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Abstract

A FRAMEWORKTO EXPLORE SPATIO-TEMPORAL SURVEILLANCE OF ADVERSE
EVENTS FOR POST MARKET APPROVED DRUGS & VACCINES

Ahmed Askar, PhD

George Mason University, 2022

Dissertation Director: Dr. Andreas Züfle

Discovering all drug and vaccine side effects during the development process is impos-

sible. This dissertation aims to propose a framework in exploring spatiotemporal adverse

event surveillance models by identifying adverse effects, which co-locate together and is

associated with FDA approved drugs or vaccines using spatial statistics and spatial science.

This study aims to find statistically significant spatio-temporal clusters among co-occurring

adverse effects. We use data obtained from the FDA’s Adverse Event Reporting System

(FAERS) and Vaccine Adverse Event Reporting System (VAERS) to explore the spatio-

temporal distribution of combinations of adverse effects using two methods:

• Frequent Itemset Mining - to mine the most frequent sets of adverse events.

• Latent Dirichlet allocation (LDA) -to mine the most frequent group of topics related

to adverse effects.

To assess the similarity of sets of adverse events or topics between spatial regions, we

employ textual comparison algorithms. We apply an agglomerative hierarchical clustering

approach to find clusters of regions that exhibit similar adverse events or topics. Finally,

we explore the resulting clusters to discover spatial autocorrelation patterns using Global

and Local Moran’s I measure of spatial autocorrelation. Our approach can be applied to

any product where after consumption or application results in adverse events, to study if

spatially localized side-effects that may justify further investigation.



Chapter 1: Introduction

The contribution of this dissertation is the ability to mine for co-occurring adverse events

and identify hidden spatial temporal patterns in adverse events associated with FDA ap-

proved drugs or vaccines. While we can use traditional pharmacovigilance or data mining

techniques to uncover adverse event patterns however the use of spatial science to uncover

hidden spatial temporal patterns in adverse events is limited.

The data mining algorithms in this dissertation improves upon pharmacovigilance re-

search to mine for co-occurring adverse events and identify any spatial temporal patterns.

1.1 Purpose

The expectation of the proposed framework would help detect adverse events early to allow

accurate risk assessment and appropriate response to the problem. This study will help

minimize the number of adverse effects on individuals receiving the medication and lessen

the potential negative impact on public health programs and alert medical professionals of

the exact side effects. Discovering all side effects during the drug development process is

impossible. Adverse side effects of a drug may vary over space and time due to different

population demographic, environment factors, and drug quality. A major challenge in

vaccine/drug development is determining possible side effects. Recent analysis found that

it took a median of 4.2 years after a drug’s initial approval for major safety concerns to

be discovered [2]. Serious side effects could be life-threatening, which can lead to death.

While less severe AEs such as rash, nausea, and fatigue might not be dangerous, however,

they can lead to avoidance in taking the drug as prescribed, which can lead to a severe

consequence [3].

An adverse events (AEs) is any undesirable experiences associated with the use of a

1



Figure 1.1: Example of Adverse Events.

medical product. Every year, many patients experience AEs from medical products , which

can present in many forms. Most AEs are temporary or a nuisance such as "rash" or "nausea"

however some AEs are life threatening or could cause death. Less serious adverse events

might not have a substantial direct impact on the population’s health. However, they may

lead to noncompliance with, or interruption of, treatment, which may eventually reduce

therapeutic-related benefits for the individual [4].

There are many AEs that researchers have found to be in health care settings associated

with errors in prescribing or administering drugs., many of which are considered potentially

preventable. Medication errors alone are estimated to account for over 7000 deaths annually

in the US [5] and many more in developing nations such as Somaliland, where anyone can

import cheap counterfeit or substandard medical product due to the private unregulated

health care system. Pharmaceuticals complement other types of health care services to

reduce morbidity and mortality rates and enhance quality of life in both developed and

developing nations [6]. Medical products need to work as intended the United States Food

2



and Drug Administration (FDA) has developed AE self- reporting tools called MedWatch

in which patients, practitioners, and drug manufacturers can report AEs including severe

allergic reactions, side effects, medication errors/product use errors, product quality prob-

lems, and therapeutic failures for all FDA regulated products. See Figure 1.1 for an example

of possible route of AEs from patient to reporting. These reports are available to everyone

including researchers, patients and health practitioners in publicly available databases [7].

Our research question is to identify hidden spatial patterns in reported adverse events

associated with FDA approved drugs or vaccines See Figure 1.2. Does adverse events repeat

regardless of space or time?

• If true, then its associated to the medication because its constant.

• If false, then there are spatial or temporal underlying co-founders, which introduce or

exacerbate adverse event.

Some of these possible variables are discussed in chapter 2 and would need further research

along with input from medical experts to investigate the underlying spatial or temporal

association.

1.2 Pharmacovigilance

The field of pharmacovigilance aims at understanding the occurrence of adverse effects of

drugs [8, 9]. Beyond understanding the adverse effects of single drugs, Zitnik, Agrawal,

and Leskovec have studied the problem of modeling polypharmacy adverse effects, that is,

adverse effects resulting from the interaction of multiple drugs. These important existing

works provide solutions to finding significant links between specific drugs and specific ad-

verse effects. However, these studies do not give any consideration to the spatial locations of

these adverse effects. Could some patterns between drugs and adverse effects be explained

by the spatial distribution of reported adverse effect records? Is it possible that some links

3



Figure 1.2: Dissertation Motivation.

between drugs and adverse effects are only observed in a specific region or during a cer-

tain time? Existing research leaves such questions largely unanswered. Fortunately, large

databases of adverse events, such as the FDA’s Adverse Event Reporting System (FAERS)

and Vaccine Adverse Event Reporting System (VAERS) database are becoming increasingly

available and enrich adverse events with both spatial and temporal information.

From complementary perspective, existing work has shown that adverse effects of a

single drug or multiple combination of drugs may vary over space and time due to racial

and ethnic disparities [10, 11, 12], environment [13, 14], and drug quality [15]. While these

studies describe specific cases and specific drugs, there is no data-driven approach to identify

such variations automatically.

4



1.2.1 Public Health Surveillance

Disease surveillance has been a critical ingredient in public health well over half a century.

Spatial and Spatio-temporal analysis in Geographical information systems (GIS) can pro-

vide essential tools in assessment, prediction, and mitigation of disease, where the place

can be considered as a proxy for the interaction between genetic factors, lifestyle and en-

vironment [16]. GIS is a series of tools for the acquisition, storage, retrieval, analysis, and

display of spatial data and, coupled with data mining techniques becomes even more useful

in terms of amount of methods that can be deployed. The importance of spatial and spa-

tiotemporal data mining is growing with the increased incidence and availability of public

health datasets [17].

1.3 Data mining

Data mining or knowledge discovery from a database (KDD) is used to determine useful,

implicit and hidden patterns in a large dataset which was previously unknown [18]. For an

overview of the process in Knowledge Discovery in Databases see Figure 3.1. It used in a

wide range of disciplines such as public health [19].

1.3.1 Frequent Item-set Mining

Market Basket Analysis is one of many data mining techniques used usually by large retailers

to uncover associations between items [20]. It works by looking for combinations of items

in each transaction that frequently occur together. It allows market researchers to identify

relationships between the items that customers buy, such as milk, bread and diapers [21].

Frequent Item-set and association rules mining are not restricted to market basket analysis,

but instead, they can be applied in other settings [22]. We leverage frequent itemset mining

to represent the adverse events reported in a spatial region as a set of mined frequent adverse

effects. Then, we use this representation to cluster regions having similar frequent adverse

effects for the same drug at the same time.

5



1.3.2 Topic modeling

Topic modeling is an unsupervised learning technique to discover underlying themes of a

collection of documents. Latent Dirichlet Allocation (LDA) is one of the more common

topic modeling techniques in the literature [23]. LDA assumes an underlying generative

probabilistic model that produces the words of a text document given a mixture of k latent

topics. Each topic is characterized by a distribution of words. While the traditional appli-

cation for LDA is modeling of topics among news articles and microblogs [24], it has been

used to model the latent topics of points of interest such as restaurants [25]. In the context

of pharmacovigilance, LDA has been to find potentially unsafe dietary supplements [26],

but without the consideration of the spatial distribution of latent topics among adverse

effects. We leverage LDA to find underlying topics of adverse effects reported in a spatial

region as a set of latent topics. We then employ this latent feature representation to find

spatial clusters of regions that exhibit similar latent adverse effect topics.

6



Chapter 2: Preliminaries

In this chapter, we present the existing adverse event databases, current spatio-temporal

concepts exploited by our algorithms and our approach to combine frequent item-set mining,

latent dirichlet allocation with spatial science.

2.1 Related Work

Data mining or knowledge discovery from a database (KDD) is used to determine useful,

implicit and hidden patterns in a large dataset which was previously unknown. It used

in a wide range of disciplines related to data mining in public health [27]. Market Basket

Analysis is one of many data mining techniques used, usually by large retailers to uncover

associations between items [20]. It works by looking for combinations of elements that

occur together frequently in transactions. It allows retailers to identify relationships be-

tween the things that customers buy. Frequent Item-set and association rules mining is

not restricted to market basket analysis, but instead, they can be applied in other settings

such as in pharmacovigilance [22]. Another algorithm used in this dissertation is Latent

Dirichlet Allocation (LDA) Topic modeling is an unsupervised learning technique to dis-

cover underlying themes of a collection of documents. Latent Dirichlet Allocation (LDA) is

one of the more common topic modeling techniques in the literature [23]. In the context of

pharmacovigilance, LDA has been used to find potentially unsafe dietary supplements [26],

but without the consideration of the spatial distribution of latent topics among adverse

effects. To the best of our knowledge, no other work tries to use machine learning and spa-

tial science to cluster adverse events however there are other existing approaches to study

adverse events. Kreimeyer et al used probabilistic methods to identify duplicate cases in

spontaneous adverse event reporting systems [28]. Botsis et al used text mining to extract
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features from vaccine safety reports [29]. Ball and Botsis used network analysis to improve

pattern recognition among adverse events [30]. Visual analytic and maps have been used to

understand clusters of diseases such as COVID-19. The works of [31, 32] map the change in

mobility and adherence to social distancing guildelines across the US. Elarde et al analysis

provides a comprehensive understanding of mobility change in response to the COVID-

19 pandemic. While Goa et al provided an interactive web-based mapping platform that

provided timely quantitative information on how people in United States reacted to the

social distancing guidelines. Agent based models have been used to do simulation models

to understand clusters (hot spots) of disease cases and transmissions. Examples of diseases

simulations that are data-driven include [33, 34, 35, 36]. Hinch et al looked at the unprece-

dented restrictions on social and economic activity during COVID-19 and simulated using

an agent-based simulation of the epidemic including detailed age stratification and realistic

social networks [33]. Pesavento et al found out that many agent based models lack real-

istic representations of human mobility so they proposed LDA to coupled foot-traffic data

to develop a realistic model of human mobility in an agent based model(abm) [34]. Zufle

et al looked at the complexity of human behavior using abm and how their location and

co-location are affected. They captured the innate needs of a human-like population and

explore how such needs shape social constructs such as friendship and wealth. Their model

looked at agents social networks, which in turn affected the places the agents visited [35].

Kim et al addressed studying location-based social networks (LBSNs). In their paper, they

addressed the missing comprehensive data in social network studies and which affects the

causal links as to why movement happens in the first place [36]. The spatial computing

community has done tremendous effort towards understanding the spread of COVID-19 by

mining large sets of human mobility data related to the pandemic, evident by two workshops

that have been organized on this topic. SpatialEpi’21 [37] and COVID-Workshop’20 [38]

and two Special Issues of the ACM SIGSPATIAL Newsletter on this topic [39, 40]. There

are other spatial problems where spatial science and machine learning where used to find
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some solutions for problems related to foot-traffic during the pandemic using tensor fac-

torization [41], house pricing prediction using recommendation systems [42], prediction of

emotions using spatial statistics [43], and prediction of intensification of tropical storms

using tensor factorization [44]. Public health surveillance data is the base of effective public

health practice, Qazi et al [45] presented a large dataset of tweets discussing COVID-19

tags in ACM SIGSPATIAL Newsletter [39] for researchers. Health surveillance has im-

proved in recent years due availability of mobile phones and mobile applications for digital

contact tracing [46] and reporting medication errors [47]. Pharmacovigilance is a branch of

public health surveillance and is the detection, assessment, understanding, and prevention

of adverse effects [8, 9, 48].

2.2 Pharmacovigilance

The field of pharmacovigilance aims at understanding the occurrence of adverse effects of

drugs [8, 9]. Specifically for vaccines, there is evidence that stress may have an amplifying

effect on immune response and adverse events [49]. However, such aspects of understanding

the interactions between drugs and other external factors are out of scope of this work. In

this dissertation, we investigate the effect of location on adverse effects of blood thinners

drugs in chapter 4, 5 and COVID-19 vaccines in chapter 6. Our approach in chapter 5 and 6

has been published in peered review journals [50, 51]. While location may be a proxy of

other factors (such as stress), this work does not provide or imply any causality between

location and adverse events. Yet, we hope that an understanding of the spatial distribution

and autocorrleation of adverse events may help experts discover such causalities.

2.2.1 Adverse Effects of Blood Thining Drugs

In chapter 4 and 5, we explore spatial temporal clusters of a three FDA approved drugs

for post market AEs patterns and trends. We didn’t use concomitant drugs of FAERS

dataset and used AEs reports associated to a single drug for Dabigatran, Rivaroxaban
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and Apixaban. Existing work has shown that adverse effects of a single drug or multiple

combination of drugs may vary over space and time due to racial and ethnic disparities [10,

11, 12], environment [13, 14], and drug quality [15]. In the United States, these three drugs

appear to have similar effectiveness [52], although Apixaban may be associated with a lower

bleeding risk and Rivaroxaban may be associated with an elevated bleeding risk. A similar

study in Norway reached similar findings, showing that Dabigatran and Apixaban were

both associated with significantly lower risk of major bleeding compared with Rivaroxaban

[53]. While these studies investigated the differences of adverse effects across different drugs,

these works did not consider spatial or temporal properties of the data. Combined with our

knowledge that adverse affects vary across populations and space [10, 11, 12], we investigate

if we can identify spatial clusters of regions that exhibit similar adverse effects using two

data mining approaches i.e Frequent Item-set mining and Topic mining using latent dirichlet

allocation.

2.2.2 Adverse Effects of COVID-19 Vaccines

In chapter 6, we explore spatial temporal clusters of three COVID-19 vaccines Janssen,

Moderna, and Pfizer for AEs patterns and trends. Vaccines are, without any doubt, a

paramount weapon to fight deadly diseases evident by the fact that “In 1900, for every

1,000 babies born in the United States, 100 would die before their first birthday, often

due to infectious diseases” [54]. Furthermore, vaccines not only protect those receiving

the vaccines but also vulnerable groups around them, such as new born babies, who may

not be able to receive a vaccine [55]. Understanding and mitigating these adverse events

will not only improve the well-being of those receiving the vaccines, but will also decrease

fear of vaccines that leads to high vaccine hesitancy as observed during the COVID-19

pandemic [56]. We investigate if we can identify spatial clusters of regions that exhibit

similar adverse effects using latent dirichlet allocation.
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2.2.3 Population/Demographic Factor

Despite efforts to increase diversity in recruitment, clinical trials are getting less diverse over

past two decades in the US due many factors and constraints on the volunteers. During the

drug development and drug approval process, the potential harm and benefit of the drug

is weighted because people may respond to treatments differently. Discovering side effects

in medication will continue to be more challenging and costly due to less diversity clinical

trials without a true sample size that is a reflective of the human fabric [57].

Albuterol is less effective in African American and Puerto Rican children compared

with European American and Mexican children. Mak et al whole-genome sequencing study

revealed some clues on reduced albuterol response associated with African-American and

Puerto Rican children as it does for European American or Mexican children due to genes

involved in immune response, lung capacity, and response to blockers. This study revealed

new risk markers for children who would not respond as initially intended to albuterol and

other current first-line anti-asthma drugs and help guide new development of new therapies

specific to over come related adverse events [58].

An HIV Drug Abacavir causes potentially life-threatening adverse events if HLA-B*5701

gene is present 3 however the same genotype has been found to be resistant to miliaria.4

Caucasians have higher prevalence rates of HLA-B*57:01 (4–8%) than African-Americans,

Asians, and Hispanics (0.2–4%) [59, 60].

Another example of adverse event associated with communication is the language barri-

ers and understanding of hospital discharge instructions. The demographic of this adverse

event may come from all racial group however the common factor is the language bar-

rier between the patient and health care staff or discharge instructions. Karliner et al

compared spanish-speaking, chinese-speaking, and english-speaking patients admitted to

2 urban hospitals between 2005 and 2008. This study found that the understanding of

appointment type and medications after discharge was low with limited English-proficient

patients demonstrating the potential medication use errors [61].
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2.2.4 Environment Factor

Drug – Environment interaction

Adverse event can also be associated with environmental factors affecting the human body

while taking the medication. Ketoconazole (Nizoral) and Delavirdine (Rescriptor) require

an acidic environment to be absorbed. Solubility is drastically reduced in medication, which

may raise stomach PH levels [62].

Drug – Food interaction

Genser’s study looked at foods and drugs, when taken simultaneously, can alter the body’s

ability to utilize a particular food or drug, or cause serious side effects. Some medica-

tion require certain nutrition avoidance which can lead to serious consequences such as

reduced absorption of certain oral antibiotics and predisposes the patient to treatment fail-

ure. Certain food inhibits enzymes in the gut which may lead to a significant change in

oral bio-availability of drugs such as grape fruit juice which is selective intestinal CYP3A4

inhibitor. The overall exposure of some drugs can be increased by more than fivefold when

taken with grapefruit juice and increase the risk of adverse effects [63]. Wayfarin, which

is a blood thinner was found that food (mostly vegetables) normally high in vitamin K

interferes with the effectiveness and safety of Wayfarin therapy [64].

Drug – Disease interaction

Drug-disease interactions are situations where the benefit/risk ratio of drugs for specific

populations may have a negative effect on patients’ comorbidities. A black box label is

added to the labeling of drugs or drug products by the regulatory agency such as the

FDA, when serious adverse reactions or special problems occur, particularly those that may

lead to death or serious injury [65]. Cardiovascular diseases have the most drug-disease

interactions. In elderly patients, 15%–16% of the patients had at least one drug-disease

interaction al [66]. Black label recommendations support both pharmacists and physicians
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by signalling clinically relevant drug-disease interactions at point of care, thereby improving

medication safety [67].

Drug – Drug interaction

Almost 80% of Americans over the age of 60 are taking multiple drugs, and the occurrence

drug to drug interaction and intensity of an adverse events increases with the number of

drug combinations. Clinical trials typically focus on a single drug and rarely on drug to drug

combinations due to the sheer amount of multiple drug combination of all FDA approved

drugs. Such an enormous number of drug combinations and possible AEs from drug to

drug interaction make it challenging and is needed for patient safety [68]. Zitnik et al use

convolutional network to predict for multiple drug to drug AEs. Using neural network they

construct for protein to protein interactions, drug to protein target interactions and drug

to drug interactions to predict for AEs for multiple drug combination, which have not been

used yet with patients [48].

2.2.5 Drug Quality Factor

In 2012, 753 patients in 20 states were diagnosed with a fungal infection after receiving

steroid injections manufactured by New England Compounding Pharmacy for back pain,

and this resulted in many patients being hospitalized and dying of fungal infection. This

was due to the unsanitary manufacturing process by the compounding pharmacy and during

an FDA investigation - an investigator described it as "fungal zoo”. This outbreak was the

largest public health crisis ever caused by a contaminated pharmaceutical drug/injection.

Drug quality issues such as this one are not common however possible – it can come from

the manufacturer or during the supply chain. These can also be detrimental to the patient

however deadly, its not systematic [69].

13



2.3 Adverse Event Databases

Spatio-temporal pharmacovigilance is the detection, assessment, understanding, and pre-

vention of adverse effects in the temporal and spatial dimensions. We used spatial data

mining techniques along with tools from Geographic Information Systems (GIS) to mine

information from FAERS Adverse event FDA database [8, 9]. Adverse Event (AEs) or

Adverse Drug Reaction (ADRs) is any undesirable experience associated with the use of

a medical product. The Food and Drug Administration (FDA) has developed AE self-

reporting tools called MedWatch in which patients, practitioners, and drug manufactur-

ers can report adverse events including severe allergic reactions, side effects, medication

errors/product use errors, product quality problems, and therapeutic failures for all FDA

regulated products. This information is available to researchers, patients, and practitioners

in publicly available databases (FAERS) [7].

2.3.1 Drug Adverse Event Reporting System

FDA Adverse Event Reporting System (FAERS) is a database designed to support the

FDA’s post- marketing safety surveillance program and contains adverse event reports from

a medication error and product quality complaints reported to the FDA. FAERS began

on September 10, 2012, and replaced the Adverse Event Reporting System also known

as Legacy AERS. Each extract covers reports received by FAERS during one quarter of

the Year. Adverse events in FAERS are coded using terms in the Medical Dictionary for

Regulatory Activities (MedDRA) terminology to standardized medical terminology so it

will facilitate sharing of information by regulatory authorities, pharmaceutical companies,

clinical research organizations, and health care professionals, which will allow better global

protection of public health [70]. Reporting systems such as FAERS are critical tools for

monitoring the safety and the standards. FDA uses FAERS for investigating new safety

concerns, which might be related to an FDA regulated product or evaluating a manu-

facturer’s compliance with reporting regulations and responding to outside requests for
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information [7].

2.3.2 Vaccine Adverse Event Reporting System

Vaccine Adverse Event Reporting System (VAERS) is a database designed to support na-

tional early warning system to detect possible safety problems in U.S.-licensed vaccines.

VAERS’s co-managed by the CDC and the FDA. It similiar to FAERS in accepting re-

ports of adverse events. Such as FAERS anyone can report an adverse event to VAERS.

Healthcare professionals are required to report certain adverse events and manufacturers

are required to report all adverse events that come to their attention to VAERS and FAERS

for their intended products. These databases are not designed to determine if a vaccine or

drugs caused a health problem, but is especially useful for detecting unusual or unexpected

patterns of adverse event reporting that might indicate a possible safety problem which

might lead to additional work and evaluation for further investigation of a possible safety

concern [71].

2.3.3 Limitation of Adverse Event Databases

VAERS and FAERS share many limitations, both these systems are a passive reporting

system, meaning it relies on individuals to send in reports of their experiences to CDC and

FDA, which means that there will be under-reporting. The degree of under-reporting for

both databases varies. More serious adverse events are going to be reported compare to

less serious events. Reports vary in quality and completeness because reports are accepted

from various sources such as patients or health care providers and reports vary in quality

and completeness [71].

Information sharing is constraint by the HIPPA law. HIPAA (Health Insurance Portabil-

ity and Accountability Act of 1996) is United States legislation that provides data privacy

and security provisions for safeguarding medical information. The law has emerged into

greater importance in recently due to the health data breaches caused by cyberattacks and

ransomware attacks on health insurers and providers. This law also puts a constraint on
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researchers to safeguard PII that could potentially identify a specific individual. Any infor-

mation that can be used to distinguish one person from another can be considered as PII.

In the spatial data mining setting, a person’s location is also data, which can be classified

as PII and must be de-identified [72]. De-identification is the process used to prevent a

person’s identity from being connected with information. HIPPA law stats that zip-code

data can only be used if zip-code has more than 20,000, zip-code with a population less than

20,000 has to go through another round of de-identification where zip-code are grouped by

the first 3 numbers [73].
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Chapter 3: Research Methodology

Figure 3.1: An Overview of the process in Knowledge Discovery in Databases

3.1 Data selection

3.1.1 FAERS

Adverse reports were downloaded from the FAERS public-facing database. FAERS public

facing database is updated quarterly and was downloaded using Python scripts. Quarterly

data files are in zip format available at fda.gov [74] or could be downloaded using OpenFDA

API [75]. The quarterly data files include:

• demographic and administrative information and the initial report image ID number

(if available);

• drug information from the case reports;
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• reaction information from the reports;

• patient outcome information from the reports;

• information on the source of the reports;

• a "README" file containing a description of the files.

Spatial attributes are limited to the country level for the public-facing FAERS database

due to HIPAA regulations. Due to data aggregation, all data were summarized at the

country level to protect PII information and this also effects data variability and results.

In this case, using United States as our study area was not plausible, we used European

countries as a good backup due to to the richness in the data for adverse events and

spatiotemporal attributes along with closeness in regulatory policies because of the EU

overarching regulatory arm.

3.1.2 VAERS

Vaccine Adverse reports were downloaded from VAERS public-facing data portal. VAERS

public facing database is updated weekly and are in zip format and were downloaded using

Python scripts. Data files include:

• VAERS DATA, which includes demographic and administrative information and pa-

tient outcome information from the reports;

• VAERS Vaccine, which includes vaccine information from the case reports;

• VAERS Symptoms, which includes reaction information from the reports;

Spatial attributes are limited to the US State level for the public-facing VAERS database

due to HIPAA regulations. Due to data aggregation, all adverse events data were summa-

rized at the US State level to protect PII information. In this case, we used United States

as our study area even though we knew that we will lose a lot of the data variability if the

data was summarized at a lower hierarchical geographic entity such US County [71]. For

an overview of the process and routes of adverse events in VAERS see Figure 3.2.
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Figure 3.2: Route from vaccines adverse event to VAERS Report

3.2 Data Processing

Python programming language was used for all the data analysis and hosted in a Jupyter

Notebook environment for reproducibility. The analysis process was relatively straight-

forward because of the ample amount of resources that are available for Python and the
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following libraries. Pandas python library was used to carry out entire data analysis work-

flow in Python [76]. Mlxtend python library was used for frequent itemset data mining,

gensim was used for topic modelling, numpy for mathematical calculations, geopandas for

handling spatial attributes, and PYSAL for conducting spatial auto-correlation and statis-

tical tests [77, 78, 79, 80, 81]. Spatial Data transformation is spatially enabling data with

for mapping function that establishes a spatial correspondence between spatial geometry

data points or polygons including spatial projections so spatial data aligns with each other.

3.3 Data Mining and Data evaluation

3.3.1 Frequent (k) Item-set Mining

To find interesting spatial rules and patterns in geographic space, we used Apriori algorithm

to get sets of top (k) frequent item-sets. Frequent Item-set uses Apriori Algorithm and was

introduced to find frequent groupings of items in a database containing baskets/records

of items [82]. A priori Algorithm works by eliminating most large sets of candidates by

looking first at smaller sets, and it recognizes that a large set cannot be frequent unless

all its subsets are frequent [83]. The apriori algorithm generates a set of candidate item-

sets. The transaction data set will then be scanned to see which sets meet the minimum

support level (minsup). Itemset that doesn’t meet the minimum support level will get

tossed out. The remaining sets will then be combined to make item-sets with additional

elements. Again, the transaction data set will be scanned, and item-sets, which does not

meet the minimum support level will get tossed. The process will be repeated until all sets

are tossed out or top (k) frequent itemset are met [83].

3.3.2 Topic Modeling

Topic modeling is an unsupervised learning technique to discover underlying themes of a

collection of documents. Latent Dirichlet Allocation (LDA) is one of the more common topic

modeling techniques in the literature. LDA assumes that adverse events in our database
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contains a mix of topics that are found throughout the entire dataset [23]. There are

many choices of topic modeling algorithms such as Latent Semantic Allocation (LSA) and

Hierarchical Dirichlet Process (HDP). LSA assumes that words that are close in meaning will

occur in similar pieces of text [84]. A challenge of mining adverse events is the potentially

large number of different adverse effects in the database, which could appear anywhere in the

database. Similarly HDP assumes all data set shares similarity or a base distribution [85].

Hence LSA and HDP were not a good choice for our adverse event dataset. In future

research, other topic modeling algorithm will be explored. The FAERS Adverse Event

Databases uses MedDRA codes [86] and terminology to standardize adverse effects such

as using “pyrexia” instead of “heightened temperature” of “fever”. Yet, the number of

possible adverse effects is too large and the resulting feature space of using bag-of-words

semantics to represent adverse effects is too high dimensional. To address this issue, we

acknowledge that adverse effects are symptoms of unknown (latent) underlying causes.

While one way of identifying causes is involving a medical expert, we propose a data-

driven approach to identify underlying topics among adverse events using topic modeling

that we interpret as causes. For that, we employ Latent Dirichlet Allocation (LDA) [23]

– a generative probabilistic model which assumes that each adverse event is a mixture of

underlying (latent) topics, and each topic has a (latent) distribution of more and less likely

adverse effects.

3.3.3 Similarity Test

We measure similarity between adverse effects and of spatial regions, we use text similarity

measures. The FAERS ADEs databases uses MedDRA codes and terminology to stan-

dardized AEs terms such as using "nausea" instead of "feeling queasy". These terms follow

medical nomenclature such as the term "hemoglobin","hemophilia", "hemorrhage", "hem-

orrhoids" all relate to blood due to the prefix "Hemo", which relates to blood. Therefore

we had to use a similarity algorithm, which uses pattern matching as compare to string

matching to score similarity.
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The Ratcliff/Obershelp Pattern Recognition algorithm also known as Gestalt Pattern

Matching was introduced in 1983 by Ratcliff and Obershelp [87]. It computes the similarity

between two sets of Top-k most frequent adverse effects by finding the longest contiguous

common matching sequence or part of the string and repeatedly, matching characters in the

unmatched region on either side of the longest common part of the string.

We measure similarity between LDA topics by using Euclidean distance. Sets of adverse

events corresponding to two regions at time. We describe each such set as the mean of latent

features within the set, and measure the Euclidean distance in the latent feature space.

3.3.4 Finding Spatial Clusters

Distances generated from the similarity Index Coefficients are used to find clusters. The

closer the similarity coefficients, the more robust the clusters generated from hierarchical ag-

glomerative clustering. Hierarchical agglomerative clustering was used in our study because

it treats each observation as a separate cluster and builds the cluster from a bottom-up ap-

proach. The closer the similarity scores of each state to another state, the closer the top (k)

frequent itemset of the selected pharmaceutical drug adverse event. Our approach is that

adverse events of each country will resemble more the countries that are closer in geographic

space unless there are other underlying factors such as supply chain issues, environmental,

health insurance coverage, and economic factors.

3.3.5 Spatial Auto-correlation Test

First Law of Geography states that everything is related to everything else. But near

things are more similar than distant things [88]. We will test if the clustering output from

hierarchical agglomerative clustering has any spatial tendencies. The output of hierarchical

agglomerative clustering is categorical since it’s the grouping of countries or US states by

the similarity of coefficients of top (k) adverse events.

This chapter describes the roadmap that were utilized in this dissertation in detail.

Each sub-sections explains the method used for combining spatial similarity search with
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topic modeling and mining itemsets, and the database our approached were applied to.

These algorithms are explained further in Chapter 4, 5, and 6 in the form of individual

papers.
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Chapter 4: Clustering of Adverse Events for Post-Market

Approved Drugs using Frequent Itemset

Abstract

Adverse side effects of a drug may vary over space and time due to different population,

environment, and drug quality. Discovering all side effects during the development process

is impossible. Once approved and available to the public, regulators rely on a combina-

tion of surveillance, reporting (by doctors and patients), and data mining to discover any

post-market issues in approved pharmaceutical drugs. Our goal of this study is to find

statistically significant spatio-temporal clusters among co-occurring adverse effects of U.S

Food and Drug Administration (FDA) approved drugs. We use data obtained from FDA’s

Adverse Event Reporting System (FAERS) to explore the spatio-temporal distribution of

combinations of adverse effects. This is done by computing, for each spatial region and for

each year, the top k most frequent sets of adverse events using a frequent itemset mining

approach. To assess the similarity of sets of adverse events between spatial regions, we

employ Gestalt Pattern Matching between the textual representation of reported adverse

effects. To find clusters of regions that exhibit similar adverse events we apply an agglom-

erative hierarchical clustering approach. Finally, we explore the resulting clusters of similar

adverse events to discover patterns of spatial autocorrelation using Moran’s I measure of

spatial autocorrelation. In our experimental evaluation, we use adverse event records in

Europe for three pharmaceutical drugs between 2014 and 2017. Our result show that the

vast majority of mined clusters of regions having similar adverse events did not exhibit

significant spatial auto-correlation, indicating that the adverse events within a clusters are

not the result of spatial patterns or local effects. For a small number of clusters, we found

significant spatial autocorrelation but after applying Bonferroni correction to account for
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the large number of tested hypotheses, we found no significant and interesting cases of spa-

tial autocorrelation for three drugs studied. Yet, we note that our approach can be applied

on other drugs to explore if other drugs may exhibit spatially localized side-effects that

may justify further investigation. We conclude our work by discussing future directions to

discover spatial trends among adverse events that this study was not able to find.

4.1 Introduction

Public health surveillance is the base of effective public health practice [89], and it has been

put in the spotlight due to the coronavirus disease epidemic, which has impacted aspects of

public health governance in its response and recovery [90]. Pharmacovigilance is a branch of

public health surveillance and is the detection, assessment, understanding, and prevention

of adverse effects [8, 9]. We propose an approach to find spatial autocorrelation among

adverse effects using data mining and spatial statistics to support pharmacovigilance.

Adverse Events (AEs) are any undesirable experiences associated with the use of a med-

ical product. The United States Food and Drug Administration (FDA) has developed an

Adverse Event (AE) self-reporting tool called MedWatch. Patients, practitioners, and drug

manufacturers can all report adverse events to FAERS. It is not limited to only allergic reac-

tions but also allows to report issues such as product use errors, product quality problems,

and therapeutic failures can all be reported via MedWatch. This information is available to

everyone including researchers, patients and health practitioners [7]. Currently, in FAERS,

there are 24 million reports and growing.

Information sharing is constraint by the HIPPA law. HIPAA (Health Insurance Portabil-

ity and Accountability Act of 1996) is United States legislation that provides data privacy

and security provisions for safeguarding medical information. The law has emerged into

greater importance recently due to the health data breaches caused by cyber-attacks and

ransom-ware attacks on health insurers and providers. This law also puts a constraint

on researchers to safeguard personally identifiable information (PII) that could potentially
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identify a specific individual. Any information that can be used to distinguish one per-

son from another can be considered as PII. In the spatial data mining setting, a person’s

location is also data, which can be classified as PII and must be de-identified [70].

AEs in the FAERS database are coded using terms in the Medical Dictionary for Regula-

tory Activities (MedDRA) terminology to standardized medical terminology. Standardizing

AE keywords helps facilitate the sharing of information by regulatory authorities, pharma-

ceutical companies, clinical research organizations and health care professionals and allows

for better global protection of public health [86]. Reporting systems such as FAERS are

critical tools for monitoring the safety, efficacy, and quality standards of approved phar-

maceutical drugs. FDA uses FAERS for postmarket surveillance of approved drugs when

investigating safety concerns [7].

A major challenge in vaccine/drug development is determining possible side effects.

Recent analysis found that it took a median of 4.2 years after a drug’s initial approval for

major safety concerns to be discovered [2]. Serious side effects could be life-threatening,

which can lead to death. While less severe AEs such as rash, nausea, and fatigue might

not be dangerous, however, they can lead to avoidance in taking the drug as prescribed,

which can lead to a severe consequence [3]. Our motivation for this study is to identify co-

occurin AEs. For this purpose, we first survey existing work in Section 4.2 and define the

problem of spatio-temporal clustering of adverse events in Section 4.3. Then, we propose

our approach for clustering regions having similar adverse event sets in Section 4.4. We

apply our approach to three common anticoagulant drugs in Section 4.4, 4.5 and conclude

in Section 4.6.

4.2 Related Work

Data mining or knowledge discovery from a database (KDD) is used to determine useful,

implicit and hidden patterns in a large dataset which was previously unknown. It used

in a wide range of disciplines such as public health [19]. Market Basket Analysis is one
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of many data mining techniques used usually by large retailers to uncover associations

between items [20]. It works by looking for combinations of items in each transaction that

frequently occur together. It allows market researchers to identify relationships between

the items that customers buy, such as milk, bread and diapers [21]. Frequent Item-set and

association rules mining are not restricted to market basket analysis, but instead, they can

be applied in other settings [22]. We leverage frequent itemset mining to represent the

adverse events reported in a spatial region as a set of mined frequent adverse effects. Then,

we use this representation to cluster regions having similar frequent adverse effects for the

same drug at the same time.

Almost 80% of Americans over the age of 60 are taking multiple drugs, and the occur-

rence and intensity of an adverse events increases with the number of drug combinations.

Clinical trials typically focus on a single drug and rarely on drug to drug combinations due

to the sheer amount of multiple drug combination of all FDA approved drugs. Such an enor-

mous number of drug combinations and possible AEs from drug to drug interaction make

it challenging and is needed for patient safety [68]. Zitnik et al use convolutional network

to predict for multiple drug to drug AEs. Using neural network they construct for protein

to protein interactions, drug to protein target interactions and drug to drug interactions to

predict for AEs for multiple drug combination, which have not been used yet with patients

[48]. Adverse side effects of a single drug or multiple combination of drugs may vary over

space and time due to different population dynamic [10, 11, 12], environment [13, 14], or

drug quality [15, 91]. In this paper, we explore spatial temporal clusters of a three FDA

approved drugs for post market AEs patterns and trends. We didn’t used concomitant

drugs of FAERS dataset and used AEs reports associated to a single drug for Dabigatran,

Rivaroxaban and Apixaban. Previous cohorts studies in the US and in Norway compared

these dabigatran, rivaroxaban, and apixaban. The cohort study in US concluded that these

three drugs appear to have similar effectiveness, although apixaban may be associated with

a lower bleeding risk and rivaroxaban may be associated with an elevated bleeding risk. The

Cohort in Norway reached similar findings; dabigatran and apixaban were both associated
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Table 4.1: Table of Notations

Variable Description
A The domain of all adverse effects
A ⊆ A A set of adverse effects
S The domain of all spatial regions
s A single spatial region
T The domain of all discrete time intervals (com-

monly: years)
t ∈ T A time interval
D The domain of pharmaceutical drugs
d ∈ D A pharmaceutical drug
DB A database of Adverse Events
(t, s, A, d) ∈ DB An adverse event (AE).
DBt Adverse events reported during time t
DBs,t Adverse events reported in region s during time t
TopkFAE(DBs,t) Top-k frequent adverse effects among adverse

events in DBs,t

Gestalt(TopkFAE(DB1), T opkFAE(DB2)) Gestalt similarity between Top-k frequent adverse
events

dist(TopkFAE(DB1), T opkFAE(DB2)) Distance function between Top-k frequent ad-
verse events

LCSS(s1, s2) The longest common subsequence between two
strings

with significantly lower risk of major bleeding compared with rivaroxaban [53, 52]. Our

goal is to add to this literature using spatial datamining on FAERS report and reporting

any significant colocated AEs.

4.3 Problem Definition

This section formally defines the problem of spatio-temporal clustering of adverse events.

A summary of all notations used in this work is found in Table 4.1. First, we provide a

definition of adverse effects and events.
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Table 4.2: Sample records of Adverse Event Report Database. Each Line is an Adverse
Event.

Adverse
Event ID

Set of Adverse Effects Location Event Time Drug

109947323 Abdominal pain, Abdominal pain
upper, Constipation, Diarrhoea,
Headache, Heart rate increased,
Nausea, Pain in extremity, Vertigo,
Vomiting

Germany
(DE)

9/24/2014 Rivaroxaban

106823542 Duodenal ulcer haemorrhage, Gas-
tric ulcer haemorrhage, Shock
haemorrhagic

Netherlands
(NL)

11/2/2014 Rivaroxaban

109449521 Death United
Kingdom
(GB)

2/12/2015 Rivaroxaban

120813061 Asthenia, Haemorrhage Croatia
(HR)

1/16/2016 Rivaroxaban

145539611 Purpura, Skin exfoliation, Skin le-
sion

United
Kingdom
(GB)

12/28/2017 Rivaroxaban

Definition 1 (Adverse Effect). An Adverse Effect is a textual representation of an unde-

sirable experiences associated with the use of a medical product. We let A denote the set of

all adverse events.

Data such as collected in the FAERS database is a collection of records each associated

with a set of adverse effects, a specific pharmaceutical drug, a location, and time. We call

such as record an Adverse Event (AE), formally defined as follows:

Definition 2 (Adverse Event Database). Let A denote a set of adverse effects, let S denote

a set of spatial regions, let T denote a set of time intervals (such as years), and let D denote

a set of drugs. An Adverse Event Report Database DB is a collection of adverse event reports

(t, s, A, d), where t ∈ T is a point in time, s ∈ S is a spatial region, A ⊆ A is a set of adverse

effects, and d ∈ D is the drug for which the adverse effects are reported.

We note that a single adverse event may report multiple adverse effects. As an example,
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Table 4.2 shows exemplary adverse events from the FAERS database. The first line in

Table 4.2 implies that ”Abdominal pain, Abdominal pain upper, Constipation, Diarrhoea,

Headache, Heart rate increased, Nausea, Pain in extremity, Vertigo and Vomiting” are

adverse effects that occurred on on 9/24/2014 in Germany for drug Rivaroxaban.

Our goal is to find clusters of locations that, at a given time, exhibit similar adverse

events. Towards this goal, we group adverse events by region and time. Further, we

abstractly define a similarity measure between the adverse events at a given region at a

given time.

Definition 3 (Spatio-Temporal Adverse Events). Let DB be an adverse event report database,

let s′ ∈ S be a spatial region, and let t′ ∈ T be a time interval. We define

DBs′,t′ := {(t, s, A, d) ∈ DB|t = t′ ∧ s = s′}

as the set of all adverse events reported at time t′ at location s′. For two spatial regions s1

and s2, we let

dist(DBs1,t,DBs2,t) 7→ [0, 1]

denote an abstract distance function between two sets of adverse events.

We propose a concrete implementation of dist() in Section 4.4.3. Given a distance

function to assess the adverse event similarity of two regions at the same time and for a

given drug, we define a spatial adverse event clustering as follows:

Definition 4 (Spatial Adverse Event Clustering). Let DB be an adverse event report

database, let dist() be a distance function to measure dissimilarity among sets of adverse

events. Further, let

DBt := {x ∈ DB|x.t = t}

denote the set of all adverse events reported at time t. A spatial clustering C(DBt) =

{C1, ..., CK} is a partition of regions S such that ∀i : Ci ⊆ S and ∀i 6= j : Ci ∩ Cj = ∅. As

element C ∈ C of a spatial adverse event clustering is called a spatial adverse event cluster.
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Problem Statement 1 (Spatial Adverse Event Clustering). Our first goal is to find a good

spatial adverse event clustering, that is, a clustering such that the similarity of regions in

the same cluster is maximized, while the similarity of regions across clusters is minimized.

Once a good spatial adverse event clustering is found, our second goal is to explore

the spatial auto-correlation of these cluster to answer the question if some regions exhibit

similar adverse effects at certain times, or if adverse effects are independent of space and

time.

Problem Statement 2 (Spatial Auto-correlation of Clusters). Our second goal is to ex-

plore the spatial auto-correlation among spatial adverse event clusters.

4.4 Methodology

This section describes our approach to find spatio-temporal clusters of AEs and to find

those having significant spatial autocorrelation. And overview of this section is found in

Figure 4.1. First, we obtained the data from the FAERS Database using the openFDA

API [75, 74] as described in Section 4.4.1. To concisely represent the AEs reported in a

region, Section 4.4.2 presents our approach to extract frequent sets of adverse effects from

AEs reported in a region. Our approach leverages an itemset-mining approach similar to

the Apriori algorithm [83] in which we treat AEs as transactions, and adverse effects as

items within a transaction. Having each region (at a specified time) represented by local

sets of frequent sets of adverse effects, we propose a similarity measure between regions in

Section 4.4.3. This similarity measure uses Gestalt Pattern Matching [87] to estimate the

set-similarity between the frequent sets of adverse effects. Using this similarity measure

to to define the abstract function dist() in Definition 3, we proceed to present our region

clustering approach in Section 4.4.4 to group regions by similar frequent sets of AEs and to

solve Problem Statement 1. To find clusters that exhibit significant spatial auto-correlation,

we apply Moran’s I test statistic to measure spatial auto-correlation as described in Sec-

tion 4.4.5. All of our algorithms used for our data analysis have been implemented in
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Figure 4.1: Road map for spatiotemporal association model using Adverse Events Report
Submission to FDA FAERS Database.

Python 3.7 and are published on GitHub as a Jupyter Notebook for reproducibility at

https://github.com/ahmedaskar64/Spatio-Temporal-Clusters-AEs-Post-Market.

4.4.1 Data Collection

As of 6/01/2022, there are 24 million AEs report for countless drug combinations in the

FAERS database, we implemented a data crawler in Python to download these reports from

the FAERS public-facing database published quarterly as a zip file available at fda.gov [74]

or by OpenFDA API [75]. FAERS data comes in multiple files with a primary key linking

all files. The files include a demographic and administrative information file; drug informa-

tion of the case reported; reaction information from the reported case along with patient

outcome information and the source of the report. Spatial attributes are aggregated to

the country level for the public-facing FAERS database due to HIPAA regulations. Due to
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this aggregation, we focus on clustering of adverse effects using a study area of European

countries as shown in Figure 4.2 and in Table 4.3 as a proof of concept due to data avail-

ability for a pharmaceutical drug (d ∈ D) and Top-k selection. We note that our solutions

could also be applied other study areas, such as the US on state or zip-code level, if such

data is available. We used Europe for our study area due to the richness in the data for

spatiotemporal attributes along with closeness in regulatory policies across Europe due to

EU overarching regulatory arm.

Once the data was collected, we joined all datasets by their primary key to obtain one

large data table, including for each case report a spatial attribute and a timestamp of the

observed AE. While spatial attributes are aggregated at the country level case report have

detailed timestamp of the event date. We group this dataset by year between 2014 to

2017. Data varied for different countries depending on the pharmaceutical drug availability,

prescribers’ preferences, pharmaceuticals marketing, supply chain, etc. In the exploratory

data selection phase, we were limited to select pharmaceutical drugs which were used con-

sistently throughout Europe and didn’t have temporal usage variability as well. We looked

for a pharmaceutical drug that had general AE rates across Europe, so our results were

not skewed. Rivaroxaban was selected as our pharmaceutical study drug due to the spa-

tiotemporal variance of reported AEs across Europe along with it being one of top ten most

reported pharmaceutical drug in FAERS Database. Since Rivaroxaban is an anticoagulant

drug, we used other similar anticoagulant drugs such as Dabigatran and Apixaban as our

other drugs in our study. There is ample about of literature comparing these three drugs

[53, 52]. Rivaroxban and Dabigatran received approval to market from European Medicines

Agency (EMA) in 2008 [92, 93] and Apixaban in 2011 [94]. It takes a median of 4.2 years

after a drug’s initial approval for major safety concerns to be discovered [2]. Figure 4.3a,

4.3b, 4.3c is a count of the total AEs submissions to FAERS for Europe. Report submission

increased few years after the initial approval.

Since many patients might take combination of other medications, we were only inter-

ested in the AE reports submitted of patients with only using one drug at a time of report
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Table 4.3: Study areas for Drugs Rivaroxaban, Dabigatran and Apixaban for k ∈ {5, 10}.

Countries in the study area # of
coun-
tries

Drug Name k

Austria(AT), Belgium(BE), Germany(DE), Denmark(DK),
Spain(ES), Finland(FI), France(FR), United Kingdom(GB),
Greece(GR), Hungary(HU), Ireland(IE), Italy(IT), Nether-
lands(NL), Norway(NO), Poland(PL), Portugal(PT), Swe-
den(SE), Turkey(TR)

18 Dabigatran 5

Austria(AT), Belgium(BE), Germany(DE), Denmark(DK),
Spain(ES), Finland(FI), France(FR), United Kingdom(GB),
Italy(IT), Netherlands(NL), Poland(PL), Portugal(PT),
Sweden(SE)

13 Dabigatran 10

Austria(AT), Germany(DE), Spain(ES), France(FR), United
Kingdom(GB), Greece(GR), Italy(IT), Norway(NO), Swe-
den(SE)

9 Apixaban 5

Austria(AT), Germany(DE), Spain(ES), France(FR), United
Kingdom(GB), Greece(GR), Italy(IT), Norway(NO), Swe-
den(SE)

9 Apixaban 10

Austria(AT), Belgium(BE), Switzerland(CH), Ger-
many(DE), Denmark(DK), Spain(ES), Finland(FI),
France(FR), United Kingdom(GB), Greece(GR), Hun-
gary(HU), Ireland(IE), Italy(IT), Netherlands(NL),
Norway(NO), Poland(PL), Sweden(SE), Slovenia(SI),
Turkey(TR)

19 Rivaroxaban 5

Austria(AT), Belgium(BE), Switzerland(CH), Ger-
many(DE), Denmark(DK), Spain(ES), Finland(FI),
France(FR), United Kingdom(GB), Greece(GR), Hun-
gary(HU), Ireland(IE), Italy(IT), Netherlands(NL),
Norway(NO), Poland(PL), Sweden(SE), Slovenia(SI),
Turkey(TR)

19 Rivaroxaban 10
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Figure 4.2: Study area for analyzing Top 5 & 10 unique AEs for Rivaroxaban, Apixaban
and Dabigatran from year 2014 to 2017 for European countries listed with their ISO alpha-2
code

submission as compare to concurrent medication use , which might pose added challenge of

not knowing which medication to subscribe the reported AEs. While in this work, we only

consider usage of a single drug, we note that our work can be easily extended to compare
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(a) Xarelto (b) Pradaxa (c) Eliquis

Figure 4.3: Adverse Events Report Submission to the FDA FAERS Database per drug per
year

concurrent drug usage to explore the effects of polypharmacy AEs [48].

Once data is collected, our goal is to cluster countries by their AEs set similarity in

Section 4.4.4. To accomplish this task, we need:

• 1) an efficient way to extract the most frequent sets of adverse effects from large

collections of AEs reported in each region in Section 4.4.2

• and 2) a distance (or dissimilarity) measure between sets of AEs to quantify similarity

for clustering as proposed in Section 4.4.3.

4.4.2 Frequent (k) Adverse Event Set Mining

We propose to represent a potentially large set of AEs in a region by the Top-k most frequent

adverse effects reported in that region. We define the set of Top-k Frequent AEs as follows:

Definition 5 (Top-k Frequent Adverse Event). Let DB be an adverse event(AE) report

database, then DBR,Y denote the database having adverse events(AEs) only in region R

and in year Y. Let TopkFAE(DBR,Y ) denote the Top-k most frequent sets of AEs in

DBR,Y defined as follows:
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TopkFAE(DBR,Y ) := argmaxk
A⊆A|{AE ∈ DBR,Y |A ∈ AE}|, (4.1)

where argmaxk
a∈argsf(x) returns the set of k arguments that maximize function f(x) (in

this case, the count of sets of adverse effects A ⊆ A among all AEs DBR,Y ), and | · | is the

set-cardinality function that returns the support (number of occurrences) of a set of AEs.

A naive implementation requires to enumerate all (combinatorically many) subsets of A,

to find the subsets having the k highest support. To mine this set of Top-k most frequent

adverse effects more efficiently, we leverage a variant of the classic Apriori algorithm [83],

which mines Top-k frequent itemsets in transaction databases. The classic Apriori algorithm

returns all itemsets having sufficiently large support. The variant we use [95] instead returns

the Top-k most frequent itemsets. This approach scans the database and computes the

support of every item and sorts items by their frequency in descending order. Then it

iteratively scans database again to construct a frequent pattern tree, update the frequency

count and use this to prune the tree to avoid evaluating itemsets whose support must be

lower than the support of at least k other itemsets.

The choice of parameter k is important. If k is chosen too low, most countries may

have similar Top-k AEs. Thus, it will no longer possible to discriminate differences if k is

chosen too low. If k is chosen too large, then a large set of rare AEs may create noise that

may cause regions to appear to more dissimilar. Our experiments have shown that values

of k ∈ {5, 10} provide a good balance of discrimination and resistance to noise. While

our study area is Europe, countries available for analysis change due to data availability.

For k = 5 we require at least five unique adverse effects each year and for k = 10 we

require at least ten unique adverse events. Given the three selected pharmaceutical drug

and k ∈ {5, 10} for our framework model run, Table 4.3 shows the available countries for our

analysis. Table 4.4 shows an output of mined adverse effects for Austria using Equation 4.1,

with k = 10 for year 2016. Adverse effects are ordered by frequency (relative number of

adverse events that the adverse effect appears in). Note that in this example, there are sets
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Table 4.4: Example k-most frequent sets of adverse events in Austria in Year 2016 for Drugs
Rivaroxaban and Dabigatran. For each set the support among adverse events of that year
in Austria is provided.

k=10 Itemsets|min support Year Drug

({‘Death’}, 0.125), ({‘Cerebral haemorrhage’}, 0.125),
({‘Cerebrovascular accident’}, 0.125), ({‘Haemorrhage’},
0.0937), ({‘Pain’}, 0.0937), ({‘Atrial thrombosis’}, 0.0937),
({‘Arterial thrombosis’}, 0.0625), ({‘Acute coronary syn-
drome’}, 0.0625), ({‘Pain’, ‘Arterial thrombosis’}, 0.0625),
({‘Acute coronary syndrome’, ‘Arterial thrombosis’}, 0.0625)

2016 Rivaroxaban

({‘Gastrointestinal haemorrhage’}, 0.333), ({‘Acute kid-
ney injury’}, .333), ({‘Cholecystitis’}, 0.167), ({‘Haema-
tochezia’}, 0.167), ({‘Hemiparesis’}, 0.167), ({‘Hepatic
failure’},0.167), ({‘Overdose’}, 0.167), ({‘Hepatic failure’,
‘Gastrointestinal haemorrhage’}, 0.167), ({‘Haematochezia’,
‘Gastrointestinal haemorrhage’}, 0.167), ({‘Cholecystitis’,
‘Acute kidney injury’}, 0.167)

2016 Dabigatran

of singular (having exactly one element) and multiple frequent adverse effects. In general,

for k ≥ 10, an itemset may include multiple adverse effects. We used the Pandas Python

library [96], numpy, and mlxtend Python library to carry out the data analysis [77, 97].

4.4.3 Similarity Measure between Sets of Adverse Events

To measure similarity between the Top-k most frequent adverse effects TopkFAE(DBR1,Y )

and TopkFAE(DBR2,Y ) of two countries R1 and R2 in a year Y , we use text similarity

measures. The FAERS AEs databases uses MedDRA codes and terminology to standardized

AEs terms such as using "nausea" instead of "feeling queasy". These terms follow medical

nomenclature such as the term "hemoglobin","hemophilia", "hemorrhage", "hemorrhoids" all

relate to blood due to the prefix "Hemo", which relates to blood. Therefore we had to use a

similarity algorithm, which uses pattern matching as compare to string matching to score

similarity.
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The Ratcliff/Obershelp Pattern Recognition algorithm also known as Gestalt Pattern

Matching was introduced in 1983 by Ratcliff and Obershelp [87]. It computes the sim-

ilarity between two sets of Top-k most frequent adverse effects TopkFAE(DBR1,Y ) and

TopkFAE(DBR2,Y ) by finding the longest contiguous common matching sequence or part

of the string and repeatedly, matching characters in the unmatched region on either side of

the longest common part of the string.

Gestalt(s1, s2) = 2 · LCSS(s1, s2)
|s1|+ |s2|

(4.2)

where in LCSS(s1, s2) is the longest common subsequence [98].

In our analysis, we used Gestalt Pattern Matching to compare the AEs sets from the

results of the Top-k to one another in our study area.

Gestalt(TopkFAE(DBR1,Y ), T opkFAE(DBR2,Y )) =

2 · LCSS(TopkFAE(DBR1,Y , T opkFAE(DBR2,Y )
|TopkFAE(DBR1,Y |+ |TopkFAE(DBR2,Y |

(4.3)

Equation 4.4.3 yields a similarity score in the range from 0 to 1. The closer to 1, the

more similar set of AEs are from Top-k output.

Next, we use the Gestalt Pattern Matching similarity function in Equation 4.4.3 to

define a dual distance function by substracting from one in Equation 4.4.3.

dist(TopkFAE(DBR1,Y ), T opkFAE(DBR2,Y )) =

1−Gestalt(TopkFAE(DBR1,Y ), T opkFAE(DBR2,Y )) (4.4)

In each step of the similarity computation, each drug Top-k AEs (TopkFAE(DBR1,Y ))

is paired with another set from another country Top-k event(TopkFAE(DBR2,Y )). We
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compute the similarity of AEs output against countries in our set for that calendar year.

In another words, similarity is computed spatially and filtered temporally.

Example 1. Another way of describing ’Cerebral haemorrhage’ is ’Cerebral ischaemia’.

These terms are semantically similar however a simple test of textual equality would not

be able to capture such partial similarity as compare to Gestalt pattern, which scores the

similarity at 0.72 as follows. We first obtain the length of these two strings as |s1| = 17

and s2 = 19. The longest common subsequence (LCSS) is “cerebralhaema” having a length

of 13 characters. Thus, we get LCSS(‘Cerebral haemorrhage’,’Cerebral ischaemia’) = 13.

And we can compute the Gestalt matching similarity (Equation 4.4.3) as:

Gestalt(”cerebralischaemia”, ”cerebralhaemorrhage”) =

2× 13
17 + 19 = 0.72

To obtain a distance instead of a similarity measure, we use Equation 4.4.3 as follows:

dist(”cerebralischaemia”, ”cerebralhaemorrhage”) =

1−Gestalt(”cerebralischaemia”, ”cerebralhaemorrhage”) = 0.28
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As an another example, let’s look at an example of concrete Top-5 sets of AEs for two

countries.

Example 2. Table 4.5 shows Austria and Germany Top-5 frequently mined AEs in year

2014 for drug-Rivaroxaban. Equation 4.4.3 Gestalt Pattern Matching is computed between

countries for that same calendar year and the same drug.

The strings TopkFAE(DBAustria,2014) and TopkFAE(DBGermany,2014) are obtained

through concatenation of the adverse effects shown in Table 4.5. We first obtain the length of

these two strings as |TopkFAE(DBAustria,2014)| = 92 and |TopkFAE(DBGermany,2014)| =

84. The LCSS between the two string is ‘Cerebralaraer infctieos aie’, having a length of 27

characters. Thus, we get LCSS(DBGermany,2014, DBAustria,2014)=27, then we compute the

Gestalt matching similarity (Equation 4.4.3) as:

Gestalt(TopkFAE(DBAustria,2014), T opkFAE(DBGermany,2014)) = 2 · 27
92 + 84 = 0.307

Table 4.5: Top-5 Frequent Adverse Event between 2 countries (Germany and Austria) for
Rivaroxaban in year 2014

Drug Country Top (5) AEs for Yr 2014

Rivaroxaban Germany ’Fall’, ’Anaemia’, ’Cerebral haemorrhage’, ’Cerebral infarc-
tion’, ’Cerebrovascular accident’

Rivaroxaban Austria ’Cerebrovascular accident’, ’Drug ineffective’, ’Haemoptysis’,
’Anaemia’, ’Diarrhoea’
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4.4.4 Finding Spatial Clusters

The similarity scores in Equation 4.4.3 will be used as a distance variable in the clustering

analysis. For this purpose, we propose to use a hierarchical agglomerative clustering ap-

proach [99]. The advantage of such approach is that we neither have to guess the number

of clusters as often needed for partitioning clustering approaches [100] and we don’t have

to define a density threshold as required by density-based clustering algorithms [101] Dis-

tances generated from the similarity score in Equation 4.4.3 are used to find clusters. The

closer the similarity coefficients, the more robust the clusters generated from hierarchical

agglomerative clustering.

Hierarchical agglomerative clustering was used in our study because it treats each obser-

vation as a separate cluster and builds the cluster from a bottom-up approach. Hierarchical

agglomerative clustering builds a dendrogram, which is a hierarchical structure that cluster

points by their distances using complete linkage method to build the dendrogram [99].

Given a dendrogram, there are many approaches to finding clusters using different cluster-

ing techniques to compute the distance between points and clusters. We used the complete

linkage method, which defines the distance between two clusters as the furthest neighbor

pair-wise distance of points across the clusters. It tends to produce more compact clusters

with similar diameters and can have a limitation for outliers. It is a method that assures

that all items in a cluster are at a minimal distance from one another [102].

Our approach only considers the Top-k frequent itemsets of a region for clusters, but

does not consider the spatial distance of regions. Therefore, in the next step, we inves-

tigate whether the adverse effect-based clusters exhibit significant spatial autocorrelation.

There are many factors spatial neighbors can influence one another such as similarity in

demographics, socioeconomic and public health policies. These factors and others such

as pharmacogenetics, supply chain, distribution and health disparities contribute how AE

present themselves in space and time. These clusters would help gauge if these AEs are

random or can be explained by current research.
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4.4.5 Spatial Auto-correlation Test

Tobler’s First Law states that everything is related to everything else. But near things are

more similar than distant things [88]. Our hypothesis states that Top-k frequently mined

AEs will resemble other AEs items that are closer in geographic space or their spatial neigh-

bors. We used the geopandas library for handling spatial attributes and Pysal library for

spatial autocorrelation test [80, 103]. We tested if the clustering output from hierarchical

agglomerative clustering were spatially autocorrelated. The output of hierarchical agglom-

erative clustering is categorical and is the cluster groupings of countries using hierarchical

clustering analysis using the similarity coefficients dist calculated for Top-k AEs of our

chosen pharmaceutical drug. A commonly used statistic that describes spatial autocorre-

lation is Moran’s I. Moran’s I is a correlation coefficient that measures the overall spatial

autocorrelation or the correlation among values of a given variable in dependence on the

relative locations between the spatial units [104, 103].

We used Moran I to test for autocorelation at two ends of statistical test tail. Moran I

two tail test for similarity of a given value to its neighbors resulting in postive autocorrelation

(a clustering effect) or dissimilarity of a given value to its neighbors concludes in negative

autocorrelation(a dispersion effect). Queen contingency neighborhood is used in our analysis

and neighborhood is considered if they share boundary. Given a set of clustering labels

from the hierarchical clustering output in the previous section, it evaluates whether these

clustering labels assigned to countries using the Similarity Distance (dist) have pattern

expressed as clustering, random or dispersion. Along with Global Moran I computation

using Pysal [103], Z score and P value are also calculated using the expected and observed

Moran I values indicating statistical significance. For each cluster identified in hierarchical

clustering output, a value of 1 is given and all others a value of 0. We test if these clusters

are spatially autocorrelated.
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Table 4.6: Statistically significant clusters of AEs for Rivaroxaban, Dabigatran and Apixa-
ban for Year 2014-2017 in Europe for k ∈ {5, 10}.

Fig # Spatial
Pattern

P-value P-value
w Bon-
ferroni
correc-
tion

Moran’s
I

List of Coun-
tries (two-
letter ISO
code)

# of
coun-
tries

Year Drug Name k
AEs

Clustered 0.07142 0.4207 0.35714 hu, ie, pl, pt 4 2014 Dabigatran 5
Clustered 0.07257 0.4274 0.375 at, be, de, dk,

es, fi, fr, gr, ie,
it, nl, no

12 2017 Dabigatran 5

Clustered 0.0664 0.3911 0.45 dk, es, fi, fr,
gb, it, nl, se

8 2015 Dabigatran 10

Dispersed 0.09587 0.5647 -0.55556 be, fr, it, pt 4 2016 Dabigatran 10
Clustered 0.0664 0.3911 0.45 de, dk, es, fi,

fr, gb, it, se
8 2017 Dabigatran 10

Fig. 4.4 Clustered 0.03818 0.4311 0.43452 at, be, ch, de,
gb, gr, se

7 2014 Rivaroxaban 5

Fig. 4.5 Dispersed 0.02559 0.2889 -0.58333 at, dk, fi, gb,
ie, no, si

7 2016 Rivaroxaban 5

Dispersed 0.08266 0.9332 -0.46154 at, dk, fi, gr,
ie, si

6 2015 Rivaroxaban 10

Fig. 4.6 Clustered 0.00176 0.0199 0.60417 de, dk, es 3 2016 Rivaroxaban 10
Clustered 0.01181 0.2007 0.75 at, de, es 3 2016 Apixaban 10

4.5 Results

For our experimental evaluation we collected data from the FAERS database as described

in Section 4.4.1, mined frequent adverse effect sets for each European country for each each

year as described in Section 4.4.2, clustered the resulting sets of frequent adverse effects as

described in Section 4.4.4 using the similarity measure described in Section 4.4.3, and tested

for significant spatial auto-correlation of the resulting adverse effect clusters as described in

Section 4.4.5. We repeated this process for for Adverse Events in the FAERS database for

three anticoagulant medications - Apixaban, Rivaroxaban and Dabigatran grouped by four

years (2014-2017) and using values for k ∈ {5, 10}. Our null hypothesis states that there are

no spatial clusters and AEs appear at random. The results of our experimental evaluation

for selected years, drugs, and clusters can be found in Table 4.6. This table shows only and
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Figure 4.4: Results for Drug Rivaroxaban, k = 5, Year 2014. Distance matrix and hier-
archical clustering (left). Adverse effect cloud weighted by frequency across the cluster of
countries {at, be, ch, de, gb, gr, se} (right). Color of the text is an artifact of the python
library used to generate word cloud.

all clusters having P-values less than 0.1 before Bonferroni correction [105]. Thus, for any

combination of drug, parameter k, year, and country not shown in Table 4.6 the spatial

pattern of the cluster including this country is not significantly clustered or dispersed. For

three clusters using Drug Rivaroxaban we provide detailed results in Figures 4.4-4.6.

Qualitative Analysis

Figure 4.4 shows a cluster of countries having similar adverse events that is spatially auto-

correlated in Year 2014 for k = 5, including Austria, Belgium, Switzerland, Germany,

England, Greece and Sweden. The left of Figure 4.4 provides the distance matrix between

all countries and indicates how the hierarchical clustering aggregated countries from Greece

(Column/Line 5) to Great Britain (Column/Line 11). We also see (considering the shading

of the submatrix at Column/Line 4-6) that countries Greece, Austria, and Switzerland

have very similar adverse events. The cluster containing Countries Belgium, Great Britain,
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Figure 4.5: Results for Drug Rivaroxaban, k = 5, Year 2016. Distance matrix and hier-
archical clustering (left). Adverse effect cloud weighted by frequency across the cluster of
countries {at, dk, fi, gb, ie, no, si} (right). Color of the text is an artifact of the python
library used to generate word cloud.

Sweden, and Germany was merged into this cluster to the high complete-link similarity,

meaning that there no pairs of countries in this cluster having low similarity (we reiterate

that we used complete-link clustering, see Section 4.4.4). We also observe a dense cluster

of very similar adverse events between countries France, Norway, Hungary, and Italy, which

was not included in Table 4.6 due to insignificant spatial auto-correlation. The right of

Figure 4.4 shows a word cloud of all adverse effects among adverse events in this cluster.

We see that a main adverse effect is “Drug Ineffective”which is less frequent in other clusters

(see Figures 4.5 and 4.6).

The left of Figure 4.5 shows the distance matrix two years later for the same drug

(Rivaroxaban) and parameter k (5). Interestingly, we observe very different adverse event

clusters. Austria now clusters with Turkey, France, Iceland, and Finland (a cluster which

does not have significant spatial auto-correlation) and Germany clusters with Denmark and

Spain. The only cluster having significant auto-correlation in this case includes countries
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Figure 4.6: Results for Drug Rivaroxaban, k = 10, Year 2014. Distance matrix and hier-
archical clustering (left). Adverse effect cloud weighted by frequency across the cluster of
countries {de, dk, es} (right). Color of the text is an artifact of the python library used to
generate word cloud.

Austria, Denmark, Finnland, Great Britain, Ireland, Norway, and Slovenia and exhibits

negative spatial auto-correlation, including countries from Britain, Northern Europe and

Southern Europe. Figure 4.5 shows the the most frequently reported adverse events in this

cluster, having only the adverse effect “Cerebral haemorrhage” which is a common adverse

effect in all clusters, as a very common adverse effect having a broad variety of adverse

effects with low frequency.
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The case studied in Figure 4.6 is similar to the case of Figure 4.4 except for considering

the k = 10 most frequent sets of adverse effects rather than having k = 5. Due to having

different representations of countries, the similarity matrix has changed as well. The only

cluster having significant spatial auto-correlation in this case includes countries Germany,

Denmark, and Spain. And interesting observation made to the right of Figure 4.6 is that

for this small cluster of three countries, the reported adverse effects are much more severy,

including “Acute kidney injury” and “Cerebrovascular accident” (commonly referred to as

a “stroke”) as the most common adverse effect.

Summarizing our observation, we observe interesting clusters in terms of adverse effects,

including clusters of countries having mainly mild adverse effect (such as “drug ineffective”)

and clusters of countries have severe adverse affects (such as “Acute kidney injury”). How-

ever, it is difficult to visually identify any spatial or temporal patterns, leading us to our

quantitative analysis.

Quantitative Analysis

First, we observe seven settings which exhibit a significant (at a level of significance of 0.1)

positive auto-correlation and three settings having significant negative auto-correlation.

But accounting for the large number of hypothesis carried out by our experiments (for each

k ∈ {5, 10}, for each of the three drugs, for each of the four years, and for each resulting

cluster), only one of these clusters remains significant after Bonferroni correction. For

example, for the cluster shown in Figure 4.4, assuming a random pattern, we would expect

with a probability of at least 43.31% to find a p-value this low by coincidence in at least

one of our hypothesis tests. We conclude that, after Bonferroni correction, most clusters do

not allow us to confidently reject the null hypothesis that adverse effects appear without a

spatial pattern. The one case that remains significant after Bonferroni correction is shown

in Figure 4.6 including only the three countries Germany, Denmark, and Spain. Intuitively,

this may not sound like a strong spatial cluster. The reason that Morran’s I test statistic

reports this cluster as spatial-autocorrelated is that in this case, most adjacent countries
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share the same values (value 1 for being part of the cluster and 0 for not being part of the

cluster). Since Spain is located in a dead-end of Europe having only two adjacent countries

(France and Portugal) out of which only one country was considered (Portugal was excluded

for the case of k = 10 due to insufficient data, see Table 4.3). Thus, the inclusion of Spain

only yields one “discordant” pair of spatial neighbors, while Germany and Denmark are

adjacent. We conclude that this cluster is an artifact of having for countries for the k = 10

case rather than an interesting spatial cluster.

We conclude that after Bonferroni correction to account for the multiple hypothesis

testing problem [106], none of the clusters of countries having similar adverse events exhibit

a significant and interesting spatial auto-correlation.

4.6 Conclusion

We proposed a first approach to investigate the spatial auto-correlation of adverse events

of drugs. We first applied an unsupervised clustering approach to group countries having

similar adverse events. For this purpose, we employed a agglomerative hierarchical clus-

tering approach using a distance measure based on Gestalt Pattern Matching to asses the

similarity of the most frequent sets of adverse effects mined from each country. For each

resulting cluster of countries having similar adverse events, we used Moran’s I statistic to

test for spatial auto-correlation between countries in the same cluster. While some of the

resulting clusters initially showed significant p-values, we had to account for multiple hy-

pothesis testing. After Bonferroni correction to account for the expected number of false

positives resulting from all our tested hypothesis, none of the resulting clusters remained

significant and interesting using the adjusted p-values.

We conclude that our proposed approach was not able to significant spatial auto-

correlation among adverse events of drugs. However, there are many directions of future

work to refine this first approach. A first direction is to consider a different representation

of the adverse events of each country. In this work, we chose to mine the most frequent

sets of adverse effects of the country. A drawback of this approach is that it is not able
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to directly understand the similarity between adverse effects, such as, for example, descrip-

tions of the same adverse effect in different languages. To allow an algorithm to learn and

understand such similarity, a possible direction is to use a topic modeling approach, for

example using Latent Dirichlet Allocation [23], to understand latent topics among adverse

effects. A second direction is to use a different distance measure between representations of

the adverse events of countries. While we employed a text-similarity measure using Gestalt

Pattern Matching, different measures can be employed to better assess which countries are

similar. Third, a specialised clustering algorithm may be required. In this work, we em-

ployed a complete-link hierarchical agglomerative clustering approach. But using different

representations of the adverse events of countries and using different distance metrics, it

may be possible to develop clustering algorithms better able to leverage the semantic sim-

ilarity of different adverse effects. Fourth, a new approach to consider the time of adverse

events may be useful to better understand the adverse effects of countries. In our case, we

grouped adverse effects by year without looking at similarity between years. But there may

be cases where a version of a drug that exhibits certain adverse effects may be released in

one country first, and another country later. By considering temporal lag, such patterns

could be discerned. Fifth, and finally, a local measure of spatial auto-correlation such as

Anselin’s Local Indicator of Spatial Association [107] may be used.

We hope our first approach at mining publicly available adverse event databases, such

as the FAERS database, to improve our understanding of the spatio-temporal change of the

adverse effects of a drug.
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Chapter 5: Clustering of Adverse Events of Post-Market

Approved Drugs using Latent Dirichlet Allocation

Abstract

Adverse side effects of a drug may vary over space and time due to different populations,

environments, and drug quality. Discovering all side effects during the development process

is impossible. Once a drug is approved, observed adverse effects are reported by doctors

and patients and made available in the Adverse Event Reporting System provided by the

U.S. Food and Drug Administration . Mining such records of reported adverse effects, this

study proposes a spatial clustering approach to identify regions that exhibit similar adverse

effects. We apply a topic modeling approach on textual representations of reported adverse

effects using Latent Dirichlet Allocation. By describing a spatial region as a mixture of the

resulting latent topics, we find clusters of regions that exhibit similar (topics of) adverse

events for the same drug using Hierarchical Agglomerative Clustering. We investigate the

resulting clusters for spatial autocorrelation to test the hypothesis that certain (topics of)

adverse effects may occur only in certain spatial regions using Moran’s I measure of spatial

autocorrelation.

Our experimental evaluation exemplary applies our proposed framework to a number

of blood-thinning drugs, showing that some drugs exhibit more coherent textual topics

among their reported adverse effects than other drugs, but showing no significant spatial

autocorrelation of these topics. Our approach can be applied to other drugs or vaccines to

study if spatially localized adverse effects may justify further investigation.
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5.1 Introduction

Public health surveillance is the base of effective public health practice [89]. Pharmacovigi-

lance is a branch of public health surveillance and is the detection, assessment, understand-

ing, and prevention of adverse effects [8, 9, 48].

Adverse Events (AEs) are any undesirable experiences associated with the use of a med-

ical product. Recent analysis found that it took a median of 4.2 years after a drug’s initial

approval for major safety concerns to be discovered [2]. Serious side effects could be life-

threatening, which can lead to death. While less severe AEs such as rash, nausea, and

fatigue might not be dangerous, however, they can lead to avoidance in taking the drug

as prescribed, which can lead to a severe consequence [3]. The United States Food and

Drug Administration (FDA) uses numerous tools including literature review and surveil-

lance databases to spot potential safety concerns. However, there is no current focus on

spatiotemporal aspects of adverse events and their co-occurrence in space and time [108].

To monitor and track Adverse Events, the FDA has developed an Adverse Event self-

reporting tool called MedWatch [109]. Patients, practitioners, and drug manufacturers can

all report adverse events to FDA Adverse Event Reporting System (FAERS) database via

MedWatch. It is not limited to only allergic reactions but also allows to report issues

such as product use errors, product quality problems, and therapeutic failures can all be

reported via MedWatch. This information is available to everyone including researchers,

patients and health practitioners [7]. AEs in the FAERS database are coded using terms in

the Medical Dictionary for Regulatory Activities (MedDRA) terminology to standardized

medical terminology [110]. Standardizing AE keywords helps facilitate the sharing of infor-

mation by regulatory authorities, pharmaceutical companies, clinical research organizations

and health care professionals and allows for better global protection of public health [86].

Reporting systems such as FAERS are critical tools for monitoring the safety, efficacy, and

quality standards of approved pharmaceutical drugs. FDA uses FAERS to study AEs for

postmarket surveillance of approved drugs. when investigating safety concerns [7].
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We propose an approach to find semantic clusters among adverse effects for a specific

drug using topic modeling. We explore if such semantic clusters exhibit significant spatial

autocorrelation indicating a clustering in geospace that may justify further investigation to

understand causality. For this purpose, we first survey existing work in Section 5.2 and

define the problem of spatio-temporal clustering of adverse events in Section 5.3. Then, we

propose our approach for clustering regions having similar adverse event sets in Section 5.4.

We apply our approach to three common anticoagulant drugs and shared our results in 5.5

and conclude in Section 5.6.

5.2 Related Work

This section surveys related work in pharmacovigilance and related work of using latent

topics modeling of text documents.

Pharmacovigilance

The field of pharmacovigilance aims at understanding the occurrence of adverse effects of

drugs [8, 9]. Beyond understanding the adverse effects of single drugs, Zitnik, Agrawal,

and Leskovec have studied the problem of modeling polypharmacy adverse effects, that is,

adverse effects resulting from the interaction of multiple drugs. These important existing

works provide solutions to finding significant links between specific drugs and specific ad-

verse effects. However, these studies do not give any consideration to the spatial locations of

these adverse effects. Could some patterns between drugs and adverse effects be explained

by the spatial distribution of reported adverse effect records? Is it possible that some links

between drugs and adverse effects are only observed in a specific region or during a cer-

tain time? Existing research leaves such questions largely unanswered. Fortunately, large

databases of adverse events, such as the FDA FAERS database are becoming increasingly

available and enrich adverse events with both spatial and temporal information.

From complementary perspective, existing work has shown that adverse effects of a

single drug or multiple combination of drugs may vary over space and time due to racial
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and ethnic disparities [10, 11, 12], environment [13, 14], and drug quality [15]. While these

studies describe specific cases and specific drugs, there is no data-driven approach to identify

such variations automatically.

Our proposed approach augments data-driven pharmacovigilance with spatial informa-

tion and provides a framework of finding spatial clusters of regions that exhibit semantically

similar adverse effects during a specified period.

Topic Modeling

Topic modeling is an unsupervised learning technique to discover underlying themes of a

collection of documents. Latent Dirichlet Allocation (LDA) is one of the more common

topic modeling techniques in the literature [23]. LDA assumes an underlying generative

probabilistic model that produces the words of a text document given a mixture of k latent

topics. Each topic is characterized by a distribution of words. While the traditional appli-

cation for LDA is modeling of topics among news articles and microblogs [24], it has been

used to model the latent topics of points of interest such as restaurants [25]. In the context

of pharmacovigilance, LDA has been to find potentially unsafe dietary supplements [26],

but without the consideration of the spatial distribution of latent topics among adverse

effects. We leverage LDA to find underlying topics of adverse effects reported in a spatial

region as a set of latent topics. We then employ this latent feature representation to find

spatial clusters of regions that exhibit similar latent adverse effect topics.

Adverse Effects of Blood Thining Drugs

In our experimental evaluation, we chose to investigate spatio-temporal clusters of three

blood thinning drugs, namely Dabigatran, Rivaroxaban and Apixaban, due to the wide

availability of data on these drugs and their adverse events. Previous studies have shown

that within the United States, these three drugs appear to have similar effectiveness [52],

although Apixaban may be associated with a lower bleeding risk and Rivaroxaban may be
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Table 5.1: Table of Notations

Notation Description
A The domain of all adverse effects
N = |A| The number of all advese effects
A ⊆ A A set of adverse effects
S The domain of all spatial regions
T The domain of all discrete time intervals
D The domain of pharmaceutical drugs
DB A database of Adverse Events
M = |DB| The number of adverse events in DB
(t, s, A, d) An adverse event in DB.
DBt Adverse events reported during time t
DBs,t Adverse events reported in region s dur-

ing time t
K Number of latent topics used by LDA
α, β Prior Dirichlet distribution of topics and

adverse events within a topic
θ Topic distribution of adverse events
ϕi Adverse Effect distribution of topic 1 ≤

i ≤ K
Z A topic 1 ≤ Z ≤ K chosen from θ

associated with an elevated bleeding risk. A similar study in Norway reached similar find-

ings, showing that Dabigatran and Apixaban were both associated with significantly lower

risk of major bleeding compared with Rivaroxaban [53]. While these studies investigated

the differences of adverse effects across different drugs, these works did not consider spatial

or temporal properties of the data. Combined with our knowledge that adverse affects vary

across populations and space [10, 11, 12], we investigate if we can identify spatial clusters of

regions that exhibit similar adverse effects. We hope that our proposed techniques will be

found useful to find links, not only between drugs, but also between regions and drugs to en-

able spatio-temporal pharmavigilance to find significant links between regions and reported

adverse effects.
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5.3 Problem Definition

This section formally defines the problem of spatio-temporal clustering of adverse events.

A summary of all notations used in this work is found in Table 5.1. First, we provide a

definition of adverse effects and events. Intuitively, an adverse effect is a single undesireable

effect (such as “bleeding” or “pain”). An adverse event is a report of one or more adverse

effects associated with a drug, a time, and a location. Formally:

Definition 6 (Adverse Effect). An Adverse Effect is a textual representation of an unde-

sirable experiences associated with the use of a medical product. We let A denote the set of

all adverse effects and define N := |A| as the number of all adverse effects.

Data such as collected in the FAERS database is a collection of records each associated

with a set of adverse effects, a specific pharmaceutical drug, a location, and time. We call

such as record an Adverse Event (AE), formally defined as follows:

Definition 7 (Adverse Event Database). Let A denote a set of adverse effects, let S denote

a set of spatial regions, let T denote a set of time intervals (such as years), and let D denote

a set of drugs. An Adverse Event Report Database DB is a collection of adverse event reports

(t, s, A, d), where t ∈ T is a point in time, s ∈ S is a spatial region, A ⊆ A is a set of adverse

effects, and d ∈ D is the drug for which the adverse effects are reported. We let M := |DB|

denote the number of adverse events and emphasize that a single adverse event may report

multiple adverse effects.

As an example, Table 5.2 shows exemplary adverse events from the FAERS database.

The first line in Table 5.2 implies that ”Abdominal pain, Abdominal pain upper, Con-

stipation, Diarrhoea, Headache, Heart rate increased, Nausea, Pain in extremity, Vertigo

and Vomiting” are adverse effects that occurred on on 9/24/2014 in Germany for drug

Rivaroxaban.

Our goal is to find clusters of locations that, at a given time, exhibit similar adverse

events. Towards this goal, we group adverse events by region and time.
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Table 5.2: Sample records of Adverse Event Report Database. Each Line corresponds to
an Adverse Event.

Adverse
Event ID

Set of Adverse Effects Location Event
Time

Drug

109947323 Abdominal pain, Abdominal
pain upper, Constipation, Di-
arrhoea, Headache, Heart rate
increased, Nausea, Pain in ex-
tremity, Vertigo, Vomiting

Germany
(DE)

9/24/2014 Rivaroxaban

106823542 Duodenal ulcer haemorrhage,
Gastric ulcer haemorrhage,
Shock haemorrhagic

Netherlands
(NL)

11/2/2014 Rivaroxaban

109449521 Death United
Kingdom
(GB)

2/12/2015 Rivaroxaban

120813061 Asthenia, Haemorrhage Croatia
(HR)

1/16/2016 Rivaroxaban

145539611 Purpura, Skin exfoliation, Skin
lesion

United
Kingdom
(GB)

12/28/2017 Rivaroxaban

Definition 8 (Spatio-Temporal Adverse Events). Let DB be an adverse event report database,

let s′ ∈ S be a spatial region, and let t′ ∈ T be a time interval. We define

DBs′,t′ := {(t, s, A, d) ∈ DB|t = t′ ∧ s = s′}

as the set of all adverse events reported at time t′ at location s′. For two spatial regions s1

and s2, we let

dist(DBs1,t,DBs2,t) 7→ [0, 1]

denote an abstract distance function between two sets of adverse events.

We propose a concrete implementation of dist() in Section 4.4.3 based upon latent topic

similarity of the adverse effects in each spatial region. Given a distance function to assess

57



the adverse event similarity of two regions at the same time and for a given drug, we define

a spatial adverse event clustering as follows:

Definition 9 (Spatial Adverse Event Clustering). Let DB be an adverse event report

database, let dist() be a distance function to measure dissimilarity among sets of adverse

events. Further, let

DBt := {x ∈ DB|x.t = t}

denote the set of all adverse events reported at time t. A spatial clustering C(DBt) =

{C1, ..., CK} is a partition of regions S such that ∀i : Ci ⊆ S and ∀i 6= j : Ci ∩ Cj = ∅. As

element C ∈ C of a spatial adverse event clustering is called a spatial adverse event cluster.

Problem Statement 3 (Spatial Adverse Event Clustering). Our first goal is to find a

good spatial adverse event clustering C(DBt), that is, a clustering such that the distance

dist(DBs1,t ∈ Ci,DBs2,t ∈ Ci) of regions in the same cluster is minimize, while the distance

dist(DBs1,t ∈ Ci,DBs2,t ∈ Cj) of regions across clusters Ci 6= Cj is maximized.

Once a good spatial adverse event clustering is found, our second goal is to explore

the spatial autocorrelation of these clusters to answer the question if some regions exhibit

similar adverse effects at certain times, or if adverse effects are independent of space and

time.

Problem Statement 4 (Spatial autocorrelation of Clusters). Given a spatial adverse event

clustering C(DBt), our second goal is to explore the spatial autocorrelation among regions

in the same cluster Ci ∈ C(DBt).

The clustering step is needed to map spatial regions to a numeric values of their (one

hot encoded) cluster membership. These values can then be investigated for spatial auto-

correlation.

58



5.4 Methodology

This section describes our approach to find spatio-temporal clusters of adverse events and to

find those having significant spatial autocorrelation. And overview of this section is found

in Figure 5.1. First, we obtained the data from the FAERS Database using the openFDA

API [75, 74] as described in Section 4.4.1. To concisely represent the adverse events reported

in a region, Section 5.4.2 presents our Latent Dirichlet Allocation (LDA) based approach

to extract latent topics from adverse events. Having each region (at a specified time) repre-

sented by a set of latent features corresponding to the strength of respective topics among

the reported adverse effects, we define a distance function to measure dissimilarity between

the adverse events of regions in Section 4.4.3 and leverage this distance function to cluster

the adverse events among regions in Section 4.4.4. We test each of the resulting clusters for

significant spatial autocorrelation using Moran’s I test statistic to measure spatial autocor-

relation as described in Section 4.4.5. All of our algorithms used for our data analysis have

been implemented in Python 3.7 and are published on GitHub as a Jupyter Notebook for

reproducibility at https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Clusters-LDA.

5.4.1 Data Collection

As of 12/01/2020, there are 19 million adverse event reports for countless drug combina-

tions in the FAERS database. We implemented a data crawler in Python to download these

reports from the FAERS public-facing database published quarterly as a zip file available

at fda.gov [74] or by invoking the OpenFDA API [75]. FAERS data comes in multiple files

with a primary key linking all files. The files include a demographic and administrative in-

formation file; drug information of the case reported; reaction information from the reported

case along with patient outcome information and the source of the report. Unfortunately,

spatial information is aggregated to the country level for the public-facing FAERS database

due to HIPAA regulations. Due to this aggregation, we focus on clustering of adverse effects

using European countries having at least 30 adverse events per drug as shown in Table 5.3

for the three drugs used in our experimental evaluation.
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Figure 5.1: Road map for spatiotemporal clustering of topics generated from Latent Dirich-
let Allocation using Adverse Events Report Submission to FDA FAERS Database.

We note that our solutions can also be applied to other study areas, such as the United

States on state or county level for policy makers having such data and for the general pub-

lic when such data becomes publicly available. Once the data was collected, we joined all

datasets by their primary key to obtain one large data table, including for each case report

a spatial attribute and a timestamp of the observed adverse events. We group this dataset

by year between 2014 to 2017. Data varied for different countries depending on the pharma-

ceutical drug availability, prescribers’ preferences, pharmaceuticals marketing, supply chain,

etc. In the exploratory data selection phase, we were limited to select pharmaceutical drugs

which were used consistently within this study period and used broadly across Europe.

Rivaroxaban was selected as our pharmaceutical study drug due to a wide distribution of

adverse events across Europe along with it being one of top ten most reported pharmaceu-

tical drug in the FAERS Database. Since Rivaroxaban is an anticoagulant drug, we used

other similar anticoagulant drugs such as Dabigatran and Apixaban as our other drugs in our
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Table 5.3: Study areas for the drugs used in this study.

Countries in the study area # of Coun-
tries

Drug Name

AT, BE, DE, EE, ES, FR, GB, GR, IE, IT, NL, NO, PL,
PT, SE, SI

16 Dabigatran

AT, DE, ES, FR, GB, GR, IT, NO, SE 9 Apixaban
AT, BE, BG, BY, CH, CZ, DE, DK, EE, ES, FL, FR, GB,
GR, HR, HU, IE, IT, NL, NO, PL, PT, SE, SI, SK, TR

26 Rivaroxaban

study. There is ample about of literature comparing these three drugs [53, 52]. Rivaroxban

and Dabigatran received approval to market from European Medicines Agency (EMA)in

2008 [92, 93] and Apixaban in 2011 [94]. It takes a median of 4.2 years after a drug’s initial

approval for major safety concerns to be discovered [2]. Report submission increases few

years after the initial approval. For reference, Figure 5.2 shows the temporal distribution

of adverse events between 2008 and 2018 to justify our choice of using 2013 to 2017 as our

study period. Many reported adverse events in the FAERS data report the concurrent usage

of multiple drugs (phramacovigilance). For our study, we did not consider any such adverse

events to avoid confusion caused by adverse effects of other drugs. We note that our work can

be easily extended to compare concurrent drug usage to explore the effects of polypharmacy

AEs [48]. Once data is collected for a drug, we group adverse events by year and country to

obtain spatio-temporal adverse events DBs,t. A Python script to obtain data through the

OpenFDA API [75] and to apply the preprocessing steps as described in this section can be

found at https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Clusters-LDA.

Given spatio-temporal adverse events, we next propose an latent topic modeling ap-

proach to understand similarity among different adverse effects among adverse events in

Section 5.4.2. We then use the latent topics among adverse events to asses the similarity

of adverse events between two regions as described in Section 4.4.3 which is used to cluster

regions as described in Section 4.4.4. Finally, we investigate the spatial autocorrelation of

the resulting clusters as described in Section 4.4.5.
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(a) Rivaroxaban (b) Dabigatran (c) Apixaban

Figure 5.2: Adverse Events Report Submission to the FDA FAERS Database per drug per
year

5.4.2 Adverse Event Topic Mining using Latent Dirichlet Allocation

A challenge of mining adverse events is the potentially large number of different adverse

effects. The FAERS Adverse Event Databases use MedDRA codes [86] and terminology

to standardize adverse effects such as using “nausea” instead of “feeling queasy”. Yet, the

number of possible adverse effects is too large and the resulting feature space of using bag-

of-words semantics to represent adverse effects is too high dimensional. To address this

issue, we acknowledge that adverse effects are symptoms of unknown (latent) underlying

causes. While one way of identifying causes is involving a medical expert, we propose a data-

driven approach to identify underlying topics among adverse events using topic modeling

that we interpret as causes. For that, we employ Latent Dirichlet Allocation (LDA) [23]

– a generative probabilistic model which assumes that each adverse event is a mixture of

underlying (latent) topics, and each topic has a (latent) distribution of more and less likely

adverse effects.

A graphical representation of our LDA model using plate notation is shown in Fig. 5.3.

A vector α of length K is used to parameterize the a priori distribution of topics. The

parameter K corresponds to the number of latent topics used to model adverse events.
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Figure 5.3: LDA Topic Modeling of Events. For each adverse event a topic distribution θ is
estimated and for each topic i, an adverse effect distribution ϕi is estimated. Given a topic
Z generate from θ, observable adverse effects (AEs) are generated from ϕZ .

When an adverse event is created, we assume that its topics are chosen following a Dirichlet

distribution having parameter α which we use to obtain a topic distribution θ for each of

ourM = adverse events. Thus, the large plate in Fig. 5.3 corresponds to a set ofM adverse

events, each having a topic distribution θ drawn randomly (and Dirichlet distributed) from

α.

For each topic, the prior parameter β is used to generate the distribution of words

within a topic. Thus, we assume that a topic generates adverse effects following a Dirichlet

distribution having a vector β of length |A| as parameter, where A is the set of observed

adverse effects (c.f. Definition 6). For each of our K topics, a resulting vector ϕi, 1 ≤ i ≤ K

stores the adverse effect distribution of topic K.

To generate the adverse effects of an adverse event, a topic is chosen randomly from

the topic distribution θ and, given this topic, a number of Ni adverse effects are generated

randomly from the adverse effect distribution ϕ – where Ni is assumed to be independent

from the chosen topic and uniformly distributed. In Fig. 5.3, the node AE denotes the
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(observable) set of all N =
∑

iNi adverse effects, and Z is a function that maps each

word to the topic that generated it. The reason for choosing a Dirichlet distribution rather

than a more straightforward uniform or multinomial distribution for the topic and word

priors is inspired by research showing that the distribution of words in text can be better

approximated using a Dirichlet distribution [111].

To infer the topics of our adverse event database DB, we employ a generative process.

Given the observed adverse effects, LDA optimizes the latent variables to maximize the

likelihood of matching the observed adverse events and corresponding adverse effects. This

generative process works as follows. Adverse events are represented as random mixtures

over latent topics, where each topic is characterized by a distribution over all N adverse

effects. LDA assumes the following generative process for database DB consisting of M

adverse events, each having a number of Ni adverse effects.

• For each adverse event choose a topic distribution θm ∼ Dir(α), 1 ≤ m ≤ M , where

Dir(α) is a Dirichlet distribution with prior α. In our experiments, we initially assume

each topic to have uniform prior probabilities, having αi = αj for 1 ≤ i, j ≤ K. This

apriori distribution is adapted using Bayesian inference [23] to maximize the likelihood

of generating the observed keywords.

• For each topic, choose an adverse effect distribution ϕi ∼ Dir(β), where 1 ≤ i ≤ K.

For our experiments, we assume each adverse effect to have the same prior probability

N−1.

• For each adverse effect ae in adverse event j:

1. Choose a topic z ∼Multinomial(θj) from the topic distribution of j, and

2. Choose a word w ∼Multinomial(ϕz) from the adverse effect ϕz of topic z.

Here, Multinomial(x) corresponds to a multinomial distribution drawing from a

stochastic vector x.
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To describe each adverse event in a latent topic space, we use the adverse event specific

topic distributions θm which describe each adverse event m as a set of K latent features

corresponding to the weight of the respective latent topic. While this topic modeling does

not provide us with any semantic of the underlying topics, we know that adverse events

having similar latent features also exhibit similar adverse effects. Based on the similarity

of latent topics of individual adverse events we define a similarity measure to assess the

similarity between the adverse events within a region in Section 4.4.3. Given this measure of

adverse event similarity between regions we propose a hierarchical agglomerative clustering

approach to find regions that exhibit similar adverse events in Section 4.4.4 and test these

clusters for spatial autocorrelation using Moran’s I in Section 4.4.5.

5.4.3 Similarity between Sets of Adverse Events

Definition 9 requires a distance function dist(DBs1,t,DBs2,t) between sets of adverse events

DBs1,t and DBs2,t corresponding to two regions s1 and s2 at time t. We describe each such

set as the mean of latent features within the set, and measure the Euclidean distance in the

latent feature space, formally:

Definition 10 (Spatio-Temporal Adverse Event Distance). Let DB be an adverse event

data, let DBs1,t,DBs2,t ⊆ DB, let K be a positive integer and let θ(ae) denote the latent topic

distribution of an adverse event ae ∈ DB using the LDA model described in Section 5.4.2,

then:

dist(DBs1,t,DBs2,t) :=
∥∥∥∥∥
∑
DBs1,t

θ(ae)
|DBs1,t|

−
∑
DBs2,t

θ(ae)
|DBs2,t|

∥∥∥∥∥
2
,

where ‖.‖2 is the Euclidean norm.

This distance function in Equation 10 allows us to identify clusters of spatial regions

s ∈ S that exhibit similar adverse event topics as described in the following.
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Table 5.4: Top-10 most probably keywords for K=5 for Rivaroxaban.

Topic Keywords (Probabilities in %)
1 (1.6)"cerebrovascular-accident", (1.3)"ischaemic-

stroke", (0.9)"cerebral-haemorrhage", (0.8)"apha-
sia", (0.8)"muscular-weakness", (0.7)"urinary-
tract-infection", (0.7)"death", (0.7)"asthenia",
(0.6)"haematuria", (0.6)"subdural-haematoma"

2 (2.7)"drug-ineffective", (1.9)"deep-vein-
thrombosis", (1.6)"dizziness", (1.5)"dyspnoea",
(1.3)"cerebral-haemorrhage", (1.3)"pulmonary-
embolism", (1.2)"headache", (1.2)"cerebral-
infarction", (1.2)"anaemia", (1.2)"gastrointestinal-
haemorrhage"

3 (1.6)"dizziness", (1.6)"cerebral-haemorrhage",
(1.5)"headache", (1.5)"fall", (1.5)"gastrointestinal-
haemorrhage", (1.4)"dyspnoea",
(1.2)"cerebrovascular-accident", (1.1)"deep-
vein-thrombosis", (1.1)"pulmonary-embolism",
(1.0)"upper-gastrointestinal-haemorrhage"

4 (4.7)"drug-ineffective", (3.6)"anaemia",
(3.5)"ischaemic-stroke", (2.3)"deep-vein-
thrombosis", (2.1)"pulmonary-embolism",
(1.7)"cerebral-infarction", (1.5)"cerebral-
haemorrhage", (1.2)"asthenia",(1.2)"fall", (1.2)"dys-
pnoea"

5 (0.8)"drug-ineffective-for-unapproved-
indication", (0.7)"deep-vein-thrombosis",
(0.5)"refractory-cytopenia-with-unilineage-
dysplasia", (0.5)"arterial-rupture", (0.5)"gamma-
glutamyltransferase-abnormal", (0.5)"pulmonary-
haemorrhage", (0.5)"cholestatic-liver-
injury", (0.3)"death")"budd-chiari-syndrome",
(0.3)"cerebral-venous-thrombosis"

5.4.4 Clustering Regions by Adverse Events

To find clusters among regions having similar topics of adverse events, we employ a hier-

archical agglomerative clustering approach [99]. The advantage of such approach is that
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Table 5.5: Top-10 most probably keywords for K=5 for Dabigatran.

Topic Keywords (Probabilities in %)
1 (8.1)"ischaemic-stroke", (5.0)"cerebrovascular-accident",

(3.8)"cerebral-infarction", (2.5)"hemiparesis", (2.0)"fall",
(1.9)"haemorrhage", (1.4)"cerebral-haemorrhage", (1.2)"apha-
sia", (1.2)"dysarthria"

2 (4.5)"ischaemic-stroke", (3.7)"gastrointestinal-haemorrhage",
(2.1)"fall", (2.1)"death", (2.1)"haemorrhage", (1.6)"renal-
failure", (1.6)"atrial-fibrillation", (1.6)"atrial-thrombosis",
(1.3)"cerebrovascular-accident", (1.1)"haemoglobin-decreased"

3 (2.4)"gastroenteritis", (1.7)"cerebrovascular-accident", (1.7)"syn-
cope", (1.7)"tubulointerstitial-nephritis", (0.9)"injury",
(0.9)"haematuria", (0.9)"cholecystitis", (0.9)"renal-failure",
(0.9)"subarachnoid-haemorrhage", (0.9)"acute-kidney-injury"

4 (2.6)"gastrointestinal-haemorrhage", (2.6)"rectal-haemorrhage",
(2.6)"cerebral-haemorrhage", (1.9)"anaemia", (1.6)"melaena",
(1.6)"cardiac-failure", (1.6)"weight-decreased", (1.6)"fall",
(1.3)"dyspnoea", (1.3)"abdominal-pain-upper"

5 (5.5)"drug-ineffective", (3.8)"ischaemic-stroke", (2.5)"anaemia",
(2.1)"cerebrovascular-accident", (2.0)"melaena", (1.7)"cerebral-
haematoma", (1.5)"rectal-haemorrhage", (1.4)"death",
(1.2)"gastrointestinal-haemorrhage", (1.2)"haemorrhage-
intracranial"

we neither have to guess the number of clusters as often needed for partitioning cluster-

ing approaches [100] nor have to define a density threshold as required by density-based

clustering algorithms [101]. To merge clusters, we employ complete linkage, which defines

the distance between two clusters of regions as the maximum pair-wise distance of regions

among the clusters.

We retain all clusters (of all sizes) corresponding to all nodes in the dendrogram exclud-

ing clusters of size one and excluding the root of the dendrogram that contains all regions.

As an example, Figure 5.6 shows the similarity matrix between n = 16 countries in Europe

for drug Dabigatran in Year 2014 using k = 5 latent topics. The corresponding dendrogram

is shown above and to the left of this matrix. We consider each node of the dendrogram
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Table 5.6: Top-10 most probably keywords for K=5 for Apixaban.

Topic Keywords (Probabilities in %)
1 (5.1)"anaemia", (2.2)"asthenia", (2.2)"haema-

turia", (1.7)"off-label-use", (1.7)"head-injury",
(1.7)"transfusion", (1.3)"medication-error",
(1.3)"rectal-haemorrhage", (0.9)"ischaemic-stroke",
(0.9)"surgery"

2 (4.3)"fall", (1.9)"cerebral-haemorrhage",
(1.5)"haematoma", (1.3)"cerebrovascular-accident",
(1.3)"subdural-haematoma", (1.3)"transfu-
sion", (1.2)"anaemia", (1.1)"haemorrhage",
(1.1)"prescribed-underdose", (1.1)"ischaemic-
stroke"

3 (3.1)"fall", (2.1)"cerebral-haemorrhage", (2.1)"off-
label-use", (1.8)"drug-ineffective", (1.6)"rectal-
haemorrhage", (1.3)"pruritus", (1.3)"transfusion",
(1.3)"head-injury", (1.3)"haematuria", (1.1)"death"

4 (2.1)"fall", (2.1)"haematoma", (2.1)"anaemia",
(1.5)"transfusion", (1.2)"haemorrhage",
(1.2)"cerebral-haemorrhage", (1.2)"epistaxis",
(1.2)"melaena", (1.2)"myocardial-infarction",
(1.2)"limb-injury"

5 (1.9)"acute-kidney-injury", (1.8)"fall",
(1.3)"haemorrhage-intracranial", (1.3)"drug-
ineffective", (1.3)"gastrointestinal-haemorrhage",
(1.3)"cerebral-haemorrhage", (0.7)"cognitive-
disorder", (0.7)"depressed-level-of-consciousness",
(0.7)"cardioversion", (0.7)"hemiparesis"

(and countries in the corresponding subtree) as a cluster. This yields a total of n−2 clusters

of size between 2 and n− 1. Next, we investigate if the resulting clusters exhibit significant

spatio autocorrelation.

5.4.5 Measure of Spatial Autocorrelation

Given a cluster of regions that exhibit similar topics of adverse events, we employ Moran’s

I measure of spatial autocorrelation [112]. Moran’s I statistic tests if a variable measured
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on spatial regions exhibits a significant spatial autocorrelation, either positive (clustered)

or negative (dispersed). To measure the spatial autocorrelation of clusters obtained as

described in Section 4.4.4, we encode each individual cluster membership into a binary

variable. Thus, for a cluster C, the cluster membership variable of a region r is set to 1 if

r ∈ C and 0 otherwise. Given such encoding, Moran’s I evaluates if the regions of a cluster

exhibit a spatially clustered, random or dispersed pattern. Moran’s I requires an adjacency

metric on regions for which we use Queen Contiguity, that is, two regions are considered

adjacent if they share boundary. We directly report Moran’s I test statistic whose range is

in [−1,−1], ranging from strongly dispersed (close to -1) to strongly clustered (close to 1).

We also report the p-value of the null-hypothesis that the regions are distributed randomly

without any spatial pattern by transforming Moran’s I values to z-values and employing a

two-tailed z-test [113]. The resulting p-values indicate whether a cluster of regions having

similar topics of averse events are significantly spatially clustered or dispersed. We used

the geopandas library for handling spatial attributes and Pysal library for Moran’s I test of

spatial autocorrelation [80, 103].

5.5 Experimental Evaluations

For our experimental evaluation we collected data from the FAERS database as described in

Section 4.4.1 for three anticoagulant medications - Apixaban, Rivaroxaban and Dabigatran

grouped by four years (2014-2017). To investigate the latent topics found by our topic

modeling approach in Section 5.5.1, we first present a qualitative evaluation of the resulting

topics in Section 5.5.1. Then, Section 5.5.3 presents the results of the clustering approach

described in Sections 4.4.4 and investigates the spatial autocorrelation among this clusters

as described in Section 4.4.5 .

5.5.1 Qualitative Analysis of Latent Topics among Adverse Events

Figure 5.4 shows the topic coherence [114] of the latent topics modeled by our LDA approach

described in Section 5.4.2. We observe a high cluster coherence for drugs Dabigatran and

69



Table 5.7: Statistically significant (p < 0.05) clusters for Rivaroxaban, Dabigatran and
Apixaban for Year 2014-2017 for k ∈ {5, 10}.

Fig Spatial
Pattern

Pvalue Zscore MoranI Countries # of
coun-
tries
in
clus-
ter

Year Drug Name Topic
#

5.5 Clustered 0.041 2.04 0.287 es, fr, it 3 2015 Rivaroxaban 5
Dispersed 0.0321 -2.14 -1 at, fr, se 3 2014 Apixaban 5

5.7 Cluster 0.0003 3.63 1.20 no, se 2 2017 Apixaban 10
Clustered 0.0109 2.54 0.653 es, gb, ie, nl,

pt
5 2014 Dabigatran 5

5.6 Cluster 0.0192 2.34 0.605 es, gb, gr, ie,
nl, pt

6 2014 Dabigatran 5

Clustered 0.0404 2.04 0.402 be, nl 2 2015 Dabigatran 5
Clustered 0.0344 2.11 0.515 ee, gb, ie, it 4 2017 Dabigatran 5
Clustered 0.0001 3.85 0.816 es, pt 2 2014 Dabigatran 5
Clustered 0.0042 2.86 0.682 gb, ie, nl 3 2014 Dabigatran 5
Clustered 0.0001 5.19 1.12 gb, ie 2 2017 Dabigatran 5
Clustered 0.0404 2.04 0.402 be, nl 2 2015 Dabigatran 10
Clustered 0.0048 2.81 0.670 no, se, si 3 2016 Dabigatran 10

Apixaban for less than k = 10 latent topics. For Drug Rivaroxaban, we observe a lower

cluster coherence, indicating a large number of adverse effects (keywords) that cannot be

assigned to any topic. Given these observations, we use k ∈ {5, 10} for our experiments.

For k = 5 latent topics, Tables 5.4-5.6 show the top-10 most probable keywords for each

of the ϕi, 1 ≤ i ≤ 5 word distributions and for each of the three considered drugs.

Of all the drugs in our study, Drug Rivaroxaban (Table 5.4) shows the least clear topics.

The first topic mainly relates to injuries of the brain, as the top-5 most common adverse

effects are: cerebrovascular accident, ischaemic stroke, cerebral haemorrhage, and aphasia.

Topics #2-#4 appear to relate to less severe adverse effects such as ineffective drug, throm-

bosis, and dizziness, but also involve brain-related adverse effects with high probabilities.

Topic #5 is an outlier topic covering many adverse effects with very low weights which

explains the low coherence of this model (see Figure 5.4), Overall, the adverse effects that
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(a) Rivaroxaban (b) Dabigatran (c) Apixaban

Figure 5.4: Coherence Scores vs Number of Topics to determine the number k of latent
topics for LDA.

we see most dominantly, with high probabilities in most topics, refer to ineffective drugs.

For Drug Dabigatran (Table 5.5) the first topic relates to adverse effects of the brain

caused by bleeding or lack of blood supply. The second topic also related to strokes but

also including side effects in other parts of the body. Topics #3 and #4 pertain to adverse

events of the stomach while Topic #5 appears to refer to other side effects, including drug

inefficacy but also death. We also note that strokes appear to be a common adverse effect

of Dabigatran, which appears in most most topics, often with high probability.

For Drug Apixaban (Table 5.6), we observe one topic related to Anaemia (lack of red

blood cells) and multiple topics related to (with different weights) fall and bleeding (haem-

orrhage and haematoma). We observe that “fall” appears to be a common side effect of

Apixaban.

We note that this qualitative study should not be used to assess, in any way, the quality

of drugs. There may be other causal factors such as different patient groups (having different

age and pre-conditions) for different drugs. What we can observe, is that this qualitative

interpretability of the resulting adverse event topics shows that LDA is able to discriminate

topics among adverse events for all drugs. This is a promising result, showing that given a
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Figure 5.5: Clustering for Drug Rivaroxaban, k = 5, Year 2015

sufficiently large adverse event database for a drug, a topic modeling approach can indeed

model latent underlying causes, and that the resulting topic distributions of regions may

indeed be a proper representation that allows to compare the adverse events across countries

in a meaningful way.
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5.5.2 Qualitative Analysis of Adverse Event Clusters

In this section, we answer Problem Statement 3 to evaluate whether we can find discrimina-

tive clusters of adverse events among regions. Figures 5.5-5.7 shows the similarity matrices

between all regions used for the respective drugs (cf. Table 5.3) for k = 5 topics for the

specified years using the distance measure defined in Section 4.4.3. For drug Rivaroxaban,

Figure 5.5 shows one very large cluster of 13 out of 26 regions each having low distance

among each other but having a large distance to the remaining regions. Among these re-

maining regions, we find two well-discriminated clusters of size three and three containing

countries {Sweden, Ireland, Netherlands} and {Denmark, United Kingdom, Germany} re-

spectively. For Drug Dabigatran we observe excellent discrimination between adverse events

of countries in Figure 5.6. We observe three clusters of sizes six, four, and four which ex-

hibit very high intra-cluster similarity and very low cross-cluster similarity. A similar high

quality clustering can be observed in Figure 5.7 for Drug Apixaban which only includes

nine countries in the study region showing two clear clusters of sizes four, and three.

Overall, we observe that many countries indeed exhibit very high adverse event similarity

and our hierarchical clustering algorithm is able to well discriminate groups of highly similar

countries.

5.5.3 Spatial Autocorrelation

Next, we investigate Problem Statement 4 to see if the resulting clusters of regions exhibit

significant spatial autocorrelation. For this purpose, our null hypothesis states that there

is no spatial autocorrelation between countries within the same cluster of adverse events.

that is, adverse events appear randomly without a spatial pattern. An excerpt of results of

our experimental evaluation for selected years, drugs, and, and values of k ∈ {5, 10} clusters

can be found in Table 5.7. For clusters of regions exhibiting similar adverse events (for a

given drug, given year, and given value of k), this table provides the corresponding Moran’s

I measure of spatial autocorrelation and corresponding p-value (probability that I may be

coincidental under the null hypothesis) as described in Section 5.4.5.
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Figure 5.6: Clustering for Drug Dabigatran, k = 5, Year 2014
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Figure 5.7: Clustering for Drug Apixaban, k = 5, Year 2017
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First and foremost, we note that we only show clusters having a p-value of less than 0.05

in Table 5.7, thus omitting a large number of non-interesting clusters. Since we used each

(non-root) node of the cluster dendrogram for each drug, we obtained n−2 clusters per drug,

where n is the number of countries used in our study for each drug. Since we used 26, 16,

and 9 countries for Rivaroxaban, Dabigatran, and Apixaban, respectively (see Table 5.3),

this yields (26−2)+(16−2)+(9−2) = 45 clusters for each of the four Years 2014-2017 and

for each k ∈ {5, 10}, yielding a total of 45 ∗ 4 ∗ 2 = 360 hypothesis tests. Table 5.7 shows

that only 19 (5.3%) of these hypothesis yield a significant spatial autocorrelation. Using

a two-tailed hypothesis test at a level of signifiance (or false positive rate), we expect 5%

of false positives assuming that the null hypothesis holds. Getting 19 out of 360 Bernoulli

trials has a p-value of > 0.43. Thus, we can not reject the null hypothesis that adverse

events appear randomly in space. This negative result is also confirmed using Bonferroni

correction [115] to account for testing 360 hypothesis. After applying Bonferroni correction,

none of the spatial autocorrelations of Table 5.7 remain significant.

We conclude that our experimental evaluation does not confirm spatial autocorrelation

among clusters of countries exhibiting similar adverse events. Yet, we note that Table 5.7

shows more positive than negative cases of spatial autocorrelation, indicating that there

may indeed be a trend. More research is needed to investigate spatial patterns among

adverse events. The authors suspect that the coarse spatial granularity of the data availble

at the FDA FAERS database on country level may hide interesting spatial patterns.

5.6 Conclusion

We proposed a first approach to measure the similarity of reported adverse events between

spatial regions based on the latent topics of adverse events. Based on this similarity, we pro-

posed a clustering approach to group countries having similar adverse events and evaluated

the degree of spatial autocorrelation among regions in the same group. Our experimental

has shown that we can indeed find clusters of countries that exhibit similar adverse events.
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However, we were not able to confirm spatial autocorrelation between these regions. We

note that more research in this field is needed.

One limitation of our approach is the aggregation at country level, which may have

interesting local spatial patterns. Applying our solutions to smaller spatial regions may

find such patterns. We also note that a different measure of spatial proximity may yield

stronger autocorrelation by considering not only topological distance but also including

political and socioeconomic similarities. To summarize, we did show that some countries

exhibit similar topics of adverse events, but an deeper investigation of patterns and their

causality is needed. We hope our approach at mining publicly available adverse event

databases improves our understanding of the spatio-temporal change of the adverse effects

of a drug.
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Chapter 6: Clustering of Adverse Events for Post-Market

Approved Drugs using Frequent Itemset

Abstract

We study the similarity of adverse effects of COVID-19 vaccines across different states

in the United States. We use data of 300,000 COVID-19 vaccine adverse event reports

obtained from the Vaccine Adverse Event Reporting System (VAERS). We extract latent

topics from the reported adverse events using a topic modeling approach based on Latent

Dirichlet allocation (LDA). This approach allows us to represent each U.S state as a low-

dimensional distribution over topics. Using Moran’s index of spatial autocorrelation we

show that some of the topics of adverse events exhibit significant spatial autocorrelation,

indicating that there exist spatial clusters of nearby states that exhibit similar adverse

events. Using Anselin’s local indicator of spatial association we discover and report these

clusters. Our results show that adverse events of COVID-19 vaccines vary across states

which justifies further research to understand the underlying causality to better understand

adverse effects and to reduce vaccine hesitancy.

6.1 Introduction

By June 12th, 2021, more than 2.3 billion doses of various brands of COVID-19 vaccines had

been administered world-wide with more than 300 million doses administered in the United

States [116]. The U.S. Centers for Disease Control and Prevention (CDC) has stated that

all U.S. authorized vaccines are safe and efficient [117]. While generally safe, the COVID-19

vaccines have adverse effects, including common side effects such as injection site pain and

fever, but also including rare adverse effects that can be more severe. In the United States

alone, by June 1st, 2021, a total of 297,410 of adverse events have been reported, collected,
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(a) California (b) Florida

Figure 6.1: COVID-19 Adverse Effect Clouds per Region.

and made publicly available by the CDC and the U.S. Food and Drug Administration in

a database called the Vaccine Adverse Event Reporting System (VAERS) [118]. As cases

of severe symptoms gain public visibility in the news [119], these seemingly contradicting

facts of general safety and possibly severe side-effects are a source of confusion leading to

vaccine hesitancy among the population [120].

Towards a better understanding of COVID-19 vaccine adverse events we propose a

similarity measure to quantify the similarity of sets of adverse events. To illustrate the

challenge tackled in this work, Figure 6.1 shows word clouds of adverse effects for California

(Figure 6.1a) and for Florida (Figure 6.1b). These word clouds show the font size of the

most frequent adverse effects proportional to their relative frequency observed in that state.

We observe that common side effects such as headache, pyrexia (fever), and chills appear

with similar relative frequency in both states and we also observe that some adverse effects

appear more frequently in one region than another. For example, it pyrexia and dizziess

are more frequently observed in Florida. Our goal is to measure the (dis-)similarity of

the adverse effects observed in different regions. This similarity allows to understand how

reported adverse events vary over space, over time, across different vaccine brands, and

across different populations. We use our proposed similarity measure to study if we can
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observe statistically significant clusters of regions exhibiting similar adverse effects using

VAERS data for the United States. While our work does not answer the question whether

vaccines are safe, we hope that public health researchers and health officials may find our

similarity measure useful to better understand adverse events, their variations over space,

and the underlying causal factors.

Summarizing our approach, we use a bag-of-words model to describe a set of adverse

events, such as reported in a spatial region. We leverage Latent Dirichlet Allocation (LDA)

to extract latent topics of adverse effects for each region. LDA has been successfully used

to extract domains and research topics from scientific research papers [121] and news top-

ics (such as “Sports”, “Politics”, “Entertainment”) from news articles [122]. To extract

latent topics of adverse events, we treat the adverse events reported in a spatial region as

documents and individual adverse effects as words. We qualitatively evaluate the modeled

topics and show that they are able to represent, for example, adverse events related to

“pyrexia/fever” and adverse effects related to “vertigo/dizziness”. Then, we describe states

of the U.S. by their adverse event topic distribution to evaluate whether topics of vaccine

adverse effects vary across the United States. We quantitatively evaluate if this variation ex-

hibits any significant spatial autocorrelation, that is, if spatially close states exhibit similar

topics of adverse events.

For this purpose, we first survey existing work in Section 6.2 and formally define an

adverse event database in Section 6.3. Our approach to extract latent topics of adverse

events using topic modeling is described in Section 6.4.1. Using these topics as a low-

dimensional embedding of adverse events in a spatial region, our approach to quantify spatial

autocorrelation and to find spatial clusters of states that exhibit significantly similar (or

dissimilar) topics of adverse effects is described in Section 6.4.2. We explore the global and

local spatial autocorrelation of COVID-19 vaccine adverse events in Section 6.5 to discover

significant spatial autocorrelation, showing that some topics of adverse events indeed vary

in different parts of the United States. Finally, we conclude in Section 6.6 and identify

future directions.
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6.2 Related Work

Adverse Effects of Vaccines

Vaccines are, without any doubt, a paramount weapon to fight deadly diseases evident by

the fact that “In 1900, for every 1,000 babies born in the United States, 100 would die

before their first birthday, often due to infectious diseases” [54]. Furthermore, vaccines not

only protect those receiving the vaccines but also vulnerable groups around them, such as

new born babies, who may not be able to receive a vaccine [55]. Yet, there are adverse

effects [118] including the 300,000 adverse events reported for the COVID-19 vaccines by

June 1st, 2021. Understanding and mitigating these adverse events will not only improve

the well-being of those receiving the vaccines, but will also decrease fear of vaccines that

leads to high vaccine hesitancy as observed during the COVID-19 pandemic [56]. To the

best of our knowledge, this is the first study investigating the similarity of adverse effects of

COVID-19 vaccines to understand their spatial autocorrelation. We hope that our proposed

techniques will find adaption by epidemiologists to improve our understanding of the ecology

of past, present, and future infectious diseases.

Topic Modeling of Adverse Events

Topic modeling is an unsupervised learning technique to discover underlying themes of a

collection of documents. Latent Dirichlet Allocation (LDA) is one of the more common topic

modeling techniques in the literature [23]. In the context of pharmacovigilance, LDA has

been used to find potentially unsafe dietary supplements [26], but without the consideration

of the spatial distribution of latent topics among adverse effects. In our prior work in [50]

we performed a spatio-temporal study on the adverse events of blood thinning drugs and

their spatial auto-correlation. This study mainly limited by data availability, having adverse

events reported by country only. For this reason, our prior study in [50] used European

countries, but most countries had to be removed due to having too few reported adverse

events. The wide availability of VAERS COVID-19 vaccine data at United States state level
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enables us to directly explore the latent adverse event features for spatial auto-correlation.

Pharmacovigilance

The field of pharmacovigilance aims at understanding the occurrence of adverse effects of

drugs [8, 9]. Existing work has shown that adverse effects of a single drug or multiple combi-

nation of drugs may vary over space and time due to racial and ethnic disparities [10, 11, 12],

environment [13, 14], and drug quality [15]. Specifically for vaccines, there is evidence that

stress may have an amplifying effect on immune response and adverse events [49]. However,

such aspects of understanding the interactions between drugs and other external factors

are out of scope of this work. In this work, we investigate the effect of location on adverse

effects of the COVID-19 vaccines. While location may be a proxy of other factors (such

as stress), this work does not provide or imply any causality between location and adverse

events. Yet, we hope that an understanding of the spatial distribution and autocorrleation

of adverse events may help experts discover such causalities.

6.3 Problem Definition

This section formally defines adverse events, adverse effects, and the problem of spatio-

temporal clustering of adverse events. First, we provide a definition of adverse effects and

events.

Definition 11 (Adverse Effect). An Adverse Effect is a textual representation of an unde-

sirable experiences associated with the use of a medical product. We let A = {A1, ..., AN}

denote the set of all adverse events and N denotes the number of all (possible) adverse

effects.

Data such as collected in the VAERS database is a collection of records each associated

with a set of adverse effects, a specific pharmaceutical drug, a location, and time. We call

such as record an Adverse Event (AE), formally defined as follows:
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Table 6.1: Sample records of Adverse Event Report Database. Each Line is an Adverse
Event.

Adverse
Event ID

Drug Location Set of Adverse Effects

1139067 Moderna MD Dizziness, Injection site pruritus, Injection site
rash, Somnolence

1004857 Moderna PA Nausea, Palpitations, Presyncope, Pyrexia,
Tremor

1115746 Moderna NY Chills,Headache,Nausea,Pain,Pain in extrem-
ity

1148711 Moderna CA Axillary pain, Fatigue, Headache, Nausea,
Pain in extremity

1240185 Pfizer IN Fatigue,Headache,Pain,Pyrexia
1120846 Pfizer UT Nausea,Pain in extremity, Sleep disorder, Tin-

nitus, Vertigo
1104541 Pfizer GA Injection site reaction, Rash pruritic
1138693 Pfizer WI Eye pruritus, Lip swelling, Nasal pruritus,

Swelling face, Urticaria
1200860 Janssen TX Headache
1114482 Janssen MI Chills, Hyperhidrosis, Pyrexia
1244933 Janssen IL Heart rate, Heart rate increased, Pain, Poor

quality sleep, Pyrexia
1202067 Janssen RI Chills, Injection site erythema, Menstruation

irregular, Pyrexia

Definition 12 (Vaccine Adverse Event Database). Let A denote a set of adverse effects,

let S denote a set of spatial regions, and let D denote a set of vaccine brands. An Adverse

Event Report Database DB is a collection of adverse event reports (s,A, d), where s ∈ S is

a spatial region, A ⊆ A is a set of adverse effects, and d ∈ D is the brand for which the

adverse effects are reported. We let M := |DB| denote the number of adverse event reports

in DB

We note that a single adverse event may report multiple adverse effects. As an exam-

ple, Table 6.1 shows exemplary adverse events from the VAERS database. The first line

in Table 6.1 implies that “Dizziness”, “Injection site pruritus”, “Injection site rash”, and

“Somnolence” are adverse effects reported in Maryland Moderna vaccine.
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Our goal is to find clusters of locations that exhibit similar adverse events. Towards this

goal, we group adverse events by region.

Definition 13 (Spatial Adverse Events). Let DB be an adverse event report database and

let s′ ∈ S be a spatial region. We define

DBs′ := {(s,A, d) ∈ DB|s = s′}

as the set of all adverse events reported in regions′.

In the next section, we describe how we obtain latent topics of adverse events to represent

each region as a low dimensional topic distribution.

6.4 Methodology

This section presents our Latent Dirichlet Allocation (LDA) based approach to extract latent

topics from adverse events. All our code to access the data and to run the topic modeling can

be found at https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main.

6.4.1 Latent Adverse Event Topic Modeling

A challenge of mining adverse events is the potentially large number of different adverse

effects. The FAERS Adverse Event Databases use MedDRA codes [86] and terminology to

standardize adverse effects such as using “pyrexia” instead of “heightened temperature” of

“fever”. Yet, the number of possible adverse effects is too large and the resulting feature

space of using bag-of-words semantics to represent adverse effects is too high dimensional.

To address this issue, we acknowledge that adverse effects are symptoms of unknown (latent)

underlying causes. While one way of identifying causes is involving a medical expert, we

propose a data-driven approach to identify underlying topics among adverse events using

topic modeling that we interpret as causes. For that, we employ Latent Dirichlet Allocation

(LDA) [23] – a generative probabilistic model which assumes that each adverse event is a
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Figure 6.2: LDA Topic Modeling of Adverse Events. For each adverse event a topic distri-
bution θ is estimated and for each topic i, an adverse effect distribution ϕi is estimated.
Given a topic Z generated from θ, observable adverse effects (AEs) are generated from ϕZ .

mixture of underlying (latent) topics, and each topic has a (latent) distribution of more and

less likely adverse effects.

A graphical representation of our LDA model using plate notation is shown in Fig. 6.2.

A vector α of length K is used to parameterize the a priori distribution of topics. The

parameter K corresponds to the number of latent topics used to model adverse events.

When an adverse event is created, we assume that its topics are chosen following a Dirichlet

distribution having parameter α which we use to obtain a topic distribution θ for each of

ourM = adverse events. Thus, the large plate in Fig. 6.2 corresponds to a set ofM adverse

events, each having a topic distribution θ drawn randomly (and Dirichlet distributed) from

α.

For each topic, the prior parameter β is used to generate the distribution of adverse

effects within a topic. Thus, we assume that a topic generates adverse effects following a

Dirichlet distribution having a vector β of length |A| as parameter, where A is the set of

observed adverse effects (c.f. Definition 11). For each of our K topics, a resulting vector
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ϕi, 1 ≤ i ≤ K stores the adverse effect distribution of topic K.

To generate the adverse effects of an adverse event, a topic is chosen randomly from

the topic distribution θ and, given this topic, a number of Ni adverse effects are generated

randomly from the adverse effect distribution ϕ – where Ni is assumed to be independent

from the chosen topic and uniformly distributed. In Fig. 6.2, the node AE denotes the

(observable) set of all N =
∑

iNi adverse effects, and Z is a function that maps each

word to the topic that generated it. The reason for choosing a Dirichlet distribution rather

than a more straightforward uniform or multinomial distribution for the topic and word

priors is inspired by research showing that the distribution of words in text can be better

approximated using a Dirichlet distribution [111].

To infer the topics of our adverse event database DB, we employ a generative process.

Given the observed adverse effects, LDA optimizes the latent variables to maximize the

likelihood of matching the observed adverse events and corresponding adverse effects. This

generative process works as follows. Adverse events are represented as random mixtures

over latent topics, where each topic is characterized by a distribution over all N adverse

effects. LDA assumes the following generative process for database DB consisting of M

adverse events, each having a number of Ni adverse effects.

• For each adverse event choose a topic distribution θm ∼ Dir(α), 1 ≤ m ≤ M , where

Dir(α) is a Dirichlet distribution with prior α. In our experiments, we initially assume

each topic to have uniform prior probabilities, having αi = αj for 1 ≤ i, j ≤ K. This

apriori distribution is adapted using Bayesian inference [23] to maximize the likelihood

of generating the observed keywords.

• For each topic, choose an adverse effect distribution ϕi ∼ Dir(β), where 1 ≤ i ≤ K.

For our experiments, we assume each adverse effect to have the same prior probability

N−1.

• For each adverse effect ae in adverse event j:

1. Choose a topic z ∼Multinomial(θj) from the topic distribution of j, and
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2. Choose a word w ∼Multinomial(ϕz) from the adverse effect ϕz of topic z.

Here, Multinomial(x) corresponds to a multinomial distribution drawing from a

stochastic vector x.

To describe each adverse event in a latent topic space, we use the adverse event specific

topic distributions θm which describe each adverse event m as a set of K latent features

corresponding to the weight of the respective latent topic. While this topic modeling does

not provide us with any semantic of the underlying topics, we know that adverse events

having similar latent features also exhibit similar adverse effects. Based on the similarity

of latent topics we propose a hierarchical agglomerative clustering approach to find re-

gions that exhibit similar adverse events in Section 6.4.2 and test these clusters for spatial

autocorrelation using Moran’s I in Section 6.5.

6.4.2 Spatial Clustering of Vaccine Adverse Event Topics

The latent topic modeling of Section 6.4.1 provides us with a topic distribution θi for each

adverse event report d ∈ DB. To describe the topic distribution of a region, we use the

average topic distribution of all adverse events reported in the region. To measure similarity

between the topics of adverse events of two regions, we use Euclidean distance between these

resulting average topic distributions. Formally,

Definition 14 (Region-Wise Adverse Event Distance). Let DB be an adverse event database,

let DBs1 ,DBs2 ⊆ DB, let K be a positive integer and let θ(ae) denote the latent topic dis-

tribution of an adverse event ae ∈ DB using the LDA model described in Section 6.4.1,

then:

dist(DBs1 ,DBs2) :=
∥∥∥∥∥
∑
DBs1

θ(ae)
|DBs1 |

−
∑
DBs2

θ(ae)
|DBs2 |

∥∥∥∥∥
2
,

where ‖.‖2 denotes the Euclidean norm.

To find clusters among regions having similar topics of adverse events we leverage the
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Figure 6.3: Pair-wise similarity matrix of latent topics of COVID-19 vaccine adverse events
of counties in the United States.

distance function of Definition 14 and employ a hierarchical agglomerative clustering ap-

proach [99]. The advantage of such an approach is that we neither have to guess the number

of clusters as often needed for partitioning clustering approaches [100] nor have to define a

density threshold as required by density-based clustering algorithms [123, 101]. To merge

clusters, we employ complete linkage, which defines the distance between two clusters of

regions as the maximum pair-wise distance of regions among the clusters.

Figure 6.3 shows the pair-wise distance (see Definition 13) for each pair of states

for the 49 states of the United States excluding Alaska, Puerto Rico, and Hawaii using
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K = 10 adverse event topics. In Figure 6.3 darker colors correspond to a higher pair-

wise similarity. We observe a large group of mutually similar states having smaller nested

clusters of similar states thus explaining our choice for hierarchical clustering. We also

observe that is not trivial to delineate clusters due to noise, which explains our choice

of complete link clustering to maximize delineation and avoid having clusters “grow to-

gether”. A high resolution version of Figure 6.3 can be found on our project website

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main.

6.4.3 Spatial Autocorrelation

Given the latent topics of vaccine adverse events as described in Section 6.4.1 and the

clustering approach of Section 6.4.2, we next investigate if the observed adverse event topics

exhibit significant spatial autocorrelation. In other words, can we reject the null hypothesis

that topics are independent of location by observing that spatially close regions exhibit

similar topics?

For this purpose, we retain all clusters (of all sizes) corresponding to all nodes in the

dendrogram excluding clusters of size one and excluding the root of the dendrogram that

contains all regions. Given any such cluster of regions that exhibit similar topics of adverse

events, we employ Moran’s I measure of spatial autocorrelation [112]. Moran’s I statistic

tests if a variable measured on spatial regions exhibits a significant spatial autocorrelation,

either positive (clustered) or negative (dispersed). To measure the spatial autocorrelation

of clusters obtained as described in Section 6.4.2, we use one-hot encoding (or dummy-

coding) to encode each individual cluster membership into a binary variable. Thus, for

a cluster C, the cluster membership variable of a region r is set to 1 if r ∈ C and 0

otherwise. Moran’s I requires an adjacency metric on regions to assess the similarity between

polygonal regions. For this purpose, we employ the Queen Contiguity model [124], that is,

two regions are considered adjacent if they share boundary. We directly report Moran’s I

test statistic whose range is in [−1,−1], ranging from strongly dispersed (close to -1) to

strongly clustered (close to 1). We also report the p-value of the null-hypothesis that the
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Table 6.2: Top-10 most probably adverse effects per topics across all regions and all COVID-
19 vaccine brands.

Topic (Probabilities in %) Adverse Effects
1 (4.5)"headache", (3.6)"pyrexia", (3.6)"fatigue", (3.3)"pain", (3.1)"chills", (3.0)"nau-

sea", (2.3)"pain-in-extremity", (1.7)"dizziness", (1.7)"injection-site-erythema",
(1.7)"arthralgia"

2 (4.1)"headache", (2.8)"dizziness", (2.6)"pyrexia", (2.6)"pain-in-extremity", (2.5)"fa-
tigue", (2.5)"chills", (2.4)"nausea", (2.4)"pain", (2.1)"injection-site-pain", (1.6)"dysp-
noea"

3 (6.9)"headache", (4.1)"pyrexia", (3.8)"fatigue", (3.7)"chills", (3.0)"pain", (2.9)"dizzi-
ness", (2.8)"nausea", (1.9)"pain-in-extremity", (1.8)"injection-site-erythema",
(1.8)"injection-site-pain"

4 (8.7)"chills", (8.3)"pyrexia", (7.2)"headache", (7.2)"pain", (6.4)"fatigue", (3.9)"nausea",
(3.2)"pain-in-extremity", (2.6)"injection-site-pain", (2.2)"myalgia", (2.1)"dizziness"

5 (4.5)"pyrexia", (4.1)"headache", (4.0)"chills", (3.4)"pain", (3.1)"fatigue", (2.5)"nausea",
(2.5)"dizziness", (2.1)"injection-site-pain", (2.1)"arthralgia", (2.1)"pain-in-extremity"

6 (3.8)"dizziness", (3.3)"headache", (2.4)"chills", (2.3)"nausea", (2.2)"fatigue",
(2.2)"pain", (2.1)"pain-in-extremity", (1.5)"dyspnoea", (1.5)"injection-site-erythema",
(1.5)"pyrexia"

7 (6.5)"headache", (5.5)"pyrexia", (5.1)"chills", (4.8)"pain", (4.7)"fatigue", (3.2)"nausea",
(2.6)"injection-site-pain", (2.4)"dizziness", (2.0)"injection-site-erythema", (1.7)"pain-
in-extremity"

8 (5.7)"headache", (4.4)"fatigue", (4.0)"chills", (3.8)"pain", (3.2)"pyrexia", (3.0)"pain-
in-extremity", (2.7)"nausea", (2.1)"injection-site-pain", (1.8)"injection-site-erythema",
(1.8)"dizziness"

9 (4.0)"headache", (3.9)"fatigue", (3.6)"pain", (3.2)"chills", (2.9)"nausea", (2.8)"pyrexia",
(2.5)"dizziness", (1.9)"pain-in-extremity", (1.9)"injection-site-pain", (1.6)"pruritus"

10 (3.8)"pyrexia", (3.3)"fatigue", (2.9)"headache", (2.8)"pain", (2.6)"chills", (2.4)"dizzi-
ness", (2.1)"nausea", (1.9)"pruritus", (1.9)"rash", (1.9)"injection-site-erythema"

regions are distributed randomly without any spatial pattern by transforming Moran’s I

values to z-values and employing a two-tailed z-test [113]. The resulting p-values indicate

whether a cluster of regions having similar topics of adverse events are significantly spatially

clustered or dispersed. We used the geopandas library for handling spatial attributes and

Pysal library for Moran’s I test of spatial autocorrelation [80, 103].

6.5 Experimental Evaluation

For our experimental evaluation we collected data from the VAERS database as described in

Section 6.1 grouped by U.S. states and grouped by the three brands of vaccines authorized

by 06/14/2021: Janssen, Moderna, and Pfizer. The experiments are conducted on a PC

with Intel(R) Xeon(R) CPU E3-1240 v6 @3.70GHz and 32GB RAM.Windows 10 Enterprise
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64-bit is the operating system, and all the algorithms are implemented by Python 3.7. All

code, including code to obtain data from the VAERS API, is available at https://github.

com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main

6.5.1 Qualitative Analysis of Topics

For K = 10 latent topics of COVID-19 adverse events Table 6.2 shows the ϕi vectors of

our LDA model which correspond to the adverse effect distribution of the i’th topic. For

each topic in Table 6.2 we show the Top-10 highest probability adverse effects. First, we

observe that the resulting ten topics are hard to discriminate, as they all contain com-

mon adverse effects such as “headache”, “pyrexia” (fever). Yet, we do observe different

distributions of these adverse effects. We observe that Topic #4 has high probabilities

for common symptoms and consequently low probabilities for rare symptoms. Topic #6

seems to corresponds to light symptoms with a low probability of fever, but higher prob-

ability of “dizziness”. However, we note that our team does not include a medical ex-

pert, thus we refrain from a deeper analysis of these topics and conclude that our LDA

approach has been able to find topics that differ in distribution of adverse effects. We

note that due to truncation to only showing the Top-10 most probable adverse effects,

we do not show uncommon and rare adverse effects which may define a topic (thus hav-

ing most of it’s probability mass focused within this single topic). The interested reader

may find the full list of adverse effect per topic probabilities on our project website at

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main, also including

the per-topic adverse effect distributions for K = 3 and K = 20 topics.

6.5.2 Spatial Anaylsis of COVID-19 Adverse Event Topics

Table 6.3 shows the degree of spatial autocorrelation of each of the K = 10 topics of

adverse events. For this purpose, we associated each U.S. state i with it’s corresponding ϕik

probability of topic k ∈ {1, ..., 10}. With each states having it’s corresponding probability

for topic k, we use Moran’s I measure of spatial autocorrelation [112]. Moran’s I is a test
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Table 6.3: Moran’s I measure of global spatial autocorrelation for each of the K = 10 topics
of COVID-19 adverse events.

Pattern p-value Moran’s
Index

z-score Topic
ID

Clustered 0.0006 0.2756 3.4512 1
Random 0.6214 -0.0635 -0.4938 2
Clustered 0.0966 0.1216 1.6616 3
Random 0.6643 -0.0464 -0.4340 4
Random 0.2054 0.0920 1.2662 5
Random 0.6867 0.0109 0.4033 6
Dispersed 0.0754 -0.1785 -1.7782 7
Clustered 0.0071 0.2149 2.6938 8
Random 0.1988 0.0875 1.2850 9
Clustered 0.0002 0.3163 3.7895 10

statistic to test the hypothesis that a spatial phenomenon appears uniformly at random

without any spatial pattern. We observe in Table 6.3 that out of the ten topics, six topics

show no spatial autocorrelation (unable to reject the null hypothesis of a random pattern),

one topic shows negative spatial autocorrelation (implying a significant dispersed pattern),

and three topics exhibit a positive spatial autocorrelation (spatially clustered patterns).

First, we note testing ten hypothesis, and at the high p-value of 0.0754 we’d expect one

such pattern by chance under the null hypothesis. Accounting for the multiple hypothesis

testing problem [106] (for example, using Bonferroni correction [105]), the dispersed pattern

of Topic #8 is no significant. However, for the clustered patterns of Topics #1 and #8,

and #10 we observe highly significant p-value of 0.0006, 0.0071, and 0.0002, respectively,

showing that these three topics of COVID-19 adverse events do exhibit significant spatial

autocorrelation. This results shows that some latent topics among the adverse effects of

the COVID-19 vaccines indeed depend on location. For a deeper study, we show the Local

Indicator of Spatial Autocorrelation (LISA) [107] in Figure 6.4, showing the spatial location

of clusters of regions that exhibit high (or low) probabilities of the corresponding topic.
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(a) Topic #1 (b) Topic #8 (c) Topic #10

Figure 6.4: Local Indicator of Spatial Autocorrelation (LISA). Light red areas correspond
to high-high clusters. Light blue areas are low-low clusters. Dark red and dark blue areas
corresponds to high-low and low-high outliers.

Using LISA, a cluster is defined as a region having a high (low) value that is surrounded

by regions that also have high (low) values. Interestingly, we observe that different parts of

the United States exhibit high (low) values in these three significant latent topics. We also

observe high-low (low-high) outliers, i.e., regions having high (low) topic probabilities that

are surrounded by regions having low (high) topic probabilities. These significant clusters

that adverse effects indeed vary locally. The underlying causality warrants further study

to understand why certain regions of the United States exhibit different topics of adverse

events.

6.6 Conclusion

In this work, we tackled the problem of measuring (dis-)similarity between adverse events of

COVID-19 vaccines observed in different regions. Our measure leverages a topic modeling

approach using LDA to map each adverse event from a (textual) set of adverse effects to a

latent topic distribution. Using a database of 300,000 adverse event reports of COVID-19

vaccines in the United States, investigate the underlying topics exhibit any spatial autocor-

relation to understand if different places exhibit different adverse events. Our results show

that some of the latent topics of COVID-19 adverse events show significant positive spa-

tial autocorrelation. Our local analysis of spatial autocorrelation show that certain topics
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of adverse events have increased (or decreased) likelihood in different parts of the United

States.

We hope that teams of medical experts may find this result to investigate the underlying

causality. Reasons could be due to vaccine quality issues, storage and cooling issues, or

simply due to different brands of vaccines. Our own future work will include looking at the

correlation between adverse event topics and different vaccine brands to understand topics

and possibly the clusters that we have observed. We will also look into temporal changes

of topics to gain an understanding how adverse events may change over time and due to

climate.

Finally, we note that all of our implementations, experiments, and results are available

at our project website:

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main, where we also

include additional experiments which we could not fit into this paper.
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Chapter 7: Final Conclusion

This dissertation is an ensemble of published and publishable research papers that improved

upon existing pharmacovigilance methods with machine learning algorithms enhanced with

spatial science techniques. In this dissertation, we investigate the effect of location on

adverse effects of blood thinners drugs in chapter 4, 5 and COVID-19 vaccines in chapter 6.

In chapter 4 and 5, we explore spatial temporal clusters of a three FDA approved drugs

for post market AEs patterns and trends. We didn’t used concomitant drugs of FAERS

dataset and used AEs reports associated to a single drug for Dabigatran, Rivaroxaban and

Apixaban. We also explored spatial temporal clusters of three COVID-19 vaccines for AEs

patterns and trends. Our goal was to investigate if we can identify spatial clusters of regions

that exhibit similar adverse effects using two data mining approaches i.e Frequent Item-set

mining and Topic mining using latent dirichlet allocation.

We proposed a first approach to measure the similarity of reported adverse events be-

tween spatial regions based on the latent topics of adverse events. Based on this similarity,

we proposed a clustering approach to group countries having similar adverse events and

evaluated the degree of spatial autocorrelation among regions in the same group. Our

experimental has shown that we can indeed find clusters of countries that exhibit similar

adverse events. However, we were not able to confirm spatial autocorrelation between these

regions. We note that more research in this field is needed.

One limitation of our approach is the aggregation at country level, which may have

interesting local spatial patterns. Applying our solutions to smaller spatial regions may

find such patterns. We also note that a different measure of spatial proximity may yield

stronger autocorrelation by considering not only topological distance but also including

political and socioeconomic similarities. To summarize, we did show that some countries

exhibit similar topics of adverse events, but an deeper investigation of patterns and their
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causality is needed. We hope our approach at mining publicly available adverse event

databases improves our understanding of the spatio-temporal change of the adverse effects

of a drug.

There are many directions of future work to refine our spatiotemporal topic modeling

approach. A first direction is to consider different region comparison due to health dispari-

ties, different environmental interaction to drugs and public health surveillance standards.

In this work, we chose to mine for topics in europe due to data availablity. A second di-

rection is to use different spatial weights between countries to highlight the influence some

countries have on each other such as sharing public standards such as the EU or barri-

ers including language or inaccessible terrain between them such as water or mountains.

between countries and their openness to each other and finally, a local measure of spatial

auto-correlation such as Anselin’s Local Indicator of Spatial Association [107] may be used.

In chapter 6, we explore spatial temporal clusters of three Covid19 vaccines Janssen,

Moderna, and Pfizer for AEs patterns and trends. Vaccines are, without any doubt, a

paramount weapon to fight deadly diseases evident by the fact that “In 1900, for every

1,000 babies born in the United States, 100 would die before their first birthday, often

due to infectious diseases” [54]. Furthermore, vaccines not only protect those receiving

the vaccines but also vulnerable groups around them, such as new born babies, who may

not be able to receive a vaccine [55]. Understanding and mitigating these adverse events

will not only improve the well-being of those receiving the vaccines, but will also decrease

fear of vaccines that leads to high vaccine hesitancy as observed during the COVID-19

pandemic [56]. We investigate if we can identify spatial clusters of regions that exhibit

similar adverse effects using latent dirichlet allocation.

In this work, we tackled the problem of measuring (dis-)similarity between adverse

events of COVID-19 vaccines observed in different regions. Our measure leverages a topic

modeling approach using LDA to map each adverse event from a (textual) set of adverse

effects to a latent topic distribution. Using a database of 300,000 adverse event reports

of COVID-19 vaccines in the United States, investigate the underlying topics exhibit any
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spatial autocorrelation to understand if different places exhibit different adverse events. Our

results show that some of the latent topics of COVID-19 adverse events show significant

positive spatial autocorrelation. Our local analysis of spatial autocorrelation show that

certain topics of adverse events have increased (or decreased) likelihood in different parts

of the United States.

We hope that teams of medical experts may find this result to investigate the underlying

causality. Reasons could be due to vaccine quality issues, storage and cooling issues, or

simply due to different brands of vaccines. Our own future work will include looking at the

correlation between adverse event topics and different vaccine brands to understand topics

and possibly the clusters that we have observed. We will also look into temporal changes

of topics to gain an understanding how adverse events may change over time and due to

climate.
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