. 

Chapter one details the creation of an integrated database of human cancer 

missense mutations linked to their 3D structures, which has been created with 

the whole motivation of building a one stop shop of human missense mutations 

data sets. The database IDHCMM is an integration of COSMIC, TCGA, ICGC, 

IARC TP53, BIC, and MSKCC sarcoma and prostate data. Huge sets of missense 

mutations can be downloaded from IDHCMM, which can be used for training or 

testing purposes in different predictive methods. These mutations have 

experimental data linked as downloaded from the source databases, which can 

be used to filtered the mutations from the IDHCMM database. These filters 

could include sample information from TCGA, Individual information from 

COSMIC, Tumor stage etc. The database and the related user interface are 

detailed in chapter one. 

The research presented in Chapter two of this dissertation has an aim to 

systematically implement a structural geometrical approach for analyzing and 

assessing the effects of missense mutations on protein structure and function in 

human cancer genes. The approach is based on a potential score of a protein that 

is calculated based on the amino acid composition of the four nearest neighbor 

residues (quadruplets) defined by the Delaunay tessellation. The residual score 

quantifies the relative perturbation in sequence-structure compatibility of a 

mutant from that of the wild type protein. The potential profiles of wild-type and 
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mutants would be then analyzed using the residual scores associated with the 

full complement of single point mutants in order to study their ability to 

characterize the roles of amino acids in a protein.  

A number of proteins, each with more than 100 known mutations from 

IDHCMM database (mentioned in chapter one) have been selected and 

tessellated. A critical assessment of the mutant residual scores can be performed 

based on the biological notion that protein structure determines function. The 

residual score of a mutant is a measure of the relative change in sequence-

structure compatibility from the wild-type protein, therefore it is generally 

expected that the more negative the residual score, the less active the mutant. 

The annotated mutant protein systems will be examined for their residual 

scores, and a comprehensive statistical analysis will be performed to predict the 

functional effect of the mutants.  

Finally the last chapter, Chapter Three presents a pilot study probing into 

the potential utility of mutated proteins as cancer biomarkers to be used for 

diagnosis, prognosis, and targeted therapy, on the basis of gene-expression 

profiles of the genes producing these proteins. Gene-expression technology has 

been used successfully to show that it can increase the specificity of the 

molecular classification of breast cancer [189]. In theory, the gene products 

resulting from somatic mutations are the ultimate protein biomarkers, not just 

being simply associated with tumors but actually responsible for tumorigenesis. 

Unlike other protein biomarkers such as carcinoembryonic antigen (CEA) or 
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prostate-specific antigen (PSA), which are associated with the tumors, the 

mutant proteins are produced only by tumor cells therefore make the ultimate 

protein biomarkers. In this pilot study we used machine learning approach to 

scan through the gene expression data of Prostate cancer in search for cancer 

biomarkers. 
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CHAPTER ONE:  
Integrated Database Of Human Cancer Missense Mutations Linked 

To 3D Structures  
[IDHCMM] 

Introduction 
 
In recent years there has been an avalanche of mutational data from scientific 

literature and an equally enormous or may be even larger contribution from 

cancer genome sequencing projects. These sequencing projects produce 

enormous data, which are being analyzed to uncover the large number of genetic 

variants, which are of substantial interest in methods predicting their effect in 

oncogenesis. This data is dispersed in different databases at different locations 

and is specific and relevant to the research being done by the researchers 

generating this data. 

 The main aim of cancer research has been to identify all the genes involved in 

cancer prognosis and to identify the set/sets of mutations that occur in each of 

these genes. According to the Cancer Gene Census project led by the Cancer 

Genome Project, based at the Wellcome Trust Sanger Institute, 513 genes and 

474 somatic mutations have been implicated in cancer 

(http://cancer.sanger.ac.uk/cancergenome/projects/census/ ). Many more have 

been discovered after that. These somatic variants need to be annotated 

accurately to relate them to disease susceptibility and get a clinically relevant 
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interpretation. This would further assist in formulating better diagnostic 

methods and treatments for cancer patients. Of particular interest are somatic 

missense mutations, which change the amino acid sequence of proteins thereby 

possibly affecting protein structure and function. 

There are a lot of different comprehensive data sources, such as Online 

Mendelian Inheritance in Man (OMIM, Wheeler et al, 2004), HGVbase 

(Fredman et al. 2002) and the Human Gene Mutation Database (HGMD, 

Stenson et al. 2003). These databases are not specific to any one disease and 

carry information about the genetics and biology of different genes and diseases 

associated with those genes (OMIM). HGVbase carries information about 

genome variants and associated genotype – phenotype relationships. HGMD has 

data related to germline mutations (HGMD). There are some databases, which 

store somatic mutations in cancer, but most of them are locus-specific, such as 

the database for p53 (Olivier et al, 2002; Be�roud and Soussi, 2003), BIC 

database for BRCA1 and BRCA2. Some of the largest and most comprehensive 

efforts towards understanding the molecular basis of cancer, including large-

scale genome sequencing projects are TCGA (The Cancer Genome Atlas) and 

ICGC (The International Cancer Genome Consortium). The Catalogue of 

Somatic Mutations in Cancer (COSMIC) (http://www.sanger.ac.uk/cosmic) 

offers a comprehensive view of all previously reported somatic mutations in 

cancer and associated information.  
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Here we present an integrated database of cancer mutations, IDHCMM, 

comprising of only missense or non-synonymous mutations found in humans.  

Motivation 
 
The primary motivation of creating this database was to assist in developing 

models for predicting the effects of missense or non-synonymous mutations on 

protein structure and thereby the protein function, by making available large 

number of missense mutations per gene, in one place. Missense mutations have 

been reported to have direct implications in structure and functional impacts on 

proteins involved in cancer [22][23][29][36]. It is still a significant challenge 

and is being seriously pursued to identify driver versus passenger mutations 

[40]. When it is not clear which of the mutations are driver mutations or 

passenger, a reasonable and an intuitive approach is to have a set of recurrent or 

overrepresented mutations in genes, i.e. each gene having at least a 100 

mutations or in other words some positions are mutated recurrently i.e. 2 or 

more times. This kind of a data set has been shown to support prediction 

assessment studies performed by Gnad et al. [40]. This being one of the 

motivations, creating IDHCMM also represents an effort to centralize different 

aspects of informational data associated to the missense mutations such as the 

molecular, histological, clinical, sequencing and analytical data linked with 

mutations, lodged in all the different databases. It mainly proves valuable in 

providing 3D structure data from PDB linked to the mutations. All the source 

databases mentioned above have some mutually exclusive data, which is very 
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valuable and could be used by many researchers in many different scientific 

projects. A central repository such as IDHCMM could accelerate, facilitate and 

ease the research by providing all the data at one place. It would not only be 

valuable for the profound scientific community but also to novice researchers 

and translational research members who would not need to understand the 

complexity of cancer genomics. 

 

Database Construction And Content 
 
The approach we use here to generate models to predict the effects of mutation 

on proteins is protein structure based and so more the number of mutations 

mapped on to a gene or protein structure more accurate and reliable the 

predictive model could be. Our aim was to find proteins, which have 100 or more 

mutations or in other words proteins where some positions are mutated 

recurrently i.e. 2 or more times. To achieve this target we integrated open access 

mutational data from some of the most comprehensive and huge databases 

namely, TCGA, ICGC, COSMIC. We also included data from other extensively 

studied and widely used single –gene databases such as IARC TP53 database [1],  

Breast Cancer Information Core database. 

In an attempt to understand and further look into possible inferences from gene 

data, which include mutational data as well as Gene Expression data, two of the 

Memorial Sloan-Kettering projects, The Sarcoma Genome Project and Prostate 

Cancer data sets, were included into our database IDHCMM. Besides integrating 
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data from six different mutational data sources, IDHCMM also features 

integration with UniProt and PDB databases.  

Data from source databases was filtered for only Missense or Non-synonymous 

mutations and downloaded. Data from different sources was then mapped in 

order to integrate into one database. In this processing, duplicate or overlapping 

entities rooting from different sources were unified based on data definitions 

obtained from the parent/source databases for each of the data elements in the 

database. These data elements were then mapped to IDHCMM data elements. 

Supplementary Document 02 shows the mapping of the data elements from 

different parent/source databases and IDHCMM. The data flow of IDCHMM is 

shown in Figure1. 

IDHCMM contains more than 1.48 million records, which comprise 215374 

distinct Amino Acid Mutations (Missense/Non-Synonymous), 59182 distinct 

Genes and 684892 distinct ‘Gene-Missense Mutation’ pairs. Table 1 shows the 

database statistics by each data source. The database has a total of 25 tables 

including the source tables and ID mapping tables and some secondary tables 

created to store filtered data derived from primary tables. 

  

System Design And Implementation 
 

Data sources 
 
Cancer research and studies based on gene mutations have been made possible 

by a large number of Mutational databases ranging from single gene databases, 
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single cancer databases, multiple or related gene databases to complex databases 

which not only include mutational information but also link the mutational data 

to many other scientifically relevant aspects like genotype-phenotype 

associations, disease associations, pathways, population statistics etc. However 

there is scarcity of databases with clinical data linked to the mutations. This 

requires studies and projects to collect, store, monitor data and continuously 

follow and record changes at different levels such as bio-specimen and patient 

data collection, genomic data characterization, sequencing and analysis and then 

proteomic characterization and analysis. We selected some of the databases, 

which are huge comprehensive projects and contain a wide spectrum of data 

namely The Cancer Genome Atlas (TCGA), International Cancer Genome 

Consortium (ICGC) and Catalogue of Somatic Mutations in Cancer (COSMIC).  

 

TCGA 
 
The Cancer Genome Atlas is a coordinated project established by NCI and 

NHGRI completely focusing on understanding the molecular basis of cancer 

utilizing latest genome sequencing and analysis technologies. All information 

about TCGA and the TCGA research network can be found at 

http://cancergenome.nih.gov/. 

TCGA provides a platform, called the “Data Portal”, for researchers enabling 

easy download and analysis of data generated by TCGA. All the TCGA data in 

IDHCMM has been downloaded from this data portal using the “Bulk 
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Download” process, after confirming with the TCGA helpdesk. The mutational 

data is present in special files ending with “.MAF”. All available ‘.MAF’ files as of 

date Jan 10th 2013 were downloaded. The data downloaded from TCGA data 

portal includes data generated by the following institutes: 

1. The Broad Institute at MIT 

2. The Genome Institute at Washington University 

3. The Baylor College of Medicine Human Genome Sequencing Center 

The downloaded data pertain to the following cancers: 

1. Bladder Urothelial Carcinoma 

2. Cervical squamous cell carcinoma and endocervical adenocarcinoma 

3. Glioblastoma multiforme 

4. Head and Neck squamous cell carcinoma 

5. Kidney renal clear cell carcinoma 

6. Lung adenocarcinoma 

7. Lung squamous cell carcinoma 

8. Ovarian serous cystadenocarcinoma 

9. Prostate adenocarcinoma 

10. Skin Cutaneous Melanoma 

11. Thyroid carcinoma 

12. Uterine Corpus Endometrial Carcinoma 

13. Breast invasive carcinoma 

14. Acute Myeloid Leukemia 
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15. Colon adenocarcinoma 

16. Rectum adenocarcinoma 

The DNA sequencing technologies used in are: 

1. Illumina (Genome Analyzer) 

2. ABI SOLiD sequencing 

The data from downloaded ‘.maf’ files was then filtered for somatic missense 

mutations by selecting only those rows from files with a ‘Mutation status’ as 

‘Somatic’ and ‘Variant Classification’ as ‘Missense’. These filtered files were then 

converted into ‘.csv’ files to be used to upload data into IDHCMM, an Integrated 

Database of Human Cancer Missense Mutations.  

Along with mutation files, definitions of each of the data elements used in the 

TCGA database was acquired from their websites and via communicating with 

the Database support/helpdesk when ever required. These were needed for 

further mapping of these data elements with the data elements from other data 

sources like COSMIC and ICGC etc. 

Problems encountered with TCGA data: 

1. The data shows more data elements/fields or columns in the files other than 

those listed and defined in the database documentation. For ex: TCGA has 34 

data elements listed on their wiki at 

https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+%28

MAF%29+Specification, however, the .maf data files downloaded have about 

100 more fields of data. The TCGA helpdesk was contacted and requested to 
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provide data definitions. After a couple of emails and information exchange, 

data definitions for some more data elements, identified to be from 

‘Oncotator’ (http://www.broadinstitute.org/oncotator/) were provided. 

However these did not necessarily cover all the data elements listed in the 

‘.maf’ files. Some of them are still undefined, and have not been used in 

IDHCMM. 

2. Not all mutational data could be downloaded from TCGA download portal.  

a. Only 31 files with mutational data could be downloaded via the 

search engine. 

b. There are about 76 more mutational data files, which can be 

accessed programmatically via their web-services from their file 

system. However, accessing these files from file system has some 

limitations: 

i. The web-service lists some filters, which need to be used to 

download data, however it doesn’t list filters appropriate to 

download only mutational data.  

ii. Huge data files will need to be downloaded first and the 

mutational data files will have to be searched from this set.  

iii. The web-service also limits the searches based on cancer type, 

center, level and platform used, which will require as many 

requests as there could be values of the above mandatory 

filters.  
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Data from only the 31 files, which could be downloaded from the TCGA data 

portal, open access, were used in this project. Data elements from each of the 

mutation files were mapped to data elements in IDHCMM and the data 

uploaded to the database. This is discussed further in the ‘Data Mapping’ 

section. 

 

ICGC 
 
ICGC, The International Cancer Genome Consortium, coordinates a large 

number of projects with a common goal of unraveling and generating 

comprehensive catalogues of genomic abnormalities, which include somatic 

mutations, abnormal expression of genes, epigenetic modifications, in different 

forms of cancer. All information about ICGC and the ICGC Cancer Genome 

Projects can be found at http://icgc.org/icgc. ICGC has both open access data 

and controlled data. To access and download controlled data researchers need to 

apply and get permission. Here we have used open access data only. ICGC 

provides access to its open access data via a data portal, which provides tools for 

visualizing, querying and downloading the data released quarterly by the 

consortium's member projects. 

Data from ICGC projects was downloaded in November of 2012, of Release 10. 

The FTP site of the ICGC data portal was used to download all the mutational 

data files. This step was performed for each of the cancer type provided. There 

were 25 cancer types, which had mutation files available on the FTP site. 
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Following is the list of the cancer datasets for which mutation files were 

downloaded: 

1. Acute Myeloid Leukemia TCGA US  

2. Breast Carcinoma-WTSI UK   

3. Breast Invasive Carcinoma-TCGA US   

4. Breast Cancer-JHU US  

5. Chronic Lymphocytic Leukemia-ISC-MICINN ES  

6. Colon Adenocarcinoma-TCGA US  

7. Colorectal Cancer-JHU US  

8. Gastric Cancer-CCGC CN  

9. Glioblastoma Multiforme-JHU US  

10. Glioblastoma Multiforme-TCGA US  

11. Liver Cancer-INCA FR  

12. Liver Cancer-NCC JP  

13. Liver Cancer-RIKEN JP  

14. Lung Adenocarcinoma-TSP US  

15. Lung Squamous Cell Carcinoma-TCGA US  

16. Malignant Melanoma-WTSI UK  

17. Myeloproliferative Disorders-WTSI UK  

18. Ovarian Serous Cystadenocarcinoma-TCGA US  

19. Pancreatic Cancer-JHU US  

20. Pancreatic Cancer-OICR CA  
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21. Pancreatic Cancer-QCMG AU  

22. Pediatric Brain Tumors-DKFZ DE  

23. Rectum Adenocarcinoma-TCGA US  

24. Small Cell Lung Carcinoma-WTSI UK  

25. Uterine Corpus Endometrioid Carcinoma-TCGA US 

Each dataset name listed above includes the name of the cancer type, followed 

by the name of the Institute where the data was generated and then the country 

where the institute is located. A list of the institutes where the data is coming 

from is as follows: 

1. TCGA: The Cancer Genome Atlas, USA 

2. WTSI: The Wellcome Trust Sanger Institute, UK 

3. DKFZ: The German Cancer Research Center (Deutsches 

Krebsforschungszentrum, DKFZ), Germany 

4. QCMG: Queensland Centre for Medical Genomics, Australia 

5. OICR: The Ontario Institute for Cancer Research, Canada 

6. JHU US: John Hopkins University, USA 

7. TSP: Tumor Sequencing Project, USA  

8. RIKEN: National Institute of Biomedical Innovation, Japan 

9. NCC: National Cancer Center, Japan 

10. INCA: The French National Cancer Institute (Institut National du 

Cancer), France 

11. CCGC: The Chinese Cancer Genome Consortium, China 
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12. ISC-MICINN: Spanish consortium, Spain 

At the time of download there were some cancer datasets which did not have the 

mutations data available, these are listed below: 

1. Kidney Renal Clear Cell Carcinoma-TCGA, US 

2. Lung Adenocarcinoma-TCGA, US 

3. Cervical Squamous Cell Carcinoma-TCGA, US 

4. Bladder Urothelial Carcinoma-TCGA, US 

Mutational data from these data sets and more newly sequenced tumors could 

be added as an update to IDHCMM as future perspective. 

The ftp site provided all the mutations in files with file names prefixed with 

‘ssm’, which means Simple somatic mutations. Once downloaded these files 

were filtered for data with a ‘Consequence type’ as ‘Non-synonymous coding’. 

The option of ‘Missense Mutations’ was not provided in that release of ICGC 

data. Then they were converted to ‘.csv’ files for upload into IDHCMM. Data 

definitions of all the data elements/fields used in ICGC was acquired from the 

ICGC data submission manual. Data elements from each of the mutation files 

were mapped to data elements in IDHCMM based on the data definitions from 

the manual and the data was uploaded to the database. This is discussed further 

in the ‘Data Mapping’ section.  

 

COSMIC 
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COSMIC, Catalogue of Somatic Mutations in Cancer, stores and displays 

information pertaining to somatic mutations and related details, especially 

human cancers. It also contains information about publications and samples. 

The mutation data and associated data are extracted from literature. COSMIC 

provides ‘BioMart’, to help users download data. It provides a set of filters and 

attributes to select the kind of data a user needs to download. 

Most recent download of data from COSMIC was made on May 12th 2013 to 

IDHCMM and was from version 61. All the downloaded mutations were verified, 

confirmed somatic variants and were all missense mutations. At the time of 

download, COSMIC did not provide definitions for all the data elements. Cosmic 

helpdesk was contacted and requested to provide the definitions, which would 

be needed for mapping the data elements into IDHCMM. The definitions were 

provided by email upon request. 

 

BIC 
 
Breast Cancer Information Core, is an open access on-line breast cancer 

mutation database. It is an international collaborative effort hosted by NHGRI. 

BIC catalogues all the mutations and polymorphisms in breast cancer 

susceptibility genes, BRCA1 and BRCA2. In addition to mutation information 

the database contains a collection of mutation detection protocols, lists of gene 

specific DNA primers and published protocols. Mutation data is entered in this 
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database by individual investigators, hospital-based labs and a commercial lab 

performing the bulk of BRCA1/BRCA2 tests in North America. 

The latest download of data was on May 10th 2013 and filtered for the ‘Mutation 

type’ ‘M’ (for missense) as described in the BIC database glossary. As of the date 

of download there were 4506 missense mutations in the dataset. Definitions for 

data elements were retrieved from the BIC database glossary 

(http://research.nhgri.nih.gov/projects/bic/Member/glossary.shtml). 

 

IARC TP53 
 
 
The IARC TP53 mutation database compiles all TP53 mutations that have been 

reported in the published literature since 1989. This database is updated every 

year. IARC TP53 database includes various annotations on the predicted or 

experimentally assessed functional impact of mutations, clinicopathologic 

characteristics of tumors and demographic and life-style information on 

patients. It provides the following datasets:  

1. TP53 somatic mutations in sporadic cancers 

2. TP53 germline mutation in familial cancers 

3. Common TP53 polymorphisms identified in human populations 

4. Functional and structural properties of p53 mutant proteins 

5. TP53 gene status in human cell-lines 

6. Mouse-models with engineered TP53 
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The IARC TP53 Database is a free service offered to the scientific community. 

Data pertaining only to TP53 somatic mutations, was downloaded for use in 

IDHCMM. The latest download was done on May 12 2013 from the release ‘R16’. 

It was then filtered (by column ‘Effect’) to get only missense mutations into 

IDHCMM. At the time of download it had 21,614 missense mutations. Data 

definitions of all the data elements used in the IARC TP53 database were 

retrieved from the user’s manual provided on the database website 

(http://p53.iarc.fr/Manual.aspx). 

 

MSKCC 
 
A major focus at the Computational Biology Center at Memorial Sloan- Kettering 

Cancer Center is the integrative analysis of cancer genomics data sets. The 

methods developed span analysis of mutations, identification of recurrent DNA 

copy-number alterations, and the identification of altered signaling pathways. 

Two of the major projects undertaken by MSKCC for these studies are: 

1. Integrative genomic profiling of human prostate cancer 

a. Includes integrated genomic profiling of 218 prostate tumors. 

b. Eighty tumors were examined for somatic mutations in 138 

genes by exon sequencing, these and an additional 76 tumors 

were also profiled for well-known oncogenic mutations in 22 

genes by mass spectrometry using the iPLEX Sequenom assay. 

In total, 84 confirmed somatic mutations were detected in 57 
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different genes. Thirty-seven percent of the missense mutations 

detected were predicted to affect protein function based on an 

algorithm, Mutation Assessor, which uses a combination of 

evolutionary information from protein-family sequence 

alignments and residue placement in known or homology-

deduced three-dimensional protein and complex structures. 

2. The Sarcoma Genome Project: A collaboration between Memorial 

Sloan-Kettering Cancer Center and The Broad Institute. 

a. It is an integrative analysis of DNA sequence, copy number and 

mRNA expression in 207 samples encompassing seven major 

subtypes. 

b. It includes detailed map of molecular alterations across diverse 

sarcoma subtypes. 

Data from MSKCC projects was included with an intention to study gene 

expression along with the mutational data as these data sets have both 

mutational data s well as gene expression data for all the genes included. The 

mutations were available for download for Prostate cancer and were downloaded 

on November 3rd 2012 and then filtered for ‘Mutation type’, ‘Missense’. The 

Prostate cancer data had 254 missense mutations as of the date of download. 

Mutational data for the Sarcoma data set were provided by the MSKCC helpdesk 

upon request made after being not able to download using the CBio data portal. 

These mutations were also filtered for missense mutations. This dataset had 28 
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missense mutations. Data definitions for the data elements provided in the 

Sarcoma data set were all the same as the TCGA data set. Definitions for data 

elements for the prostate cancer were acquired from 

http://mutationassessor.org/howitworks.php 

 

Table 3: Data sources and statistics 

 

Data Sources 

TCGA 
ICGC COSMIC BIC 

IARC 
TP53 

MSKCC 

  
BRCA1 BRCA2 

 
Prostate Sarcoma 

Total Number 
of records 625,871 690,044 136,258 4,505 7,135 21,613 254 28 
Total no of 
Distinct AA 
Mutations 135,691 12,021 65,732 135 141 1,435 193 26 
Total no of 
Distinct 
Genes 21,450 18,889 18,711 1 1 1 112 17 
Total no of 
Distinct Gene 
and     AA-
Mutation 
pairs 385,633 181,885 115,443 135 141 1,435 194 26 
Date of 
source data 
download 

Oct’ 
2012 

Nov’20
12 May 2013 

May 
2013 

May 
2013 May 2013 Jan 2013 Jan 2013 
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Data Integration/Data Mapping 

 
The computational mutagenesis method, which we intend to use, is based on the 

application of a Delaunay tessellation-derived four-body statistical potential 

function. Since the potential is derived via an approach that utilizes the atomic 

coordinates of non-homologous, high-resolution protein structures, the 

computational mutagenesis incorporates information about both sequence and 

structure. Using this methodology, every single or multiple mutant of a protein 

can be characterized by a scalar residual score, which measures the relative 

change in overall sequence-structure compatibility from wild-type, as well as a 

vector residual profile, which quantifies environmental perturbations from wild-

type at every amino acid position. The main objective in creating an integrated 

database was to pool as many mutations per gene as we could, to study these 

effects of mutations on the structure of each protein and eventually the protein’s 

function. 

Each of the missense mutations and all associated details obtained from the six 

different data sources needed to be pooled together to form one central 

repository. In order to achieve this goal, all the data elements from all the data 

sources needed to be compared and mapped to each other. The data from main 

sources was filtered, cleaned, transformed when and wherever needed and then 

catalogued such that it can be searched and used for analytical processing 

further. Searching and extracting data from this integrated database/data 
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warehouse is being enabled via a webpage and is explained in detail in the ‘User 

interface’ section. The biggest advantage of integrating mutational data from all 

these different databases it to be able to get a large number of amino acid 

mutations for each gene, which would not be the same with any of the individual 

databases. More number of mutations for each gene would definitely provide a 

greater perspective in structure-based studies like ours where the effect of the 

mutations on the structure and the functional impact on the protein is being 

studied. Secondly, large sets of mutations per gene can eliminate the need of 

computational mutagenesis also adding the fact that all the mutations are real 

and have been collected from literature or directly from experiments. Apart from 

these, data from our database also includes associated data from all data sources 

for each of the missense mutations. Associated data could be like data from:  

• Source databases, such as the source database mutation id ex: COSMIC 

ID, source database version, Source database sample ID etc. 

• The gene ex: Gene IDs (including Entrez, Ensemble, RefSeq, Transcript 

ID), Gene Name etc. 

• Mutation specifics such as CDS mutation Position, AA-mutation 

position, Mutation Validation status etc. 

• Predictions from SIFT and PolyPhen 

• UniProt Ids  

• PDB structure data including Resolution, chain, missing residue 

information etc. 
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• Clinical data from source databases wherever available, such as Tumor 

grade, Tumor stage, Histology. 

• Experimental details such as Sample and Specimen data 

• It also incorporates open access individual data available from source 

databases like gender, age at diagnosis, ethnicity, Family history, 

Country, Exposures (Tobacco, Alcohol) etc. 

A list of all the data elements used in IDHCMM, and their definitions are listed in 

Supplementary Document 02. 

However, it is important to mention here that because IDHCMM is an integrated 

database, not all the fields would be populated, that is each mutation would not 

have information against each of the data element in IDHCMM. This is mainly 

because IDHCMM is designed to represent a data warehouse, storing all data 

from all the selected source databases. There are a lot of data elements in each of 

the data sources, which do not map to any of the data elements from other 

sources. Such data elements have been retained in order to keep the data but 

cannot be merged with any other data from any other data source. In such cases 

these data elements in IDHCMM will carry data only from that particular data 

source. Also, the availability of data values in IDHCMM is solely based on their 

presence in the source databases.  

Data Mapping: Level1 
 
Data mapping here involved creating a mapping between the six different data 

sources. This was the first step towards data integration. Each source may 
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contain incorrect data values and the data in the sources may be represented 

differently, overlap or contradict. This is because the sources are developed and 

maintained independently to serve specific needs. This results in a large degree of 

heterogeneity in data management systems, data models, schema designs and the 

actual data. Mapping was required to identify and consolidate redundant 

columns of data/data elements and help in creating a distinct list of columns or 

data elements for the integrated database IDHCMM. The mapping approach was 

data-driven and included both schema matching as well as data transformations 

wherever needed.  

At the schema level, differences in schema design were addressed by schema 

translation and schema integration. The main problem with schema design was 

naming conflict. Naming conflicts arise when the same name is used for different 

data elements (homonyms) or different names are used for the same object 

(synonyms). All the six data sources had different representations or definitions 

for their data elements, which actually could be representing the same 

information/data. Presence of this kind of heterogeneity called for an ETL 

process (Extract, Transform and Load) involving Schema mapping and Data 

Transformations. This was needed to identify if the data elements being 

compared are semantically or structurally related or may be even are the same. 

For example, TCGA data and MSKCC-Sarcoma data had the gene name 

represented by the data element ‘Hugo Symbol’, and other databases used ‘Gene 

Name’. In some cases this schema mapping was complex and required one-to-
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many mappings. For example, different TCGA data files have the column names 

‘Protein_Change’, ‘amino_acid_change’, and ‘AAChange’, all for the same 

information, the amino acid mutation. Schema mapping between data elements 

from the six data sources was done manually and is detailed in the 

Supplementary Document 02. 

In addition to schema level conflicts, there were conflicts at the instance level 

where even when there are same names for data elements, there were different 

value representations. Data transformations were performed where a set of 

values from the source databases had to be converted into a unified format 

followed in IDHCMM. For example, the amino acid mutation format was found 

to be different in different data sources. COSMIC represents an amino acid 

mutation as ‘p.G12D’ where as some ICGC data files represent it as ‘D>G’ and 

data from MSKCC represent it as ‘A212T’. List of all the data elements in 

IDHCMM and their definitions can be found in Supplementary Document 03. 

Once the mapping was done, it was implemented into the database system using 

sql scripts to generate one huge central repository of all the mutations from all 

the source databases. The software used is mentioned the ‘Technology Stack’ 

section.  

 

Integrated Database/Data warehouse Design 
 

All the data from all source databases was initially loaded into IDHCMM as 

source tables. Each entry from each source was given an IDHCMM identifier. 
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These source tables also included the source database identifiers and the source 

version/release numbers such that the data values could anytime be referred 

back to the source databases. With an aim to bring all the data together into a 

standard homogenous format, data from all the sources tables was pooled into 

one big table. This table is the first and the main IDHCMM table ‘All Mutations’ 

containing mutations from all the sources and can be regarded as the parent 

table. This table has the data elements designed for IDHCMM, to form a 

comprehensive list, which could accommodate most of the data elements from all 

the six sources. The most important task while pooling the data was to establish 

data compatibility. Data mapping was done prior to this step and was followed to 

map and load data from different sources into this parent table. The parent ‘All 

Mutations’ table retained the IDHCMM identifiers allotted to each entry as well 

as the source database identifiers along with all the associated data.  

The ‘All Mutations’ table at the time of writing this manuscript contains 

1,485,708 records. This table was then cleaned and filtered to retain useful and 

meaningful data. Once the cleaning was done, a number of other tables were 

derived/generated from ‘All Mutations’ in order to get to only the transformed, 

valid and complete mutation records. After this, level 2 mapping (Section Data 

Mapping: Level2) was performed. This involved mapping the mutation records to 

UniProt Ids and then using UniProt Ids to map them to the protein structure i.e. 

the PDB ids. Figure 1 illustrates the data workflow overview.  
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Figure 18 Data Work-Flow Overview 
  

Data Mapping: Level2 
 
With an aim to link the mutations to their protein structures, these mutations 

were mapped/ matched over a couple of different databases establishing a link 

via their Ids. All the valid mutations which had associated database ids such as 

Entrez Gene ID, Ensembl Gene ID, Refseq ID, Transcript ID, Swissprot AC ID or 

Swissprot Entry ID were extracted and Uniprot Ids for all these mutation records 
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were acquired using the ID mapping programmatic access service available at the 

Uniprot website (http://www.uniprot.org/faq/28). 

This mapping to Uniprot ids was saved in a different table in IDHCMM and then 

used to acquire PDB Ids for each of the Uniprot ids also using the ID mapping 

programmatic access service available at the Uniprot website. This procedure 

acquired single or multiple PDB ids for each of the mutation records. A new table 

‘GeneTOStructure’ was created which connects the mutation records via their 

PDB id to their structure information which includes the PDB ID, Structure 

Resolution, Protein Chain and Structure start position and end position 

(fragments).  

As a next step, information regarding missing residues from the PDB database for 

each of these PDB ids was also downloaded and then the Mutation position was 

checked against the missing residues for each of the mutation against each of the 

structure associated with this mutation. This was done to make sure the mutation 

falls with in the protein structure. All the genes, which had the mutation with in 

the structure fragments were filtered and put into a new table ‘MutInStructure’ 

for ease of access to this data. 

 

Material And Methods 
 

Technology Stack 
 
An overview of the multi-layer architecture of IDHCMM is represented in 

Figure2. The software used in creating IDHCMM is detailed below.  
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1. Database Components: The database was built on MySQL server, version 

14.14_5.5.9. MySQL Workbench was used to administer (design, generate and 

manage) the IDHCMM database. 

2. Java (version 1.6.0_65) was used as the programming environment.  

3. Tomcat Application Server 6.0.37 was used as web application deployment 

server. 

4. Eclipse IDE (Kepler Release 4.3) was used as development tool. Maven (m2e-

wtp) Plugin for Eclipse was used for compile, build and deployment of web 

application. 

5. Web Application Components: 

• Java class files 

• JSP/HTML web pages 

• BlueTrip CSS Framework (Style Sheets) 

• DisplayTag Library 1.2 (Table display with sorting, paging and 

export features) 

• JQuery 1.8.3 

• JQuery UI 1.9.2 

• MySQL/Java Connector 5.1.24 

• JUnit 3.8.1 (Unit testing) 

• Apache Log4J 1.6.5 (Logging) 

• Apache Commons DBUtils (JDBC Helper Library) 

• Apache Commons DBCP (Database Connection Pooling Services) 



 

• Apache C

 

Figure 19: Multi-Layer Architecture of IDHCMM
 

User Interface 
 
To facilitate the access and use of IDHCMM resource we implemented a simple 

web interface for the users. The website was implemented in Java and provides 

diverse query options. Users can query, retrieve and download data from 
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Apache Commons Configuration (Reading of configuration files)

Layer Architecture of IDHCMM 

To facilitate the access and use of IDHCMM resource we implemented a simple 

web interface for the users. The website was implemented in Java and provides 

diverse query options. Users can query, retrieve and download data from 

ommons Configuration (Reading of configuration files) 

 

To facilitate the access and use of IDHCMM resource we implemented a simple 

web interface for the users. The website was implemented in Java and provides 

diverse query options. Users can query, retrieve and download data from 
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IDHCMM. Java Scripts were linked to the MySQL server to query and retrieve 

the data for webpage queries. 

The search page provides an interface for querying the IDHCMM database with 

varied options, which include aspects of ‘Gene’, ‘Mutation’, ‘Protein Structure’, 

and ‘IDs’. ‘ Functional Impact Predictions’ and ‘Clinical Information’.  

User Interface (UI) can be divided in the four main components:  

1. Login: Login UI provides a web page to enter user credentials. If the 

user credentials are not verified, then the user is not allowed to 

perform search. Upon successfully validating user credentials, user is 

redirected to the home page where the search criteria can be entered. 

2. Search Criteria: Search Criteria UI provides different search options 

along with options to select the required output columns.  

• Input Criteria: The main input options users can perform a search 

based on, are Gene Names, PDB Ids, Amino Acid Mutations and 

UniProt Ids. The search input text can be comma separated or in 

the form of a list with each input in new line. 

• Output Criteria: There are six categories of output criteria for users 

to selects options from. The categories and the options are listed 

below. 

o Gene Information: Gene Name, Entrez Gene ID, Ensembl 

Gene ID, Chromosome 
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o Mutation Information: CDS Mutation, CDS Mutation Type, 

CDS Mutation Start, CDS Mutation Stop, AA Mutation, AA 

Mutation Type, AA Mutation Start, AA Mutation Stop, 

Mutation Validation Status, Mutation Detection Platform, 

Mutation Validation Platform. 

o Structure Information: PDB ID, PDB Fragment, Resolution, 

Chains, Missing residues, Domain Affected. 

o Database IDs: Refseq ID, Transcript ID, UniProtKB AC, 

PubMed ID, Pfam Accession ID, neXtProt ID, PharmaGKB. 

o Functional Impact predictions: Mutation Assessor 

Prediction, Polyphen Prediction, SIFT Prediction. 

o Clinical Information has four sub-categories: 

� Sample: Sample Name, Sample Type, Sample ID, 

Sample Source, Sample Source, Specimen ID, 

Specimen Type, and Depositor. 

� Tumor: Tumor Source, Tumor Depth, Tumor 

Confirmed, Tumor Grade, Control Genotype, Tumor 

Genotype, Tumor Stage, Tumor Origin, ICD-10, TNM, 

p53 IHC, Morphology, Short Topology, Primary Site, 

Primary Histology, Site Subtype 1, Site Subtype 2, Site 

Subtype 3, Histology Subtype 1, Histology Subtype 2, 

Histology Subtype 3 
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� Individual: Ethnicity, Gender, Age At Diagnosis, 

Family History, Tobacco, Alcohol, Exposure, Geo 

Area, Country, Population. 

� Other: Drug Target, Specimen Donor Treatment Type, 

and Contact Person. 

3. Search Results: Search Results UI provides the search results in 

columns along with the source database name and input criteria 

provided by the user (gene, pdb_id etc.). The UI provides options to 

sort the results by any column and export the results in excel, pdf and 

xml formats. 

4. Help/Contact pages: Help page provides help, other supplementary 

data files and other required resources or reference links. The contact 

page provides contact information. 
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Figure 20 IDHCMM Login Page 
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Figure 21 IDHCMM Search Page 
 

Availability and requirements 
 
IDHCMM can be easily ported to different systems. The database is available as a 

MySQL dump and can be requested. The webpage can also be ported along with 

the MySQL dump. All of the database and webpage development has been done 

on Mac OSX 10.7.5 with 4GB memory, however it is preferred to run the database 

and the web service on a machine with a higher memory. 
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Future Improvements 
 
IDHCMM is a result of a basic integration of different comprehensive and 

important mutation databases. There is a wide scope of improvement and 

enhancement from this point. This project was done as a part of a doctoral 

dissertation and out of a need for a big set of mutational data as such hence has 

the minimum needed integration done. Future improvements can make this 

database more useful and fortify it multi dimensionally. Some of the suggested 

future enhancements could be as follows: 

• IDHCMM presently contains only public data from different listed data 

sources. Protected or restricted data can be requested and added to 

IDHCMM. The user interface has a user validation feature which will secure 

the private data. 

• Records in IDHCMM can be linked to their source database pages, for 

accessing the information at the source website. 

• More data sources can be added, such as SNP500Cancer.  

• More clinical data other than that provided by just the data sources can be 

included into IDHCMM. 

• More data from PDB files can be extracted such as functionally relevant data 

and can be used in grouping or classifying mutations accordingly. 

• More dimensions like Gene Expression, can be linked to the mutational data 

in IDHCMM. A preliminary effort in this direction has been performed and is 

presented as a part of this dissertation. 
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• The mutations from different source databases have been mapped to 

structure based on the presence of identification such as Entrez Gene Id, 

Ensembl Gene ID or RefSeq Id. Not all records essentially have an 

identification associated with them. If each record had an identification 

attached, the final draft of the database would be much more populated. This 

can be checked periodically. As and when the source databases are updated 

IDHCMM can be updated and mapping done to integrate data for these 

‘orphan’ records. Also, as and when UniProt and PDB get updated, more and 

more genes can be linked to their structures. 

• There are a huge number of records, which have important data missing, for 

example the mutation position in case of Amino acid mutation information 

ex, from the source database ICGC. This missing data lead to filtering out of a 

lot of mutational records, which actually have very valuable clinical 

information associated to them. In some of such cases, the position of the 

mutation is specified at the DNA level, which can be converted into an Amino 

acid position. This will also help in adding to the final draft of the database. 

• Fucntional impact predictions are retrieved from source MSKCC data. 

PolyPhen and SIFT prediction are retrieved for TCGA data. These predictions 

can be got for all other mutations in the database by running the predictors. 

• Search functionality can be altered such that users can retrieve just by 

specifying features and not giving any specific input lists such that they can 

get all records with data in the specified fields from IDHCMM . 
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CHAPTER TWO:  
Delaunay Tessellation based models predicting effects of missense 

mutations in cancer proteins 

Introduction 
 
Scientific developments in gene sequencing and analysis technologies are at the 

next step of the sequence to function cascade where it is time now to study the 

effects of mutations in the sequence on structure and function of a protein and 

then apply it to clinical implications. The rapid progress of sequencing 

technologies has generated a torrent of mutational information along with all 

other kinds of data, from not only normal human genomes but also specifically 

from disease-associated genomes, cancer genomes being the foremost. As 

described in the introductory chapter of this dissertation missense mutations 

have taken the center stage in predicting the functional impact on proteins 

involved in cancer. A lot of predictive methods have already been developed 

which have undertaken the task of predicting the effects of missense mutations 

on protein functions (described in detail in the Introduction chapter). Many of 

these approaches rely on the knowledge derived from the analysis of significant 

spatial and compositional patterns in known protein sequences and structures 

and understanding of the role these patterns play in the extremely complex 

processes, like protein folding or protein function. Especially for structural 
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patters such an analysis requires an objective definition of nearest neighbor 

residues. Statistical geometry methods can define the nearest neighbor atoms or 

groups of atoms and identify them by statistical analysis of irregular polyhedra 

obtained as a result of a specific tessellation in three-dimensional space. 

 

Materials and Methods 
 

The objective of this study is to model the disease potential of human 

cancer missense mutations and classify the effect as either high or low and assign 

it to exclusively well-studied missense mutations taken from major cancer 

databases thereby characterizing how the corresponding single residue 

substitutions impact protein function. The research presented in this Chapter has 

an aim to systematically implement a structural geometrical approach for 

analyzing and assessing the effects of missense mutations on protein structure 

and function in human cancer genes. This approach is based on a potential score 

of a protein that is calculated based on the amino acid composition of the four 

nearest neighbor residues (quadruplets) defined by the Delaunay tessellation.  

Mutational Data Sets 
 

Cancer associated missense mutations were collected from six different 

comprehensive cancer-sequencing projects, namely TCGA, ICGC, COSMIC, BIC, 

IARC TP53 and MSKCC projects (Sarcoma and Prostate cancers). An integrated 

database, IDHCMM Integrated Database of Human Cancer Missense Mutations, 
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was generated with data from all these sources. Only somatic missense mutations 

or non-synonymous coding mutations were downloaded from these source 

databases. The mutations were then mapped to their PDB structures (x-ray 

crystal structures) based on their associated unique Ensembl, Entrez, RefSeq and 

SwissProt IDs. The construction, content and working functionalities of the 

database have been explained in Chapter one. 

IDHCMM contains more than 1.48 million records, which comprise 

215374 distinct Amino Acid Mutations (Missense/Non-Synonymous), 59182 

distinct Genes and 684892 distinct ‘Gene-Missense Mutation’ pairs.  

Each gene in IDHCMM could retrieve a huge list of all the missense or 

non-synonymous mutations associated with the gene, pooled from all the source 

databases. The associated mutational data includes CDS Mutation, CDS Mutation 

Type, CDS Mutation Start, CDS Mutation Stop, AA Mutation, AA Mutation Type, 

AA Mutation position, Mutation Validation Status, Mutation Detection Platform, 

Mutation Validation Platform. Each of the genes is also associated with their 

protein 3D structure from PDB. The 3D structure information includes the PDB 

ID, structure resolution, the chain information, the amino acid residue positions 

in the structure and the domain affected. Each of these PDB entries is also linked 

to its missing residues information. Search can be performed based on Gene 

names, actual amino acid mutation, PDB ids and also UniProt ids. 

There are 3 genes, TP53, PTEN and PIK3CA, each with more than 200 

missense mutations listed. Nine genes, TP53, PTEN, PIK3CA, VHL, CDKN2A, 
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EGFR, ANK2, F8 and SI, in IDHCMM database have more than 100 known 

cancer missense mutations (including the above three) and 38 genes with 

mutations count between 50 and 100. All these genes have PDB structures and 

other related structural information associated. Nine genes with more than 100 

mutations each were considered for tessellation. However, TP53 and VHL were 

not considered in this study as they have already been studied elsewhere using 

the same approach as ours. Mathe et al. applied the presented computational 

geometry approach to predict the functional impact (transactivation activity) of 

missense mutations in the DBD of the tumor suppressor TP53 [190]. The method 

was found to predict transactivation with an accuracy varying between 64.2 and 

78.5%, depending on the promoter. Another study observed that the structure 

based models generated using our approach to predict functional impact of 

mutations in VHL tumor suppressor protein gave high AUC values and accuracy 

showing that these models can be used further to make better predictions of 

functional impacts on proteins.  

List of missense mutations, 3D protein structures, and associated information 

was collected from IDHCMM for the remaining 7 proteins PTEN, PIK3CA, 

CDKN2A, EGFR, ANK2, F8 and SI. F8 was excluded from the study for having a 

resolution < 3. ANK2 was also eliminated from the study as very few of the 

positions of the missense mutations overlapped with the protein 3D structure 

positions. This left us with 5 proteins to proceed - PTEN, PIK3CA, CDKN2A, 

EGFR and SI. 
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Each of these candidate proteins had multiple protein structures from PDB 

with different resolutions, different lengths and a number of missing residues. 

For example, EGFR had more than 55 3D protein structures associated, each with 

more than 100 missense mutations aligning within the structure positions. There 

are conditions that preclude a reliable tessellation of approximately one-third of 

solved X-ray protein structures in the PDB, including non-consecutive coordinate 

file residue numbering (e.g., unresolved portions of a structure) resulting in some 

missing residue C-alpha coordinates, as well as multiple C-alpha coordinates (i.e., 

parallel occupancies) for one or more residues [191]. So before PDB files can be 

tessellated, they must be checked for consecutive residue numbering and the 

missing residues in the sequence. All the structures for each protein were 

scanned for missing residues and protein structures with a higher resolution, 

longer fragments with high number of overlapping missense mutations and less 

number of missing residues, were selected. These are listed in Table 3. 

After all the filtering we obtained 6 different PDB protein structures 

pertaining to 5 different proteins. The PDB files for each of the proteins were 

then tailored for obtaining the longest fragments in the protein structure, 

essentially containing coordinates of only the consecutive atoms identified in 

table 3. A separate PDB file was generated for each fragment of each protein. In 

order to determine the statistical potential of the selected reference set of 

proteins, they were tessellated as described by Singh et al. [178] and Vaisman et 

al. [188].



 
 

 

Table 4: List of Proteins Selected for Tessellation 

Gene 
name 

PDB Id Chain Resolution 
Total no. 
of 
mutations 

Structure 
positions 

Missing  
residues 

Longest 
fragment 

 
Fragment 
length 

No. of 
mutations 
in 
fragment 

EGFR 
 
 
 
 
 
 

3POZ A 1.5 125 696-1022 696-700, 
734-737, 
748-754, 
868-874, 
1004-1009, 
1018-1022  

755-867 
 

113 79 

 3W32 A 1.8 141 696-1022 693-700, 
1018-1022 

701-1017 317 141 

PTEN 1D5R A 2.1 280 8-353 7-13, 282-285,
309-312, 352-

14-281 268 261 

SI 3LPP A 2.15 110 29-898 1-27 * 29-898 870 109 
PIK3CA 3HHM A 2.8 206 1-1068 -28**, -10-

0**, 1-4, 
310-320, 
414-420, 
517-523, 
941-952, 
1063-1068 

5-309 305 50 

       524-940 417 50 
       953-1062 110 68 
CDKN2A 1BI7 B 3.4 172 1-156 1-9, 135-156 10-134 125 172 

 
* expression tag as per the 3LPP PDB file 
**Residues prior to the beginning of the reference sequence have been numbered negative due to the presence of an expression tag 
 (as clarified by RCSB helpdesk) 
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Mutant Proteins 
 

PTEN 

PTEN, also known as MMAC-1 or TEP-1, is one of the most frequently mutated 

tumor suppressors in human cancer. It is also essential for embryonic 

development, cell migration and apoptosis. PTEN functions primarily as a lipid 

phosphatase to regulate crucial signal transduction pathways; a key target is 

phosphatidylinositol 3,4,5-trisphosphate. Functions for PTEN have been 

identified in the regulation of many normal cell processes, including growth, 

adhesion, migration, invasion and apoptosis. PTEN plays particularly important 

roles in regulating anoikis (apoptosis of cells after loss of contact with 

extracellular matrix) and cell migration. Mutations in both alleles of the PTEN 

gene arise during cancer progression in a remarkable variety of cancers, including 

brain, prostate, breast and endometrial cancers, plus melanoma; frequencies of 

mutations in both alleles reach 50% for certain cancers in some studies. The 

PTEN gene is also mutated in inherited cancer syndromes such as Cowden 

syndrome. PTEN gene can be found mutated both very early in tumorigenesis (as 

in hereditary cancer syndromes) and also much later in advanced cancers. 

Defects in PTEN, whether they are inherited mutations, or arise through later 

somatic mutation or epigenetic reduction, can cooperate at multiple stages with 

the loss of other tumor suppressors and/or activation of oncogenes to promote 

malignancy. In fact, cooperation between mutations in PTEN and in p27KIP1 or 



 

Wnt-1 has recently been shown to promote oncogenesis (Di Cristofano et 

2001; Li et al., 2001). 

 

Figure 22                         (a)  
(a) shows the PDB structure of 1D5R, the fragment in blue is the one which has missing residues in 
between. Figure 22 (b) shows the structure of 1D5R longest fragment selected 
continuous chain and does not have any missing residues. 
 

EGFR 

EGFR, Epidermal Growth Factor Receptor

HER1 is a cell-surface receptor that

major regulator of several distinct and diverse signaling pathways

signalling pathways can have various effects, including cell growth, proliferation 

and migration. It is frequently overexpressed in many malignancies including 

non-small cell lung cancer (NSCLC

a negative prognosis. Mutations

have been associated with a number of

cancers and glioblastoma multiforme.
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1 has recently been shown to promote oncogenesis (Di Cristofano et 

    (b) 
structure of 1D5R, the fragment in blue is the one which has missing residues in 

shows the structure of 1D5R longest fragment selected in this study, which is a 
continuous chain and does not have any missing residues.  

Epidermal Growth Factor Receptor, an oncogene, also called ErbB

surface receptor that binds epidermal growth factors and so

ator of several distinct and diverse signaling pathways

signalling pathways can have various effects, including cell growth, proliferation 

It is frequently overexpressed in many malignancies including 

small cell lung cancer (NSCLC), and overexpression may be associated with 

Mutations that lead to EGFR upregulation or overactivity 

have been associated with a number of cancers, including lung cancer,

glioblastoma multiforme. Both EGFR overexpression and activating 

1 has recently been shown to promote oncogenesis (Di Cristofano et al., 

 

structure of 1D5R, the fragment in blue is the one which has missing residues in 
in this study, which is a 

also called ErbB-1 or 

binds epidermal growth factors and so is a 

ator of several distinct and diverse signaling pathways. These 

signalling pathways can have various effects, including cell growth, proliferation 

It is frequently overexpressed in many malignancies including 

), and overexpression may be associated with 

that lead to EGFR upregulation or overactivity 

lung cancer, anal 

sion and activating 



 

mutations in the tyrosine kinase domain of the

and progression.  A large body of experimental and clinical work supports the 

view that EGFR is a relevant target for cancer therapy.

become a target for anti

misregulations of EGFR or family members are implicated in about 30% of all 

epithelial cancers. 

 

Figure 23                            (a) 
(a) shows the PDB structure of 3POZ, Figure 23 (b
fragment, in blue, selected in this study, 
 

PIK3CA 

The phosphatidylinositol

called p110α protein, is a

protein is encoded by the

product p110a, in human cancer has been suggested for over 15 years, and 

support for this proposal 
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mutations in the tyrosine kinase domain of the EGFR gene lead to tumor growth 

A large body of experimental and clinical work supports the 

view that EGFR is a relevant target for cancer therapy. Consequently, EGFR has 

become a target for anti-cancer drug therapy. Mutations, amplifications or 

misregulations of EGFR or family members are implicated in about 30% of all 

      (b) 
structure of 3POZ, Figure 23 (b) shows the structure of 3POZ longest 

selected in this study, which does not have any missing residues.  

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha

called p110α protein, is a class I PI 3-kinase catalytic subunit. The human p110α 

protein is encoded by the PIK3CA gene. The involvement of the PIK3CA gene 

product p110a, in human cancer has been suggested for over 15 years, and 

support for this proposal had been provided by both genetic and functional 

gene lead to tumor growth 

A large body of experimental and clinical work supports the 

Consequently, EGFR has 

Mutations, amplifications or 

misregulations of EGFR or family members are implicated in about 30% of all 

 

) shows the structure of 3POZ longest continuous 

kinase, catalytic subunit alpha, also 

catalytic subunit. The human p110α 

The involvement of the PIK3CA gene 

product p110a, in human cancer has been suggested for over 15 years, and 

had been provided by both genetic and functional 
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studies, including most recently the discovery of common activating missense 

mutations of PIK3CA in a wide variety of common human tumor types. Somatic 

mutations at the PIK3CA gene have been found in tumors and thus, it can be 

considered a bona fide oncogene (Samuels et al., 2004). Most of the mutations 

cluster in hotspots within the helical or the catalytic domains. Mutations in 

the PIK3CA gene have been identified in carcinomas arising from colon, breast, 

ovary, liver, stomach, and lung as well as in glioblastomas.  Evidence suggests 

that such mutations lead to constitutive activation of the PI3K pathway. 

 Mutations in PIK3CA are clustered and occur mainly in the helical (exon 9) and 

kinase (exon 20) domains of the protein. PIK3CA mutations frequently occur in 

diverse cancers and are associated with constitutive activation of the 

PI3K/AKT/mTOR pathway. In addition, PIK3CA mutations predicted sensitivity 

to PI3K/AKT/mTOR inhibitors in multiple tumor types in preclinical and early 

clinical experiments. The PDB structures chosen based on the selection criteria 

set mentioned in the prior section, for the protein PIK3CA is 3HHM chain A. 

 



 

   (b) 
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   (a) 
    

(c)    (d) 

  

 



 

Figure 24       
(a) shows the PDB structure of 3HHM
continuous fragment, in blue, pink and yellow
residues. Figure 24 (c) shows the first fragment, in blue, 
Figure 24 (d) shows the second fragment, in pink, which spans the protein from residue 524
(e) shows the third fragment, in yellow, which spans the protein from residue 953
 

CDKN2A 

CDKN2A, cyclin-dependent kinase inhibitor 2A or 

gene encodes a tumor suppressor

role in cell cycle regulation by decelerating cells progression from

phase, and therefore acts as

prevention of cancers, notably

carcinoma, and esophageal cancer. The CDKN2A gene is frequently mutated or 

deleted in a wide variety of tumors.

associated with increased risk of a wide range of cancers and alterations of the 

gene are frequently seen in cancer

adenocarcinoma, esophageal cancer and gastric cancer cell lines

p16 is now being explored as a prognostic biomarker for a number of cancers. For 

patients with oropharyngeal squamous cell carcinoma, using 
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   (e) 

structure of 3HHM, Figure 24 (b) shows the structure of 3HHM with the three
, pink and yellow, selected in this study, which does not have any missing 

Figure 24 (c) shows the first fragment, in blue, which spans the protein from residue 5
Figure 24 (d) shows the second fragment, in pink, which spans the protein from residue 524
(e) shows the third fragment, in yellow, which spans the protein from residue 953-1062;

dependent kinase inhibitor 2A or multiple tumor suppressor 1,

tumor suppressor protein p16 in humans. p16 plays an important 

regulation by decelerating cells progression from

phase, and therefore acts as a tumor suppressor that is implicated in the 

cancers, notably melanoma, oropharyngeal squamous cell 

esophageal cancer. The CDKN2A gene is frequently mutated or 

deleted in a wide variety of tumors. Mutations in the CDKN2A gene 

associated with increased risk of a wide range of cancers and alterations of the 

gene are frequently seen in cancer cell lines. Examples include 

esophageal cancer and gastric cancer cell lines

explored as a prognostic biomarker for a number of cancers. For 

patients with oropharyngeal squamous cell carcinoma, using 

) shows the structure of 3HHM with the three longest 
, selected in this study, which does not have any missing 

which spans the protein from residue 5-309; 
Figure 24 (d) shows the second fragment, in pink, which spans the protein from residue 524-940; Figure 24 

1062; 

multiple tumor suppressor 1, 

p16 plays an important 

regulation by decelerating cells progression from G1 phase to S 

a tumor suppressor that is implicated in the 

oropharyngeal squamous cell 

esophageal cancer. The CDKN2A gene is frequently mutated or 

Mutations in the CDKN2A gene are 

associated with increased risk of a wide range of cancers and alterations of the 

Examples include Pancreatic 

esophageal cancer and gastric cancer cell lines. Furthermore, 

explored as a prognostic biomarker for a number of cancers. For 

patients with oropharyngeal squamous cell carcinoma, using 
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immunohistochemistry to detect the presence of the p16 biomarker has been 

shown to be the strongest indicator of disease course. Presence of the biomarker 

is associated with a more favorable prognosis as measured by cancer-specific 

survival (CSS), recurrence-free survival (RFS), locoregional control (LRC), as well 

as other measurements. The appearance of hyper methylation of p16 is also being 

evaluated as a potential prognostic biomarker for prostate cancer. 

Somatic mutations of CDKN2A are present in up to 95% of pancreatic tumors. 

The CDKN2A locus is a valuable model for assessing relationships among 

variation, structure, function, and disease because variants of this gene are 

associated with hereditary cancer, somatic alterations play a role in 

carcinogenesis, allelic variants occur whose functional consequences are 

unknown and the crystal structure is known. The PDB structures chosen based on 

the selection criteria set mentioned in the prior section, for the protein CDKN2A 

is 1BI7 chain B. 

 



 

Figure 25                    (a)  
(a) shows the PDB structure of 
fragment, in blue, selected in this study, which does not have any missing residues. 
 

SI 

SI, Sucrase-isomaltase,

expression in the apical membranes of the polarized enterocytes o

brush border membrane, where it is essential for the processing of dietary 

carbohydrates. SI mutations result in loss of enzyme function

biosynthesis of catalytically competent SI at the cell surface.

disrupt the folding and processing of the sucrose

transportation of the enzyme within the intestinal epithelial cells, the orientation 

of the enzyme to the cell surface, or its normal functioning. An impairment in any 

of these cell processes

effectively break down sucrose, maltose, or other compounds made from these 

sugar molecules (carbohydrates).

marker that is an independent prognostic factor

suggests that SI expression correlates with the progression of 
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    (b)  

(a) shows the PDB structure of 1BI7, Figure 25 (b) shows the structure of 1BI7 longest continuous 
fragment, in blue, selected in this study, which does not have any missing residues.  

isomaltase, is a type II transmembrane glycoprotein with preferential 

expression in the apical membranes of the polarized enterocytes o

brush border membrane, where it is essential for the processing of dietary 

SI mutations result in loss of enzyme function by preventing the 

biosynthesis of catalytically competent SI at the cell surface. These mutations 

upt the folding and processing of the sucrose-isomaltase enzyme, 

transportation of the enzyme within the intestinal epithelial cells, the orientation 

of the enzyme to the cell surface, or its normal functioning. An impairment in any 

of these cell processes results in a sucrase-isomaltase enzyme that cannot 

effectively break down sucrose, maltose, or other compounds made from these 

sugar molecules (carbohydrates). Sucrase-isomaltase is a tissue-based phenotypic 

marker that is an independent prognostic factor in colorectal cancer

that SI expression correlates with the progression of dysplastic adeno 

 

longest continuous 

is a type II transmembrane glycoprotein with preferential 

expression in the apical membranes of the polarized enterocytes of the intestinal 

brush border membrane, where it is essential for the processing of dietary 

by preventing the 

These mutations 

isomaltase enzyme, 

transportation of the enzyme within the intestinal epithelial cells, the orientation 

of the enzyme to the cell surface, or its normal functioning. An impairment in any 

isomaltase enzyme that cannot 

effectively break down sucrose, maltose, or other compounds made from these 

based phenotypic 

in colorectal cancer. A study 

dysplastic adeno 



 

carcinoma therefore sucrase

marker to improve our prognostic capabilities in patients with 

of the colon, that is, inflammatory bowel disease.

implemented in many cancers, has listed a huge number of missense mutations 

in different cancer databases.

criteria set mentioned in the prior section, for the protein 

 

Figure 26                        (a)  
(a) shows the PDB structure of 
fragment, in blue, selected in this study, which does not have any missing residues. 
 

The mutant dataset

to train a model, based on the 

algorithms, useful for predicting the disease potential of human 

mutation mapped to solved protein structures. Our model

relatively large number of missense mutations per protein

at least as well as other methods
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ucrase-isomaltase expression may be useful as a clinical 

marker to improve our prognostic capabilities in patients with dysplastic lesions 

of the colon, that is, inflammatory bowel disease. Interestingly SI, though not 

implemented in many cancers, has listed a huge number of missense mutations 

in different cancer databases. The PDB structures chosen based on the selection 

riteria set mentioned in the prior section, for the protein SI is 3LPP 

   
            (b) 

(a) shows the PDB structure of 3LPP, Figure 26 (b) shows the structure of 3LPP longest continuous 
fragment, in blue, selected in this study, which does not have any missing residues.  

mutant dataset, as described in the latter section of this chapter,

to train a model, based on the machine learning supervised classificat

, useful for predicting the disease potential of human cancer missense 

mapped to solved protein structures. Our models, trained using a 

large number of missense mutations per protein, are shown to perform 

as other methods. 

isomaltase expression may be useful as a clinical 

dysplastic lesions 

Interestingly SI, though not 

implemented in many cancers, has listed a huge number of missense mutations 

The PDB structures chosen based on the selection 

3LPP chain B. 

 

longest continuous 

, as described in the latter section of this chapter, is used 

supervised classification 

cancer missense 

, trained using a 

shown to perform 
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Choosing an appropriate control data set for any analysis of disease mutations is 

an important step[192]. The control dataset was generated by random shuffling 

of the two classes, with in each of the mutant dataset.  

 

Delaunay tessellation 
 
Delaunay tessellation of a given protein structure yields an aggregate of non-

overlapping, space-filling, irregular tetrahedral, referred to as Delaunay 

simplices, whose vertices are the amino acid point representations. Each simplex 

in a protein structure tessellation objectively defines a quadruplet of nearest-

neighbor residues in the protein based on the identity of the four amino acids 

represented by the vertices of the simplex. The Quickhull algorithm [171] is used 

to perform the Delaunay tessellations, and an in-house suite of Java programs is 

used to perform pre- and post-processing as well as the subsequent calculations 

and analyses. Figure27 shows the Delaunay tessellation diagram of one of the 

fragments of a protein from our dataset, 3HHM (953-1062), a 110 residue 

fragment of the protein PIK3CA, chain A. 

 

Potential Score 
 
Taking the PDB coordinates of the wild-type protein structures in the training 

set, the total potential or topological score of the protein is calculated as the sum 

of the log-likelihood scores of all the simplices that form the Delaunay 

tessellation of the structure. 



 

The log likelihood of each of the quadruplets is calculated as

where fijkl  represents the frequency of quadruplets containing residues 

representative training set of high

sequence identity. 
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log likelihood of each of the quadruplets is calculated as

 

represents the frequency of quadruplets containing residues 

representative training set of high-resolution protein structures wit

log likelihood of each of the quadruplets is calculated as  

represents the frequency of quadruplets containing residues i,j,k,l in a 

resolution protein structures with low primary 

 



 

 

 

 

Figure 27: Representation of Delaunay Tessellation of a Protein 
Each point represents the center of mass of an amino acid side chain. The tessellation of a protein gives the 
list of all four nearest neighbor residues that constitute this protein.
 

And pijkl is the expected frequency of the quadruplet

following equation: 

where ai, aj, ak, and al represent the frequencies of amino acids i, j, k, and 1 in the 

training set, and C is a permutation factor defined as

where n is the number of distinct residue types in a quadruplet, and t

the number of amino acids of type i

the protein is calculated by globally adding up the log

tetrahedral simplices in the t
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: Representation of Delaunay Tessellation of a Protein Structure (3HHM_A) 
Each point represents the center of mass of an amino acid side chain. The tessellation of a protein gives the 
list of all four nearest neighbor residues that constitute this protein. 

expected frequency of the quadruplet, calculated with

 

represent the frequencies of amino acids i, j, k, and 1 in the 

, and C is a permutation factor defined as 

  

number of distinct residue types in a quadruplet, and t

the number of amino acids of type i. A total potential (tp) or topological score for 

is calculated by globally adding up the log-likelihood scores of all 

tetrahedral simplices in the tessellation.  

Each point represents the center of mass of an amino acid side chain. The tessellation of a protein gives the 

, calculated with the 

represent the frequencies of amino acids i, j, k, and 1 in the 

number of distinct residue types in a quadruplet, and ti is 

(tp) or topological score for 

likelihood scores of all 
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An individual residue environment score is also calculated for each 

position by first locally identifying the simplices that specifically share the 

corresponding C-alpha coordinate as a vertex and then adding up the log-

likelihood scores of only the amino acid quadruplets represented by these 

simplices. Collectively, the vector of residue environment scores for all of the 

amino acid positions in a protein is referred to as the potential profile Q = <q1, q2, 

q3,…. qN> for the protein, where qi = residue environment score for the amino 

acid at position i and N = primary sequence length of the solved protein 

structure.  

 

Wild-type Protein and the Mutant Protein 
 

 Since protein structure dictates function, it follows that the relative 

structural differences between variant proteins and their wild type counterparts 

also correlate with the corresponding relative functional changes. A potential 

profile can be easily calculated for both wild type and mutant proteins, assuming 

that the structural differences between them are small and that their tessellation 

results are similar. In this case the difference between the profiles is defined only 

by the change in composition of the simplices involving the mutational sites. The 

resulting difference in profiles provides important insights into the changes in 

protein energetics due to the mutation.  

The topological profile or total potential of the same protein with 

mutations is obtained by utilizing the identical tessellation while substituting 
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only the amino acid residue at the point of mutation. This causes a change in the 

log-likelihood scores of all simplices that use the point as a vertex, since 

member/members of their respective quadruplets is mutated. Finally, the 

residual score (RS) defined as the difference between the total potential of the 

mutant and the total potential of the wild-type protein, which reflects the relative 

change of the mutant protein sequence-structure compatibility from wild-type, is 

calculated. The Residual Profiles for mutants are vectors of N (number of amino 

acids in a given protein) elements, each representing the residual score for each 

residue [193], [194].  

The potential profiles of wild-type and mutants were then analyzed in 

order to study their ability to characterize the effect of mutations in a protein. 

The residual score of a mutant is a measure of the relative change in sequence-

structure compatibility from the wild-type protein, therefore it is generally 

expected that the more negative the residual score, the less active the mutant. 

The annotated mutant protein systems were examined for their residual profiles, 

and a comprehensive statistical analysis using machine learning algorithms was 

performed to predict the functional effect of the mutants.   

Comparing with other Predictive methods 
 
In the “Introduction” section of this dissertation, we had elaborately looked at 

different predictive methods published, for predicting functional impact on 

proteins. Different functions of proteins could be affected by different changes in 

different parts of the gene coding for a particular protein. Based on these 
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changes, many different predictors have been designed which focus on a 

particular functionality of the protein, like activity, stability, binding etc. The 

comparative study showed that most of the approaches are either specific to only 

some of the protein aspects or are data dependent and do not produce good 

accuracies. SIFT, PolyPhen and MutationaAssessor have stood out to be widely 

accepted predictors covering a wide set of protein features and producing the 

consistently good prediction accuracies. MutationAssessor has provided best 

prediction accuracies as of now, as observed in many comparative studies [40], 

[146] . Gnad and et al. also compared single as well as combinations of predictors 

and found that combinations of SIFT, PolyPhen-2 and Mutation Assessor gave 

better results compared to other combinations. No combination improved on 

Mutation Assessor alone [40]. It has been trained and tested on cancer data and 

the approach is based on sequence evolutionary conservation information. The 

novelty of the approach, as stated by the authors, is in exploiting the evolutionary 

conservation in protein subfamilies, up to the level of protein subfamilies. 

However, MutationAssessor does not take into account any structural features in 

its feature set. This, along with the fact that it has produced the best predictions 

among the state-of-the-art predictors available, makes it a good candidate to 

compare models from our approach.  

Unfortunately there is no enough experimentally validated cancer phenotype 

data available on impact of variants, which can ascertain the effects of different 

missense mutations on structure and function of different kinds of proteins. 
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There exist only models generated by different predictive methods, which can be 

relied upon based on statistical evaluations of the methods and their accuracies. 

In the absence of the experimentally validated data, replying upon the best of the 

models is what seems to be the most appropriate and logical approach. 

To validate our models in this study, and to see if our approach can model the 

functional impact of protein missense mutations from cancer phenotypes, we 

compared our functional profiles with the feature vectors of MutationAssessor. 

The functional impact variable of all mutants for each protein in our data set was 

assigned into two classes: High and Low. The class labels were obtained and 

assigned by running MutationAssessor predictions for the same datasets. 

MutationAssessor was accessed via their webserver at 

http://mutationassessor.org/ . MutationAssessor calculates a combined score for 

the functional impact of changing an amino acid residue with one particular set 

of interactors of the mutated protein, to another set of interactors, which 

consequently leads to an altered biological function. It quantifies the entropy 

differences resulting from a mutation that affects conserved residue patterns in 

protein subfamilies and defines a conservation score and a specificity score. 

These two scores are combined by simple averaging, to obtain the Functional 

impact score (FIS). The functional impact obtained as this score is also given 

labels based on its range as shown in table below: 
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Table 5: Fucntional Impact Classes from MutationAssessor 
Impact Class Label FIS Score range 

Neutral  FIS ≤ 0.8 

Low 0.8 < FIS ≤1.9 

Medium 1.9 < FIS ≤ 3.5 

High FIS > 3.5 

 

In our study here, we assign two class labels for impact, High and Low assigned 

by running the MutationAssessor for all the protein mutants and considering 

only two classes High and Low. The four classes labeled by the MutationAssessor 

approach were drilled down to two classes by splitting the top half of the Medium 

Impact class into High Impact and the lower half into the Low Impact class. 

Neutral class was not used in order to focus only on the two classes of impact and 

to avoid the diluting effect of the neutrals on the dataset. We tried to obtain 

better accuracies of the mutants based on 2 class classification and looking at 

results observed from preliminary tests of lower accuracies when using 3 or four 

class distinction, the Neutral class was not used. The mutants were grouped into 

only 2 classes High and Low. 

In order to examine if accuracies change with difference in of functional impact, 

the datasets were broken down into smaller sets with each subsequent dataset 

having 5 more mutants from the Higher Impact class and 5 from the Low Impact 

class, such that the smallest dataset had top 10 with the highest Impact score and 

lower 10 with the Lowest impact scores. The subsequent data set would contain 
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15 of each and so on. This represents the distance and separation between 

functional impact of the mutants. These datasets were then submitted to Machine 

learning algorithms. 

 

Machine Learning 
 
 

Machine learning algorithms implemented in this method were support 

vector machines (SMO), decision trees (J48) and Random Forest (RF). These 

algorithms implemented are available as part of an extensive suite of machine 

learning tools referred to as Weka (Waikato Environment for Knowledge 

Analysis; http://www.cs.waikato.ac.nz/ml/weka/index.html) [195].  

Supervised classification algorithms require that the mutants of an enzyme be 

represented as vectors of the same dimension, with each vector component 

describing a particular attribute of the mutants. The attributes explored in the 

cited literature include information readily available from sequence data (e.g., 

physicochemical classes of wt and mutant residues, hydrophobicity difference, 

and conservation score at mutated residue position), and information directly 

predicted from protein structure (e.g., secondary structure, buried charge, and 

solvent accessibility). 

Here we have used residual profiles of the mutants as feature vectors for machine 

learning. Each residual profile vector of a mutant typically contains sparse 

numbers of non-zero components, reflecting the mutated residue positions and 

all of its nearest neighbors (i.e., positions with which it forms Delaunay 



185 
 

simplices). The non-zero components of a mutant vector correspond to all 

positions in the protein structure that participate in nearest-neighbor topological 

contacts with the mutated residue position. Additionally, the values at these non-

zero components are a unique reflection of the type of residue replacement 

occurring at the mutated position. For every set of protein mutants that reflect all 

mutations at a specific residue position in the dataset, the corresponding residual 

profile vectors share the property that the zero and non-zero components are 

located in the same vector. Finally, we develop models by using a two-class 

labeling of the mutants. The approach described above is applied to the all the 

proteins in the mutational data set mentioned in earlier section. 

Support Vector Machines 
 

Support vector machine (SVM), a learning algorithm that is only applicable to 

two-class problems, uses a kernel function to map the training instances (the 

residual profile vectors of the mutants) nonlinearly into a higher-dimensional 

feature space. An optimal separating hyperplane, one that provides a maximal 

margin of separation between instances from the two classes, is subsequently 

constructed in the feature space and corresponds to a nonlinear decision 

boundary in the original space. We have used the support vector machine 

implementation available with Weka [195] which is based on a sequential 

minimal optimization algorithm developed by John Platt. All of the default 

parameters have been used here.  
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Decision Trees 
 

Decision tree [196] learning yields a classifier in the form of a rooted tree, 

such that a mutant is sorted down the tree by performing tests at each of the 

internal nodes. A decision is made at each internal node based on the value of a 

specific attribute (a component of the mutant residual profile vector), leading the 

mutant down a particular branch to the next node. Since the mutant attribute 

values in this dataset are all numeric, the decisions that branch from an internal 

node are binary in nature and take the form D25 <a or D25 > a, where D25 is the 

attribute name or label and a is a real number. The recursive process terminates 

once the mutant reaches a leaf node, where the mutant class is provided. A 

divide-and-conquer approach is employed during training, whereby at each stage 

starting from the root, an attribute is selected that best separates the classes. In 

order to avoid overfitting of the training data, which generally leads to poor 

model performance on independent test sets, the learned trees are typically 

pruned. The Weka [195] decision tree implementation, J48 and Random Forest 

were used for our research. All of the default parameters have been used here. 

Java programs were written to process the data files, format conversion and 

running the Weka attribute selection and Classifiers. Weka was run on command 

line to automate the process and doing the attribute selection and classification in 

batch mode rather than one file at a time on the GUI based version. 

Model testing is performed using stratified tenfold cross-validation for the 

purpose of generating receiver operating characteristic (ROC) curves. Tenfold 
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cross-validation entails a randomization of the training set mutants into 10 

equally sized subsets, and each subset is subsequently used as a test set after a 

decision tree classifier is trained with the remaining nine mutant subsets 

combined. In this way, a class prediction is obtained for every mutant in the 

original training set, and stratification ensures that each class is properly 

represented in the training and test sets. A comparison of the actual and 

predicted classes for each of the mutants based on the outcome of 10 CV provides 

a simple accuracy measure for the model.  

In the two-class model, considering the two class labels as high and low, 

accuracy is given as the sum of the true positive and true negative values divided 

by the sum of true positive, true negative and false positive and false negative 

values. 

The number of correct classifications (True Positive and True Negative) and the 

misclassifications (False Positive and False Negative) are tabulated into a 2x2 

confusion matrix and the True Positive Rate (TPR) and False Positive Rate (FPR) 

are calculated. The TPR and FPR form the coordinates of the ROC curves 

defining a single point in the unit square. Default costs, associated with the 

entries of the confusion matrix, are 0 for the correct predictions and 1 for the 

misclassifications. 

 

Results 
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A computational geometry approach using Delaunay tessellations of proteins 

is proposed to study the structural and functional effects of missense mutations. 

To validate the utility of statistical scores derived from the Delaunay tessellation 

methodology, we calculated such scores on six different protein structures each 

with more than 100 mutations, listed in Table 3. Potential scores for all the 

reference proteins, all the mutants of each protein and the residual scores 

(difference between the potential scores of reference and mutant protein) for 

each of the mutants were calculated using in house Java programs. Potential 

score differences for mutant proteins with respect to the reference PDB structure, 

called residual scores, were calculated and reflect the differences in log 

likelihoods of quadruplets. The Residual Profiles for mutants are vectors of 

elements equal to the number of amino acids in the given protein, each 

representing the residual score for each residue. Graphical representation of the 

Potential profiles, and Residual profile of the reference protein EGFR, 3D 

structure 3POZ, is shown in Figure 28. 

 

 (a) 
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(b) 

 
(c)  

 
 
Figure 28 (a) shows the Potential profile of reference EGFR wild-type protein, comprising of potential 
scores of all 113 residues of the 3POZ fragment. (b) shows the potential profile of the mutant protein and 
(c) shows the difference between the reference and the mutant profiles, called the Residual profile. The 
graphs were produced using Matlab software. Profile graphs for other proteins from the dataset are present 
in the appendix. 
 

Residual profiles of each mutant were then used in machine learning methods as 

feature vector. Along with the residual profiles, some more features were added 

to the feature vector (1) the actual mutation in wildtype aa-Position-Mutant aa 

format for example, R14M, (2) wild-type amino acid, (3) the mutation position 

and (4) the mutant residue were also added to the feature vector. While running 

the classifiers, these additional features were introduced into the feature vector 
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one at a time and also in different combinations, which make 16 different sets of 

vectors, to see if the accuracy of the models change. These combinations are 

elaborated in the Table 5 and discussed further in this section. 

The mutant data sets, each containing 10 more mutants than previous set, with 

each mutant assigned to one of the two functional impact classes: High and Low 

and files labeled with the additional feature combination, were submitted to 

Support vector machine, J48 and Random Forest classifiers, in Weka.  

Feature Selection: Using Weka, selective features from the feature vectors that 

performed best with a classification algorithm were extracted for all the data files. 

All combinations of possible attribute selection methods were run for all the data 

files. The classification results were analyzed for both combination of additional 

features as well as for step wise introduction of closer functional impact of 

mutants into datasets. The results of the run are shown for the mutants of PTEN 

protein structure 1D5R fragment in Table 6 and 7. 

 

 

Table 6: Additional Features added to feature vectors 
Additional Features Notation used Mutation 

(R14M) 
Wild-
Type AA 

(R) 

Position 
(14) 

Mutant 
AA (M) 

All Features  
AF � � � � 

Take Out Mutation  
noMut  � � � 

Take Out WT AA  
noWAA �  � � 

Take Out Position  
noPos � �  � 

Take out Mutant AA noMAA � � �  
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Take out Mutation and 
WT AA 

noMut_WAA   � � 

Take out Mutation and 
Position 

noMut_Pos  �  � 

Take out Mutation and 
Mutant AA 

noMut_MAA  � �  

Take out WT AA and 
Position 

noWAA_Pos �   � 

Take out WT AA and 
Mutant AA 

noWAA_MAA �  �  

Take out Position and 
Mutant AA 

noPOS_MAA � �   

Take out Mutation, WT 
AA and Position 

noMUT_WAA_POS    � 

Take out WT AA, 
Position and Mutant AA 

noWAA_Pos_MAA �    

Take out Mutation, 
Position and Mutant AA 

noMut_Pos_MAA  �   

Take out Mutation, WT 
AA and Mutant AA 

noMut_WAA_MAA   �  

Take out Mutation, WT 
AA, Position and 
Mutant AA 

noMUT_WAA_POS_MAA     

 

 

Table 7: Classification analysis for PTEN 1D5R mutants based on number of mutants, shows the 
classification accuracies achieved by three different classifiers for PTEN 1D5R fragment, for all the 
datasets with different number of mutants from each Impact class, representing the functional distance 
between the mutants. 

No. of Mutants from  
each Impact Class 

Combination of 
Additional Features 

Classification accuracies 
Support Vector 

Machine 
J48 

Random 
Forest 

10 Top High Impact and  
10 Bottom Low Impact 

All Features 65% 70% 95% 

15 Top High Impact and  
15 Bottom Low Impact 

All Features 66.6% 80% 90% 

20 Top High Impact and 
20 Bottom Low Impact 

All Features 65.0% 77.5% 80% 

25 Top High Impact and 
25 Bottom Low Impact 

All Features 68% 76% 84% 

: 
: 
: 
: 

    

115 Top High Impact and 
115 Bottom Low Impact 

All Features 68.2% 73% 79.1% 

120 Top High Impact and 
120 Bottom Low Impact 

All Features 64.1% 70.8% 75% 

 



 

 

Figure 28: Random Forest accuracies across increasing number of mutants from each Impact class; 
the accuracy of the Random Forest classifier for PTEN protein 1D5R structure, across increasing number 
of mutants from each functional Impact class, representing the functional distance between 
 

Table 8: Classification analysis for PTEN 
classification accuracies achieved by three different classifiers for PTEN 1D5R fragment, for all the 
datasets with a sample results for 10 mutants each from Impact class data set, and different combinat
of additional features. 

 

No. of Mutants from 
each Impact Class 

10 Top High Impact and  
10 Bottom Low Impact 

10 Top High Impact and  
10 Bottom Low Impact 

10 Top High Impact and  
10 Bottom Low Impact 

10 Top High Impact and  
10 Bottom Low Impact 

: 
: 
: 
: 
10 Top High Impact and  
10 Bottom Low Impact 
10 Top High Impact and  
10 Bottom Low Impact 
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: Random Forest accuracies across increasing number of mutants from each Impact class; 
the accuracy of the Random Forest classifier for PTEN protein 1D5R structure, across increasing number 
of mutants from each functional Impact class, representing the functional distance between 

nalysis for PTEN 1D5R mutants based on Additional Features
classification accuracies achieved by three different classifiers for PTEN 1D5R fragment, for all the 
datasets with a sample results for 10 mutants each from Impact class data set, and different combinat

Combination of Additional 
Features 

Classification accuracies
Support Vector 

Machine 
J48

AF 
65% 70%

noMut 
60.0% 70%

noWAA 
60.0% 70%

noPos 
55.0% 80%

   

noMut_WAA_MAA 55.0% 70%

noMUT_WAA_POS_MAA 55.0% 80%

 
: Random Forest accuracies across increasing number of mutants from each Impact class; shows 

the accuracy of the Random Forest classifier for PTEN protein 1D5R structure, across increasing number 
of mutants from each functional Impact class, representing the functional distance between the mutants. 

1D5R mutants based on Additional Features; shows the 
classification accuracies achieved by three different classifiers for PTEN 1D5R fragment, for all the 
datasets with a sample results for 10 mutants each from Impact class data set, and different combinations 

Classification accuracies 

J48 Random 
Forest 

70% 95% 

70% 95% 

70% 95% 

80% 80% 

 

70% 90% 

80% 95% 



 

 

 

Figure 29: Random Forest accuracies across different additional feature combinations for 10 mutant each 
from Impact Class data set of PTEN 1D5R 
 

 

From all the above results we observed that Random Forest performed better 

than the other classifiers. Support Vector Machine classification accuracies were 

more or less in par with the Random Forest as observed with some of the protein 

mutants but Random Forest mostly gave better accuracies. Therefore we 

with Random Forest for 

Best Features Selection: 

the feature vector increase

while it remained almost the same for the rest of the proteins. 

selection functionality of the Weka software was utilized to pick the best features 

out of the feature vectors for each of the 

193 

: Random Forest accuracies across different additional feature combinations for 10 mutant each 
from Impact Class data set of PTEN 1D5R fragment. 

From all the above results we observed that Random Forest performed better 

than the other classifiers. Support Vector Machine classification accuracies were 

more or less in par with the Random Forest as observed with some of the protein 

but Random Forest mostly gave better accuracies. Therefore we 

Random Forest for all the further analysis. 

Best Features Selection: The selection of the best of the features/attributes from 

the feature vector increased the prediction accuracies for some of the protein 

while it remained almost the same for the rest of the proteins. 

selection functionality of the Weka software was utilized to pick the best features 

out of the feature vectors for each of the protein mutants. When compared across 

 
: Random Forest accuracies across different additional feature combinations for 10 mutant each 

From all the above results we observed that Random Forest performed better 

than the other classifiers. Support Vector Machine classification accuracies were 

more or less in par with the Random Forest as observed with some of the protein 

but Random Forest mostly gave better accuracies. Therefore we stayed 

The selection of the best of the features/attributes from 

the prediction accuracies for some of the protein 

while it remained almost the same for the rest of the proteins. The Attribute 

selection functionality of the Weka software was utilized to pick the best features 

protein mutants. When compared across 
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all the protein mutants, the “CfsSubsetEval” attribute evaluator with a 

combination of the search methods “BestFirst” and “GeneticSearch” gave high 

prediction accuracies. The CfsSubsetEval evaluator evaluates the worth of a 

subset of attributes by considering the individual predictive ability of each feature 

along with the degree of redundancy between them. Subsets of features that are 

highly correlated with the class while having low intercorrelation are preferred. 

The BestFirst search method searches the space of attribute subsets by greedy 

hillclimbing augmented with a backtracking facility. Setting the number of 

consecutive non-improving nodes allowed controls the level of backtracking 

done. Best first may start with the empty set of attributes and search forward, or 

start with the full set of attributes and search backward, or start at any point and 

search in both directions (by considering all possible single attribute additions 

and deletions at a given point). The GeneticSearch search method is a Bayes 

Network learning algorithm which uses genetic search for finding a well scoring 

Bayes network structure. Genetic search works by having a population of Bayes 

network structures and allow them to mutate and apply cross over to get 

offspring. The best network structure found during the process is returned. It is 

seen that proteins that have shown higher classification accuracies after attribute 

selection, all used the “CfsSubsetEval” evalutator and the GeneticSearch method.  

 

It was also observed that better the separation between the functional 

impact i.e. more different the mutational effect on the protein was, better were 
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the accuracies predicted by this approach. This was shown by the higher 

accuracies predicted for datasets with mutants mostly from the either ends of the 

spectrum of defined Functional Impact classes. 

While there was not a clear indication from direct classification that the 

additional features added to the feature vector of the proteins did affect the 

prediction accuracies, higher accuracies of classification obtained of proteins 

after attribute selection showed the presence of the additional features in the 

selected attributes of the initial feature vectors of the mutants. The additional 

features mostly included were the actual Mutation and one amongst the wild-type 

aminoacid or the Mutant aminoacid.  

Finally, with a two-class labeling of mutational effect, models for each protein are 

evaluated with a stratified tenfold cross-validation procedure. Receiver operating 

characteristic (ROC) curves were plotted and AUC calculated to test the 

robustness of the predictions, shown in figure 31. The AUC is equivalent to the 

non-parametric Wilcoxon-Mann-Whitney test of ranks and provides a measure of 

classifier performance that us insensitive to the distribution of the classes 

(impact classes here) [197]. 

As control set, the class labels were shuffled randomly and the classifiers run and 

ROC curves drawn. using these randomized impact The Random Forest results 

formed hyperbolic curves depicting the learning processes for each of the 

dataset/Protein. 
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Figure 30: Two-class PTEN 1D5R ROC curves; ROC curves and the associated AUC, generating using 
Random Forest machine learning with the Residual profiles of PTEN 1D5R mutants. The mutants of PTEN 
are here labeled with high or low function impact for classification and ROC curves. Each point on the 
ROC curve is obtained via stratified tenfold cross-validation using a specific pair of misclassification costs. 
Control ROC curves were generated by random shuffling of the class labels among the training set mutants 
and reflect models that are near to random guessing. 
 

The prediction accuracies, before attribute selection, ranged from 68% to 100%, 

and after attribute selection ranged from 76% to 95% amongst the proteins. This 

range of prediction accuracies definitely shows that the method used is quite 

robust.  

Conclusions 
 

The results of this study validate the use of the Delaunay tessellation 

approach for structural and functional analysis of different missense mutations 

originating from different proteins. Most mutant structures though are similar to 
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that of the wild-type such that local structural effects (with respect to the mutated 

residue) account for the majority of changes incurred by single point mutations. 

These local effects are captured by our potential profiles and the interesting 

trends observed in the results provide adequate proof of method using this 

method for various different cancer data sets. 

With model performances reaching 0.9 and even more for some of the smaller 

datasets with mutants having better separation between functional impact 

classes, our residual profiles clearly catch the signal of mutational effect at both 

ends of the spectrum, with the help of machine learning classifiers. The 

uniformity of results for different proteins and a very huge number of their 

mutants certainly suggest that the potential and residual profiles generated by 

this approach can reliably used for predicting mutational impact for any kinds of 

proteins with available protein structure. These results support our assertion that 

the protein topological scores calculated based on Delaunay tessellation capture 

all the necessary structural information needed to study the structure to function 

relationships in proteins.  
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CHAPTER THREE: Machine Learning Models for Survival Prediction 
in Prostate Cancer using Gene Expression Data  

Introduction 
 

In the clinical picture of cancer, mutations can be considered as first steps 

towards cancer development. Mutations (including small insertions and 

deletions) instigate unfavorable changes in the cells such as rearrangements, 

copy number alterations, pathway alterations together with epigenetic and 

transcriptomic changes ultimately promoting cancer formation and progression 

[6]. Recent developments in comprehensive genomic characterization 

technologies have shown that this is however not a linear process and involves 

unanticipated complexities. It is therefore advantageous and sensible to able to 

complement mutational information with other genomic information such as 

gene expression and other genetic aberrations. The rapidly increasing size and 

availability of integrated genomic datasets is creating an unprecedented 

opportunity to study cancer biology and discover biomarkers and therapeutic 

targets in a novel way.  

 

To complement our research work presented in the previous two chapters 

of this dissertation, we expand our focus towards building a basis for integrative 
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analysis. Part of our research demonstrated in this chapter extends the scope of 

our predictive model approach to gene expression data. Here, we performed a 

study to build models predicting survival in prostate cancer, based on gene 

expression data. Initially we had presented encouraging results in predicting 

mutational effects of missense mutation on protein structure and function with 

good accuracies. These results if complemented by similar results from gene 

expression analysis, would certainly provide more reliability and higher 

predictive power to the method. Our aim was the identification of genes whose 

expression levels are strongly associated with outcome. The final outcome can 

provide useful insights for developing targeted therapeutics and informative 

biomarkers. Apart from the clinical use as prognostic markers, such genes can 

shed light on the mechanisms causing the wide variations in survival outcomes. 

Quite a few approaches have been proposed and used in ranking genes according 

to predictive strength [198]. Genes implicated in cancer with independent 

prognostic value can be sought by estimating their relative importance in 

multivariate classification approaches {Citation}. 

 With this goal in mind we generated machine-learning models using gene 

expression profiles of genes implicated in prostate cancer to predict patient 

survival. 

Prostate cancer and Survival modeling 
 
 
Prostate cancer represents 14.4% of all new cancer cases in the US and is the 

second leading cause of cancer death in American men with estimated number of 
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233,000 new prostate cancer cases, and 29,480 estimated deaths in 2014 [199]. 

Massive cancer informatics efforts have been focused on discovery and validation 

of better diagnostic, prognostic and predictive biomarkers that aid in early 

diagnosis of cancer and assist in clinically relevant and reliable cancer therapies. 

Cancer prediction and prognosis now have equally important role, if not more, 

than cancer detection and diagnosis, owing to the fact that it can be done at a 

early stage of cancer progression. Cancer susceptibility and cancer survivability 

predictions are the main focus of cancer prognosis studies. 

The current gold standard for diagnosis of prostate cancer includes serum 

prostate-specific antigen (PSA) measurement, digital rectal examination and 

histological inspection of prostate needle biopsies. This method has suboptimal 

sensitivity and specificity, and leads to many unnecessary initial and repeat 

biopsies. An important reason for that is, besides being a marker correlated with 

cancer, PSA is also a marker of increased prostate size. This points to an 

unrealized clinical potential for new biomarkers that can more accurately detect 

prostate cancer [200]. It has been seen that though patients with identical 

molecular, histological and clinical diagnostics are given the same treatments, 

survival amongst them varies a lot. This indicates that the present methods 

followed for deciding on cancer therapies are not clinically helpful enough. This 

shows the need to find other indicators to cancer prognosis and identify 

biomarkers that can help assess the risk at early stages, distinguish patients with 

aggressive disease and patients with indolent tumors and finally predict survival 
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rates. Research in biomarker discovery and validation has immensely helped in 

risk prognosis and improved treatment. However more promising novel 

biomarkers are needed for better detection and discovery of better therapeutic 

targets.  

Some of the molecular biomarkers that have served as powerful prognostic or 

predictive indicators have been somatic mutations in certain genes (p53, BRCA1, 

BRCA2), the expression of tumor proteins (MUC1, HER2, PSA) or the chemical 

environment of the tumor (anoxic, hypoxic).[201, p. 2], [202], [203, p. 1]. Such 

biomarkers have been mostly identified from differentially expressed genes, 

transcripts, proteins or metabolites by comparing molecular profiles between 

benign tissue and cancer tissue and the comparison usually involves statistical 

hypothesis testing followed by some independent cross validation strategies to 

indicate significance of the results. 

Advances in high-throughput molecular profiling such as microarray analysis 

have invigorated biomarker research and provided alternatives to the traditional 

methods. Enormous amounts of microarray data provide make it possible to 

identify gene expression profiles in cancer tissues and normal tissues. Molecular 

markers such as gene expression signatures have improved the predictive power 

of clinical nomograms eminently [204], [205]. Cancer-specific biomarker genes 

likely share gene expression profiles that are distinct in cancer samples as 

compared with normal samples. Various bioinformatics models have 
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demonstrated the potential of expression profiling for molecular diagnosis and 

survival analysis of human cancers.[206][207][208], [209] 

High throughput technologies have been producing huge amounts of genomic 

and proteomic data leading to overwhelming number of molecular, cellular and 

clinical parameters. This has lead to an increasing reliance on protein markers, 

microarray data and non-traditional, computationally intensive machine learning 

approaches for conducing survival analysis [210]. Even comparative studies have 

observed this trend in cancer prognosis [211]. 

Micro array data and Gene Expression Profiles 
 

Microarray technologies can map genome wide complex molecular 

divergence of cancer development and can be correlated to clinical data.  Gene 

expression profiling measures the expression of thousands of genes at once 

thereby provides a complete picture of cellular function in a single experiment. 

These profiles can then be used to distinguish between cells where the genes 

show different levels of expression, for example, actively diving cells, cells 

reacting to a particular treatment etc. The microarray technology has been 

evolving from DNA microarrays to sequence based techniques like SAGE, 

SuperSAGE and more recently the sequence based expression analysis using 

RNA-Seq which is presumed to be the ‘digital’ alternate to microarrays. 

 Generally, nonhierarchical clustering, a kind of supervised classification, 

is used to analyze microarray data for identification of differentially expressed 

genes between predefined groups of samples. Microarray expression profiling is 
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based on the supposition that gene expression patterns can determine tumor 

samples from normal samples. Microarray analysis is an area of intense research 

and has evolved along with the technology.  Identifying differentially expressed 

genes using a fold change cutoff has changed to using a variety of statistical 

tests such as ANOVA, which consider both fold change and variability to create 

a p-value, which is an estimate of how often we would observe the data by chance 

alone. However this approach looses robustness when there are a huge number of 

genes being analyzed. In such cases statistical methods are being developed and 

used such as SAM (Significance Analysis of Microarrays) [212] and a number of 

methods available from Bioconductor [213] etc. More recently microarray 

analysis techniques involve bootstrapping (statistics) and machine 

learning algorithms. These classifications and molecular characterization 

procedures are proving very valuable in providing insight into development of 

possible treatment stratergies for cancer. 

Microarray expression profiling studies on prostate cancer have identified 

numerous protein coding genes with differential expression [214] [215][200], 

[216]. A study by Sørlie et al.  [217] stratified the classifications described by 

Perou et al. [218] and explored the clinical value of the breast cancer subtypes. 

The authors separated the ER-positive tumors into two distinct groups and found 

that tumor classification based on gene expression was related to patient 

survival. In addition to identifying genes that correlate to survival, microarray 

analyses have also shown been utilized to establish gene expression profiles 
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associated with prognosis. van 't Veer L.J et al conducted studies that were able 

to identify "good-prognosis" and "bad-prognosis" signatures based on the 

expression of 70 genes that were better able to predict the likelihood 

of metastasis development within five years for breast cancer patients [206], 

[219].  

 

Materials and Methods 

 

Integrative Analysis 
 

A number of studies have shown that integrating genomic data and gene 

expression profiles has not only provided better analysis and higher reliability on 

results but have also helped in complementing the other set of data. For example, 

Lindgren et al. combined genome profiling with global gene expression, gene 

mutation, and protein expression data and identified two major genomic circuits 

operating in urothelial carcinoma. This group of tumors showed no distinct 

pattern of genomic alterations, except for enrichment of CCND1 amplifications. 

Intriguingly, this group had the worst prognosis [220]. D’Antonio et al. 

integrated expression profiles, mutation effects, and systemic properties of 

mutated genes to identify novel cancer drivers. They were able to identify 

putative drivers in the majority of carcinomas without mutations in known 

cancer genes, thus suggesting that the method can be used as a complementary 

approach to find rare driver mutations that cannot be detected using frequency-
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based approaches [221]. Curtis et al. [222] have shown that integrative clustering 

of copy number and gene expression in 2,000 breast tumors reveals novel 

subgroups beyond the classic expression subtypes that show distinct clinical 

outcomes. Mo et al. proposed a framework for joint modeling of discrete and 

continuous variables that arise from integrated genomic, epigenomic, and 

transcriptomic profiling. Using the cancer cell line encyclopedia dataset, they 

demonstrate that their method can accurately group cell lines by their cell-of-

origin for several cancer types, and precisely pinpoint their known and potential 

cancer driver genes as well as demonstrate the power for revealing subgroups 

that are not lineage-dependent, but consist of different cancer types driven by a 

common genetic alteration [223]. Zhang et al. propose a network-based approach 

in which three kinds of data are integrated: somatic mutations, copy number 

variations (CNVs), and gene expressions. They applied their method, iMCMC to 

the Cancer Genome Atlas (TCGA) glioblastoma multiforme (GBM) and ovarian 

carcinoma data, and identified several mutated core modules, some of which are 

involved in known pathways. Most of the implicated genes they found were 

oncogenes or tumor suppressors previously reported to be related to 

carcinogenesis. Their results indicate that gene expressions or CNVs indeed 

provide extra useful information to the original data for the identification of core 

modules in cancer [224]. 

There are a numerous applications and software focused on the 

integration and analysis of oncogenomics and clinicopathological data such as 
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Oncomine [225, p.  ], PAPAyA [226], ITTACA [227], Cancer Genomics Browser 

[228], GenePattern [229]. 

 

Machine Learning 
 
Machine learning methods are being used in a wide range of applications ranging 

from extracting patterns, detecting and classifying tumors to the classification of 

malignancies from proteomic and genomic assays. Different classification 

machine learning models applied to gene expression data have been shown to 

differentiate between different cancer subtypes as well as between normal and 

cancer samples [230].  

Cruz et al. provide a good survey of machine learning applications in cancer 

prediction [231]. They found that almost all predictions are made using just four 

types of input data: genomic data (SNPs, mutations, microarrays), proteomic 

data (specific protein biomarkers, 2D gel data, mass spectral analyses), clinical 

data (histology, tumor staging, tumor size, age, weight, risk behavior, etc.) or 

combinations of these three. Models generated by combining both clinical and 

gene expression data show improved predictive accuracies of disease outcomes 

compared with predictions based on either data alone [232]. However, 

microarray data provides a huge number of features (e.g. genes) which require 

relatively a large training set to learn a classifier with a low error rate. Therefore 

feature selection becomes an important step before classification to avoid over-

fitting of the model. 
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Feature Selection and Classification 
 
Feature selection methods select the best features from the feature vector. These 

algorithms are based on the assumption that not all the features of the 

instances/vector are necessary for accurate classification; therefore try to identify 

a subset of the features, which still can accurately represent the characteristics of 

the instances. There are two commonly used methods for performing feature 

selection, filtering and wrapping. Filtering is mostly applied as a preprocessing 

procedure and assigns a score to each attribute and retains those, which have a 

score exceeding a threshold. On the other hand wrappers make the selection 

based on the prediction accuracy of a particular classification model [75]. 

In our research we use both kinds of feature selection evaluators and methods 

provided in the Weka software and pick the feature set that gives the highest 

accuracies of classification. 

Classification is the process of assigning a category or class label to a sample, 

based on prior knowledge from a pre-defined set of classes. This prior knowledge 

is form the training set used in the approach, which learn a classification model 

and be applied to a test set predicting class to which it would belong.  

In the study conducted by Cruz et al. they state from their survey that almost all 

machine learning algorithms used in cancer prediction and prognosis employ 

supervised learning [231].   

We employed Decision trees (J48 and Random Forest) and Support vector 

machine for generating classification models, in this study. 
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Decision trees 
 
The logic of decision trees is very easy to discern. Formally a decision tree is a 

structured graph or flow chart of decisions/nodes and their possible 

consequences, leaves or branches, used to create a plan to reach a goal [196]. 

While generating models, the leaves in the tree represent classifications and 

branches represent co-occurance of features that lead to those classifications. A 

decision tree can be learned by progressively splitting the labeled training data 

into subsets based on a numerical or logical test. This process is repeated on each 

derived subset in a recursive manner until further splitting is either not possible, 

or a singular classification is achieved. Decision trees have many advantages: they 

are simple to understand and interpret, they require little data preparation, they 

can handle many types of data including numeric, nominal (named) and 

categorical data, they generate robust classifiers, they are quick to “learn” and 

they can be validated using statistical tests. Random forests operate by 

constructing a multitude of decision trees at training time and outputting the 

class that is the mode of the classes output by individual trees. 

Support Vector Machines 
 
Hijazi et al. [233] showed that the application of different classification methods 

(e.g., decision tree, k- nearest neighbor, support vector machine (SVM), bagging, 

and random forest) on 5 cancer datasets shows that no classification method 

universally outperforms all the others. However, k- nearest neighbor and linear 

SVM generally improve the classification performance over other classifiers. 
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Support Vector Machiness [234], [235] are well known in the world of machine 

learning and in the field of cancer prediction and prognosis. In this method two 

clusters are obviously evident. SVM machine learner finds the equation for a line 

that would separate the two clusters maximally. If there were more variables the 

line of separation would become a plane. If more variables were included the 

separation would be defined by a hyperplane. The hyperplane is determined by a 

subset of the points of the two classes, called support vectors. The SVM algorithm 

creates a hyperplane that separates the data into two classes with the maximum 

margin – meaning that the distance between the hyperplane and the closest 

examples (the margin) is maximized. SVMs can be used to perform non- linear 

classification using a non-linear kernel. A non-linear kernel is a mathematical 

function that transforms the data from a linear feature space to a non-linear 

feature space. Applying different kernels to different data sets can dramatically 

improve the performance of an SVM classifier. 

The performance of the classification models is determined by the training and 

test errors. The training error is to the number of misclassified samples in the 

training set while the test error refers to the number of misclassified samples in 

the test set. The goal of all classification models is to achieve low training and test 

errors [233]. Any approach would have to deal with overfitting, which refers to 

the situation where there is a large set of features of the model compared to the 

size of the training samples, leading to a poor performance of the model. 

Frequently cross�validation strategy is used to avoid overfitting.  
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Here we extend our potentially useful machine learning methodology for 

accurately predicting, patient survival time, in Prostate cancer patients, based on 

biomarkers and their gene expression profiles. Using the Weka software, we 

perform feature selection and then with a two-class labeling of survival time, 

models are evaluated with a stratified tenfold cross-validation procedure. We 

generate predictive models that can anticipate short survival group or a long 

survival group from gene expression profiles incorporating known prostate 

cancer related genes implicated as biomarkers, collected from published 

literature. 

Expression Data-set 
 

Public, open–access gene-expression profiles of prostate cancer were 

downloaded from one of the primary repositories of functional genomic data, 

GEO (Gene Expression Omnibus) database [236]. The prostate cancer expression 

profiles were contributed and published by Taylor et al. [237]. This prostate 

oncogenome project worked on 181 primary, 37 metastatic prostate cancer 

samples, 12 prostate cancer cell lines and xenografts. The data statistics can be 

accessed at (http://www.cbioportal.org/public-portal/study.do?cancer_study_id=prad_mskcc).  

 

 Only Whole-transcript and exon-level expression data for human primary 

prostate cancer samples, obtained from hybridization done on Affymetrix Human 

Exon 1.0 ST Array platform, provided in the form of Series matrix file, was 
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downloaded . Series Matrix files are text files that include a tab-delimited value-

matrix table generated from the ‘Value’ column of each Sample, headed by 

Sample and Series metadata. The GEO SuperSeries Id of the data set is 

GSE21032, SubSeries GSE 21032 and Platform id is GPL10264. The downloaded 

data file contained 150 primary tumor samples. Normal and control samples 

were excluded. Each gene expression profile had gene expression data for 43,419 

genes. All genes had expression data available across all samples. Survival data 

was provided for 140 samples, by Taylor et al. in their publication. These were 

matched with the samples ids and the ten samples with no corresponding patient 

survival information were excluded.  

With an aim to find out if biomarkers/genes implicated in prostate cancer can be 

separated or grouped based on survival class, i.e. investigate the set of genes with 

respect to the significance of their expression to survival we tested our 

classification approach, by extracting a subset of genes and their expression 

profiles from the expression data file. We first made a list of 53 genes and their 

transcript variants (total set-88) implicated in Prostate cancer, collected from 

published scientific literature about prostate cancer. This step backed up by the 

observation that using preexisting biological knowledge for survival prediction is 

not only reasonable, but also beneficial [238]. GenBank Accession numbers 

provided with expression profile data were mapped to Gene names using 

Ensembl biomart [239]. The subset of expression profile data were then extracted 

for these selected set of 53 genes and their transcript variants.  
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We reviewed the scientific literature to examine the reported associations of the 

selected genes to prostate cancer. A summary of the genes and their associations 

found with Prostate cancer and suggested cancer prognosis markers from the 

literature is given in Table 8. The list of genes and their transcript variants used 

are shown in Table 9. 

 

Table 9: Summary of selected gene biomarkers for prostate cancer 
Gene 
Name Product Biological Function/ Relation to PCa 

AMACR Racemase 
Metabolize fatty acids in the body. Over-expressed in PCa tissue; detected with a high sensitivity and 
specificity in blood and urine. 

ANXA3 
Cell adhesion 
protein 

A calcium and phospholipid binding protein, primarily found in urine. Implicated in cell differentiation, 
migration and immunomodulation. Increases the specificity and ability of PSA to discriminate between 
PCa stages. 

ARHGD
IB 

Rho (or ARH) 
protein family 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

BRCA1/
BRCA2 

Tumor 
suppressor 

Both BRCA1 and BRCA2 are involved in maintaining genome stability as members of the ATM/ATR 
CHK2 DNA damage repair pathway. BRCA2 is associated with aggressive tumors and poor survival 
outcome. BRCA2 has prognostic ability however further experimental data is needed for BRCA1. 

BSG/C
D147 

Membrane 
glycoprotein 

Over-expressed in many human solid tumors. Involved in tumor invasion and angiogenesis. Increased 
expression of CD147 is associated with PCa progression and poor prognosis. May serve as an 
independent predictor of biochemical recurrence and development of PCa metastasis. 

CAV1 

Integral 
membrane 
protein 

Mediates aspects of cholesterol and fatty acid metabolism. Circulating levels of serum Caveolin-1 
correlate with extent of PCa. 

CD44 
Cell-surface 
glycoprotein 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

CHGA 

Parathyroid 
secretory 
protein 1 

CgA is a useful predictive marker in patients with prostatic cancer who have lower PSA. It is known that 
neuroendocrine cells in the prostate do not contain androgen receptors and are not regulated by 
androgens. PSA expression was stimulated by androgen through androgen receptors, so it is suggested 
that cases of prostate cancer associated with low serum PSA and high serum CgA, which would have 
more neuroendocrine cells with less androgen receptors, may show resistance to endocrine therapy and 
a poor prognosis. Therefore serum CgA tends to be elevated in high grade prostate cancer cases. Hence 
it can be used to fill the gap if any left by PSA when combined with serum PSA, the serum marker may 
effectively predict the prognosis after endocrine therapy. CgA expression in prostate cancer biopsies is 
an independent extrapolative factor of hormone refractory disease in patients with newly diagnosed 
prostate cancer on early androgen deprivation therapy. 

CXCR3 
Chemokine 
receptor 3 

One of the genes from a panel of 7 genes derived from blood mRNA could distinguish between 
aggressive PCa and healthy patients with a high sensitivity (83%) and specificity (80%). Genes involved 
in regulating the immune response and gene transcription regulation in oncogenesis. 

DAB2IP 
Tumor 
suppressor 

A single nucleotide polymorphism in the DAB2IP gene is associated with risk of aggressive prostate 
cancer (PCa), and loss of DAB2IP expression is frequently detected in metastatic PCa. The loss of 
DAB2IP expression initiates epithelial-to-mesenchymal transition (EMT), which is visualized by 
repression of E-cadherin and up-regulation of vimentin in both human normal prostate epithelial and 
prostate carcinoma cells as well as in clinical prostate-cancer specimens. Conversely, restoring DAB2IP 
in metastatic PCa cells reversed EMT. 

E2F3 

E2F 
transcription 
factor 3 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

EN2 
Transcription 
factor 

Involved in early embryonic development and re-expressed by PCa cells. EN-2 detection in urine as a 
test for diagnosing and detecting PCa. Although further validation is required, it appears it is more 
reliable than PSA and elevated expression is associated with increased tumor stage. 

ENG 

Trans 
membrane 
glycoprotein 

Expressed by human vascular endothelial cells thought to play a pivotal role in endothelial cell 
proliferation. Elevated in prostatic fluid of men with large volume PCa. 

ERG 
Transforming 
protein  

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

FCRL3 
Fc receptor-
like 3 

One of the genes from a panel of 7 genes derived from blood mRNA could distinguish between 
aggressive PCa and healthy patients with a high sensitivity (83%) and specificity (80%). Genes involved 
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in regulating the immune response and gene transcription regulation in oncogenesis. 

FOLH1 

Type II 
integral 
membrane 
glycoprotein 

Overexpressed on prostate tumor cells and in the neovasculature of most solid prostate tumors, but not 
in the vasculature of normal tissues. May play an important role in the progression of PCa. 

FZD7 

Seven 
transmembran
e spanning 
receptor 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

GOLM1 

Golgi 
membrane 
protein 1 

GOLM1 (Golgi membrane protein 1, Golm 1) is consistently up-regulated in clinically localized prostate 
cancer.Prostate epithelial cells were identified as the cellular source of GOLM1 expression.GOLM1 
immunoreactivity was detected in the supernatants of prostate cell lines and in the urine of patients 
with prostate cancer. 

GSTP1 
Glutathione S-
transferase pi 1 

Pi-class glutathione-S-transferase (GSTP1) located on chromosome 11q13 encodes a phase II metabolic 
enzyme that detoxifies reactive electrophilic intermediates. GSTP1 plays an important role in protecting 
cells from cytotoxic and carcinogenic agents and is expressed in normal tissues at variable levels in 
different cell types. Altered GSTP1 activity and expression have been reported in many tumors and this 
is largely due to GSTP1 DNA hypermethylation at the CpG island in the promoter-5'. Hypermethylation 
of the GSTP1 promoter has been associated with gene silencing in prostate cancer and kidney cancer. 

HDAC1 
Histone 
deacetylase 1 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

IGF1 
Insulin-like 
growth factor 1 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

IGFBP6 

Insulin-like 
growth factor 
binding 
protein 6 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

IL6 Cytokine 
Involved in hematopoiesis and mediates B cell differentiation. Clinical studies reveal increased serum 
IL-6 concentrations in patients are associated with advanced PCa tumor stage. 

ING1 
Tumor 
suppressor 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

KIAA11
43 

Uncharacterize
d protein  

One of the genes from a panel of 7 genes derived from blood mRNA could distinguish between 
aggressive PCa and healthy patients with a high sensitivity (83%) and specificity (80%). Genes involved 
in regulating the immune response and gene transcription regulation in oncogenesis. 

KLF12 
Kruppel-like 
factor 12 

One of the genes from a panel of 7 genes derived from blood mRNA could distinguish between 
aggressive PCa and healthy patients with a high sensitivity (83%) and specificity (80%). Genes involved 
in regulating the immune response and gene transcription regulation in oncogenesis. 

KLK2 
Serine 
protease 

Serine protease that is highly expressed in prostate tissue and involved regulating semen liquefaction by 
activating pro-KLK3 to its active form (PSA), facilitating both tumorigenisis and disease progression to 
the advanced stages of PCa. Studies have shown a strong correlation with PCa- specific survival however 
further studies with larger cohorts are needed to confirm these observations. 

MAF 
Proto-
oncogene 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

MKI67/
Ki-67 

Nuclear 
protein 

Cell-cycle-proliferation marker. Possibly a prolific predictive marker for men with low grade, low 
volume PCa after radical prostatectomy. Associated with metastasis and survival outcome.  

MME 

Membrane 
metallo- 
endopeptidase
/CD10 

Inactivates several peptide hormones including glucagon, abundant in the kidney. Candidate cancer 
biomarker associated with PCa progression. A low level of CD10 is a possible prognostic indicator for 
biochemical relapse and early death as a result of lymph node metastases. Additionally may aid in 
personalized patient treatment/ management however this marker needs to be further validated. 

MSH3 

Divergent 
upstream 
protein 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

MSMB 

Immunoglobul
in binding 
factor 

Secreted by epithelial cells of the prostate as well as other major organs. MSMB is a member of the 
immunoglobulin binding family. Exact function of MSMB is unknown but may have an autocrine 
(inhibin-like) role. The genetic variant rs10993994 is associated with PCa risk however further 
investigation is required to evaluate the predictive value of this marker. 

MUC1 

Mucin 1, cell 
surface 
associated 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

NME1 

Tumor 
metastatic 
process-
associated 
protein 

Major role in the synthesis of nucleoside triphosphates other than ATP. Possesses nucleoside-
diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate 
kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, 
differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene 
expression. Required for neural development including neural patterning and cell fate determination 

PDLIM
4 

Reversion-
induced lim 
protein 

PDLIM4 mRNA and protein-expression levels were reduced in LNCaP, LAPC4, DU145, CWR22, and 
PC3 prostate cancer cells. The re-expression of PDLIM4 in prostate cancer cells has significantly 
reduced the cell growth and clonogenicity with G1 phase of cell-cycle arrest. We have shown the direct 
interaction of PDLIM4 with F-actin. Restoration of PDLIM4 expression resulted in reduction of tumor 
growth in xenografts. These results suggest that PDLIM4 may function as a tumor suppressor, involved 
in the control of cell proliferation by associating with actin in prostate cancer cells. 

PIK3CA 

Phosphoinositi
de-3- kinase; 
Protein kinase. 

One of the most common genomic alterations in human PCa contributing to cellular transformation and 
cancer development. Possibly a key mechanism supporting progression toward androgen-independent 
PCa. 

PSCA 
Prostate Stem 
Cell Antigen, a 

Involved in the regulation of cell proliferation. Up-regulated in the majority of PCas however, exact 
biological function is unknown. Increased expression is associated with Gleason score, seminal vesicle 
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membrane 
glycoprotein 

invasion, and capsular invasion in PCa. 

PTEN 

Phosphatase 
and Tensin 
homologue; 
protein 
phosphatase 

Tumor suppressor involved in modulating the PI3- K/AKT signaling pathway. PTEN inactivating 
mutations/deletion occur in many tumors and result in rapid cell growth and division. It is associated 
with severe tumor stage; however, PTEN is not PCa specific It is among one of the most frequent genetic 
inactivation’s present in PCa. 

PTGS1 

Prostaglandin-
endoperoxide 
synthase 1  

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

RELB 

V-rel avian 
reticuloendoth
eliosis viral 
oncogene 
homolog b 

Inhibiting RelB in aggressive androgen-independent PC-3 cells by stable or conditional expression of a 
dominant-negative p100 mutant significantly reduced the incidence and growth rate of tumors. 
Consistently, down-regulation of RelB by small interfering RNA targeting also reduced tumor growth 
and decreased levels of IL-8. Conversely, stable expression of RelB in androgen-responsive LNCaP 
tumors increased the circulating IL-8 levels. 

S100A1
1 

Calcium- 
binding-
protein family  

Expressed in various solid tumors. Detection may be useful for diagnosis, monitoring and possible 
therapeutic targets. Involved in protein phosphorylation, enzyme activity, calcium homeostasis, and 
regulation of transcription factors, macrophage activators and modulators of cell proliferation. S100A2, 
S100A4, S100A8, S100A9 and S100A11 are associated with PCa recurrence and advanced pathological 
stage. 

S100A2 

Calcium- 
binding-
protein family  

Expressed in various solid tumors. Detection may be useful for diagnosis, monitoring and possible 
therapeutic targets. Involved in protein phosphorylation, enzyme activity, calcium homeostasis, and 
regulation of transcription factors, macrophage activators and modulators of cell proliferation. S100A2, 
S100A4, S100A8, S100A9 and S100A11 are associated with PCa recurrence and advanced pathological 
stage. 

S100A4 

Calcium- 
binding-
protein family  

Expressed in various solid tumors. Detection may be useful for diagnosis, monitoring and possible 
therapeutic targets. Involved in protein phosphorylation, enzyme activity, calcium homeostasis, and 
regulation of transcription factors, macrophage activators and modulators of cell proliferation. S100A2, 
S100A4, S100A8, S100A9 and S100A11 are associated with PCa recurrence and advanced pathological 
stage.  

S100A8 

Calcium- 
binding-
protein family  

Expressed in various solid tumors. Detection may be useful for diagnosis, monitoring and possible 
therapeutic targets. Involved in protein phosphorylation, enzyme activity, calcium homeostasis, and 
regulation of transcription factors, macrophage activators and modulators of cell proliferation. S100A2, 
S100A4, S100A8, S100A9 and S100A11 are associated with PCa recurrence and advanced pathological 
stage. 

S100A9 

Calcium- 
binding-
protein family  

Expressed in various solid tumors. Detection may be useful for diagnosis, monitoring and possible 
therapeutic targets. Involved in protein phosphorylation, enzyme activity, calcium homeostasis, and 
regulation of transcription factors, macrophage activators and modulators of cell proliferation. S100A2, 
S100A4, S100A8, S100A9 and S100A11 are associated with PCa recurrence and advanced pathological 
stage. 

SAMSN
1 

Sam domain-
containing 
protein samsn-
1 

One of the genes from a panel of 7 genes derived from blood mRNA could distinguish between 
aggressive PCa and healthy patients with a high sensitivity (83%) and specificity (80%). Genes involved 
in regulating the immune response and gene transcription regulation in oncogenesis. 

SNRPA
1 

Small nuclear 
ribonucleoprot
ein 
polypeptide a This protein is associated with sn-RNP U2. It helps the A' protein to bind stem loop IV of U2 snRNA. 

TGFB1 Cytokine 

Growth factor involved in the regulation of cellular proliferation, immune response and differentiation. 
Increased expression correlates with severe tumor grade, tumor invasion, PCa metastasis and 
biochemical recurrence. TGF-Beta needs to be validated before becoming a PCa biomarker. 

TMEM2
04 

Transmembra
ne protein 204 

One of the genes from a panel of 7 genes derived from blood mRNA could distinguish between 
aggressive PCa and healthy patients with a high sensitivity (83%) and specificity (80%). Genes involved 
in regulating the immune response and gene transcription regulation in oncogenesis. 

TRAF4 

Tnf receptor-
associated 
factor 4 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer.Adapter protein and signal transducer that links members of the tumor 
necrosis factor receptor (TNFR) family to different signaling pathways. Plays a role in the activation of 
NF-kappa-B and JNK, and in the regulation of cell survival and apoptosis. 

YES1 

V-yes-1 
yamaguchi 
sarcoma viral 
oncogene 
homolog 1 

Associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple 
cohorts of Prostate cancer. 

 

Table 10: Selected List of Genes 
ID GENBANK_ACC NM_GeneName Gene Name 

45 NM_000059 NM_000059_BRCA2 BRCA2 

103 NM_000118 NM_000118_ENG_transcript variant 2 ENG 

251 NM_000269 NM_000269_NME1_transcript variant 2 NME1 

295 NM_000314 NM_000314_PTEN PTEN 
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564 NM_000600 NM_000600_IL6 IL6 

573 NM_000610 NM_000610_CD44_transcript variant 1 CD44 

581 NM_000618 NM_000618_IGF1_transcript variant 4 IGF1 

614 NM_000660 NM_000660_TGFB1 TGFB1 

794 NM_000852 NM_000852_GSTP1 GSTP1 

841 NM_000902 NM_000902_MME_transcript variant 1 MME 

899 NM_000962 NM_000962_PTGS1_transcript variant 1 PTGS1 

951 NM_001001389 NM_001001389_CD44_transcript variant 2 CD44 

952 NM_001001390 NM_001001390_CD44_transcript variant 3 CD44 

953 NM_001001391 NM_001001391_CD44_transcript variant 4 CD44 

954 NM_001001392 NM_001001392_CD44_transcript variant 5 CD44 

1157 NM_001002231 NM_001002231_KLK2_transcript variant 2 KLK2 

2521 NM_001014986 NM_001014986_FOLH1_transcript variant 2 FOLH1 

2662 NM_001018016 NM_001018016_MUC1_transcript variant 2 MUC1 

2663 NM_001018017 NM_001018017_MUC1_transcript variant 3 MUC1 

3060 NM_001031804 NM_001031804_MAF_transcript variant 2 MAF 

3941 NM_001044390 NM_001044390_MUC1_transcript variant 5 MUC1 

3943 NM_001044392 NM_001044392_MUC1_transcript variant 7 MUC1 

5440 NM_001111283 NM_001111283_IGF1_transcript variant 1 IGF1 

5441 NM_001111284 NM_001111284_IGF1_transcript variant 2 IGF1 

5442 NM_001111285 NM_001111285_IGF1_transcript variant 3 IGF1 

5593 NM_001114753 NM_001114753_ENG_transcript variant 1 ENG 

5806 NM_001175 NM_001175_ARHGDIB ARHGDIB 

5898 NM_001275 NM_001275_CHGA CHGA 

6033 NM_001427 NM_001427_EN2 EN2 

6104 NM_001504 NM_001504_CXCR3_transcript variant 1 CXCR3 

6295 NM_001728 NM_001728_BSG_transcript variant 1 BSG 

6320 NM_001753 NM_001753_CAV1_transcript variant 1 CAV1 

6507 NM_001949 NM_001949_E2F3_transcript variant 1 E2F3 

6728 NM_002178 NM_002178_IGFBP6 IGFBP6 

6946 NM_002417 NM_002417_MKI67_transcript variant 1 MKI67 

6968 NM_002439 NM_002439_MSH3 MSH3 

6972 NM_002443 NM_002443_MSMB_transcript variant PSP94 MSMB 

6984 NM_002456 NM_002456_MUC1_transcript variant 1 MUC1 

7472 NM_002961 NM_002961_S100A4_transcript variant 1 S100A4 

7475 NM_002964 NM_002964_S100A8 S100A8 

7476 NM_002965 NM_002965_S100A9 S100A9 

7594 NM_003090 NM_003090_SNRPA1 SNRPA1 

7971 NM_003507 NM_003507_FZD7 FZD7 

8142 NM_003687 NM_003687_PDLIM4_transcript variant 1 PDLIM4 

8713 NM_004295 NM_004295_TRAF4 TRAF4 

8858 NM_004449 NM_004449_ERG_transcript variant 2 ERG 

8884 NM_004476 NM_004476_FOLH1_transcript variant 1 FOLH1 

9345 NM_004964 NM_004964_HDAC1 HDAC1 

9511 NM_005139 NM_005139_ANXA3 ANXA3 

9716 NM_005360 NM_005360_MAF_transcript variant 1 MAF 

9784 NM_005433 NM_005433_YES1 YES1 

9884 NM_005537 NM_005537_ING1_transcript variant 4 ING1 

9898 NM_005551 NM_005551_KLK2_transcript variant 1 KLK2 

9963 NM_005620 NM_005620_S100A11 S100A11 

10014 NM_005672 NM_005672_PSCA PSCA 

10285 NM_005978 NM_005978_S100A2 S100A2 

10505 NM_006218 NM_006218_PIK3CA PIK3CA 

10780 NM_006509 NM_006509_RELB RELB 

11441 NM_007249 NM_007249_KLF12 KLF12 

11477 NM_007287 NM_007287_MME_transcript variant 1bis MME 

11478 NM_007288 NM_007288_MME_transcript variant 2a MME 

11479 NM_007289 NM_007289_MME_transcript variant 2b MME 

11482 NM_007294 NM_007294_BRCA1_transcript variant 1 BRCA1 

11485 NM_007297 NM_007297_BRCA1_transcript variant 3 BRCA1 

11486 NM_007298 NM_007298_BRCA1_transcript variant 4 BRCA1 

11487 NM_007299 NM_007299_BRCA1_transcript variant 5 BRCA1 

11488 NM_007300 NM_007300_BRCA1_transcript variant 2 BRCA1 

12373 NM_014324 NM_014324_AMACR_transcript variant 1 AMACR 

14077 NM_016548 NM_016548_GOLM1_transcript variant 1 GOLM1 

15424 NM_019554 NM_019554_S100A4_transcript variant 2 S100A4 

15843 NM_020696 NM_020696_KIAA1143 KIAA1143 
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16575 NM_022136 NM_022136_SAMSN1_transcript variant 1 SAMSN1 

17220 NM_024600 NM_024600_TMEM204_transcript variant 1 TMEM204 

18545 NM_032552 NM_032552_DAB2IP_transcript variant 1 DAB2IP 

19306 NM_052939 NM_052939_FCRL3 FCRL3 

19570 NM_080591 NM_080591_PTGS1_transcript variant 2 PTGS1 

20223 NM_138634 NM_138634_MSMB MSMB 

20243 NM_138709 NM_138709_DAB2IP_transcript variant 2 DAB2IP 

22898 NM_177937 NM_177937_GOLM1_transcript variant 2 GOLM1 

23709 NM_182918 NM_182918_ERG_transcript variant 1 ERG 

23996 NM_198175 NM_198175_NME1_transcript variant 1 NME1 

24021 NM_198217 NM_198217_ING1_transcript variant 3 ING1 

24022 NM_198218 NM_198218_ING1_transcript variant 2 ING1 

24023 NM_198219 NM_198219_ING1_transcript variant 1 ING1 

24229 NM_198589 NM_198589_BSG_transcript variant 2 BSG 

24230 NM_198591 NM_198591_BSG_transcript variant 4 BSG 

24746 NM_203382 NM_203382_AMACR_transcript variant 3 AMACR 

 

The data set generated from gene expression profiles of the 88 genes and their 

transcript variants, for all the 140 samples were fed into the classifiers as feature 

vectors. Java programs were written to process the data files, format conversions 

and running the Weka attribute selection and Classifiers.  

Survival models 
 
We carried out a systematic analysis of association between gene expression 

profiles of 88 genes and their transcript variants and patient survival using data 

from published gene expression data for prostate cancer and different sets of 

genes already implicated in prostate cancer and being validated as biomarkers. 

We performed a two-class classification, assigning ‘Short’ and ‘Long’ labels for 

recurrence-free (RF) survival time, to each of the samples. Three different 

machine-learning algorithms, support vector machines (weka implementation is 

called SMO), decision trees (J48) and Random Forest (RF) were run. These 

algorithms implemented are available as part of an extensive suite of machine 
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learning tools referred to as Weka (Waikato Environment for Knowledge 

Analysis; (http://www.cs.waikato.ac.nz/ml/weka/index.html) [195].  

 

 

Figure 31: Recurrence Free Survival Classes 

 

In order to examine changes in prediction accuracies with better separation in RF 

survival classes, the datasets were broken down into smaller sets with each 

subsequent dataset having 5 more samples from the ‘Long’ RF survival class and 

5 from the ‘Short’ RF survival class. Refined classification accuracy was obtained 

by performing feature selection from with in the feature vector using Weka 

evaluator and search algorithms to perform feature selection. We utilized the 

attribute/feature selection feature of Weka and performed all available feature 

selection evaluators and methods. 
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We also performed a 3-class classification on recurrence-free survival prediction, 

but did not pursue it after seeing low prediction accuracies. 

Results and Discussion 
 
Our approach demonstrated the valid use of microarray profile data with respect 

to measuring gene expression in a predictive prognosis of prostate cancer and 

indicated our approach used here can be integrated with our functional impact 

predictive models to perform more reliable screening for clinical biomarkers. 

Identification of class-separable biomarkers was accomplished via classification 

with feature selection. Here we performed and compared a number of feature 

selection methods and then applied 3 different classifiers. 

Features selected by almost all methods under CfsSubsetEval evaluator gave the 

best classification accuracies for all the three classifiers. Amongst the classifiers 

Support vector machine and J48 decision tree had better accuracies than 

RandomForest. Henceforth we will be discussing results from J48 and SVM 

classifiers only, further in this manuscript. Random Forest showed lower 

accuracies but definitely higher than random predictions. However, the accuracy 

distribution across incremental datasets (datasets with different number of 

samples) and also across different feature selection methods is very consistent 

with that of the distribution shown by the other two classifiers, J48 and SVM. 

This certainly attaches a factor of reliability to the result set. 

Accuracies were high when there was optimal separation i.e. not too much or too 

less separation between recurrence-free survival time classes. Around this class 
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separation the prediction accuracies ranged from 71.6% to 63% for J48 classifier 

and from 67.7% to 58.8% for support vector machine (Figure 1).  

Figure 32 shows accuracies plotted against datasets containing different number 

of samples taken from each of the recurrence-free survival classes. J48 gave the 

highest accuracy of 71.6% and Support Vector Machine gave a highest accuracy of 

67.7%. Figure 32 also shows accuracies achieved across different feature selection 

methods used in this approach. Though these accuracies are not very high they 

certainly do provide a positive signal of classification by our approach. At the 

same time these observations can be considered non-random, clearly indicative 

signs of possible recurrence-free survival prediction based on use of gene 

expression data. The observations are further strongly supported by very 

consistent results across all the feature selection methods used and also across all 

the classifiers. This is shown in Figures 33-37. 
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Figure 31: Percentage Accuracies from classifiers: J48 and Support Vector Machine (SMO) 
 

 

These graphs clearly indicate that, each feature selection method though gives 

slightly different accuracy graphs they look consistent across classifiers. 
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Figure 32: J48 classification accuracies across feature selection methods 
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Figure 2: SVM classification accuracies across feature selection methods 
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Figure 34: Show here are 
prediction accuracies obtained 
from the two classifiers J48 and 
SVM in two columns of graphs. 
The left column shows results 
using J48 and the right column 
shows those from SVM. 

 

 

 



 

 

Finally, with the two-

prediction models were evaluated with a stratified tenfold cross

procedure. Receiver operating characteristic (ROC) curves were plotted and AUC 

calculated to test the robustness of the predictions (Figure 5). As control set, the 

class labels were shuffled randomly and the classifiers run and ROC curves 

drawn. 

 

Figure 35: ROC Curves obtained by applying J48 classifier to the 70 TB dataset and SVM to the 45TB 
dataset.Tenfold cross-validation is used to test the learned models and generate the ROC curves, and the 
area under each ROC curve (AUC) provides a measure 
the number of samples incremented by 5 from each survival class in the next subsequent dataset.
addition to the survival class label, PC dataset 
profiles of genes implicated in PC.
 

Genes with highest predictive accuracies of 
 
Some of the highest predictive accur

classifiers were using dataset with 45 samples from each 
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-classes of recurrence-free survival data, performance of 

models were evaluated with a stratified tenfold cross

procedure. Receiver operating characteristic (ROC) curves were plotted and AUC 

calculated to test the robustness of the predictions (Figure 5). As control set, the 

class labels were shuffled randomly and the classifiers run and ROC curves 

 
: ROC Curves obtained by applying J48 classifier to the 70 TB dataset and SVM to the 45TB 

validation is used to test the learned models and generate the ROC curves, and the 
area under each ROC curve (AUC) provides a measure of model performance. Each training set differs by 
the number of samples incremented by 5 from each survival class in the next subsequent dataset.
addition to the survival class label, PC dataset used for training, is represented by the gene expression 
profiles of genes implicated in PC. 

Genes with highest predictive accuracies of recurrence-free 

highest predictive accuracies achieved by both J48 and 

classifiers were using dataset with 45 samples from each recurrence

performance of 

models were evaluated with a stratified tenfold cross-validation 

procedure. Receiver operating characteristic (ROC) curves were plotted and AUC 

calculated to test the robustness of the predictions (Figure 5). As control set, the 

class labels were shuffled randomly and the classifiers run and ROC curves 

 
: ROC Curves obtained by applying J48 classifier to the 70 TB dataset and SVM to the 45TB 

validation is used to test the learned models and generate the ROC curves, and the 
of model performance. Each training set differs by 

the number of samples incremented by 5 from each survival class in the next subsequent dataset. In 
training, is represented by the gene expression 

free survival 

acies achieved by both J48 and SVM 

recurrence-free survival 
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class. Five of the feature selection methods of the ‘CfsSubsetEval’ evaluator 

produced the same highest accuracy of 67.78% with both the classifiers.  

The highest accuracy, 71.67%, was obtained by applying the J48 classifier, using 

Principal Components feature selection evaluator with the Ranker search 

method.  Very interestingly all these high accuracies across five feature selection 

methods and all three classifiers had a single common gene, Endoglin, 

represented as ENG or CD105 as the single feature selected by feature selection 

methods to classify the recurrence-free survival groups. Endoglin is a Trans 

membrane glycoprotein, expressed by human vascular endothelial cells and is 

thought to play a pivotal role in endothelial cell proliferation. It is elevated in 

prostatic fluid of patients with large volume PCa. ENG encodes a homodimeric 

transmembrane protein, which is a major glycoprotein of the vascular 

endothelium. It is involved in the regulation of angiogenesis and may play a 

critical role in the binding of endothelial cells to integrins and/or other RGD 

receptors. It acts as TGF-beta coreceptor and is involved in the TGF-beta/BMP 

signaling cascade, required for GDF2/BMP9 signaling through SMAD1 in 

endothelial cells and modulates TGF-beta1 signaling through SMAD3. 

 

The gene that produces the second highest accuracy of 62.8% applying J48 

classifier, is ARHGDIB, Rho GDP Dissociation Inhibitor (GDI) Beta. ARHGDIB 

consistently produces the same accuracy and is selected by five different feature 

selection evaluator (CfsSubsetEval’) methods, as the only feature that can 
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separate the recurrence-free survival classes. ARHGDIB is a member of the Rho 

(or ARH) protein family and other Ras-related small GTP-binding proteins that 

are involved in diverse cellular events, including cell signaling, proliferation, 

cytoskeletal organization, and secretion. Significance testing of genes 

differentially regulated in TMPRSS2–ERG fusion-positive prostate tumours in 

the Toronto cohort of 139 patients characterized for 502 genes was validated in a 

Swedish cohort (Setlur et al, 2008) of 455 patients characterized for 6144 genes. 

ARHGDIB was found to be upregulated with the TMPRSS2 – ERG fusion in both 

cohorts, along with 8 other genes. 

The third highest accuracies are obtained by the gene, KLK2 transcript variant 2. 

It is a serine protease, that is highly expressed in prostate tissue and involved in 

regulating semen liquefaction by activating pro-KLK3 to its active form (PSA), 

facilitating both tumorigenisis and disease progression to the advanced stages of 

PCa. Studies have shown a strong correlation with PCa- specific survival however 

further studies with larger cohorts are needed to confirm these observations. 

 

All these genes provide good separation of patients with good outcome from 

those with poorer outcome in terms of recurrence-free survival duration (Long 

vs. Short). All these genes with expression profiles showing significant 

association to survival, all represent highly relevant candidates to be examined as 

prognostic markers. In this work here, we have not examined the underlying 

quality of the expression data used, and the number of samples is also relatively 
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small, preventing an extensive survey of all relevant genes as candidate markers. 

After decreasing the size of the gene set with retaining only those with strong 

prognostic value, the independency of these parameters, can be assessed using 

our approach. 

In conclusion, we believe that our approach can decipher gene expression data 

for survival marker predictions and can be used in combination with functional 

impact data to build accurate predictive model for cancer prognosis. Moreover, 

our can be applied to other clinical studies to increase accuracy of the methods 

and give it a better clinical relevance. It can be used in conjunction with other 

clinical predictive tools to develop prognostic genes or gene signatures of cancer 

development and progression, with high reliability. 
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Future Directions 

A very interesting extension of research work presented here and an immediate 

future task that can be accomplished using the predictive approach proposed and 

validated in this study is to integrate the mutational data and the gene expression 

data and build predictive models for cancer prediction and prognosis. Exemplary 

studies, detailed in the ‘Integrative Analysis’ section of chapter three in this 

manuscript, have been carried out by other researchers and have shown 

promising results. Results from our approach using topological scores of wild-

type and mutant proteins show significant structure-function correlations and 

machine learning classifiers trained using the residual profiles of these mutants 

have provided impressive model performances based on accuracy measures and 

ROC curves. Similarly, models build for survival prediction based on our 

approach using gene expression profiles also indicate positive pointers towards 

having efficient predictive power for survival prediction. Thus a logical and next 

step would be to integrate these analyses and build stronger, more reliable, 

clinically significant models predicting structure to function to survival 

correlations. 

Another promising and very useful extension to this work would be automating 

and maintaining the integrated database IDHCMM. IDHCMM was built as a 
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basic one-stop-shop service for obtaining huge experimentally validated missense 

mutational data sets enhanced with availability of x-ray crystallographic 3D 

structures cross-linked to all of the mutations. However, this repository can be 

further improved in many ways, mentioned in chapter two of this dissertation. 

One of the most required and useful improvements would be to updating the data 

in IDHCMM by downloading and restoring latest data from the source databases, 

especially the protein 3D structures from PDB. This task does have its own 

challenges when working with the comprehensive data from TCGA and ICGC, but 

can be managed by designing a data frame for IDHCMM and sticking to it and 

not making data changes along the sources. This useful resource can be made 

more widely used by expanding mutational effect prediction data for the 

mutations by adding predictions obtained by Delaunay tessellation approach 

used here and also from other renowned predictive tools such as 

MutationAssessor, SIFT and PolyPhen. As of now only very few records have 

these predictions associated to them. At the next level, IDHCMM has links to 

neXtProt and PharmGKB Ids. This can be utilized to complement mutational 

models and associate them to higher level protein data from neXtProt and further 

to potentially clinically actionable gene-drug associations and genotype-

phenotype relationships thereby deciphering knowledge about the impact of 

human genetic variation on drug responses. This entire knowledge mine can then 

be used to predict cancer outcomes and design targeted clinical therapies for 

cancer. 
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Finally the long term objectives of this research work is to be able to contribute to 

the technological revolution driving our pursuit of transforming approaches able 

of molecular characterization, enabling proper and timely cancer management 

with improved patient outcomes. This improved link between the ability to 

characterize the cancer genome and changes in tumors for biomarker 

identification, predicting patient response to targeted therapies, is a step further 

towards implementation of personalized cancer therapy.  



 
 

Supplementary Material 

Table 11: IDHCMM Data elements and mapping to source database-data elements 
IDHCMM Data 
Elements 

MSKCC_Sa
rcoma 

MSKCC_Pr
ostate 

TCGA COSMIC BIC db ICGC IARC_TP5
3 

MutationID        
SourceTableID        
SourceDB MSKCC_Sa

rcoma 
MSKCC_Pr
ostate 

TCGA COSMIC BIC ICGC IARC_TP53 

Source_Version   v2.3 COSMIC61  Rel 9 R16 
SourceDB_Mutation
_ID 

   COSMIC 
Mutation ID 
(520) 

accession 
number (4347) 

Mutation_ID MUT_ID 

SourceDB_Sample_I
D 

Tumor_Sam
ple_Barcode 
(PT10DD) 

Sample Tumor_Sam
ple_Barcode 

COSMIC 
Sample ID 

 Analyzed_sample
_ID 

Sample_ID 

SourceDB_Patient_I
D 

    ID Number 
(F2743) 

Donor_ID  

CDS_Mutation cDNA_Chan
ge_Broad 

 ChromChan
ge 

CDS Mutation 
Syntax  
(c.1500C>G) 

HGVS cDNA 
(c.181T>G) 

CDS mutation c_descriptio
n 

CDS_Mutation_Type    CDS Mutation 
Type 
(Substitution) 

 Mutation Type  

CDS_Mutation_Start   ChromChan
ge 

CDS Mutation 
Start (1500) 

 CDS mutation c_descriptio
n 

CDS_Mutation_Stop    CDS Mutation 
Stop (1500) 

 CDS mutation c_descriptio
n 

AA_Mutation FAM_varian
t (A212T) 

Protein 
(W742C) 

AAChange AA Mutation 
Syntax 
(p.I500M) 

BIC 
Designation 
(M1V) 

AA mutation ProtDescript
ion 

AA_Mutation_Type Variant_Clas Mutation Variant_Clas AA Mutation mutation type Consequence Effect 
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sification 
(Missense) 

type 
(Missense) 

sification 
(Missense_
Mutation) 

Type 
(Substitution - 
Missense) 

(M) type (non-
synonymousCodi
ng) 

AA_Mutation_Start_
Position 

   AA Mutation 
Start (500) 

  ProtDescript
ion 

AA_Mutation_Stop_
Position 

   AA Mutation 
Stop (500) 

  ProtDescript
ion 

Genomic_Mutation  Reference>
Mutant 

Genome_Ch
ange 

 Base Change 
(A to G) 

Mutation Description 

Genomic_Mutation_
Start_Position 

Start_Positio
n 
(56934311) 

Position 
(66854097) 

Start_Positio
n 
(56934311) 

Genomic 
Coordinates 
(NCBI36) 

 Chromosome 
start 

Genomic_nt 

Genomic_Mutation_
Stop_Position 

End_Positio
n 
(56934311) 

 End_Positio
n 
(56934311) 

Genomic 
Coordinates 
(NCBI36) 

 Chromosome end  

Gene_Name Hugo_Symb
ol (PTPN14) 

Gene (AR) Hugo_Symb
ol (PTPN14) 

Gene Name 
(KRAS) 

BRCA1 / 
BRCA2 

Gene _Name TP53 

Chromosome Chromosom
e (1) 

Chr (chr17) Chromosom
e (1) 

Genomic 
Coordinates 
(NCBI36)-
(12:25289551-
25289551) 

 Chromosome 
(12) 

 

Mutation_Validation
_Status 

Validation_S
tatus (Valid) 

 Validation_S
tatus 

Validation_Statu
s 

Mutation_Vali
dation_Status 

Validation_Status  

Mutation_Detection_
Platform 

Sequencer Method 
(Sanger) 

Sequencer  Detection 
Method 

Platform  

Mutation_Validation
_Platform 

Validation_
Method 

 Validation_
Method 

  Validation 
platform 

 

Domain_Affected domain_WU Affected 
domain 
(PFAM) -
(PF00104 // 
Ligand-
binding 
domain of 
nuclear 
hormone 
receptor) 

domain     

MutationAssessor_Pr
ediction 

FAM_Fimpa
ct(M) 

Predicted 
Funtional 
Impact 
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(High) 
Polyphen_Prediction   polyphen     
SIFT_Prediction   sift    SIFTClass 
MSA_Link FAM_link_

MSA 
      

PDB_Link FAM_link_P
DB 

      

dbSNP_ID dbSNP_RS  dbSNP_RS  dbSNP   
Mapping_ID        
Entrez_Gene_ID Entrez_Gene

_Id (2041) 
 Entrez_Gene

_ID (1956) 
Entrez Gene ID 
(3845) 

   

Swissprot_AC_ID   Swissprot_A
CC_ID 

Swissprot ID 
(P01116) 

   

Swissprot_Entry_ID    
Swissprot_E
ntry_ID 

    

Ensembl_Gene_ID    Ensembl Gene 
ID 
(ENSG0000017
6601) 

 Ensembl_Gene_I
D 

 

Transcript_ID transcript_na
me_WU 

 TranscriptID Gene_Name(EN
ST);Accession 
Number (ENST) 

 Transcript_affect
ed 

 

Refseq_ID  Refseq ID 
(NM_00004
4) 

Refseq_Prot
_ID 

Gene_Name 
(NM_, XM_) 

   

Pfam_Accession_ID FAM_Pfam_
domain 

Affected 
domain 
(PFAM) - 
(PF00104 // 
Ligand-
binding 
domain of 
nuclear 
hormone 
receptor) 

     

PubMed_ID    Pubmed ID   PubMed 
Ethnicity     Ethnicity  Ethnicity 
Cancer_Type     Breast Cancer Cancer 

Type(Chronic 
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Lymphocytic 
Leukemia 
(ISC/MICINN, 
ES)) 

Primary_Site    Primary Site   Topography 
Sample_Name       Sample_Na

me 
Sample_Source    Sample_Source   Sample_Sou

rce 
Primary_Histology    Primary_Histolo

gy 
   

Site_Subtype_1    Site_Subtype_1    
Site_Subtype_2    Site_Subtype_2    
Site_Subtype_3    Site_Subtype_3    
Histology_Subtype_1    Histology_Subty

pe_1 
   

Histology_Subtype_2    Histology_Subty
pe_2 

   

Histology_Subtype_3    Histology_Subty
pe_3 

   

Sample_Type      Sample_Type  
Normal_Sample_ID      Matched_Sample

_ID 
 

Specimen_ID      Specimen_ID  
Specimen_Type      Specimen_Type  
Gender      Sex Sex 
Age_at_Diagnosis      Age_at_Diagnosi

s 
Age 

Age_at_Enrollment      Age_at_Enrollme
nt 

 

Population      Population  
Country     Nationality Country  
Geo_Area      Geo_Area  
Family_History      Family_History  
Tobacco      Tobacco  
Alcohol      Alcohol  
Exposure      Exposure  
Infectious_Agent      Infectious_Agent  
Depositor     Depositor   
Number_Reported     Number_Repor   
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ted 
Contact_Person     Contact_Perso

n 
  

Tumour_Source    Tumour_Source    
Tumor_Seq_Allele1   Tumor_Seq_

Allele1 
    

Tumor_Seq_Allele2   Tumor_Seq_
Allele2 

    

Tumor_Sample_Barc
ode 

  Tumor_Sam
ple_Barcode 

    

Matched_Norm_Sam
ple_Barcode 

  Matched_No
rm_Sample_
Barcode 

    

Match_Norm_Seq_A
llele1 

  Match_Nor
m_Seq_Allel
e1 

    

Match_Norm_Seq_A
llele2 

  Match_Nor
m_Seq_Allel
e2 

    

Tumor_Validation_A
llele1 

  Tumor_Vali
dation_Allel
e1 

    

Tumor_Validation_A
llele2 

  Tumor_Vali
dation_Allel
e2 

    

Match_Norm_Valida
tion_Allele1 

  Match_Nor
m_Validatio
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