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The emergent consensus on dimensional models of sentiment, appraisal, emotions, and values is on the semantics of the principal
dimensions, typically interpreted as valence, arousal, and dominance. The notion of weak semantic maps was introduced recently
as distribution of representations in abstract spaces that are not derived from human judgments, psychometrics, or any other a
priori information about their semantics. Instead, they are defined entirely by binary semantic relations among representations,
such as synonymy and antonymy. An interesting question concerns the ability of the antonymy-based semantic maps to capture
all “universal” semantic dimensions. The present work shows that those narrow weak semantic maps are not complete in this
sense and can be augmented with other semantic relations. Specifically, including hyponym-hypernym relations yields a new
semantic dimension of the map labeled here “abstractness” (or ontological generality) that is not reducible to any dimensions
represented by antonym pairs or to traditional affective space dimensions. It is expected that including other semantic relations
(e.g., meronymy/holonymy) will also result in the addition of new semantic dimensions to the map. These findings have broad
implications for automated quantitative evaluation of the meaning of text and may shed light on the nature of human subjective

experience.

1. Introduction

The idea of representing semantics geometrically is increas-
ingly popular. Many mainstream approaches use vector
space models, in which concepts, words, documents, and
so forth are associated with vectors in an abstract multi-
dimensional vector space. Other approaches use manifolds
of more complex topology and geometry. In either case,
the resultant space or manifold together with its allocated
representations is called a semantic space or a semantic
(cognitive) map. Examples include spaces constructed with
Latent Semantic Analysis (LSA) [1] and Latent Dirichlet
Allocation (LDA) [2], as well as many related techniques, for
example, ConceptNet [3, 4]. Other examples of techniques
include Multi-Dimensional Scaling (MDS) [5], including
Isomap [6], and related manifold-learning techniques [7],
Gardenfors’ conceptual spaces [8], very popular in the past
models of self-organizing feature maps, and more.

The majority of these approaches are based on the idea
of a dissimilarity metrics, which is to capture semantic

dissimilarity between representations (words, documents,
concepts, etc.) with a geometrical distance between associ-
ated space elements (points or vectors). In other words, the
metrics that determines the allocation of representations in
space is a function of their semantic dissimilarity. In this case,
two representations allocated at close points in space must
have similar semantics and vice versa: two representations
with similar semantics must be close to each other in space.
Conversely, representations unrelated to each other must be
separated by significant distance.

We introduced the term “weak semantic cognitive map-
ping” to denote an alternative approach, exploited here,
which is not based on dissimilarity [9-11]. The idea is not to
separate all different meanings from each other (like in MDS),
nor to allocate them based on their individual semantic
characteristics given a priori (as in LSA), but rather to arrange
them in space based on their mutual semantic relations.
The notion of weak semantic cognitive maps was originally
introduced in a narrow sense, where these relations were
limited to synonymy and antonymy only [9-11]. In a more



general sense, as discussed below, weak semantic cognitive
maps may capture other binary semantic relations as well,
including hypernymy-hyponymy, holonymy-meronymy, tro-
ponymy, causality, and dependence.

While the understanding of dissimilarity as the basis of
antonymy is widespread, many examples of the dictionary
antonym pairs used in our analysis suggest that dissimilarity
and antonymy are distinct notions. Most unrelated words
may be considered dissimilar (e.g., “apple” and “inequality”),
yet do not constitute antonym pairs. In contrast, antonym
pairs include words that are related to each other and in a
certain sense are similar to each other in their meaning and
usage, for example, king and queen, major and minor, and
ascent and descent. It appears that most antonym pairs (at
least in the dictionaries that we used) are consistent with the
notion of “opposite” rather than “dissimilar”

More generally, the method of weak semantic map-
ping is essentially different from most vector-space-based
approaches including LSA, LDA, MDS, and ConceptNet [1-
4], primarily because there is no a priori attribution of seman-
tic features to representations in the constructive definition
of the map. Only relations, but not semantic features, are
given as input. As a result, semantic dimensions of the map
that are not predefined to emerge naturally, starting from
a randomly generated initial distribution of words in an
abstract space with no a priori given semantics and following
the strategy to pull synonyms together and antonyms apart
(10, 11] (see Section 2: Methods). In contrast to LSA, principal
component analysis is used here to reveal the main emergent
semantic dimensions at the final stage only. The advan-
tage of the antonymy-based weak semantic cognitive map
compared to “strong” maps based on dissimilarity metrics
is that its dimensions have clearly identifiable semantics
(naturally given by the corresponding pairs of antonyms) that
are domain-independent. For example, the notion of “good
versus bad” that corresponds to the first principal component
applies to all domains of human knowledge.

Interestingly, semantics of the emergent dimensions of
antonym-based weak semantic cognitive maps are closely
related to those of another broad category of “dimensional
models” of affects [12] that attempt to capture human
emotions, feelings, affects, appraisals, sentiments, and atti-
tudes. Examples range from original classical models such
as Osgood’s semantic differential [13], Russell’s circumplex
[14], and Plutchik’s wheel [15] to many more recent deriva-
tive integrated frameworks, like PAD (pleasure, arousal,
and dominance) [16], ANEW (Affective Norms for English
Words) [17], EPA (evaluation, potency, and arousal) [18], and
a recent 3D model linking emotions to main neurotrans-
mitters [19]. These dimensional models are usually derived
from human experimental studies involving psychometrics
or introspective judgment evaluated on the Likert scale [20].
While these models provide the most common bases for
opinion mining or sentiment analysis [21], the weak semantic
map is more complete in the sense that (i) it assigns values
to all words, not only to emotionally meaningful words, (ii)
it measures semantics associated with all antonym pairs, not
only emotionally meaningful antonym pairs, and therefore
is applicable to all domains of knowledge, and (iii) its
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dimensions are orthogonal and independent of each other.
The combination of these features makes weak semantic maps
extremely valuable for numerous applications.

It is surprising that the well-known dimensions of the
semantic differential, PAD, EPA, and related models can
be recognized in the main principal components (PC) of
the above cited weak semantic map, where PCl is related
to valence, PC2 to arousal, and PC3 to dominance [11].
(This correspondence is approximate, because the principal
components have zero correlations with each other, while
the variables of, e.g., ANEW are strongly correlated.) For
example, “love” and “joy” have top values of valence in the
affective database ANEW and also top values of PCI of weak
semantic cognitive map. Words like “anger” and “excitement”
have top values of arousal in the affective database ANEW
and also top values of PC2 in weak semantic cognitive map.
This correspondence is consistent in weak semantic maps
constructed based on different corpora in several major
languages [11]. The observation is unexpected, because the
weak semantic map is not derived from any semantic features
of words given a priori, and is not explicitly related to
emotions and feelings by its construction. In fact, any pair of
antonyms defines a map dimension, including antonym pairs
that are not associated with affects, for example, “abstract-
specific” It is also surprising that the weak semantic map is
low-dimensional: the number of PCs that account for 95%
of the variance of the multidimensional distribution typically
varies from 4 to 6, depending on the corpus [11].

How complete is the weak semantic map narrowly
defined only by antonym pairs? Certainly at least some
semantic differences cannot be captured by antonymy rela-
tions, because not all concepts have antonyms (e.g., the
number 921714083). Here we address a different question:
whether all universal semantic dimensions can be captured
by antonymy relations. For example, it may seem obvious that
causality cannot be captured by antonymy. However, the issue
is nontrivial, as there are many examples of causally related
antonyms (e.g., attack-defend, begin-end, send-receive, and
even cause-effect). Thus, two logical possibilities stand.

(1) Antonym-based semantic maps separate representa-
tions along all semantic dimensions that make sense
for all domains of knowledge. Thus, if there is a
semantic characteristic X that makes sense for all
domains of knowledge such that some concepts can
be characterized as having more X than others, then
there is a direction on the narrow weak semantic map
along which those concepts are separated based on
their value of X.

(2) The alternative: there is at least one general seman-
tic characteristic X defined for all domains that is
ignored by the antonym-based weak semantic map.
In other words, the variance in X measured across
all concepts is not accounted by the map coordinates
of concepts, and vice versa, no significant part of the
variance of the map can be accounted by X.

Here we argue for (2), quantifying the notion of “abstract-
ness” (or ontological generality) as an example of X. Our
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FIGURE 1: A sample from the antonymy-based weak semantic
cognitive map constructed by Samsonovich and Ascoli [11]. Grey
dots show all 15,783 words from the MS Word English dictionary.
Similar results were obtained by WordNet. Words shown in color
are examples of hypernym-hyponym pairs: “action-withdrawal” and
“object-screw.” Selected examples illustrate that there is no clear
separation of hypernyms and hyponyms on the map.

technical definition of “abstractness” is based on hyponym-
hypernym relations among words.

Before presenting results of the computational study, we
briefly discuss the hypothesis at an intuitive level. While
“abstract-specific” is a pair of antonyms, which corresponds
to a direction on the narrow weak semantic map, the two
antonyms “abstract” and “specific” themselves have approx-
imately the same measure of “abstractness” (the X value)
associated with them. Intuitively, this observation must hold
for most antonym pairs, because antonyms pairs do not
typically constitute a hypernym-hyponym couple. Therefore,
it is unlikely that there is a hyperplane on the map that
separates more abstract from more specific words. Therefore,
we do not expect to find a dimension of the map based
on synonyms and antonyms that could separate words by
“abstractness” (see Figure 1). In contrast, there is a hyperplane
(PC1 = 0) that separates “good” and “bad” words and a
hyperplane (PC2 = 0) that separates “calming” and “exciting”
words. That is to say, “good words” tend to be synonyms of
the word “good,” but “abstract words” are not synonyms of
the word “abstract” or of each other.

2. Methods

2.1. Weak Semantic Cognitive Mapping. The general idea of
semantic cognitive mapping is to allocate representations
(e.g., words) in an abstract space based on their semantics.
This paradigm is common for a large number of techniques
overviewed in Introduction. While most studies in semantic
cognitive mapping are based on the notion of a dissimilarity
metrics and/or on a set of semantic features given a priori,
weak semantic mapping ignores dissimilarity as well as any
individually predefined semantics.

The algorithm for antonymy-based weak semantic map-
ping is described in our previous work [11]. The semantic
space is created by minimization of the “energy” of the entire
distribution of words on the map, starting from a random dis-
tribution. Then, the emergent semantics of the map dimen-
sions are defined by the entire distribution of representations
on the map and typically are best characterized by the pairs of
antonyms that are separated by the greatest distance along the
given dimension. The main semantic dimensions are defined
by the principal components of the emergent distribution
of words on the map. Semantics associated with the first
three PCs can be characterized as “good” versus “bad” (PCl),
“calming, easy” versus “exciting, hard” (PC2), and “free,
open” versus “‘dominated, closed” (PC3) [11]. When limited
to affects, these semantics approximately correspond to the
three PAD dimensions: pleasure, arousal, and dominance.

More precisely, the narrow weak semantic cognitive map
is a distribution of words in an abstract vector space (with no
semantics preassociated with its elements or dimensions) that
minimizes the following energy function [11]:

1 N 1N 4 N D
H(x):—zzmjxi-xj+12|xi|, xeRVoR". (1)
ij=1 i=1

Here x; is a D-vector representing the ith word (out of
N). The W;; entries of the symmetric relation matrix equal
+1 for pairs of synonyms, -1 for pairs of antonyms, and zero
otherwise. D is set to any integer (e.g., 100) that is substantially
greater than the number of resulting significant principal
components of the distribution, which typically ranges from
4 to 6 and determines the dimensionality of the map. In
this case the choice of D does not change the outcome. The
energy function (1) follows the principle of parsimony: it is
the simplest analytical expression that creates balanced forces
of desired signs between synonyms and antonyms, preserves
symmetries of semantic relations, and increases indefinitely
at the infinity, keeping the resultant distribution localized
near the origin of coordinates.

The procedure is that the initial coordinates of all words
are sampled by a random number generator. Then the energy
(1) minimization process starts that pulls synonym vectors
together and antonym vectors apart. Then principal compo-
nent analysis is used to reveal the main emergent semantic
dimensions of the optimized map [10, 11]. Thus, the initial
space coordinates are not associated with any semantics a
priori: instead, words are allocated randomly in an abstract
multidimensional space. In contrast, the starting point of
traditional techniques based on LSA [1, 22] is a feature space,
where dimensions have definite semantics a priori.

The representative weak semantic map shown in Figure 1
includes N = 15,783 words and was constructed based on
the dictionary of English synonyms and antonyms available
as part of Microsoft Word (MS Word) [11]. A similar map was
also constructed using WordNet in the same work [11] and is
also used in this study, together with maps constructed in [11]
for other languages. Figure 1 represents the first two PCs of
the distribution of words on the map constructed using the
English MS Word thesaurus. The axes of the map are defined
by the PCs. Selected words shown on the map in black at
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FIGURE 2: Distribution histogram of the 124,408 WordNet 3.0 words
along the “abstractness” dimension.

TaBLE 1: The tails of the list 0f 124,408 words sorted by “abstractness”
in descending order.

The beginning of the list The end of the list
Entity Chain wrench
Physical entity Francis turbine

Psychological feature Tricolor television tube

Auditory communication Tricolor tube

Unmake Tricolour television tube
Cognition Tricolour tube
Knowledge Edmontonia
Noesis Coelophysis
Natural phenomenon Deinocheirus
Ability Struthiomimus
Social event Deinonychus
Craniate Dromaeosaur
Vertebrate Mononychus olecranus
Higher cognitive process Oviraptorid
Physiological property Superslasher
Mammal Utahraptor
Mammalian Velociraptor

their map locations characterize the semantics of the map.
The two hypernym-hyponym pairs, “object-screw” (shown in
pink) and “action-withdrawal” (in blue), illustrate the map
inability to capture the “abstractness” dimension, confirmed
quantitatively by correlation analysis in the next section.
It should be pointed out here that the negative valence of
“object” can be attributed to the meaning of the verb “object”
that is merged with the noun “object” on this string-based
semantic map.

2.2. Measuring the “Abstractness” of Words. Here we refer to
the “abstractness” of a concept as its ontological generality.
The WordNet database contains information that allows
us to arrange English words on a line according to their
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“abstractness” (or ontological generality). This information
is contained in the hyponym-hypernym relations among
words. The goal is to separate hypernym-hyponym pairs in
one dimension tentatively labeled “abstractness,” so that each
hyponym has a lower “abstractness” value compared to its
hypernyms. Given a consistent hierarchy, a solution would be,
for example, to interpret the order of a word in the hierarchy
as a measure of its “abstractness” Unfortunately, the system
of hyponym-hypernym relations among words available in
WordNet is internally inconsistent: it has numerous loops
and conflicting links. Therefore, we use an optimization
approach analogous to the antonymy-based weak semantic
mapping based on (1). The underlying idea is to give each
word i its “abstractness” coordinate x; in such a way that the
overall correlation between the difference in word “abstract-
ness” coordinates x and the reciprocal hypernym-hyponym
relations of the two words is maximized. Unfortunately, an
energy function similar to H (1) cannot be used here, because
the symmetry of hypernym-hyponym relations is different
from the symmetry of antonym and synonym relations.
Nevertheless, we showed in previous work [23] that the goal
can be achieved by using the following definition of word
“abstractness” values {x}:

X = argmin i W (xl- —Xxj- 1)2 + sziz , (2
R” ij=1 i=1

where n is the number of words, p is a regularization
parameter, and W;; = 1 if the word i is a hypernym of the
word j and zero otherwise. Here the first sum is taken over
all ordered hyponym-hypernym pairs.

The publicly available WordNet 3.0 database (http://
wordnet.princeton.edu/) was used in this study. The hyper-
nym-hyponym relations among n = 124,408 English words
were extracted from the database as a connected graph
defining the matrix W, which was used to compute the energy
function (2). Optimization was carried out with standard
MATLAB functions, as described in [23].

3. Results

3.1. Measuring Correlations of Augmented Map Dimensions.
The one-dimensional semantic map of “abstractness” was
computed as described in Section 2. The resultant distribu-
tion of 124,408 WordNet words in one dimension is shown in
Figure 2. The two ends of the sorted list of words along their
“abstractness” are given in Table 1.

This map was then combined with several antonymy-
based weak semantic maps that are previously constructed
[11]. The “abstractness” map was merged with any given
narrow weak semantic map as the following. First, the set of
words was limited to those that are common for both maps.
Then, the augmented map was defined as a direct sum of the
two vector spaces; that is, the “abstractness” dimension was
added as a new word coordinate.

The resultant augmented maps were used to com-
pute the correlation between “abstractness” and other map
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FIGURE 3: Correlations of “abstractness” with principal components of the antonymy-based weak semantic cognitive maps. (a) The map
constructed using WordNet 3.0; (b) the map constructed using the Microsoft Word thesaurus.

TABLE 2: Pearson correlation coefficient R and the corresponding accounted variance (R?) of “abstractness” with PC1: valence, PC2: arousal,
and PC3: freedom/dominance, measured in four augmented maps constructed based on WordNet 3.0 and the MS Word English, French, and

German thesauri.

PCl: valence

PC2: arousal PC3: freedom, dominance

R R’ R R? R R?
WordNet 0.09 0.8% -0.07 0.5% -0.01 0% (NS)
MS Word English 0.12 1.4% 0.01 0% (NS) -0.03 0.1% (NS)
MS Word French 0.11 1.2% 0.02 0% (NS) 0.01 0% (NS)
MS Word German 0.14 2.0% -0.02 0% (NS) 0 0% (NS)

dimensions. The main question was how, if at all is the new
“abstractness” dimension related to the principal components
of the antonymy-based weak semantic map? Figure 3 illus-
trates the scatterplots of word “abstractness” values derived
from WordNet with the dimensions of narrow weak semantic
maps derived from WordNet data (Figure 3(a)) and from MS
Word (Figure 3(b)). The Pearson correlation coefficient R and
the corresponding accounted variance R” are given in Table 2
for each PC.

Similar results were obtained for augmented weak seman-
tic maps in other languages (constructed based on the MS
Word thesaurus as described in [11]): French (Figure 4(a))

and German (Figure 4(b)). Automated Google translation
was used to merge maps in different languages.

In all cases “abstractness” is only positively correlated
with valence (P < 107% in all corpora), while none of the
correlation coefficients with the other two dimensions
(arousal and freedom) are statistically significant in a con-
sistent way across corpora. Even in the case of valence, the
correlation coefficient remains small (Table 2). This finding
is further addressed in Section 4.

Opverall, the results (Figures 3 and 4) show that the new
“abstractness” dimension is practically orthogonal to the
narrowly defined weak semantic map dimensions. Indeed,
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FIGURE 4: Correlations of “abstractness” with principal components of the antonymy-based weak semantic cognitive maps in other languages.
(a) The map constructed using the French dictionary of MS Word. (b) The map constructed using the German dictionary of MS Word.

in most cases the correlation is not significant. In the
minority of the cases where the correlation is statistically
significant, the correlation coefficient is sufficiently small as
to become marginal. Specifically, little information is lost by
disregarding the fraction of the variance of the distribution
of words on the weak semantic map accounted by the word
“abstractness” or, vice versa, the fraction of the variance in
the word “abstractness” accounted by the weak semantic map
dimensions (Table 2).

In conclusion, the previous weak semantic map dimen-
sions do not account for a substantial fraction of variance in
“abstractness,” and word “abstractness” values do not account
for a substantial fraction of variance in the distribution of
words on antonymy-based weak semantic maps.

3.2. Examples of Document Mapping with the Augmented
Semantic Map. Traditionally, only the valence dimension
is used in sentiment analysis. At the same time, other
dimensions including “abstractness” are frequently indi-
cated as useful (e.g., [24]). We previously applied the
weak semantic map to analysis of Medline abstracts [25].
As an extension of that study, we now applied the aug-
mented semantic map to analyze various kinds of docu-
ments.

Using the MS Word English narrow weak semantic map
merged with the WordNet-based “abstractness” map, this
part of the study asked the following key research questions:
how informative is the new dimension compared to familiar
dimensions at the document level? Specifically, how well are
different kinds of documents separated from each other on
the augmented map compared to the narrow weak semantic
map? How capable is the new “abstractness” dimension
compared to antonymy-based dimensions in terms of doc-
ument separation? Being aware of more advanced methods
of sentiment analysis [21, 26], here we adopted the simplest
“bag of words” method (computing the “center of mass” of
words in the document, not to be confused with LSA). This
parsimonious choice is justified because at this point we are
interested in assessing the value of the new dimension com-
pared to familiar dimensions of the narrow weak semantic
map, rather than achieving practically significant results.

For each document, the average augmented map coor-
dinates of all words were computed, together with the
standard error in each dimension. The results are represented
in Figure 5 by crossed ovals, with the center of the cross
representing the average and the size of the oval representing
the standard error (i.e., the standard deviation divided by
the square root of the number of identified words). The
large black crosses in each panel represent the average of
all words in the dictionary weighted by their overall usage
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FIGURE 5: Representations of 13 documents (details in the text) on the augmented semantic map. The Pearson correlation coeflicient R and
the corresponding P value were computed for each panel. None of the correlations are significant. (a) Valence versus “abstractness,” R = 0.54,
P = 0.06. (b) Arousal versus “abstractness,” R = 0.50, P = 0.09. (c) Arousal versus valence, R = 0.54, P = 0.057. (d) Richness (PC4) versus

freedom (PC3), R = 0.46, P = 0.12.

frequency, not limited to materials of this study and derived
as in [11]. Colors and numbers of ovals in Figure 5 correspond
to RGB values and item numbers given in the following list of
corpora:

(1) Project Gutenbergs A Text-Book of Astronomy,
by George C. Comstock (http://www.gutenberg.org/
files/34834/34834-0.txt), 9626 words, rgb = (0, 0, 6);

(2) Martha Stewart Living Radio Thanksgivings Hotline
Recipes 2011 (http://www.hunt4freebies.com/free-
martha-stewart-thanksgiving-recipes-ebook-down-
load), 2091 words, rgb = (0, 0, 9);

(3) Al QaidaInspire Magazine Issue 9 (http://www.en.wi-
kipedia.org/wiki/Inspire_(magazine)), 2555 words,
rgb = (0, 2, 10);

(4) A suicide blog (http://www.tumblr.com/tagged/suic-
ideblog), 387 words, rgb = (0, 5, 10);

(5) 152 Shakespeare sonnets [27], 4170 words, rgb = (0, 8,
10);

(6) The Hitchhiker’s Guide to the Galaxy, by Douglas Ad-
ams (http://www.paulyhart.blogspot.com/2011/10/hi-
tchhikers-guide-to-galaxy-text_28.html), 4187 words,
rgb = (1,10, 9);

(7) 10 abstracts of award-winning NSF grant propos-
als (downloaded from http://www.nsf.gov/award-
search), 585 words, rgb = (4, 10, 6);

(8) 196 reviews of the film “Iron Man’, 2008 (http://www.
mrqe.com/movie_reviews/iron-man-m100052975/),
3902 words, rgb = (8, 10, 2);

(9) 170 reviews of the film “Superhero Movie”, 2008
(http://www.mrqe.com/movie_reviews/superhero-
movie-m100071304/), 2204 words, rgb = (10, 9, 0);



(10) 160 reviews of the film “Prom Night’, 2008
(http://www.mrqe.com/movie_reviews/prom-night-
m100076394/), 2114 words, rgb = (10, 6, 0);

(11) 47 anecdotes of/about famous scientists (retri-
eved from http://jcdverha.home.xs4all.nl/scijokes/10
.html), 919 words, rgb = (10, 3, 0);

(12) transcript of Obama’s speech at the DNC on
September 6, 2012 (http://www.foxnews.com/poli-
tics/2012/09/06/transcript-obama-speech-at-dnc),
491 words, rgb = (10, 0, 0);

(13) “Topological strings and their physical applica-
tions,” by Andrew Neitzke and Cumrun Vafa (http://
www.arxiv.org/abs/hep-th/0410178v2), 1909 words,
rgb =(7,0,0).

The selected documents are mostly well separated in
3 dimensions, including valence (PCl), arousal (PC2), and
“abstractness” (Figure 5). At the same time, the ovals more
frequently overlap on the plane freedom-richness (PC3-
PC4). Visually, “abstractness” is approximately as efficient as
valence (PCl) in its ability to separate documents and appears
to be more efficient than other dimensions; however, the oval
separation on the valence-arousal projection (Figure 5(c))
looks slightly better than on the valence-“abstractness” pro-
jection (Figure 5(a)). This observation suggests that disre-
garding “abstractness” may not significantly affect the quality
of results, while disregarding valence would substantially
impair the quality of document separation (e.g., on the
“abstractness-"arousal plane, Obama’s speech overlaps sub-
stantially with the suicide blog, while valence separates the
two documents significantly).

Differences between the above 13 documents along these
5 dimensions were quantified with analysis of variance.
Specifically, the MANOVA P value was 0.027, suggesting that
all five semantic dimensions are mutually independent in
characterizing the selected 13 corpora. Moreover, in order
to compare how informative different semantic dimensions
are relative to each other, two sets of characteristics were
computed (Table 3), namely, (i) the ANOVA P values to reject
the null hypothesis that all 13 corpora have the same mean in
each selected semantic dimension and (ii) the MANOVA P
values to reject the null hypothesis that the means of all 13
corpora belong to a low-dimensional hyperplane within the
space of all but one semantic dimensions.

These results can be interpreted as follows. The lower the
P value for ANOVA is, the more informative the selected
semantic dimension is. On the contrary, the lower the P value
for MANOVA is, the less informative the selected semantic
dimension is, because MANOVA was computed in the space
of all semantic dimensions except the one selected. Therefore,
results represented in Table 3 indicate that “abstractness”
(dimension 0) is nearly as informative as valence (dimension
1) and could be more informative than arousal (dimension
2, based on ANOVA only), freedom (dimension 3), and
richness (dimension 4). More data are needed to verify this
interpretation.
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4. Discussion

Statistical analysis indicates that “abstractness” is positively (if
marginally) correlated with valence consistently across cor-
pora, which is not the case with other semantic dimensions.
On the one hand, the amount of variance in the distributions
of words that can be attributed to interaction between valence
and “abstractness” is not substantial (only 2% of variance
or less); therefore, the two dimensions can be considered
orthogonal for practical purposes. On the other hand, the
consistent significance of this negligibly small correlation
across datasets and languages indicates that there may be a
universal factor responsible for it. This factor could be the
usage frequency of words that affects the probability of word
selection for dictionaries. Stated simply, abstract positive
words and specific negative words are used more frequently
than abstract negative words and specific positive words.
Specifically, our previous study [11] showed that the mean
valence (normalized to unitary standard deviation) of all
words weighted by their usage frequency is significantly posi-
tive (0.50 using frequency data from a database of Australian
newspapers and 0.59 using frequency data from the British
National Corpus). Using the results in the present study, the
mean normalized “abstractness” is between 0.99 (weighted by
“Australian” frequency) and 1.39 (weighted by “British” fre-
quency). An equivalent explanation is that abstract words and
positive words are both used more frequently than specific
words and negative words. Specifically, the correlation with
frequency is small but significantly positive both for valence
(0.064 Australian, 0.061 British) and for “abstractness” (0.036
Australian, 0.019 British). This interpretation is consistent
with data at the level of documents (Figure 5(a)), where
the correlation coefficient is even higher, yet not significant
(not shown). Another potential source of correlation is the
selection of words for inclusion in dictionaries. It seems,
however, counterintuitive that the overall picture should be
affected by marginal inclusions of rare words. Nevertheless, it
would be interesting to check elsewhere how the correlation
changes across sets of words found in various types of
documents.

The method of weak semantic mapping is an alterna-
tive to other vector-space-based approaches including LSA,
LDA, MDS, and ConceptNet [1-4], primarily because (i)
no semantic features of words are given as input and (ii)
the abstract space of the map has no semantics associated a
priori with its dimensions. It is therefore not surprising that
emergent semantic features (dimensions) in weak semantic
mapping are substantially different from emergent semantic
dimensions obtained by LSA and related techniques: the latter
are typically domain specific and harder to interpret [22].

From another perspective, it is interesting that emergent
semantic dimensions of a weak semantic map are so familiar.
All generally accepted dimensional models of sentiment,
appraisal, emotions and values, attitudes, feelings, and so
forth converge on semantics of their principal dimensions,
typically interpreted as valence, arousal, and dominance
[12-14, 16-18]. Antonymy-based weak semantic mapping
appears to be consistent with this emergent consensus [9-
11], despite the stark difference in methodologies (human
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TaBLE 3: ANOVA and MANOVA P values for selected semantic dimensions characterizing the means of the 13 corpora. Dimensions are
numbered as follows: 0, “abstractness”, 1, PC1 (valence), 2, PC2 (arousal), 3, PC3 (freedom/dominance), and 4, PC4 (richness).

Semantic Dimension 0 1 2 3 4
One dimension, ANOVA 1.2e — 36 5.9e — 57 3.1e - 15 2.1e—-7 6.2e — 11
All but one, MANOVA 0.018 0.040 0.041 5le—7 lde—-7

judgment or psychometrics versus automated calculations
based on subject-independent data). The number of semantic
dimensions, or factors, used in the literature varies from
2 to 7, which roughly corresponds to the variability in the
number of significant principal components of the narrow
weak semantic map [11]. Why do antonyms relating to the
“dimensional models” of affect, and not others, make for good
PCs? This interesting question remains open and should be
addressed by future studies.

The present study unambiguously demonstrates the
inability of narrow weak semantic maps to capture all univer-
sal semantic dimensions. Here we presented one dimension,
“abstractness,” that is not captured by “antonymy-" defined
weak semantic maps. This is due to the fact that, in general,
hypernym-hyponym pairs are not antonym pairs and vice
versa. Therefore, hypernym-hyponym relations cannot be
captured with the map defined by antonym relations, and the
map needs to be augmented. The example of “abstractness”
that we found is probably not unique: we expect a similar
outcome for the holonym-meronym relation, which will be
addressed elsewhere. Our previous results indicated that
antonym relations are essential for weak semantic mapping,
while synonym relations are not [28].

Thus, the present work shows that narrow weak semantic
maps (and related dimensional models of emotions) are
not complete in this sense and need to be augmented by
including other kinds of semantic relations in their definition.
A question remains open as to whether any augmented
semantic map may be considered complete—or there will
always be new semantic dimensions that can be added to
the map. We speculate that there exists a complete finite-
dimensional weak semantic map. Moreover, the number of
its dimensions can be relatively small. This is because the
number of distinct semantic relationships in natural language
is limited, as is the number of primary categories [29], or
the number of primary semantic elements of metalanguage
known as semantic primes [31, 32]. This notion of “complete-
ness,” however, may only be applicable to a limited scope, for
example, all existing natural languages.

We found that hyponym-hypernym relations induce a
new semantic dimension on the weak semantic map that
is not reducible to any dimensions represented by antonym
pairs or to the traditional PAD or EPA dimensions. Its
tentative labeling as “abstractness” or ontological generality,
however, remains speculative. In any case, it is not our
ambition here to define the notion of “abstractness” or to
establish a precise connection between the real notion of
abstractness and our new “abstractness” dimension, a topic
that should be addressed elsewhere.

Findings of this study have broad implications for
automated quantitative evaluation of the meaning of text,

including semantic search, opinion mining, sentiment analy-
sis, and mood sensing, as exemplified in Figure 5 and Table 3.
While multidimensional approaches in opinion mining are
nowadays popular, the problem is finding good multidi-
mensional ranking of all words in the dictionary. Tradi-
tional bootstrapping methods (e.g., based on cooccurrence
of words) to extend the ranking of positivity from a small
subset of words to all words may not work, for example, for
“abstractness.” The approach presented here should be useful
for such applications.

Finally, we speculate that this approach may shed light on
the nature of human subjective experience [30] by revealing
fundamental semantics of qualia as PCs of the weak semantic
cognitive map. In addition, we suggest other connections of
our findings, for example, to semantic primes [31, 32].
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