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Abstract

AN INNOVATIVE APPROACH TO DETECT GLITCHES IN HARDWARE IMPLEMEN-
TATIONS ON FPGAS

Kinjalben Shah, MS
George Mason University, 2013

Thesis Director: Dr. Jens-Peter Kaps

Glitches are unproductive signal transitions due to unbalanced path delays at the inputs
of a gate. Unlike asynchronous circuits, the functionality of synchronous circuits is not
significantly affected by the presence of glitches. Despite of that, detection of glitches in
synchronous designs is important because the number of transitions increases due to glitches
and the dynamic power dissipation linearly depends on the number of transitions. Glitches
contribute to the dynamic power which itself is a major portion of the total power consumed
by the design. Consequently, in presence of glitches, the overall power dissipation of the
design increases.

With the increased use of small battery powered devices, low power consumption has
become a highly important concern for the designs. Many advantages of FPGAs like rapid
prototyping, low cost and field re-programmability are offset by higher power consumption
than ASICs. Therefore, detecting glitches that occur in FPGA designs is important in order

to understand how much power is consumed by glitches.



The accuracy of the post place and route simulation mainly depends on the simulation
model for a given family of FPGAs and does not take process variations into account.
Therefore, simulation might not detect all the glitches in the design. This research provides
a novel approach for glitch detection in hardware implementations on FPGAs. We designed
a circuit that does not merely detect the presence of glitches or counts the number of spurious
transitions that a glitch causes, our circuit also captures the glitch waveform and provides
information about the position and the width of glitches. We also propose a methodology
to increase the resolution of the captured waveform. From our proposed glitch detection
method we can reliably reproduce the glitch waveform and can detect glitches with a width

of as small as 324 ps on Spartan-3E FPGA.



Chapter 1: Introduction

Field Programmable Gate Arrays (FPGAs) are highly desirable for the implementation of
digital systems due to their flexibility and low time-to-market. FPGAs have many more
advantages, such as rapid prototyping, field re-programmability, growing density and speed,
simple design cycle and low cost for small volume, which makes them more viable alter-
native for many of the current Application Specific Integrated Chip (ASIC) applications.
However, the advantages of FPGAs are offset by higher power consumption than ASICs. It
is estimated that an FPGA design consumes overall 10 times more power than a functionally

equivalent ASIC design [1].

1.1 Power in Digital Circuits

Power has become a significant design constraint in digital designs due to the demand of
battery-powered devices in personal wireless communications and other portable digital
applications. If advantages of FPGAs are to be fully exploited, the amount of power they
consume must be reduced or carefully controlled. High power dissipation causes overheating,
which degrades performance and reduces chip lifetime. To control their temperature levels,
high power chips require specialized and expensive packaging and heat-sink arrangements.
Reducing the power consumption of FPGAs leads to lower packaging and cooling costs as
well as improved reliability.

For any Complementary Metal-Ozide Semiconductor (CMOS) circuit, total power con-

sumption can be divided into two sources of power:

1. Static Power Consumption

2. Dynamic Power Consumption



1. The Static Power Consumption is the power that is dissipated when the device is
powered up but in the idle state. The major component of static power is the leakage
current that leaks either from source to drain or through the gate oxide, even if the
transistor is off. The leakage current depends on temperature and process variation.

The static power consumption is calculated by equation (1.1),

Pstatic = VDD * Ileakage (11>

Where, Vpp is the Supply Voltage and Ijeqrqge is the Leakage Current.

2. The Dynamic Power Consumption is the power that is dissipated when a signal
transition occurs at gate outputs. Sources of dynamic power consumption can be

further divided in to two parts:

(a) Short Circuit Power

(b) Switching Power

Short Circuit Power refers to the power dissipated when a direct current path exists
from Vpp to GND. When a transition occurs at a gate output, for short amount of
time direct current path exist between Vpp and GND. Short circuit power accounts
for only about 10% of dynamic power [2], therefore the majority of dynamic power

dissipation comes from switching power. Switching Power is given by equation (1.2),

Psw = 0.5% SA+xC* VAp x f (1.2)

Where, SA is Switching Activity, C is the Effective Capacitance, Vpp is the Supply

Voltage and f is the Operating Frequency.

Traditionally static power has been overshadowed by dynamic power consumption, but

as transistor sizes continue to shrink, static power may overtake dynamic power consumption



Table 1.1: Power Consumption in a CMOS Inverter
Input Transitions | Output Cload
0—0 1 No change
0—1 1—-0 Discharge
1—-0 0—1 Charge
1—-1 0 No change
vdd vad
e
L,

Cload
Figure 1.1: CMOS Charging

Figure 1.2: CMOS Discharge

[3] [4]. Despite the rising significance of static power in CMOS circuits, the majority of power

dissipation in todays digital designs comes from dynamic power dissipation.

Signal transitions (logic level 0 - low to logic level 1 - high or vice versa) make up the
is shown in Table 1.1.

Switching Activity (SA) of a circuit. Four types of transitions can occur on the gate output

of binary logic. Input transitions and corresponding power consumption of a CMOS inverter

A signal transition from low to high is a power consuming transition, because in this
case the load capacitor is charged directly from the supply voltage and therefore power from
supply is consumed by the circuit as shown in Fig. 1.1. On high to low transition the load

capacitor is discharged and the energy s dissipated as shown in Fig. 1.2. Signal transitions
from low to low and high to high do not consume any dynamic power.



1.2 Glitches

Signal transitions can be classified into two types:
e Functional transitions
e Spurious transitions

Functional transitions are the signal transitions necessary to perform the required logic
function. The spurious transitions are glitches, which are the unproductive signal transi-
tions due to unbalanced path delays at the inputs of a gate, causing the gate’s output to
transition briefly to an intermediate state.

Glitches can be further divided into two categories:
e Generated glitches
e Propagated glitches

If the input signals to a gate are skewed in time, a glitch may be generated and if a
glitch arrives to an input of a gate and that input is sensitive at that moment, the glitch is
propagated at the output of a gate. The number of propagated glitches is far bigger than
the number of generated glitches [5].

We can see from the Fig. 1.3 that if input x2 arrives little bit later than x1 at the input
of an XOR gate, a glitch is generated. This glitch is propagated depending on the gate. An
inverter always propagates glitches. It can neither generate nor eliminate a glitch. On the
other hand, an AND gate can either propagate or eliminate glitch propagation depending
on the other input. If x3 at the input of an AND gate is always 0, any glitches will be
eliminated, because 0 is the dominant input for an AND gate. With 1 at the x3 input of
an AND gate, it may or may not propagate a glitch depending on the arrival time of x3.
When x3 transits from 0 to 1 before the arrival of the glitched input of an AND gate, the
glitch is propagated else it is eliminated.

Whether a transition is useful or useless depends on other possible transitions in the same

clock cycle. Ideally, in a synchronous design, every net has either zero or one transition per

4
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Figure 1.3: Generated and Propogated Glitches

clock cycle. Unfortunately, on any given net there is often more than one signal transition
per clock cycle. If signal makes an odd number of transitions per clock period, then the
final state of the signal is different than the original state. Only the final signal transition is
considered to be useful and all other transitions are useless transitions. If signal makes even
number of transitions per clock period, there is no change in the final state of the signal
from the initial state. In this case, all transitions will be useless. This is shown in the Fig.
1.4.

Unlike asynchronous circuits, the functionality of synchronous circuits is not significantly
affected by the presence of glitches. Despite of that, detection of glitches in synchronous
designs is important as they have a significant effect on power consumption. As seen from
equation (1.2) the dynamic power dissipation linearly depends on the switching activity of
the signal and glitches increase the switching activity. Hence, the more glitches are in the

circuit, the more dynamic power is dissipated.



signall 1 | | 2 useful transitions

signal2 | | 2 useless transitions
ional | | 1 useful transition
signal3 2 useless transitions

Time in clock cycles —

Figure 1.4: Useful and Useless Transitions

1.3 Effect of Glitches in FPGAs

The flexibility and re-programmability provided by FPGAs comes at the cost of higher
power consumption. Based on the study in [6], glitch power (glitch related dynamic power)
can be 60% of the dynamic power consumed in the FPGAs. The work in [8] and [9] estimates
that glitch power in FPGAs comprises from 4% to 73% of total dynamic power, with an
average of 22.6%. Dynamic power dissipation is a major factor of total power dissipation
in FPGAs. A study that examined power dissipation in a commercial 90nm FPGA found
that dynamic power accounted for 62% of total power [7].

Analysis of FPGA power consumption in [10] shows that power dissipation in FPGA
devices is predominantly in programmable interconnect network. The authors used Xilinx
XC4003A, fabricated in a 0.6 um, 2-layer metal process for the analysis. The study shows
that the amount of power consumed by the interconnect can account for up to 65% of
total dissipated power [10]. While glitches are not unique to FPGAs, the relatively high

capacitive loading of the programmable interconnect places a much higher power cost on



glitches in FPGAs.
Estimating the glitches that occur in FPGA designs is important in order to understand

how much power is consumed by glitches.

1.4 Effect of Glitches in Secure Designs

Side-channel analysis exploits information leaked during the computation of a cryptographic
algorithm. The most common technique is to analyze the power consumption of a cryp-
tographic device using Differential Power Analysis (DPA) [11]. This side-channel attack
exploits the correlation between the instantaneous power consumption of a device and the
intermediate results of a cryptographic algorithm. Glitches dissipate extra information in
terms of power, which may make side channel analysis easier.

To counteract DPA attacks two methods are widely used, Masking and Hiding. Masking
randomizes the intermediate values. Hiding makes power consumption independent of data
processed. In presence of glitches, these techniques are still vulnerable to DPA attacks.
Research in [11] shows that the masking circuits are susceptible in presence of glitches.
Dual-rail is a countermeasure based on hiding. The principle of this countermeasure is
to generate a design equivalent and with opposite behavior of the target design such that
every part of the circuit is perfectly balanced. This way the activity of the design remains
constant and completely independent of the data processed. However, glitches can cause
an imbalance in the power consumption in dual-rail circuits [14].

Glitches have shown to be a source of side-channel leakage [12], because the presence
of a glitch depends on the specific input data pattern on the circuit. Further, the arrival
time of signals at gate inputs can cause small data-dependent variations on the switching
time of gates [13]. This variation shows up in the power-consumption pattern and can be

exploited in power analysis attacks.



1.5 Previous Work

Several techniques have been proposed to estimate and minimize glitches in order to reduce

dynamic power.

1.5.1 Glitch Estimation

As glitches are related to switching activity, most of the research papers found to detect
glitches were related to switching activity analysis.

The approach taken in [16] [17] for switching activity analysis is to apply random input
vectors and perform functional (zero-delay) simulation and timing (routed-delay) simula-
tion. Then authors perform power analysis and compute the glitch power as the difference
in dynamic power between functional and timing simulations. [17] also proposed a method
to predict routed switching activity at pre-layout stage. In this technique authors obtain
delay information using depth of nodes instead of the information extracted from physical
layout. The depth of a node is the length of the longest path from any primary input to
the node.

In [18] a Stochastic glitch estimation method has been proposed, which estimates the
probability of glitch occurrences at the output of a gate by computing the probability of
an interval time (difference of arrival times of inputs at a gate) that is bigger than the
delay of that gate. The methodology proposed in [19] presents a method to obtain glitch
probability numbers early in the design cycle. In this paper authors find the probability of
glitch at the output of gate based on the gate’s pattern and propagation probabilities. The
pattern probabilty is the pattern appearing at the inputs of gate, which causes a glitch at
the output of that gate and the propagation probability is obtained as the number of pairs
of paths out of all possible path pairs that have a delta delay that would cause a glitch.
Symbolic simulation [20] can be used to estimate switching activity. This technique use a
variable delay model for combinational logic, which computes the boolean conditions that
cause glitches in the circuit. However, this model has a long run time.

In [21], the Transition density technique is proposed, which corresponds to average

8



switching rates for gates in the circuit. This paper provides a technique to calculate the
total circuit switching activity by means of propagation of transition densities and signal
probabilities (the average value of the logic signals over all time) from input nodes to output
nodes. The low-level activity estimation techniques in [22] propose the use of the boolean
difference function to find the output transition densities of a logic component based on its
input transition density. The techniques in [21] and [22] can be computationally expensive
for large combinational circuits.

The method for modeling glitch activity inside arithmetic circuits using word-level statis-
tics of signals is proposed in [23] using Glitch Profile metric. This metric is based on transi-
tion density [21] technique. The proposed method models the propagation of glitch activity
in signals through the arithmatic components in circuits.

[24] provides a survey of switching activity techniques. Techniques can be mainly clas-
sified as Statistical techniques or Probabilistic techniques. Statistical techniques ([18], [16])
use simulation models and simulate the circuit for limited number of randomly generated
input vectors. They can be accurate and can be built around existing simulation tools
and libraries, but are strongly input pattern dependent. Probabilistic techniques ([21], [23],
[22], [19], [17], [20]) estimate the switching activity using signal probability and transition
densities. They are not as accurate and cannot be built around existing simulation tools
and libraries but can be faster.

[25] introduces a glitch capture technology based on FPGA, which uses dual-jump-edge
detection principle. In this principle, the logic level sampled at the beginning of the sampling
period is considered as reference level. During the same sampling cycle, if there is a change
in logic level from the reference level, a glitch is detected. It also provides a technique for

the logic analyzer based glitch capture, but it is complex and expensive.

1.5.2 Glitch Reduction

The basic technique to avoid glitches is to align the inputs by balancing the delay paths.

The glitch reduction techniques can be classified according to the level of the design process



they are applied to. The levels can be classified as:

e Technology Level
e Implementation Level

e Register Transfer Level

e Technology Level

GlitchMap [20] is an FPGA technology mapper that is glitch aware. In this technique
glitches are minimized by favoring mapping solutions that balance LUT levels between
different paths. The optimum mapping depth can be computed during cut enumera-
tion by computing depth of every node and every cut. [26] proposes the technique for
LUT based FPGAs at technology mapping level. This technique aims to keep high
switching activity nets out of the FPGA routing and shows the activity conscious
approach for logic replication. This technique shows the effect of logic replication on
circuit structure and its consequences on power. The Gate Freezing [32] technique
eliminates glitches by suppressing transitions until the freeze gate is enabled. This
technique is less suitable for FPGAs since the applications implemented on FPGAs

are not known until after fabrication.

e Implementation Level

Glitchless [8] [9] proposes inserting programmable delay elements into configurable
logic blocks (CLBs) of FPGAs. After a glitch-unaware routing stage, these delays are
used to align signal arrival times. GlitchReroute [27] proposes an approach to reduce
dynamic power in FPGAs by reducing glitches during routing. It finds alternative
routes for early arriving signals so that signal arrival times at look-up tables are
aligned. The authors developed an algorithm to find routes with target delays and
then built a glitch-aware router. [16] presents a Don’t-care-based synthesis technique
for reducing glitch power in FPGAs. This technique takes advantages of don’t-cares in

the circuit by setting their values based on the circuit’s simulated glitch behavior. [28]

10



proposes a technique to address power dissipation due to glitches post-routing, where
the delays between LUTs are known. Their algorithm reduces glitches by inserting
negative edge triggered flip-flops (FFs) at the output of LUTs of FPGAs that produce
glitches. This prevents unnecessary logic transitions from propagating to the general
routing network and subsequent LUTSs. [29] presents an FPGA-targeted, glitch-aware,
high-level binding algorithm. The binding algorithm provides the technique for data
path allocation for power and area reduction. The binding algorithm proceeds in two
parts of data path allocation: register allocation, binds all variables into a number
of registers to minimize the total number of registers used and operation assignment,
assigns operations to the distinct functional units within a same control step. In [30],
pipelining and re-timing have been used to balance the path delays and reduce wire
toggle rates. The path balancing [18] algorithm reduces glitches using the statistical
gate sizing technique that considers the probability of glitch occurrence and calculates

an optimal delay amount of sizing.

e Register Transfer Level

[31] proposes several techniques that attempt to reduce glitching power consumption
by minimizing propagation of glitches in the RTL circuit. The techniques include
restructuring multiplexer networks (to enhance data correlations and eliminate glitchy
control signals), clocking control signals, and inserting selective delays, in order to kill

the propagation of glitches from control as well as data signals.

These techniques may introduce area, delay and also power overhead due to extra logic
inserted. Table 1.2 summarizes the area and delay overhead and also the reduction in

glitch and dynamic power for the different glitch reduction techniques.

1.6 Motivation

Most of the techniques for glitch detection explained in the previous section estimate the

number of spurious transitions using a simulation-based approach. The post place and route

11



Table 1.2: Comparision of Glitch Reduction Techniques

Technique Area Overhead | Delay Overhead (I;E:Vg REC;;C;EE
Glitch Reroute [27] Not affected Negligible 27% 11%
Glitch Less [8] [9] 5.3% 0.2% 45% 18%
Gate Freezing [32] 2.8% Not affected 14% 6.3%
GlitchMap [20] - - - 18.7%
Don’t-care based [16] Not affected Not affected 49% 12.5%
Negative edge triggered FFs [28] 0.7% 3.6% - 7.25%
High-Level binding [29] -9% - 22% 19%
RTL Power Optimizor [31] Negligible Negligible - 22.54%

simulation provides glitch detection, but it cannot take process variations of the FPGA into
account. Moreover, its accuracy depends on the simulation model only, which might not
expose all the glitches from the implemented circuit. Hence, to detect all glitches we need to
measure the actual hardware implementation. These measurements can be done by fast and
high quality oscilloscopes, which are very expensive. In this research we introduce a novel
approach for glitch detection in hardware implementations on FPGAs. Furthermore, we
have used a Spartan 3E FPGA board for our research, which is very inexpensive compared
to the oscilloscope. Our research does not merely detect the presence of glitches or counts
the number of spurious transitions that a glitch causes. It captures the glitch waveform,

which provides the information about the position and the width of glitches in the design.

1.7 Thesis Organization

Chapter 2 gives detailed insight to the Xilinx Spartan-3E FPGA architecture. It will help
in understanding different approaches to detect glitches discussed in this thesis. Chapter
3 provides the analysis of how LUT input changes affect glitches within the FPGA. In
Chapter 4, different simulation based glitch detection approaches are analyzed. Chapter 5
shows how the best of the discussed techniques in chapter 4 are implemented on the FPGA

board. Finally, the research is concluded in Chapter 6.
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Chapter 2: Xilinx FPGA Internal Structure

Xilinx, Altera and Actel are the major vendors among the wide verities of FPGA manu-
facturers. We selected Xilinz Spartan-3E FPGA for our glitch detection circuits because
of their low-cost and low-power qualities. The design of glitch detection circuits on FPGA
depends on the effective use of architectural features provided in the targeted FPGAs.
Therefore, it is important to understand the detailed architecture of Spartan-3E devices.
This chapter describes the underlying structure of Xilinx Spartan-3E FPGAs and their

features.

2.1 Spartan-3E FPGA Architectural Overview
The Spartan-3E family architecture has five basic functional elements [33]:

1. Configurable Logic Blocks (CLBs): CLBs can be programmed to perform a wide
variety of logic functions as well as store data. They consist of RAM based look up

tables to implement logic and storage elements that can be used as flip-flops or latches.

2. Input Output Blocks (IOBs): They control the flow of data between I/O pins
and internal logic. Each IOB supports bidirectional data flow, 3-state operation, and

numerous different signal standards. Double Data-Rate (DDR) registers are included.

3. Block RAM (BRAM): It provides data storage in the form of 18-kbit dual-port /single-

port blocks of memory.

4. Multiplier Blocks: They accept two 18 bit binary numbers as input to calculate

the product.

13
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Figure 2.1: Spartan-3E FPGA Internal Architecture

5. Digital Clock Manager (DCM): It provides means for distributing, delaying, mul-

tiplying, dividing and phase shifting clock signals.

These elements are organized as shown in the Fig. 2.1.

A ring of IOBs surrounds a regular array of CLBs. Each device has two columns of block
RAM except for the XC3S100E, which has only one column. Each RAM column consists
of several 18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier.

The DCMs are positioned in the center with two at the top and two at the bottom of the

device.
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Figure 2.2: CLB Structure

The Spartan-3E family has network of routes that interconnect all five functional ele-
ments and transmitting signals among them. Each functional element has an associated

switch matrix that permits multiple connections to the resources.

2.2 Configurable Logic Block (CLB)

The CLBs constitute the main logic resource for implementing synchronous and combina-

tional circuits. The CLBs are organized in arrays of rows and columns [Fig. 2.1]. Each
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CLB contains four interconnected slices. The organization of slices is shown in Fig. 2.2.
The pair on left side of the CLB is called SLICEM (Memory Slice) and it supports logic as
well as memory functions. The other pair on the right side of the CLB is called SLICEL
(Logic Slice) and it supports only logic. Each CLB is identical.

The location of a slice is determined according to its X and Y coordinates, starting in
the bottom left corner of the die, which is shown in Fig. 2.2. The letter X’ followed by a
number identifies columns of slices, incrementing from the left side of the die to the right.
The letter Y’ followed by a number identifies the position of each slice in a pair as well as
indicating the CLB row, incrementing from the bottom of the die. The SLICEM always

has an even X’ number and the SLICEL always has an odd X’ number.
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2.3 Slice

A slice includes two 4-inputs Look-Up Table (LUT) function generators and two storage
elements, along with additional logic. The structures of SLICEL and SLICEM are shown
in Fig. 2.3 and Fig. 2.4 respectively. Both slices have the following features which provide

logic, arithmetic and ROM functions.

e Two 4-Input LUT Function Generators, F and G
e Two Storage Elements
e Carry and Arithmetic Logic

e Two Wide-Function Multiplexers, F5MUX and FiMUX

The two LUTs are used for implementation of logic functions. The two storage elements,

which are programmable either as D-type flip-flops or as level-sensitive transparent latch,

17



Table 2.1: XOR Truth Table

provide a mean for synchronizing data to a clock signal. The carry logic is automatically
used for most arithmetic functions in a design.

Figure 2.5 shows the detailed diagram of SLICEL. The LUTSs located in the top and
bottom portions of the slice are referred to as "G-LUT” and "F-LUT” respectively. The
storage elements in the top and bottom portions of the slice are called FFY and FFX,
respectively. Each slice has two multiplexers with FSMUX in the bottom portion of the
slice and FiMUX in the top portion. Depending on the slice, the FiMUX takes on the
name F6MUX, FTMUX, or FSMUX, according to its position in the multiplexer chain. The
lower SLICEL and SLICEM both have an F6MUX. The upper SLICEM has an F7TMUX,
and the upper SLICEL has an FEMUX.

2.4 Look-Up Table (LUT)

The LUT is a RAM-based function generator and the main resource for implementing
logic functions. Each of the two LUTs (F and G) in a slice has four logic inputs and a
single output. Any four-variable boolean logic operation can be implemented in one LUT.
Functions with more than four inputs are implemented by cascading LUTs or using wide
function multiplexers.

The LUT can be described as a tree of multiplexers as shown in Fig. 2.6. The four
inputs of the LUT serve as the select lines of the multiplexers. The inputs of multiplexers
are stored in the look-up table depending on the logic configured. The output is obtained
from the value stored in look-up table depending on the selection lines / LUT inputs.

Figure 2.7 shows a 2-input LUT implementation. The function implemented in the
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Figure 2.7: 2 Input LUT

LUT is an XOR function, given in Table 2.1. According to the logic implemented, the
multiplexer’s inputs are set and stored in the look-up table as shown in Fig. 2.7. When the
inputs of the LUT (multiplexer selection lines) are 00, the output should be 0 according to
the XOR logic. Therefore, the data value store at Q(0,0) must be 0 [Fig. 2.7].

The LUTs of SLICEM can also be configured as:

e Two 16-bit shift registers, SRL16 or

e Two 16x1 distributed RAM blocks, RAM16

e Shift Register (SRL16)

The SRL16 is an alternative mode for LUTs where they are used as 16-bit shift
registers. Shift-in operations are synchronous with the clock, and the output length
is dynamically selectable. A separate dedicated output allows the cascading of any
number of 16-bit shift registers to create whatever size shift register is needed. Each
CLB resource can be configured using four of the eight LUTs as a 64-bit shift register.

It is also possible to combine shift registers across more than one CLB.

As described earlier, an LUT can be described as 16:1 multiplexer with four inputs

of LUT serving as the selection lines. With the SRL16 configuration, the fixed LUT
21
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values are configured as an addressable shift register. Using the DIFMUX, the out-
put MC15 of G-LUT is cascaded to the input DI of F-LUT. To form larger shift
register SHIFTIN and SHIFTOUT lines are used to cascade a SLICEM to the below
SLICEM through DIGMUX.

Each shift register provides a shift output MC15 for the last bit in each LUT, in
addition to providing addressable access to any bit in the shift register through the

normal D output [Fig. 2.8]. The address inputs A/3:0/ are the LUT inputs F/[4:1] or
G[4:1].
Distributed RAM (RAMT16)

The SLICEM LUT can be configured as 16 x 1 bit synchronous RAM, called Dis-

tributed RAM (DRAM) or RAM16. Each bit can be addressed by four inputs of
22



the LUTs. The LUTs can be cascaded for realizing deeper memories with minimal
penalty on timing. Distributed RAM can be inferred or instantiated directly in design

depending on the specific logic synthesis tool used.

2.5 Carry and Arithmetic Logic

The carry chain, together with various dedicated arithmetic logic gates, support fast and
efficient implementations of addition operations. The carry logic is automatically used for
most arithmetic functions in a design.

Figure 2.5 shows the entire carry logic and connections for one slice. The dashed lines
indicate an additional multiplexer that is only found in the SLICEM half of the CLB.
The carry and arithmetic logic consists of dedicated CLB resources. The carry path is
very fast because it has dedicated connections within and between CLBs. These dedicated
connections have almost zero delays. The carry output (COUT) of the bottom slice of one
side of a CLB connects directly to the carry in (CIN) of the top slice. Each CLB has two
sets of carry chains [Fig. 2.2], one using SLICEM and one using SLICEL. The carry chain
cascades from the bottom to the top of each column of CLB slices.

The carry chain is controlled by five multiplexers: CYINIT, CYOF, and CYMUXF in
the bottom portion and C'Y0G and CYMUXG in the top portion. The dedicated arithmetic
logic includes the exclusive-OR gates XORF and XORG (bottom and top portions of the
slice, respectively) as well as the AND gates FAND and GAND (bottom and top portions,

respectively). The carry chain can be initialized at any point from the BX (or BY) inputs.

2.6 Block RAM (BRAM)

Block RAMs are embedded memory elements, organized in columns on FPGAs [Fig. 2.1].
They can be used for storing large amount of data in place of logic resources to save area

of the FPGA. Each block RAM contains 18,432 bits of fast static RAM. Block RAMs can

be configured by two types:
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e Single-port BRAM: It has one set of address, control, and clock lines with maximum

width of 64 bits for data lines [Fig. 2.9)].

e Dual-port BRAMS: It has two identical data ports called A and B [Fig. 2.9], which
can access the common block RAM. Each port has its own dedicated set of address,
control, and clock lines with maximum width of 32 bits for data lines for synchronous
read and write operations. Each port of the BRAM can be configured independently
to select a number of different possible widths for the data input and data output

signals.

BRAM can be set to work in two modes:

— Read First Write Next mode: It reads the old data from the memory loca-
tion being addressed in that particular clock cycle before updating that memory

location with the new data available at the inputs.

— Write First Read Next mode: In this mode of operation the memory location

being addressed gets updated with the new data at its input, and this new data
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is then read out. In this mode the previous stored value thus gets lost.

Special interconnect surrounding the block RAM provides efficient signal distribution

for address and data. So, multiple block RAMs can be cascaded to create wider or

deeper memories.

2.7 Switch Matrix and Interconnects

Interconnect, also called routing, is the programmable network, which provides con-
nectivity between functional elements within FPGAs such as IOBs, CLBs, DCMs and
Block RAMs. Each functional element is connected to switch matrix, which connects

to different kind of interconnects across the device. Fig. 2.1 shows the CLB and

Figure 2.12: Hex Lines Interconnect

switch matrix connection.

The routing inside an FPGA fabric is categorized according to the distance of the
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output wire or line. There are four kinds of interconnects available in Xilinx FPGAs:
Long Lines [Fig. 2.13], Hex Lines [Fig. 2.12], Double Lines [Fig. 2.11] and Direct
Lines [Fig. 2.10]. Long lines are bidirectional lines that distribute signals across
the device. Hex lines are connected to every third CLBs, double lines connect every
other CLBs and direct lines connect to adjacent CLBs horizontally, vertically and
diagonally. Besides these interconnects, local interconnects, called fast interconnects

are available between slices of the CLB.

The Xilinx FPGA Editor tool can be used to view the interconnect of a blank device

or to view the interconnect used in an implemented design [Fig. 2.14].

2.8 Editing FPGA Resources

The Xilinx ISE provides tool sets, which automatic routes the design logic on FPGA
fabric during the implementation phase. To make changes in the design after im-
plementation stage FPGA resources needs to be changed manually. There are two

methods to edit FPGA resources:

1. FPGA Editor

2. Xilinx Design Language (XDL)
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Instance name CLB location Slice location

inst["g<0>"] "SLICEL", placed[CLB x1Y39|[SLICE x1¥76] ,

cfg " BXINV::BX BYINV: :#OFF CEINV::CE CLKINV: :CLK COUTUSED::0 CYOF::F1
CYOG::G1 CYINIT::BX CYSELF::1 CYSELG::1 DXMUX::1 DYMUX::1
F:Madd s_lut<0>:#4LUT:D=(A1@8A2) |—— LUT logic equation
FS5USED: : #0FF FFX:g O:#FF FFX INIT ATTR::INITO FFX_ SR_ATTR: :SRLOW
FFY:q_l:#FF FFY INIT ATTR: :INITO FFY SR ATTR::SRLOW FXMUX: :FXOR
FXUSED: : #0FF G:Madd_s_lut<l>:#LUT:D=(A1Q@A2) GYMUX: :GXOR
REVUSED: : #OFF SRINV: : SR
SYNC_ATTR: :SYNC XBUSED: : #OFF XUSED: :0 YBUSED: :#OFF YUSED: :0
CYMUXF:Madd_s_cy<0>:
CYMUXG:Madd_s_cy<1l>: XORF:Madd_s_xor<0>: XORG:Madd_s_xor<l>:
_INST _PROP: :XDIL_SHAPE_DESC: Shape 0:CARRY,A\ carry\ chain\ starting\
with\ carry\ mux\ \"Madd_s_cy<0>\"
_INST_PROP: :XDL_SHAPE_MEMBER: Shape_0:0,0 "

Figure 2.15: Slice Internal Components Descriptions in XDL

FPGA Editor, which is a part of Xilinx ISE, is a graphical application for displaying
and configuring Xilinx FPGAs. Using FPGA editor small design changes can be
made, but for the extensive change in the design FPGA Editor is not efficient. XDL

is used for detailed change in designs.
FPGA Editor and XDL require a Native Circuit Description (NCD) file. This file
contains the logic of the design mapped to components (such as CLBs and IOBs).

Xilinx ISE contains an XDL tool, which converts NCD to a human readable ASCII

XDL file and vice versa. The commands for conversions are:

xdl -ncd2xdl design.ncd design.xdl -- Converts NCD file to XDL file

xdl -xdl2ncd design.xdl design.ncd -- Converts XDL file to NCD file

An example of an instance is shown in Fig. 2.15. From this, one can know the slice
configuration and also can edit it according to the design specification. The slice

component is represented as,

Component_name : : #Parameter_value
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If a component is not used, its parameter_value is given as #OFF as shown in the

Fig. 2.15
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Chapter 3: Glitch Analysis within the LUT of FPGA

The Look-Up Table (LUT) is the main resource for logic implementations in the FP-
GAs. As a result of the differences in delays through the routing network and LUTs
themselves, signals arriving at LUT inputs may transition at different times, leading
to glitches at the output of LUTs. Glitches generated from LUTs depend on the logic
configured inside the LUT and also on the inputs of the LUTs. This chapter provides
insight to the experiments done to see how LUT inputs change affect glitches within

the FPGA.

3.1 Basic Implementation

The Fig. 3.1 shows the basic implementation of the design used for glitch analysis.
We implemented XOR logic within LUTs. All the inputs to the LUT are coming from
Flip-Fops (FFs). This will make sure that there are no glitches at the inputs. Slices
within the CLB are connected via fast interconnects and not through the slow routing
network. Therefore, in order to have minimum delay from output of FF's to the inputs
of the LUT, all input FFs and the LUT are placed within the same CLB. This is done
by the AREA_GROUP [34] design implementation constraints using User Constraints

File (UCF).

The delay from the output of input FFs to the inputs of the LUT are shown in Table
3.1. This delay information is obtained from the FPGA Editor after post-place and
route stage. In order to analyze how LUT inputs change affect glitches within the

FPGA, we experimented with 2, 3 and 4 inputs change as follows:
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Figure 3.1: Glitch Analysis - Basic Implementation

Table 3.1: Register Output to Input of LUT Delay

Wire | Delay (ns)
w 0.514
X 0.383
y 0.346
z 0.554

31



Table 3.2: Glitch with 2 Inputs Change to Same Values

abcd|q| Glitch Wire Delay
Width Difference
(ps) of Changing

Inputs (ps)

0000 |0

1100 10 18 131

0000 |0

010 1o 16 168

0000 |0

0110 |0 34 37

0000 |0

0011 10 72 208

0000 |0

1001 |0 56 40

0000 |0

0101 1o 38 171

3.2 2 Inputs Change

In this experiment, only 2 inputs of the LUT transition from its previous values in each
clock cycle, keeping the other two inputs constant. There are six possible combination
of input signal changes. These can be further categorized based on the input signals

transition to same value [Table 3.2] or different values [Table 3.3].

Consider the case where the inputs transition from 0000 — 1100. Ideally, the output p
[Fig. 3.1] should remain constant at 0, because of the XOR logic implementaion within
LUTs. However, varying arrival times on the inputs may cause an input transition
sequence such as 0000 — 1000 — 1100, causing p to make a 0 — 1 — 0 transitions
rather than remaining at 0. This generates a positive glitch at the output of LUT as
shown in Fig. 3.2. As we can see with two input change, there can be maximum two
transitions on the signal, hence a single glitch pulse can occur. The glitch is eliminated
after the insertion of the FF at the output of LUT, so we cannot see a glitch on the
output ¢ in Fig. 3.1. Table 3.2 and 3.3 also shows the width of glitches observed and
the difference of the input delays. As we can see from the table, the width of glitches
32



Table 3.3: Glitch with 2 Inputs Change to Different Values

abcd|q| Glitch Wire Delay
Width Difference
(ps) of Changing

Inputs (ps)

0100 |1

1000 11 18 131

0010 |1

T000 11 16 168

0010 |1

0100 |1 34 37

0001 |1

0010 11 72 208

0001 |1

1000 |1 56 40

0001 |1

0100 11 38 171

and the difference in the input delays do not match. This leads to the conclusion that

the LUT’s internal delay may also affect the glitches.

3.3 3 Inputs Change

The 3 inputs change experiment is similar to the experiment done previously for 2
inputs change. Here, 3 inputs of the LUT change values from their previous values at
every clock cycle. There are four possibilities to change 3 inputs values, keeping one

input fixed. The truth table for this implementation is given by the Table 3.4.

Consider the case where the inputs transition from 0000 — 1110. Ideally, the output
p should transit from 0 to 1 only once. However, varying arrival times on the inputs
may cause an input transition sequence such as 0000 — 0100 — 1100 — 1110, causing
p to make 0 — 1 — 0 — 1 transitions. This generates a glitch at the output of the
LUT as shown in Fig. 3.3. For the 3 inputs change maximum of three transitions on
the output signal can occur. These transitions constitute only a single glitch pulse and

a useful transition as seen from Fig. 3.3. The glitch is eliminated after the insertion
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Table 3.4: Glitch with 3 Inputs Changes

abcd | q| Glitch width (ps)
RS UNS! .
11011 3
Tori T 5
GTT1 T 3
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of the FF at the output of the LUT. Hence, we cannot see glitch on the output g¢.

Table 3.4 shows the width of glitches we observed.

3.4 4 Inputs Change

In this experiment all inputs of the LUT transit from their previous values to new
values in each clock cycle. In addition to above experiments, we enhanced the basic
implementation in this experiment. For this, we took each input FF out from the
CLB and placed it in nearby CLB one by one. This allowed us to observe the effects
of delays on the glitches. The truth table for this implementation is given by the
Table 3.5. This table also shows the placement of the input FFs placed outside the

original CLB.

Consider the case where the inputs transition from 0000 — 1111. Ideally, the output
p should remain constant at 0. However, p may go through several transitions like 0
— 1 —=0— 1 — 0 because of input transition sequence such as 0000 — 0100 — 1100

— 1110 — 1111. This generates glitches at the output of LUT. For 4 inputs change,
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Table 3.5: Glitches with 4 Inputs Change

Width of Glitches (ps)
abcd| Output All FFs in | D in dif- | C in differ- | B in differ- | A in differ-
same CLB ferent CLB | ent CLB | ent CLB | ent CLB
(X6Y31) (X6Y30) (X10Y31) (X10Y31)
0000 0
111 0 29, 32 48, 159 48, 159 36, 117 48, 98
0001 1
110 i 29, 32 48, 159 48, 159 36, 117 48, 98
0010 1
1101 i 29, 32 48, 159 48, 159 36, 117 48, 98
0011 0
1100 0 29, 32 48, 159 48, 159 36, 117 48, 98
0100 1
1011 i 29, 32 48, 159 48, 159 36, 117 48, 98
0101 0
10710 0 29, 32 48, 159 48, 159 36, 117 48, 98
0110 0
1001 0 29, 32 48, 159 48, 159 36, 117 48, 98
0111 1
1000 i 29, 32 48, 159 48, 159 36, 117 48, 98
Inputs
[532.522 nsl
k 1 o
o enable 1
M‘Eset u]
a 1
dh 0
e 1 Transitiord
o d 0
v Transition
D> R
g il
Transition2
Transitionl

Figure 3.4: 4 Inputs Change - Waveform
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Table 3.6: Comparision of Experiments

Experiments | Minimum Maximum
Width of Glitch | Width of Glitch

(ps) (ps)

2 Inputs Change | 16 72
3 Inputs Change | 18 56
4 Inputs Change | 29 32

there can be maximum of four transitions on the signal that can occur. Therefore
we can get maximum of two glitch pulses as shown in the Fig. 3.4. The glitch is
eliminated after the insertion of the FF at the output of LUT, so we cannot see the

glitches on ¢. Table 3.6 shows the width of the glitches observed.

3.5 Observation

Table 3.6 shows the minimum and the maximum width of glitches observed from the

above experiments.

In addition to this, we also observed that when we place any single input FFs far
from the LUT, the width of the glitches increased, up to 159 ps. This shows that the
delays affect the width of glitches. The delay is due to the longer route connecting the
FF to the LUT via the routing matrix. It is worth noting that we have looked at a
single LUT only. Most combinational circuits have several LUTs and hence are even
more prone to the glitches. For the research, these observations provided the specific

minimum glitch width for deciding the approach to design a glitch detection circuit.
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Chapter 4: Glitch Capture Circuit

4.1 Basic Idea

The main purpose of the glitch capture circuit is to reproduce the waveform of the
glitch signal applied at the input. To accurately measure the glitch pulse, which has
a very small width with respect to time, we need to design a glitch capture circuit
that has a high enough resolusion. The state of a logic signal can be captured by
a flip-flop, which is typically driven by a clock. The maximum clock frequency of
the Xilinx Spartan-3E FPGA is 572MHz (1.74ns), which is insufficient to capture a
glitch. Hence, we adopted a method for the glitch capture circuit, where the input
glitch signal is shifted by a tiny period of time for N times and sampled by the same
clock. By sampling the glitch signal at N points at the same clock pulse, we obtained
a sequence of 0’s and 1’s of length N. Integration of the sequence of 0’s and 1’s
represents the sampled waveform of the glitched signal. The sampled waveform might
not capture every transition of the glitch signal. However, by keeping the sampling
delay short, we can increase the resolution of captured glitch waveform. This chapter

provides the insight to our approach in designing the glitch detection circuit.

4.2 Glitch Capture Circuit Based on Wire Delay

4.2.1 Implementation Details

Figure 4.1 shows the implementation of a glitch capture circuit based on wire delay
between sampling FFs. In this method, we used 32 sampling FFs. This 32-bit sampled
data can be directly read out from the FPGA board using a USB interface.
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Figure 4.1: Wire Delay

For the accuracy and ease of reproduction of the sampling waveform, we used same
delay between two consecutive samples. We utilized CLB’s regular structure for this
purpose and used only single slice from each CLB. We also used the same slice location
within each CLB. To fix the slice location in the CLB, we made a hard macro using the
FPGA editor. A hard macro is a placed-and-routed macro, which can be instantiated
many times in the design. First we made a hard macro for a single CLB and then
instantiated it 32 times in the design (the macro file name is the component name).

The steps to make the hard macro are listed below:

1. Open the routed design (.ned) in FPGA editor and save the design as a macro
(.nmc).

2. Place FPGA editor in edit mode and remove all the 10 pads (bonded to package
pins and provide unidirectional or bidirectional interface between a package pin
and the FPGAs internal logic.). It will un-place the pad components and un-
route the signals connected to them.

3. Add External Macro pin to the site where previously routed pads were connected.

These pins will be the ports of instantiated macro in the design.
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4. Delete un-placed pads and un-routed nets.

5. To maintain the relative placement of the CLBs/Slices in the macro, select the

CLB to use as the reference and create a Relationally Placed Macro (RPM).

Then, we placed each instantiated hard macro in a chain, again to have equal delays
between sampling FFs. The Xilinx’s placement constraint LOC was used for this
purpose. LOC defines where a design element can be placed within an FPGA. The
FPGA editor can be used to find legal site names. We used an LOC constraint for

each macro and specified it using UCF. The basic UCF syntax is:

INST instance_name LOC= location;

Where, location is a legal location for the part type.

For example,

INST "macro_loop[0]" LOC = SLICE_X66Y20;

To have minimum distance between sampling FF's for the accurate glitch capture, we
did not place any logic between them for this design. The input glitch signal is applied
directly to all the FFs, even though there are wire delays between them. The glitch
signal applied to the input of this circuit was periodic signal with time period of 2ns.

We performed post-place and route simulation using Modelsim 10.1a.

4.2.2 Observation

In the FPGA editor we observed irregular routing between two sampling FFs. There-
fore, the delay between them was also different. We confirmed this from the post-place
and route static timing report. We also observed that the sampled sequence of 0’s and
1’s obtained from simulation does not match with the glitch signal. Moreover, the
drawback of this design is that the glitch signal is driving all the FFs, which creates

a high fan-out problem.
40



Delay=1.07 ns
G.lltch CLB CLB |===7 CLB CLB
Signal | |
| |
U LT- T LuUT LuT : LuT :l -4 ==iq LUT
1] il 11 1] |
1____|: i
|
|
==
L 1] |
1] I
i - Q He |
| |
Ih | \
[ - \
Clock . . . !
Select ‘
|
S0 s1 s15 s31

Figure 4.2: Glitch Capture Circuit Based on LUT Delay

4.3 Glitch Capture Circuit Based on LUT Delay

In this design, we tried to resolve the problems encountered in the previous design

such as irregular routing between sampling FFs and high fan-out of the glitch signal.

4.3.1 Implementation Details

The implementation for this design is shown in Fig. 4.2. This design is very similar
to the previous design except we introduced a LUT delay between the sampling FF's
in addition to the wire delay. The glitch signal is applied only to the first LUT. The
inputs of other LUTs are connected to the outputs of their previous LUTSs. We used
the same design criteria as the previous design such as 32 sampling FFs and use of

single slice per CLB.

For this design we also implemented a hard macro, which includes the LUT delay
and the sampling FFs as shown in Fig. 4.3. We call this macro a capture/read

macro. A multiplexer is implemented in the LUT. When we want to use the design in
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Figure 4.3: Hard Macro Implementation

capture mode (sampling mode), the CR_in input of LUT is selected by CR_sel select
signal. When we want to use the design in read mode (shift mode), the CR_reg_in
input is selected. Just like the previous design, we instantiated 32 hard macros in the
design and placed them in a chain by applying LOC placement constraint in UCF
file. The read mode is for future experiments only. We have used capture mode for

our experiments.

From the post-place and route static timing analysis we found the delay between two

consecutive CLBs (sampling delay) is 1.07ns, which is a resolution of this design.

4.3.2 Automated Simulation and Output Analysis Process

First, to check the correctness of the design, we applied a clock signal as the glitch
signal with time period of 4.2ns and 50% duty cycle at the input of this circuit.
After performing post-place and route simulation, the output obtained is realized into
waveform, which is shown in Fig. 4.5. The X in the output is due to setup time
violation of the sampling FFs. For Spartan-3E FPGA, setup time (time from the
setup of data at the F' or G input to the active transition at the CLK input of the
CLB) for (-4) speed grade is 0.53ns [33].
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Figure 4.5: Reproduced Waveform Example Based on LUT Delay Design
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From the Fig. 4.5, we can see that the shape of the reproduced sampled waveform
at the output is a periodic waveform, similar to the clock signal applied as the glitch
signal. To check the correctness of the waveform, we analyzed the obtained waveform
to see weather the time period of it matches with the time period of the input. For
this, first we assigned value I to digits 0 and 1 and .5 to digit X. Then we separated
all the different patterns from the output such as, single 0, single 1, 00, 11, 0X, 1X, etc
(considering no pattern starts with X, only pattern breaks at X). After multiplying
each pattern with its appropriate value, we get the total number of digits in the
waveform. Dividing this number by total number of patterns, results the average
number for digits per pattern. Multiplying 1.81 (the average number of digits per
pattern) by 1.087ns (the delay between sampling FFs) and 2 (both low and high
periods of one clock cycle), we get a time period 3.87ns for the obtained output as
shown in Fig. 4.5. This is very close to the input time period of 4.2ns. The variation

may be due to the assumption we made in assigning the value of 0.5 to X.

Once the manual analysis confirmed the correctness of design for one frequency, for
the further testing and to find the limits of the design, we generated a Perl script
for automatic simulation and output analysis for different frequency input signals.
The process flow is shown in the Fig. 4.4. The script generates multiple testbenches
for different input frequencies from a testbench template. Then each testbench is
compiled and simulated one by one using ModelSim in batch mode. Output from
each simulation is stored in Comma-Separated Values (CSV) format. In the analysis
part, the script analyzes each CSV file just as explained in the manual analysis process
and the final report for all the frequencies is stored in a new CSV file. A sample of
the analysis report is shown in the Table 4.1. Figure 4.6 shows the graph for different
input signal time periods versus the corresponding output signal time periods obtained
from the analysis. From the accuracy column of Table 4.1 and Fig. 4.6, we can see
that the output signal time periods follow closely to the input signal time periods.

Any discrepancy in the results may be due to the assumption we took such as no
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Table 4.1: Sample of the Analysis Report

r

Time Sampling Output Avg. # of | Time Accuracy
period 0’s or 1’s in | Period | (in per-
of an a Pattern (Out- | of an | cent-
I.nput put width / No. QUtPUt age)
signal of unique pat- signals

(ns) terns) (ns)

01.8 101X0101X0101X0101X010X10101X0 1.13 (27 / 24) 02.42 74.40
02.1 10101010101010101010XXXXXX10101 1.18 (29.5 / 25) 02.53 79.60
03.9 11001X01100110X10011001X01100 1.72 (27.5 / 16) 03.68 94.36
04.2 10011001100110011001100110X1X0 1.81 (29 / 16) 03.87 92.15
05.1 0011100110001100X110011X0011 2.25 (27 / 12) 04.81 94.32
06.3 00011100011100011100011100X11 2.85 (28.5 / 10) 06.10 96.83
07.2 111100011100001110001111000 3.38 (27 / 8) 07.23 99.58
08.1 00001111000011100001111000X 3.79 (26.5 / 7) 08.11 99.87
09.6 1111100001111X0000111100000 4.42 (26.5 / 6) 09.46 86.00
10.5 111110000011111000001111X 4.9 (24.5/9) 10.49 99.90
11.4 1111100000111110000000000011111 5.2 (26 / 5) 11.13 97.64
12.0 0000001111100000011111000000 5.6 (28 / 5) 11.98 99.83
13.5 000000111111000000111111000000 6.00 (30 / 5) 12.84 95.12
15.0 000000011111110000000 7.00 (21 / 3) 14.98 99.86
16.2 0000000111111110000000 7.33 (22 / 3) 15.69 96.80
174 000000001111111100000000X 8.17 (24.5 / 3) 17.48 99.54
18.9 11111111100000000X 8.75 (17.5 / 2) 18.73 99.10
19.2 111111111000000000 9.00 (18 / 2) 19.26 99.68

pattern starts with X and the value of X.

4.3.3 Observation

From all the experiments and analysis, we can say that this design is able to reproduce

the input glitch signal at the output. Although, we also found that we are not able

to reproduce the waveform for the input glitch signal time period less than 1.8ns

(frequency higher than 555Mz). We should be able to get the desired output for the

input signal time period less than 1.8ns because the hold time (Time from the active

transition at the CLK input to the point where data is last held at the F or G input)

is 0 ns and setup time is 0.53ns for the Spartan-3E FPGA with -4 speed grade [33],
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Figure 4.7: Glitch Capture Circuit Based on Carry Chain Delay

which is less than the circuit resolution of 1.07ns, which is also less than 1.8ns. We

assume that this might be due to a limitation of the simulation tools.

4.4 Glitch Capture Circuit Based on Fast Carry Chain

Delay

In previous design, the sampling delay was 1.07ns and we could not find expected
results for the input signal period less than 1.8ns. We thought if we reduce the
sampling delay, we might reproduce the waveform for the input signal period less

than 1.8ns. The fast carry chains of the FPGA are very fast as they use dedicated

routing resources. We used them as the sampling delay element for this experiment.

4.4.1 Implementation Details

Fig. 4.7 shows the design of glitch capture circuit based on fast carry chain delay.

The design criteria such as 32 sampling FFs and use of single slice per CLB are the
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same as the previous LUT based delay design. We created a fast carry chain hard

macro for this design and instantiated 32 times.

The fast carry chain hard macro is implemented using FPGA editor and XDL. The
macro design is shown in Fig. 4.8. For the first macro only, CYINIT is selected to
BX, where the glitch input signal is applied. For the rest of the macros CYINIT is
selected to CIN to pass the signal in the carry chain. Then we made C'YSELF and
CYSELG to select 1 and also the selected inputs are tied to 1. As a result, CYMUXF
and CYMUXG can propagate CIN to COUT. We also implemented XOR, logic in the
LUT and applied inputs such that LUT output is always 0. So, CIN value is always
passed through XORF and is sampled at X@Q.

4.4.2 Observation

We observed that the sampling delay between two FFs for the fast carry chain design
is 0.118ns, which is the resolution of this design. The sampling delay of this design is
very less compared to the other designs and the structure of this design is very regular.
We confirmed the regular structure with FPGA editor after place and route. Although,
when we analyzed the post-place and route simulation data, the reproduced output
waveforms and their frequencies did not match with the input signals frequencies. We

assume that this might be due to implementation error.

4.5 Glitch Capture Circuit Based on Variable Delay

From LUT delay design, we observed the correct reproduced waveform. We will call
this design as LUT based glitch capture design now onwards. However, this design
does not work for the input glitch signal with time period less than 1.8ns. Hence, to
improve the resolution of the design we introduced a variable delay in front of the LUT
based glitch capture design as shown in Fig. 4.9. We repeatedly applied the same
glitch signal input to the design, but started the detection each time with a different
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Figure 4.10: Variable Delay Implementation

delay selected from the variable delay design. By post-processing the sampled data,

we can reproduce the output waveform of the circuit as shown in Fig. 4.11.

4.5.1 Implementation Details

When we implemented simple 2-1 multiplexer, we found different delays from input to
output for both the inputs. When the 0" input is selected the delay for input to output
was 5.931ns and for other selection the delay was 6.02ns. We used this information
to implement our variable delay design, which is shown in Fig. 4.10. We cascaded 30
multiplexers, placing only one multiplexer per CLB to have constant delays between
them. The delay between two adjacent selections (000...000 — 000...001) is 0.046ns.

The resolution is improved from LUT based glitch capture design by 95.7%

Note: The setup and hold time of FF's limit the detection of glitches which are larger
than 0.53ns. However, the delay circuit allows to determine the start and length of

such glitches with a resolution of 0.046ns.
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Figure 4.11: Example of Reproduced Waveform Based on Variable Delay

4.5.2 Simulation

The maximum delay of the variable delay design is 36.17ns and the delay of the LUT
based glitch capture design is 38.53 ns. Considering a delay A of the input circuit,
the sampling should be done before 75ns (A delays + 36.17ns +38.53ns). During the
simulation, we applied different input signals with different frequencies to the circuit
and obtained simulated output. A sample of the output obtained from the simulation
by applying 2 ns periodic signal is shown in Fig. 4.12. Each row is the sampled data
of the LUT based glitch capture circuit and each column is the delay introduced to
the input signal from the variable delay circuit. We integrated the output data to
reproduce the waveform. As we can see from the Fig.4.11, if we increase the input
delay more than the sampling delay, overlapping will occur. In order to avoid the
overlap and to reproduce the accurate waveform it is important to decide on the

maximum delay from the variable delay design. For this, we try two methods.

— We analyzed the output and as we can see from the Fig. 4.12, the XX000 from

column 5 overlaps with top of the next column. This is same for the other
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Figure 4.12: Sample Output from Variable Delay Based Design
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columns too. Therefore, we can chop of those repetitive rows from the output,

which leaves 23 rows.

— We know the sampling delay of LUT based glitch capture design is 1.07ns and
the resolution of Variable delay design is 0.046ns. In order to avoid overlap, we

can have maximum 23 (1.07/0.046 = 23 approx.) rows.

4.6 Observation

With the glitch capture circuit based on variable delay we obtained the glitch detection
resolution of 0.046ns, which indicates 95.7% increase in glitch detection resolution
from the LUT based glitch capture circuit. For the experiments, we applied input
glitch signal with different frequencies. Although, we are not able to reproduce the
waveform for the input glitch signal frequency higher than 555Mz (1.8ns), which is
consistant from the LUT based glitch capture circuit. We assume that this might be

a limitation of the simulation tools and FPGA simulation models.
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Chapter 5: Glitch Measurement

In previous chapter we demonstrated the design of the glitch capture circuit with a
detection resolution of 0.046ns. However, we are not able to capture glitches smaller
than 1.8ns width, which might be due to the limitation of the simulation tools. There-
fore, we decided to implement the glitch detection circuit on an FPGA board. We
used the Nexys II FPGA board, which has a XC3S500E device with -4 speed grade
from the Xilinx Spartan-3E family. It runs at a clock frequency of 50MHz. For the
simulation, we know the delay difference (0.046ns) of the variable delay circuit and
the sampling delay (1.08ns) of the glitch capture circuit. In simulation we can ob-
tain this information from the FPGA editor and from the post-place and route static
timing analysis. This information is required to reproduce the input waveform. How-
ever, due to the process variation of the FPGAs, we can not have the accurate delay
information. Therefore, we implemented a ring oscillator (RO) for on-board circuit

calibration.

5.1 Ring Oscillator

5.1.1 Implementation Details

Fig. 5.1 shows the implementation of the ring oscillator. As we can see, it consists of
one XOR gate and two Inverters connected in a loop. When temp(0) is 0 and osc_en
is 1, temp(2) will be 1, temp (1) will be 0, temp(0) will be 1, which makes temp(2)
0. Hence, we get continuous fast pulses at osc_clk_out. Each gate is implemented in a

separate slice and even in a separate CLBs to have pulses with 50% duty cycle.
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The ring oscillator frequency is measured using the circuit shown in the Fig. 5.2. A
reference counter enables or disables the RO counter. The clock of RO counter is
the output of the ring oscillator. First, the ring oscillator and the reference counter
are enabled and RO counter is disabled, which gives time for ring oscillator to warm
up. After 1000 clock cycles, RO counter will be enabled and it will count the ring
oscillator clock cycles. After one second, the RO counter and the reference counter

are disabled. The RO counter output is the frequency of the ring oscillator in Hz.

Because the ring oscillator is a logical loop, the simulator can not simulate it. Hence,
to measure the ring oscillator frequency, we loaded the design on the FPGA board and
obtained on-board ring oscillator frequency of 101.85MHz. To check correctness of

the implementation, we used a testbench to produce the ring oscillator frequency.

5.2 Glitch Measurement

5.2.1 Implementation Details

Figure 5.3 shows the block diagram for the implementation of the on-board glitch
detection circuit. All the modules are controlled by the controller module (controller
module not shown in the fig.) to ensure correct operation. The highlighted green
blocks are placed at fixed locations on FPGA. The signals highlighted in red are the
external input-output signals of the design. The on-board glitch detection experiment
is done in three steps: determine ring oscillator frequency, determine glitch detection

circust calibration and glitch detection.

This design first determines the ring oscillator frequency using RO counter, reference
counter and ring oscillator as explained earlier. Then, for the calibration, the ring
oscillator output is applied to the variable delay circuit. At every clock cycle, the
variable delay value changes and the ring oscillator output is sampled by the detection

circuit (LUT based glitch capture circuit). The sampled data is stored in BRAM.
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These steps are repeated 30 times. Then the circuit asserts a signal indicating that
the ring oscillator data is ready. The process halts until the BRAM data is read and
circuit receives an external signal, indicating the data has been read. Then it enters

in the glitch detection part.

In glitch detection, the 4 input change circuit, explained in Chapter 3 is used as the
glitch circuit. In one clock cycle, the first 4 bits value is applied (0000). In the next
clock cycle a value, whose all 4 inputs are changed from the previous inputs is applied
(1111). Then the glitch signal is captured by detection circuit. The sampled data is
stored in BRAM and delay is changed in variable delay circuit. Again, in next cycle
0000 is selected. These steps are repeated for 30 times. Then glitch data ready signal
is asserted and again the process will halt until the glitch data is read and it receives

the external signal for it. Then the design goes back to the starting state.

Once the calibration process is done and the ring oscillator frequency is known, we can
bypass the ring oscillator stage. Hence, from the starting state, the design can directly
enter in the glitch detection stage just by applying an external signal indicating start
of glitch detection. The same glitch detection process explained above can be repeated

for different 4 inputs change signals.

5.3 Simulation and Analysis

We first verified the design by simulation. Since we could not get output from the ring
oscillator in simulation, we applied periodic signal with 10ns period as ring oscillator
signal. A sample of the output for calibration is shown in Fig. 5.4. We analyzed
the obtained data for the circuit calibration. We observed that the circled sequence
XXX00 at the bottom is overlapping with top of the next column. It is same for
the other columns also. Hence, to avoid overlapping we removed last five rows from
the output, which leaves 23 rows. We also observed that the average number of

consecutive 0’s and 1’s (considering X’s are combined in sequence of 0’s and 1’s at
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the end) is 4.6. The clock period for the circuit is 10 ns. A time period has two logic
values 0 and 1 and considering 50% duty cycle, we can say that the sequence of 4.6
0’s or 1’s occurs in 5 ns period. Dividing 5 ns by 4.6 gives us the sampling delay of
detection circuit of 1.08ns. Now, dividing 1.08ns with 23 gives the delay difference

of the variable delay circuit, which is 0.046ns.

5.4 Observation

For the simulation, we applied the input values to the 4 input glitch detection circuit
using testbench. When we applied output of the 4 inputs change glitch circuit to the
detection circuit, we observed a glitch as shown in the Fig. 5.5. We found a glitch
with 0.506 ns width using the calibration obtained by ring oscillator. As shown in
Chapter 3, We found the maximum width of glitch of 32 ps from 4 input change
glitch circuit. Moreover, we found only one glitch pulse from the simulation, while
the 4 inputs change circuit produced two glitch pulses. Hence, we forwarded our

experiments to on-board.

5.5 On Board Glitch Detection

First, we obtained on-board ring oscillator frequency of 101.85MHz (9.8 ns clock
period). Then we obtained the ring oscillator output for the circuit calibration as
explained in the previous section. We found the sampling delay of 1.2ns for detection
circuit and the delay difference of 0.054 ns for variable delay circuit. For the on-
board glitch detection, we applied an input change of 0000 — 1111 to the 4 inputs
change circuit through computer via USB interface. The BRAM stores the output
data obtained from the glitch detection circuit, which is sent back to computer via

USB for post processing and waveform generation.
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5.6 Observation

From the on-board glitch measurement, we observed 2 glitch pulses at the output of
the glitch detection circuit similar to the 4 inputs change circuit. As shown in the
Fig. 5.6, we also observed the glitches with width of 0.324ns. We can say that the
simulation based glitch detection can not detect all the glitch pulses, which we found

from on-board glitch detection.
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Figure 5.6: Glitch Output from On-board Implementation
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Chapter 6: Conclusion

Glitches are unproductive signal transitions, which increase the overall power con-
sumption of the device. They also impose a security threat if the device is used
for critical operation. The glitch elimination techniques require precise detection of
possible glitches in order to remove glitches from the digital circuits implemented on
hardware platforms such as FPGAs. The post place and route simulation provides
glitch detection, but it cannot take process variations of the FPGA into account.
Moreover, its accuracy depends on the simulation model only, which might not ex-
pose all the glitches from the implemented circuit. In this research we introduced a
novel approach for glitch detection in hardware implementations on FPGAs, which
does not merely detect the presence of glitches, but also captures the glitch wave-
form and provides the information about the position and the width of glitches in
the design. We also propose a methodology to increase the resolution of the captured
waveform and also show the calibration process required to obtain accurate values
for width of glitches occurring in the hardware implementations on a given FPGA.
Our results indicate that we can reliably reproduce the glitch waveform, which the
simulation method could not. Our design has the resolution of 0.054 ns and can

reliably detect glitches with a width as small as 324 ps on a Spartan-3E FPGA.
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