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ABSTRACT 

SERUM METABOLITES CHARACTERISTICS IN PATIENTS WITH NON-

ALCOHOLIC FATTY LIVER DISEASE AND RELATED CORONARY ARTERY 

DISEASE 

Fang Chiu, Master of Science Candidate 

George Mason University, 2019 

Thesis Co-Directors: Dr. Margaret Slavin 

                                    Dr. Robin Couch 

Coronary artery disease (CAD) is more likely to develop among individuals with 

non-alcoholic fatty liver disease (NAFLD), as compared to healthy individuals. However, 

there are currently limited biomarkers to detect heart disease before cardiac symptoms 

occur. Applying metabolomic fingerprinting and profiling to these patients might 

improve prediction and diagnosis of CAD. Thus, the aims of this study were to identify 

metabolomic pattern differences among various CAD severities and to address metabolite 

signatures that can become potential biomarkers. 

Liquid chromatography-mass spectrometry was performed on 83 serum sample 

extractions from participants diagnosed with NAFLD  and CAD severity levels ranging 

from no CAD through CAD level 4. The data underwent multivariate analysis to 

distinguish metabolomic patterns variation, and results showed that there is a separation 

between CAD stages, indicating the difference in their metabolomic fingerprints by stage. 

Then, Student‟s t-test with FDR correction, frequency calculation, and log2 fold change 
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were applied to select metabolites associated with CAD. Eight candidate metabolites 

were chosen and were further analyzed by tandem mass spectrometry to yield 

metabolomic profiles. Compound identification was attempted by comparing these 

sample profiles with the NIST database. According to the results, one of the targeted 

profiles matched a drug derived metabolite, 4-hydroxyatorvastatin lactone, and it is CAD 

0 stage specific. Based on patient medical history report, the use of atorvastatin was 

found to be higher in this stage, which confirmed the result. In conclusion, the identified 

metabolite can be considered as an internal standard; it verified the data processing and 

method of selecting metabolites in the present research. The other 7 CAD sensitive 

metabolites were unable to be identified using current databases of known compounds 

and may be investigated in future projects. 
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BACKGROUND 

Coronary artery disease (CAD) is a type of cardiovascular disease (CVD) 

featuring narrowed coronary arteries; it is also known as coronary heart disease (CHD). 

Usually caused by the buildup of plaques in the arteries, this heart disease can decrease or 

block the oxygen-rich blood flow to the heart, which leads to ischemic heart disease and 

heart failure. CAD has become one of the most common types of heart disease in the 

United States, according to the Centers for Disease Control and Prevention (CDC).
1,2

 

However, patients with CAD often do not notice their conditions until they experience 

several complications, such as angina pectoris or chest pain. 

Diet, lifestyle, ethnicity, and genetics are factors that affect the development of 

plaques in the coronary arteries. In addition, non-alcoholic fatty liver disease (NAFLD) is 

one of the important risk factors that is associated with CAD.
3
 Since plaques in coronary 

arteries build up due to inflamed cholesterol deposits, and dyslipidemia is highly 

prevalent among NAFLD patients, the relationship between CAD and NAFLD is 

predictable. People with NAFLD are at higher risk of developing CAD and other kinds of 

cardiovascular disease than those without NAFLD.
4
 

Considering the association between NAFLD and CAD, and the symptomless 

progress of CAD among patients, an easily-measured indicator of CAD that reflects 

coronary artery conditions before an actual heart attack would be helpful. The metabolic 
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status in a human body changes when disease occurs, meaning that there is an alteration 

in quality and quantity of metabolites in the diseased person. Connecting this 

metabolomics concept with clinical demands, if specific metabolites that are related to 

CAD can be successfully identified in NAFLD patients, they can be defined as new 

biomarkers for predicting CAD in this population. Therefore, we would be able to 

identify the heart disease at an early stage by measuring specific metabolites in the body, 

making the diagnosis of CAD more efficient, and patients could receive treatments before 

their heart disease worsens. 

The following study focuses on the metabolomic profiles of NAFLD-related CAD 

patients and the identification of CAD specific metabolites as potential biomarkers. 

Disease Overview 

Non-Alcoholic Fatty Liver Disease (NAFLD) 

According to the National Institute of Diabetes and Digestive and Kidney 

Diseases (NIDDK), NAFLD is a series of conditions occurring when excess lipids build 

up in the liver causing steatosis and/or inflammation but not due to heavy use of alcohol.
5
 

NAFLD is considered as the most common form of chronic liver disease in the United 

States and its estimated prevalence rate had increased from 18% in 1991 to 31% in 2012.
6
 

A wide variety of risk factors can result in NAFLD, including overweight or 

obesity, metabolic syndrome (MetS), and dyslipidemia. Overall, insulin resistance is 

considered as the primary metabolic defect that leads to this fatty liver disease.
7
 Elevated 

insulin levels and impaired insulin sensitivity result in a positive energy balance, which 
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expands the storage of triglycerides in adipocytes. This also induces low-grade adipose 

tissue inflammation, which increases lipolysis and intrinsic fatty acids release. Free fatty 

acids produced by adipose tissue travel in vessels until they are taken by the liver; this 

uptake process is a hepatic response to the high level of lipolysis and insulin resistance in 

a body. As the lipolysis level in the peripheral adipocytes elevates, hepatic cells react to 

the influx of free fatty acids and tend to generate triglycerides (TG) in hepatocytes. The 

function of liver in very low density lipoprotein (VLDL) generation is also interrupted 

due to the decrease of apolipoprotein B-100, and this impacts the packaging and shipping 

of triglyceride in the liver. Instead of distribution to the body, the TG remains within the 

liver under this condition.
8
 

As lipid accumulation increases, the level of β-oxidation in the hepatocytes also 

elevated, which leads to mitochondrial dysfunction. During this up-regulated fatty acid 

metabolism process, more reactive oxygen species, including H2O2 and O2• (-), are 

produced at the electron transport chain, and they increase intracellular oxidative stress 

and lipid peroxidation. This oxidation reaction, therefore, connects to cell apoptosis and 

the release of malondialdehyde and 4-hydroxynonenal; both of the secreted compounds 

promote cell inflammation and collagen synthesis, which can induce hepatic fibrosis.
9,10

 

Summing up the facts, the presence of lipid droplets in hepatocytes, accompanied 

by mitochondrial dysfunction and lipid peroxidation, introduce cell apoptosis and higher 

oxidative stress. At this stage, liver inflammation and fibrosis can occur, leading to severe 

malfunction and other complications.
8
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Within the etiology of NAFLD, two separate sub-classification, simple steatosis 

and non-alcoholic steatohepatitis (NASH), have been recognized. The former condition is 

defined by a greater than 5% liver triglyceride accumulation with no or little 

inflammation and hepatocyte damage. Simple steatosis is relatively benign and can be 

reversible. About 10-20% of the NAFLD patients will progress to more severe 

complications that eventually develops into NASH; symptoms such as hepatic 

inflammation and injuries are included. NASH has characteristics of hepatitis in addition 

to accumulation of excess TG within the liver. The inflammation in NASH is due to the 

exacerbation of insulin resistance and the abnormal lipogenesis in the hepatocytes. In this 

condition, the liver has a higher oxidation and cell apoptosis rate. If the hepatitis 

continues, it will eventually cause fibrosis or scarring, and can further lead to liver 

carcinoma and cirrhosis
11

. 

Several comorbidities are associated with NAFLD, including type 2 diabetes 

mellitus (T2DM), metabolic syndrome (MetS), and cardiovascular disease (CVD). CVD 

is the general term for all types of diseases that affect the heart or blood vessels, and 

CAD typically refer to the heart disease caused by blockage of the coronary arteries. 

Hence, CAD is considered as a subtype of CVD, while CVD covers a wide range of 

vessel diseases and cardiac symptoms. Research showed that NAFLD serves as an 

independent risk factor for CVD.
12

 NAFLD patients are more likely to develop CVD than 

those without NAFLD; the significance still persists after adjusting confounding variables, 

such as glycemic control and overweight. Atherosclerosis and coronary calcification, 

which results in CAD, was also found to be connected with NAFLD and has a higher 
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prevalence among NAFLD patients.
13

 Several factors are suggested to be involved in the 

development of CAD among NAFLD patients. These include a higher oxidative stress 

level and systemic inflammation caused by liver steatosis, and the lipotoxicity due to 

adipose tissue lipolysis and its resulting free fatty acids. Studies also found a higher rate 

of endothelial dysfunction among people with NAFLD.
14,15

 The mechanisms that connect 

NAFLD and CAD will be explained more thoroughly in the following section. 

Coronary Artery Disease (CAD) 

According to the National Heart, Lung, and Blood Institute (NHLBI), CAD is the 

most common type of heart disease in the United States. Initially, plaque builds up in the 

coronary artery and narrows the blood vessels, and this process is also referred to as 

atherosclerosis. The waxy clot hardens overtime and might ultimately partially or 

completely block the blood flow to the heart, leading to angina or myocardial infarction 

(MI).
16

 Obstructive CAD is defined as an obstruction of greater than 50% in the left main 

coronary artery or a 70% or greater obstruction of a major coronary vessel.
17

 

The risk factors of CAD largely overlap with those of NAFLD, including MetS, 

hypercholesterolemia, obesity, and T2DM.
13

 Former studies suggested that elevated 

levels of low-density lipoprotein cholesterol (LDL-c) and lower high-density lipoprotein 

cholesterol (HDL-c) levels are closely related to atherosclerosis and CAD.
18

 Cholesterol 

oxidation enhances atherosclerosis and plaque formation. When the LDL-c in blood 

vessels enters through the endothelium, it can be oxidized by the free radicals and is 

turned into pro-inflammatory lipids. After detecting the oxidized components, monocytes 

and macrophages migrate to the inflammatory spot and devour the oxidized LDL-c by 
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endocytosis. Through the consumption of oxidized LDL-c, these white blood cells 

gradually transform into lipid containing foam cells. Foam cells adhere to the intima 

when cell apoptosis happens, and the buildup of lipid droplets-contained foam cells at the 

endothelial site is considered as plaque formation or atherosclerosis. The existence of 

plaques can trigger the endothelial cells to release multiple cytokines and pro-

inflammatory compounds, such as interleukin-8 (IL-8) and toll-like receptor 2 (TLR2). 

Plaques also encroach the lumen of the arteries, causing narrowing and reduction of 

blood flow. Once a plaque ruptures, the released pro-coagulant factors will cause an acute 

blood coagulation, at which it generates blood clots that exist in the circulatory system 

and increase the risk of obstruction or stroke.
19,20

 

Recent findings also associate insulin resistance with CAD among non-diabetic 

patients, which might be due to a lower secretion of anti-inflammatory components.
21

 

Former research also introduced several pathways that connect insulin resistance with 

atherosclerosis. In a state of insulin resistance, nitric oxide is down-regulated and its anti-

inflammatory and vasodilation effect is suppressed. Whereas the, mitogen-activated 

protein kinase (MAPK) pathway, which has a pro-atherogenic effect, may be enhanced 

due to higher inflammation levels in the body. Also, insulin receptors are present on the 

surface of circulating monocytes and macrophages. The body‟s status of insulin 

resistance thus impacts macrophage apoptosis; foam cells are more likely to accumulate 

and grow into plaques when a patient has insulin resistance.
21,22

 

Combining the biological mechanisms described above, the combination of an 

elevated pro-inflammatory response with depressed anti-oxidative functions in the body 
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plays an important role in both NAFLD and CAD progression. Meanwhile, insulin 

resistance is a possible factor that can lead to the two diseases. The following paragraph 

describes observational studies to highlight the relationship between and severity of CAD 

among NAFLD patients. 

Association between NAFLD and CAD 

The association between CAD and NAFLD was mentioned in previous research 

highlighting an increase of carotid plaques and CVD prevalence among ultrasound-

diagnosed NAFLD patients.
3,23

 An increased risk of nonfatal CVD events was shown to 

be associated with NAFLD, and the relationship was independent of common risk factors 

such as body weight, lifestyle, and blood lipid profile
24

. A smaller study found that the 

prevalence of coronary calcification and plaques obstruction are significantly higher in 

NAFLD patients.
14

 These cross-sectional studies considered NAFLD as a predictor of 

CVD and heart disease. 

Results from prospective studies further confirmed the relation of NAFLD and 

CAD. Zeb et al. conducted a cohort study with 4119 participants and an average follow-

up interval of 7.6 years. Results showed that NAFLD was associated with non-fatal CHD 

incidence, and was independent from other CHD risks factors such as T2DM and 

dyslipidemia.
25,26

 Another large population based study tested the coronary artery 

calcification (CAC) score to measure calcium deposit level and stiffness of an artery. 

Calcification of vessel intima or media is a feature of atherosclerosis, it can reflect the 

narrowed ratio of arteries and indicate plaque accumulation levels.
27

 Results showed that 

increased CAC score is associated with NAFLD, in both unadjusted and risk variable 
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adjusted models.
28

 As most of the studies focused on the incidence of coronary artery 

events and the one-time measure indicators, Park et al. looked into the development and 

progression of CAC.
29

 This retrospective cohort study collected both initial and follow-up 

CAC scores of the participants. Those with NAFLD at baseline had higher CAC 

development rate than those without NAFLD. A larger prospective study by Sinn et al. 

also yielded similar results, which showed a higher increase in carotid intima-media 

thickness (CIMT) score and coronary plaques in persistent NAFLD patients throughout 

the 3.3 years follow-up duration
30

. Combining these lines of evidence, it can be 

concluded that NAFLD has an independent association with coronary atherosclerosis and 

can be considered as one of the risk factors of CAD. 

The biological pathway between NAFLD and CAD is still unclear, but it is 

recognized to be multifactorial. The progress involves multiple mechanisms, including 

dyslipidemia, lipotoxicity, oxidative stress (free radicals), and inflammatory response.
13

 

Overall, however, excessive calorie intake and unbalanced energy expenditure are 

believed to be the major causes of NAFLD. The over consumed energy turns into adipose 

tissue and stores in the body. When an individual is obese, enlarged adipose cells enhance 

lipolysis and induce lipotoxicity; this further increases inflammatory reactions and 

signaling. The accumulated fat also increases the secretion of adipokines, which is a 

series of pro-inflammatory hormones that can affect vascular and immune functions.
31

 In 

short, lipotoxicity and insulin resistance are linked to liver fat accumulation, while the 

widely promoted inflammation status by adipokines and cytokines is showed to be a 

trigger of free radicals and reactive oxygen species (ROS) synthesis.
32

 A body that 
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contains a larger amount of free radicals and ROS is more likely to develop CAD, since 

these unstable atoms can attack serum cholesterol and lipoproteins. Several enzymes in 

liver, such as superoxide dismutase and glutathione peroxidase, are responsible for 

processing ROS and reducing oxidative damage. However, the presence of excess lipid in 

the liver of an individual with NAFLD, will cause elevated hepatic cytokines 

(hepatokines) levels, which accompanied by adipokines and cytokines, exacerbating 

insulin resistance and inflammation in the body.
33,34

 The ability of the liver reducing free 

radicals might also be limited; lipoproteins are more likely to be oxidized and produce 

plaques.
35,36

 At this point, the reduced function of the liver becomes a determining factor 

of CAD in NAFLD patients. Thus, based on epidemiology studies, clinical reviews, and 

supported by mechanistic connections, NAFLD patients are more likely to develop CAD 

than normal people. 

Nutrition Overview: NAFLD and CAD 

The etiology of NAFLD and CAD involves glucose homeostasis, fat metabolism, 

and inflammation, which are factors closely related to diet. A previous review 

investigated possible dietary patterns that are linked to the disease, and overnutrition was 

considered as a cause of the imbalance.
37

 Overnutrition refers to a malnutrition status, in 

which the body is consuming more energy or nutrients than necessary. Excessive 

carbohydrate, fat, or energy intakes are some of the factors that can influence body 

metabolism and induce NAFLD and CAD.
37

 In a case-control study, over consumption of 

total calories was found to be associated with the incidence of NAFLD.
38

 A more recent 
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article also compared the daily total energy intake using a case-control study design, and 

overall, NAFLD patients consumed more calories than healthy controls.
39

 The 

mechanism behind overconsumption is that, when energy conditioned are adequate, 

excessive calories are transformed into adipose tissues. Accumulated body or visceral fat 

might lead to obesity and other NAFLD triggering pathways, such as inflammation and 

decreased insulin sensitivity. As previously described in the overview of NAFLD, 

unrestricted storage of fat results in breakdown of triglycerides and lipotoxicity; these 

free fatty acids released into systemic circulation are more likely to be taken up by the 

liver, as compared to other organs and tissues. In contrast, Zelber-Sagi et al. 

demonstrated that calorie intake was not different between groups of NAFLD patients 

and healthy controls.
40

 However, the body mass indices (BMIs) of the NAFLD patients 

were significantly higher, which indicates that though they did not consume excess 

calories during the study, their increased body weight had become a risk factor for 

NAFLD. 

In terms of the nutritional contents of the diet, previous research has observed a 

high-fat diet with increased total fat intake was observed among NAFLD patients. It was 

believed to be related to the abnormal distribution of fat in the liver.
38,41

 Researchers 

further investigated the composition of dietary fat and found that the types of fatty acid in 

participant‟s diets can be linked to insulin resistance and fatty liver.
40,42,43

 In a review 

article by McCarthy et al., the adverse impact of saturated and trans fatty acids on lipid 

and glucose metabolism were linked with worsened NAFLD and atherosclerosis.
42

 A 

similar article by Zivkovic et al. supported this theory and suggested that dietary 
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consumption of saturated fat is associated with insulin resistance.
37

 In a cross sectional 

study, the consumption of saturated fat was found to be higher in participants with NASH, 

the hepatitis caused by fat accumulation and the more severe form of NAFLD.
44

 These 

patients also ingested less polyunsaturated fat than the healthy group. Besides fatty liver 

disease, saturated fat also has impact on CVD; by replacing dietary saturated fat with 

polyunsaturated fat, the incidence of CVD was significantly reduced in a previous 

study.
45

 

However, even in studies which did not detect a difference in saturated fat intake 

in NAFLD populations, differences were detected in consumption of other types of fatty 

acids. Cortez-Pinto et al. detected a difference in the forms of unsaturated fatty acids that 

were consumed. NAFLD patients consumed higher amounts of ω-6 fatty acid and they 

also had a higher ω-6 to ω-3 ratio in their diet, compared to controls.
43

 The adverse 

impact of n-6 unsaturated fat might originate from the pro-inflammatory compound, 

arachidonic acid, which is generated during lipid metabolism. Arachidonic acid is the 

intermediate compound of multiple inflammatory pathways and can be the precursor of 

several eicosanoids that induce inflammation and vasoconstriction, such as 

prostaglandins and thromboxanes. On the other hand, ω-3 unsaturated fat does not 

promote synthesis of arachidonic acids and produces anti-inflammatory chemical 

mediators, which is beneficial in reducing body inflammation. Studies found that 

increasingω-3 fatty acids consumption decreases serum triglyceride and improves liver 

fat contents in NAFLD patients. Eicosapentaenoic acid (EPA) and docosahexaenoic acid 
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(DHA) are common forms of ω-3 fatty acid supplements, and were also found to reduce 

insulin resistance in NAFLD.
46

 

In conclusion, dietary factors play an important role in body metabolism, and its 

relation with diseases is also worth investigating. The concept of comparing and 

identifying human metabolic changes will be explained in the following paragraphs. 

Current Problems and Diagnostic Difficulties 

CAD has long been called the silent killer, due to its symptomless development 

and the acute attack. The artery disease has characteristics of endothelial dysfunction and 

vessel calcification. Thus, the prediction and diagnosis of CAD can be approached with 

both blood tests and imaging. Results from blood test can be a primary prediction of heart 

conditions; it is usually based on the inflammation levels in a body. Some proteins that 

are sensitive to oxidative stress and ROS are used as CAD biomarkers in current clinical 

practice. At the same time, these biomarkers, such as c-reactive protein (CRP) and 

vascular cell adhesion molecule 1 (VCAM1), cannot directly reflect atherosclerosis and 

plaque status. The underlying problem is due to the various cause of body inflammation; 

multiple conditions can lead to an increased VCAM1 level, and while CAD is one of 

them, carcinoma and metabolic syndrome are also factors that affect VCAM1 expression. 

Thus, existing biomarkers are unable to accurately predict CAD or evaluate its severity 

before any cardiac symptom appears.
47

 

Direct diagnosis of CAD features artery imaging and scanning strategies. 

Computed tomography (CT) scan is an imaging method that assesses CAC levels by 

looking for calcium deposits and narrowed arteries. Similarly, ultrasound measures vessel 
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thickness or obstruction levels of vessels with a 3-12 Hz linear array transducer.
48

 These 

imaging methods are non-invasive and have a high sensitivity to plaques, which is useful 

in diagnosing CAD and detecting the risk of acute heart events
49

. However, these 

imaging services require professionals to interpret the results and are usually unavailable 

in general practice clinics. Individuals who have cardiac scans are typically patients with 

known higher severity levels of CAD and had experienced certain prognostic symptoms, 

including chest pain and myocardial infarction. The low approachability and prevalence 

of cardiac imaging make this precise diagnosis method hard to generalize to larger 

populations. These limitations result in a delayed detection of CAD among symptomless 

patients and ultimately a higher rate of mortality when cardiac events occur. 

In conclusion, CAD is more likely to occur among NAFLD patients, but it is 

difficult to address before cardiac symptoms develop. Current obstacles in CAD detection 

come in two domains. The accurate CAD diagnosis method, cardiac imaging, is time 

consuming and cannot be widely performed as a screening tool for CAD; while the blood 

test, though is more common in clinical practice and can aid in early detection, relies on 

non-specific biomarkers that overlap with other metabolic diseases. Therefore, blood 

testing methods are currently conducted as a risk assessment rather than a CAD 

predicting standard. If new biomarkers specific to NAFLD related CAD can be 

recognized, it will greatly improve the early detection of this disease and decrease the 

CAD mortality rate by enabling the application of  treatments earlier in the disease 

process. 
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Metabolomics Overview 

The exploration of human biological systems has expanded throughout the past 

decade. The field of molecular biology addresses the four “omics”, including genomics, 

transcriptomics, proteomics, and metabolomics. The “omics” is a cascade of biochemical 

and biological mechanisms that leads to different phenotypes presented in human bodies. 

Genomics and transcriptomics are involved in gene expression and regulation. The 

former category studies gene, their functions, and the factors that can affect gene 

expression; the later one focuses on the transcriptomes (mRNA) that are the results of 

actively expressed gene. Both of them are at the upper level of phenotype modulation, 

indicating the genetic responses and expressions from microarray changes. On the other 

hand, proteomics and metabolomics are downstream of the resulting phenotype. They 

investigate proteins and metabolites which are dynamic reflections of gene and the 

influencing factors. Slightly different from proteins, metabolites are the final products of 

the gene transcription cascade, which makes them the closest compounds to the studied 

phenotypes. The changes in the metabolome are also amplified relative to changes in the 

transcriptome and the proteome in a biological system. Besides, metabolomics are more 

diverse that other “omics” when reflecting present body conditions.
50

 By understanding 

the influence of the “omics”, we will be able to integrate different levels of information 

and clarify the human biological system.
51,52

 

Metabolites are low-molecular-weight chemicals that are usually less than 1000 Da, 

and these compounds are generally considered as results of the interaction between 

system's genome and its environment. At the same time, metabolites are not merely the 
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end product of gene expression; they can also be reactants and intermediates of 

biochemical reactions that participate in the human regulatory system. Due to the 

important role of metabolites in body homeostasis, the impact of environmental factors, 

lifestyles, diseases, and changes in genotypes that influence biological status can be 

largely shown in metabolite profiles. Therefore, metabolites-related studies look into 

biological functions at a cellular level and try to recognize the cause-and-effect behind a 

phenotype.
52,53

 Based on this aspect, the identification and quantification of metabolites is 

referred to as metabolomics. It provides an instantaneous snapshot of the cell physiology, 

while improving our understanding of pathetical processes in human bodies. 

The approaches of metabolomics can be divided into two main categories, targeted 

and untargeted analyses. The former measures a limited number of known metabolites; it 

quantifies the concentration of targeted molecules and defines those molecules precisely. 

The later can be further approached by two methods. One of them is metabolomic 

fingerprinting, which analyze intact metabolic patterns to identify similarities or 

differences between fingerprints. The analysis can be approached by using multivariate 

methods to visualize biological discrimination of different groups or phenotypes.
42

 The 

second untargeted approach is metabolic profiling, which is the identification and 

quantification of a large number of metabolites, including known and unknown ones that 

generally related to the metabolic pathways of interest. Profiling usually narrows down to 

compound identification, in which the method selects metabolites that might contribute to 

the phenotype and analyzes its structure and composition. Comparing metabolomic 

fingerprints is useful in building biological patterns and predicting models, while 
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profiling finds specific metabolites that vary in certain populations. Together, they aid in 

differentiation among cohorts and discover of new biomarker for phenotypes detection 

and disease diagnosis
41

. 

Diet, Nutrients, and Metabolomics 

Nutrition-related metabolomics is a relatively new field, making large strides in the 

past decade. The connection between diet and metabolites starts from an insight of body 

digestion and metabolism.
56

 The food sources that are consumed by a biological body 

undergo digestion and absorption. According to different status and necessity, the 

substances from the food sources participate in various biological mechanisms to 

maintain the interior homeostasis, which includes degradation of the original molecules, 

chemical modifications to allow for transport within the body to distant sites, 

involvement of metabolic pathways, and synthesis of required compounds. This series of 

metabolization generates different intermediates or products that are considered as 

metabolites. These small biological remnants are distributed throughout the body, and 

present in serum, urine, and feces. Thus, the substances that are found in the body or in 

the microbiome can largely reflect what had been consumed in the diet. Tracing back 

these metabolites might provide information about the diet and the current condition of 

the body. 

A metabolomics review done by Jin et al. provides evidence on this concept.
57

 

People consuming the Mediterranean diet, which has features including high unsaturated 

fats and vegetable oils (olive oil) intake and limited saturated fats, sweets, and red or 

processed meat consumption, showed different metabolic patterns than those following 
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the regular Western diet. Specific metabolites in their serum were at a significantly 

different level than the control group. Bondia-Pons et al.
58

 suggested that plasma 

phosphotidylcholine levels were lower after participants adopted the Mediterranean diet 

pattern. The diet intervention placed a protective impact on CVD events, and was 

reflected in the metabolites concentration presented in the blood. This fact implied that 

the CVD pathways are linked to certain diets, and metabolomics can potentially interact 

with them. The Mediterranean diet served as a factor that impacted metabolite levels in 

this study. Similarly, harmful factors can also be reflected in the metabolomic profiles. 

Thus, metabolites specific to diets, diseases, or risk factors can be identified as potential 

biomarkers. In this case, NAFLD and CAD are diseases that are highly related to diet and 

lifestyles, such as a high-saturated fat diet and excessive energy consumption, which may 

reflect in certain metabolites levels in the patients. Detecting the metabolic difference and 

identifying the key metabolites are the critical steps to achieve risk clarification and early 

diagnosis. 

In short, metabolites are snapshots that reflect the instant status of a body; they 

represent the biochemical reactions that are happening or have happened. Risk factors, 

such as lifestyle, environment, and diet, influence metabolite distributions and 

concentrations. This further implies that metabolites can become potential indicators of 

diseases. Thus, the identification of metabolites specific to certain phenotypes can 

improve current procedures in disease diagnosis that better account for variations in 

disease phenotypes and medication effectiveness. It can also aid in tracing back possible 

causes of a disease, such as diet. The current study is an untargeted analysis that includes 
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both fingerprinting and profiling. It focuses on identifying the metabolic differences 

among NAFLD patients with CAD; aim to recognize metabolites that are specific to 

different severity levels of CAD and define them as potential biomarkers. 

Liquid chromatography–mass spectrometry (LC-MS) 

LC-MS is a combination of liquid chromatography (LC) and mass spectrometry 

(MS). It attempts to separate the chemical content in a mixture and define the molecules 

by their masses. LC-MS, is one of the analytical techniques that is commonly used in 

metabolomics studies. It has advantages of having a high resolving power, a high 

sensitivity, and a wide applicability to sample types. According to the data yielded from 

LC-MS, the metabolites in a sample mixture can be identified by comparing their 

metabolic patterns and conducting statistical analysis based on their quantified data. 

Liquid chromatography 

The first part of LC-MS is the liquid chromatography.  Metabolites in the samples 

are carried by solvents that are known as the mobile phase; together, the mixture travels 

through the solid phase, which is a column packed with adsorbent materials, and are 

separated due to the affinity difference between the metabolites and the column. There 

are two kinds of mobile phase applied in a LC-MS run, one with higher polarity and is 

more hydrophilic, the other is at a lower level of polarity and is primarily an organic 

solvent. In usual runs, the initial mobile phase is highly hydrophilic; the proportion of the 

hydrophobic mobile phase gradually increases over the course. The chromatography run 

ends when the mobile phase is entirely hydrophobic; thus, the eluted compounds come in 
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a gradient from mostly hydrophilic (or polar) to mostly hydrophobic (or non-polar). 

Initially, the aqueous mobile phase goes through the column; organic and hydrophobic 

compounds in the serum are trapped in the stationary phase column due to a higher 

affinity to carbon. Later, as the concentration of the organic mobile phase gradually 

increases, the affinity of the metabolites for the mobile phase also slowly rises. The 

adhered molecules in the column are eluted by the organic mobile phase eventually. 

These substances arrive at the end detector later than the hydrophilic molecules. This 

separation based on their affinity to the stationary phase is the main goal of LC. It is an 

important step for composition analysis and component identification. 

As a sample mixture loads the column in LC, the ability of separating the 

compounds is associated to the resolution power of the column. Decreasing particle sizes 

of the stationary phase is a way to increase resolution, since under a certain column 

volume, smaller particles have more surface area than larger particles, which brings better 

resolution and reduces coeluting analytes.
59

 Traditional LC relies on gravity to force the 

mobile phase flow through the column. In order to yield a better separation and decrease 

the column particle size, though the power of separation might be improved, the flow rate 

will be reduced due to the strong resistance force (back-pressure) from the column. Thus, 

high performance LC (HPLC) and ultra-performance LC (UPLC) are introduced to 

resolve this problem. Both of these methods results in a higher resolution by pressurizing 

the mobile phase. But the particle size of the solid phase usually needs to compromise 

with the consistent flow in the HPLC system; columns packed with smaller particles have 

higher resolution but a delayed retention time, while larger particle size columns do not 
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separate metabolites effectively. This leads to limitations in column options and retention 

efficiency. UPLC, as an update version of HPLC, allows the column to be at a smaller 

packing size (less than 500 Da) and has special pumping techniques that can withstand 

the high back-pressure.
60

 The introduction of samples in UPLC requires lower volume 

than HPLC and the injection cycle is also faster; these further allow the column to be 

smaller and shorter. Together, the characteristics of UPLC as compared to other types of 

analytical chromatography include high speed, good resolution, and minimal required 

sample volume.
60,61

 

Mass-spectrometry and Tandem Mass-spectrometry 

Mass spectrometry (MS) is an analytical method that ionizes the chemical 

compounds and sorts them by their mass-to-charge (m/z) ratio. Once separated, 

qualification or quantification analysis can be conducted based on the m/z ratio and the 

abundance of the compound. 

The m/z ratio is created by ionization of analytes; different compounds generate 

unique ionic species after they pass through the ionization source and the m/z ratio can be 

considered to be representative of each species. The ionized compounds travel through 

the mass spectrometer, in which various mass separation methods are applied; common 

process includes passing through electric fields for mass selection and accelerated in a 

field-free space to distinguish travel distance between masses. The metabolites eventually 

arrive at the bottom detector, where they are counted and documented to generate MS 

data. This result with information of the abundance of ionic species is known as the 

intensity of the respective m/z ratio. Signals and spectra detected at the end of the MS are 



21 

 

presented as peaks in a two-dimensional plot known as a mass spectrum; m/z ratios are 

on the x axis and signal intensities are on the y axis. These spectra are used to determine 

the elemental or isotopic signature of a sample, the masses of particles and molecules, 

and to elucidate the chemical structures of molecules and other chemical compounds. 

Usually, ion peaks that have higher intensities than the background noise are considered 

as the intact ionized molecules. However, the analytes or molecules in a sample might not 

be fully ionized when they elute from the ion source; it creates neutral species which are 

eliminated in the mass spectrometer when selecting ions. This process is defined as the 

neutral loss. Since the neutral species are filtered out at the beginning of the run, and the 

detector in mass spectrometry can only sense charged analytes, the distance between 

peaks shown on the mass spectrum indicates that it contains neutral loss of an ionized 

compound. The unique patterns that metabolites generate due to its ionic and neutral 

species can be presented in the mass spectrum; this information can be used for both 

metabolomic fingerprinting and profiling.
62

 

MS/MS, or tandem mass spectrometry, is an analysis with multiple mass 

spectrometers involved. Fragmentations are induced between sections to breakdown the 

intact molecules. It creates fragmented species that can be analyzed in the following 

spectrometer. Thus, the process of MS/MS starts with the same UPLC for compound 

separation. Then, the samples are ionized and travel through the first mass spectrometer 

to select the metabolites with the targeted m/z ratio; these compounds are later 

fragmented and go through the second mass spectrometer. The m/z ratios of the 

fragments are determined at this stage and yield the MS/MS spectrum. MS/MS is an 
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analytical method that aids in mass determination and composition assessment; the coped 

mass spectrometers provide fragmentation and metabolites structure identification, which 

are analysis that MS alone cannot approach. 

MS and MS/MS Instrumentation 

The composition of a typical mass spectrometer can be divided into three parts, 

the ion source, the mass analyzer, and the detector. 

To fully conduct a LC-MS, it requires an ion source to produce gas or condensed 

phase ions for further mass analysis; thus, transferring the molecules eluted from UPLC 

into ionic species is critical. Electrospray ionization (ESI) is a common ionizer used in 

LC-MS, while atmospheric pressure chemical ionization (APCI) is also frequently seen. 

Both of the ionization sources are conducted under atmospheric environments and are 

part of the atmospheric pressure ionization. APCI nebulizes and vaporizes the solvent 

eluted from the LC; the gaseous sample and solvent are ionized by a corona discharge 

and injected into a mass analyzer after acceleration and desolvation. APCI is able to 

ionize non-polar compounds, but in view of the high temperature at the vaporization unit, 

the analytes must be thermally stable and volatile.
63

 In contrast, ESI does not require high 

heat vaporization. The electrospray that connects to the LC can provide high voltage that 

ionizes the liquid phase analytes and solvent. The ending tip of the electrospray forms 

ionic droplets that later are treated with nitrogen gas and an elevated temperature in order 

to remove the solvent and further reduce the droplet size.
64,65

 As the droplet reaches a 

point at which the surface ions are able to be ejected into the gaseous phase, the emitted 
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ions enter the skimmer cone and are then accelerated into the mass analyzer for analysis 

of molecular mass and measurement of ion intensity
66,67

. 

The mass analyzer is the second part of a mass spectrometer, it accepts the gas 

phase ionic products from the ion source, and its purpose is to separate or filter the 

ionized analytes according to their m/z ratio. The combination of multiple mass analyzers 

in sequence is defined as MS/MS. A common configuration of mass analyzers is the 

Quadrupole Time of Flight mass analyzer (QToF), where a quadrupole is followed by a 

time of flight analyzer for MS/MS. 

A quadrupole is an ion path that is made up of four parallel rods; these rods are 

charged during the mass analysis and can select or filter ions. To do so, a certain range of 

m/z ratio is given before the run, and the ion that meets this standard will travel through 

the quadrupole, hitting the detector at the end. Other ions with unstable trajectories will 

collide with the rod and be eliminated. By applying different voltage to the rods, the 

quadrupole can perform different function when conducting mass analysis. An alternating 

current voltage is used when MS is running; both stable molecules and oscillating ions, 

which are unstable, can pass through the quadrupole, yielding a broad range of ions from 

the injected sample. On the other hand, when direct current voltage is combined to the 

quadrupole, it creates a mass filter function. Only ions with certain masses can pass 

through the rods under this status, and those that do not have the right mass will 

discharge on the rods. This function is applied when conducting MS/MS, in which the 

quadrupole selects the targeted molecule and the second mass spectrometer performs 

mass analysis.
68,69
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Within a QToF system, after traveling through the quadrupole, the selected ions 

arrive at the collision cell. This hexapole collision cell in the QToF is where collision-

induced dissociation (CID) happens. Ionic species are applied with an electrical energy 

that increases the ion kinetics in the cell. The ionic compound collides and increases 

inner energy; eventually, the accumulated force breaks down the chemical bonds of the 

ionic molecules.
70,71

 This process can also be considered as fragmentation; it generates 

both ionic and neutral fragments from the parent ion species, breaking down the structure 

for further mass analysis. MS only analyzes the original molecules and fragmentation is 

unnecessary. Thus, both the quadrupole and the collision cell function as an ion guide 

during MS, which avoids the breakdown of intact molecules. While in MS/MS, the first 

mass spectrometer filters out undesired masses and maintains molecules with an optimal 

m/z, followed by the CID in the collision cell. The second mass analyzer detects the 

fragmented molecules and performs mass analysis. During the MS/MS run, the collision 

cell applies different voltage to collide the original species. Ions with higher m/z ratio 

usually require higher energy; commonly used voltage levels are 10, 20, and 40 eV. 

The orthogonal acceleration-ToF spectrometer, which contains an ion source, a 

flight tube, and a detector, is the second mass analyzer in the instrument. This method 

involves pulsed ion extraction, which extracts short packets of ions from the source 

periodically and is a technique to connect continuous ionization and ToF analysis.
72

 Ionic 

fragments that are released from the hexapole collision cell move into the orthogonal 

accelerator as an ion beam. The ions are accumulated and later released into the ToF tube. 

Initially, the voltage of the accelerator remains 0V, creating a field-free region that allows 
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the ions to move in their original direction. Then an injection pulse voltage applies to the 

plate, resulting in an electric field and pushes the ions in an orthogonal direction. As the 

high voltage releases the ions, the orthogonal accelerator is refilled with new ion species 

for the next impulse. Flight cycles end when the ion with the highest m/z ratio hits the 

detector; a new cycle begins at this point with the plate generating voltage and pushing 

the ions forward again.
72

 

The purpose of the orthogonal accelerator is to correct the initial energy 

difference in the ionic species and gives the ions an equal electrical pulse to travel 

through the mass analyzer. The velocities and time of flight of the ion fragments are 

determined by their m/z ratio, and this results in mass separations.
66,73

 The detector at the 

end of the QToF identifies the m/z ratio and the abundance of an ion species. The 

electrons that reach the detector go through three sections, the microchannel plate, the 

scintillator, and the photomultiplier tube. The signals from an ion species are first 

multiplied and freed to strike the scintillator; photons are then emitted as a response to 

the strike. The number of photons is determined by the intensity of each ionic compound. 

Finally, the photons are amplified and transfer back into electrical signals for m/z 

identification and quantification. This conversion of ion signals can alter the electrical 

voltage of the species, in order to adapt the fields in the flight tube and the 

photomultiplier tube. The detected signals are shown in the MS or MS/MS spectrum as 

peaks that represent certain m/z raios.
74
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Mass Spectrums and Chromatograms 

Since MS only measures the m/z of the compound in the sample and MS/MS 

measures both the compounds (precursor ions) and their fragments (product ions), they 

give different levels of information in their output spectrums. The detector in the QToF 

scans almost every second, creating multiple spectrums that includes the eluted 

metabolites throughout the mass spectrometry process. The output of LC/MS is a 

chromatogram with mass spectrums. It can be explained as a 3D plot containing facts 

about the compounds. The chromatogram is created by the UPLC; it includes the 

intensity and retention time of all the ionic species in a sample. And since each scan from 

the QToF creates a spectrum that includes the eluted compounds, these 2D spectrums can 

be considered as a snapshot of the eluted content at the time point. Thus, MS spectrums 

contain the m/z ratio and the intensity level of the intact metabolites. While in MS/MS, in 

addition to the chromatogram and the MS spectrums, another series of data containing the 

spectrums of the product ions is collected. The MS/MS spectrums present peaks that 

represent the fragments from the precursor ions. Different compounds break differently in 

the collision cell and yield unique spectra patterns. As a result, the MS/MS spectrums can 

be considered as the profiles of the targeted precursor ions, and compound identification 

is conducted according to these identical spectrums by comparing the break-down pattern 

of known molecules in the library databases against the breakdown pattern of unknown 

molecules in a sample. 
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SPECIFIC AIMS AND PROJECT OVERVIEW 

CAD among NAFLD patients often develops in a gradual and silent process, and 

different severity levels of CAD might present unique metabolic patterns. Analyzing 

these patterns will aid in addressing the disease. Moreover, recognizing the metabolomic 

profile and metabolites that are unique in certain CAD stages can benefit in early 

diagnosis and disease prevention. Thus, the goal of the current research is to identify 

specific metabolites that reflect certain CAD severity levels. To approach this goal, there 

are two sections of investigation contained in this research project, including a 

comparison of metabolic finger prints and an untargeted analysis with compound 

identification. The aims are listed below: 

Specific Aim 1: Use metabolomics to compare and contrast serum metabolites 

among NAFLD patients with varying severity levels of CAD 

Serum samples from NAFLD patients are extracted with organic solvent and analyzed by 

LC-QToF. The chromatograms are statistically processed and the samples are compared 

to identify molecular features that differentiate each stage. 

Specific Aim 2: Use MS/MS to identify stage specific CAD-associated metabolites in 

NAFLD patients with CAD 

Targeted MS/MS analysis of the molecular features identified in Specific Aim 1 are used 

for feature identification. 
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INTRODUCTION 

The most common form of heart disease, CAD, , starts with the deposition of 

plaques in the coronary arteries. The development of atherosclerosis narrows the blood 

vessels, which further leads to a blockage of cardiac blood flow and cardiac events, such 

as MI. The progression of this disease, however, is usually symptomless, making CAD 

hard to detect until cardiac events occur. The risk factors of CAD include diet, obesity, 

dyslipidemia, and insulin resistance. NAFLD is also associated with atherosclerosis and 

heart attacks due to the shared biological pathways.
13,34

 Though research has shown that 

people with NAFLD are more likely to develop CAD, the patients are detected only after 

CAD has established, and the treatment options at this stage have limited effectiveness, 

which highlighted the importance of early diagnosis of CAD.
3
 

Metabolomics is a field that involves qualification and quantification of 

metabolites. It can be applied in studies that aim for biomarker identification and 

metabolic pathway discovery; this approach is beneficial in detecting disease process at 

an earlier stage. Metabolites, which are low molecular weight chemicals, interact and 

participate in biochemical reactions in the body system; they are also products from 

biological mechanisms, which make them a good reflection of the body status. Thus, the 

presence of individual metabolites or particular combinations of metabolites can imply 

risks of certain diseases or conditions. Metabolic fingerprinting compares panels of 

metabolites based on their characteristics, while metabolomic profiling investigates the 
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composition of chemical compounds. Tracing unknown metabolites and identifying their 

structure is considered a facet of untargeted metabolomics, which can be approached by 

analytical techniques such as liquid chromatography-mass spectrometry (LC-MS) and 

tandem mass spectrometry (MS/MS). These methods aid in disease detection and 

biomarker development when combined with quantitative methods and statistical 

analysis.
51

 

Metabolomic approaches could be useful in identification of metabolomic 

fingerprints and certain metabolite abnormalities specific to NAFLD-related-CAD. 

However, there has been limited research in metabolomics that creates methods to 

identify the risk and severity of CAD; most of the previous studies focused on 

discovering biomarkers in the field of proteomics instead. One cross-sectional study 

examined the serum inflammatory components of NAFLD patients, in order to detect 

biomarkers of coronary atherosclerosis. Results showed that circulating interleukin-6 (IL-

6), an immune-glycoprotein, is independently associated with subclinical atherosclerosis 

prevalence and severity.
75

 Another study investigated potential biomarkers of endothelial 

function, and found that serum endocan, a protein released by damaged endothelial cells, 

is positively related to atherosclerosis severity in patients with NAFLD and CAD.
76

 

Proteomics is one approach to identification of the body‟s condition; it is the study of 

measuring and investigating proteins. However, the presence of certain proteins does not 

indicate that they have been activated and are participating in biochemical pathways. On 

the other hand, metabolomics collects and analyzes end products of biochemical reactions, 

which shows that metabolites are evidence of the occurrence of certain body mechanisms. 
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In the past decade, several studies focused on the relation between metabolomics 

and heart disease. Yannell et al. compared the serum metabolites patterns between CAD 

patients and normal controls, followed by profiling the metabolic biomarkers using LC-

QToF and multiple reactions monitoring (MRM).This is a classic metabolomics 

untargeted analysis which set to discover disease specific metabolites.
77

 The levels of 

choline, carnitine, p-cresol sulfate, triacylglycerides (TAG), trimethylamine N-oxide 

(TMAO), sphingomyelins (SMs) and phosphotidylcholine (PC) were found to be 

significantly different in CAD patients. Li and others also did an untargeted 

metabolomics study for biomarker identification in coronary heart disease (CHD), using 

LC-MS.
78

 They suggested that naphthol, methylitaconate, N-acetyl-D-glucosamine 6-

phosphate and carnitine might be the potential biomarkers for CHD diagnosis. Similarly, 

dicarboxylacylcarnitines was associated with CAD and predicted the mortality rate of MI 

in metabolomics research by Shah et al.
79

 Branched-chain amino acids (BCAA) and urea 

cycle related metabolites were also found to be related to CAD. Though these studies 

provided a series of biomarkers that are sensitive to CAD and some of the determined 

compounds shared the same category, the consistency of these results might still be low 

due to the difference in data analysis methods and MS/MS instruments. Besides, the 

serum processing method also varied, which can lead to difference in collected 

metabolite contents. Some common sample preparations included methanol extraction, 

ethyl acetate extraction, and the dilute-and-shoot method. 

Recently, an untargeted metabolomics study involved a large population and a 

longer follow up duration that documented the CHD incidence. 
80

 According to the 
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results, 19 metabolites were found to be positively or negatively associated with coronary 

heart disease. Seven of the compounds were reported in previous research to be related to 

cardiac disease or its risk factors; these metabolites include a smoking-related biomarker, 

4-vinylphenol sulfate, and renal dysfunction indicators, N-acetylthreonine and N-acetyl-

1-methylhistidine. Also, N-acetylalanine, p-cresol sulfate, 1-

arachidonoylglycerophosphocholine, and 2-methylbutyrylcarnitine were reported as CHD 

biomarkers in previous studies. Their presence suggested the importance of amino acid 

metabolism in heart disease occurrence. The novel dietary-related metabolites found in 

this study were erythritol andα-linoleic acid, which reflect the risks to which patients 

with CHD had been exposed to higher artificial sweetened beverage intake and lower 

unsaturated fat consumption. The two metabolites that are specific to certain heart 

conditions are influenced by dietary factors which showed difference between CHD 

patients and the healthy controls. The success in the metabolic analysis in these prior 

studies confirmed the applicability of the fingerprinting and profiling methods. Overall, 

the identified biomarkers were related to choline, carnitine, and amino acids, especially 

BCAA and alanine. 

The goal of the current study is to explore CAD-related metabolites in a different 

population; NAFLD patients. Already at a higher risk of developing CAD, these people 

with the fatty liver disease have different biological conditions. And as the CAD severity 

increase, their metabolomic fingerprints might also alter, making noticeable difference 

between various CAD stages. Comparing the metabolites collected from distinct severity 

levels can bring better identification of CAD stages. Thus, the objective of this study is to 
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identify the metabolic patterns and determine CAD stage-specific metabolites. This 

approach can provide advance disease detection and prevention of CAD in NAFLD 

patients, while tracing the possible causes of NAFLD and CAD. 
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MATERIALS AND METHODS 

Sample collection 

  Eighty-three human serum samples were provided by INOVA, with 63 male 

donors and 20 female donors. The participant recruitment and sample collection was 

approved by the INOVA IRB. All the participants who were included in this study were 

diagnosed with NAFLD by ultrasound. Further, they received an ultrasound scan in the 

carotid artery to determine the stenosis level of the vessels. Based on the number of 

obstructed arteries and the stenosis percentage, the samples were divided into five groups 

during serum collection. The diagnoses and classifications were performed at INOVA; 

then, the samples were sent to our facility for analysis. The classification criteria are 

listed below: 

 

Table 1 Group classification criteria 

Group Carotid stenosis level description 

NAFLD (n=21) Normal carotid vessels without stenosis 

CAD 0 (n=15) Vessel stenosis level between 10 and 69% 

CAD 1 (n=29) One vessel greater than 70% 

CAD 2 (n=13) Two vessels greater than 70% 

CAD 3 (n=5) Three vessels greater that 70% 
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NAFLD group (N group) contains NAFLD participants without vessel stenosis. 

The other CAD groups are participants having different CAD severity levels in addition 

to NAFLD. CAD 0 is the group with one vessel that was 10 to 69% carotid stenosis. 

While CAD 1, CAD 2, CAD 3 refers to one, two, and three coronary arteries having 

greater than 70% stenosis, respectively.  

Serum extraction 

Serum metabolites were extracted by following existing protocols.
81

 Initially, 450μL of 

serum sample, an equal amount of ethyl acetate, and 1.5μL of reserpine were placed in a 

2 mL microcentrifuge tube. After the completion of aliquoting, the mixture was vortexed 

for 30 seconds followed by a 10 minutes centrifuge at 17,000 x G (Fisher Scientific 

accuSpin Micro 17) and the upper organic layer was collected. This extraction procedure 

was repeated once, and the combined serum extract was vacuum-dried and stored at -20°

C. Before LC-MS analysis, a resuspension was performed by adding 60μL of acetonitrile 

to the serum extract. The solution was filtered by a 3mL syringe and a 4mm 0.45μm 

nylon filter into a 2mL autosampler vial and was set for analysis by LC-MS. 

Aim 1 Methods 

LC-MS analysis 

Samples were analyzed via an Agilent 1260 Infinity HPLC coupled with an Agilent 6530 

Accurate Mass Q-ToF running in ESI positive mode. The HPLC was equipped with a 

C18 column (Zorbax Eclipse XDB-C18, 2.1 x 100 mm, 1.8μm), and the column 

temperature was maintained at 50°C. The total collecting time was 25 minutes, and the 
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injection was followed by a needle wash. Each injection volume was 5μL. For the solvent 

used in LC, mobile phase A (aqueous) was water with 0.1% formic acid, while mobile 

phase B (organic) was acetonitrile with 0.1% formic acid. During the 25 minutes run, the 

flow rate was 0.4 mL / minute, and the dispensed gradient started from 80% A solvent 

and 20% B solvent at 0.5min to 3% A solvent and 97% B solvent at 15 minutes. The LC 

eventually ended at 25 minutes, when the solvent composition going back to 80% A 

solvent and 20% B solvent to re-equilibrate. The ionization mode in the Q-ToF was ESI 

positive. Nebulizer pressure was 20psi, with a drying gas temperature at 350°C and a 

sheath gas temperature at 300 °C. For the gas-flow rate, the drying gas-flow rate and the 

sheath gas-flow rate were 8 L/min and 6 L/min, respectively. In the LC-MS analysis, the 

collision cell was not turned on, leaving the voltage at 0 without any fragmentation. Mass 

range was set between 100 to 1500 m/z. The MS scan rate was 1 spectra/s. Reference 

ions were 121.0507 and 922.0098. 

MS Data processing 

Pre-processing 

The chromatograms and the MS spectra were viewed using the Agilent Mass Hunter 

Qualitative Analysis B.06.00 software. For data analysis and calculation, the MS data 

collected from the LC-QToF was converted into XML files by MSConvert software 

(ProteoWizard Tool). Then, they were pre-processed using mzMine 2 (version 2.37); the 

steps included mass detection, automated data analysis pipeline (ADAP) chromatogram 

deconvolution, alignment, and gap filling. To detect peaks and create extracted 

chromatograms of eachfeature, the noise level was determined by the first scanned 
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spectrum and was set at 1500. The retention time window was between 1 and 24 minutes. 

The minimum group size in number of scans was 12, and the minimum peak intensity 

was set at 5000. The m/z tolerance was 0.01m/z. During deconvolution, the signal-to-

noise ratio (s/n) threshold was 15. Considering the peaks in the spectra, minimum feature 

height was set at 5000, with the coefficient/area threshold set at 100. For sample-wise 

alignment and gap filling, the m/z tolerance and weight were set at 0.015 and 0.17 m/z, 

respectively. Retention time tolerance was 0.5 minute and its weight was set at 5. The 

processed dataset was exported into an Excel spread sheet with data including m/z values 

of the metabolites and their retention time and intensity. Each metabolite can be seen as a 

feature; its identity is the m/z value and the retention time, and its abundance is the peak 

intensity value (area) of all the samples. Any missing value was presented as 0. 

MS FLO 

Duplicates and isotopes detection was done by the online resource, MS FLO. The m/z 

tolerance was set at 0.01 m/z in both duplicate and isotope detection, while the retention 

time tolerance was 0.5 and 0.02 minutes respectively. For removal of duplicates, the peak 

height tolerance was 100 m/z, and the minimum peak match ratio was 0.85. The tolerance 

settings for the adduct joiner were 0.01 for m/z and 0.02 minutes for retention time. The 

initial adducts were set at M+H, while all of the final adduct options were selected, 

including M-H2O+H, M+NH4, M+Na, M+CH3OH+H, M+K, and M+CAN+H. In the 

MS FLO processed file, duplicates and isotopes that were 100% matched were removed 

automatically. Other potential duplicates and isotopes were flagged and marked with their 

percentage match. Then, the data was examined manually to remove these flagged 
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subjects. For two metabolites that were flagged as duplicates, the one with a lower 

average intensity was eliminated. However, for isotopes, only the one that meets both a 

higher m/z value and a lower average intensity was deleted. 

Frequency Calculation 

The total frequency (ft) is the occurrence of a detected metabolite (feature) among the 

total samples. Likewise, the cohort frequency (fco) is defined as the occurrence of the 

metabolite (feature) in each CAD group or the N group. It was calculated by the 

following equation: 

 

Equation 1 Frequency: 

   
                                    

                   
      

    
                                                        

                            
      

 

Then, the dataset went through a frequency cutoff, including a total cutoff and a cohort-

wise cutoff. In the total cutoff, metabolites with a ft less than 4.8% were eliminated, and 

in the cohort-wise cutoff, those with a fco less than 80% were deleted. 

Normalization 

Total ion count (TIC) normalization was performed to the data matrix, and the value was 

timed by a scale factor (=10
6
).

82
 The TIC equation is listed below: 
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Equation 2 TIC normalization: 

  
  

∑    
     

 

In which, y is the normalized intensity value and I is the original intensity value. ∑     is 

the sum of all the metabolite intensities in a sample. After this normalization, outliers 

among samples of the same metabolite were detected by the interquartile method
83,84

 and 

replaced by the median of this metabolite category. Missing values were also addressed 

and imputed by the median. 

Multivariate Analysis 

Principle component analysis (PCA) and partial least square-discriminant analysis (PLS 

DA) were conducted for dataset dimension-reduction.
85–87

 The analysis was done by R-

statistics and the samples were presented in a 3D plot containing three major principle 

components. 

Metabolite Selection 

Fold Change 

The cohort absolute log2 fold change (F)
88,89

 of each detected metabolite was calculated 

as the formula below: 
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Equation 3 Fold change: 

  |    

                

        
| 

 

If the 
                

        
 was less than 1, an inverse value (

        

                
) was used 

instead. 

Statistical Analysis 

To identify stage specific features, each CAD group (0-3) was compared with the 

NAFLD Group (N) using a univariate Student‟s t-test. At the same time, given the 

number of features in a metabolomics data set, a false discovery rate (FDR) correction 

was performed as the multiple testing correction method. All statistical analysis was 

conducted via XLSTAT and R-statistics; the resulting values (p) were considered 

statistically significant when p < 0.05. 

Weight Score 

When comparing a CAD group with the N group, a novel equation was applied to the 

data matrix to yield a weight score (W) of each feature. The formula is shown below: 

 

Equation 4 Weight score (1): 

     |     |     |     |  |    | 
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The absolute value of the frequency difference between cohorts was presented as 

|     |; in which fN is the frequency of the N group and fC is that of a CAD group. If 

|     | was found to be ≤        , an alternative equation was applied; in which the 

formula was multiplied by fC instead of |     |: 

 

Equation 5 Weight score (2): 

     |     |        |    | 

 

Since each CAD group (CAD0, CAD1, CAD2, and CAD3) was compared with the N 

group, the features in each comparison pair were ranked by their W values. Following this 

ranking, the top 20 features with the highest W values in each of the 4 CAD groups were 

selected, collecting a total of 80 potential stage-specific features. 

Manual evaluation 

The selected features then underwent a manual evaluation, in which features with fCO 

values less than 90% (in both CAD groups and N group; see equation 1) and those with 

                

        
 values less than 2 were eliminated. Additionally, if the original 

                

        
 value was less than 1, the inverse value was used instead. 

Metabolite evaluations 

Extract ion chromatograms (EIC) and Box-and-Whisker plots were used as an evaluation 

method for the selected features. The EIC was obtained by mzMine 2, and the mass 
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window was set at ± 0.01 to extract the optimal mass. Box-and-whisker plots compared 

the distribution of samples in a CAD group and the N group based on their intensity of a 

metabolite. This approach was done by using R-statistics. 

Aim 2 Methods 

MS/MS analysis 

Selected features were analyzed by the MS/MS method to pursue component and 

structure identification of the targeted masses. The LC-QToF instrument was used with a 

fragmentation step in the collision cell. The collision energy levels were 10, 20, and 40 

eV. For scanning the metabolites, the mass range was 100 to 3000 m/z; the MS scan rate 

was still 1 spectra / sec, but the MS/MS scan rate was increased to 2 spectra / sec. Each 

injection volume was 3 μL. The m/z ratios of the targeted metabolites were input into the 

LC-QToF computer with a window of 0.01 m/z for MS/MS. The range for retention time 

tolerance was 0.5 minute. Other settings in the LC-QToF remained the same as the LC-

MS analysis. 

MS/MS data processing 

MSConvert software (ProteoWizard Tool) was used to convert the MS/MS data into 

XML files for further data analysis and calculation. The MS/MS spectra, during a 

retention time window in which the targeted metabolites were eluted, were viewed by 

mzMine 2, and the spectrum number that contained the profile of the metabolite was 

noted. Due to the three collision energy levels applied, there are three spectra files (10, 20, 

40 eV) for each analyzed feature. 
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Metabolite Identification 

NIST Database 

Targeted feature MS/MS spectra were compared to MS/MS spectra contained in the 

National Institute of Standard and Technology (NIST) database. Spectra in the NIST 

library that matched the targeted unknown feature spectra were documented. All three 

spectra (different collision energy levels) were compared to the NIST database to identify 

a feature. 

Online Databases 

Each feature‟s MS/MS spectra was also used in online database matching. Four 

online sources were used, including METLIN MS/MS Spectrum Search, The Human 

Metabolome Database (HMDB) LC-MS/MS Search, Competitive Fragmentation 

Modeling for Metabolite Identification (CFM-ID) version 3.0 (compound identification), 

and MetFrag (Web Tool). The precursor (parent/candidate) mass tolerance was set at 25 

ppm, and the MS/MS m/z tolerance was at 0.01 Da. 

 

 

 

  



43 

 

RESULTS AND DISCUSSION 

Sample Description 

As detailed in Materials and Methods, the total study participant number was 83, 

with 63 male and 20 female participants. Basic information and anthropometric data were 

collected and are listed below (Table 2) One of the participants had missing values in the 

weight, height, and body mass index (BMI) categories, while two participants had 

missing blood pressure values. To complete the statistical analysis, the missing data was 

eliminated during the calculation of that category. But other data of the participants that 

had missing values was still applied and underwent the calculation. For the CAD severity 

stages, the sample numbers in each group are presented in the following table, with the 

detected feature number in each cohort (selected after a 80% cohort frequency cutoff). 

(Table 3) 

 

Table 2 Participant information and anthropometric data 

 N mean 
CAD0 

mean 

CAD1 

mean 

CAD2 

mean 

CAD3 

mean 

Total 

mean 

Total 

standard 

deviation 

Total 

range 

Age (year) 56 66.20 61.36 66.38 63 61.61 10.07 31-84 

Weight (kg) 201.64 202.65 194.99 208 208.16 91.42 16.26 
48.64-

163.64 

Height (cm) 67.97 68.93 68.34 69.86 71.40 174.81 9.63 
152.40-

200.66 
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Table 3 CAD group artery stenosis level and sample number 

BMI (kg/m
2
) 30.26 30.06 29.49 30.05 28.77 29.85 4.81 

15.43-

48.82 

Underweight 0% 0% 3.45% 0% 0% 1.2%   

Normal 

weight 
9.52% 18.33% 13.79% 7.69% 0% 10.84%   

Overweight 52.38% 40% 34.48% 46.15% 80% 44.58%   

Obese 38.10% 41.67% 48.28% 46.16% 20% 43.37%   

Systolic blood 

pressure 

(mmHg) 

128.71 124.73 129.14 136.38 145.40 130.31 19.25 89-185 

Diastolic blood 

pressure 

(mmHg) 

70.71 68.80 69.39 68.85 78 70.17 9.23 44-89 

Elevated blood 

pressure 
4.76% 13.33% 24.14% 7.69% 0% 13.25%   

Hypertension 

(Stage 1) 
23.8% 26.67% 13.79% 53.85% 0% 24.10%   

Hypertension 

(Stage 2 or 

higher) 

33.33% 26.67% 31.03% 30.77% 80% 33.73%   

Gender Male: 75.9% 

Female: 24.1% 

Ethnicity White (Non-Hispanic): 86.75% 

African American: 2.41% 

Asian: 8.43% 

Others: 2.41% 

All data were collected during the initial visit, except one participant. The range of a category indicates the 
minimum and maximum value among the available samples. 

Artery stenosis level (Group/Cohort 

abbreviation) 
Sample number 

Detected feature 

number 

NAFLD (N) 21 4361 
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Multivariable Analysis 

To address the difference of metabolomic fingerprints among the CAD groups, 

multivariable analyses, including PCA and PLS DA analysis, were performed. PCA 

analysis transforms the input data, which are individual variables measured as features 

and corresponding intensities, into principle axes based on the maximum variation. This 

operation preserves as much original variation as possible and reveals separations 

according to the original data matrix. If the within-group variability is sufficiently less 

than between-group variability, the samples will cluster together by their CAD severity 

level. 

In contrast, unlike PCA which only considers features and their intensities, PLS 

DA also considers the categorical CAD stages. This discriminated analysis supervises the 

data by assigning the group categories prior to the data transformation. The major 

difference between PCA and PLS DA is that the principal components in PCA are based 

on the direction of maximum variation in the raw data matrix, and those in PLS DA are 

factors that can maximize the correlation between the data matrix and the CAD 

scores.
87,90

 

10 to 69% (CAD 0) 15 4395 

One vessel > 70% (CAD 1) 29 4345 

Two vessel > 70% (CAD 2) 13 4345 

Three vessel > 70% (CAD 3) 5 4413 

Only features that have a cohort frequency ≥80% were included, the number refers to the counted features 

in that group. 
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In the PCA plot (Figure 1a), samples in the same CAD stage group are assigned a 

representative color and, as seen in Figure 1, the entire examined population is separated 

into two distinct cohorts, but not by the CAD severity. However, the accuracy of the 

stage classification was unable to estimate. There are possibilities of errors occurring 

during ultrasound reading and grouping. According to the PCA plot, the total variance 

explained from the first three principal components was 44.79% (pc1: 24.42%, pc2: 

11.55%, pc3: 8.82%). On the other hand, there is a mild separation in the PLS DA plot 

with samples gathered in cohorts based on the CAD severity levels (Figure 1b). The two 

variables included in the PLS DA analysis, x- and y-variables, were the metabolites data 

matrix and the assigned CAD stages respectively. The three major PLS components in a 

PLS DA plot can explain 24.92% of the variance in the x-variables (pls1: 13.10%, pls2: 

9.31%, pls3: 2.50%). While in the y-variables, 41.46% of the variance was explained 

(pls1: 13.72%, pls2: 9.51%, pls3: 18.23%). Error rate in the PLS DA plot was 7.23%. 

 

 

a. 
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PCA and PLS DA plotting are applied in various “omics” studies and component 

analysis to detect the difference in baseline patterns between phenotypes.
91,92

 Previous 

research also confirmed the use of PCA and PLS DA analysis for variable and dimension 

reduction in metabolomics data.
93

 Raamsdonk et al., who aimed to identify the metabolic 

pattern difference between gene mutation phenotypes, applied the two analyses to a series 

of mass spectrums and observed clusters based on their metabolite content.
94

 The PLS 

DA plot in the current study also had better separation than the PCA plot due to the 

algorithm that maximized between-group variance. For the metabolic patterns unique in 

heart diseases, a recent study by Gao et al. performed PLS DA to visualize the separation 

between patients with coronary atherosclerosis and non-patients; they observed a 

separation between groups and further confirmed the metabolic difference of the two 

b. 

 
Figure 1 Difference between PCA and PLS DA multivariable analysis  

(a) The axes of the 3D PCA plot represent the first 3 principal components (pc1, pc2, pc3). The 

first principal component (pc1) explains the maximum variation in the data matrix; then, the 

second one (pc2) continues to explain the remaining variance, and the third one (pc3) follows 

this pattern. In this PCA plot, the samples in the same CAD group did not cluster together. 

(b) The axes of the 3D PLS DA plot are the first 3 partial-leas square component (pls1, pls2, 

pls3). Their function is equivalent to principal components in PCA plots. In this PLS DA plot, 

there is a mild separation by the CAD severity levels. 



48 

 

cohorts.
95

 Another non-targeted metabolomics study performed PLS DA analysis to a 

dataset containing serum samples with and without coronary heart disease (CHD).
96

 It 

depicted a clear difference of the metabolite content, which enabled the study moving 

forward to the selection and identification of important metabolites that distinguish the 

CAD stages. The cohort separation trend in previous research is consistent with our 

findings, indicating that heart disease patients present a distinguishable metabolic pattern 

than normal controls. This confirmed the metabolites variation in the CAD groups can 

cause the cohort separation, and it is worth investigating when it comes to stage specific 

biomarker detection. 

Metabolite Selection 

After calculating the weight score (W), the top 20 features with the highest W 

score in each CAD group were selected. This indicates that the selected features were 

possible factors that differentiate CAD groups from the N group, due to their higher W 

scores than other features. A total of 80 features were then filtered by the cohort 

frequency (fco) and the fold change score (F). Those features which had low fco in both the 

CAD group and N group were deleted. An ideal biomarker would have high fco in one 

group and low fco in the other. However, in the present study, most of the selected 

features have high fco (>90%) in both groups; thus, these features were kept in the 

selection list and went further to the F score filtering. 

According to the method, features with a fold change (
                

        
) less than 

2 were eliminated. The process cut down a significant number of features, and only 11 
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features met the criteria. All these features had higher intensity levels in the CAD groups 

than the N group, except features 165.0712 m/z and 166.0879 m/z. And while some of 

the features were single stage specific, others were distinctive in more than one group. 

The selected features, their m/z ratio, retention time, and represented stage are listed in 

Table 4 

 

Table 4 Selected features 

Features (m/z) Retention time (min) Specific CAD Stage 

406.1767 9.435 CAD 0 

499.2359 9.400 CAD 0 

422.2082 8.577 CAD 0 / CAD 1 

380.1971 9.435 CAD 0 / CAD 2 

165.0712 4.620 CAD 1 

166.0879 3.878 CAD 1 

563.2302 8.407 CAD 1 / CAD 2 

743.2325 0.564 CAD 1 / CAD 3 

579.2193 8.134 CAD 2 / CAD 3 

423.1977 7.335 CAD 3 

624.3059 9.500 CAD 3 

Several features were found to represent more than one group. They are factors that might be specific to 

two CAD stages. All features will be evaluated by EIC and the Box-and-Whisker plot, to confirm their 

stage differentiating ability. 

 

EIC Evaluation 

The EICs of the selected metabolites in each CAD stage were visualized using 

mzMine 2 and are presented in Appendix 1. If a metabolite was specific to two groups, 
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both of the EIC were extracted and compared. Figure 2 shows a comparison of a good 

EIC and a bad one. An ideal feature EIC has a symmetric Gaussian distribution peak, 

with a low noise level. A single peak throughout the entire chromatogram is expected, 

though there is still a possibility of a peak at several time points due to the same m/z ratio 

the features have. However, in that case, the peaks should be clearly separated by the 

retention time. As long as the peaks are not high in baseline, with asymmetrical peak 

shape and a long tail, having a sudden intensity drop near the apex position, or with a 

zigzagging shape, it can be considered as a good EIC.
97

 

 

Figure 2 Good and bad EIC comparison 
EIC is a chromatogram showing only the extracted peaks; a window of m/z can be 

defined previously and the EIC is generated by extracting signals that only fit in the m/z 

range. 

a.  

 
(a) A good EIC features a high-intensity and symmetrical peak with a quiet baseline. 

b.  
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(b) This is an example of a bad EIC, in which there are numerous signals which appear 

as a noisy baseline. It will be difficult to distinguish whether the targeted peak is a 

real metabolite or background noise. 

 

In the results of the present study, some of the EIC appeared to have 2 peaks at a 

similar retention time, but one of them was lower in intensity and has a slightly different 

m/z ratio then the targeted m/z (Figure 3). Thus, the higher signal that is closer to the 

targeted retention time was regarded as the major peak (targeted features). Overall, 

features 165.0712 m/z and 166.0879 m/z did not yield a good EIC and were eliminated 

from the selected metabolite list. Another deleted feature, 743.2325 m/z, has a retention 

time less than 1 minute and a noisy baseline in the EIC. After the removal, 8 features 

remained as CAD stage specific features (Table 5). 
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Figure 3 An example of an EIC with 2 peaks 
The targeted metabolite is 563.2302 m/z and its retention time is 8.407 minutes. A smaller peak 
appeared at around 8 minute and its detected m/z is 563.2337, while the higher peak is 563.2296 m/z at 
8.4 minute. The latter is considered as the major signal for the targeted feature, due to the higher 
intensity and the more accurate retention time. 

 

Table 5 Selected features 

ID Metabolite (m/z) Retention time (min) Specific CAD Stage 

1 406.1767 9.435 CAD 0 

2 499.2359 9.400 CAD 0 

3 422.2082 8.577 CAD 0 / CAD 1 

4 380.1971 9.435 CAD 0 / CAD 2 

5 563.2302 8.407 CAD 1 / CAD 2 

6 579.2193 8.134 CAD 2 / CAD 3 

7 423.1977 7.335 CAD 3 

8 624.3059 9.500 CAD 3 

Feature No. 3, No. 4, No. 5, and No. 6 were found unique in more than one group. 
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Box-and-Whisker Plot Evaluation 

The second step of metabolite evaluation used Box-and-Whisker plots to visualize 

the difference between N group and CAD group. All the samples in the groups were 

included when generating the plots, and the results are included in Figure 4. The y-axis 

in the plot is the metabolite intensity level, and the bold line in the interquartile box 

represents the median of the group. While evaluating the distribution of samples, the 

median and the interquartile values are important determinants. An ideal plot consists of a 

separation of median by intensities, little or non-overlapped boxes, and few outliers. On 

the other hand, non-significant metabolites will have a Box-and-Whisker plot with 

characteristics including equivalent median levels and similar interquartile range 

distribution. 
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a. 406.1767 m/z 

 

b. 499.2359 m/z 

 

c. 422.2082 m/z 

 

d. 422.2082 m/z 

 

e. 380.1971 m/z 

 

f. 380.1971 m/z 

 

g. 563.2302 m/z 

 

h. 563.2302 m/z 

 

i. 579.2193 m/z 

 

j. 579.2193 m/z k. 423.1977 m/z l. 624.3059 m/z 
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Figure 4 Box-and-whisker plot 
In general, the intensity levels in the CAD groups are usually higher than the N group, based on the results. 
The purpose of a Box-and-Whisker plot is to confirm the ability of a metabolite to identify CAD stages from 
the N group and serve as a biomarker. Thus, a distinguishable difference in the intensity level between two 
groups indicates a good CAD stage specific metabolite. (d) 422.2082 m/z is an example of a bad plot for the 
purposes of identifying biomarkers, with narrow boxes in both groups that have little separation in intensity 
levels. (j) 579.2193 m/z is a good Box-and-Whisker plot, due to its clear distinction between groups. The two 
medians almost had a 1000 times difference. 

 

With a separation of N group and CAD group in the box plots, features 406.1767 

m/z, 499.2359 m/z, 422.2082 m/z, and 380.1971 m/z were distinctive in CAD 0. Features 

563.2302 m/z and 579.2193 m/z are CAD 2 specific features, whereas, the plot of 

579.2193 m/z shows some overlaid area. But the median of the two cohorts showed 

almost a 1000 times difference, so this feature was still included for CAD 2 characteristic. 

CAD 3 stage has three specific features, including 579.2193 m/z, 423.1977 m/z, and 

624.3059 m/z. The first two features have good Box-and-Whisker plot, while metabolite 

624.3059 m/z was considered acceptable because of the partially overlapped intensity 

levels and the separated median. Metabolite 422.2082 m/z and 563.2302 m/z in CAD 1 

and 380.1971 m/z in CAD 2 showed a compressed interquartile range in both N group 

and CAD group; their median levels also presented poor separation, which leads to the 

elimination of the features. 
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Finalized Metabolites 

After the EIC and Box-and-Whisker plot evaluation, the 8 features remained the 

same; however, some of them were found to no longer be distinctive in certain CAD 

stages. The final feature list and corresponding CAD stages is shown in Table 6. 

 

Table 6 Finalized features 

ID Features (m/z) Retention time (min) Specific CAD Stage 

1 406.1767 9.435 CAD 0 

2 499.2359 9.4 CAD 0 

3 422.2082 8.577 CAD 0 

4 380.1971 9.435 CAD 0 

5 563.2302 8.407 CAD 2 

6 579.2193 8.134 CAD 2 / CAD 3 

7 423.1977 7.335 CAD 3 

8 624.3059 9.5 CAD 3 

Among the 8 metabolites, 4 of them are CAD 0 specific, 2 of them are CAD 2 specific, and 3 of them are 
CAD 3 specific. CAD 3 and CAD 2 also have one metabolite in common. In the finalized list, none of the 
metabolites can distinguish CAD 1. 

 

MS/MS Spectra 

Results from the MS/MS came in three collision energy levels; each feature 

yielded three spectra that contained the fragments collected after collision induced 

fragmentation. Figure 5 includes the MS/MS spectra of one feature (422.2082 m/z); the 

results of the seven other features are included in Appendix 2: 
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a. Collision energy: 10 eV 

 

b. Collision energy: 20 eV 

 

c. Collision energy: 40 eV 
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Figure 5 MS/MS spectrums 
The parent ion (422.2082 m/z) was targeted and fragmented by the induced energy in the collision cell. 
(a.) At 10 eV, the ion did not generate many fragments, which indicated that the energy was not enough 
to break the parent ion structure. (b.) As the collision energy increased, there are several signals 
appearing on the left of the parent ion peak. These signals are the fragmented ions with lower m/z ratio 
than the original molecule. (c.) The parent ion was fully broken down at 40 eV, leaving the spectrum 
without the parent ion peak. 

 

During MS/MS spectrum selection, results showed that three features (563.2302 

m/z, 423.1977 m/z, and 624.3059 m/z) were unable to fragment completely even under 

the highest collision energy level used. Thus, the three metabolites were analyzed again 

with an alternative collision energies; 5 eV and 60 eV. Their resulting spectra are 

presented in Appendix 2. The 5 eV collision energy was not strong enough to induce 

fragmentations among the 3 features; the parent ion signals still have high intensity levels, 

and there are no signals of fragments. While the 60 eV spectra showed high noise levels, 

indicating that the collision energy was too high that the fragments of the targeted 

features were lost in the background noises. Overall, 40 eV yields better signals of the 

parent ions than the other energy levels. 

NIST Database Matching 

The matching in the NIST database was done by manually evaluating the peaks of 

the targeted unknown spectra to those of compounds in the database. Figure 6 shows an 

example of a good and bad match. In the comparison, the unknown sample spectra is 

colored in red, while the NIST library spectra is shown in a reversed orientation 

(mirrored, relative to the unknown spectra) and colored in blue. The x-axis is the m/z 

ratio and the y-axis is the intensity level (in percentage). An ideal match of metabolite 
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profiles in NIST requires similar m/z ratios and intensity levels, which indicates that the 

major peaks in the spectrums should mirror with each other. For peaks in the sample 

spectrums and the library references that are considered as a match, the variance of the 

matching signals is within 0.1 m/z, and the low intensity signals, as well as the baseline 

noise, are ignored. In addition, spectrums created from the three collision energy levels 

were compared at the same time during matching. When yielding a good match, the 

spectrums of the other 2 energy levels were also extracted and compared with the library 

spectrum. If the match is correct, the library metabolite might have the same 

fragmentation trend, which breaks down into fragments with similar m/z, as the unknown 

metabolite. 
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a.  

 
b.  

 

Figure 6 Good and bad match (in NIST database) comparison 

(a) A good match of the database showed matching in the major peaks (238.1017 m/z in the example) 

and most of the signals above the baseline. (b) The signals in the library spectrum did not match the 

unknown peaks, which pointed out that this is not an ideal match. 

 

The matches of the 8 metabolites collected in NIST are included in the Figure 7. 

Metabolite 422.2082 m/z had a good match at all three collision energy levels, and the 

substance is identified as 4-hydroxyatorvastatin lactone. Another match was found in 

380.1971 m/z at 40 eV, with identified metabolite 1-[[4,5-Bis (4-methoxyphenyl) -2-

thiazolyl]carbonyl]-4- methylpiperazine, a cyclooxygenase-1 (COX-1) inhibitor 

(FR122047). 

 

ms2 Scan:568867 RT:9.481 HCD CE:40.00 1-[[4,5-Bis(4-methoxyphenyl)-2-thiazolyl]carbonyl]-4-methylpiperazineHead to Tail MF=142 RMF=231
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a. 422.2082 m/z match: 4-hydroxyatorvastatin lactone 
10 eV 

 
20 eV 

 
40 eV 

 

b. 380.1971 m/z match: 1-[[4,5-Bis(4-methoxyphenyl)-2-thiazolyl]carbonyl]-4-methylpiperazine 

40 eV 

 

Figure 7 NIST database matches 

(a) A match of 422.2082 m/z at all three collision energy levels; the metabolite was identified as 4-

hydroxyatorvastatin lactone. (b) The metabolite 380.1971 m/z has a match at 40 eV, and the 

compound was a COX-1 inhibitor. 

 

ms2 Scan:514705 RT:8.578 HCD CE:10.00 4-Hydroxyatorvastatin lactoneHead to Tail MF=263 RMF=456
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ms2 Scan:514226 RT:8.570 HCD CE:20.00 4-Hydroxyatorvastatin lactoneHead to Tail MF=600 RMF=717
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ms2 Scan:514760 RT:8.579 HCD CE:40.00 4-Hydroxyatorvastatin lactoneHead to Tail MF=771 RMF=840
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Based on the identified metabolites from the NIST database, 380.1971 m/z is 

considered as a COX-1 inhibitor (FR122047). However, it is unlikely to be presented in 

human body, since FR122047 is a material for in vitro studies to investigate 

prostaglandin related pathways; it was also applied for reducing muscle nerve response in 

human induced heart failure events in animal experiments.
98

 Previous research also 

applied the substance as an analgesic in rats.
11

 Despite its wide use in mechanism 

identification and pain reduction, this inhibitor has not been established as drug nor 

applied to humans. As a result, though the spectrum matching of FR122047 was good, 

the identification and verification of this metabolite failed, leaving this substance 

(380.1971 m/z) still unknown. 

Among the NIST database results, 4-hydroxyatorvastatin lactone matched with 

metabolite 422.2082 m/z at all three energy levels. The known metabolite has a precursor 

ion of 422.2126 m/z, and the exact mass is 556.23735 Da. According to previous studies, 

4-hydroxyatorvastatin lactone is the lactone form of the atorvastatin (Lipitor
®

), an HMG-

CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase inhibitor. The drug belongs to 

the second generation of statins and has been widely used to delay atherosclerosis 

progression and reduce plasma cholesterol levels.
100,101

 During the biological metabolism 

of atorvastatin, lactonization was conducted to generate the lactone form statin, which has 

better affinity to cytochrome P450 and can be deposited easier.
102

 As presented in Figure 

8., the active form of the drug is the atorvastatin acid. As the body metabolism operates 

and the liver detoxifies the statin drug, lactonization occurs to transform atorvastatin 
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acids into atorvastatin lactones.
103

 As a result, 4-hydroxyatorvastatin lactone is one of the 

metabolic products of the atorvastatin drug clearance pathways. 

 

 
The pathway was adapted from Kantola et al. (1998)  

Figure 8 Metabolism of atorvastatin 
The identified metabolite, 4-hydroxyatorvastatin lactone, is one of the 
metabolic products in the atorvastatin elimination pathway. 

 

In the finalized metabolites list (as seen in Table 6), the intensity level of 

metabolite 422.2082 m/z, which was identified as 4-hydroxyatorvastatin lactone, showed 

a difference between the N group and CAD 0 group. This indicates that 4-

hydroxyatorvastatin lactone is a metabolite that can distinguish CAD 0 group from the N 

group. Based on this assumption and the fact that this metabolite originates from 

exogenous sources, tracing back the use of atorvastatin in the participants is an important 

step for determining this stage specific metabolite. The following table shows the 

proportion of participants using atorvastatin in each group, as reported in the medical 

history record from INOVA (Table 7). In the N group, 9.52% of the people were 
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assigned this drug, while 80% of the patients in CAD 0 were using atorvastatin. The use 

of statin drug in the other three CAD groups was 65.62%, 53.84%, and 60% respectively. 

 

Table 7 Use of atorvastatin in the sample population 

Group/Cohort Proportion of use (%) 

NAFLD (N) 9.52 

CAD 0 80.00 

CAD 1 65.62 

CAD 2 53.84 

CAD 3 60 

 

Since CAD 0 has the highest percentage of atorvastatin use and N group has the 

lowest level, the difference between the two cohorts might contribute to the calculation 

result and further impact the selection of stage specific metabolites. The possible reason 

that 4-hydroxyatorvastatin lactone was not detected in as a stage-specific metabolite 

CAD 1, CAD 2, and CAD 3 can be attributed to the frequency calculation. Those who 

were not taking atorvastatin might have low intensity levels or missing values of 4-

hydroxyatorvastatin lactone; consequently, the frequency of this feature will be low if 

fewer participants received the drug treatment. Therefore, in CAD 1, CAD 2, and CAD 3, 

the metabolite might have been eliminated as a candidate stage-specific metabolite during 

the frequency cutoff and metabolite evaluation steps. On the contrary, the occurrence of 

4-hydroxyatorvastatin lactone in CAD 0 was relatively high, and this group showed a 

difference with N group; due to that, the metabolite was able to remain in the finalized 

list and detected as a stage determining factor. Thus, the targeted metabolite (422.2082 
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m/z) was identified as 4-hydroxyatorvastatin lactone by the NIST database, and it can be 

considered as a CAD 0 specific metabolite in the sample population. 

Online Databases Matching 

The NCBI database matching results are listed in Figure 9. Similar to the NIST 

database, the results were presented as a symmetrical graph, with blue spectrums 

indicating the sample peaks and the red ones are the library spectrums. There were 

several matches for 380.1971 m/z at 20 and 40 eV, and a match for 624.3059 m/z at 60 

eV. But overall, the results collected from NCBI are not good matches that predicted the 

targeted metabolites. Thus, the matches were considered not reliable. 

 

a. 380.1971 m/z match: Kinocoumarin 

20 eV 

 
40 eV 



66 

 

 

b. 380.1971 m/z match: (3'x,5'a,9'x,10'b)-O-(6-Oxo-7-drimen-11-yl)umbelliferone 

20 eV 

 

c. 380.1971 m/z match: Conferone 
20 eV 

 

d. 624.3059 m/z match: Neferine 

60 eV 
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Figure 9 NCBI database matching results 

(a) Spectrums of 20 and 40 eV matched with Kinocoumarin, a constituent of Citrus. (b) The match 

was not a good one, and the identified metabolite is a food compound found in spices. (c) The 

matched metabolite is isolated from Ferula species. (d) The collision level was 60 eV, but the library 

spectrum did not match with the sample peaks. Neferine is an alkaloid found in coffee products. 

 

Metlin is another online database that is commonly applied in metabolomics 

global analyses. In a matching graph, the upper spectrums were the sample signals and 

the lower reversed peaks were from the library. The matched peaks were colored in blue, 

while those did not match remained black. According to the figure showing below (as 

seen in Figure 10), most of the matches are peptides containing 3 amino acids. During 

Metlin database search, each sample spectrum was compared with the library spectrums 

at 10, 20, and 40 eV. Thus, there are matches that include a pair of spectrums with 

different collision energy level. However, none of the results were considered as good 

matches for the targeted 8 metabolites. 
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a. 406.1767 m/z match: 

20 eV (matched with 10 eV spectrums): Try His Ser 

 
40 eV (matched with 20eV spectrums): Glu His Val 

 

b. 499.2359 m/z match: 

40 eV (matched with 20eV spectrums): Try His Try 
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c. 422.2082 m/z match: 
20 eV: Hi Pro Try 

 
40 eV (matched with 10 eV spectrums): Ile Try Try 
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d. 380.1971 m/z match: 

10 eV: Glu His Ile 

 
40 eV (matched with 20 eV spectrums): Asn Pro Lys 

 

e. 579.2193 m/z match: 

40 eV (matched with 20 eV spectrums): Trp Trp Phe 
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f. 423.1977 m/z match: 

60 eV (matched with 10 eV spectrums): Ile Cys Phe 

 

Figure 10 Metlin database matching results 

(a) There is a match of 20eV sample spectrums with 10 eV library spectrums, Try His Ser, in which 

the parent ions are at the same m/z. But there is no good match at 40 eV. (b) Only one of the signals 

matched. (c) One signal with 380 m/z matched the library peak at 20 eV. The 40 eV spectrums do 

not yield good matching results. (d) The parent ion matched at 10 eV, but as the collision energy 

increases, the fragments do not have a good match. (e) The sample spectrum at 40 eV has a match 

with a 20 eV spectrum, Trp Trp Phe. But the major peak at 378 m/z in the sample does not have a 

match in the library spectrum. (f) This is a match of 60 eV and 10 eV, the difference between the 

collision energy and the less similar patterns refer that it is not an ideal match. 
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CFM ID is another online matching resource that compares three energy levels at 

the same time. The output of a matched metabolite contains 3 graphs, with the input 

spectrums colored in blue and the database spectrums colored in red. The spectrums were 

also symmetrically arranged to compare their similarities. Results collected in CFM ID 

are presented in Figure 11, but none of the matches were considered good: 
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a. 406.1767 m/z match: SGI-1776 

10 eV 

 
20 eV 

 
40 eV 

 

b. 499.2359 m/z match: Siloxane 
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10 eV 

 
20 eV 

 
40 eV 

 

c. 380.1971 m/z match: Fumitremorgin C 

10 eV 
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20 eV 

 
40 eV 

 

d. 563.2302 m/z match: Saframycin A 

10 eV 
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20 eV 

 
60 eV 

 

e. 423.1977 m/z match: 8-hydroxycarvedilol 

10 eV 
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20 eV 

 
60 eV 

 

Figure 11 CFM ID database matching results 

(a) The metabolite matched with SGI-1776, a pim-kinase inhibitor used as anti-cancer drug. At 40 eV, 

the lower m/z fragments in the library did not match the sample spectrum. (b) Siloxane is a human-

synthesized compound that is commonly applied as industrial additive. Only the parent ion at 10 eV 

matched the library spectrum. (c) Metabolite 380.1971 m/z matched with an indole alkaloid produced 

by several funguses that serve as a protein inhibitor in cell experiments; it is unlikely to present in 
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human serum. The match at 40 eV was also not ideal. (d) Saframycin A is an antibiotic drug, but most 

of the spectrums at the highest energy (60 eV) did not match with each other. (e) The precursor ion 

matched at the lower energy levels but not at 60 eV. 8-hydroxycarvedilol is a metabolite produced from 

Carvedilol, a drug used to treat high blood pressure and heart failure. 

 

The online database, MetFrag, provides structure identification and spectrum 

matching. However, unlike other databases, MetFrag does not visualize a comparison of 

sample spectrums and the library spectrums. In the resulting figures, the green peaks are 

the signals in the sample spectrums that matched the library data, while the blue peaks are 

those that do not meet the correct m/z range. Gray peaks, if present, are the signals that 

have lower intensity levels and were excluded. Results from MetFrag are limited since 

examiners are unable to assess the actual spectrum comparison, but it can be used to 

distinguish possible structures. (Figure 12) 

 

a. 406.1767 m/z match: 2-[(7-fluoro-2-oxo-1, 3-benzoxazin-4-yl)amino]-4, 4-dimethyl-N-(2-

methyl-4-oxo-tetrahydrofuran-3-yl) pentanamide 

40 eV 
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b. 406.1767 m/z match: cyclopropylmethyl 2-[[3-(2-methoxyphenyl) -1-phenyl-pyrazole -4-

carbonyl]amino]acetate 

40 eV 

 

c. 499.2359 m/z match: 2-(4-methyl-1-oxo-phthalazin-2-yl) -N-(3-pyridylmethyl) -N-[[4-

(tetrahydrofuran-2-ylmethoxy)phenyl]methyl]acetamide 

40 eV 

 

d. 380.1971 m/z match: Fumitremorgin C 

40 eV 
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e. 579.2193 m/z match: tert-butyl 4- [5-oxo-3-[[[2-[4-(trifluoromethoxy) phenyl] 

acetyl]amino]carbamoyl]-1H-pyrazolo[1,5-a]pyrimidin-7-yl]piperidine-1-carboxylate 

40 eV 

 

Figure 12 MetFrag database matching results 

(a) (b) The two metabolites both matched the targeted metabolite 406.1767 m/z, and they shared the 

same amide structure. (c) According to the match, the unknown metabolite might contain a pyridine 

and an amide. (d) The matched metabolite, Fumitremorgin C, is consistent with the results from 

CFM ID. However, it is a protein inhibitor that has not been used in human. (e) The two blue peaks 

were those that did not match, and the gray one was eliminated. Possible structure is a benzene ring 

and a pyrimidin. 
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In-Source Fragmentation 

High throughput metabolomics such as LC MS enables metabolite separation and 

identification by their retention time and m/z ratios. However, in-source fragmentation 

might occur even when using the most gentle ionization method, electrospray 

ionization.
104

 This happens between the ion source and the mass spectrometer, in which 

the metabolites are accelerated by applying voltages, prompting collisions with 

surrounding species that can produce sufficient energy to yield fragment ions.
105

 

However, this fragmentation is not desired since the process of ionic species breakdown 

is only expected in the collision cell. When in-source fragmentation happens, the peaks in 

the LC-MS spectrum that correspond to the prematurely broken down parts of the intact 

ionic species may be falsely considered as different compounds. This results in false 

detection when selecting candidate metabolites and errors in future MS/MS matching. 

One of the possible solutions is to check the finalized metabolite list for features having 

the same retention time, because the fragments generated during an in-source 

fragmentation are originated from the same metabolite with a fixed retention time 

collected from the liquid chromatography. Thus, combining the MS/MS spectrums of the 

possible fragments and considering them as one metabolite when doing database 

matching are an effective approach to correct these errors from in-source fragmentation. 

According to the finalized metabolites in the present study, metabolites 406.1767 m/z and 

380.1971 m/z have the same retention time at 9.435 minute, which highlights the 

possibility of them being the products of in-source fragmentation. To address that, the 

spectrums of the two metabolites were combined and searched together in the online 
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databases. Only the Metlin database yielded a match at 20 eV with a parent ion of 406 

m/z. Figure 13 summarized the results, showing that although there is a match for the 

combined spectrum, it was not considered as a good spectrum, and the occurrence of in-

source fragmentation was unable to be confirmed. 

 

a. Combination of 406.1767 m/z and 380.1971 m/z match: Cefaclor 

 

Figure 13 In-source fragmentation Metlin database matching results 

(a) The combined spectrum showed a result of Cefaclor, a respiratory tract infection drug, in the 

Metlin database. But the sample peaks did not match with the library ones, indicating it as a bad 

match.  
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CONCLUSION AND SUMMARY 

The non-targeted analysis yielded eight unknown metabolites that are potential 

biomarkers for the CAD stages. After performing MS/MS and database matching, one of 

the targeted metabolites was identified and confirmed to be 4-hydroxyatorvastatin lactone. 

The statin drug-derived metabolite was specific to CAD 0 among the study participants. 

Although it is not a factor that can be applied as disease biomarkers and be generalized to 

the population, 4-hydroxyatorvastatin lactone can be regarded in the present study as 

being similar to an internal standard. It was a stage-determining metabolite caused by 

medication, which was later confirmed during the untargeted analysis. This suggests that 

the mass spectrometry and the multivariate analysis (Figure 1.b) was correctly performed 

and was able to address the metabolic difference of CAD in NAFLD patients by 

metabolomic fingerprinting. The success in metabolite profiling also validated the 

metabolomics pipeline, the weight score equation, and the manual evaluation applied to 

the data. Together, it provides support that our algorithm of variables detecting is reliable 

in selecting CAD relevant metabolites.  

Several limitations, however, appeared during the research. One of them is the 

uneven sample number in each CAD stage. Since the analysis required normally 

distributed data, errors and over explanation might occur when the sample size is too 

small. Another limitation is the low identification rate in MS/MS spectrum matching, 
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especially among the online databases. Lastly, almost half of the participants were 

diagnosed with diabetes or pre-diabetes state; which might become a confounding 

variable when investigating metabolic patterns. 

Future research may include expanding the sample number and improving 

preliminary steps in participant recruitments. Improving MS/MS spectrum matching 

methods will also aid in identifying the remained unknown CAD sensitive metabolites. 
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APPENDIX 1 

a. 406.1767 m/z EIC: CAD 0 

 
b. 499.2359 m/z EIC: CAD 0 (The retention time is 9.4 minutes) 

 
c. 422.2082 m/z EIC: CAD 0 
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d. 380.1971 m/z EIC: CAD 0 (The retention time is 9.435 minutes) 

 
e. 422.2082 m/z EIC: CAD 1 (The retention time is 8.577 minutes) 
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f. 165.0712 m/z EIC: CAD 1 (The retention time is 4.62 minutes) 

There is no clear signal of the metabolite at 4.62 minute, and the yellow peak has a 

zigzag shape indicating this is not a good EIC. 

 
g. 166.0879 m/z EIC: CAD 1 (The retention time is 3.878 minutes) 

The peaks at around 3.8 minute are wider and contain multiple signals that cannot 

be addressed. This is not an ideal EIC.  
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h. 563.2302 m/z EIC: CAD 1 

 
i. 743.2325 m/z EIC: CAD 1 (The retention time is 0.564 minutes) 

Metabolites eluted before 1 minute and after 24 minute are considered less reliable 

due to the commonly observed ion suppression, and they should not be selected. 

Also, the baseline is too noisy. 
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j. 380.1971 m/z EIC: CAD 2 

 
k. 563.2302 m/z EIC: CAD 2 
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l. 579.2193 m/z EIC: CAD 2 

 
m. 743.2325 m/z EIC: CAD 3 (The retention time is 0.564 minutes) 

The EIC shows the same trend as CAD 1, so this metabolite is eliminated. 
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n. 579.2193 m/z EIC: CAD 3 

 
o. 423.1977 m/z EIC: CAD 3 
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p. 624.3059 m/z EIC: CAD 3 
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APPENDIX 2 

a. 406.1767 m/z MS/MS spectrums: 

Collision energy: 10 eV 

 

Collision energy: 20 eV 
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Collision energy: 40 eV 

 
b. 499.2359 m/z MS/MS spectrums: 

Collision energy: 10 eV 

 

Collision energy: 20 eV 
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Collision energy: 40 eV 

 

c. 422.2082 m/z MS/MS spectrums: 

Collision energy: 10 eV 



96 

 

 

Collision energy: 20 eV 

 

Collision energy: 40 eV 
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d. 380.1971 m/z MS/MS spectrums: 

Collision energy: 10 eV 

 

Collision energy: 20 eV 
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Collision energy: 40 eV 

 
e. 563.2302 m/z MS/MS spectrums: 

Collision energy: 10 eV 
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Collision energy: 20 eV 

 

Collision energy: 40 eV 
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Collision energy: 5 eV 

 

Collision energy: 60 eV 
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f. 579.2193 m/z MS/MS spectrums: 

Collision energy: 10 eV 

 

Collision energy: 20 eV 
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Collision energy: 40 eV 

 
g. 423.1977 m/z MS/MS spectrums: 

Collision energy: 10 eV 
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Collision energy: 20 eV 

 

Collision energy: 40 eV 
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Collision energy: 5 eV 

 

Collision energy: 60 eV 
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h. 624.3059 m/z MS/MS spectrums: 

Collision energy: 10 eV 

 

Collision energy: 20 eV 
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Collision energy: 40 eV 

 

Collision energy: 5 eV 
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Collision energy: 60 eV 
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