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ABSTRACT 

USING OPERATIONAL PATTERNS TO INFLUENCE ATTACKER DECISIONS ON 

A CONTESTED TRANSPORTATION NETWORK 

Daniel E. Stimpson, Ph.D. 

George Mason University, 2017 

Dissertation Director: Dr. Rajesh Ganesan 

 

The recent counterinsurgency (COIN) campaigns conducted in Iraq and 

Afghanistan motivate this dissertation which examines how reinforcement learning can 

be applied to the conduct of continuous military operations on a contested road network 

under the constant threat of attack by ambush.  Specifically, this research studied the 

application of reinforcement learning (RL) methods to learn operational dynamics 

important to route selection and timing that improve network defender performance. 

Recent warfare has been characterized by ambushes with concealed bombs – 

known as improvised explosive devices (IEDs) – used to disrupt and harass military 

operations on the roadways of Iraq and Afghanistan.  If history provides any indication of 

the future, it is reasonable to expect that U.S. forces will likely be engaged in these kinds 

operations again. 

The IED ambush is the attacker’s prediction of the future.  The choices of time, 

place, and technique of attack are made based on the attacker’s expectation of an attack 
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opportunity.  Accordingly, it is natural to ask how he came to his conclusion.  That is, 

what did he observe that led him to his particular conclusion?  Further, we should back 

up and ask if he had observed something different, how would his attack decision have 

changed?  Here we are asking the counterfactual question, what would have happened if 

the target (hereafter referred to as the defender) had operated differently?  In this way, the 

problem being addressed goes beyond the tactical problem of maximizing IED detection 

and avoidance, or minimizing damage and delay.  Rather the problem is one of using the 

defender’s operational choices (that are being observed by the attacker) as a direct means 

to shape the attacker’s expectations and therefore his subsequent actions.   

The foundation for this approach is the late Colonel John Boyd’s well known 

OODA loop conceptual model of warfare.  Boyd’s model, which is widely accepted in 

modern military theory, contains four recurring functions from which competitor 

behaviors emerge: Observation, Orientation, Decision, and Action.  The unique nature of 

the network counter-IED problem is that it is ongoing and repetitive with nearly constant 

interaction between the opponents who are engaged in their own individual OODA loop 

decision processes. 

Recurring military operations on roadways are such that the network defender 

cannot escape the observation of his attacker.  This gives the attacker a distinct 

advantage.  Therefore, any complete model of military logistic processes under contested 

conditions must not only provide solutions to the supply distribution problem, but also 

must address the IED ambush problem.  This dissertation seeks to incorporate the well-
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established OODA loop principles into a reinforcement learning scheme in order to craft 

improved operational plans. 

The general approach taken is to greatly relax the normal Vehicle Routing 

Problem (VRP) constraints in order to provide maximum flexibility in routing and timing 

choices.  The goal is to effectively address the attack problem by crafting vehicle 

movement patterns that satisfy the military distribution problem, but are principally 

oriented on shaping the attacker’s expectations and choices.  Thus, in contrast to most 

previous work, there is an explicit assumption of dependence between the defender’s 

actions and the attacker’s choices.  To date, this approach has not been pursued in the 

operations research (OR) literature in the context of vehicle routing and scheduling.  

RL is an algorithmic method for solving sequential decision problems where an 

agent learns through trial and error, interacting with its environment.  As such, the agent 

is connected to the environment via perception and action such that the agent seeks to 

discover a mapping of system states to optimal actions.  The goal of RL is to find a 

decision policy that maximizes the long-run measure of reinforcement which describes 

the goal to be achieved. 

This dissertation introduces and demonstrates a fundamental RL model for 

determining convoy schedules and route clearance assignments, in light of attack costs on 

a contested transportation network, subject to deliberate ambushes.  Our computational 

results show meaningful performance improvements over one-step, myopic decision 

rules.  Further, the decision policies that are discovered by the RL agent would be 

difficult for unaided human planners to duplicate.  Thus, our principle contribution to the 
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field of Operations Research is the development of an underpinning argument and model 

demonstration of a fundamentally different approach to address the attack prediction 

problem when conducting repetitive operations on a contested road network.  In this we 

have produced a learning algorithm that doesn’t just identifying statistically significant 

attack patterns and adjust to them, rather it seeks to learn from opponent interaction to 

influence and exploit attacker behavior. 
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CHAPTER ONE - INTRODUCTION 

Overview 
The recent counterinsurgency (COIN) campaigns conducted in Iraq and 

Afghanistan motivated this dissertation which examines how reinforcement learning (RL) 

can be applied to provide an improved model of military logistic operations on a 

contested road network.  Specifically, this research focused on the use of RL via 

approximate dynamic programming (ADP) to represent competitive interaction and 

improve defender outcomes by learning attacker behavior. 

Compared to conventional (force-on-force) conflicts, the protection of military 

logistic activities takes on greater significance during COIN operations. Historically, in 

COIN, insurgent attackers have intentionally sought to engage logistic units, seeing them 

as poorly defended targets that offer a high-payoff and even a potential source of 

supplies.  For example, in the 1930’s Mao Zedong expressed his belief that the enemy’s 

rear was the guerrillas’ front (U.S. Department of the Army, 2009).  Juxtaposed are the 

counterinsurgent defenders who generally operate from fixed bases and conduct regular 

transportation activities to maintain logistical support and conduct other military 

operations. 
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Figure 1: IED incident counts in IRAQ, 2003-2009 (Cordesman, 2015) 

 

Despite efforts to the contrary, modern, large-scale distribution practices can 

provide attackers with a nearly constant stream of targets, causing the domestic roadways 

to become the main battle area (U.S. Department of the Army, 2009).  Accordingly, the 

protection of military logistic activities can take on greater significance during COIN 

warfare compared to conventional conflicts.  This dynamic was clearly displayed in Iraq 

and Afghanistan, where insurgents commonly utilized concealed bombs, known as 

improvised explosive devices (IEDs)
1
 to routinely ambush coalition force maneuver with 

significant damaging effect (see Figure 1 and Figure 2).  In fact, from 2001 through 2013 

more than 60% of U.S. combat casualties were caused by IED ambushes (Barbaro, 2013).  

                                                 
1
 The term Improvised Explosive Device (IED) was introduced by the British in the 1970’s during their 

conflict with the Irish Republican Army (IRA) 
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If history is any indication of the future, it is reasonable to expect that U.S. forces will 

likely conduct similar operations and face similar challenges again in the future, making 

this an important and enduring military problem. 

 

 

Figure 2: IED attack counts in Afghanistan, 2009-2012 (International Security Assistance Force (ISAF), 2013) 

 

The Improvised Explosive Device 
Because of their low cost, ease of manufacture, and significant psychological 

effects, IEDs provide aggressors with a lethal means to maintain a facade of strength as 

they appear to freely choose the time and place of engagement against an established 
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power which they seek to portray as helpless and vulnerable.  Further, IEDs can take 

many forms because there are ample raw materials with which they are made.  From 

household chemicals to modified military ordnance, their construction can take virtually 

unlimited forms and their sheer simplicity often makes them hard to defeat, even with the 

most sophisticated equipment.   

In the recent Iraq and Afghanistan experiences, insurgent attackers continually and 

deliberately adapted countermeasures to overcome many of the latest and best military 

defensive strategies.  In fact, for more than a decade, this occurred almost naturally as 

IED technologies and tactics were developed and proliferated to counter coalition 

technologies and interrupt their freedom of movement.  Thus, despite billions of dollars 

invested to defeat IEDs, visual observation remained the most common and effective 

method of detecting their presence
2
 (Joint IED Defeat Organization, 2010). 

During this period, the proliferation of IEDs was such that they clearly became one 

of the attacker’s weapons of choice (see Figure 3).  But, IEDs are not new.  An early 

example of a coordinated, large-scale IED campaign was the Belarussian Rail War, 

launched by Belarussian guerrillas against the Germans during World War II.  Both 

command-detonated and delayed-fuse IEDs were used to derail thousands of German 

trains in 1943-44 (Stockfish & Yariv, 1970).  Also, during the Vietnam conflict, mines 

and booby traps killed more U.S. servicemen than IEDs did in Iraq and Afghanistan 

                                                 
2
 In response to the escalating use of IEDs in Iraq, in 2003 the Army Chief of Staff established the Army 

IED Task Force.  Then in February 2006, the Deputy Secretary of Defense established the Joint IED Defeat 

Organization (JIEDDO) under DoD Directive 2000.19E.  From 2006 through 2013 JIEDDO’s annual 

budget greatly exceeded $1 billion per year (Barbaro, 2012). 
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combined (Associated Press, 1970; Barbaro, 2013).
3,4

  Historically, IEDs have been used 

by the Irish Republican Army, the Medellin cartel, Hamas, Boko Haram, and others such 

that since 2001, across the globe, there have been tens of thousands of IED detonations 

per year with seemingly no end in sight (Barbaro, 2013). 

 

 

Figure 3: Categories of effective enemy-initiated attacks5 (EIAs) in Afghanistan, 2014-2015 (U.S. Department of 

Defense, 2015) 

 

                                                 
3
 According to the September 9, 1970 article cited (published before the end of the Vietnam conflict), 

Pentagon sources claimed half of the 43,000 killed to date died from booby-traps.  Separately, the official 

Pentagon estimate attributed 6,500 total deaths to mines, booby traps, and grenades.  In either case, this 

exceeds those reported as killed in action (KIA) by IEDs in both Iraq and Afghanistan to date. 
4
 As of May, 2014 at least 60 percent of U.S. combat casualties reported in Iraq and Afghanistan were due 

to IEDs, meaning approximately 3,200 were Killed in Action and 33,100 Wounded in Action by IEDs. 
5
 EIAs are a subset of security incidents that do not include any friendly-initiated actions. Effective attacks 

result in combat-related non-insurgent casualties (killed-in-action or wounded-in-action) which are a subset 

of all reported EIAs (U.S. Department of Defense, 2015).  Thus, the charted data do not include ineffective 

and unexploded IEDs (IEDs that exploded but caused no casualties and those found and cleared without 

detonating).  Historically these have far outnumbered the number of effective IEDs. 
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The Logistician’s Challenge 

“Good generals study tactics; great ones study logistics.” 

General Omar Bradley, U.S. Army 

The logisticians’ fundamental responsibility is to provide the right items, in the 

right quantity, to the right place, at the right time to support often widely dispersed 

military operations.  Thus, despite a threat of attack, they will always strive for the most 

efficient and timely deliveries possible.   

It is not hard to appreciate the significant challenges of maintaining a large 

distribution and mobility network under austere conditions across a foreign road network.  

Where infrastructure exists, there may be several alternative modes of transportation (i.e., 

maritime, rail, air, and surface) to move personnel and material throughout the 

distribution network.  But, even when all of these alternatives exist, the primary means of 

distribution has historically remained surface transportation over roadways, with trucks 

and armored vehicles.  In many cases, the distribution challenge is intensified due to poor 

infrastructure or even a total lack of improved roads where routes can be cross-country 

and ad hoc across open terrain. 

One way U.S. forces defended against the threat of IEDs was to form dedicated 

clearance units (Route Clearance Patrols or RCPs) to conduct periodic route clearing 

operations in a defensive effort to minimize their exposure and the impact of IED 

ambushes.  Since these route clearing resources were limited, their efforts typically 

focused on the roads with the highest perceived risk to find and neutralize as many IEDs 

as possible.  
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The OODA Loop 
One approach to designing attack prediction algorithms is to account for the 

critical activities leading to the attacker’s ambush decision as a means to understand his 

choices of time and place.  The late U.S. Air Force Colonel, John Boyd provided a 

framework to do this when he developed the well-known Observe-Orient-Decide-Act 

(OODA) Loop model through his studies of air-to-air combat, human knowledge 

acquisition, and competitive decision making.  He argued that, for people to make timely 

decisions, they “must be able to form mental concepts of observed reality, as [they] 

perceive it, and be able to change these concepts as reality itself appears to change” 

(Boyd, 1976).  Further, he noted that as people strive to build an accurate understanding 

of reality, they iteratively improve their understanding in a cycle of informational 

creation and destruction that is repeated until they arrive at an internally consistent 

perception of reality.  Finally, Boyd believed that the extent to which people are able to 

match their mental image to physical reality, determines the extent to which they can 

make informed decisions (Osinga, 2001).  

These insights are incorporated into Boyd’s OODA loop conceptual model of 

warfare, which contains the following four primary functions (Boyd, 1986): 

• Observation: The utilization of surveillance, reconnaissance, and other means 

to fill in knowledge gaps. 

• Orientation: The act of making sense of what is learned and building 

perceptions of reality. 

• Decision: Determining what course of action (COA) to pursue. 

• Action: The action taken to disrupt or destroy the opposing side’s functions. 
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Popularized interpretations of the OODA loop conceive of gaining advantage in 

competitive situations by out-pacing and out-thinking one’s opponent by means of 

repeatedly cycling though the OODA loop more rapidly than the opposing side (Osinga, 

2001).  In popular lexicon, it is often assumed that whichever side can operate “inside” of 

the other’s OODA loop (meaning operate faster) will gain the advantage and dictate the 

terms of the conflict (Weber, 2007).  While this concept is in keeping with Boyd’s ideas, 

to simply think of the OODA loop concept as a speed contest is a gross 

oversimplification of his strategic thinking and only a partial application of his theory  

(Osinga, 2001).  This common view of the OODA loop is illustrated in Figure 4. 

 

 

Figure 4: The simplified conception of John Boyd’s OODA loop (Osinga, 2001) 

 

The OODA loop is easy to comprehend, but it is based on a concept that runs 

much deeper than the popular conception.  Full understanding of it reveals that it 

provides a comprehensive framework in which to think about competitive human 
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undertakings, including modern warfare.  Further, it has been stated that “Boyd’s loop 

can apply to operational, strategic, and political levels of war” and that one of its great 

strengths is its “elegant simplicity” which makes it useful in many domains (Grey, 1999).  

This is why the OODA loop has become a well-accepted part of the conceptual 

mainstream of all western militaries (Osinga, 2001). 

There are several shortcomings of condensing Boyd’s theories to a simplified 

four-step loop.  First, such simplifications tend to emphasize speed in decision making.  

This obscures the complexity and richness of its governing themes.  Second, 

overemphasis on the basic OODA loop conceals Boyd’s broader ideas about developing 

organizations that are agile and adaptive so they can survive and prosper in the face of 

fierce competition.  Finally, oversimplifications can lead to thinking that the OODA loop 

is just a recipe to be followed when it represents a way of strategic thinking that is based 

on insights from history, science, philosophy, and other military theory (Osinga, 2001). 

As shown in Figure 5, Boyd’s OODA construct is an intricate network of 

interconnections and feedback.  Further, because it is conceived as a loop, it is 

continuous, repeating and cascading. 
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Figure 5: John Boyd's complete OODA loop (Boyd, 1995)  

 

Boyd said not all stages of the OODA loop are created equal, but that Orientation 

is the schwerpunkt (or the decisive point) of the model and of all human decision making 

in general (Ford, 2010).  According to Boyd, “Orientation shapes the character of present 

observation-orientation-decision-action loops - while these loops shape the character of 

future orientation” (Boyd, 1987).  If Boyd is correct, orientation is the most critical 

function not only to the current decision, but to future decisions and ultimately to the 

long-term success of a competitive undertaking.  This would mean that a key to 

prevailing in any competitive situation is the ability to remain well-oriented, from start to 

finish.  Then the converse is also true; systemic disorientation will be a significant cause 

of difficulties. 

The attacker’s choice to use IEDs is not arbitrary, rather it is one part of a broad 

effort designed to gain advantage (Koyak, 2009b).  The essential nature of the counter-

IED problem on road networks is that it is ongoing and repetitive, with nearly constant 
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interaction between opponents, each engaged in their own OODA loop decision 

processes.  As such, the defenders’ every observable action is shaping his opponents’ 

mental image and his expectations about what will likely occur in the future.  

In the problem at hand the network defender is focused on delivering personnel 

and material throughout the battle space, but they cannot escape the fact they are 

operating under the direct observation of their attacker, who has his own planning cycle 

directed at interdicting them.  Thus, any complete model of logistic processes under such 

contested conditions must address both the supply distribution problem and the opponent 

interaction problem.  The approach taken in this dissertation is to incorporate the 

military’s well understood OODA loop principles into an RL scheme in order to improve 

current operational planning approaches.  

Learning by Induction 
“The insurgency in Iraq took merely weeks to adapt to the 

MRAP armor upgraded vehicles
6
” (Garaux, 2010). 

Learning from interaction is the fundamental idea underlying nearly all theories of 

learning and intelligence (Sutton & Barto, 1998).  Further, learning from observation 

involves the use of inductive mental processes, but no amount of observation can 

guarantee knowledge of the future.  This presents the decision maker with what is known 

as the problem of induction which has been summarized by saying “in the future, the 

future will resemble the past because, in the past, the future has resembled the past” 

(Schum, 1994).  John Stuart Mill explained the problem of induction by noting that no 

amount of observations of white swans can allow the inference that all swans are white, 

                                                 
6
 MRAP refers to Mine-Resistant Ambush Protected vehicles, specially designed to protect from IED 

attacks 
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but discovering a single black swan is sufficient to refute a conclusion based on all past 

observations (Mill, 1843; Taleb, 2004).  In a competitive environment, the problem is 

amplified because we can never expect an opponent to remain passive and allow all of his 

actions to be openly observed.  This not only means no amount of past observation will 

ever perfectly or continuously predict the future, but many actions of an opponent will 

remain permanently hidden from observation.  Further, an adversary can be expected to 

not only vary his observable patterns, but to also engage in active deception. 

Thus, IED warfare on a road network confronts both sides with a situation where 

they are engaged in probabilistic reasoning about their opponent’s future actions, but 

each side’s observations provide them with asymmetric information.  That is, both sides 

look backward to predict forward in time, but there is an important difference.  The 

attacker has nearly perfect observation of the current defender transportation movements 

(which are carried out in open view) while the defender has very little direct observation 

of the attacker who generally remains clandestine.  This means that the attacker has 

current information about where the defender’s vehicles are, as well as historical 

information about where they have been and at what frequency.  Meanwhile, the defender 

is limited to historical information based on IED discoveries which only indicate that an 

act of emplacement occurred; he often cannot determine exactly when or how the IED 

ambush was established.  This means the information distribution is strongly skewed to 

the attacker’s advantage, and the defender’s problem of induction is significantly more 

difficult than the attacker’s. 
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Where asymmetry exists, or where it would be advantageous to create, can only 

be determined through a robust observe function.  In the OODA loop lexicon, failing to 

recognize significant asymmetries is to fail to maintain correct orientation.  Thus, 

observations must focus on one’s own processes and assumptions as much as on those of 

the opponent.  Additionally, for the decision process to be anticipatory it must 

incorporate an understanding of how every action taken will be perceived by the 

opponent and how he is likely to orient, decide and act in response. 

One of the more obvious asymmetries is the Western military’s long held 

advantage in the use of complex material technologies which can influence decision 

makers’ to favor technological solutions to virtually every problem (Dunlap, 1998).  This 

held recently in Iraq and Afghanistan where technological solutions to the IED problem 

were continually emphasized.  While most of these provided improved survival and 

detection, insurgents continually found effective asymmetric counterstrategies to 

maintain their attack effectiveness.  This provides a strong reminder of the importance of 

continuously pursuing non-material solutions that emphasize learning, decision making, 

and operational art. 

The Operational Problem 
If we view an IED ambush from the attacker’s perspective, we see that the IED 

emplacement is the attacker’s prediction of the future.  The choices of time, place and 

technique are made by the attacker based on his expectation of a future attack 

opportunity.  Accordingly, it is natural to ask why the attacker came to their particular 

conclusion.  For any rational actor, this will be based on what was observed.  But, it is 
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important to back up one step further and ask the counterfactual question; if the attacker 

had observed a different sequence of defender activity, would his attack decision have 

been different?  If such differences are manifested and can be learned, then it may be 

possible to make better attack predictions and improve outcomes for the defender. 

This is the central problem motivating this research.  It goes beyond the tactical 

problem of maximizing IED detection and avoidance, or minimizing damage and delay.  

It is to pursue a method for using the defender’s operations as a direct means of 

influencing and anticipating an attacker’s decisions - or in the common military 

vernacular, “to get inside the attacker’s OODA loop” (Boyd, 1986). 

In military parlance, this perspective means that the defender’s individual actions 

must be viewed operationally, as opposed to tactically.
7
  In fact, failure to coordinate 

operationally, across time and space, may unwittingly simplify the attacker’s prediction 

problem.
8
  For example, take a hypothetical unit arbitrarily choosing to move on some 

route (A) one morning and changing to some other route (B) the following afternoon; 

meanwhile, some another unit operating independently might unknowingly choose route 

(B) in the afternoon of the first day, then route (A) in the morning of the second day.  In 

this example, both units change their routes and schedules in an apparently unpredictable 

manner, but taken together, from the attacker’s perspective, days one and two are 

                                                 
7
 In the current context, what is meant by the tactical action relates to the conduct of direct counter-IED 

tasks, such as the choices in route, vehicle formation, detection equipment employed, and IED 

neutralization methods.  In contrast, the operational level encompasses decisions such as synchronizing 

individual movements and determining priorities of effort (such as the allocation of IED clearance efforts 

on various routes).  This is consistent with military doctrine which describes tactics as actions related to 

winning individual engagements, where operations focus on sequencing tactical engagements to achieve 

broader objectives (US Department of Defense, 2013). 
8
 In practice, higher headquarters may specify the route or the determination may be left to the convoy 

commander (U.S. Marine Corps, 2001). 
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identical.  In such a case, coordination between the units could have prevented the 

oversight.  Further, a remarkable irony emerges as the attacker actually has a better 

understanding of the defender’s operational maneuver pattern than the defender himself.  

If we then extrapolate this dynamic to a larger number of participants, it’s not hard to 

imagine how 100’s or even 1,000’s of individual choices might result in a regular, even 

uniform overall pattern being presented to the attacker.  Accordingly, two conclusions 

follow.  First, we see that seemingly unpredictable individual unit commander choices do 

not equate to force-level operational unpredictability.  Second, the probability of attack 

on each individual unit action cannot be assumed to be independent of the actions taken 

by others on the road network. 

Making Predictions 

 “For the Marine patrol, the first step is to understand the 

enemy and adjust accordingly.  Age-old patrolling axioms 

like ‘vary your routes’ and ‘avoid establishing patterns’ 

are imperative” (Powledge, 2005).   

U.S. military doctrine highlights the importance of not establishing patterns and 

predictable forms of behavior as a means to improve survivability (U.S. Department of 

Defense, 2014; Joint IED Defeat Organization, 2010).  While this doctrinal statement is 

sound, its application does not always produce the intended force level result.  This is 

partly because there is often a misunderstanding at the individual unit level of how to 

produce unpredictability under the prevailing operational conditions. 

Predictability, by this definition, depends upon a prevailing system’s constraints.  

For example, imagine an unordered list of the heights of ten individuals.  If we attempt to 
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randomly match one of the individuals to one of the heights on the list, there is a 0.1 

probability of being correct.  Now consider lining the ten individuals up so that the 

person to everyone’s left is shorter than themselves (ordering them by height); the 

matching can now be made with certainty.  Note, the introduction of just one constraint 

completely changed the nature of the problem.  In fact, the constraint is strong enough to 

remove all uncertainty.  Accordingly, the intensity of a constraint determines the number 

of possible arrangements a system can take (Ashby, 2011).   

The power of constraints is often so ubiquitous that it can be easily overlooked, 

but constraints are not only a powerful ally to making predictions, but without them 

prediction is impossible.  That is, unconstrained systems are chaotic, and therefore totally 

unpredictable.  For example, in search and rescue situations constraints are what allow a 

search area to be defined.  There is always a maximum range that the missing object can 

travel from its last known position based on the existing conditions.  Thus, it is 

impossible for the object to be outside the area defined by the prevailing physical 

constraints. 

U.S. military doctrine recognizes that organizations operate in certain modes 

rather than randomly.  It states that there are unique types and levels of insurgent groups 

which have different strategies and capabilities; understanding these can help reveal 

operational patterns and help predict tactics, techniques, and procedures (U.S. 

Department of the Army, 2014).  This is to say that insurgent organizations have 

significant constraints on their activities - some obvious, some subtle.  But, this is clearly 

true of all human organizations, not just insurgents’, i.e., the defender’s logistic 
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operations.  While this is generally acknowledged, it can become a peripheral 

consideration in logistical planning.  Significant improvements may be possible by 

thoughtful, systematic examination of existing constraints on both the attacker and 

defender in seeking improved operational planning concepts. 

As discussed, organizational behavior stems from the collective behavior of the 

individual members, where every individual has physical, psychological, and other 

limitations that bound what they can do, while their perceptions and preferences bound 

what they are willing to do.  This means that while human decisions may be 

unpredictable, no human activity is ever truly random.  Therefore, what is really intended 

by operators seeking to be unpredictable is to maximize their operational variation.  Then 

from the concept of variation follows the capacity for generating surprise (Ashby, 2011). 

The fourth of the nine Principles of IED Combat is “avoid setting patterns” (Joint 

IED Defeat Organization, 2010).  But even as so-called random individual actions don’t 

necessarily lead to operational unpredictability, neither does maximizing operational 

variety automatically lead to surprise.  Here again we must carefully consider the 

observer’s perspective and whether or not the observer will be able to distinguish one 

sequence of actions from another.  If so, as Boyd instructed we must also consider what 

conclusion we think the observer is likely to reach.  In other words, will making some 

adjustment to defender operations be enough of a difference for the observing opponent 

to notice and adjust his own behavior?  Then, will the defender be able to detect and 

measure the attacker’s behavior change?  This leads to the conclusion that generating 

surprise requires the ability to create distinguishable elements in the set of possible 
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outcomes (Ashby, 2011).  This lies at the heart of Boyd’s OODA loop.  Both sides are 

orienting on the activity patterns they can observe, yet they can only recognize patterns 

according to their ability to discriminate among the different individual actions and 

sequences of actions. 

A System View 
If we consider the attacker and defender systems interacting, we might conceive 

of the defender’s distribution system (A) and the attacker’s ambush system (B) 

interacting to bring about outcomes (C).  This yields a many-to-many transformation of 

states such that 𝑆𝐴 × 𝑆𝐵 → 𝑆𝐶.  Then as Figure 6 shows, the attack process (B) occurs in a 

black box and the central problem is to understand what the attack system is doing.  

Because the black box is unobservable, it may be possible to experiment with the 

sequence on inputs in time 𝑠𝐴𝑡 ,  𝑠𝐴𝑡+1 ,  𝑠𝐴𝑡+2 , …, and observe the sequence of outcomes, 

 𝑠𝐶𝑡 ,  𝑠𝐶𝑡+1 ,  𝑠𝐶𝑡+2 , …, to gain knowledge of the dynamics in (B) (Heylighen & Joslyn, 

2001). 

 

 

Figure 6: System Block Diagram 
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Clearly, if we only have random unstructured inputs at (A), we are unlikely to 

learn much about the attacker processes at (C).  In fact, the outcome at (C) may appear to 

be random also.  In contrast, well-crafted defender action plans (for convoys, route 

clearance, and other observable activities) provide a means to make associations and 

learn some of the action-reaction dynamics of the overall system.  This requires careful 

record keeping and inference methods to detect whatever patterns may be present or 

emerging over time.  Ultimately, learning and understanding how the activities in boxes 

(A) and (C) may be related is only possible by taking a network-wide, historically 

informed, operational perspective of the logistics operations being undertaken. 

In a complex system, the dilemma is to discover which part of a measured pattern 

should be ascribed to “randomness” and which part to “order.”  That is, can we find and 

understand usable information and determine what information to ignore?  It is this 

interplay, between order and randomness, which makes the problem at hand complex as 

opposed to merely complicated.
9
 

Here enters the need for innovative analytics and modern learning algorithms to 

discover better ways to detect and exploit the structure within a seemingly chaotic 

environment.  When the analytical process begins, the patterns, parameters, and 

constraints that govern the system are unknown, but to the extent they can be learned, 

they must be discovered by observing the system’s behavior (Crutchfield, 1994).   

                                                 
9
 A complicated process (a large system consisting of many components, subsystems, degrees of freedom, 

etc.) is not necessarily complex (involving randomness and unpredictability) (Crutchfield, 1994). 
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Taking the principles herein together suggests an improved modeling approach to 

better characterize the attacker’s black box compared to standard probabilistic risk 

modeling approaches.   

Reinforcement Learning 
RL is an algorithmic method for solving sequential decision problems where an 

agent learns through trial and error interacting with its environment.  As such, the agent is 

connected to the environment via perception and action such that the agent seeks to 

discover a mapping of system states to optimal agent actions (see Figure 7).  The goal of 

RL is to find a decision policy that maximizes a long-run measure of reinforcement that 

describes the goal to be achieved (Kailbling, Littman, & Moore, 1996).  A decision 

policy is defined as a rule or function that determines the agent’s choice given the 

environmental information available from the observed system state (Powell, 2007). 

 

 

Figure 7: Agent-environment interaction in RL 
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In RL, the agent is not told which actions to take, but instead must discover them.  

Since action choices are made to bring about the highest long run value, rather than the 

highest immediate payoff, a well-structured RL algorithm can naturally discover multi-

move sequences to arrive at high payoff states (Sutton & Barto, 1998).  This makes it a 

clear choice for the competitive problem domain under study in this dissertation.  Further, 

by properly adjusting the step-size parameter within an RL algorithm
10

 the agent can 

adjust its decision policy as the environment (i.e., the opponent’s behavior) changes 

(Sutton & Barto, 1998).  Since the network counter-IED problem is a dynamic, sequential 

decision making problem, RL is a well-suited solution method for discovering effective 

operational schemes. 

Research Gap 

Commanders appreciated analysis that predicted the 

location of IEDs, but felt there was still a need for 

additional capability to predict where and when IED 

emplacers would be active (Connable, Perry, Doll, Lander, 

& Madden, 2014). 

General Michael Barbero, then Director of Joint IED Defeat Organization 

(JIEDDO), identified what he saw as the two most significant capabilities produced by 

the U.S.’s multi-billion dollar counter-IED effort; he called them “game changers.”  The 

first is forensic data collection and exploitation which allowed massive improvements in 

the ability to investigate and establish the link between attacks and the attackers.  The 

second is wide-area surveillance which drastically improved the military’s situational 

awareness (Barbaro, 2013).  These innovations significantly reduced one of the attacker’s 

                                                 
10

 This is accomplished through Temporal Difference (TD) learning where the step-size parameter is not 

reduced all the way to zero (Sutton & Barto, 1998). 
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major advantages - his anonymity.  But, after ten years and billions of dollars spent, we 

continue to see that almost as fast as a technological solution is implemented, the 

adversary adapts.  For example, the Iraq insurgency adjusted to the introduction of 

improved armored vehicles (MRAPs) in just a few weeks (Garaux, 2010).  These 

experiences demonstrate that even “game changing” technologies are ultimately 

employed as process improvements and generally do not immediately neutralize an 

opponent. 

To date, even with vastly improved technologies, little has been done to develop 

and establish any truly new operational concepts in logistic distribution and battlefield 

circulation.  This research effort has sought to engage in this needed area and apply 

operations research (OR) techniques to explore, develop, and demonstrate a 

fundamentally new approach to the conduct of recurring transportation operations in a 

contested environment.   

Generally, the force protection
11

 issue of greatest concern to commanders during 

Iraq and Afghanistan operations was the IED threat. This drove unit commanders to 

emphasize the need for understanding the factors driving IED trends and patterns they 

observed (i.e., location, time, device types, and frequencies), their origin (caches, 

logistics, and financial networks), and to predict future attacks (Connable, Perry, Doll, 

Lander, & Madden, 2014).  Typically, trend analysis took the form of summary statistics 

of historical events which were used to inform operational and tactical leaders as to the 

                                                 
11

 Force Protection refers to preventive measures taken to mitigate hostile actions against Department of 

Defense personnel (to include family members), resources, facilities, and critical information (U.S. 

Department of Defense, 2010). 
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most likely times and types of attacks, target types, discovery rates (i.e., either finding 

IEDs or being attacked by them), and the like. But generally, these analytical products 

did not provide the needed predictions of specific times and locations of future events in 

a way that could drive surveillance or clearance asset allocations (Ardohain, 2016).  

 

 

Figure 8: Risk associated with Decision Analysis Gaps (Connable, Perry, Doll, Lander, & Madden, 2014) 

 

Moreover, a recent study by (Connable, Perry, Doll, Lander, & Madden, 2014) 

stated that most decision support derived from simple analyses, not complex modeling.  

This remained true even while DoD and the supporting community strived to develop 

models and simulations in support of Irregular Warfare (IW).  Figure 8 shows an 
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assessment of gaps in DoD analytic capabilities.  The horizontal axis displays assessed 

probability that each gap will effect IW decision making.  Then the vertical axis displays 

the expected damage a lack of that analytic capability might cause to a commander’s 

decision making ability.  The highest risk gaps (those expected to be both most frequent 

and most severe) are colored red. The top nine “extremely high risk” gaps are listed under 

the chart; note that interaction between actors is in this category.  (Larimer, Checco, & 

Persons, August 18, 2008; Connable, Perry, Doll, Lander, & Madden, 2014) 

Research Contribution 
“Whenever the present state of knowledge concerning 

something of interest is deemed inadequate, methods of 

investigation may be considered to improve 

understanding” (Bhattacharyya & Johnson, 1977) 

 

This dissertation makes a contribution to OR practice by introducing a new 

approach to military distribution planning consistent with the principles previously 

expressed.  It is based in military and human decision theory as articulated by the military 

theorist John Boyd.  In this aspect, the techniques developed demonstrate a meaningful 

step toward closing the gap between theory and practice for current decision support 

algorithms related to military logistic distribution under contested conditions.   

Methodologically, this dissertation demonstrates a means to achieve significant 

improvement over optimizing immediate operational choices based on concurrent risk 

assessments.  This is accomplished through the application of RL via ADP which 

inherently coordinates individual action choices across the planning horizon, forecasting 

the downstream effects of its current decision. 

The fundamental contributions of this dissertation to the field of OR are: 
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1. We provide an underpinning argument and a model to demonstrate the 

potential value of a fundamentally different approach to operational movement 

control of military transportation assets on a contested road network.  This 

proposes operational coordination of defender activities across the network to 

shape attacker expectations and improve defender outcomes. 

2. Unlike most previous work, this research is not focused on improvement of, 

and direct application to, existing military practices.  Rather we develop and 

demonstrate a new approach via a learning algorithm that doesn’t just 

identifying attack patterns and adjust activities to accommodate or avoid them, 

but rather it seeks to influence such patterns in order to exploit them.  This 

concept has not been explored in any published research and is an important 

extension of current game theoretic and statistical approaches in the field. 

3. We integrate understandings from three broad analytical fields related.  These 

are vehicle routing, route clearance and attack pattern recognition, and ADP 

methodologies for solving RL problems.  Each is of these is critical to the 

implementation of our modeling approach, and when applied in combination, 

expand current OR practice and can provide meaningful responses to differing 

environmental conditions which would be difficult for unaided human planners 

to duplicate. 

Dissertation Structure  
The remainder of this dissertation is organized as follows: Chapter 2 provides a 

literature review.  Chapter 3 presents the model design and discusses the essential 
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elements of the ADP formulation.  Chapter 4 describes the experimental design, 

computational results, and analysis of the simulation results.  Chapter 5 summarizes the 

research with conclusions, observations, and recommendations for further work. 
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CHAPTER TWO – LITERATURE REVIEW 

The literature applicable to this dissertation falls into three broad categories.  The 

first is previous work done in the fields of vehicle routing and network interdiction.  

These form a foundation upon which this work builds.  The second is military route 

clearance problems and attack pattern recognition applied to the network context.  The 

third is the application of ADP to RL which is the core methodology applied.  Insights 

from each of these research areas are critical to the implementation of the modeling 

approach, and when applied in combination, expand current OR modeling approaches. 

Vehicle Routing 
The vehicle routing problem (VRP) is a generalization of the Traveling Salesman 

Problem (TSP) and is non-deterministic polynomial-time hard (NP-hard).
12

  It was 

introduced to the OR community by Dantzig and Ramser in 1959, since then a large body 

of literature has been associated with it (Dantzig & Ramser, 1959).  The classic 

formulation uses a fleet of capacitated vehicles located at a common depot to deliver 

goods to a set of customers.  Modifications to the VRP introduce various constraints 

related to vehicle types, travel time, and delivery time windows.  Recent surveys have 

                                                 
12

 The polynomial time reduction from the Satisfying Assignment Problem (which is NP-complete) to the 

Hamiltonian Cycle (finding a cycle that ends and begins at the same node, visiting each node only once) is 

given in (Karp, 1972). Then the Hamilton Cycle problem (NP-complete) reduces to the Euclidean TSP 

(finding the minimum cost tour of a set of points in a plane, (Papadimitriou, 1977)).  All variants of the 

VRP are at least as hard as the TSP while none of these problems admit an efficient solution technique 

unless it is proven that P=NP (Hinton, 2010).  
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been offered by (Pillac, Gendreau, Gueret, & Medaglia, 2013; Hinton, 2010; Kumar & 

Panneerselvam, 2012). 

Typically the VRP focuses on determining how to distribute goods, in a given 

time period, by a set of vehicles, to a set of customers.  Generally the vehicles are sourced 

from one or more depots, move throughout a defined network, and are operated by a set 

of crews (drivers). VRP solutions determine a set of routes for each vehicle, starting and 

ending at their own depot with all customer demands and operational constraints 

satisfied.  The VRP objective is most often to minimize the overall transportation cost 

(Toth & Vigo, 2001).  A comprehensive treatment of VRPs modeled as Markov decision 

processes with fully developed ADP formulations is provided by (Goodson, 2010). 

Network Interdiction 
Network interdiction models have been thoroughly studied by the OR community.  

Figure 9 shows a representation of an early logistic game, based on a 1953 paper for the 

U.S. Navy’s Operations Evaluation Group.  It describes a non-linear, two-person, zero-

sum game that allows for separate defender allocation of ships and escort vessels to 

various routes while an attacker allocates submarines (Danskin, 1962).  Later, Wollmer 

provides an extension to this model to determine the placement of intercepting units in 

order to maximize the probability of preventing an opposing force from proceeding from 

a particular node to another in an undirected network.  In both treatments, standard 

gaming assumptions are utilized so that the attacker knows the defender’s strategy for 

placing interceptors (Wollmer R. D., 1970). 
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Figure 9: Dantzig logistics game illustration 

 

(Harris & Rose, 1955) provided another early network interdiction example in a 

classified SECRET paper that was released to the public in 1991.  In it they described 

how to determine a rail network’s “bottleneck” (or minimum cut) in order to interdict its 

flow capacity with air power.  The illustrative case was the Western Russia rail network, 

see Figure 10. 
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Figure 10: Diagram of railway network of Western Russia and Eastern Europe (Harris & Rose, 1955) 

 

The first explicit simultaneous-play network interdiction game formulation
13

 is 

(Washburn & Wood, 1995).  Unlike previous sequential-play games (Stackelberg 

Games), the interdictor and evader act simultaneously, or at least without knowing each 

other’s strategy (known as a Cournot Game).  (Washburn & Wood, 1995) present a two-

person, zero-sum game for determining an optimal inspection strategy for single evader 

and a single (detector) inspection point.  The evader determines a probabilistic path with 

minimal probability of detection while the interdictor maximizes his probability of 

detection with an arc-inspection strategy. This formulation is extended by (Unsal, 2010) 

to allow multiple inspector types (e.g., aircraft, ground-based inspection teams).   

                                                 
13

 According to (Unsal, 2010) 
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Network infrastructure games have also been widely developed in two problem 

classes known as the Maximize Shortest Path problems (MXSP) and the Maximum Flow 

Network Interdiction Problems (MFNIP).  These models generally assume predetermined 

attack effects and mitigations which are known by both players.  Neither provides any 

mechanisms for explicit player learning, rather they provide worst case performance 

estimates for one-time assaults on the network infrastructure. 

In MXSP, a network user wishes to traverse a shortest path from a specified 

starting node to a specified ending node in a directed or undirected network whose arc 

lengths (costs) are known.  An attacker interdicts (destroys or lengthens) arcs to 

maximize the shortest-path.  Contributors in this area include (Fulkerson & Harding, 

1977; Golden, 1978; Isreali, 1999; Wevley, 1999; Israeli & Wood, 2002; Akgun, 2000). 

MFNIP is another classic network interdiction model applied when the attacker’s 

goal is to minimize the defender’s throughput, isolate nodes, or otherwise diminish 

system function.  It was originally motivated by efforts to destroy enemy supply lines 

during the Vietnam War.   Ford-Fulkerson formulated the simplest of all interdiction 

problems where the interdictor breaks the source node from the sink node by eliminating 

all possible paths
14

 (Ford & Fulkerson, 1962).  Wollmer extended this approach by 

limiting the available attack resources (Wollmer R. D., 1964; Wollmer R. D., 1970).  

There are several other alternative approaches to solving Wollmer’s original problem, 

including dynamic programming approaches.  (Steinrauf, 1999) provides a good review 

                                                 
14

 This resulted in development of the max flow-min cut theorem, a basis for most network interdiction 

models.  By interdicting the arcs in the minimum cut set, the maximum reduction to the network’s 

maximum flow capacity is achieved. 
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of the early literature covering these developments.  The MFNIP has been thoroughly 

studied to include significant contributions by (Wood, 1993; Cormican, 1995; Isreali, 

1999) and recently by (Dhami, Pande, & Tamata, 2013). 

Fundamentally, MXSP and MFNIP are foundational, but different from the 

problem at hand in that both these formulations model attacks made against the network’s 

architecture to limit network functionality.  In contrast, the problem under study in this 

dissertation is characterized by attacks against the vehicles and resources moving across 

the network where damage to the network infrastructure is not the primary concern. 

Route Clearance Operations 
Much of the specific analytical work on the IED problem remains classified by 

the Department of Defense, but to date there is no standard comprehensive modeling 

approach currently accepted to address the routing and scheduling of ground 

transportation under contested conditions.  In the academic literature, several related 

models have been proposed. 

(Washburn A. , 2006) presents a model in which he assumes IEDs are a low level 

concern to the defender in terms of the fraction of shipped material that is lost; therefore, 

defender movement patterns are determined by considerations other than the IED threat.  

Accordingly, the objective is to minimize the rate at which vulnerable classes of traffic 

(convoys) take lethal hits by intentionally using more resistant vehicle classes (RCPs) to 

either find the IED or suffer the attack.  Thus, he states that the primary question is 

whether an IED will be removed by a dedicated clearance operation or by some other 

defender traffic.  He uses a game theoretic to allocate route clearance missions according 
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to attack frequency.  The model assumes a continuous process where traffic levels are 

given and known to both sides, and new IEDs are implanted at a known rate as old ones 

are removed.  He also provides an alternative formulation for cases when defender losses 

become excessive (Washburn A. , 2006). 

In a later paper, (Washburn & Ewing, 2011) explain the model rationale by 

observing that the defender’s object is not to maximize the rate of IED removal by 

clearance units because the removal rate is the attacker’s emplacement rate and the 

defender eventually removes every IED, one way or another.  This perspective is 

continued in a third paper in which (Lin & Washburn, 2010) address the use of decoy 

IEDs.  There are four essential assumptions made in these three route clearance papers: 

1. Indefiniteness. The battle is assumed to proceed indefinitely. 

2. Logistic ineffectiveness. The attacker’s efforts are assumed to have a 

negligible effect on defender’s logistic operations.  

3. Independence. The various types of defender traffic and the attacker process 

of placing mines on roads are all assumed to be independent time-

homogeneous Poisson processes. 

4. Scalar Damage. Vehicles lost or damaged, cargo lost, people killed or 

wounded, and any other effects can be put on a single damage scale. 

(DeGregory, 2007) provided a model that employs a two stage optimization 

approach for allocating a suite of force protection resources
15

 (FPRs) to guard scheduled 

logistics movements in an asymmetric environment. The algorithm does not specifically 

                                                 
15

 FPRs include a fixed-wing aerial platform, armed helicopter platforms, motorized infantry platoons 

capable of performing route security and route reconnaissance, and convoy escorts. 



34 

 

provide route clearance mission planning, but considers the comprehensive use of shared 

resources (like aerial electromagnetic jamming assets) and dedicated resources (such as 

armed ground and airborne escorts).  In the model’s first stage, a convoy plan is 

generated by satisfying supply and movement requirements.  The second stage is a binary 

integer program that determines the optimal employment of FPRs to the convoy plan. 

The resulting output is an overall convoy plan with integrated FPRs that produces the 

lowest expected number of causalities for an individual convoy.  DeGregory represents 

attacker risk by integrating a probabilistic threat model with trend analysis and 

intelligence considerations, but acknowledges that adding a dynamic threat modeling 

technique is important.  Finally, he offers a program development methodology for 

integrating his methodology into existing U.S. Army systems and processes. 

Like DeGregory, (Marks, 2009) employs a multi-stage technique, but instead 

focuses on the route clearance scheduling problem.  First he estimates IED activity on the 

road network as a two-state Markov process (similar to a queuing model).  Then he 

performs column generation with an ADP algorithm to generate a set of feasible route 

clearance missions which are input to a mixed integer program.  The result is a route 

clearance schedule and an associated risk-reduction measure.  In practice, the model 

produces a solution characterized by a tendency to concentrate clearance efforts on a 

limited number of important roads which Marks suggests might be candidates for static 

counter-IED efforts, such as permanent observation posts. 
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Figure 11: Route clearance in Afghanistan16 

 

(Kolesar, Leister, Stimpson, & Woodaman, 2012) address the importance of the 

attacker’s IED emplacement tempo on the appropriate timing of the defender’s clearance 

operations.  They present a simple interaction model and analysis which asserts that the 

rate and timing of attacker IED emplacement substantially dictate the optimal route 

clearance schedule.  They demonstrate that the more rapidly IEDs are being emplaced, 

the more sensitive is the timing between the clearance operation and follow-on traffic.  

Attack risk levels are determined from historical patterns which are reduced by the 

passage of dedicated clearance patrols.  Then after some time, according to the attacker’s 

emplacement tempo, the risk level returns to its original intensity according to a user 

defined “reseeding” function.  This approach was employed by (Leister & Hudson, 2009) 

in a mixed integer programming algorithm which calculates optimal RCP’s schedules (in 

terms of routing and timing) for a specified number of RCPs, given scheduled traffic 
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 Source: counteriedreport.com 
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movements.  They developed a mixed integer program and user interface that calculates a 

minimum IED risk movement schedule for a road network over a 24-hour horizon. 

Attack Pattern Recognition 

Bottom line—the only way to get ahead of the enemy’s 

decision cycle is to constantly and thoroughly analyze 

every scrap of information you can get your hands on and 

try to “see” patterns (U.S. Army Counterinsurgency 

Center, 2011). 

In Iraq and Afghanistan, military commanders wanted to understand where IEDs 

would be encountered by their troops; however, consistent attack prediction was rarely 

achieved.  Aside from the fact that such prediction is enormously difficult, much of the 

trouble is that data quality has remained generally poor and inconsistent.  Since 

comprehensive data collection is difficult and time consuming, and because operations 

analyses often have not produce relevant, timely, and actionable enough products to 

support critical decision processes, military operators focused their energy on collecting 

information to support their immediate operational needs rather than to feed specific 

analytical processes (Shankar, 2014; Connable, Perry, Doll, Lander, & Madden, 2014).  

Then since analysts generally could not enter combat zones to collect their own data, a 

reinforcing cycle developed, discouraging the development of sophisticated analytical 

models. 

Therefore straightforward pattern and trend analyses remain the predominant 

approaches for determining IED risk in the recent military campaigns.  These types of 

analyses endeavored to use past IED discovery trends to predict future attacks.  

Frequently, past observations were the sole basis for IED activity depictions and threat 
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predications, occasionally bolstered by statistical methods and other computational tools 

(Connable, Perry, Doll, Lander, & Madden, 2014).   

Beyond basic trend analysis, several models have been proposed to include 

stochastic Markov chains and game theory. Additionally, during the recent conflicts, the 

Joint IED Defeat Organization (JIEDDO) employed a Crime Pattern Analysis Team 

(CPAT), made up of mathematicians and law enforcement experts who developed 

predictive IED models based on crime analysis techniques (Shankar, 2014).  Even so, the 

most common statistical representation in the literature has been point processes, most 

often the non-homogeneous Poisson process (NHPP). 

A basic statistical understanding of temporal patterns and probabilistic structure 

of IED events is provided by (Kolesar, Leister, & Woodaman, 2008).  This work showed 

that when aggregated across two broad regions and over two different twelve month 

periods, IED incidents followed a NHPP.  This finding held for both time-of-day and 

day-of-week effects.  But, when applied further it could not be generalized to predict 

more specific trends, cycles, or seasonality of IED incidents in other contexts (Kolesar, 

2009).  Further, (Shankar, 2014) found that the NHPP did not adequately characterize 

local (non-aggregated) IED discoveries during foot patrolling, primarily because the 

events exhibit spatial and temporal clustering rather than uniformity. 
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Figure 12: Example display of IED activity in Iraq during September, 2006 (Ardohain, 2016) 

 

Recently, (Ardohain, 2016) also found IED patterns did not conform to a Poisson 

process when focusing on specific areas and short time periods.  Specifically, he found 

that predictable IED patterns were most often local.  This conclusion drove him to 

formulate three different IED prediction models based on the Hawkes point process, non-

linear sine function optimization, and discrete Fourier transforms (DFT).  All of these 

models used the inter-arrival time between IED events as the only model input and were 

tested against data from several well-defined geographic areas in Iraq and Afghanistan.  

Of the IED patterns analyzed, he found that the non-linear optimization and DFT models 
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both outperformed a mean inter-arrival time model.  These techniques were used to 

distinguish IED attack patterns from randomness through a “test-two” methodology 

where, given N observations, the first N-2 inter-arrivals were used to predict the N-1 and 

Nth inter-arrivals. The results from this work were mixed, but suggested some ability to 

make attack predictions from identifiable discovery patterns. (Ardohain, 2016). 

(Ardohain, 2016) continued by associating various observed IED discovery 

patterns with two broad conditions
17

 based on the supplies of attacker funding, materials, 

and labor for IED production.  Without direct observation of insurgent logistics 

processed, this explanation for observed patterns appears speculative.  Further, the 

categorizations fails to consider the influence defender activity patterns may have had on 

the attack patterns observed. 

(Stafford, 2009) explored sequence pattern detection and time series analysis to 

develop predictive models for the timing and frequency of IED attacks.  These models 

used historical attack patterns to identify trends and relationships for forecasting the 

number of monthly IED attacks based on aggregate force levels and holiday observances 

of Ramadan.  He concluded that neither of these were major factors in predicting the 

number of monthly attacks (Stafford, 2009).  But, these broad findings, based on 

aggregated environmental conditions, likely say little about localized attacker decisions. 

                                                 
17

Condition one is unconstrained IED supply and condition two is limited supply broken into large supply, 

short supply, and steady supply categories. 
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Clustering 

"I invoke the first law of geography: everything is related 

to everything else, but near things are more related than 

distant things." (Tobler, 1970) 

Research addressing the use of spatial analysis has adopted the term “hot spot” to 

indicate areas with higher concentrations of disorder events.  (Keefe & Sullivan, 2011) 

provide a formal definition of an IED hot spot:  

 An area that contains a cluster of observations whose spatial dependence has 

been established using statistical testing; with a reasonable amount of 

confidence, it can be determined that the clustering pattern could not have 

occurred randomly, and 

 The concentration of problem events in the cluster is greater than the average 

concentration of events in other parts of the study area.  

Further, an actionable hot spot (AHS) is a hot spot of adequate size, shape, and 

sequence to justify the application of counter-IED resources.  Essentially, an AHS uses 

recent temporal and spatial IED-related activities to detect clustered patterns that are 

expected to indicate continued threat in the immediate area (Keefe & Sullivan, 2011).  

The AHS prediction approach was tested on historical data in support of six Army 

brigades and one logistics unit in Baghdad, Iraq.  It produced variable results with better 

prediction performance in areas where clustering occurred, but results were poor 
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elsewhere.  Overall the tool provided a five percent improvement compared to results 

without the tool
18

  (Connable, Perry, Doll, Lander, & Madden, 2014). 

Accounting for Defender Activity 
A weakness common to every approach reviewed thus far has been they have 

relied nearly exclusively on defender IED discovery data without endeavoring to account 

for influences of the defender’s activity on the IED emplacement and discovery patterns.  

Figure 13 and Figure 14 are such examples.  These depictions show EIAs temporally and 

spatially without any reference to defender movement patterns.  While this is useful for 

understanding past trends, it is of limited value in determining how future operations 

might be adjusted to make improvements.  Thus, analyses based solely on such data must 

implicitly assume either the defender’s activity will remain essentially constant across the 

analysis period or the attacker’s activities are independent of the defender’s.  Clearly, the 

latter can only hold if the attacker is not a learning adversary engaged in a deliberate 

planning process.  Further these approaches make several lesser unlikely assumptions 

such as consistent attacker effort and defender IED detection probabilities across time, 

space, and environmental conditions. 

The issue at hand is how much difference will including additional explanatory 

factors improve understanding and performance in attack detection, prevention, and/or 

prediction.  (Ardohain, 2016) concludes that such transient factors cannot be ignored 

based on his finding that discernable IED discovery patterns generally do not endure for 

sequences of  more than twenty-five events as the underlying process dynamics rarely 
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 Over the period of the test, the tool proved to be accurate 30 percent of the time which is 5 percent better 

than results obtained without the tool. 



42 

 

endure for extended periods.  He adds that any series of less than six events is not enough 

to make reasonable predictions.  So a rapid learning approach is needed. This concern is 

also expressed by Shankar who stated that although the study of the attacker’s IED 

emplacement behavior is a critical, it has had little focus to date (Shankar, 2014). 

 

 

Figure 13: Visualization and description of EIAs in Afghanistan (Center for Army Analysis, 2016) 
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Figure 14: Example EIA pattern analysis and description for Afghanistan (Center for Army Analysis, 2016) 

 

The common reliance on basic, one sided analytical approaches has occurred 

primarily because the highest quality data available to analysts has historically been 
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reports of the attacker activities (referred to as enemy significant actions, or SIGACTS
19

).  

While some analyses have incorporated defender activities (in the form of Blue Force 

Tracker (BFT) data
20

) with more sophisticated modeling, these efforts have been limited 

because such information has generally been incomplete and inconsistently available 

(Connable, Perry, Doll, Lander, & Madden, 2014; Shankar, 2014; Ahner & Spainhour, 

2015; Ardohain, 2016) 

Koyak incorporates BFT data in a group of models he developed in a series of 

three papers.  In these he discusses how the observable IED discovery process can 

provide insights and predictions related to the unobservable emplacement process.  He 

describes several statistical estimation models which explicitly recognize the separate 

roles of the attacker observation and action processes.  He represents IED emplacement 

activity as either a NHPP or extensions of historical patterns (Figure 15 and Figure 16) 

and calculates the probability of encountering an IED on a particular stretch of road based 

on both previous IED discoveries and defender traffic patterns (Koyak, 2009a).  These 

models are of varying complexity and can be tailored to the user’s situation.  They share 

the following basic attributes (Koyak, 2009a; Koyak, 2009b; Koyak, 2010): 

 The event of interest is the time and location of IED emplacement, not the 

time of the defender’s IED discovery 

                                                 
19

 CIDNE (Combine Information Data Network Exchange) is the USCENTCOM (U.S. Central Command) 

database of record for retaining SIGACTS.  CIDNE was originally adopted during by the Muli-National 

Force – Iraq in 2006 (Center for Army Analysis, 2012). 
20

 BFT is a GPS-enabled system that provides real-time friendly force location information. 
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 Discovery times are right-censored emplacement times (because discovery 

times are observable and necessarily greater than the corresponding, non-

observable, emplacement time) 

 Discoveries occur mainly during defender road traversals 

 Discovery is a random event, with probability that can vary according to 

factors such as the IED type, vehicle type, and vehicle speed 

 

  

Figure 15: Representation of unequal discovery probabilities.  Red and blue delineate the direction of travel.  

The numbers are counts of traversals associated with the two discoveries shown (Koyak, 2009b). 
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Figure 16: Illustration of 436 randomly-generated emplacement events, illustrating the complexity of the 

operational environment (Koyak, 2010) 

 

Recently (Ahner & Spainhour, 2015) incorporated BFT data into a logistic 

regression methodology for analyzing time-dependent factors relating defender presence 

to IED discoveries.  They propose an approach for providing improved planning and 

attack prediction by understanding the effect of spatial and temporal BFT density on IED 

discoveries.  They also analyze time of day and cache discovery effects.  They don’t 

explicitly examine activity patterns, but nonetheless develop a useful method of 

incorporating aggregated BFT data into pattern analyses that improves the explanatory 

power of their regression models. 

Highlighting the data availability issues, Shankar conducted his own unique, 

onsite data collection effort to model IED activity against dismounted (or foot-mobile) 

patrols in Afghanistan. The dismounted patrol problem is distinctively different from 
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mounted (and convoy) problem because foot-patrol routes are not confined to distinct 

network paths as vehicles are to roadways.  The increased variability of foot paths means 

specific routes are not repeated regularly and there is an increased probability that any 

particular foot-patrol will not encounter some particular IED. 

In this work, Shankar gained the cooperation of active combat units to collect 

individual patrol reports which he used to developed a spatial cluster model, an IED 

emplacement model, and a simulation to describe and predict the IED activity being 

observed.  Like Koyak, he focused on modeling emplacement time rather than IED 

discovery, using an overlapping travel zone methodology and probabilities related to 

individual patrols encountering individual IEDs (Shankar, 2014).  While this level of 

detail is indispensable, the aspect of structuring defender activities was not addressed. 

Addressing Current Methodological Shortcomings 
The current logistic interdiction literature addresses several important aspects of 

the problem, but it does not directly consider the critical role of opponent observation, 

reactivity, and learning from experience.  Here, it is critical to recall John Boyd’s insight, 

connecting observation to action via orientation and human decision making.  The unique 

nature of the network counter-IED problem is that it is ongoing and repetitive with 

opponents who have asymmetric information, means and goals.  The common 

assumption of independence between attacker and defender as in (Washburn A. , 2006; 
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Lin & Washburn, 2010; Washburn & Ewing, 2011) is an important shortcoming that 

ignores this critical problem feature
21

. 

The attack pattern recognition works cited do not provide a method for 

understanding how variations in activity sequences and movement patterns might change 

the attack patterns observed.  In contrast, the modeling approach we are pursuing focuses 

on the critical role of attacker observation on attack decisions.  It seeks to learn attacker 

preferences, to the extent they are exhibited, by making the explicit assumption of 

dependence between the defender’s actions and the attacker’s choices.  To assume 

independence is to assume the attacker has no specific preferences of target type.  

Further, it assumes the attacker does not react to variations in target activity which is to 

assume attacker indifference and the absence of specific attacker goals.   

Dynamic Programming (DP) is a method for solving sequential decision problems 

that can be expressed as Markov Decision Problems (MDPs).  While its discovery 

provided a revolutionary conceptual framework, the classic DP approach suffers from 

two principle draw backs that ADP helps to mitigate.  The first is known as the “curse of 

modeling.”  This so-called curse refers to the difficulty of knowing state transition 

probability distributions related to outcomes from agent decisions.  This curse relates 

firstly the knowing the probabilities related to expected outcomes given an agent choice 

such that they can be enumerated in a transition probability matrix (TPM).  And 

secondly, the expected reward (or penalty) received after any given system state 
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 There is a significant branch of research focused on projecting attacker cognition (in the form of 

preferences and objectives) to determine likely attack scenarios.  This psychology approach is distinctly 

different from the one taken here which is strictly concerned with observable actions without regard for 

motivation. 



49 

 

transition has occurred.  In most real world applications, these two types of probability 

are not known and must be learned through trial and error.  Additionally, since the 

underlying model is an MDP, the systems states are “memoryless;” meaning these 

transition and reward probabilities depend solely on the observed state and the decision 

being made.  Thus, they are independent of any prior states or agent decisions (Denardo, 

2003). 

The second principle drawback of classic DP is the well-known “curse of 

dimensionality.”  This stems from exponential growth in problem dimensionality when 

attempting to expressly enumerate multiple dimensions and levels in a problem’s state 

space, outcome space, and action space.  In practice, DP generally requires each of these 

three spaces be defined by a vector of attributes that can quickly grow and become 

intractable.  For example a customer’s inventory might consist of 𝑁different products that 

can be held in 𝑀 different quantities.  This means there are 𝑀𝑁 different inventory states.    

Even though the DP method provides guaranteed optimality in polynomial time, 

which is exponentially faster than exhaustively searching each possible decision policy to 

provide the same guarantee (Sutton & Barto, 1998), and while not all problems suffer 

from all three sources of dimensionality growth, the curse of dimensionality is the most 

commonly cited reason for why DP is not usable in many real world applications 

(Powell, 2007).   

Therefore, ADP has emerged as a powerful technique for solving complex RL 

problems as a means to mitigate the curses of modeling and dimensionality.  This is 

accomplished principally through use of a transition function (rather than a TPM) to 
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model agent behavior and interaction with the environment.  Classic ADP techniques are 

described by (Berrtsekas & Tsitsiklis, 1996; Sutton & Barto, 1998) and a comprehensive 

survey with more than 100 references is provided in (Gosavi, 2009).  Further, (Powell, 

2007) provides comprehensive strategies for further reducing dimensionality through use 

of post-decision state values and (Balakrishna, 2009) presents a diffusion wavelet 

treatment to further address the curse of dimensionality.  These improve the means for 

solving an increased number of operationally relevant problems. 

ADP has several appealing features that make it an appropriate choice for the 

competitive problem under study; chiefly that it easily incorporates the stochastic nature 

of both the environment and the outcome of the agent decisions without having pre-

defined transition probabilities.  They are learned through the algorithm by trial and error.  

This approach is not yet common in the transportation literature, but (Powell, Simao, & 

Bouzaiene-Ayari, 2012) offer a unifying framework for applying ADP to transportation 

problems which we employ in our model. 

Where DP provides a provably optimal decision policy in a limited number of 

problems, ADP is effective for discovering good overall policies (not necessarily 

optimal) in a much wider array of  problems, where optimality cannot be readily achieved 

through any other OR techniques. 
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CHAPTER THREE – MODEL DESIGN AND FORMULATION 

To date, despite vastly improved counter-IED technologies, the literature reveals 

that little has been done to develop, publish, and establish improved modeling concepts 

for sustained logistics under contested conditions.  Many solution methods to dynamic 

routing and scheduling problems have ignored current knowledge to forecast the future 

because solutions to the VRP are already very difficult (Spivey & Powell, 2004).  As 

such, a central goal of this formulation is to keep the vehicle assignment and routing 

problem as simple as possible to focus the computational effort on the challenge of 

learning from the opponent interaction. 

In order to determine the best way to schedule route clearance and other vehicle 

movements under contested conditions, there are two objectives any complete logistical 

model must be meet.  The first is to satisfy the operational requirement of moving troops 

and cargo throughout the operational area.  This involves solving some version of the 

VRP.  The second is the minimization of loss and damage from ambushes which requires 

an operational scheme to counter the attacker.  But, it is not enough to simply optimize 

the immediate (myopic) choices of what, when, where and how to move across the road 

network based on static risk assessments, scripted attacker behavior, or long run 

averages.  Rather, we claim the goal should be to synchronize individual movement 
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decisions across the fleet of vehicles and entire planning horizon, accounting for 

downstream attacker-defender interactions.   

Our model represents opponent interaction by assuming dependence between 

attack probabilities and targeted traffic patterns.  There are currently few analytical 

approaches explicitly make this assumption, but RL algorithms offer opportunities for 

meaningful improvements in this area.  To our knowledge this approach has not been 

pursued anywhere in the OR literature related to this problem.  Our goal is to effectively 

address the attack problem by crafting vehicle movement schedules that not only satisfy 

the military distribution problem, but also maximize the defender’s performance, given 

the attacker’s reaction to changes in defender activity patterns.  The model herein is an 

initial step in this direction. 

Model Description 
Since the VRP is already difficult to solve in its own right (Hinton, 2010)

22
, the 

general approach taken will be to greatly relax common VRP constraints (such as those 

related to distance traveled, crew endurance, fuel cost, etc.)  in order to provide maximum 

flexibility and free computational effort to crafting vehicle movement plans that 

minimize successful ambushes.  This is accomplished by choice of convoy size, convoy 

and RCP route assignments, and activity timing.  Thus, we employ a full truckload, single 

stop, route selection formulation of the VRP, as these are relatively easy to solve (Ropke, 

2005).  

We make four principle assumptions in this model formulation: 

                                                 
22

 VRP and NP-completeness are discussed under Vehicle Routing, on page 26. 
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1. Infinite horizon: A clear characteristic of the network ambush problem we are 

addressing is its repetitive nature with ongoing, nearly constant interaction 

between the attacker and the defender.  We are not endeavoring to predict rare 

events, but rather systematic and sustained attack situations.  Thus, the infinite 

horizon assumption is quite natural. 

2. Dependence: Assuming dependence between the attacker’s and defender’s 

actions is a key distinguishing feature of our model.  It is taken to mean that 

the network defender cannot escape the direct observation of the attacker 

while conducting activities across the network.  As such, we assume that the 

locations, types, and frequency of defender traffic bears directly on the 

attacker’s ambush decisions.  In practice this interaction must be continuously 

learned over time and this model is a foundational step toward potentially 

developing a family of RL algorithms to more fully address learning 

opponents in similar circumstances.  Thus, this formulation, explicitly 

assumes dependence between the defender’s actions and the attacker’s 

ambush choices.  The military theory underlying this assumption is discussed 

in (Stimpson, 2011). 

3. Scalar function cost and reward: All values are measured on a single scale 

(e.g., delivery rewards, operating costs and damage penalties). Variations in 

the value scheme can easily be tailored to a different modeling objective.  For 

example, since the objective function minimizes total operating costs, the 

penalty for unmet customer demand can be increased or decreased relative to 
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the other penalties and benefits to vary the policies’ responsiveness to 

customer demand. 

4. Latent IEDs: We assume every IED ambush established by the attacker is 

discovered by the defender with some probability of damage.  Thus, there are 

no latent (undiscovered and unexploded) IEDs remaining on the network 

roadways following defender traffic passage and IEDs do not accumulate. 

 

 

Figure 17: Problem illustration 

 

Model Formulation 
Our goal is to present a simple, but generalizable, model in keeping with current 

military operational concepts.  Thus, as Figure 17 shows, in our basic formulation we 

model a single depot supplying an outlying operational base (customer) across a network 

of preplanned network paths (routes).  As such, we define a graph of multiple undirected 

paths between a single depot and customers where the customer locations and routes are 

fixed.  This is consistent with an established system of bases and approved routes which 

are typical for military distribution (see Figure 18 and Figure 19). 

Depot

Forward Base 
(customer)



55 

 

 

Figure 18: Supply routes in Iraq during spring of 2009 (Center for Army Analysis, 2012) 

 

 

Figure 19: Supply routes in Afghanistan during spring of 2009 (Center for Army Analysis, 2012) 
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In our formulation each time step is an interval beginning at time t.  The agent is a 

decision maker that observes the system at equally spaced time intervals 0,1,2, … without 

limit.  At each time interval, the agent observes the system which can only be in one of 

(N) states, defined by the system state variables.  The transition from state to state is 

governed by chance based on the agent’s decision, stochastic system state changes, and 

stochastic exogenous information that may or may not arrive.  (𝑃𝑖𝑗
𝑘) is the probability that 

if the agent makes decision 𝑘 ∈ 𝐾 in the current system state (𝑖), the agent will observe 

system state (𝑗) in the next time period.  Each state transition generates some immediate, 

one-step reward (calculated according to the one-step cost function) (𝐶𝑖
𝑘), which can be 

negative (i.e., a penalty).  State transitions occur with probability 1.0 as shown in 

Equation 1 (Denardo, 2003).  In reality the agent does not know the transitions 

probabilities a priori, rather they must be learned through observation by trial and error. 

Equation 1: Transition probability rule 

∑𝑃𝑖𝑗
𝑘 = 1                     ∀𝑖, 𝑘 

N

𝑗=1

 

At each time step, the agent seeks to maximize the total reward (or minimize the 

total penalty) which is the sum of the immediate reward for the current decision (𝑘) and 

long run discounted value of all future (downstream) rewards it expects to realize over 

the entire planning horizon. Thus, at each time step, the agent faces the tradeoff decision 

between maximizing its current reward against the long range payoff for future rewards 

that can be realized as a consequence of the current and future decisions.  As such, the 

agent learns the best decision for each system state in which it may find itself.  This 
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provides us with a state–dependent decision rule (or function) that we refer to as a policy 

(Powell, 2007; Denardo, 2003). 

Equation 2: Reward bounds in any given time step 

𝑚 = min
𝑖,𝑘
{𝐶𝑖

𝑘} < 𝐶𝑖
𝑘  < max

𝑖,𝑘
{𝐶𝑖

𝑘} = 𝑀 

Per Equation 2, when the problem can be solved explicitly, the immediate reward 

available to the agent in every state is between the minimum and maximum possible 

reward.  Then, since we apply a discount factor, 0 < 𝛾 < 1, to all future rewards, the 

present value of the entire future decision stream is between 𝑚 (1 − 𝛾)⁄  and 𝑀 (1 − 𝛾)⁄ .  

As such, the reward available to the agent in any given state is according to Equation 3 

which is no more than the sum 𝑀 (1 − 𝛾)⁄ , of the geometric series 𝑀 +𝑀𝛾 +𝑀𝛾2 +⋯ 

(Denardo, 2003) .   

The value of 𝛾 determines how “greedy” the agent will act, in balancing its choice 

of current verse future rewards.  When 𝛾 = 0, the agent only values the current payoff 

without regard for the future consequences of the current choice.  Increasing the value of 

𝛾 causes the agent to increasingly weigh the value of future system states, in which it 

may find itself, as a significant component of the current choice.  If 𝛾 = 1, the agent will 

value all future states equally. 

Equation 3: Long run total value of rewards (Stewart, 1999) 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 =∑𝛾𝑡𝐶𝑡

∞

𝑡=0

                          0 < 𝛾 < 1 

We say the model is in discrete-time since agent decisions are made at each time 

step and that it is finite since the state and decision spaces are defined as finite sets.  
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These characterizations, together with our definition of the transition probabilities, make 

this model Markov (Denardo, 2003).   

In order for the system state to be effective and informative, the state variables 

must provide an adequate means for calculating the subsequent state transition and the 

value of future rewards.  As with the all MDPs, transition probabilities and rewards are 

functions of the current state variables and the action choice without regard for how the 

current state was reached.  Thus, except for the historical information held in the state 

variables themselves, the system state is said to have the Markov property, i.e., it is 

memoryless, or independent of the path by which the system arrived in its current state 

(Sutton & Barto, 1998).  Since historical context is necessary in this setting, we define an 

information state that gives the agent limited historical data within the system state 

definition.   

Decision Variable 
(𝑃) is the set of assignable network paths for convoys and RCPs.  We define the 

network such that each path from the depot only services one customer ℎ ∈ 𝐻.  While 

alternative architectures are available, this definition simplifies the formulations and is 

adequate for the intended application (see Figure 20).  Additionally, as discussed 

previously, historical geospatial analysis shows that IED attack regions have been 

localized, with activity in confined clusters or hot spots (Keefe & Sullivan, 2011), which 

are generally limited to an attacker’s sphere of influence.  
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Figure 20: Example network and adjacency matrix 

 

In general we expect 𝑃 to be the same for convoys and RCPs, but (𝑃) can be 

indexed by traffic type according to constraints such as the accessibility of certain routes 

to certain vehicle types or convoy size limitations that may be path specific.  In our base 

case, we model only two classes of vehicles, Convoys and RCPs, but additional classes 

can be defined as required. 

From any feasible system state, the agent chooses from the set of (𝑋) feasible 

actions at time (𝑡), where 𝑥𝑡 ∈ 𝑋 as determined by the system state such that 𝑞𝑝 ∈

𝑄, and 𝑙𝑝 ∈ (0,1).  𝑄 = {0,1,2, … 𝑞𝑚𝑎𝑥} is a set of feasible convoy sizes in homogeneous 

“trucking units” that can be shipped on any path 𝑝 ∈ 𝑃.  At each time step, feasible agent 

actions are to ship some feasible number of supply units on each path, and/or assign route 

clearance to some feasible number of paths as described by the vector (𝑥𝑡).  This yields 

Equation 4. 

Equation 4: Agent action vector 

𝑥𝑡 = (𝑞𝑡,1, 𝑞𝑡,2, … , 𝑞𝑡,𝑃, 𝑙𝑡,1, 𝑙𝑡,2, … , 𝑙𝑡,𝑃) 
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(𝑞𝑡,𝑝) is the choice of convoy size (or quantity) to be shipped from the depot to 

the customer on path (𝑝) at time (𝑡).  When 𝑞𝑡,𝑝 = 0, the action is to ship zero units, that 

is, do not ship anything, on path (𝑝) (we also refer to this choice as “wait”).  Then, (𝑙𝑡,𝑝) 

is the RCP path assignment, where 𝑙𝑡,𝑝 = 0 is the action of choosing not to clear path 𝑝.  

A simultaneous assignment occurs when 𝑞𝑡,𝑝 ≥ 1 𝑎𝑛𝑑 𝑙𝑡,𝑝 = 1 for any (𝑝) at time (𝑡) (see 

Figure 21).  In practice, this is understood to be a direct RCP escort of the convoy on the 

assigned path.  Defining the action vector in this way, only allows zero or one convoy 

and/or RCP assignment per network path in each time step.  But this is not an actual 

limitation in practice as the agent can vary the convoy size as desired. 

 

 

  Figure 21: Example of defender action choices for some state (𝑺𝒕) in a two path case 

 

System State 
The state variable is a minimally dimensioned function of history that is necessary 

and sufficient to compute the decision function, the transition function, and the 
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contribution (or cost) function (Powell, Simao, & Bouzaiene-Ayari, 2012).  It defines 

every particular system state.  In order to discover good decision policies, the state 

definition must well represent conditions under which each decision is to be made.  This 

requires representing historical detail from recent activity patterns and interactions such 

that useful projections, conditioned on the current decision, are possible.  We compose 

the system state variable (𝑆𝑡) with three components, the resource state (𝑅𝑡), information 

state (𝐼𝑡), and knowledge state (𝐾𝑡) as shown in Equation 5: 

Equation 5: State variable definition 

𝑆𝑡 = (𝑅𝑡, 𝐼𝑡 , 𝐾𝑡)  

The resource state (𝑅𝑡) includes customer inventory levels and RCP readiness 

status.  The information state (𝐼𝑡) maintains attacker and defender activity information in 

the form of density measures.  While, the knowledge state (𝐾𝑡) is the current belief about 

the expected outcome for every feasible decision (𝑥𝑡) with respect to expected customer 

demands and attack probabilities. 

Resource State 
The resource state is defined as 𝑅𝑡 = (𝑢𝑡,𝐻∙, 𝑗𝑡,𝑛), where 𝑢𝑡,ℎ = [0, 𝑢ℎ

𝑚𝑎𝑥] defines 

feasible inventory levels for each customer ℎ ∈ 𝐻 at time (𝑡) and 𝑗𝑡,𝑛 = [0, 𝑗𝑛
𝑚𝑎𝑥] is the 

readiness state of RCP (𝑛) at time (𝑡).   

Following every RCP assignment, there is a recovery period required before the 

RCP can be reassigned.  Therefore, 𝑗𝑛
𝑚𝑎𝑥 is the RCP state immediately following an RCP 

usage and its value decays as function of (𝑡), until 𝑗𝑡,𝑛 = 0. Then the RCP is available for 

reassignment.  All RCPs are held in a central inventory and can be individually assigned 
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to any network path so long as they are in the recovered state.  Customer inventory and 

RCP state transitions are defined as follows: 

Equation 6: Customer inventory update 

𝑢𝑡+1,ℎ = 𝑚𝑎𝑥{0,  𝑢𝑡,ℎ + 𝑞𝑡,ℎ − 𝑑̂𝑡,ℎ},              ∀ℎ 

Equation 7: RCP inventory update 

𝑗𝑡+1,𝑛 = {
𝑗𝑛
𝑚𝑎𝑥 ,                                          𝑖𝑓 𝑙𝑡,𝑝 = 1 (𝑅𝐶𝑃 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑎𝑡ℎ 𝑝) 

𝑚𝑎𝑥{0,  𝑗𝑡,𝑛 − 𝑓(𝑡)} ,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                          
 

Here, (𝑑̂𝑡,ℎ)23 is the stochastic demand from customer (ℎ) in the current time step 

which only becomes known after the agent decision (𝑥𝑡).  Thus, the agent schedules 

convoys in anticipation of customer demand rather in reaction to immediate demands.  If 

the observed demand in the current time step is lower than expected, the system state will 

reflect increased inventory in the next time step.   Over time, in the absence of some 

additional knowledge, the observed historical demand will be the basis by which the 

expected demand distribution is updated.  But if other information is available, like an 

anticipated change in force level or operational requirement, these can be used to update 

the agent’s expectation. 

We treat supply as homogeneous to minimize the state space dimensionality, but 

the addition of different supply classes can be accommodated.  In practice this is likely 

unnecessary as shipping capacity is generally fungible within supply classes and vehicle 

types (like fuel verses bulk cargo); thus, this treatment provides adequate resolution for 

most applications.  Also, since the customer has storage capacity, immediate customer 

                                                 
23

 The “hat” (e.g., 𝑑̂𝑡,ℎ) denotes exogenous information arriving from outside the system and not within the 

agent’s control.  
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demand can be filled by on hand customer inventories.  This allows the convoy delivery 

schedule to be flexible, providing opportunities to use the most advantageous schedule 

and path choices to satisfy demand with minimum operational costs and attack penalties. 

Decision Constraint 
Now that (𝑢𝑡,ℎ) and (𝑞𝑡,ℎ) have been defined, we note an agent decision 

constraint we apply to improve solution times by minimizing the agent decision space; 

namely we do not allow the agent to schedule a delivery quantity (𝑞𝑡,ℎ) that will exceed 

any customer’s storage capacity (𝑢ℎ
𝑚𝑎𝑥).  In practice this is unrestrictive, so long as the 

customer capacity exceeds the max shipping capacity.  Alternatively, the model could be 

constructed to allow excess shipments with a penalty when the sum of current inventory 

and deliveries exceeds customer storage capacity. 

Equation 8: Delivery decision constraint  

𝑥𝑡 = (𝑞𝑡,1, 𝑞𝑡,2, … , 𝑞𝑡,𝑃, 𝑙𝑡,1, 𝑙𝑡,2, … , 𝑙𝑡,𝑃)         𝑆. 𝑇.  𝑢𝑡,ℎ + 𝑞𝑡,ℎ ≤ 𝑢ℎ
𝑚𝑎𝑥          ∀ℎ 

Information State 
The information state (𝐼𝑡) must maintain enough historical, environmental, and 

pattern data to make associations between defender actions and attacker preferences.  

From a dimensionality perspective, this is the most challenging aspect of this problem 

since there is virtually no limit to the number of environmental factors that might be 

recommended for inclusion.  Additional techniques and strategies to address this 

challenge are outside the scope of this dissertation, but are discussed further in under 

Future Research (page 110).   
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From the information state comes the agent’s current attack expectation (defined 

in the knowledge state below).  We define a simple information state,  𝐼𝑡 = (𝑏𝑡,𝑃. , 𝑒𝑡,𝑃. ) 

where (𝑏𝑡,𝑝) is a measure of defender traffic density on network path (𝑝 ∈ 𝑃) at time (𝑡) 

and (𝑒𝑡,𝑝) is the measure of the concurrent attack density on network path (𝑝 ∈ 𝑃).  Both 

density states are calculated as measures of the recent activity on each path across the 

network, updated after the current agent (defender) decision (𝑥𝑡) and the observed 

attacker response: 

Equation 9: Traffic density update 

𝑏𝑡,𝑝 = 𝑏𝑡−1,𝑝 + 𝑓( 𝑥𝑡)                   ∀𝑝 

Equation 10: Attack density update 

𝑒𝑡,𝑝 = 𝑓(𝑒𝑡−1,𝑝, 𝑎𝑡−1,𝑝)                 ∀𝑝 

As defined, the current agent decision updates each path’s traffic density measure 

(𝑏𝑡,𝑝) prior to decision (𝑥𝑡), while the previously observed attack behavior is used to 

update the attack densities (𝑎𝑡−1,𝑝) for each path.  Also, note we make no distinction 

between convoy and RCP traffic to reflect an assumption that the attacker is equally 

likely to attack all defender traffic, but this assumption is easily relaxed. 

Depending on what constraints are applied; the decision space is relatively small 

compared to the information state space because the action choices available to the 

defender in any time step are limited to the timing and volume of shipments and the 

assignment of route clearance (previously shown in Figure 21).  For example, if there are 

five network paths, ten convoy size options, and at least five RCPs, then the 

unconstrained agent has 3.2 M possible actions (105 ∙ 25).  But, if we don’t allow 
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unrealistic choices like using all paths simultaneously (i.e., sending separate convoys on 

all five paths in the same time step), but instead constrain the agent to just one convoy per 

time step, then there are only 320 action choices (10 ∙ 25).  This strategy significantly 

reduces dimensionality, allowing computational resources to be focused on the most 

likely actions the agent will take. 

Meanwhile even the minimal information state space calculation we employ is 

significantly larger.  For example in the same road network, if we have two customers 

with ten inventory levels, three RCPs with a four time period recovery function, and five 

traffic and attack density states, there are 12,500 resource states (102 ∙ 53) and 9,765,625 

information states (55 ∙ 55), yielding over 122 billion total system states.  Thus, the 

information state cannot be enumerated, but must be calculated as a function in any 

realistic application. 

Knowledge State 
While we are implementing a simple attack preference model in this formulation, 

obviously an attacker behavior model can become quite complex, incorporating several 

dimensions, such as observed attacker preferences related to resource availability, 

environmental, spatial, temporal, seasonal, historical, and other features.  Further, these 

models can range from a probability of attack based simply on event counts and trends 

analysis to numerous other prediction measures such as those discussed under Attack 

Pattern Recognition (page 36) and Future Research (page 110). 

Recall we assume the IED ambush is the attacker’s prediction of the future.  Thus 

it is our primary task to understand the basis of this prediction, which is what the attacker 
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observes about the defender’s actions.  The extent this can be accomplished is the extent 

to which improved predictions can be crafted.  Therefore, the knowledge state necessarily 

includes both the customer demand and attack expectations, which are informed by the 

information state, according to the action choices at hand. 

The knowledge (or belief) state, 𝐾𝑡 = 𝑓(𝑥𝑡, 𝐼𝑡), defines the agent’s expectation of 

customer demand and being attacked given each feasible action it can take, including the 

discounted downstream expectation.  Thus, we calculate the expected probability of 

attack component according to the current traffic and attack densities, independent of 

customer demand. 

Attack Probability 
 We conceive of a fixed and variable attack probability in acknowledgement that 

there is always some probability of attack when traveling through a high risk area, but we 

posit this risk increases with repeated path usage.  As such, we incorporate this idea with 

a simple, but reasonable, path specific definition for probability of attack: 

Equation 11: Path probability of attack 

𝑃[𝑎̂𝑡,𝑝] = 𝑃[𝑎̂𝑡+1,𝑝
𝑓𝑖𝑥𝑒𝑑

] + 𝑃[𝑎̂𝑡+1,𝑝
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒|𝑥𝑡, 𝑏𝑡,𝑝, 𝑒𝑡,𝑝]                         ∀𝑝 

Here we assume without regular defender traffic (i.e., 𝑏𝑡,𝑝 = 0, ∀𝑡), the attacker 

does not anticipate the defender; therefore, does not deliberately prepare IED ambushes 

so 𝑃[𝑎̂𝑡+1,𝑝
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒] = 0.  But, as traffic density increases, so will the attacker’s expectation of 

ambush opportunities which can be emplaced in the lengthy temporal gaps between the 

occasional defender transits.  Then, we postulate, as defender traffic volume continues to 

increases, the shrinking temporal gaps between defender transits provide less 
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emplacement opportunity and begin to increase the attacker’s risk of being interdicted 

(caught in the act of emplacing); therefore, decreasing his attack opportunities and the 

probability of attack.   

In practice 𝑃[𝑎̂𝑡+1,𝑝
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒] would not be defined a priori, but must be learned over 

time on every network path.  Figure 22 shows two conceptual examples.  We note here 

that there are other forms of defender activity we do not model (to include various forms 

of surveillance) that might affect the attacker’s perceived emplacement opportunities to 

the extent he is sensitive to them.  While these could be included in the formulation 

determining the expected attack probability, they are outside our immediate treatment. 

 

 

Figure 22: Example attack probability functions 

 

This means a decision to move along a certain path may increase or decrease  

𝑃[𝑎̂𝑡,𝑝] depending on (𝐼𝑡).  Further, the agent’s current travel decision not only bears on 
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the current knowledge state (𝐾𝑡), but it directly affects the downstream knowledge states 

(𝐾𝑡+1, 𝐾𝑡+2, …) as well. 

It should be noted that a consequence of assuming dependent attack probabilities 

is that the defender has a level of control over the attacker’s emplacement actions.  This 

is an important distinguishing feature of our model that relies on a robust information 

state and learning from correlations between defender traffic frequency and the observed 

attacks.  The attack probability transitions are calculated as follows: 

Equation 12: Fixed probability of attack for each path 

       𝑃[𝑎̂𝑡+1,𝑝
𝑓𝑖𝑥𝑒𝑑

] = 𝑓(𝑒 𝑇∙,𝑝)                 ∀ 𝑝 

Equation 13: Variable probability of attack for each path 

𝑃[𝑎̂𝑡+1,𝑝
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒] = 𝑓(𝑥𝑡, 𝑏 𝑡,𝑝, 𝑒 𝑡,𝑝)            ∀ 𝑝 

This path-based treatment assumes the attacker does not discriminate between 

defender traffic types.  To the extent they can be learned, a simple extension would 

provide individual attack probabilities for each traffic type on each network path. 

Exogenous Information 
Exogenous information, 𝑊𝑡+1 = (𝐷̂𝑡, 𝐴̂𝑡)  defines information from outside the 

system that arrives after decision (𝑥𝑡) is made.  Thus, the expected demand state is 

defined historically as 𝐷̂𝑡 = 𝑓(… , 𝑑𝑡−2,ℎ, 𝑑𝑡−1,ℎ, 𝑑̂𝑡,ℎ), ∀ℎ where current demand for 

customer (ℎ) is an unobserved random variable (𝑑̂𝑡,ℎ) before the shipping decision is 

made.  It becomes a known value after the decision (𝑥𝑡), so that (𝐷̂𝑡)  is the expected 

demand at time (𝑡).   
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Likewise, 𝐴̂𝑡 = 𝑓(… , 𝑎𝑡−2,𝑝, 𝑎𝑡−1,𝑝, 𝑎̂𝑡,𝑝), ∀𝑝, is the attack expectation where 𝑎̂𝑡,𝑝 

is a stochastic, binary post-decision variable describing the agent’s attack expectation on 

each network path.  It only becomes known after decision (𝑥𝑡).  Information of an attack 

(𝑎𝑡,𝑝) can be observed anytime the defender vehicles are operating on the network or by 

any means of monitoring the defender may employ.  This information is used to 

update 𝐴̂𝑡+1. 

Cost and Objective Functions 
The system progresses according to the system model (𝑆𝑀) where the state 

variable (𝑆𝑡) is updated according to the current decision (𝑥𝑡) and the arrival of 

exogenous information (𝑊𝑡+1).  As such, we can generically describe how the state 

variable changes over time as 𝑆𝑡+1 = 𝑆
𝑀(𝑆𝑡, 𝑥𝑡 ,𝑊𝑡+1) where (𝑆𝑡)  captures the changes 

in the resource, information and knowledge states as the system progresses through time.  

According to the objective function and value measure, decisions are then made to avoid 

low value states and arrive at high value states across the entire planning horizon (Powell, 

Simao, & Bouzaiene-Ayari, 2012).  The equations that follow provide the cost 

components used to evaluate every feasible decision and calculate the value of each state 

transition. 

Convoy Operating Cost 
The military has long understood that operating in convoys provides many 

benefits, chiefly mutual support and protection.  Because convoys are often afforded 

significant security protection with armed vehicle escorts and even aircraft at times, they 
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entail significant fixed cost.  (DeGregory, 2007) provides a useful discussion of these 

FPR considerations. 

Here, we differentiate between convoy security escorts and RCPs which can also 

“escort” a convoy by clearing IEDs immediately in front of it.  In contrast, security 

escorts are organic combat forces within the convoy.  This leads to a path specific convoy 

cost equation that deterministically sums the fixed cost of security, planning, and other 

requirements associated with every convoy with the variable costs associated with 

convoy size.  It should be noted that there are no RCP costs charged in our formulation, 

as these are considered to be outside the immediate system. 

 

Equation 14: Deterministic convoy operating cost 

𝑐𝑡
1(𝑞𝑡.𝑃∙)   = ∑𝑐𝑡,𝑝

𝑐𝑜𝑛𝑣𝑜𝑦

𝑃

𝑝=1

 

Where, 

𝑐𝑡,𝑝
𝑐𝑜𝑛𝑣𝑜𝑦

= {
𝑐𝑓𝑖𝑥𝑒𝑑 + 𝑞𝑡,𝑝𝑐

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒               ∀𝑝 𝑎𝑛𝑑 𝑞𝑡 > 0        

0                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
  

Delivery Reward 
Let (𝑐ℎ

𝑑𝑒𝑙𝑖𝑣𝑒𝑟) be the reward for every unit of supply a convoy delivers to each 

customer (ℎ).  Obviously the long range objective of the model is to provide sustaining 

supplies to the customer.  Hence, the successful delivery of each supply unit is rewarded 

deterministically based on the shipping decision.  As formulated, this is the only positive 

contribution the agent can earn through its operations which reflects the logisticians’ 
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primary responsibility and ultimate measure of success.  While we only model one class 

of supply here, indexing for multiple supply classes is easily accommodated. 

Equation 15: Deterministic delivery reward 

𝑐𝑡
2(𝑞𝑡,𝐻∙) = ∑𝑞𝑡,ℎ𝑐ℎ

𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝐻

ℎ=1

 

Customer Inventory Holding Cost 
Moving excessive inventory to a remote operating base for storage entails security 

and storage costs on the customer.  For this reason we exact a cost penalty for inventory 

levels that exceed customer storage capacities.  Recall customer demand (𝑑̂𝑡,ℎ) is an 

unknown stochastic variable at the time of decision (𝑥𝑡), so the inventory cost are 

determined for feasible agent decisions according to the expected inventory level after 

customer demand is observed. 

Equation 16: Expected inventory holding cost 

𝔼[𝑐𝑡
3(𝑢𝑡,𝐻∙, 𝑞𝑡,𝐻∙, 𝑑̂𝑡,𝐻∙)] = 

{
  
 

  
 
      ∑ 𝑐ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑚𝑎𝑥(0, 𝑢𝑡,ℎ + 𝑞𝑡,ℎ − 𝑖)𝑃[𝑑̂𝑡,ℎ = 𝑖]

𝑢𝑡,ℎ+𝑞𝑡,ℎ

𝑖=0

                𝑖𝑓 𝑢𝑡,ℎ + 𝑞𝑡,ℎ  ≤ 𝑑ℎ
𝑚𝑎𝑥     

                    

∑ 𝑐ℎ𝑜𝑙𝑑𝑖𝑛𝑔 (𝑢𝑡,ℎ + 𝑞𝑡,ℎ − 𝑖)𝑃[𝑑̂𝑡,ℎ = 𝑖]

𝑢𝑡,ℎ+𝑞𝑡,ℎ

𝑖=𝑢𝑡,ℎ+𝑞𝑡,ℎ−𝑞ℎ
𝑚𝑎𝑥

                    𝑖𝑓 𝑢𝑡,ℎ + 𝑞𝑡,ℎ > 𝑑ℎ
𝑚𝑎𝑥       

 

∀ℎ                                

Unmet Demand Cost 
The logistician has failed in his basic responsibility if customer demand ever 

exceeds the sum of current inventory and shipments.  Therefore, we assess a large penalty 
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for unmet (exogenous) customer demand.  The agent evaluates this possibility at each 

time step by calculating the expectation according to Equation 17. 

Equation 17: Expected penalty for unmet demand 

𝔼[𝑐𝑡
4(𝑢𝑡,𝐻∙, 𝑞𝑡,𝐻∙, 𝑑̂𝑡,𝐻∙)] = 

{
∑ 𝑐𝑢𝑛𝑚𝑒𝑡(𝑖 − 𝑢𝑡,ℎ + 𝑞𝑡,ℎ)𝑃[𝑑̂𝑡,ℎ = 𝑖]                  𝑖𝑓 𝑢𝑡,ℎ + 𝑞𝑡,ℎ < 𝑑ℎ

𝑚𝑎𝑥

𝑑𝑚𝑎𝑥

𝑖=𝑢𝑡,ℎ+𝑞𝑡,ℎ

  0                                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

 

∀ℎ                                    

Attack Costs  
Anecdotal historical evidence has suggested that the presence of route clearance 

activities (RCTs) had no significant impact on the number of IEDs emplaced by 

insurgents; however, we have observed that RCPs have typically maintained higher 

discovery rates and lower casualty rates than standard maneuver forces and logistic units.  

This performance difference is due in part to the specialized equipment RCPs employed 

which allowed them to identify and interrogate potential IEDs from increased distances.  

Additionally, because RCPs typically search the same areas repeatedly, and for extended 

periods, they maintained more intimate knowledge of the roadways and surroundings 

under their purview compared to passing units.  This is why they generally demonstrated 

greater ability to detect subtle environmental changes that might indicate the presence of 

an emplaced IED (Ardohain, 2016). 

In our model, the costs of attacks are charged when the defender’s convoy and 

RCP routing and scheduling decision is coincident with the attacker’s ambush.  In this 

formulation we have chosen to use the same attack probability calculation for all traffic 
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types on a given network path, but indexing for traffic type is a trivial extension.  We do 

index attack penalties by traffic type (assigned according to decision 𝑥𝑡) to reflect the 

robustness of different vehicle and equipment, but attacks do not consume supply. 

Equation 18: Expected attack penalty 

𝔼[𝑐𝑡
5(𝑥𝑡, 𝑎̂𝑡,𝑃. )] =  {

∑ 𝑃[𝑎̂𝑡,𝑝](𝑐𝑥𝑡
𝑎𝑡𝑡𝑎𝑐𝑘 )

𝑝∈𝑥𝑡

                      

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

∀𝑝  

One step cost function 
In any system state, (𝑆𝑡), the above costs yield a distinct one-step contribution 

function for every feasible action (𝑥𝑡) available to the agent according to the system state 

at time (𝑡).  Since the objective function maximizes total expected value over time, the 

rewards for deliveries are added while operating and attack costs are subtracted as 

follows: 

Equation 19: One-step cost function 

𝐶𝑡(𝑆𝑡, 𝑥𝑡,𝑊𝑡+1) = 

−𝑐𝑡
1(𝑞𝑡.𝑃∙) + 𝑐𝑡

2(𝑞𝑡,𝐻∙) − 𝔼[𝑐𝑡
3(𝑢𝑡,𝐻∙, 𝑞𝑡,𝐻∙, 𝑑̂𝑡,𝐻∙)] − 𝔼[𝑐𝑡

4(𝑢𝑡,𝐻∙, 𝑞𝑡,𝐻∙, 𝑑̂𝑡,𝐻∙)] − 𝔼[𝑐𝑡
5(𝑥𝑡, 𝑎̂𝑡,𝑃. )] 

State Value Function Transition   
By letting 𝐶𝑡(𝑆𝑡, 𝑥𝑡,𝑊𝑡+1) be the contribution for being in state (𝑆𝑡), and taking 

action (𝑥𝑡), we can calculate the value of being in any post-decision state at some time 

(𝑡) by recursively calculating the expected value of each feasible next state (𝑆𝑡+1).  As 

shown in Figure 23, we find this value with the system model 𝑆𝑡+1 = 𝑆𝑀(𝑆𝑡, 𝑥𝑡,𝑊𝑡+1) by 

splitting the model into two components – the deterministic 𝑆𝑡
𝑥 = 𝑔(𝑆𝑡, 𝑥𝑡) and the 

stochastic 𝑆𝑡+1 = 𝑓(𝑊𝑡+1, 𝑆𝑡
𝑥) where 𝑥𝑡 ∈ 𝑋𝑡 is the set of all feasible actions in state (𝑆𝑡). 
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Figure 23: Time relationships between information flow and state transitions 

 

With the deterministic Equation 20, we select the action (𝑥𝑡) that maximizes the 

sum of the current one-step contribution and the long run (discounted) value of the 

logistic effort given the agent’s current expectation. With Equation 21 we update the 

value of the post-decision state using the learning version of Bellman’s recursive 

equation.  Then RL is achieved via several simulations of the system, observing the 

system state (𝑆𝑡), making decisions using Equation 20, and learning the value of the post-

decision states using Equation 21. 

Equation 20: One-step state value approximation 

𝑣𝑡
𝑛 = 𝑚𝑎𝑥

𝑥𝑡∈𝑋𝑡
𝑛
(𝐶𝑡(𝑆𝑡

𝑛, 𝑥𝑡, 𝑊𝑡+1) + 𝛾𝑉𝑡+1
𝑛−1

(𝑆𝑡+1
𝑥 )) 

Equation 21: Value function approximation (learning equation) 

𝑉̂𝑡
𝑛(𝑆𝑡

𝑥) = (1 − 𝛼𝑛−1)𝑉̂𝑡
𝑛−1(𝑆𝑡

𝑥) + 𝛼𝑛−1𝑣𝑡
𝑛 
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We start by initializing 𝑉̂𝑡
0(𝑆𝑡) = 0, ∀ 𝑆𝑡, where (𝛼) is the learning rate parameter 

and (𝛾) is the discount rate parameter.  Then in each iteration, solving Equation 20 

provides an observation (or sample realization) to update our belief in what is the “real” 

value of the current state.  Accordingly, we want this to be a correct step along the 

stochastic gradient according to (𝛼) which defines the step size.  However, since the 

gradient is stochastic, we have no guarantee that this step is in the direction of the true 

post-decision state value.  Despite this uncertainty in both the contribution function value 

and the state transition (𝑆𝑡 to 𝑆𝑡+1), the algorithm can be proven to converge by selecting 

appropriate learning parameters and revisiting the state a sufficient number of times.  

Thus, we continue the learning process by increasing counter 𝑛 until the convergence 

criteria is met (Powell, 2007). 

Finally, when learning is complete, the algorithm has determined the values of 

several feasible post-decision states of the system. We test the system in the learned 

phase of the implementation, where in a given pre-decision state (𝑆𝑡), the optimal 

decision is derived by executing Equation 20.  Several value function approximation 

techniques are available for cases of higher dimensionality to mitigate computational 

storage issues arising from the storage of the post-decision states values. 

Policy 
For dynamic, stochastic problems, such as the one at hand, the decision (𝑥𝑡) for 

𝑡 ≥ 1 is a random variable because we don’t know at 𝑡 = 0 what the system state will be 

at any future time.  In ADP, we don’t focus on finding the best decision in real time, but 

rather on learning the best decision rule given the information at hand.  In any large 
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problem, a good (approximately optimal) policy will take significant time to learn.  But, 

once the decision policy is learned, it can be applied in real-time, as soon as the current 

real-world system state is determined. 
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CHAPTER FOUR – EXPERIMENTAL RESULTS AND ANALYSIS 

Computational Results 
To demonstrate the formulation provides meaningful policy responses in differing 

environmental conditions, we tested the algorithm results against several representative 

scenarios of varying customer demand, subject to various attacker profiles.  This gives us 

several different regimes, with consistent costs, rewards, and environmental models to 

evaluate the RL model’s look-ahead performance against a myopic decision strategy 

benchmark. 

Our myopic decision algorithm applies a pure, one-step, greedy decision rule that 

does no learning.  Rather it chooses the maximum expected reward for the current 

decision without consideration for downstream system states or values.  Mathematically, 

this is performed by removing the state value for (t+1) in the current decision objective 

function (𝑉𝑡+1) which is easily accomplished by setting the discount parameter (𝛾) equal 

to zero.  This renders Equation 20 as: 

Equation 22: Myopic one-step state value approximation 

𝑣𝑛 = 𝑚𝑎𝑥
𝑥𝑛∈𝑋𝑛

( 𝐶𝑛(𝑆𝑛, 𝑥𝑛,𝑊𝑛)) 

Base Case Experiment 
We learn the decision policy, both myopically and with ADP, in various 

combinations of attacker and customer behavior.  Then we test the learned policies in a 

stochastic simulation where we track several fundamental performance measures, such as 
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convoy sizes, convoy and RCP frequency, and attacks against convoys and RCPs (see 

Figure 24).  The principle comparison measure we apply is the total objective function 

value achieved by the agent at the end of each simulation.  This summarizes each policy’s 

overall performance given the rewards and penalties in each simulated environment. 

 

 

Figure 24: Example simulation output 
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The base case scenario uses the constraints listed in Table 1 for a problem 

consisting of a single depot and customer, connected by a single network path, and one 

assignable RCP. 

 

Customer capacities (𝑢) 21 

Convoy sizes (𝑞) 11 

Traffic density levels (𝑏) 8 

Attack intensity levels (𝑒) 2 

RCP recovery period (𝑗𝑚𝑎𝑥) 5 

RCPs 1-3 

Table 1:  Base case scenario constraints 

 

These agent choices are applied across a set of scenarios that span four attack 

probability distributions (shown in Figure 25) and ten customer demand distributions 

(shown in Figure 26).  This gives us a set of forty environmental models (one for each 

combination of attack and demand distributions) to test and compare the learning and 

myopic agents’ behavior.  
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Figure 25:  Four base case attacker threat profiles 

 

 

Figure 26:  Ten base case customer demand profiles (Poisson) 

 

Thus, we have a two-step process.  In step one the agent learns the decision policy 

for every system state it visits under the applicable environmental parameters.  Then in 

step two, the policy is implemented in a series of 10 independent, unscripted, stochastic 

simulations of 1,000 time steps each, maintaining consistent customer demand and 

attacker threat behavior.  Throughout the simulations, the learned policy is applied at 

each simulated time step and new system state, with rewards and penalties calculated 
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according to the parameters in Table 2.  Finally the performance of the agent in each 

simulation is evaluated by the total reward earned under the prevailing cost structure. 

 

Convoy operating cost, fixed (𝑐𝑓𝑖𝑥𝑒𝑑) 20 

Convoy operating cost, variable (𝑐𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 5 

Delivery reward (𝑐𝑑𝑒𝑙𝑖𝑣𝑒𝑟) 50 

Customer inventory holding Cost (𝑐ℎ𝑜𝑙𝑑𝑖𝑛𝑔) 10 

Unmet demand cost (𝑐𝑢𝑛𝑚𝑒𝑡) 500 

Unescorted attack cost  (𝑐𝑎𝑡𝑡𝑎𝑐𝑘,𝑐𝑜𝑛𝑣𝑜𝑦) 5000 

Escorted attack cost  (𝑐𝑎𝑡𝑡𝑎𝑐𝑘,𝑒𝑠𝑐𝑜𝑟𝑡) 2500 

RCP attack cost  (𝑐𝑎𝑡𝑡𝑎𝑐𝑘,𝑅𝐶𝑃) 2000 

Table 2:  Base case cost parameters 

 

The performance comparison of each policy within four simulated scenarios are 

shown in Figure 27 as the total accrued value each agent achieved (i.e., the sums of the 

rewards and penalties).  As shown, the RL approach significantly reduces the defender’s 

median operational cost in all four regimes.  Since the RL and myopic decision policies 

are applied in identical simulated environments, the performance gaps are entirely due to 

the decision strategies applied.  Therefore they show the value of the RL approach of 

accounting for the multi-step effects of current decisions over the myopic benchmark.  

The RL algorithm significantly improves performance by satisfying customer demand in 

a way that accounts for the dependence of future attack probabilities on the current 

choices available to the agent.  This is accomplished primarily through use of the 
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knowledge state.  Thus, through learning a superior decision policy, the RL agent is able 

to better negotiate the dynamic operating environment, arriving at high value states and 

avoiding low value states more often than the myopic agent. 

 

  

Figure 27:  The distribution of accrued objective function value for simulations applying RL and myopic 

decision policies in four different operating environments24,25 

 

                                                 
24

 The figure shows the max, min, median, and middle two quartile results for the objective function value 

in four simulated environments - demand levels 1 and 6 (lower and higher) in combination with threat 

levels 1 and 4 (lower and higher) of the base case. 
25

 All four charts have the same vertical axis with the levels determined by the cost structure shown in 

Table 2.  Under the base case cost structure, satisfying customer demand (earning the reward for delivery) 

is the biggest factor in the objective function values achieved. 
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Examining the Base Case 
There are four broad observations we make about Figure 27.  The first is that the 

lower left box plot comparison is where the biggest RL over myopic improvement occurs 

(this is when threat and demand are lowest).  Second, the least cost variance (the 

narrowest box plots) occurs in the same lowest demand and threat regime.  Then moving 

either up or right from the lower left comparison (either up to higher customer demand or 

right to higher attack probability) RL improvements decrease.  Third, by the height of the 

box plots, we observe that in every case the RL results are more consistent (that is they 

have less variation) than the myopic results.  Finally, the higher demand and higher risk 

case (the upper right comparison) is the only place where the myopic decision rule is 

competitive with RL policy (the box plots have significant (44%) overlap). 

These four observations show that the learning agent is able to reliably achieve 

better and more consistent performance in the uncertain, simulated environment than the 

myopic agent.  Further, that these improvements are greatest when there is the most slack 

in the system (where slack is defined as excess agent delivery capacity over expected 

customer demand); in other words, when agent has the most ability to choose its courses 

of action.  Conversely, when system slack decreases (that is when customer demand is 

near the agent’s delivery capacity as in the higher demand environment) there is little 

opportunity for the agents to make meaningful scheduling decisions, as they must utilize 

nearly constant full capacity convoys to satisfy customer demand.  Thus, in both cases the 

agents have less variety in their activity patterns and less distinguishable performance 

outcomes. 
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Figure 28: Consolidated base case simulation results for RL agent. 

 

Figure 28 shows the results for the RL agent across the full set of 40 base case 

environments.  The results appear in groups of four box plots where each group of four 

display results for each attack threat level (1-4) for each customer demand level (1-10).  

From these, we can see two additional system dynamics.  First, the increasing negative 

slope within each successive customer demand level (i.e., for each group of four box 

plots) shows the increasing effect the attacker is able to exert as customer demand 

increases.  By this, we see more clearly the importance of system slack and variety for the 

RL agent to learn and counter the observed attacker behavior.  Second, the increasing 

payoff level for increasing customer demand levels (shown by the dashed trend line) 

results from the agent earning increased reward for accomplishing its primary objective 

of making deliveries until customer demand nears the agent’s delivery capacity (at nine 

expected convoy units in this scenario).  At this point, increases in customer demand 

regularly exceed the agent’s delivery capacity, so the penalties for unmet customer 

demand begin to drive overall performance lower. 
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Figure 29: Median performance of RL and myopic agents in the base case 

 

Figure 29 shows the results of extracting the overall trend lines (as shown by the 

dashed line in Figure 28) for both the myopic and RL simulation runs.  This provides a 

means to compare general results across 160 different simulated environments.  Here we 

observe the mean performance difference between the RL and myopic agent’s decreases 

as customer demand increases and the logistic system reaches capacity.  This again 

reflects the degree to which slack in delivery capacity is needed for the learning agent to 

make significant improvements, at any threat level. 
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Figure 30: Impact of added RCPs 

 

Within the base case, we are also interested in the marginal improvement 

increasing RCP protection can provide.  Figure 30 shows that under the base case cost 

parameters, RCPs provide the most meaningful improvements at the highest attacker 

threat levels (shown in the top two charts).  Moreover, these improvements are greatest 

when customer demand is greatest.  Conversely, RCPs made little difference in the low 

attack probability environment.  While this outcome is a fairly obvious, it serves to 

validate the model formulation. 

In the upper right hand chart of Figure 30 there is a severe drop in the myopic 

agent’s performance when the expected customer demand is five units (note the local 

minima in the upper right chart at all RCP capacities).  This seemingly inconsistent result 

is further illustrated in Figure 31 which shows three side-by-side comparisons of the base 

case with zero, one, and two RCPs (i.e., each chart shows the results for 40 
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environmental scenarios).  In these plots, since attack probability is on horizontal axis, 

the slope of each line depicts the effect of threat level in each modeling regime.  This 

helps to illustrate two important dynamics.  

  

Figure 31: Detailed base case comparison 

 

First we observe that the negative slope of the lines within each chart (Figure 31) 

increases as demand increases (toward delivery capacity).  At the lowest demand levels 
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(shown by the lighter shaded lines) the slope of the lines is shallow, confirming the 

earlier observation that the attacker has only minimal effect on the overall agent 

performance when demand is low.  Then as demand increases (depicted by the darker 

shaded lines) the slope of the lines increase, indicating the greater attacker effect with 

increasing customer demand.  Second, Figure 31 shows that when the expected demand 

is five units (depicted with a dashed line) there is a significant break in the smooth 

progression of the lines in all three myopic cases.  This anomaly occurs where 

myopically satisfying customer demand results in the optimal operational tempo (traffic 

volume) for the attacker, who is able to maximize his effect on the defender.  By 

comparing all three sets of charts right to left, it is clear that unlike the myopic agent, the 

RL agent is able to detect this disadvantageous operational regime and adjust its policy to 

avoid the significant performance degradation. 

Policy Response to Different Environments 
In each pair of simulation runs, the RL and myopic agents have identical 

resources and modeled environments; thus, the performance differences being observed 

result from each agent’s learned decision policies.  To better understand how the RL 

agent achieves superior results we want to closely examine the decision policies 

themselves. 
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Figure 32: Count of system states with each action choice for myopic and RL decision policies (labeled by 

Demand level | Threat level) 

 

Figure 32 is a set of pie charts depicting the proportion of states in which the 

learned policies assign each available agent action (for both the RL and myopic agents).  

The look-ahead effect on the learned policy can be seen by making vertical comparisons 

of the (upper) myopic policy pie charts to the (lower) RL policy pie charts.  For example, 

comparing charts #1 and #5 shows that the myopic agent chooses to “wait” in 23% of the 

system states (chart #1) compared to 77% for the RL agent (chart #5).
 26

  Conversely, the 

RL agent only uses the maximum capacity convoy (labeled “Ship 10” and “Escort 10”) 

6% of the time compared to in the 52% in the myopic case.  This reveals that the RL 

policy chooses to ship in significantly fewer system states than the myopic policy, but 

when the RL agent does choose to ship, it uses a more evenly distributed (or more 

                                                 
26

 The pie charts are based on the numbers in Appendix C: Base Case Policy Adaptations. 
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variable) allocation of the available actions (i.e., it includes a higher proportion of small 

convoys).  This more dispersed assignment policy is a consistent feature of all the RL 

policies shown. 

The effects of changing demand or threat levels can be seen by comparing the pie 

charts in Figure 32 horizontally.  For example, comparing charts #1 to #2 shows that the 

myopic policy is essentially unresponsive to increased customer demand.  Then 

comparing #5 to #6 shows the RL policy changes significantly under the same changes in 

expected customer demand (from choosing "wait" in 77% under low demand and low 

threat, to just 26% under high customer demand).  Thus, we see that the RL agent policy 

chooses to ship in far fewer states when demand is low, but greatly expands the number 

of states when demand increases.  Finally, Figure 32 also reveals that both the myopic 

and RL agents react to increased threat by decreasing the number of states in which they 

choose to ship (comparing chart #1 to #3 and #5 to #7). 
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Figure 33: Comparison of policy dynamics, myopic and RL agent in base case (lower threat case with 1 RCP) 

 

Figure 33 provides a more detailed decision policy comparison which shows the 

RL agent’s policy response is appreciably more dynamic than the myopic agent’s when 

observed customer demand changes.  Observe the top half of Figure 33 which shows that 

the myopic agent policy is reminiscent of a typical (s; S) policy as is expected in general 

inventory models (Feinberg & Lewis, 2016; Scarf, 1960)
27

.  This stasis in the myopic 

case occurs because the system moves from state-to-state, isolated from downstream 

estimates of exogenous customer and attacker behavior.  While both the myopic and RL 

agents account for the immediate attacker threat, only the RL agent has an extended view 

for expected downstream payoffs and penalties in its objective function.  Thus, we see in 

the lower two charts of Figure 33 that no such general policy emerges for the RL agent.   

                                                 
27

 In 1959 Herbert Scarf proved optimality of (s;S) policies for finite-horizon problems with continuous 

demand. 
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Figure 34: RL agent policy response to changes in expected customer demand and attacker threat level in base 

case (1 RCP) 

 

Figure 34 compares the RL agent’s dynamic responses to two different expected 

attacker threat levels for the same ten customer demand levels.  While there are several 

similarities and differences in the pattern of agent actions within the policies displayed, 

one of the most noticeable features is the dashed line showing the increased use of 

independent RCPs for dedicated route clearance in the low threat case (when expected 

demand is between three and six units, see upper right chart).  This shows that a common 

operational policy which maximizes RCP usage may be sub-optimal under some 

environmental conditions.  A second noteworthy element is that the minimum number of 

states where convoys of less than ten units are assigned occurs when expected customer 

demand is two units (this is where all the lines reach their minimums). At this point, the 
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RL agent chooses ten unit convoys over every other convoy size (at a 2.7:1 ratio in the 

lower threat case and 18.5:1 for the higher threat).  This inflection point for every line 

(except the ten unit convoy line) is unexpected as the general trend above three units of 

demand, for all convoy assignments is generally correlated to demand as most logistics 

planners would likely expect.  

These two nuanced variations in the RL agent’s policy provide improved 

performance and would be difficult for unaided human planners to determine; 

demonstrating the often unintuitive results an RL algorithm can provide. 

Base Case Policy Summary 
In summary, examining the base case policies shows that the RL agent is far more 

responsive to environmental changes than the myopic agent.  Additionally, compared to 

the myopic agent, the RL agent generally maintains greater variety of action in the states 

is choses to act.  Finally, the RL agent’s policy response to varying environments is often 

unexpected when viewed across system state space. 

Simulation Results 
It is important to observe how a policy is implemented in the actual environment 

because during real-world execution the system will only visit a subset of the total 

possible system states, often never visiting the majority of the possible state states.  

Therefore, the distribution of actual agent decisions during implementation may be 

significantly different from what the policy mapping suggests.  For example, large 

convoys may be the policy choice in a majority of system states, but during execution 

they are conducted rarely because the agent chooses to avoid these states. 
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Figure 35: Example RL and myopic simulation output (lower demand and threat profiles) 

 

During the simulations we tested the agent policies for their effectiveness.  Figure 

35 provides a visual comparison of the RL and myopic agent actions subject to identical 

environmental models.  By comparing these simulation outcomes we see the RL agent 

chooses action less often in the form of fewer, larger convoys while consistently 

maintaining a lower customer inventory than the myopic agent in the same circumstances 

(see the delivery reward and inventory cost lines). 

 

Myopic RL
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Figure 36: Operational dynamics during example simulation runs.  Top: cost.  Bottom: activity proportions 

 

The top two charts in Figure 36 show agent activities levels observed in the base 

case simulation.  The cost profiles shown for convoy and unmet inventory costs (solid 

and dotted line) have similar contours in response to changes in expected demand.  But, 

there is a significant difference in inventory levels maintained (dot-dash line).  The 

inventory cost curve in the RL chart (dashed-dotted line in upper right hand chart) forms 

a distinct bathtub shape that is absent from the myopic agent chart.  This indicates that 

the RL agent consistently chooses to maintain lower customer inventory levels in the 

lower demand regimes compared to the myopic agent. 

The bottom two charts in Figure 36 show the proportions of asset utilization.  

These reveal that during execution, the RL agent’s convoy count (solid lines) exhibits “s-

shaped” response to increasing customer demand, where myopic agent response is nearly 

linear until nearing delivery capacity.  Thus, in response to the attacker threat, the RL 

agent consistently seeks to utilize fewer convoys with a higher ratio escorted (dashed 
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line) than the myopic agent; thus, conserving its logistics assets so long as it has 

sufficient slack capacity.  This is unlike the typical results for threat free (uncontested) 

environments where the most efficient response to increasing demand is increased 

convoy sizes, paying only variable shipping costs. 

Finally, as is expected, the dotted line in upper two charts in Figure 36 shows that 

unmet customer demand penalty increases significantly when customer demands begin to 

exceed delivery capacity (dotted line, top two charts). 

Alternative Threat Profile 
Extensions of the Base Case are useful for exploring the learning and myopic 

agents’ responses to diverse environmental conditions.  In Figure 37 and Figure 38 we 

change the attacker threat profiles to demonstrate that just as in the base case, the RL 

approach can significantly reduce the defender’s median operational cost in differing 

threat environments (see Figure 37 and Figure 38). 
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Figure 37: Inverted attack probability profile and agent performance comparison.   

 

 

Figure 38: Increasing attack probability profile and agent performance comparison 
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Again we note that the learning agent consistently achieves better performance 

than the myopic agent in these alternative threat environments where just as we observed 

earlier these improvements are greatest when system slack is greatest.  Additionally, the 

four observations we made about the base case (Figure 27) continue to hold under these 

alternative threat profiles, namely: 

1. The biggest performance improvement from RL over the myopic occurs when 

both the threat and demand are lowest. 

2. The least cost variance (the narrowest box plots) occurs in the lowest demand and 

threat case. 

3. RL results are generally more consistent (has less performance variation) than the 

myopic results. 

4. The highest demand and risk case (upper right comparisons where system slack is 

minimum) is the only place where the myopic decision rule is competitive with 

RL policy.  
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Figure 39: RL agent policy response to alternative attacker threat profiles 

 

Figure 39 shows the RL agent’s policy response to the two alternative threat 

profiles (displayed in the top two charts).  A comparison of the policy profile charts on 
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the left (inverted threat profile) to those on the right (increasing threat profile) shows the 

RL agent has distinctly differ responses to the two attacker behavior profiles.  Most 

notably, under the increasing threat behavior model (right side charts) the curves take on 

a distinct, deep “bath-tub” shape which is clearly missing from the inverted threat profile 

charts (left side).  In fact, the RL agent’s response to the two threat profiles are nearly 

opposite in the lower customer demand environments.   Additionally, the inverted threat 

profile charts (left side) contain a noteworthy feature, namely the spike of single unit 

convoys (when demand is four units, dotted black line) and increased use of RCPs 

(dashed red line) when expected demand is less than six units.  Again we note that these 

dynamics occur in the lower customer demand regimes, when the RL agent has the most 

slack delivery capacity.  Further, these distinct shifts in the RL agent’s strategy provide 

improved performance and would be difficult for human planners to determine without 

the aid of a learning algorithm. 
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Figure 40: Policy comparison showing the percentage of system states with given agent decisions for the three 

threat profiles. 

 

In Figure 40 we show a summary of the RL and myopic agent policy responses 

under each of the three attacker threat profiles presented.  From this we see the dynamic 

response of the RL agent juxtaposed to the nearly uniform response to the myopic agent.  

Not only are the RL agent policies different from the myopic agents’, they clearly vary 

from each other greatly according to the threat profile being faced.  This shows the 
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sensitivity of the learning agent to detect changes in its operating environment and the 

potential value of adopting this modeling approach to vehicle scheduling. 

Hybrid Network Simulation Example 
To demonstrate the network performance of the learning algorithm, we provide a 

final three route network example with each route exhibiting a different threat profile - 

one of the three previously analyzed
28

.  Comparing the pie charts in Figure 41 (lower 

threat) to those in Figure 42 (higher threat) shows that during simulation, the RL agent 

makes significantly different route utilization choices in response to each observed 

variation in both threat and customer demand behavior.  The pie charts show that even 

when the attacker threat profiles do not change within the network, but only the threat 

level, the RL agent still adjusts its decision policy in a way that produces widely varying 

route utilization choices.  Further, the choices of route vary significantly with changes in 

observed customer demand (comparing the pie charts horizontally).  Again we note, these 

policy refinements provide measureable performance improvement and are not likely to 

be realized by unaided human planners. 

 

                                                 
28

 This problem has 430,080 systems states and 124 (constrained) agent action choices 
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Figure 41: RL agent path utilization in three route case, lower threat profile29 

 

  

Figure 42: RL agent path utilization in three route case, higher threat profile28 

 

                                                 
29
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Summary of Experimental Findings 
1. During simulation, not only does the RL agent achieve consistently better overall 

performance under all environmental models, but it also achieves more consistent 

results.  Only when there is little or no logistic slack does the myopic agent achieve 

results that are competitive with the RL agent’s. 

2. Our RL algorithm shows marked improvement over the myopic benchmark in all 

simulations when there was slack in the agent’s delivery capacity while decreasing 

slack resulted in increasing attacker effects.  Thus, delivery capacity slack is 

necessary for RL performance improvements because slack allows the learning agent 

maximum policy latitude to avoid low value states and arrive at high value states.  

Conversely, when the logistic system is operating near its capacity, the learning agent 

has fewer decision choices available and its behavior becomes less variable (i.e., 

more predictable). 

3. In achieving improved results over the myopic benchmark, the RL agent responded to 

increased customer demand by increasing the variety of actions across the state space.  

Further, it responded to increased threat by decreasing number of states in which it 

chose action.  This is seen in the RL agent’s convoy count metric which exhibited “s-

shaped” response to increasing customer demand, where myopic agent response was 

nearly linear.  Thus the frequency of convoys utilized by the RL agent to satisfy the 

same customer demand is generally lower than the myopic agent’s. 

4. The consistent RL performance improvements are generated by often subtle and 

unexpected shifts in the agent’s decision policy relative to the myopic agent’s 

decision rule.  These generally unforeseeable policy refinements provide measureable 
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performance improvement, demonstrating the value of the RL approach to provide 

insights which unaided human planners would likely be unable to discover. 
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CHAPTER FIVE – CONCLUSION 

Conclusion 
This dissertation is motivated by the stark reality of two recent military campaigns 

in Iraq and Afghanistan - both characterized by intense combat on public roadways where 

more than 60% of U.S. combat casualties were caused by IED ambushes (Barbaro, 2013).  

After more than ten years of massive investment by the United States to address the IED 

threat, today the threat remains as ominous as ever.  This work is further motivated by the 

belief that protecting one's own supply lines and attacking those of an enemy will remain 

a fundamental military strategy for the foreseeable future. 

The approach taken in this dissertation is to incorporate the military’s well 

understood OODA loop principles into an RL scheme in order to provide a means to 

improve current operational planning approaches. The OODA loop is a means to 

structure our thinking about the problem and points to a methodology emphasizing the 

importance of observation in the attacker decision cycle (Boyd, 1986).   

If we view an IED ambush from the attacker’s perspective, we see that the IED 

emplacement is the attacker’s prediction of the future.  The attacker’s choices of time, 

place and technique are based on his expectation of a future attack opportunity.  

Accordingly, it is natural to ask why the attacker came to any particular conclusion.  For 

a rational actor, this will be based on what was observed and understood.   This reasoning 

leads us to seek a modeling approach that will account for the dependence between the 
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defender’s observable actions and a learning attacker’s observations, orientations, 

decisions and actions in response.  Hence, in this dissertation we have argued for two 

conclusions.  First, seemingly unpredictable individual unit commander choices do not 

equate to force-level operational unpredictability.  Second, the probability of attack on 

each individual unit action cannot be assumed to be independent of the past and future 

actions taken by others on the road network. 

The principle approach of most previous OR models addressing contested 

network scenarios fit into two broad categories.  First are those that focus on the network 

itself, seeking to maintain the maximum network flow or minimum cost paths in the face 

of changes to network architecture due to attack.  While these models provide insight and 

context to our work, they do not directly apply to the sustained repetitive logistics 

problem faced in this research. Second are statistical and game models that use traditional 

aggregation methods, point processes, or presumed opponent strategies.  These generally 

rely on regularity and long-run averages; thus, they do not capture the nuanced nature of 

the day-by-day, even minute-by-minute ebb and flow of adversarial interaction and 

competitive learning.  While this research effort is not divorced from any of these 

approaches, it did take a deliberate step in a new direction, toward assuming dependence 

between the attacker’s and defender’s action choices. 

Another important distinction between this effort and much of the previous work 

is that this research is not focused on improvement of, and direct application to, existing 

military practices.  Rather, we are proposing a new operational paradigm in contrast to 

current OR models in the literature which envision either a defender or an attacker who 
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exhibits some pattern of activity while the opposing party adjusts (Washburn A. , 2006; 

DeGregory, 2007; Marks, 2009; Lin & Washburn, 2010; Washburn & Ewing, 2011; 

Kolesar, Leister, Stimpson, & Woodaman, 2012).  Recent experience, in two theaters of 

war, indicates that such assumptions are only justified when operations are viewed with a 

high level of aggregation.   

In contrast, we propose that the defender’s counter-IED problem during repetitive 

transportation movements is more than finding and avoiding IED ambushes, but includes 

the critical element of shaping the attacker’s expectations by learning how to best 

influence and anticipate the attacker’s behavior through carefully organized activities.  

Thus our model assumes dependence between attack probabilities and targeted traffic 

patterns.  While there are currently few analytical approaches that explicitly make this 

assumption, this is a distinguishing feature of our approach.  It relies on a robust 

information state to enable a learning agent to uncover the action-reaction dynamics 

between the attacker and defender. 

To our knowledge our approach has not been pursued anywhere in the OR 

literature related to this problem.  Our goal is to effectively address the attack problem by 

crafting vehicle movement schedules that not only satisfy the military distribution 

problem, but also to significantly improve the defender’s performance.   

We employ this approach in an RL algorithm which offers unique opportunities 

for meaningful improvements in this complex problem area because it provides a means 

to evaluation immediate choices under uncertainty in the context of long run objectives.  

The application of these techniques in our basic formulation produces insights that can 
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not only inform logistic planning methodologies and improve understanding of the 

action-reaction dynamics, but the non-obvious, dynamic responses also demonstrate the 

need for continued research on the use operational patterns to influence attacker decisions 

and improve defender outcomes. 

Improved Modeling 
Developing and validating our modeling technique is hindered by data availability 

and the practical reality that there is no opportunity for live trials.  Archived BFT data is 

of limited use for learning attacker-defender interactions, not only because it is generally 

incomplete, but more so, this effort rests on the counterfactual claim that if the defender 

acted differently, so too would have the attacker.  Testing this assertion entails more than 

access to historical data, but requires a robust trial and error testing through carefully 

designed operational experiments. 

The ADP technique we have utilized also has several practical limitations with 

respect to scalability, parameter selection, and computing capacity.  Here enters the need 

for continued innovation and additional modeling techniques to discover better ways to 

detect, characterize, and exploit the structure within the seemingly chaotic environment.  

In this context, the chief technological hurdle we face is the increased dimensionality of 

the already difficult, NP-hard VRP.   

Thus, we face a squeeze between the curse of dimensionality and the requirement 

for a solution method with robust enough content to improve prediction and shape the 

ongoing competitive interaction.  Nonetheless, this dissertation is an initial step toward 



110 

 

developing a fundamentally different way of addressing the problem and there are several 

directions future efforts can take this work. 

Future Research 
During the course of this research several complementary fields of study came to 

light that, while outside the immediate scope, may provide important enabling 

capabilities to developing a fully operational learning algorithm for military logistic 

movement control.  

Addressing Dimensionality 
The model presented herein is very simple; nonetheless, the curse of 

dimensionality was significant.  Several aggregation approaches were applied, but more 

work is needed in this area to support the level of detail required.  Potential state space 

factors include increased time and environmental resolution, additional network activities 

types, attack methods, and terrain attributes.  Other factors have been recommended, such 

as mosque, police station, and checkpoint locations, significant religious and political 

events, economic factors, demographics, terrain, weather, and lunar cycles (Ahner & 

Spainhour, 2015).  Without creative new approaches, the addition of these attributes is 

intractable with the current formulation.  But, their inclusion is likely important to any 

fully functional operational model.  Thus, innovative approaches for representing 

increased temporal and spatial resolution across a network are needed.  Several 

researchers have provided good foundational work in this area (Okabe, Yomono, & 

Kitamura, 1995; Okabe & Yamanda, 2001; Yamanda & Thill, 2007; Lu & Chen, 2007; 

Xie & Yan, 2008; Eckley & Curtin, 2013). 
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The requirement for additional resolution need not discourage efforts to move 

forward because experience has shown that most attack networks are local, characterized 

by spatially limited activity hot spots (Keefe & Sullivan, 2011; Connable, Perry, Doll, 

Lander, & Madden, 2014; Ahner & Spainhour, 2015).  Thus, there is no need to model a 

complete road network for a county or major city.  This fact means that models with a 

small number of network paths can be useful, making the dimensionality challenge more 

tractable.  Additionally, since an agent will only visit a subset of the total system states 

during real-world execution, there is no need to exhaustively model every possible state.  

These considerations provide some obvious relief from the curse of dimensionality. 

Time Series Pattern Recognition 
In a complex system, the dilemma is to discover which part of a measured pattern 

should be ascribed to “randomness” and which part to “order” (Crutchfield, 1994).  That 

is, can we find and understand usable information and determine what information to 

ignore?  The sequences of attacker and defend activities across the network are of 

particular interest for understanding if the attacker is exhibiting preferences or aversions 

to certain defender activity patterns.  Further, real-time (or online) awareness of when 

attack conditions are developing is critical to the network defender.   

In any real-world environment, with multiple actors, there can be many 

meaningful patterns of activity and interactions that go unnoticed.  Detecting such 

patterns is the first step toward predicting them.  If we assume that there is a temporal 

structure in a set of behaviors, such that certain actions are typically part of some 

repeated sequence of events, then the occurrence of the first event is a precursor 
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indicating increased likelihood of the successor action.  When such patterns occur 

repeatedly, with temporal consistency, they may be detectible and therefore be 

predictable (Magnusson, 2000).  

 

 
Figure 43: Representation of an activity sequence on a road segment ending in an attack.  

 

Traffic activity on a roadway can be viewed as time series, a chronological 

sequence of events indexed by time and categorized at any level of resolution desired.  

For example patrols, civilian traffic, convoys, RCPs with attack events can be tracked and 

indexed.  Figure 43 shows a simple sequence of four possible activities that might be 

tracked on a road segment.  The four activities across the four time steps allows 44 =

256 possible activity patterns.  The simple sequence highlighted is (wait – convoy – 

convoy – convoy:attack) can be represented by unique alphabetical characters such as: A, 

B, B, Ba. 
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Figure 44: Example of a subset of possible activity sequences 

 

Figure 44 expands the time series to eight time steps such that there are 47 =

16,384 possible activity patterns (paths) leading from (𝑡 − 7) to the attacked state at time 

(𝑡), but there are only 256 possible paths (1.56% of the total) that match from 𝑡 − 3 to 𝑡.  

If it can be learned that the attacker favored attacking some subset of the total possible 

activity patterns (such as A, B, B, B) over others, this information could be used to 

augment a real-time decision algorithm. 

Given the large number of locations and activities that might require monitoring, 

an efficient means of recording and processing multiple time series data streams is 

needed.  This places a premium on developing an efficient representation of streaming 

network activities and a processing algorithm for effectively identifying high risk 

conditions.  When the analytical process begins, the patterns, parameters, and constraints 

that govern the system are unknown, but to the extent they can be learned, they must be 

discovered by observing the system’s behavior (Crutchfield, 1994). 

Symbolic Aggregate Approximation 
Many high level representations of continuous time series have been proposed for 

data mining, including Fourier transforms, wavelets, Eigenwaves, piecewise polynomial 

Wait

Convoy

RCP

Convoy + RCP

A
ct

iv
it

y



114 

 

models, and others (see Figure 45).  But, the dimensionality of their representation using 

these approaches is the same as in the original data; therefore, they tend to scale poorly. 

(Lin, Keogh, Lonardi, & Wei, 2007) 

 

 

Figure 45: A hierarchy of various time series representations in the literature (Lin, Williamson, Borne, & 

DeBarr, 2012) 

 

Symbolic Aggregate Approximation (SAX) is a time and space efficient method for 

recording continuous time series data while providing a means to process and compare 

lengthy activity sequences with minimal computational overhead.  Further, with such 

recorded chronological data it is important to identify frequently repeated subsequences 

(referred to as motifs) which may have significance in the attacker’s decision process 

(Lin, Keogh, Lonardi, & Wei, 2007; Nguyen, Ng, & Yew-Kwong, 2014).  The next two 

sections summarize two potentially useful methods for accomplishing this using symbolic 

data streams. 
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T-Patterns 
The T-Patterns algorithm uses symbols to describe discrete events in the time 

series events.  T-patterns occur when both hidden and manifest behavior patterns involve 

similar relationships in their structure that can be identified.  To distinguish these 

patterns, it is possible to test for statistical significance against the null hypothesis that 

each of the pattern’s components is independent and randomly distributed over time at 

the observed frequency (Magnusson, 2000).  For example, in Figure 46 we see that the 

letter “b” occurs 5 times in the string of 41 characters. 

 

 

Figure 46: Example time series that appears to be random 

 

Figure 47 shows that even the highly regular and repeated patterns of b-o-m-b can 

be difficult to detect when interspersed with other events.  Especially in more complex 

cases, where patterns might occur over periods ranging from seconds to years, such 

patterns are easily missed by human observers - even with the use statistical detection 

software (Jonsson, 2011).  This becomes more apparent when considering many event 

patterns are not stictly behavioral; that is they can be environmental and even 

psychological. 
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Figure 47: Example time series with hidden, but detectable, patterns 

 

T-Patterns are a particular type of temporal pattern that relies on the hypothesis 

that patterns can be identified by their parts.  Often between the components of a T-

Pattern there may be a mixture of various other activities that vary greatly across multiple 

instances of the same T-Pattern.  This makes them difficult to identify with detection 

routines that rely on a consistent event sequences.  To overcome this, Magnusson 

developed a search algorithm that begins with a breadth-first search and groups pairs of 

events by the simplest patterns first, illustrated in Figure 48 (Magnusson, 2000).  The 

algorithm is distinguished from traditional statistical approaches in that it only keeps the 

most complete patterns.  Then, by building on them in a completion and selection 

process, it avoids the common problems associated with erroneously detecting partial and 

redundant portions of the same pattern (Jonsson, 2011).  
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Figure 48: The formation of a T-Pattern from simple to complex (Jonsson, 2011). 

 

Close Motifs 
 

Another promising approach that might prove useful in attack pattern detection 

was more recently proposed by (Nguyen, Ng, & Yew-Kwong, 2014).  In their paper they 

define a motif as a frequent pattern or subsequence in streaming data and introduce the 

concept of a closed motif.  In a data stream, they state that a motif is closed if it is not a 

subsequence of any longer sequence having the same number of occurrences.   

(Nguyen, Ng, & Yew-Kwong, 2014) provide a method for discovering closed 

motifs of variable length in a single scan (or online) through use of a flexible suffix tree 

structure that allows fast detection and classification of all repeated sequences.  Notably, 

this technique works efficiently through their depth-first search and discovery algorithm 

without being confined to a predefined motif length (see Figure 49).  This methodology 

also provides a means to avoid the common problems of being overwhelmed by 

redundant, uninteresting patterns.   
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To find important patterns, the event tree can be traversed from the tree root 

according to the necessary condition to exhaustively determine every repeated 

subsequence in the data stream.  Then those that may be important can be identified 

according to a probabilistic model. 

 

 

Figure 49: Constructing activity tree for closed motif detection30 (Nguyen, Ng, & Yew-Kwong, 2014) 

 

Future research could explore how a modified SAX procedure and one of these 

pattern detection algorithms might be combined to efficiently represent and analyze road 

network activity to improve RL policy applications in real-time.  Then with improved 

                                                 
30

 Each tree node represents a word constructed by following a path from the tree’s root to this node. The 

number below a node denotes its weight (or count). 
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data collection and availability, these approaches could provide significant improvement 

of the currently state of the art. 
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APPENDIX A: THE NINE PRINCIPLES OF IED COMBAT 

1. Maintain an offensive mindset 

2. Develop and maintain situational awareness 

3. Stay observant 

4. Avoid setting patterns 

5. Maintain standoff 

6. 360-degree security 

7. Maintain tactical dispersion 

8. Utilize blast/fragmentation protection 

9. Know and use CREW (Counter Radio Electronic Warfare system) 

Source: (Joint IED Defeat Organization, 2010) 
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APPENDIX B: EXCERPT FROM CONVOY OPERATIONS HANDBOOK 

Movement Control (U.S. Marine Corps, 2001) 
Movement control is the planning, routing, scheduling, and control of personnel 

and cargo movements over lines of communication (LOCs). 

The MAGTF (Marine Air Ground Task Force) commander may be required to 

establish a highway traffic regulation system or regulate the movements of units in 

accordance with a traffic regulation system of a senior headquarters. The military police 

of the Combat Service Support Element (CSSE), in coordination with the motor transport 

officer, develop highway regulation plans. If necessary, a traffic circulation plan, 

normally prepared as an overlay, is prepared and distributed. 

It may include— 

 Route restrictions, route designations, and direction of movements. 

 Locations of unit boundaries, highway regulating points, traffic control points, 

and principal supply points. 

 Major geographic features and light line. 

To coordinate movements, the CSSE may also be required to establish a Mobility 

Control Center (MCC). The MCC plans, schedules, routes, and controls movement. 

When established, that organization would— 

 Issue operating procedures for the highway/road net. 

 Receive and process convoy clearance requests. 

 Plan traffic routing. 

 Coordinate traffic scheduling. 

 Coordinate and approve movement credit for controlled routes. 

 Establish movement priorities in accordance with the commander’s guidance. 

 Prepare and maintain road movement table and critical time and point graphs that 

monitor and control traffic movement. 
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APPENDIX C: BASE CASE POLICY ADAPTATIONS 

 

 

Scenario Myopic Lo | Lo

Myopic 

Agent Action
Count of States

Count of 

States

Change 

from Lo|Lo

Count of 

States

Change 

from Lo|Lo

Count of 

States

Change 

from Lo|Lo

Do Nothing 394 346 -2.86% 1078 40.71% 678 16.90%

RCP Only 0 0 0.00% 0 0.00% 0 0.00%

Ship 1 0 0 0.00% 0 0.00% 0 0.00%

Escort 1 0 0 0.00% 0 0.00% 0 0.00%

Ship 2 0 24 1.43% 0 0.00% 0 0.00%

Escort 2 6 6 0.00% 0 -0.36% 0 -0.36%

Ship 3 24 24 0.00% 0 -1.43% 0 -1.43%

Escort 3 10 10 0.00% 0 -0.60% 0 -0.60%

Ship 4 24 24 0.00% 0 -1.43% 0 -1.43%

Escort 4 14 14 0.00% 6 -0.48% 6 -0.48%

Ship 5 40 40 0.00% 0 -2.38% 0 -2.38%

Escort 5 16 16 0.00% 6 -0.60% 6 -0.60%

Ship 6 40 40 0.00% 0 -2.38% 24 -0.95%

Escort 6 16 16 0.00% 6 -0.60% 6 -0.60%

Ship 7 40 64 1.43% 24 -0.95% 24 -0.95%

Escort 7 16 16 0.00% 6 -0.60% 6 -0.60%

Ship 8 64 64 0.00% 24 -2.38% 24 -2.38%

Escort 8 16 16 0.00% 6 -0.60% 10 -0.36%

Ship 9 64 64 0.00% 24 -2.38% 24 -2.38%

Escort 9 16 16 0.00% 6 -0.60% 16 0.00%

Ship 10 704 704 0.00% 360 -20.48% 680 -1.43%

Escort 10 176 176 0.00% 134 -2.50% 176 0.00%

Myopic Hi | Lo Myopic Lo | Hi Myopic Hi | Hi

Scenario  RL Lo | Lo

RL

Agent Action

Count of 

States

Count of 

States

Change 

from Lo|Lo

Count of 

States

Change 

from Lo|Lo

Count of 

States

Change 

from Lo|Lo

Do Nothing 1287 439 -50.48% 1366 4.70% 467 -50.48%

RCP Only 13 27 0.83% 0 -0.77% 6 0.83%

Ship 1 4 79 4.46% 0 -0.24% 72 4.46%

Escort 1 0 6 0.36% 0 0.00% 21 0.36%

Ship 2 7 20 0.77% 0 -0.42% 22 0.77%

Escort 2 4 6 0.12% 0 -0.24% 7 0.12%

Ship 3 7 32 1.49% 0 -0.42% 21 1.49%

Escort 3 5 3 -0.12% 0 -0.30% 7 -0.12%

Ship 4 10 36 1.55% 0 -0.60% 27 1.55%

Escort 4 1 7 0.36% 0 -0.06% 7 0.36%

Ship 5 16 35 1.13% 0 -0.95% 32 1.13%

Escort 5 3 7 0.24% 0 -0.18% 6 0.24%

Ship 6 22 33 0.65% 5 -1.01% 33 0.65%

Escort 6 6 7 0.06% 1 -0.30% 9 0.06%

Ship 7 40 41 0.06% 11 -1.73% 41 0.06%

Escort 7 13 10 -0.18% 4 -0.54% 9 -0.18%

Ship 8 56 59 0.18% 20 -2.14% 48 0.18%

Escort 8 17 13 -0.24% 10 -0.42% 13 -0.24%

Ship 9 59 76 1.01% 45 -0.83% 50 1.01%

Escort 9 13 18 0.30% 14 0.06% 13 0.30%

Ship 10 78 647 33.87% 161 4.94% 642 33.87%

Escort 10 19 79 3.57% 43 1.43% 126 3.57%

RL Hi | Lo RL Lo | Hi RL Hi | Hi
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