

SOFTWARE ADAPTATION PATTERNS FOR SERVICE-ORIENTED

ARCHITECTURES

by

Koji Hashimoto

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

In Partial fulfillment of

The Requirements for the Degree

of

Master of Science

Software Engineering

Committee:

_________________________________ Dr. Hassan Gomaa, Thesis Director

_________________________________ Dr. João P. Sousa, Committee Member

_________________________________ Dr. Sam Malek, Committee Member

_________________________________ Dr. Hassan Gomaa, Department Chair

_________________________________ Dr. Lloyd J. Griffiths, Dean, The Volgenau

School of Information Technology and

Engineering

Date:_____________________________ Spring Semester 2010

 George Mason University

 Fairfax, VA

Software Adaptation Patterns for Service-Oriented Architectures

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

By

Koji Hashimoto

Ph.D.

Osaka University, 2000

Director: Hassan Gomaa, Professor

Department of Computer Science

Spring Semester 2010

George Mason University

Fairfax, VA

ii

Copyright: 2010, Koji Hashimoto

All Rights Reserved

iii

DEDICATION

To my beloved parents, Junko and Takao

To my wonderful wife Kaori

To my lovely daughters, Riko and Fumi

iv

ACKNOWLEDGEMENTS

I would like to thank my dissertation director Dr. Hassan Gomaa for his guidance,

support, and encouragement during the course of this research. I would also like to thank

my committee members Dr. João P. Sousa and Dr. Sam Malek for serving on my

committee and their guidance throughout my education at George Mason University. I

would like to extend my thanks to Dr. Daniel. A. Menascé for his invaluable advice and

support during the course of this research.

I would like to thank my research colleagues for their cooperation and support. I am

especially grateful to Mohammad A. Abu-Matar, John Ewing, Minseong Kim, Naeem

Esfahani, Zeynep Zengin and Ahmed Elkhodary.

I am thankful to my parents, parents-in-law, siblings and extended family & friends for

their unconditional love and continuous encouragement throughout my life.

Lastly, I am thankful to my beloved wife, Kaori, for her continuous effort, understanding,

and patience during my research, and to my wonderful and lovely daughters, Riko and

Fumi, who gave me a reason to survive and complete my masters’ degree.

v

TABLE OF CONTENTS

 .. Page

List of Tables.. vii

List of Figures ... viii

Abstract ... ix

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2 RELATED WORK ..3

CHAPTER 3 SOFTWARE ADAPTATION ..5

CHAPTER 4 THREE-LAYER ARCHITECTURE MODEL FOR SOFTWARE

ADAPTATION 7

4.1 Three-layer Architecture Example: SASSY Framework8

CHAPTER 5 SOFTWARE COORDINATION ... 10

CHAPTER 6 SOFTWARE ADAPTATION PATTERNS ... 13

6.1 Software Adaptation State Machines ... 14

6.2 Adaptation Connectors.. 16

CHAPTER 7 SOA ADAPTATION PATTERNS .. 17

7.1 Independent Coordination Adaptation Patterns ... 17
7.2 Two-Phase Commit Coordination Adaptation Pattern 24

7.3 Hierarchical Coordination Adaptation Pattern ... 30
7.4 Distributed Coordination Adaptation Pattern ... 33

CHAPTER 8 SERVICE FAILURE ADAPTATION PATTERN 38

CHAPTER 9 IMPLEMENTATION OF ADAPTATION CONNECTOR 41

9.1 General Interface of Adaptation Connectors .. 42
9.2 Integration of Adaptation State Machines ... 43

CHAPTER 10 ADAPTIVE CHANGE MANAGEMENT ... 51

10.1 Example of Dynamic Software Adaptation .. 51

CHAPTER 11 VALIDATION OF SOA ADAPTATION PATTERNS 55

11.1 Validation by Simulation ... 55

11.2 Validation by Implementation.. 58

vi

CHAPTER 12 CONCLUSIONS ... 76

Appendix A ...78

Appendix B ...84

References ...90

vii

LIST OF TABLES

Table Page

Table 1 Message correspondence for Coordinator connector state machine in Figure 4 .. 48
Table 2 Message correspondence for Service connector state machine in Figure 6 48

Table 3 Message correspondence for Coordinator connector state machine in Figure 9 .. 49
Table 4 Message correspondence for Service connector state machine in Figure 10 49

Table 5 Message correspondence for Parent coordinator connector state machine in

Figure 12 ... 49

Table 6 Message correspondence for Child coordinator connector state machine in Figure

13 .. 50

Table 7 Message correspondence for Coordinator connector state machine in Figure 15 50
Table 8 Message correspondence for Service connector state machine in Figure 16 50

viii

LIST OF FIGURES

Figure Page

Figure 1 High-level view of SASSY framework ..9
Figure 2 Basic adaptation state machine... 15

Figure 3 Independent coordination communication diagram .. 18
Figure 4 Coordinator connector state machine ... 20

Figure 5 Service connector state machine for a sequential service 21
Figure 6 Service connector state machine for a concurrent service 22

Figure 7 Two-Phase Commit coordination communication diagram: committed case 25
Figure 8 Two-Phase Commit coordination communication diagram: aborted case 26

Figure 9 Coordinator connector state machine ... 28
Figure 10 Service connector state machine for a concurrent service 30

Figure 11 Hierarchical coordination communication diagram .. 31
Figure 12 Parent Coordinator connector state machine ... 33

Figure 13 Child Coordinator connector state machine .. 33
Figure 14 Distributed coordination communication diagram .. 35

Figure 15 Coordinator connector state machine ... 37
Figure 16 Service connector state machine for a concurrent service 40

Figure 17 Integrated adaptation state machine.. 48
Figure 18 Dynamic software adaptation in emergency response system 54

Figure 19 xADL model of emergency response system for simulation 57
Figure 20 Sequential coordination BPEL process ... 61

Figure 21 Concurrent coordination BPEL process.. 62
Figure 22 Combined sequential / concurrent coordination BPEL process 63

Figure 23 Execution log of Service Connector 2 in emergency response system 65
Figure 24 Execution log of Coordinator Connector in emergency response system 65

Figure 25 Activity model of the Two-phase commit coordination BPEL process 67
Figure 26 Two-phase commit coordination BPEL process ... 68

Figure 27 Hierarchical coordination in emergency response system 70
Figure 28 Distributed coordination in emergency response system................................. 71

Figure 29 Execution log of Coordinator Connector in distributed coordination 72
Figure 30 Execution log of Service Connector 2 in emergency response system 75

ix

ABSTRACT

SOFTWARE ADAPTATION PATTERNS FOR SERVICE-ORIENTED

ARCHITECTURES

Koji Hashimoto, MS

George Mason University, 2010

Thesis Director: Dr. Hassan Gomaa

This thesis describes the concept of software adaptation patterns and how they can be

used in software adaptation of service-oriented architectures. The patterns are described

in terms of a three-layer architecture for self-management. A software adaptation pattern

defines how a set of components that make up an architecture pattern dynamically

cooperate to change the software configuration to a new configuration.

The software architecture in SOA is characterized by service coordination where services

are orchestrated and/or sequenced by coordinators. As there are many different types of

service coordination, this thesis focuses on SOA coordination patterns to capture the

different kinds of coordination. Thus, a software adaptation pattern is developed for each

coordination pattern.

This thesis introduces adaptation connectors to encapsulate adaptation state machine

models so that the adaptation patterns can be more reusable. A change management

model for dynamically adapting service-oriented applications is also described with a

case study.

1

CHAPTER 1 INTRODUCTION

Service-Oriented Architectures (SOA) are becoming increasingly widespread in a variety

of computing domains such as enterprise and e-commerce systems, which continue to

grow in size and complexity. These systems are expected to adapt not only to the

fluctuating execution environments but also to changes in their operational requirements.

This thesis describes the concept of software adaptation patterns and how they can be

used in service oriented architectures. Previous research has investigated how software

architectural patterns can be used to help in building software systems and product lines

[1][7][8]. This thesis describes how software adaptation patterns can be used to help with

the adaptation of service-oriented software systems after original deployment.

This thesis focuses on three areas as follows: a) research into software architectural and

design patterns [2][3][7] applied in particular to service-oriented architectures [16][17],

b) research into dynamic reconfiguration and change management [6][9], and c) research

into self-adaptive, self-managed or self-healing systems [4][10]. The research described

in this thesis builds on software reconfiguration patterns in the previous work [6] and

advances these concepts by describing patterns to support dynamic adaptation in service-

oriented applications.

2

In this thesis, adaptation connectors are introduced to encapsulate adaptation state

machine models so that adaptation patterns can be more reusable. The goal of an

adaptation connector is to separate the concerns of an individual service from dynamic

adaptation, i.e., the adaptation connector implements the adaptation mechanism for its

corresponding service.

In typical SOA applications, services are self-contained and loosely coupled, and

orchestrated by coordination services. As there are many different types of service

coordination, this thesis develops SOA coordination patterns to capture the different

kinds of coordination.

This thesis first describes different kinds of software adaptation. It then describes

software adaptation patterns according to SOA coordination patterns mentioned above.

Adaptive change management is also described with a case study. The SOA adaptation

patterns described in this thesis are validated by simulation and Web Service based

prototype implementation.

3

CHAPTER 2 RELATED WORK

Dynamic software architectures and dynamic reconfiguration approaches have been

applied to dynamically adapt software systems [4][10]. These approaches address

incorporating reconfigurability into the architecture, design and implementation of

software systems for the purpose of run-time change and evolution. In [6][11][12],

dynamic reconfiguration is applied to changing the configuration of a system from one

configuration to another in a software product line while the system is operational.

Research into self-adaptive, self-managed or self-healing systems [4][10] includes

various approaches for monitoring the environment and adapting a system’s behavior in

order to support run-time adaptation.

Kramer and Magee [9][10] describe how a component must transition to a quiescent state

before it can be removed or replaced in a dynamic software configuration. Ramirez et al.

[13] describe applying adaptation design patterns to the design of an adaptive web server.

The patterns include structural design patterns and reconfiguration patterns for removing

and replacing components.

For service-oriented computing and service-oriented architectures, Li et al. [14] suggest

the adaptable service connector model, so that services can be dynamically composed.

4

Irmert et al. [15] provide a framework to adapt services at run-time without affecting

application execution and service availability.

In comparison with the previous approaches, this thesis focuses on service coordination

in service-oriented architectures. This thesis develops software adaptation patterns for

different kinds of service coordination, in order to adapt not only services but also

coordinator components.

5

CHAPTER 3 SOFTWARE ADAPTATION

Software adaptation addresses software systems that need to change their behavior during

execution. In self-managed and self-healing systems, systems need to monitor the

environment and adapt their behavior in response to changes in the environment [10].

Garlan and Schmerl [4] have proposed an adaptation framework for self-healing systems,

which consists of monitoring, analysis/resolution, and adaptation. Kramer and Magee [9]

have described how in an adaptive system, a component needs to transition from an

active (operational state) to a quiescent (idle) state before it can be removed from a

configuration.

Adaptation can take many forms. It is possible to have a self-managed system that adapts

the algorithm it executes based on changes it detects in the external environment. If these

algorithms are pre-defined, then the system is adaptive but the software structure and

architecture is fixed. The situation is more complex if the adaptation necessitates changes

to the software structure or architecture. In order to differentiate between these different

types of adaptation, adaptations can be classified as follows within the context of

distributed component-based software architectures:

a) Behavioral adaptation. The system dynamically changes its behavior within its

existing structure. There is no change to the system structure or architecture.

6

b) Component adaptation. Dynamic adaptation involves replacing one component

with another that has the same interface. The dynamic replacement of the old

component(s) with a new component(s) has to be performed while the system is

executing.

c) Architectural adaptation. The software architecture has to be modified as a result

of the dynamic adaptation. Old component(s), which may not provide the same

interface, must be dynamically replaced by new component(s) while the system is

executing. Hence, the changes may impact the architectural configuration (e.g.,

architectural style) of the system.

Model based adaptation can be used in each of the above forms of dynamic adaptation,

although the adaptation challenge is likely to grow progressively from behavioral

adaptation through architectural adaptation.

7

CHAPTER 4 THREE-LAYER ARCHITECTURE MODEL FOR SOFTWARE

ADAPTATION

The approach in this thesis for software adaptation is compatible with the widely

accepted three-layer reference architecture model for self-management [10]. The

architecture model consists of 1) Goal Management layer—planning for change—often

human assisted, 2) Change Management layer—execute the adaptation in response to

changes in state (environment) reported from lower layer or in response to goal changes

from above, and 3) Component Control layer—executing architecture that actually

implements the run-time adaptation.

This reference architecture for self-management originally comes from research [18][19]

on control architectures for robotic systems. The robot control architectures are composed

of three layers, namely deliberate, sequencing, and reactive layers. The deliberate layer is

to interface with a user and to execute a planning process. The sequencing layer is to

execute the plan by managing the components in the layer below. The reactive layer is

responsible for reactive control of robot behavior. As a result, the three layers of the

architecture model for self-management, i.e., Goal Management, Change Management,

and Component Control layers, are consistent with those of robot control architectures,

i.e., deliberate, sequencing, and reactive layers, respectively. This three-layer model

8

provides a good conceptual architecture that helps identify and organize the necessary

features for dynamic software adaptation.

4.1 Three-layer Architecture Example: SASSY Framework

Self-Architecting Software Systems (SASSY) is a model-driven framework for run-time

self-architecting and re-architecting of distributed service-oriented software systems

[20][21]. SASSY provides a uniform approach to automated composition, adaptation, and

evolution of software systems. SASSY provides mechanisms for self-architecting and

rearchitecting that determine the best architecture for satisfying functional and Quality of

Service (QoS) requirements. The quality of a given architecture is expressed by a utility

function, which is provided by end-users and represents one or more desirable system

objectives.

Figure 1 illustrates, at a high level, how SASSY uses the three layer architecture model

for self adaptation of SOA-based software. The self-architecting and re-architecting

component at the Goal Management layer generates a near-optimal system service

architecture, consisting of components, (associated with services) and connectors

(associated with middleware facilities), with respect to QoS requirements through

selection of the most suitable services. This architecture is determined with the help of

QoS analytical models and optimization techniques aimed at finding near-optimal choices

that maximize system utility [22].

9

The architecture is executed on top of SASSY run-time infrastructure support which is

composed of SASSY Monitoring Support and Adaptation Support in Figure 1. SASSY

Monitoring Support services (Monitoring Service and Gauge Service) generate triggers

that cause two kinds of self-adaptation, reactive adaptation and proactive adaptation. In

reactive adaptation, the Component Control layer quickly replaces services when they

fail. In proactive adaptation, the software architecture is automatically regenerated by the

Goal Management layer when the system utility degrades beyond a certain threshold.

SASSY Adaptation Support services (Change Management Service and Adaptation

Service) are used to transition from one version of the architecture to a new one. Thus,

when services are unable to meet their QoS goals, the SASSY’s monitoring services

trigger proactive adaptation through a new round of service discovery, optimal service

selection, and possible determination of alternative architectures.

SASSY Monitoring

Support

SASSY Adaptation

Support

Monitoring

Service

Gauge

Service

Change

Management

Service

Adaptation

Service

SASSY

Self-Architecting and Rearchitecting

Status

Plan Request

Change Actions

Change Plans

Goal

Management

Change

Management

Component

Control

Status

Figure 1 High-level view of SASSY framework

10

CHAPTER 5 SOFTWARE COORDINATION

In SOA applications, services are intended to be self-contained and loosely coupled, so

that dependencies between services are kept to a minimum. Instead of one service

depending on another, it is desirable to provide coordination services (coordinators) in

situations where multiple services need to be accessed and access to them needs to be

coordinated and/or sequenced. In SOA systems, this loose coupling is ensured by

separating the concerns of individual services from those of the coordinators, which

sequence the access to the individual services.

As there are many different types of service coordination, it is helpful to develop SOA

coordination patterns to capture the different kinds of coordination. In particular,

coordination can be categorized by the following three properties: 1) type of

coordination, 2) degree of concurrency, and 3) type of service. By characterizing the

behavioral and structural properties of these coordination patterns, it is possible to

analyze and estimate the possible adaptation paths of these patterns.

The type of coordination can be:

 Independent coordination - each coordinator instance operates independently of

other coordinators in its interactions with services. E.g., an airline coordination

11

service that contacts multiple airline services to offer travel alternatives to a

customer. There are many instances of this coordinator, one for each customer.

This is probably the most common form of coordinator in SOA.

 Distributed coordination – overall coordination of SOA application consists of

multiple coordinators that are distributed and need to cooperate with each other.

An example is an Emergency Response SOA where a city emergency coordinator

seeks help from a neighboring city emergency coordinator.

 Hierarchical coordination – overall coordination of SOA application is

hierarchical with a high-level coordinator making major decisions and assigning

more detailed coordination tasks to lower-level coordinators. During a hurricane,

regional emergency coordinators might sends requests for fire engine and

ambulance assistance to local city emergency coordinators.

Degree of concurrency can be:

 Sequential coordination – a coordinator interacts with multiple services

sequentially in order to achieve the overall service objective. For example, a

travel coordinator needs to first make an airline reservation and determine the

airline travel dates before making a hotel reservation.

 Concurrent coordination – a coordinator interacts with multiple services

concurrently in order to achieve the overall service objective, e.g., airline

coordination service that contacts multiple airline services to offer travel

alternative to a customer.

12

 Combined sequential and concurrent coordination – a coordinator does some

sequential coordination and some concurrent coordination. For example, a travel

coordinator needs to first make an airline reservation and determine the airline

travel dates before making hotel and car rental reservations, which can be made in

parallel.

Type of service can be:

 Stateless service – a service bases its response entirely on the request received.

 Stateful service – a service bases its response not only on the request received but

also on the current state of the service.

A given coordinator can be characterized by these three properties, for example an

independent coordinator that does concurrent coordination of stateful services. It is

possible for a coordinator to be state dependent if the coordination needs to follow a

specified sequence.

13

CHAPTER 6 SOFTWARE ADAPTATION PATTERNS

A software architecture is composed of distributed software architectural patterns, such as

client/server, master/slave, and distributed control patterns, which describe the software

components that constitute the pattern and their interconnections. For each of these

architectural patterns, there is a corresponding software adaptation pattern, which models

how the software components and interconnections can be changed under predefined

circumstances, such as replacing one client with another in a client/server pattern,

inserting a control component between two other control components in a distributed

control pattern, etc.

A software adaptation pattern defines how a set of components that make up an

architecture or design pattern dynamically cooperate to change the software configuration

to a new configuration given a set of adaptation commands. In terms of the three-layer

reference architecture described earlier, adaptation patterns correspond to the bottom

layer of a self-managed system, i.e., the component control layer, and they realize

dynamic adaptation by actually adding or deleting components (and appropriate

connectors if necessary) according to adaptation commands sent from the middle layer,

i.e., the change management layer. On the other hand, the goal management layer is in

charge of producing change management plans (to satisfy QoS goals) that are executed at

14

the change management layer. Thus, the focus in this thesis is mainly on the component

control layer for dynamic software adaptation.

A software adaptation pattern requires state- and scenario-based reconfiguration behavior

models to provide for a systematic design approach. The adaptation patterns are

described by adaptation interaction models (using communication or sequence diagrams)

and adaptation state machine models [6][8]. Previously developed adaptation patterns

include the Master-Slave Adaptation Pattern, Centralized Control Adaptation Pattern, and

Decentralized Control Adaptation Pattern [6].

6.1 Software Adaptation State Machines

An adaptation state machine defines the sequence of states a component goes through

from a normal operational state to a quiescent state. A component is in the Active state

when it is engaged in its normal application computations. A component is in the Passive

state when it is not currently engaged in a transaction it initiated, and will not initiate new

transactions. A component transitions to the Quiescent state when it is no longer

operational and its neighboring components no longer communicate with it. Once

quiescent, the component is idle and can be removed from the configuration, so that it

can be replaced with a different version of the component. Figure 2 shows the basic

adaptation state machine model for a component as it transitions from Active state to

Quiescent state. The adaptation framework sends a passive command to the component.

15

If the component is idle, it transitions directly to the quiescent state. However, if the

component is busy participating in a transaction, it transitions to the Passive state. When

the transaction is completed, it then transitions to the Quiescent state.

In previous research [6], the state machine for each component was modeled using two

orthogonal state machines, an operational state machine (modeling normal component

operation) and an adaptation (also referred to as reconfiguration) state machine.

However, for more complicated patterns, there is often some interaction between the two

state machines. This thesis investigates separating the operational state machine from the

adaptation state machine in service-oriented systems. The objective is to encapsulate the

adaptation state machine in the service connector (as discussed in the next section), such

that the adaptation patterns, as well as the corresponding code that realizes each pattern,

can be more reusable.

Generalized Adaptation

State Machine

PassiveActive Quiescent

Passivate
[Processing
Transaction]

Transaction
Ended

Passivate [Idle]

Reactivate

Figure 2 Basic adaptation state machine

16

6.2 Adaptation Connectors

In this thesis, adaptation connectors are introduced to encapsulate adaptation state

machine models so that adaptation patterns can be more reusable. The adaptation patterns

described in this thesis include two different types of adaptation connectors, coordinator

connector and service connector, as shown in Figure 3. A service adaptation connector

behaves as a proxy for a service, such that its clients can interact with the connector as if

it was the service. The goal of an adaptation connector is to separate the concerns of an

individual service from dynamic adaptation, i.e., the adaptation connector implements the

adaptation mechanism for its corresponding service, including the interaction with the

change management service (see next chapter) and the management of the operational

states of the service. The adaptation state machine for a given adaptation pattern is

encapsulated in the corresponding adaptation connector. In the following sections, the

adaptation state machines for SOA software adaptation patterns are described.

17

CHAPTER 7 SOA ADAPTATION PATTERNS

As described in Chapter 5, a coordination pattern can be characterized by the type of

coordination, the degree of concurrency, and the type of service. The following chapters

describe the adaptation patterns for the following coordination patterns:

1. Independent coordination of stateless services

a. Sequential coordination (Section 7.1.1)

b. Concurrent coordination (Section 7.1.2)

c. Combined sequential / concurrent coordination (Section 7.1.3)

2. Two-phase commit coordination (coordination of stateful services) (Section 7.2)

3. Hierarchical coordination (Section 7.3)

4. Distributed coordination (Section 7.4)

7.1 Independent Coordination Adaptation Patterns

This section considers independent coordination, which is a common form of

coordination in SOA. In the independent coordination pattern, a coordinator orchestrates

multiple services independently of other coordinators as shown in Figure 3. The

assumptions are as follows:

 A coordinator component is instantiated for each client.

18

 A client interacts with a coordinator using synchronous communication; thus, it

sends a new request only when it receives a response to its previous request.

 Services are stateless and independent of each other.

«connector»

: Service Connector

«connector»

: Service Connector

«connector»

: Coordinator

Connector

: Coordinator

: Service N

: Service 1

Sn6: Forward

Service Response

S13: Service Request

S16: Forward

Service Response
: Client

S1: Client Request

S8: Forward

Client Response

Sn3: Service Request

: Service Request

Buffer

: Service Stub

S2: Next

Client Request

S7: Client

Response

: Service Request

Queue

: Service Stub

: Service Request

Queue

: Service Stub

S14: Next

Service Request

S15: Service

Response

Sn4: Next

Service Request

Sn5: Service

Response

:

:

Figure 3 Independent coordination communication diagram

7.1.1 Sequential Coordination Adaptation Pattern

In a sequential coordination adaptation pattern for service-oriented architectures, multiple

services are sequentially invoked by a coordinator, e.g., airline reservation followed by

hotel reservation. Once the coordinator receives a client request for an application

service, it sends a service request to the first service to be invoked. The coordinator sends

another service request to the second service after receiving a response from the first

service. The coordinator sends a response to the client after a response from the last

19

service has been received. The communication diagram depicted in Figure 3 shows a

general case where a coordinator interacts with N services.

Based on the assumptions described earlier, the coordinator component can only be

removed or replaced after it has received all the responses from the services sequentially

invoked and sent its response to the client. On the other hand, a service can be removed

or replaced after it completes the current service execution in the case of a sequential

service, or after completing the current set of service executions in the case of a

concurrent service.

The coordinator connector executes its own operating state machine shown in Figure 4.

As mentioned in Section 7.1, the adaptation state machine for the coordinator is

encapsulated in the coordinator’s connector. The connector implements the dynamic

adaptation of the coordinator when it receives the Passivate adaptation command from

the change management service. In Figure 4, when the connector is Active (idle and not

executing a client command) and receives a Passivate command, it transitions to the

―Quiescent‖ state and sends a quiescent notification to the change management service.

When the connector is Active and receives a request from the client, it forwards the

request to the coordinator and transitions to the ―Waiting For Service Response‖ state,

which means that the coordinator is processing a request. If the connector receives a

Passivate command, it transitions to the ―Passivating‖ state in which the coordinator is

still interacting with the service to accomplish its transaction.

20

When the coordinator receives a response from the last service, it sends the client

response to the connector. The connector then transitions to the ―Quiescent‖ state; the

actions are to forward the response to the client, and to send a quiescent notification to

the change management service.

While in the quiescent state, the connector could receive a new request from the client,

which it puts into a request buffer. When the connector receives a Reactivate command, it

transitions to either the ―Waiting For Client Request‖ or the ―Waiting For Service

Response‖ state according whether or not there is a client request in the request buffer.

Coordinator Connector

State Machine

Active

S7: Client Response /
S8: Forward Client Response

S1: Client Request /
S2: Next Client Request

Activate
Waiting For

Client Response
Passivating

Passivate /
Send Quiescent Notification To Change Management Layer

S7: Client Response /
S8: Forward Client Response,
Send Quiescent Notification
To Change Management Layer

Passivate

S1: Client Request /
Put the request into
Buffer

Reactivate [Buffer is not empty] /
Send Gone Active Notification To Change Management Service,
S2: Next Client Request,
Clear Buffer

Reactivate [Buffer is empty] /
Send Gone Active Notification To Change Management Layer,

Quiescent
Waiting For

Client Request

Figure 4 Coordinator connector state machine

Figure 5 depicts the operating state machine executed by the service connector in the case

of a sequential service that has a single thread processing requests. As a service may have

multiple clients besides the coordinator, the service request queue has an important role

21

to buffer requests in a sequence. If a service request arrives in the ―Waiting For Service

Request‖ state, it is immediately forwarded to the service. In the ―Processing‖ and

―Passive‖ states, the connector queues service requests on the request queue. In other

words, clients can send requests to the service regardless of its state, because the

connector will queue service requests if necessary. If the change management service

sends a Passivate command to the connector, the connector will transition to Quiescent

state and continue to queue up any client requests that arrive. In Quiescent state, the

service can be replaced. When the newly replaced service becomes active, the connector

resumes sending client requests to the service, as depicted on the state machine shown in

Figure 5.

As a future work, the service connector could forward client requests to the newly

replaced service immediately after it would receive a Passivate command, without

waiting for the state machine to transition to Quiescent state.

Service Connector

State Machine

Active

Sx5: Service Response [q = 0] /
Sx6: Forward Service Response

Sx3: Service Request /
Sx4: Next Service Request

Activate

Processing

Sx3: Service Request /
q++

exit / q = 0

Waiting For

Service Request

Sx5: Service Response [q > 0] /
Sx6: Forward Service Response,
Sx4: Next Service Request,
q--

Passive

Passivate /
Send Quiescent Notification To Change Management Layer

Sx3: Service Request /
q++ Sx5: Service Response /

Sx6: Forward Service Response,
Send Quiescent Notification
To Change Management Layer

Passivate

Sx3: Service Request /
q++

Reactivate [q > 0] /
Send Gone Active Notification To Change Management Layer,
Sx4: Next Service Request,
q--

Reactivate [q = 0] /
Send Gone Active Notification To Change Management Layer

Quiescent

Figure 5 Service connector state machine for a sequential service

22

In the case of a concurrent service, the service connector executes the operating state

machine shown in Figure 6. Since services can be removed or replaced after completing

the current set of service executions, the state machine manages the number of requests

currently executed by the service by the variable t. Although a request is immediately

forwarded to the service in Active or Processing state, the connector still necessitates the

request queue because it cannot forward a new request to the service which is passive or

quiescent.

In the following adaptation patterns, this thesis considers only a concurrent service

because most of common service provider server implementations [27][28][33] support a

thread pool mechanism to provide concurrent services, and have a request queue to

handle the case where the number of incoming requests exceed the thread pool capacity.

Service Connector

State Machine

Active

Sx5: Service Response [t = 1] /
Sx6: Forward Service Response,
t = 0

Sx3: Service Request /
Sx4: Next Service Request,
t++

Activate
Processing

(0 < t)
exit / q = 0, t = 0

Waiting For

Service Request
Passive

Passivate /
Send Quiescent Notification To Change Management Layer

Sx3: Service Request /
q++

Sx5: Service Response [t = 1] /
Sx6: Forward Service Response,
t = 0,
Send Quiescent Notification
To Change Management LayerPassivate

Sx3: Service Request /
q++

Reactivate [q > 0] /
Send Gone Active Notification To Change Management Layer,
Sx4: Next Service Request {for each request in the queue},
t = q, q = 0

Reactivate [q = 0] /
Send Gone Active Notification To Change Management Layer

Quiescent

Sx5: Service Response [1 < t] /
Sx6: Forward Service Response,
t--

Sx5: Service Response [1 < t] /
Sx6: Forward Service Response,
t--

Sx3: Service Request /
Sx4: Next Service Request,
t++

Figure 6 Service connector state machine for a concurrent service

23

7.1.2 Concurrent Coordination Adaptation Pattern

In the concurrent coordination adaptation pattern, multiple services are invoked by a

coordinator concurrently. Once the coordinator receives a client request, it sends service

requests concurrently to all the services to be invoked. The coordinator sends a response

to the client after the responses from all the services have been received. Since this

pattern also involves independent coordination, the structural view of this pattern is the

same as Figure 3.

In this adaptation pattern, the operating state machine for the coordinator connector is

exactly the same as shown in Figure 4, because the coordinator connector determines

when the coordinator is in Quiescent state by monitoring only the message ―S7: Client

Response‖ from the coordinator.

The operating state machine for the service connector in the case of a sequential service

and a concurrent service are also the same as shown in Figure 5 and Figure 6,

respectively. As in the case of the coordinator connector, the service connector

determines when its corresponding service is in Quiescent state by monitoring only the

message ―Sx5: Service Response‖ sent from the service.

24

7.1.3 Combined Coordination Adaptation Pattern

For the combined sequential and concurrent coordination pattern described in Chapter 5,

the operating state machines for the coordinator and service connecters are the same as

those in the sequential and concurrent coordination patterns, for the same reasons

described in Section 7.1.2. Therefore, the adaptation connectors can be reused in the

independent coordination pattern, regardless of the coordinator’s degree of concurrency

(sequential, concurrent, or combined sequential/concurrent).

7.2 Two-Phase Commit Coordination Adaptation Pattern

This section describes the adaptation pattern for Two-Phase Commit Coordination, which

is a typical coordination of stateful services. Consider an example of a transfer

transaction between two bank accounts – e.g., from a savings account to a checking

account – in which the accounts are maintained at two separate banks (servers). In this

case, it is necessary to debit the savings account and credit the checking account.

Therefore, the transfer transaction consists of two operations that must be atomic (i.e.,

indivisible) – a debit operation and a credit operation – and the transfer transaction must

be either committed or aborted:

 Committed – both credit and debit operations occur.

 Aborted – neither the credit nor the debit operation occurs.

25

One way to achieve this result is to use the Two-Phase Commit Protocol, which

synchronizes updates on different nodes in a distributed application. The result of the

Two-Phase Commit Protocol is that either the transaction is committed (in which case all

updates succeed) or the transaction is aborted (in which case all updates fail).

The communication diagram in Figure 7 (or Figure 8) shows a general case where a

coordinator executes the Two-Phase Commit Protocol with N protocol participants

(services). The message exchange sequences in the cases of committed and aborted are

depicted in Figure 7 and Figure 8, respectively.

«connector»

: Service Connector

«connector»

: Service Connector

«connector»

: Coordinator Connector

: Coordinator

: Service N

: Service 1

: Client

T1: Client

Request

T14: Forward

Client Response Tn3: PrepareToCommit,

Tn8: Commit

: Service

Message Buffer

: Service Stub

T13: Client

Response

: Service

Message Queue

: Service Stub

: Service

Message Queue

: Service Stub

Tn7: Forward

ReadyToCommit,

Tn12: Forward

CommitCompleted

T2: Next

Client Request

T13: PrepareToCommit,

T18: Commit

T14: Forward

PrepareToCommit,

T19: Forward Commit

T15: ReadyToCommit,

T110: CommitCompleted

T16: ReadyToCommit,

T111: CommitCompleted

T17: Forward

ReadyToCommit,

T112: Forward

CommitCompleted

Tn6: ReadyToCommit,

Tn11: CommitCompleted

Tn4: Forward

PrepareToCommit,

Tn9: Forward Commit

Tn5: ReadyToCommit,

Tn10: CommitCompleted

:

:

Figure 7 Two-Phase Commit coordination communication diagram: committed case

26

T15A.2: Forward

RefuseToCommit,

T15A.7: Forward Aborted

«connector»

: Service Connector

«connector»

: Service Connector

«connector»

: Coordinator Connector

: Coordinator

: Service N

: Service 1

: Client

T1: Client

Request
: Service

Message Buffer

: Service Stub

: Service

Message Queue

: Service Stub

: Service

Message Queue

: Service Stub

T2: Next

Client Request

T13: PrepareToCommit,

T15A.3: Abort

T14: Forward

PrepareToCommit,

T15A.4: Forward Abort

T15A: UnableToCommit,

T15A.5: Aborted

T15A.1: RefuseToCommit,

T15A.6: Aborted

Tn3: PrepareToCommit,

Tn5A.3: Abort

Tn4: Forward

PrepareToCommit,

Tn5A.4: Forward Abort

Tn5: ReadyToCommit,

Tn5A.5: Aborted

Tn6: ReadyToCommit,

Tn5A.6: Aborted

Tn7: Forward

ReadyToCommit,

Tn5A.7: Forward Aborted

T5A.8: Client

Response

T5A.9: Forward

Client Response

:

:

Figure 8 Two-Phase Commit coordination communication diagram: aborted case

Once the coordinator receives a client request, it starts the Two-Phase Commit Protocol.

In the first phase, the coordinator sends a ―Tx3: PrepareToCommit‖ message to each

participant service. Each participant service locks the record, performs the transaction,

and then sends a ―Tx6: ReadyToCommit‖ message to the coordinator (Figure 7). If a

participant service is unable to perform the transaction, it sends a ―Tx5A.1:

RefuseToCommit‖ message (Figure 8). The coordinator waits to receive responses from

all participants.

When all participant services have responded, the coordinator proceeds to the second

phase of the Two-Phase Commit Protocol. If all participants have sent ―Tx6:

ReadyToCommit‖ messages (Figure 7), the coordinator sends the ―Commit‖ message to

each participant service. Each participant service makes the transaction permanent,

27

unlocks the record, and sends a ―Tx11: CommitCompleted‖ message to the coordinator.

The coordinator waits for all ―CommitCompleted‖ messages. The coordinator sends a

response to its client after all the messages have been received.

If a participant service responds to the ―PrepareToCommit‖ message with a

―ReadyToCommit‖ message, it is committed to completing the transaction. The

participant service must then complete the transaction even if a delay occurs (e.g., even if

it goes down after it has sent the ―ReadyToCommit‖ message). If, on the other hand, any

participant service responds to the ―PrepareToCommit‖ message with a

―RefuseToCommit‖ message, the coordinator sends an ―Tx5A.3: Abort‖ message to all

participants (Figure 8). The participants then roll back the transaction.

Based on the Two-Phase Commit Protocol described above, the coordinator component

can only be removed or replaced after it has received ―CommitCompleted‖ or ―Aborted‖

message from all the participant services and sent its response to the client. On the other

hand, a participant service can be removed or replaced after it completes the current

transaction of the protocol in the case of a sequential service, or after completing the

current set of transactions in the case of a concurrent service.

In the adaptation pattern for the Two-Phase Commit coordination, as shown in Figure 9,

the operating state machine for the coordinator connector is exactly the same as Figure 4

(only the labels for events and actions are changed according to the communication

28

diagrams in Figure 7 and Figure 8), because only the message ―T13: Client Response‖ or

―T5A.8: Client Response‖ determines when the coordinator goes to Quiescent state.

Coordinator Connector

State Machine

Active

Activate Waiting For

Service

Response

Passivating

Passivate /
Send Quiescent Notification To Change Management Layer

Passivate

Reactivate [Buffer is empty] /
Send Gone Active Notification To Change Management Layer

Waiting For

Client Request

T1: Client Request /
T2: Next Client Request

T13, T5A.8: Client Response /
T14, T5A.9: Forward Client Response

Reactivate [Buffer is not empty] /
Send Gone Active Notification To Change Management Layer,
T2: Next Client Request,
Clear Buffer

T13, T5A.8: Client Response /
T14, T5A.9: Forward Client Response,
Send Quiescent Notification To
Change Management Layer

T1: Client Request /
Put the request into
Buffer

Quiescent

Figure 9 Coordinator connector state machine

Figure 10 depicts the operating state machine executed by the service connector in the

case of a concurrent service that has multiple threads processing requests. The key idea

behind this state machine is that the connector monitors if its corresponding service is in

transactions of the Two-Phase Commit Protocol.

If a ―PrepareToCommit‖ message arrives in the ―Waiting For Service Request‖ state, it is

immediately forwarded to the service. The connector stays in the ―Processing‖ state, and

forwards intermediate messages such as ―ReadyToCommit‖, ―Commit‖,

―RefuseToCommit‖, and ―Abort‖, because the service is still in the transaction of the

Two-Phase Commit Protocol. The state machine manages the number of transactions

currently executed by the service by the variable t, because services can be removed or

29

replaced after completing the current set of transactions. Therefore, even if it receives

―CommitCompleted‖ or ―Aborted‖ message, it remains in the ―Processing‖ state if t > 1,

i.e., the service is still in other transactions.

If the connector receives a Passivate command from the change management service, the

connector transitions to the ―Passive‖ state. In the ―Passive‖ state, the connector queues

―PrepareToCommit‖ messages on the request queue. As in the ―Processing‖ state, the

connector forwards intermediate messages, and stays in the ―Passive‖ state. Furthermore,

the connector remains in the ―Passive‖ state if t > 1 even when it receives

―CommitCompleted‖ or ―Aborted‖ message. On the other hand, if t = 1 when the

connector receives ―CommitCompleted‖ or ―Aborted‖ message, it transitions to the

―Quiescent‖ state in which the service can be replaced, because the service is executing

no transactions of the Two-Phase Commit Protocol.

Note that the two-phase commit coordination adaptation pattern described in this section

can be extended to multiple-phase commit protocols such as a three-phase commit

protocol. Furthermore, this pattern can be extended to the case of session management

between a client and a service. In this case, the adaptation connector for such a stateful

service must monitor the message to initiate a new session and the final response to end

the session. To develop the adaptation state machine for the session management is a

future work.

30

Service Connector

State Machine

Active

Activate
Processing

(0 < t)
exit / q = 0, t = 0

Waiting For

Service Request
Passive

Passivate /
Send Quiescent Notification To Change Management Layer

Passivate

Reactivate [q = 0] /
Send Gone Active Notification To Change Management Layer

Tx3: PrepareToCommit /
Tx4: Fwd PrepareToCommit,
t++

Tx11: CommitCompleted [t = 1]/
Tx12: Fwd CommitCompleted,
t = 0

Tx5A.6: Aborted [t = 1] /
Tx5A.7: Fwd Aborted,
t = 0

Tx3: PrepareToCommit /
Tx4: Fwd PrepareToCommit,
t++

Tx3: PrepareToCommit /
q++

Tx11: CommitCompleted [t > 1] /
Tx12: Fwd CommitCompleted,
t--

Tx5A.6: Aborted [t > 1] /
Tx5A.7: Fwd Aborted,
t--

Tx11: CommitCompleted [t = 1] /
Tx12: Fwd CommitCompleted,
t = 0,
Send Quiescent Notification
To Change Management Layer

Tx3: PrepareToCommit /
q++

Tx5A.6: Aborted [t = 1] /
Tx5A.7: Fwd Aborted,
t = 0,
Send Quiescent Notification
To Change Management Layer

Reactivate [q > 0] /
Send Gone Active Notification To CM Layer,
Tx4: Fwd PrepareToCommit {for each request in Queue},
t = q, q = 0

Tx6: ReadyToCommit /
Tx7: Fwd ReadyToCommit

Tx8: Commit /
Tx9: Fwd Commit

Tx5A.1: RefuseToCommit /
Tx5A.2: Fwd RefuseToCommit

Tx5A.3: Abort /
Tx5A.4: Fwd Abort

Tx6: ReadyToCommit /
Tx7: Fwd ReadyToCommit

Tx8: Commit /
Tx9: Fwd Commit

Tx11: CommitCompleted [t > 1]/
Tx12: Fwd CommitCompleted,
t--

Tx5A.1: RefuseToCommit /
Tx5A.2: Fwd RefuseToCommit

Tx5A.3: Abort /
Tx5A.4: Fwd Abort

Tx5A.6: Aborted [t >1] /
Tx5A.7: Fwd Aborted,
t--

Quiescent

Figure 10 Service connector state machine for a concurrent service

7.3 Hierarchical Coordination Adaptation Pattern

This section describes the hierarchical coordination adaptation pattern for service-

oriented architectures. In the hierarchical coordination, a high-level coordinator

orchestrates lower-level coordinators, whereas each of the lower-level coordinators is

responsible for more detailed SOA coordination. The communication diagram depicted in

Figure 11 shows a general hierarchical coordination pattern where a higher-level parent

coordinator coordinates M lower-level child coordinators, each of which interacts with

multiple services. The assumptions are as follows:

 A parent coordinator is instantiated for each client.

 One or more child coordinators are instantiated for each parent coordinator.

31

 A client interacts with a coordinator using synchronous communication; thus, it

sends a new request only when it receives a response to its previous request.

«connector»

: CoordinatorConnector M

«connector»

: CoordinatorConnector 1

«connector»

: Coordinator Connector

: Parent

Coordinator

: Child M

Coordinator

: Child 1

Coordinator

: Client

S1: Client

Request

: Service Request

Buffer

: Service Stub

S2: Next

Client Request

: Service Request

Buffer

: Service Stub

: Service Request

Buffer

: Service Stub

«connector»

: Service Connector N

«connector»

: Service Connector 1

: Service N

: Service 1

: Service Request

Queue

: Service Stub

: Service Request

Queue

: Service Stub

S13: Child

Request

Sm8: Forward

Child Response

S18: Forward

Child Response

S10: Forward

Client Response

Sm3: Request
S9: Client

Response

S14: Next

Child Request

S17: Child

Response

Sm4: Next

Child Request

Sm7: Child

Response

S115: Service

Request

S116: Forward

Service Response

S1n5: Service Request

S1n6: Forward

Service Response

:

:

:

:

Figure 11 Hierarchical coordination communication diagram

Based on the assumptions mentioned above, the parent coordinator component can be

removed or replaced after it has received all the responses from the child coordinators

sequentially or concurrently invoked and sent its response to the client. A child

coordinator can be removed or replaced after it has received responses from all the

services invoked and sent it response to the parent coordinator. On the other hand, a

service can be removed or replaced after it completes the current service execution in the

case of a sequential service, or after completing the current set of service executions in

the case of a concurrent service.

32

Figure 12 and Figure 13 depict the operating state machines executed by the coordinator

connectors for the parent coordinator and the child coordinator, respectively. Except for

the labels for events and actions, these state machines are exactly the same as Figure 4,

because a coordinator connector determines when a coordinator is in Quiescent state by

monitoring only the final response from the coordinator.

For the same reasons as described in Section 7.1.3, the coordinator connectors can be

reused in the hierarchical coordination pattern, regardless of the coordinator’s degree of

concurrency (sequential, concurrent, or combined sequential/concurrent). Moreover, for

the same reasons, the coordinator connectors are reusable for multi-level hierarchical

coordination that has intermediate coordinators between the parent and child

coordinators.

Since services are coordinated by a child coordinator in the form of the independent

coordination pattern, the independent coordination adaptation patterns described in

Section 7.2 can also be applied to the adaptation for a service in the hierarchical

coordination pattern. If a child coordinator orchestrates stateful services by following the

Two-Phase Commit Protocol, the two-phase commit coordination adaptation pattern

described in Section 7.3 can be applied.

33

Parent Coordinator Connector

State Machine

Active

S9: Client Response /
S10: Forward Client Response

S1: Client Request /
S2: Next Client Request

Activate
Waiting For

Client Response
Passivating

Passivate /
Send Quiescent Notification To Change Management Layer

S9: Client Response /
S10: Forward Client Response,
Send Quiescent Notification
To Change Management Layer

Passivate

S1: Client Request /
Put the request into
Buffer

Reactivate [Buffer is not empty] /
Send Gone Active Notification To Change Management Service,
S2: Next Client Request,
Clear Buffer

Reactivate [Buffer is empty] /
Send Gone Active Notification To Change Management Layer

Quiescent
Waiting For

Client Request

Figure 12 Parent Coordinator connector state machine

Child Coordinator Connector

State Machine

Active

Activate

Passivating

Passivate /
Send Quiescent Notification To Change Management Layer

Passivate

Reactivate [Buffer is not empty] /
Send Gone Active Notification To Change Management Service,
Sm4: Next Child Request,
Clear Buffer

Reactivate [Buffer is empty] /
Send Gone Active Notification To Change Management Layer

Quiescent
Waiting For

Client Request

Sm7: Child Response /
Sm8: Forward Child Response,
Send Quiescent Notification
To Change Management Layer

Sm3: Child Request /
Put the request into
Buffer

Sm3: Child Request /
Sm4: Next Child Request

Sm7: Child Response /
Sm8: Forward Child Response

Waiting For

Child Response

Figure 13 Child Coordinator connector state machine

7.4 Distributed Coordination Adaptation Pattern

In the distributed coordination pattern, an SOA application consists of multiple

coordinators that are distributed and cooperate with each other. Figure 14 depicts a

communication diagram that shows a general case where Coordinator M asynchronously

sends a service request message ―A1: Request‖ to other coordinator L whereas

Coordinator M asynchronously receives another service request message ―B2: Request‖

34

from another coordinator N (Coordinators L and N could be identical). This section

makes the following assumptions:

 A coordinator can send a service request asynchronously to any other coordinator,

i.e., the coordinator can send, receive, and process other requests while it is

waiting for the response for an outstanding request it has sent to the other

coordinator.

 Service requests a certain coordinator receives are independent of each other.

Based on the assumptions described above, a coordinator component can only be

removed or replaced after

1. the coordinator has received all the responses for the requests it has sent to other

coordinators, and

2. the coordinator has processed all the requests, and has sent out the corresponding

responses to the requesters.

In other words, a coordinator can be removed or replaced only after completing the

transactions it participates in. A transaction that a coordinator participates in is defined as

either 1) the interval between a service request it sends and the corresponding response it

receives, or 2) the interval between a service request it receives and the corresponding

response it sends out. For example, Coordinator M in Figure 14 initiates a transaction by

sending a service request message ―A1: Request‖ to another Coordinator L. The

transaction completes when Coordinator M receives a response from Coordinator L.

Coordinator M participates in another transaction by receiving a service request message

35

from another Coordinator N. The transaction completes when Coordinator M sends a

response to Coordinator N. Note that, based on these assumptions, a coordinator can

initiate multiple transactions asynchronously and a coordinator can receive multiple

requests asynchronously.

«connector»

: Coordinator Connector N

«connector»

: Coordinator Connector L

: Coordinator

M
: Coordinator

N

B1: Request

B5: Forward Client Response

: Coordinator

L

B3: Next Client Request

A5: Response

B4: Client Response

A1: Request

A3: Next Request

A4: Response

«connector»

: Coordinator Connector M

: Service

Receive Buffer

: Service Send

Buffer

A6: Forward

Response

B2: Client Request

B6: Response

: Service

Request Queue

: Service

Receive Buffer

: Service Send

Buffer

: Service

Request Queue

: Service

Receive Buffer

: Service Send

Buffer

: Service

Request Queue

A2: Forward Request

¼

¼

Figure 14 Distributed coordination communication diagram

As shown in Figure 14, a coordinator connector is provided for each coordinator. Unlike

the adaptation patterns described in previous chapters, a coordinator connector in the

distributed coordination adaptation pattern captures and forwards all incoming and

outgoing messages for its corresponding coordinator so that the coordinator connector

can manage both 1) transactions the corresponding coordinator initiates and 2)

transactions the coordinator participates in by receiving service requests from other

coordinators.

36

The coordinator connector executes the operating state machine depicted in Figure 15.

The state machine manages the number of transactions the coordinator currently executes

by the variable t. When the connector is in the ―Idle‖ state and receives a ―A1: Request‖

message from its corresponding coordinator, it forwards the request to its destination

coordinator and transitions to the ―Processing‖ state, which means that the coordinator

has initiated a new transaction and is waiting for a response. On the other hand, when the

connector is in the ―Idle‖ state and receives a ―B1: Request‖ message from another

coordinator, it forwards the request to its corresponding coordinator and transitions to the

―Processing‖ state, which means, in this case, that the coordinator has participated in a

new transaction and is processing the request. While in the ―Processing‖ state, if the

coordinator receives more ―A1: Request‖ or ―B1: Request‖ message, it forwards the

request accordingly and increments the variable t.

When the connector is in the ―Processing‖ state and receives a Passivate command from

the change management service, it transitions to the ―Passivating‖ state in which the

corresponding coordinator is still waiting for responses and/or processing requests to

accomplish transactions. In the ―Passivating‖ state, the connector rejects any service

request message ―A1: Request‖ sent from its corresponding coordinator because the

coordinator will be removed or replaced and should not initiate any new transaction. On

the other hand, the connector could receive a new ―B1: Request‖ message from other

coordinator, which it queues the request on the service request queue.

37

Once the coordinator accomplishes all the transactions, the connector will transition from

the ―Passivating‖ to the ―Quiescent‖ state. The connector captures ―A5: Response‖ and

―B4: Response‖ messages and manages the number of transactions with the variable t to

decide when the coordinator accomplishes all the transactions, as shown in Figure 15.

While in the quiescent state, the connector rejects a new request from the corresponding

coordinator, whereas the connector queues a new request from other coordinator on the

service request queue.

Coordinator Connector M

State Machine

Passivating

Passivate /
Send Quiescent Notification To Change Management Service

Reactivate [q > 0] /
Send Gone Active Notification To Change Management Layer,
B3: Next Client Request {for each request in Queue},
t = q, q = 0

Reactivate [q = 0] /
Send Gone Active Notification To Change Management Layer

B2: Forward Client Request /
q++

A1: Request /
Reject Request

A5: Response [t > 0] /
A6: Forward Response,
t--

B4: Response [t > 0] /
B5: Forward Response,
t--

A5: Response [t = 1] /
A6: Forward Response, t = 0,
Send Quiescent Notification
To Change Management Layer

Quiescent

B4: Client Response [t = 1] /
B5: Forward Client Response, t = 0,
Send Quiescent Notification
To Change Management Layer B2: Client Request /

q++

Active

A5: Response [t > 1] /
A6: Forward Response,
t--

A1: Request /
A2: Forward Request,
t++Activate

B2: Client Request /
B3: Next Client Request,
t++

exit / q = 0,t = 0

Idle Passivate

B2: Client Request /
B3: Next Client Request,
t++

B4: Client Response [t > 1] /
B5: Forward Client Response,
t--

A1: Request /
A2: Forward Request,
t++

B4: Client Response [t = 1] /
B5: Forward Client Response,
t = 0

A5: Response [t = 1] /
A6: Forward Response,
t = 0

Processing

A1: Request /
Reject Request

Figure 15 Coordinator connector state machine

38

CHAPTER 8 SERVICE FAILURE ADAPTATION PATTERN

Software adaptation is triggered not only by planned software configuration change but

also by unexpected hardware/software failure in an SOA application. As a preliminary

research effort, this thesis considers the failure of a stateless service.

In a typical SOA computing environment, services are often provided by third-party

service providers whereas coordinators and connectors are developed in house.

Therefore, this chapter makes the following assumptions in addition to those mentioned

in Section 7.1:

 Services are stateless.

 A service can go down due to the failure of its provider server.

 The failure of a service is detected and notified by Monitoring service.

 Coordinators and adaptation connectors (coordinator and service connectors) are

reliable.

Since this thesis assumes only a service can fail, this chapter describes only the operating

state machine executed by a service connector in Figure 16, which is developed based on

the one depicted in Figure 6, which is for a concurrent service. In this case, the service

request queue has an important role to buffer requests in a sequence, not only because a

39

service may have multiple clients but also because the service may go down during its

processing of the requests. As shown in Figure 16, the connector not only forwards

requests it receives but also queues the requests on the request queue, even in the

―Waiting For Service Request‖ state or the ―Processing‖ state. A request in the queue is

removed when the connector receives its response from the service. Consequently, the

connector manages the number of requests being processed by the service by monitoring

the number of requests in the request queue.

When the failure of the corresponding service is detected, the connector transitions to the

―Failed‖ state, regardless of its current state (―Waiting For Service Request‖,

―Processing‖, or ―Passive‖). At this moment, the requests kept in the queue have not been

completed by the failed service. Therefore, once an alternative service is discovered, the

connector forwards the requests in the queue to the new service, and transitions to the

―Processing‖ state.

If a new service request arrives in the ―Failed‖ state, the connector queues the request on

the request queue. In other words, clients need not consider either the service failure or

the dynamic adaptation because the connector will queue service requests even in the

case of service failure.

40

Note that the service connector can be reused in the independent coordination pattern

regardless of the coordinator’s degree of concurrency (sequential, concurrent, or

combined sequential/concurrent) for the same reasons as described in Section 7.1.3.

Passive

Passivate /
Send Quiescent Notification To Change Management Layer

Sx3: Service Request /
Put Request into Queue

Sx5: Service Response [Queue.length = 1] /
Sx6: Forward Service Response,
Remove corresponding request from Queue
Send Quiescent Notification To
Change Management Layer

Sx3: Service Request /
Put Request into Queue

Reactivate [Queue.length > 0] /
Send Gone Active Notification To Change Management Layer,
Sx4: Next Service Request {for each request in Queue}

Reactivate [Queue.length = 0] /
Send Gone Active Notification To Change Management Layer

Quiescent

Sx5: Service Response [Queue.length > 1] /
Sx6: Forward Service Response,
Remove corresponding request from Queue

Failed

Failure Notification From Monitoring Service

Alternative Service Discovered [Queue.length > 0] /
Send Gone Active Notification to Change Management Layer,
Sx4: Next Service Request {for each request in Queue}

Sx3: Service Request /
Put Request into Queue

Alternative Service Discovered [Queue.length = 0] /
Send Gone Active Notification to Change Management Layer

Active

Sx5: Service Response [Queue.length = 1] /
Sx6: Forward Service Response,
Remove corresponding request from Queue

Sx3: Service Request /
Sx4: Next Service Request,
Put Request into Queue

Processing

Sx5: Service Response [Queue.length > 1] /
Sx6: Forward Service Response,
Remove corresponding request from Queue

Sx3: Service Request /
Sx4: Next Service Request,
Put Request into Queue

Waiting For

Service Request

Activate Passivate

Figure 16 Service connector state machine for a concurrent service

41

CHAPTER 9 IMPLEMENTATION OF ADAPTATION CONNECTOR

In Chapters 7 and 8, several adaptation state machines executed by adaptation connectors,

i.e. coordinator connectors and service connectors, are described according to the

coordination patterns and the consideration of service failure. If each of those state

machines would be implemented as an individual adaptation connector, it would need to

be carefully chosen, instantiated and deployed on an SOA runtime system according to

the coordination pattern and the type of service.

Furthermore, as mentioned in Section 6.2, an adaptation connector behaves as a proxy for

a service/coordinator. In other words, an adaptation connector must provide the same

interface as its corresponding service or coordinator (a list of operations with the

signature for each operation). In the case of Web Service, the interface of a service is

defined and advertised in the form of WSDL [29]. Therefore, it is possible to develop a

generator which automatically generates an adaptation connector from WSDL, although

users still need to carefully instantiate and deploy connectors generated according to

services.

In order for an adaptation connector to be practically usable, therefore, it must fulfill two

key requirements:

42

1. Be usable for any service, regardless of the interface that the service provides.

2. Be usable for any adaptation pattern, regardless of the type of coordination, the

degree of concurrency, and the type of service described in Chapter 5.

The following chapters discuss solutions to satisfy the two requirements.

9.1 General Interface of Adaptation Connectors

As mentioned in the previous section, an adaptation connector must provide the same

interface as its corresponding service or coordinator because it behaves as a proxy for the

service or coordinator. However, note that an adaptation connector just forwards

incoming and outgoing messages while managing the adaptation states by monitoring

them for their timing and direction. The signature of operations, therefore, does not

matter for the behavior of the adaptation state machines described in this thesis.

In this thesis, as described in Chapter 11, adaptation connectors are implemented using

the SOAP with Attachments API for Java (SAAJ) API [30][31], which allows a service

to accept any SOAP envelope, i.e., any request message. When a request message arrives,

the adaptation connector can handle the corresponding SOAP envelope as a Java object,

execute the adaptation state machine, and forward it to the designated service.

43

By implementing an adaptation connector as shown above, the first adaptation connector

implementation requirement can be satisfied, i.e., the adaptation connector can be usable

for any service regardless of its interface.

9.2 Integration of Adaptation State Machines

Different adaptation state machines are developed according to the coordination patterns

and consideration of service failure as described in Chapters 7 and 8. However, it is

noteworthy that all the state machines are similar to each other. As a matter of fact, those

state machines can be integrated as depicted in Figure 17, which satisfies the second

adaptation connector implementation requirement, i.e., the integrated adaptation

connector is usable for both coordinators and services, regardless of the type of

coordination, the degree of concurrency, and the type of service. Table 1 to 7 show the

message mapping between coordinator/service connector state machines in the adaptation

patterns and the integrated adaptation state machine in Figure 17.

First, a service connector can also be used for a coordinator. Even if a coordinator is

instantiated for each client which interacts with the coordinator using synchronous

communication, the Service Request Queue in the service connector can keep a new

request from the client in the Quiescent state. For example, Table 1 shows the message

mapping between the coordinator connector state machine (Figure 4) in the independent

coordination adaptation patterns and the integrated adaptation state machine in Figure 17.

44

By mapping messages according to this table, the integrated state machine can execute

exactly the same state transitions as the coordinator connector state machine in Figure 4.

That is, the integrated connector can also be used as the coordinator connector. The same

argument applies to parent and child coordinators in the Hierarchical Coordination

Adaptation pattern described in Section 7.4. Table 5 and 6 show the message mapping for

parent and child coordinator state machines in Figure 12 and 13, respectively.

Second, a stateless service can be considered as a special case of a stateful service. In the

case of a stateless service, there are two kinds of messages from the perspective of

adaptation connectors, 1) a request message from a client and 2) a response from the

corresponding service.

The adaptation connector transitions from Active to Passive to Quiescent states based on

the fact that 1) a request message initiates a new transaction the service participates in,

and 2) its response finishes the transaction. For example, in the independent coordination

adaptation patterns, messages received by a service connector in Figure 3 are categorized

as follows:

 ―Sx3: Service Request‖: 1) a request message from a client which initiates a new

transaction

 ―Sx5: Service Response‖: 2) a response from the service which finishes the

transaction

On the other hand, in the case of a stateful service, there are three kinds of messages, 1) a

request message from a client which initiates a new transaction, 2) intermediate messages

45

and responses, and 3) a final response from the service which finishes the transaction. For

example, in the two-phase commit coordination adaptation pattern, messages received by

a service connector in Figure 7 are categorized as follows:

 ―Tx3: PrepareToCommit‖: 1) a request message from a client which initiates a

new transaction

 ―Tx6: ReadyToCommit‖: 2) an intermediate response

 ―Tx8: Commit‖: 2) an intermediate message

 ―Tx11: CommitCompleted‖: 3) a final response from the service which finishes

the transaction

Thus, a stateless service is a special case of a stateful service where there is no exchange

of intermediate messages and responses. As a result, the adaptation state machines for

stateless services can be integrated into the state machine depicted in Figure 17. Table 4

show the message mapping for the stateless and stateful (two-phase commit) service

connector state machines in Figure 6 and 10, respectively. The implementation issue here

is that the integrated adaptation connector must distinguish the different kinds of

messages mentioned above. However, the adaptation connector should not depend on the

signature of operations provided by services due to the second adaptation connector

implementation requirement. The implementation for validation described in Chapter 11,

therefore, utilizes a SOAP header attached to a message indicating which kind of

message it is, as follows:

1) SOAP header element ―beginTransaction‖ in a request message indicates that the

message initiates a new transaction. Its response is to be intermediate.

46

2) SOAP header element ―intermediateTransaction‖ in a request message indicates

that the message is intermediate. Its response is also to be intermediate.

3) SOAP header element ―endTransaction‖ in a request message indicates that its

response finishes the transaction.

4) If no SOAP header elements are attached to a request message, the message is

considered to be for a stateless service.

For example, in the independent coordination adaptation patterns, no SOAP headers are

attached to messages because services are stateless. On the other hand, in the two-phase

commit coordination adaptation pattern, SOAP headers are attached to messages received

by a service connector in Figure 3 as follows:

 ―Tx3: PrepareToCommit‖: 1) SOAP header element ―beginTransaction‖ is

attached.

 ―Tx8: Commit‖: 3) SOAP header element ―endTransaction‖ is attached.

(Note that the two-phase commit coordination adaptation pattern has no messages that

SOAP header element ―intermediateTransaction‖ is attached to. A protocol with more

than two phases could have such messages.)

Third, by providing one more interface only for request messages outgoing from the

corresponding coordinator, the integrated adaptation connector can also support the state

machine depicted in Figure 15 for the Distributed Coordination Adaptation pattern. As

discussed in Section 7.4, the coordinator connector captures request messages not only

incoming from other coordinator but also outgoing from the corresponding coordinator.

47

By adding another interface to the adaptation connector for such outgoing messages, it

can distinguish between incoming messages and outgoing messages. Other adaptation

patterns simply do not use the interface. Table 7 shows the message mapping between the

coordinator connector state machine (Figure 15) in the distributed coordination

adaptation pattern and the integrated adaptation state machine in Figure 17.

Finally, this thesis assumes coordinators are reliable, i.e., only services can fail.

Therefore, the integrated adaptation connector executing the state machine in Figure 17

can be used for coordinators. (The adaptation connector assigned for a coordinator never

transitions to the ―Failed‖ state.) Table 8 shows the message mapping between the

coordinator connector state machine (Figure 16) in the service failure adaptation pattern

and the integrated adaptation state machine in Figure 17. Note that support for the failure

of stateful services is a future work.

48

Integrated Adaptation Connector

State Machine

Passivating

Passivate /
Send Quiescent Notification To Change Management Service

Reactivate [Queue.length > 0] /
Send Gone Active Notification To Change Management Layer,
Next Request {for each request in Queue}

Reactivate [Queue.length = 0] /
Send Gone Active Notification To Change Management Layer

Request /
Put Request
into Queue

Final Response [t > 0] /
Forward Response,
Remove corresponding
request from Queue

Final Response [Queue.length = 1] /
Forward Response,
Remove corresponding
request from Queue,
Send Quiescent Notification
To Change Management Layer

Quiescent

Request /
Put Request
into Queue

Active

Activate

Request /
Next Request,
Put Request into Queue

Passivate

Request /
Next Request,
Put Request into Queue

Final Response [Queue.length > 1] /
Forward Response,
Remove corresponding
request from Queue

Final Response [Queue.length = 1] /
Forward Response,
Remove corresponding
request from Queue

Processing

Failed

Intermediate Message /
Forward Message

Intermediate Message /
Forward Message

Alternative Service Discovered [Queue.length = 0]

Alternative Service Discovered [Queue.length > 0] /
Next Request {for each request in Queue}

Failure Notification From Monitoring Service

Request /
Put Request
into Queue

Waiting For

Request

Outgoing Request /
Reject

Outgoing Request /
Reject

Outgoing Request /
Next Outgoing Request,
Put Request into Queue

Outgoing Request /
Next Outgoing Request,
Put Request into Queue

Figure 17 Integrated adaptation state machine

Table 1 Message correspondence for Coordinator connector state machine in Figure

4

Coordinator Connector Integrated Adaptation Connector

S1: Client Request Request

S2: Next Client Request Next Request

S7: Client Response Final Response

S8: Forward Client Response Forward Response

Table 2 Message correspondence for Service connector state machine in Figure 6

Service Connector Integrated Adaptation Connector

Sx3: Service Request Request

Sx4: Next Service Request Next Request

Sx5: Service Response Final Response

Sx6: Forward Service Response Forward Response

49

Table 3 Message correspondence for Coordinator connector state machine in Figure

9

Coordinator Connector Integrated Adaptation Connector

T1: Client Request Request

T2: Next Service Request Next Request

T13, T5A.8: Client Response Final Response

T14, T5A.9: Forward Client Response Forward Response

Table 4 Message correspondence for Service connector state machine in Figure 10

Service Connector Integrated Adaptation Connector

Tx3: PrepareToCommit Request

Tx4: Fwd PrepareToCommit Next Request

Tx6: ReadyToCommit Intermediate Message

Tx7: Fwd ReadyToCommit Forward Message

Tx8: Commit Intermediate Message

Tx9: Fwd Commit Forward Message

Tx11: CommitCompleted Final Response

Tx12: Fwd CommitCompleted Forward Response

Tx5A.1: RefuseToCommit Intermediate Message

Tx5A.2: Fwd RefuseToCommit Forward Message

Tx5A.3: Abort Intermediate Message

Tx5A.4: Fwd Abort Forward Message

Tx5A.6: Aborted Final Response

Tx5A.7: Fwd Aborted Forward Response

Table 5 Message correspondence for Parent coordinator connector state machine in

Figure 12

Coordinator Connector Integrated Adaptation Connector

S1: Client Request Request

S2: Next Client Request Next Request

S9: Client Response Final Response

S10: Forward Client Response Forward Response

50

Table 6 Message correspondence for Child coordinator connector state machine in

Figure 13

Coordinator Connector Integrated Adaptation Connector

Sm3: Child Request Request

Sm4: Next Child Request Next Request

Sm7: Child Response Final Response

Sm8: Forward Child Response Forward Response

Table 7 Message correspondence for Coordinator connector state machine in Figure

15

Coordinator Connector Integrated Adaptation Connector

A1: Request Outgoing Request

A2: Forward Request Next Outgoing Request

A5: Response Final Response

A6: Forward Response Forward Response

B2: Client Request Request

B3: Next Client Request Next Request

B4: Client Response Final Response

B5: Forward Client Response Forward Response

Table 8 Message correspondence for Service connector state machine in Figure 16

Service Connector Integrated Adaptation Connector

Sx3: Service Request Request

Sx4: Next Service Request Next Request

Sx5: Service Response Final Response

Sx6: Forward Service Response Forward Response

51

CHAPTER 10 ADAPTIVE CHANGE MANAGEMENT

Adaptive change management is provided by a Change Management Model, which is

used to establish a region of quiescence [9] so that dynamic adaptation can take place.

For each adaptation pattern, the change management model describes a process for

controlling and sequencing the steps in which the configuration of components in the

pattern is changed from the old configuration to the new configuration. Thus, as stated

before, the middle layer of the three-layer model, i.e., change management layer, is

responsible in our approach for implementing the Change Management Model, and

controlling the adaptation process through adaptation commands. The adaptation

commands describe reconfiguration actions associated with user-required changes, which

are predefined as reconfiguration scenarios. The adaptation commands for SOA

applications are passivate, unlink, remove, create, link, activate, and reactivate, as

described in more detail below with the aid of an example. Note that remove and create

commands are not required for the adaptation of services provided by third parties.

10.1 Example of Dynamic Software Adaptation

As an example of dynamic software adaptation, consider an emergency response system

shown in Figure 18. The initial software configuration is shown in Figure 18a before

52

dynamic software adaptation, while the revised configuration after dynamic software

adaptation is shown in Figure 18b.The emergency system uses the independent,

sequential coordination pattern for coordination of the three services, Building Locator,

Occupancy Awareness, and Fire Station. In the example, Occupancy Awareness is to be

replaced by a more reliable service composition as depicted in Figure 18b.

The adaptation is triggered by the availability of Occupancy Awareness operating below

99.999%, which is specified as a QoS requirement. The Goal Management layer

determines a possible adaptation, which involves two potential Occupancy Awareness

services that are 99.0% available and could be mediated by a Fault Tolerant connector

[23] (Figure 18b). The Change Management layer then decides that the change involves

adding a second Occupancy Awareness service and the Fault Tolerant connector, which

invokes the two Occupancy Awareness services but forwards only the response of the

primary service back to the requester.

The Change Management (CM) layer controls and coordinates the dynamic adaptation,

and communicates this to the service connectors in the software configuration by sending

adaptation commands as follows:

1. CM sends a passivate command to Service Connector 2 for Occupancy

Awareness, so that the connector transitions to the quiescent state.

2. Upon transitioning to quiescent state, Service Connector 2 sends the quiescent

notification to CM. CM then sends an unlink command to Service Connector 2.

53

As a result, the interconnection between Service Connector 2 and Occupancy

Awareness is unlinked.

3. CM sends Link commands to connect Service Connector 2 with a new service

composition, which consists of the Fault Tolerant connector, Occupancy

Awareness 1, and Occupancy Awareness 2 (as shown in Figure 18b). In this case,

the Fault Tolerant connector has the responsibility to connect the two service

instances. Service Connector 2 and the Fault Tolerant connector are linked as the

Fault Tolerant connector provides a proxy interface for the Occupancy Awareness

service.

4. CM sends a reactivate command to Service Connector 2, which responds with a

Gone Active Notification and resumes forwarding service requests.

Client

Coordinator

Connector

911Dispatcher

Coordinator

Service

Connector1

Service

Connector2

Service

Connector3

Building

Locator

Occupancy

Awareness

Fire

Station

a) Initial software configuration

54

Client

Coordinator

Connector

911Dispatcher

Coordinator

Service

Connector1

Service

Connector2

Service

Connector3

Building

Locator

FaultTolerant

Connector

Fire

Station

Occupancy

Awareness1

Occupancy

Awareness2

a) Revised software configuration

Figure 18 Dynamic software adaptation in emergency response system

55

CHAPTER 11 VALIDATION OF SOA ADAPTATION PATTERNS

The SOA adaptation patterns described in Chapters 7 and 8 were validated through

simulation and prototype implementation using the emergency response system example

described in Chapter 10 and other examples. Note that in the validation by prototype

implementation, the integrated adaptation state machine in Figure 17 was implemented

and used as an adaptation connector for both coordinators and services for all the

adaptation patterns.

The validation consists of

1) executing the change management scenario,

2) performing the software adaptation from one configuration to another, and

3) resuming the application after the adaptation.

11.1 Validation by Simulation

The emergency response system example described in Chapter 10 was modeled using

XTEAM [24], which is an architectural modeling and analysis environment. XTEAM

provides a structural Architectural Description Language (ADL), xADL [25], with a

56

behavioral ADL, Finite State Processes (FSP) [26], to generate executable system

simulations.

In the emergency response system example, the validation used XTEAM to model the

system’s structure in xADL as shown in Figure 19, and the behavior of Coordinator and

Service Connectors by translating their state machines described in Figure 4-6 into

equivalent FSP models. In the simulation, as shown in Figure 19, the Change

Management layer was modeled as a component in xADL, which sends the adaptation

commands to the adaptation connectors by executing the change management scenario

described in Chapter 10. Since XTEAM does not currently support run-time dynamic

adaptation of the software architecture and executable simulation, the example was

simulated using behavioral adaptation (Chapter 3). Therefore, the Fault Tolerant

connector connecting the two Occupancy Awareness services was developed and

connected in advance with Service Connector 2 as shown in Figure 19, so that XTEAM

simulates execution of the unlink and link commands for the case of the Occupancy

Awareness service replacement.

The system’s simulation in XTEAM, generated from the xADL and FSP models, was

executed with the adaptation state machines described in Section 7.1 and the dynamic

software adaptation scenario described in Chapter 10. This scenario involves the service

connector state machine transitioning from Active to Passive to Quiescent states,

replacing one service with another, and then reactivating the service connector. A second

57

scenario was executed in which the coordinator was replaced. This scenario involves the

coordinator connector state machine transitioning from Active to Passive to Quiescent

states, replacing the coordinator, and then reactivating the coordinator connector.

For both the above two scenarios, the XTEAM simulation recorded the trace of FSP state

transitions for each xADL component in execution logs (see Appendices A and B).

Analysis of these logs showed that the three validation steps described in Chapter 11

were carried out as planned. Thus the validation demonstrates that the software

adaptation patterns and state machines described in this paper perform the desired

software adaptation while ensuring that the service-oriented application does not enter an

inconsistent state.

Figure 19 xADL model of emergency response system for simulation

58

11.2 Validation by Implementation

Since XTEAM does not support run-time dynamic change of software architecture and

executable simulation, the initial and revised software configurations in xADL and FSP

models are required to be implemented and deployed in advance, as explained in the

previous chapter. In addition to the XTEAM simulation, therefore, all the SOA

adaptation patterns described in Chapters 7 and 8 were implemented as a part of the

prototype of SASSY framework described in Section 4.1, using open-source SOA

frameworks, Eclipse Swordfish and Apache CXF.

Eclipse Swordfish [32] is an open-source, extensible ESB (Enterprise Service Bus), built

upon Apache ServiceMix [34]. The prototype of SASSY framework described in Section

4.1 is being developed on top of Swordfish which is based on OSGi [35] so that a

component newly generated by SASSY framework can be integrated into Swordfish at

runtime. In the SASSY framework prototype, the goal management and change

management layers are implemented and integrated into Swordfish framework as service

components, i.e., Self-Architecting and Reachitecting component, Gauge Service, and

Change Management Service. In addition, a coordinator generated as a part of a system

service architecture is deployed on Swordfish at runtime as a component. In the

emergency response system example, the 911 Dispatcher Coordinator is deployed on

Swordfish.

59

Apache CXF [33] is an open-source web-services framework which supports standard

APIs such as JAX-WS and JAX-RS as well as WS standards including SOAP, WSDL,

WS-Addressing, WS-Policy, etc. In the emergency response system example, the

Building Locator, Occupancy Awareness, and Fire Station services are implemented on

top of Apache CXF as if they are external services.

Unlike other SASSY services, the adaptation connector was implemented as an

independent web service on top of Apache CXF instead of Swordfish, because

Swordfish, as an ESB, doesn’t allow a component to dynamically change the service

(provider) it invokes. In other words, although Swordfish may change the service for the

component based on its service discovery, the component cannot change the service to

invoke by itself at runtime. The adaptation connector was implemented using SAAJ API,

a low-level Web-Service API so that it is reusable for any service as discussed in Chapter

9.

11.2.1 Validation of Independent Coordination Adaptation Patterns

In this chapter, the following three independent coordination adaptation patterns are

validated using the emergency response system example:

1. Sequential coordination adaptation pattern (Section 7.1.1)

2. Concurrent coordination adaptation pattern (Section 7.1.2)

3. Combined sequential / concurrent coordination adaptation pattern (Section 7.1.3)

60

Since the purpose of the implementation is to validate these adaptation patterns, the 911

Dispatcher Coordinator was manually implemented as a BPEL processe and deployed on

Apache ODE, an open source BPEL engine. Figure 20, 22, and 23 depict the coordination

logics for the 911 Dispatcher Coordinators which perform the above three coordination

patterns, respectively. In these figures, (a) shows the activity model of the coordination

logic whereas (b) shows the corresponding BPEL process as a screenshot of Eclipse

BPEL Designer [36].

Figure 20 shows sequential coordination in the BPEL process which invokes Building

Locator, Occupancy Awareness, and Fire Station services sequentially. On the other

hand, Figure 21 depicts a BPEL process for current coordination in which the elements of

invocation for the three services are put in a BPEL flow element. Figure 22 shows an

example of combined sequential and concurrent coordination, in which Occupancy

Awareness service and Fire Station service are invoked concurrently after Building

Locator is invoked and responded.

61

Receive

Request

Invoke

OccupancyAwareness

Service

Invoke

FireStation

Service

Reply

Invoke

BuildingLocator

Service

(a) Activity model (b) BPEL

Figure 20 Sequential coordination BPEL process

62

Receive

Request

Invoke

OccupancyAwareness

Service

Invoke

FireStation

Service

Reply

Invoke

BuildingLocator

Service

(a) Activity Model

(b) BPEL

Figure 21 Concurrent coordination BPEL process

63

Receive

Request

Invoke

OccupancyAwareness

Service

Invoke

FireStation

Service

Reply

Invoke

BuildingLocator

Service

(a) Activity Model (b) BPEL

Figure 22 Combined sequential / concurrent coordination BPEL process

Since Apache CXF runtime runs a web service as a concurrent service by default (a

thread is assigned to a request to be processed), this validation considers only the case of

the service connector state machine for a concurrent service depicted in Figure 6.

64

This implementation executed the adaptation state machines described in Figure 6 and the

dynamic software adaptation scenario described in Chapter 10. As the simulation

described in the previous chapter, this scenario involves the service connector state

machine transitioning from Active to Passive to Quiescent states, replacing one service

with another, and then reactivating the service connector. A second scenario was

executed in which the coordinator was replaced.

For each of the three independent coordination implementations, the result of the

execution showed that the three validation steps described in Chapter 11 were carried out

as planned. For example, Figure 23 shows the execution log of Service Connector 2 in

the emergency response system, in the first scenario where one service was replace with

another. Figure 24 shows the execution log of Coordinator Connector in the second

scenario where the coordinator was replaced. Thus the validation demonstrates that the

independent coordination adaptation patterns and state machines described in Section 7.1

perform the desired software adaptation while ensuring that the service-oriented

application does not enter an inconsistent state.

65

Figure 23 Execution log of Service Connector 2 in emergency response system

Figure 24 Execution log of Coordinator Connector in emergency response system

11.2.2 Validation of Two-phase Commit Coordination Adaptation Pattern

This section validates the two-phase commit coordination adaptation pattern described in

Section 7.2. A general service following the Two-phase Commit Protocol was

66

implemented in such a way that the service randomly responses either

―ReadyToCommit‖ or ―RefuseToCommit‖ for a ―PrepareToCommit‖ request message.

Figure 25 depicts the activity model of an independent coordinator implemented as a

BPEL process shown in Figure 26, which coordinates three of the above stateful service

instantiated. As shown in the figures, the three services are concurrently invoked in each

phase.

This implementation executed the adaptation state machines in Figure 9 and Figure 10.

The executions traces of the service connectors are almost the same as Figure 23 except

for the fact that they did not transition to Passive or Quiescent state even when they

received intermediate messages. On the other hand, the execution log of the coordinator

connector is the same as Figure 24. Thus, the result of execution showed that the three

validation steps described in Chapter 11 were performed as planned. Particularly for an

adaptation of a service replacement, when a passivate command was sent, the adaptation

connector didn’t transition to the Quiescent state until it received ―CommitCompleted‖ or

―Aborted‖ message.

67

Receive

Request

Reply

Invoke

PrepareToCommit

on Service1

Invoke

PrepareToCommit

on Service2

Invoke

PrepareToCommit

on Service3

Invoke

Commit

on Service1

Invoke

Commit

on Service2

Invoke

Commit

on Service3

Invoke

Abort

on Service1

Invoke

Abort

on Service2

Invoke

Abort

on Service3

Figure 25 Activity model of the Two-phase commit coordination BPEL process

68

Figure 26 Two-phase commit coordination BPEL process

11.2.3 Validation of Hierarchical Coordination Adaptation Pattern

This section validates the hierarchical coordination adaptation pattern described in

Section 7.3. In this validation, three of the implementation of emergency response system

example described in Section 11.2.1 were instantiated as shown in Figure 27. The 911

Dispatcher Coordinator for each instantiation corresponds to one of the child coordinators

69

in Figure 11. On the other hand, a parent coordinator was implemented in the same way

as shown in Figure 20, 22, and 23. As a result, in the execution of this implementation,

the three validation steps described in Chapter 11 were carried out as planned. The

execution traces of the parent and child coordinators are the same as Figure 24. The

adaptation connector for a child coordinator to be replaced transitioned to the Quiescent

state only after it received responses from all the services, whereas the adaptation

connector for the parent coordinator was replaced after all the child coordinators

responded and the parent coordinator sent a response to the client. The whole SOA

application was resumed after the adaptation.

70

Coordinator

Connector1

911Dispatcher

Coordinator1

Service

Connector11

Service

Connector12

Service

Connector13

Building

Locator1

Occupancy

Awareness1

Fire

Station1

Client

Coordinator

Connector2

911Dispatcher

Coordinator2

Service

Connector21

Service

Connector22

Service

Connector23

Building

Locator2

Occupancy

Awareness2

Fire

Station2

Coordinator

Connector3

911Dispatcher

Coordinator3

Service

Connector31

Service

Connector32

Service

Connector33

Building

Locator3

Occupancy

Awareness3

Fire

Station3

Parent

Coordinator

Coordinator

Connector

Figure 27 Hierarchical coordination in emergency response system

11.2.4 Validation of Distributed Coordination Adaptation Pattern

In this chapter, the distributed coordination adaptation pattern described in Section 7.4 is

validated. As in the validation for the hierarchical coordination adaptation pattern, three

of the implementation of emergency response system example described in Section

11.2.1 were instantiated as shown in Figure 28 in this validation. However, each 911

71

Dispatcher Coordinator was changed to be a distributed coordinator as a multi-threaded

concurrent service as follows:

 Threads are assigned to incoming requests for the 911 Dispatcher coordination

logic as long as they are available in the Swordfish thread pool.

 Two more threads are created, each of which sends a request to other distributed

911 Dispatcher Coordinator repeatedly in a random period.

 If a request is rejected by the corresponding adaptation connector, the coordinator

shuts down its execution because it is removed or replaced for adaptation.

As a result, three instances of the distributed version of 911 Dispatcher Coordinator send

requests to each other asynchronously while they coordinate the three services in their

domains upon the requests.

911Dispatcher

Coordinator1

Service

Connector11

Service

Connector12

Service

Connector13

Building

Locator1

Occupancy

Awareness1

Fire

Station1

911Dispatcher

Coordinator2

Service

Connector21

Service

Connector22

Service

Connector23

Building

Locator2

Occupancy

Awareness2

Fire

Station2

911Dispatcher

Coordinator3

Service

Connector31

Service

Connector32

Service

Connector33

Building

Locator3

Occupancy

Awareness3

Fire

Station3

Coordinator

Connector1

Coordinator

Connector2

Coordinator

Connector3

Figure 28 Distributed coordination in emergency response system

The result of execution of this implementation showed that the three validation steps

described in Chapter 11 were carried out as planned. Figure 29 shows the execution log

72

of one of the coordinator connectors in the distributed coordination. As shown in the

figure, the adaptation connector for a distributed coordinator to be replaced transitioned

to the Quiescent state only after it finished all transactions it participated in. Either in the

Passivating state or the Quiescent state, the adaptation connector rejected a request

message sent by the coordinator, which shut down its execution.

Figure 29 Execution log of Coordinator Connector in distributed coordination

11.2.5 Validation of Service Failure Adaptation Pattern

In this chapter, the service failure adaptation pattern described in Chapter 8 is validated

as a part of the validation of SASSY framework. As described in Section 4.1, one of the

73

goals of SASSY framework is to support reactive adaptation, i.e., quick service failure

recovery. In the SASSY framework prototype described in Section 11.2, therefore, the

service failure detection and an alternative service discovery features were added to the

adaptation connector, which monitors the connection established with a corresponding

service/coordinator. If the connection is broken, the adaptation connector decides that the

corresponding service/coordinator fails. It then attempts to find an alternative service via

Swordfish Service Registry while it executes the adaptation state machine depicted in

Figure 16.

This validation is based on the following scenario in the emergency response system

example in Figure 18. First, Service Connector 2 performs the reactive adaptation by

detecting the service failure of Occupancy Awareness. The adaptation connector quickly

performs service replacement by discovering an alternative Occupancy Awareness

service. Note that the software configuration after the reactive adaptation is the same as

shown in Figure 18b. Second, the proactive adaptation scenario described in Section 10.1

is triggered based on the availability of the newly discovered Occupancy Awareness

operating below 99.999%, which is specified as a QoS requirement.

The SASSY prototype with the emergency response system implementation executed the

quick service failure recovery and dynamic software adaptation scenario described in

Section 10.1. Service Connector 2 detected a service failure of Occupancy Awareness

which was manually caused by network disconnection. While in the ―Failed‖ state in

74

Figure 16, the service connector then replaced the failed service with an alternative

Occupancy Awareness service discovered via Swordfish Service Registry. Upon

notification, the SASSY self-architecting and re-architecting component generated a new

software architecture involving the Fault Tolerant connector described in Section 10.1,

which was implemented as an independent Apache CXF service in this example. When

Change Management Service receives the newly generated architecture, it 1) extracts the

difference between the new architecture and the original one, 2) instantiates and deploys

the Fault Tolerant Connector, 3) generates a sequence of adaptation commands described

in Section 10.1, and 4) sends the commands to Service Connector 2. As a result, the

adaptation connector transitions from Active to Passive to Quiescent as designed in

Figure 16. Note that Link command was skipped since there is no notion of ―link‖ in this

Web-service based implementation.

The validation consisted of 1) performing the quick service failure recovery, 2) executing

the change management scenario, 3) performing the software adaptation from one

configuration to another, and 4) resuming the application after the adaptation. The result

of the execution of the implementation showed that the above four steps were carried out

as planned. Figure 30 shows the execution trace of Service Connector 2 in the emergency

response system in the above scenario including the service failure recovery of

Occupancy Awareness service. Thus the validation demonstrates that the service failure

adaptation pattern and the state machine described in Chapter 8 is integrated in the

SASSY three-layer architecture, and perform the desired reactive and proactive

75

adaptation while ensuring that the service-oriented application does not enter an

inconsistent state.

Figure 30 Execution log of Service Connector 2 in emergency response system

76

CHAPTER 12 CONCLUSIONS

This thesis has described how software adaptation patterns can be used in service

oriented architectures to dynamically adapt coordinators and services at run-time. SOA

adaptation patterns have been developed according to SOA coordination patterns in

which coordinators can be independent, distributed, or hierarchical, and services can be

stateless or stateful following the Two-phase Commit Protocol. The adaptation patterns

are described by adaptation interaction models and adaptation state machine models

encapsulated in adaptation connectors (coordinator connectors and service connectors).

The SOA adaptation patterns are described in terms of a three-layer reference architecture

for self-management. The patterns execute at the lowest level, the component control

layer. The Change Management Service executes at the second layer, sending change

management commands to initiate the coordinator and/or service adaptation.

The contributions of this thesis include

1. SOA adaptation patterns: the adaptation patterns have been developed for SOA

coordination patterns, i.e., independent coordination, two-phase commit

coordination, hierarchical coordination, and distributed coordination patterns.

77

2. Introduction of adaptation connectors: adaptation connectors encapsulate the

adaptation state machines for a given adaptation pattern to separate the concerns

of an individual service from software adaptation. As a result, the SOA adaptation

patterns described in this thesis are reusable regardless of the implementation of

coordinators and services.

3. Integration of adaptation state machines: this thesis has shown the integrated

adaptation connector which is usable for any SOA coordination pattern described

in this thesis, by the thorough study of software adaptation for all the coordination

patterns.

Future work will consist of investigating performance issues of dynamic adaptation for

service-oriented architectures, developing additional adaptation patterns, and considering

the failure of stateful services. Future research also includes the change management

layer which automatically generates a sequence of adaptation commands by extracting

the difference between new software architecture and original one.

78

APPENDIX A

The extract of the XTEAM simulation log for the first adaptation scenario, i.e.,

Occupancy Awareness service replacement:

:
ServiceConnector1_000000ac : 0 transitioning to process IDLE at

time 508

ChangeManagement_0000010b sent CMCommand at time 622

ChangeManagement_0000010b : 0 transitioning to process

HANDLEINPUTS at time 622

ServiceConnector1_000000ac received CMCommand at time 622

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSCOMMAND at time 622

ChangeManagement_0000010b : 0 transitioning to process IDLE at

time 623

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSPASSIVATE at time 623

ServiceConnector1_000000ac : 0 transitioning to process PASSIVE

at time 624

ServiceConnector1_000000ac : 0 transitioning to process

HANDLEINPUTS at time 625

ServiceConnector1_000000ac : 0 transitioning to process IDLE at

time 626

OccupancyAwarenessService_00000008 sent Message at time 706

OccupancyAwarenessService_00000008 : 0 transitioning to process

WAIT at time 706

ServiceConnector1_000000ac received Message at time 706

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSSERVICERESPONSE at time 706

OccupancyAwarenessService_00000008 : 0 transitioning to process

IDLE at time 707

ServiceConnector1_000000ac : 0 transitioning to process

FORWARDING SERVICE RESPONSE IN PASSIVE at time 707

ServiceConnector1_000000ac sent Message at time 708

ServiceConnector1_000000ac : 0 transitioning to process SENDING

QUIESCENT NOTIFICATION TO ADAPTATION SERVICE IN PASSIVE at time

708

Coordinator_00000003 received Message at time 708

Coordinator_00000003 : 0 transitioning to process INVOKESERVICE2

at time 708

Coordinator_00000003 sent Message at time 708

Coordinator_00000003 : 0 transitioning to process HANDLEINPUTS at

time 708

ServiceConnector2_0000013a received Message at time 708

79

ServiceConnector2_0000013a : 0 transitioning to process

PROCESSSERVICEREQUEST at time 708

ServiceConnector1_000000ac sent CMNotification at time 709

ServiceConnector1_000000ac : 0 transitioning to process QUIESCENT

at time 709

Coordinator_00000003 : 0 transitioning to process IDLE at time

709

ServiceConnector2_0000013a : 0 transitioning to process SENDING

NEXT SERVICE REQUEST at time 709

ChangeManagement_0000010b received CMNotification at time 709

ChangeManagement_0000010b : 0 transitioning to process

PROCESSNOTIFICATION at time 709

ServiceConnector1_000000ac : 0 transitioning to process

HANDLEINPUTS at time 710

ServiceConnector2_0000013a sent Message at time 710

ServiceConnector2_0000013a : 0 transitioning to process

PROCESSING at time 710

ChangeManagement_0000010b : 0 transitioning to process SENDING

UNLINK at time 710

BusinessService2_00000126 received Message at time 710

BusinessService2_00000126 : 0 transitioning to process INPUT at

time 710

ServiceConnector1_000000ac : 0 transitioning to process IDLE at

time 711

ServiceConnector2_0000013a : 0 transitioning to process

HANDLEINPUTS at time 711

ServiceConnector2_0000013a : 0 transitioning to process IDLE at

time 712

BusinessService2_00000126 sent Message at time 715

BusinessService2_00000126 : 0 transitioning to process WAIT at

time 715

ServiceConnector2_0000013a received Message at time 715

ServiceConnector2_0000013a : 0 transitioning to process

PROCESSSERVICERESPONSE at time 715

BusinessService2_00000126 : 0 transitioning to process IDLE at

time 716

ServiceConnector2_0000013a : 0 transitioning to process

FORWARDING SERVICE RESPONSE IN PROCESSING at time 716

ServiceConnector2_0000013a sent Message at time 717

ServiceConnector2_0000013a : 0 transitioning to process WAITING

FOR SERVICE REQUEST at time 717

Coordinator_00000003 received Message at time 717

Coordinator_00000003 : 0 transitioning to process INVOKESERVICE3

at time 717

Coordinator_00000003 sent Message at time 717

Coordinator_00000003 : 0 transitioning to process HANDLEINPUTS at

time 717

ServiceConnector3_0000017d received Message at time 717

80

ServiceConnector3_0000017d : 0 transitioning to process

PROCESSSERVICEREQUEST at time 717

ServiceConnector2_0000013a : 0 transitioning to process

HANDLEINPUTS at time 718

Coordinator_00000003 : 0 transitioning to process IDLE at time

718

ServiceConnector3_0000017d : 0 transitioning to process SENDING

NEXT SERVICE REQUEST at time 718

ServiceConnector2_0000013a : 0 transitioning to process IDLE at

time 719

ServiceConnector3_0000017d sent Message at time 719

ServiceConnector3_0000017d : 0 transitioning to process

PROCESSING at time 719

BusinessService3_00000130 received Message at time 719

BusinessService3_00000130 : 0 transitioning to process INPUT at

time 719

ServiceConnector3_0000017d : 0 transitioning to process

HANDLEINPUTS at time 720

ServiceConnector3_0000017d : 0 transitioning to process IDLE at

time 721

BusinessService3_00000130 sent Message at time 724

BusinessService3_00000130 : 0 transitioning to process WAIT at

time 724

ServiceConnector3_0000017d received Message at time 724

ServiceConnector3_0000017d : 0 transitioning to process

PROCESSSERVICERESPONSE at time 724

BusinessService3_00000130 : 0 transitioning to process IDLE at

time 725

ServiceConnector3_0000017d : 0 transitioning to process

FORWARDING SERVICE RESPONSE IN PROCESSING at time 725

ServiceConnector3_0000017d sent Message at time 726

ServiceConnector3_0000017d : 0 transitioning to process WAITING

FOR SERVICE REQUEST at time 726

Coordinator_00000003 received Message at time 726

Coordinator_00000003 : 0 transitioning to process RESPONDCLIENT

at time 726

ServiceConnector3_0000017d : 0 transitioning to process

HANDLEINPUTS at time 727

ServiceConnector3_0000017d : 0 transitioning to process IDLE at

time 728

Coordinator_00000003 sent Message at time 736

Coordinator_00000003 : 0 transitioning to process IDLE at time

736

CoordinatorConnector_000001f7 received Message at time 736

CoordinatorConnector_000001f7 : 0 transitioning to process

PROCESSSERVICERESPONSE at time 736

CoordinatorConnector_000001f7 : 0 transitioning to process

FORWARDING SERVICE RESPONSE IN PROCESSING at time 737

81

CoordinatorConnector_000001f7 sent Message at time 738

CoordinatorConnector_000001f7 : 0 transitioning to process

WAITING FOR SERVICE REQUEST at time 738

Client_00000039 received Message at time 738

Client_00000039 : 0 transitioning to process FINAL at time 738

CoordinatorConnector_000001f7 : 0 transitioning to process

HANDLEINPUTS at time 739

Client_00000039 : 0 transitioning to process SENDREQUEST at time

739

CoordinatorConnector_000001f7 : 0 transitioning to process IDLE

at time 740

Client_00000039 sent Message at time 740

Client_00000039 : 0 transitioning to process HANDLEINPUTS at time

740

CoordinatorConnector_000001f7 received Message at time 740

CoordinatorConnector_000001f7 : 0 transitioning to process

PROCESSSERVICEREQUEST at time 740

Client_00000039 : 0 transitioning to process IDLE at time 741

CoordinatorConnector_000001f7 : 0 transitioning to process

SENDING NEXT SERVICE REQUEST at time 741

CoordinatorConnector_000001f7 sent Message at time 742

CoordinatorConnector_000001f7 : 0 transitioning to process

PROCESSING at time 742

Coordinator_00000003 received Message at time 742

Coordinator_00000003 : 0 transitioning to process INVOKESERVICE1

at time 742

Coordinator_00000003 sent Message at time 742

Coordinator_00000003 : 0 transitioning to process HANDLEINPUTS at

time 742

ServiceConnector1_000000ac received Message at time 742

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSSERVICEREQUEST at time 742

CoordinatorConnector_000001f7 : 0 transitioning to process

HANDLEINPUTS at time 743

Coordinator_00000003 : 0 transitioning to process IDLE at time

743

ServiceConnector1_000000ac : 0 transitioning to process

INCREMENTINGQ IN QUIESCENT at time 743

CoordinatorConnector_000001f7 : 0 transitioning to process IDLE

at time 744

ServiceConnector1_000000ac : 0 transitioning to process QUIESCENT

at time 744

ServiceConnector1_000000ac : 0 transitioning to process

HANDLEINPUTS at time 745

ServiceConnector1_000000ac : 0 transitioning to process IDLE at

time 746

ChangeManagement_0000010b sent CMCommand at time 1210

82

ChangeManagement_0000010b : 0 transitioning to process SENDING

LINK at time 1210

ServiceConnector1_000000ac received CMCommand at time 1210

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSCOMMAND at time 1210

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSUNLINK at time 1211

ServiceConnector1_000000ac : 0 transitioning to process

HANDLEINPUTS at time 1212

ServiceConnector1_000000ac : 0 transitioning to process IDLE at

time 1213

ChangeManagement_0000010b sent CMCommand at time 1710

ChangeManagement_0000010b : 0 transitioning to process SENDING

REACTIVATE at time 1710

ServiceConnector1_000000ac received CMCommand at time 1710

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSCOMMAND at time 1710

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSLINK at time 1711

ServiceConnector1_000000ac : 0 transitioning to process

HANDLEINPUTS at time 1712

ServiceConnector1_000000ac : 0 transitioning to process IDLE at

time 1713

ChangeManagement_0000010b sent CMCommand at time 2210

ChangeManagement_0000010b : 0 transitioning to process

HANDLEINPUTS at time 2210

ServiceConnector1_000000ac received CMCommand at time 2210

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSCOMMAND at time 2210

ChangeManagement_0000010b : 0 transitioning to process IDLE at

time 2211

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSREACTIVATE at time 2211

ServiceConnector1_000000ac : 0 transitioning to process SENDING

GONE ACTIVE NOTIFICATION TO ADAPTATION SERVICE at time 2212

ServiceConnector1_000000ac sent CMNotification at time 2213

ServiceConnector1_000000ac : 0 transitioning to process SENDING

NEXT SERVICE REQUEST IN QUIESCENT at time 2213

ChangeManagement_0000010b received CMNotification at time 2213

ChangeManagement_0000010b : 0 transitioning to process

PROCESSNOTIFICATION at time 2213

ServiceConnector1_000000ac : 0 transitioning to process SEND NEXT

NEWSERVICE REQUEST IN QUIESCENT at time 2214

ChangeManagement_0000010b : 0 transitioning to process

HANDLEINPUTS at time 2214

ServiceConnector1_000000ac sent Message at time 2215

ServiceConnector1_000000ac : 0 transitioning to process

DECREMENTINGQ IN QUIESCENT at time 2215

83

ChangeManagement_0000010b : 0 transitioning to process IDLE at

time 2215

FaultTolerantService_000001d4 received Message at time 2215

FaultTolerantService_000001d4 : 0 transitioning to process INPUT

at time 2215

ServiceConnector1_000000ac : 0 transitioning to process

PROCESSING at time 2216

ServiceConnector1_000000ac : 0 transitioning to process

HANDLEINPUTS at time 2217

ServiceConnector1_000000ac : 0 transitioning to process IDLE at

time 2218

FaultTolerantService_000001d4 sent Message at time 2220

:

84

APPENDIX B

The extract of the XTEAM simulation log for the second adaptation scenario, i.e., the

coordinator replacement case:

:
ChangeManagement_0000010b sent CMCommand at time 621

ChangeManagement_0000010b : 0 transitioning to process

HANDLEINPUTS at time 621

ServiceConnector1_0000024f : 0 transitioning to process SENDING

NEXT SERVICE REQUEST at time 621

Coordinator_000002bc : 0 transitioning to process IDLE at time

621

CoordinatorConnector_000001f7 : 0 transitioning to process

HANDLEINPUTS at time 621

CoordinatorConnector_000001f7 received CMCommand at time 621

CoordinatorConnector_000001f7 : 1 transitioning to process

PROCESSCOMMAND at time 621

ChangeManagement_0000010b : 0 transitioning to process IDLE at

time 622

CoordinatorConnector_000001f7 : 0 transitioning to process IDLE

at time 622

ServiceConnector1_0000024f sent Message at time 622

ServiceConnector1_0000024f : 0 transitioning to process

PROCESSING at time 622

BusinessService1_00000008 received Message at time 622

BusinessService1_00000008 : 0 transitioning to process INPUT at

time 622

CoordinatorConnector_000001f7 : 1 transitioning to process

PROCESSPASSIVATE at time 623

ServiceConnector1_0000024f : 0 transitioning to process

HANDLEINPUTS at time 623

CoordinatorConnector_000001f7 : 1 transitioning to process

PASSIVE at time 624

ServiceConnector1_0000024f : 0 transitioning to process IDLE at

time 624

CoordinatorConnector_000001f7 : 1 transitioning to process

HANDLEINPUTS at time 625

CoordinatorConnector_000001f7 : 1 transitioning to process IDLE

at time 626

BusinessService1_00000008 sent Message at time 627

BusinessService1_00000008 : 0 transitioning to process WAIT at

time 627

ServiceConnector1_0000024f received Message at time 627

85

ServiceConnector1_0000024f : 0 transitioning to process

PROCESSSERVICERESPONSE at time 627

BusinessService1_00000008 : 0 transitioning to process IDLE at

time 628

ServiceConnector1_0000024f : 0 transitioning to process

FORWARDING SERVICE RESPONSE IN PROCESSING at time 628

ServiceConnector1_0000024f sent Message at time 629

ServiceConnector1_0000024f : 0 transitioning to process WAITING

FOR SERVICE REQUEST at time 629

Coordinator_000002bc received Message at time 629

Coordinator_000002bc : 0 transitioning to process

PROCESSRESPONSEFROMSERVICE1 at time 629

NewCoordinator_00000292 received Message at time 629

NewCoordinator_00000292 : 0 transitioning to process

PROCESSRESPONSEFROMSERVICE1 at time 629

Coordinator_000002bc : 0 transitioning to process INVOKESERVICE2

at time 629

NewCoordinator_00000292 : 0 transitioning to process HANDLEINPUTS

at time 629

Coordinator_000002bc sent Message at time 629

Coordinator_000002bc : 0 transitioning to process HANDLEINPUTS at

time 629

ServiceConnector2_0000013a received Message at time 629

ServiceConnector2_0000013a : 0 transitioning to process

PROCESSSERVICEREQUEST at time 629

ServiceConnector1_0000024f : 0 transitioning to process

HANDLEINPUTS at time 630

ServiceConnector2_0000013a : 0 transitioning to process SENDING

NEXT SERVICE REQUEST at time 630

Coordinator_000002bc : 0 transitioning to process IDLE at time

630

NewCoordinator_00000292 : 0 transitioning to process IDLE at time

630

ServiceConnector2_0000013a sent Message at time 631

ServiceConnector2_0000013a : 0 transitioning to process

PROCESSING at time 631

ServiceConnector1_0000024f : 0 transitioning to process IDLE at

time 631

BusinessService2_00000126 received Message at time 631

BusinessService2_00000126 : 0 transitioning to process INPUT at

time 631

ServiceConnector2_0000013a : 0 transitioning to process

HANDLEINPUTS at time 632

ServiceConnector2_0000013a : 0 transitioning to process IDLE at

time 633

BusinessService2_00000126 sent Message at time 636

BusinessService2_00000126 : 0 transitioning to process WAIT at

time 636

86

ServiceConnector2_0000013a received Message at time 636

ServiceConnector2_0000013a : 0 transitioning to process

PROCESSSERVICERESPONSE at time 636

BusinessService2_00000126 : 0 transitioning to process IDLE at

time 637

ServiceConnector2_0000013a : 0 transitioning to process

FORWARDING SERVICE RESPONSE IN PROCESSING at time 637

ServiceConnector2_0000013a sent Message at time 638

ServiceConnector2_0000013a : 0 transitioning to process WAITING

FOR SERVICE REQUEST at time 638

Coordinator_000002bc received Message at time 638

Coordinator_000002bc : 0 transitioning to process

PROCESSRESPONSEFROMSERVICE2 at time 638

NewCoordinator_00000292 received Message at time 638

NewCoordinator_00000292 : 0 transitioning to process

PROCESSRESPONSEFROMSERVICE2 at time 638

Coordinator_000002bc : 0 transitioning to process INVOKESERVICE3

at time 638

NewCoordinator_00000292 : 0 transitioning to process HANDLEINPUTS

at time 638

Coordinator_000002bc sent Message at time 638

Coordinator_000002bc : 0 transitioning to process HANDLEINPUTS at

time 638

ServiceConnector3_0000017d received Message at time 638

ServiceConnector3_0000017d : 0 transitioning to process

PROCESSSERVICEREQUEST at time 638

ServiceConnector2_0000013a : 0 transitioning to process

HANDLEINPUTS at time 639

ServiceConnector3_0000017d : 0 transitioning to process SENDING

NEXT SERVICE REQUEST at time 639

Coordinator_000002bc : 0 transitioning to process IDLE at time

639

NewCoordinator_00000292 : 0 transitioning to process IDLE at time

639

ServiceConnector3_0000017d sent Message at time 640

ServiceConnector3_0000017d : 0 transitioning to process

PROCESSING at time 640

ServiceConnector2_0000013a : 0 transitioning to process IDLE at

time 640

BusinessService3_00000130 received Message at time 640

BusinessService3_00000130 : 0 transitioning to process INPUT at

time 640

ServiceConnector3_0000017d : 0 transitioning to process

HANDLEINPUTS at time 641

ServiceConnector3_0000017d : 0 transitioning to process IDLE at

time 642

BusinessService3_00000130 sent Message at time 645

87

BusinessService3_00000130 : 0 transitioning to process WAIT at

time 645

ServiceConnector3_0000017d received Message at time 645

ServiceConnector3_0000017d : 0 transitioning to process

PROCESSSERVICERESPONSE at time 645

BusinessService3_00000130 : 0 transitioning to process IDLE at

time 646

ServiceConnector3_0000017d : 0 transitioning to process

FORWARDING SERVICE RESPONSE IN PROCESSING at time 646

ServiceConnector3_0000017d sent Message at time 647

ServiceConnector3_0000017d : 0 transitioning to process WAITING

FOR SERVICE REQUEST at time 647

Coordinator_000002bc received Message at time 647

Coordinator_000002bc : 0 transitioning to process

PROCESSRESPONSEFROMSERVICE3 at time 647

NewCoordinator_00000292 received Message at time 647

NewCoordinator_00000292 : 0 transitioning to process

PROCESSRESPONSEFROMSERVICE3 at time 647

ServiceConnector3_0000017d : 0 transitioning to process

HANDLEINPUTS at time 648

ServiceConnector3_0000017d : 0 transitioning to process IDLE at

time 649

Coordinator_000002bc : 0 transitioning to process RESPONDCLIENT

at time 657

NewCoordinator_00000292 : 0 transitioning to process HANDLEINPUTS

at time 657

NewCoordinator_00000292 : 0 transitioning to process IDLE at time

658

Coordinator_000002bc sent Message at time 667

Coordinator_000002bc : 0 transitioning to process IDLE at time

667

CoordinatorConnector_000001f7 received Message at time 667

CoordinatorConnector_000001f7 : 0 transitioning to process

PROCESSSERVICERESPONSE at time 667

CoordinatorConnector_000001f7 : 0 transitioning to process

FORWARDING SERVICE RESPONSE IN PASSIVE at time 668

CoordinatorConnector_000001f7 sent Message at time 669

CoordinatorConnector_000001f7 : 0 transitioning to process

SENDING QUIESCENT NOTIFICATION TO ADAPTATION SERVICE IN PASSIVE

at time 669

Client_00000039 received Message at time 669

Client_00000039 : 1 transitioning to process FINAL at time 669

CoordinatorConnector_000001f7 sent CMNotification at time 670

CoordinatorConnector_000001f7 : 0 transitioning to process

QUIESCENT at time 670

Client_00000039 : 1 transitioning to process SENDREQUEST at time

670

ChangeManagement_0000010b received CMNotification at time 670

88

ChangeManagement_0000010b : 0 transitioning to process

PROCESSNOTIFICATION at time 670

CoordinatorConnector_000001f7 : 0 transitioning to process

HANDLEINPUTS at time 671

Client_00000039 sent Message at time 671

Client_00000039 : 1 transitioning to process HANDLEINPUTS at time

671

ChangeManagement_0000010b : 0 transitioning to process SENDING

UNLINK at time 671

CoordinatorConnector_000001f7 received Message at time 671

CoordinatorConnector_000001f7 : 1 transitioning to process

PROCESSSERVICEREQUEST at time 671

CoordinatorConnector_000001f7 : 0 transitioning to process IDLE

at time 672

Client_00000039 : 1 transitioning to process IDLE at time 672

CoordinatorConnector_000001f7 : 1 transitioning to process

INCREMENTINGQ IN QUIESCENT at time 673

CoordinatorConnector_000001f7 : 1 transitioning to process

QUIESCENT at time 674

CoordinatorConnector_000001f7 : 1 transitioning to process

HANDLEINPUTS at time 675

CoordinatorConnector_000001f7 : 1 transitioning to process IDLE

at time 676

ChangeManagement_0000010b sent CMCommand at time 1171

ChangeManagement_0000010b : 0 transitioning to process SENDING

LINK at time 1171

CoordinatorConnector_000001f7 received CMCommand at time 1171

CoordinatorConnector_000001f7 : 0 transitioning to process

PROCESSCOMMAND at time 1171

CoordinatorConnector_000001f7 : 0 transitioning to process

PROCESSUNLINK at time 1172

CoordinatorConnector_000001f7 : 0 transitioning to process

HANDLEINPUTS at time 1173

CoordinatorConnector_000001f7 : 0 transitioning to process IDLE

at time 1174

ChangeManagement_0000010b sent CMCommand at time 1671

ChangeManagement_0000010b : 0 transitioning to process SENDING

REACTIVATE at time 1671

CoordinatorConnector_000001f7 received CMCommand at time 1671

CoordinatorConnector_000001f7 : 1 transitioning to process

PROCESSCOMMAND at time 1671

CoordinatorConnector_000001f7 : 1 transitioning to process

PROCESSLINK at time 1672

CoordinatorConnector_000001f7 : 1 transitioning to process

HANDLEINPUTS at time 1673

CoordinatorConnector_000001f7 : 1 transitioning to process IDLE

at time 1674

ChangeManagement_0000010b sent CMCommand at time 2171

89

ChangeManagement_0000010b : 0 transitioning to process

HANDLEINPUTS at time 2171

CoordinatorConnector_000001f7 received CMCommand at time 2171

CoordinatorConnector_000001f7 : 0 transitioning to process

PROCESSCOMMAND at time 2171

ChangeManagement_0000010b : 0 transitioning to process IDLE at

time 2172

CoordinatorConnector_000001f7 : 0 transitioning to process

PROCESSREACTIVATE at time 2172

CoordinatorConnector_000001f7 : 0 transitioning to process

SENDING GONE ACTIVE NOTIFICATION TO ADAPTATION SERVICE at time

2173

CoordinatorConnector_000001f7 sent CMNotification at time 2174

CoordinatorConnector_000001f7 : 0 transitioning to process

SENDING NEXT SERVICE REQUEST IN QUIESCENT at time 2174

ChangeManagement_0000010b received CMNotification at time 2174

ChangeManagement_0000010b : 0 transitioning to process

PROCESSNOTIFICATION at time 2174

CoordinatorConnector_000001f7 : 0 transitioning to process SEND

NEXT NEWSERVICE REQUEST IN QUIESCENT at time 2175

ChangeManagement_0000010b : 0 transitioning to process

HANDLEINPUTS at time 2175

CoordinatorConnector_000001f7 sent Message at time 2176

CoordinatorConnector_000001f7 : 0 transitioning to process

DECREMENTINGQ IN QUIESCENT at time 2176

ChangeManagement_0000010b : 0 transitioning to process IDLE at

time 2176

NewCoordinator_00000292 received Message at time 2176

NewCoordinator_00000292 : 0 transitioning to process

INVOKESERVICE1 at time 2176

NewCoordinator_00000292 sent Message at time 2176

NewCoordinator_00000292 : 0 transitioning to process HANDLEINPUTS

at time 2176

:

90

REFERENCES

91

REFERENCES

[1] H. Gomaa, ―Building Software Systems and Product Lines from Software

Architectural Patterns‖, ECOOP Workshop. on Building Systems from Patterns,

Glasgow, UK, July 2005.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, ―Pattern Oriented Software

Architecture: A System of Patterns‖, John Wiley & Sons, 1996.

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides, ―Design Patterns: Elements of

Reusable Object-Oriented Software‖, Addison Wesley, 1995.

[4] D. Garlan and B. Schmerl, ―Model-based Adaptation for Self-Healing Systems‖,

Proc. Workshop on Self-Healing Systems, ACM Press, Charleston, SC, 2002.

[5] H. Gomaa, ―Designing Concurrent, Distributed, and Real-Time Applications with

UML‖, Addison Wesley, Reading MA, 2000.

[6] H. Gomaa and M. Hussein, ―Software Reconfiguration Patterns for Dynamic

Evolution of Software Architectures‖, Proc. Fourth Working IEEE/IFIP Conference

on Software Architecture, Oslo, Norway, June, 2004.

[7] H. Gomaa, ―Designing Software Product Lines with UML: From Use Cases to

Pattern-based Software Architectures‖, Addison-Wesley, 2005.

[8] H. Gomaa, ―A Software Modeling Odyssey: Designing Evolutionary Architecture-

centric Real-Time Systems and Product Lines‖, Keynote paper, Proc. 9th Intl. Conf.

on Model-Driven Engineering, Languages, and Systems (MoDELS), Genova, Italy,

Oct. 2006.

[9] J. Kramer and J. Magee, ―The Evolving Philosophers Problem: Dynamic Change

Management‖, IEEE Transactions on Software Eng., Vol. 16, No. 11, 1990.

[10] J. Kramer and J. Magee, ―Self-Managed Systems: an Architectural Challenge‖,

Proc Intl. Conference on Software Engineering, Minneapolis, MN, May 2007.

92

[11] M. Kim, J. Jeong, and S. Park, ―From Product Lines to Self-Managed Systems:

An Architecture-Based Runtime Reconfiguration Framework,‖ Proc. Design and

Evolution of Autonomic Application Software (DEAS2005), ICSE05, St. Louis, MO,

May 2005, pp. 66-72.

[12] J. Lee and K. Kang, ―A Feature-Oriented Approach to Developing Dynamically

Reconfigurable Products in Product Line Engineering,‖ Proc. 10th Int. Soft. Product

Line Conf. (SPLC 2006), Baltimore, Maryland, 2006.

[13] A. J. Ramirez and B. H. Cheng, ―Applying Adaptation Design Patterns,‖ Prof. 6th

Intl. Conf. on Autonomic Computing (ICAC), pp. 69-70, Jun. 2009.

[14] G. Li, et al., ―Facilitating Dynamic Service Compositions by Adaptable Service

Connectors‖, International Journal of Web Services Research, Vol. 3, No. 1, 2006,

pp. 67-83.

[15] F. Irmert, T. Fischer, K. Meyer-Wegener, ―Runtime adaptation in a service-

oriented component model‖, Proc. Intl. Workshop on Software Engineering for

Adaptive and Self-Managing Systems, May 2008, pp. 97-104.

[16] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, ―Service-Oriented

Computing: State of the Art and Research Challenges‖, Computer, vol. 40, pp. 39-45,

2007.

[17] E. Thomas. Service-Oriented Architecture. Prentice Hall PTR, Upper Saddle

River, 2005.

[18] E. Gat, Three-layer Architectures, ―Artificial Intelligence and Mobile Robots‖,

MIT/AAAI Press, 1997.

[19] M. Kim et al., ―Service Robot Software Development with the COMET/UML

Method‖, IEEE Robotics and Automation, Vol. 16, No. 1, March 2009, pp. 34-45.

[20] S. Malek, N. Esfahani, D. Menascé, J. Sousa, and H. Gomaa, ―Self-Architecting

Software Systems (SASSY) from QoS-Annotated Activity Models‖, in Proc ICSE

Workshop on Principles of Engineering Service Oriented Systems (PESOS 2009),

Vancouver, Canada, May 2009.

[21] N. Esfahani, S. Malek, J. P. Sousa, H. Gomaa, and D. A. Menascé, ―A Modeling

Language for Activity-Oriented Composition of Service-Oriented Software Systems‖,

Proc. ACM/IEEE 12th International Conference on Model Driven Engineering

Languages and Systems (MODELS 09), Denver, Colorado, Oct. 2009.

93

[22] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek, and J. P. Sousa, ―A

Framework for Utility-Based Service Oriented Design in SASSY‖, Proc. First Joint

WOSP/SIPEW International Conf. on Performance Engineering, Jan. 2010.

[23] D. A. Menascé, J. P. Sousa, S. Malek, and H. Gomaa, ―QoS Architectural Patterns

for Self-Architecting Software Systems‖, 7th IEEE Intl. Conf. on Autonomic

Computing and Communication, Washington, DC, June, 2010.

[24] G. Edwards, S. Malek, and N. Medvidovic, ―Scenario-Driven Dynamic Analysis

of Distributed Architecture‖, Proc. Intl. Conf. on Fundamental Approaches to

Software Engineering, Braga, Portugal, March 2007.

[25] E. Dashofy, A. van der Hoek, and R.N. Taylor, ―An Infrastructure for the Rapid

Development of XML-based Architecture Description Languages‖, Proc. 24th Intl.

Conference on Software Engineering, pp. 266 - 276, 2002.

[26] J. Magee, et al., ―Behaviour Analysis of Software Architectures‖, Proceedings of

the TC2 First Working IFIP Conference on Software Architecture (WICSA1), pp. 35

- 50, 1999.

[27] Apache Tomcat, http://tomcat.apache.org/

[28] GlassFish, https://glassfish.dev.java.net/

[29] Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl

[30] SOAP Specifications, http://www.w3.org/TR/soap/

[31] SOAP with Attachments API for Java (SAAJ),

http://java.sun.com/xml/saaj/index.html

[32] Eclipse Swordfish Project, http://www.eclipse.org/swordfish/.

[33] Apache CXF, http://cxf.apache.org/.

[34] Apache ServiceMix, http://servicemix.apache.org/.

[35] OSGi Alliance, http://www.osgi.org/.

[36] Eclipse BPEL Project, http://www.eclipse.org/bpel/

94

CURRICULUM VITAE

Koji Hashimoto graduated with a Ph.D. in Computer Science from Osaka University,

Osaka, Japan in 2000. He worked as a researcher at Hitachi Research Laboratory, Hitachi

Ltd., Japan from 2000 to 2008. He will work as a Software Development Engineer at

Amazon.com, Seattle, WA, USA.

