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_Abstract

A more general kind of sequence-prediction problem—the non-
deterministic  prediction problem—is dcfined, and a general
methodology for its solution presented. The methodology, calted
SPARC, employs multiple description models to guide the scarch for
plausible scquence-gencrating rules. ‘three different modcls are
presented along with algorithms for instantiating them to discover
rules. The instantiation process requires that the initial input sequence
be substantially transformed to make explicit important features of the
sequence. Four different data transformation operators are described.
The architecture of a system called. SPARC/E is presented, which
implements most of the methodology for discovering sequence-
generating rules in the card game Elcusis. Examplcs of the exccution
of SPARC/E are presented.

1. Introduction

Inductive learning—that is, learning by gencralizing specific facts or
obscrvations—is a fundamental stratcgy by which we acquire
knowledge about the world. This form of learning is rapidly becoming
onc of the central rescarch topics in AL, Most research on computer
models of inductive lcarning has addressed the problem of inducing a
general description of a concept from a collection of indcpendent
instances of that concept (the so-called training instances). Thus, the
rescarch has dealt with learning concepts that represent a certain class
of instances. The instances can be specific physical objects,
interactions, actions, processes, and so on. The learned concepts arc
gencral descriptions of classes of such instances.

Learning prob]cms of this type include

e lcarning a checkers evaluation function [Samuel, 1963,
1967) that assigns to a given class of board situations a
certain value,

® learning descriptions of block structures [Winston, 1970},

o determining rules for interprcting mass spectrograms
[Buchanan and Mitchell, 1978].

» formulating  diagnostic rules for soybean discases

[Michalski and Chilausky, 1980}, and

e discovering heuristics to guide the application of symbolic
integration operators [Mitchell, Uitgoff, and Banerji, 1983}

In Samucl's checkers program, for example, cach training instance
was a board situation represented as a vector of 16 attributes. The
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learned concept was an cvaluation function that computed the "value”
of any board position for the side whosc turn it was to move. No
relationships between different board positions were considered.
Similarly, Michalski’s AQ11 program [Michalski and Chilausky, 1980]
was given independent training instances, each describing a discased

- soybean plant in terms of 35 multi-valued attributes. Each plant cquld

have one of 19 possible soybcan diseascs. From several hundred
training instances, the program inferred gencral diagnostic rules for
each of thesc diseascs.

This type of inductive learning can be called instance-to-class
generalization. A revicw of several methods for such instance-to-class
generalization can be found in {Michalski, Carbonell, and Mitchell,
1983). A comprehensive review of learning research is given in
[Dietterich, London, Clarkson, and Dromey, 1982].

Another type of inductive learning involves constructing a
description of a whole object by observing only sclected parts of it
For example, given a set of fragmients of a scence, the preblem is to
hypothesizc the description of the whole scenc. - A very important case
of such part-to-whole gencralization is where the “part” consists of a
fragment of a sequence of cbjects (or a process cvolving in time) and
the probicm is to induce the hypothetical description of the whole
sequence (the process). Once such a description is found, it can be
used to predict the possible continuations of the given sequence or
process. This class of part-to-whole inductive learning problems we
will call prediction problems.

This paper investigates the prediction problem for a sequence of
objects characterized by a finite set of attributes. An clementary
problem of'this type is letter-sequence prediction, in which cach object
in the sequence is charactcrized by only one attribute: the name of the
letter. For cxample, given a sequence of Tetters such as

ABXBCWCDV...

the learning program must discover a "pattern”—that is, a rule that
governs the gencration of letters in the sequence. In this case, such a
rule might statc that the scquence is a periodically rcpeating
subscquence of three letters in which the first two letters arc successors
of the letter appearing in the previous period, while the third letter is
the predecessor of the corresponding letter in the previous period.
Early papcrs by Simon and Kotovsky [1963, 1972, 1973] show that just
a few relationships (such as successor, predecessor, and equality) are
sufficicnt to represent most such patterns. Related work by
Solomonoff [1964] and Hedrick [1976] has investigated grammatical
approaches to describing letter sequences.

The scquence prediction problem becomes more difficult when the
sequence consists not of simple objects with only a single relevant
attribute (like the problem just described), but instead of objects with
many rclevant attributes. Further complexity is introduced if the
pattern describing the scquence also involves a variety of relationships
among these attributes. For example, the pattern may involve the -
periodicity of recurrence of certain propertics or the dependence of



it at somc arbitrary distance in the past. A sequence prediction
problem cxhibiting the above-mentioned complexities ariscs in the
card game Fleusis [Abbott. 1977; Gardner, 1977). Examples from this
game wili be used to illustrate the general methodology of discovering
patterns in sequences described in this paper. The rules for Elcusis are
bricfly cxplaincd in scction 2.1,

Before we formulate precisely this problem of discovering patterns
in sequences, let us first explain why it is important for current Al
rescarch. ‘There are three major Al problems that must be addressed
in any solution to this discovery task: (a) the representation problem,
(b) the problem of performing model-driven inductive lcarning with
multiple models, and (c) the problera of reasoning about temporal
processes. The specific representation problem of interest here is that
of automatically determining an appropriate serics of transformations
of the initial sequence description so that the pattern can be found.
The multiple-model inductive learning problem ariscs becausc no
single model can provide sufficicnt guidance to the scarch for
plausible descriptions in this domain. The relationship of this
problen to reasoning about time is not as strong as the other two
problems. However, since temporal processes includc as a special casc
discrete-time linear sequences, some of the techniques developed for
sequence prediction may be relevant to the more general problem.

In the next two sections, we discuss in detail the representation
problem and the problem of multiple-model induction as they arise in
this domain.

1.1. Task-oriented transformation of description space
‘The problem of transforming the initial problem description arises
in many practical domains in which the given data (c.g., the training
instances in inductive learning) are obscrvations or measurements that
do not include the information most relevant to the task at hand. For

example, in character recognition, the input typically consists of a_

matrix of light inteasitics representing a character, but the relevant

information includes position-invariant propertics of letters such as
the presence of a line on the left or right of a character; occurrence of .

linc endings, closed contours, and se on (c.g.[Karpinski and
Michalski, 1966}). These position-invariant properties can be made
explicit by applying task-oriented transformations to the raw data.

An example of a learning program that performs task-oricnted
transforinations is INTSUM (a part of the Mcta-DENDRAL. system,
{Buchanan and Mitchell, 1978}). INTSUM is presented with raw
training instances in the form of chemical structures (graphs) and
associated mass spectra (represented as fragment masses and their
intensities). For cach fragment in the mass spectrum, INTSUM must
determinc the bonds that could have broken to produce that fragment.
A simple mass spectromcter simulator is used to develop these
hypothesized bond breaks. Each of the resulting transformed training
instances has the form of a chemical structure and a set of bonds that
broke when that structure was placed in the mass spectrometer. It is
this information that is provided to the remaining parts of the Meta-
DENDRAL system (programs RULLEGEN and RULEMOD).

In character recognition programs and in Meta-DENDRAL, the
data transformations are fixed in advance. Future lcarning systems,
however, may not know the proper transformations a priori. ‘These
learning systems will nced to select or invent appropriate task-oriented
transformations for each learning situation.

This description-space transformation problem has been called by
various authors the data interpretation problem [Dicttcrich, ct al., 1982]
or the reformulation problem [Amarel, 1968]. We prefer the term
task-oriented transformation problem, sincc it cmphasizes that the
proper choice of data transformations depends upon the task being
performed.  In the scquence prediction problem discussed in this

'
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paper, the desired sequence-genérating rules are described in a
language quite different from the language used-to describe the raw
scquence.  ‘The learning system dctermines appropriatc  data
transformations from four gencral classes of transformations and
applies them to the raw sequence to produce a transformed scquence
amcnablc to pattern discovery.

The task-oricnted transformation problem is part of a spectrum of
problems faced by learning programs. The simplest learning
algorithms (c.g., linear regression) determine the coefficients for d
predetermincd, fixed sct of variables. Slightly more sophisticated are
learning algorithms, such as the A9 algorithm [Michalski and Kulpa,
1971] or the candidate climination algorithm [Mitchell, 1978], that are
able to determine which terms are relevant and how they should be
combined (i.c., with operators such as A and V). Learning algorithms
that perform interpretative transformations (c.g. Soloway [1981],
Mecta-DENDRAL [Buchanan and Mitchell, 1978]) augment these
basic inductive algorithms by applying a set of predetermined
transformations to the data prior to inductive gencralization. Not yet
developed are Icarning algorithms that could sclect description-space
transformations under guidance of special hcuristics. And very few
researchers have addressed the problem of discovering new descriptors
(predicates, functions, operators, etc.). Table 1-1 shows this spectrum
of inductive learning problems.

1. Determinc coefficicnts

2. Select relevant variables and combine

3. Apply predetermined transformations

4, Select transformations under heuristic guidance
5. Discover new descriptors

Table 1-1: Spectrum of learning problems in increasing order of
difficulty

The method presented in this paper falls under category 4, since it
scarches four gencral classes of transformations and employs heuristics
reflecting domain-specific knowledge.

1.2. Learning with muitiple models

The second major problem that ariscs in sequence prediction is the
problem of learning using multiple description models. This problem
has not received much attention in previous Al research. Most
existing systems cmploy a single modcl that provides guidance to the
induction algorithm as it scarches a space of possible descriptions.
Many systems, for example, use conjunctive descriptions to represent
concepts. By constraining the scarch to consider only conjunctive
descriptions, the lcarning problem is greatly simplified. Michalski
[Michalski and Kulpa, 1971) constrains descriptions to be in
disjunctive normal form with fewes! disjunctive terms. This constraint
is satisfied (approximnately) by having the induction algorithm find
first one conjunction, and then another, and so on until all of the
training instances are covered. Mcta-DENDRAL [Buchanan and
Mitchell, 1978] employs a fairly elaborate model of the operation of
the mass spcctrometer to guide its scarch for cleavage rules. In
general, alf of thesc systems usc a single model, and very few authors
have made their models explicit.

One rcsearcher who has cmployed multiple modcels is Persson
[196G). He applied four different models to the problem of
extrapolating number- and letter-sequences.  Bricfly, these models
were



1. a model that computes the cocfficicnts and the degree of a
polynomial by applying Newtons forward-diffcrence
formula (the degree can be arbitrarily large);

2. an cxtended model that discovers cxponcential rules of the
form ABC, where A is a polynomial of degree 4 or less and
B and C are polynomials of degree 1 or less (i.e, Band C
are of the form ax + b);

3.a simple periodic model for periods of length 2 (ie.,
intertwined sequences); and

4. a generalization of the Kotovsky and Simon model for
Thurstone letter-series that can discover simple periodic
and segmented scquence-generating laws.

Thesc models arc applied in an artificial lcarning situation in which
the program is given a sequence of scquence-extrapolation problems.
Thus, in addition to attempting to solvc each individual sequence-
extrapolation problem, Persson’s program tries to predict the kind of
sequence-prediction problem that it will next receive—that is, it tries
to predict- which model will best fit the next scquence-prediction
problem. Hence, when the program is attempting to solve one of the
base-level problems, it selects models to apply bascd on its predictions
about the kind of sequence that it is expecting. )

Persson’s work shows the value of employing multiple description
models to search for sequence-generating rules. The major limitation
of Persson’s approach, hawever, is that it is specific to number- and
letter-sequence prediction. His methods cannot solve the “more

gencral problem described in this paper in which objects have -

multiple attributes and the task is to find a nondeterministic sequence-
prediction rule.

Table 1-2 shows a spectrum of five model-based learning methods.
The simplest approach is to use a single fixed model. 'This has becn
the common approach in Al thus far. The next step is to provide a
learning program with a set of models from which it would choose the
most appropriate ones. This is the approach used by Persson. The
third level of sophistication would be to have the program generate a
predeteninined set of modcls, just as the lcarning program applies a
predetermined sct of data transformations. This could be improved by
having the program decide which models to generate on the basis of
special heuristics. Finally, an even more sophisticated program would
be able to invent new models and apply them to guide the learning
process. .

1. Single model

2. Selection from a few models

3. Predetermined generation of models

4, Heuristicaliy-guided gencration of models
5. Discovery of new models

Table 1-2: Spectrum of model-based methods in increasing
difficulty

The approach described in this paper scarches a predetcrmined
space of possible models in a depth-first fashion, and hence, falls
under point 3 of this table.

‘It is the development of techniques for addressing these two
problems—of selecting task-oriented transformations and of applying
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multiple description models—that is the main theoretical contribution
of this research. In the remainder of this paper, we

1. define  the
considcration,

sequence  prediction  problem  under

2.describe  the methods used for representing and
transforming the iritial training instances,

3. present techniques for representing  the models and
sequence-gencrating rules, and finally,

4. provide the dectails of the program SPARC/E, which
implements most of thc described methodology. The
program is illustrated by a few sclected examples of its
operation when applicd to the inductive card game
Eleusis.

2. Problem Statement

Suppose we arc observing a process that generates some objects,
one after another, and arranges them into a scquence. Suppose that
the objects are generated from a known set and that there exists an
underlying law that specifies at least some of the properties of every
new generated object. We will call such a law a sequence-generating
rule. 1t is assumed that the law is expressed in terms of properties that
are cither observable properties of objects present in the sequence up
to the moment when a new object is generated or properties that can
be derived from such observable properties by some known infcrence
rules. ’

We are interested in the most gencral kind of sequence-generating

“ Jaw in which the law does not necessarily completcly detcrmine which

objects can or cannot appear next in the sequence. The law merely
states some propertics that constrain the next object to be a member of
arestricted set. Thus, such a gencrating rule is nondeterministic. The
task of discovering such a generating law is a difficult learning task,
requiring task-specific data transformations and model-guided
induction. We will call this learning problem a non-deterministic
prediction problem (NDP, for short). If the law guiding the generation
of the sequence completely defines the next object at every point in
the sequence, then the NDP problem reduces to a deterministic
prediction problem (DP, for short). In the DP problem, it is assumed
that there is no randomness in the generation of the next object. The
next object is strictly a function of the past objects.

Many rescarchers have previously considered DP problems such as
Jetter-sequence prediction, number-scries extrapolation, economical
prediction, and prediction of the behavior of a computer system. Most
recently, the BACON system [Langlcy, 1980} has addressed a wide
range of DP problems that arise in scientific discovery situations.
BACON and most of its predecessors make strong use of the
constraint that in a DP problem, all attributes of the next object in the
sequence are determined by the previous objects in the sequence. The
NDP problem is more difficult to solve, because only a partial
description of the original scquence is sought. Consequently, many
more plausible hypotheses must be considered during the inductive
learning process.

Let us illustrate a simple NDP problem by an'example. Suppose we
are given a snapshot of an ongoing process that has already gencrated
the objccts (graphs) shown in Figure 2-1.

“The observable properties of each graph are: the NUMBER OF
NODES, the SHAPE of the graph (T-junction, squarc, bar, wheel,



triangle, star, diamond), the TEXTURE of cacianode (solid black, blank,
and cross), and the ORIENTATION of lhcc’aph (applicable only to
graphs that are clongated in some dircction, expressed as degrees
clockwise from vertical). Suppose we would like now to predict what
could be the next object.

TOlA® s

— A =~ 3N
L&

Figure 2-1: A simplc NDP problem

By cxamining the given string in Figure 2-1, we can observe that it
can be partitioncd into scgments of three graphs in Iength. The nodes
of the graphs in cach triplet have TEXTURE in the order <solid black,
blank, cross>. The SHAPES of the graphs are always <T-junction, *,
bar> (wherc * denotes any shapc). Wc can also notice that the
ORIENTATION of the T-junction changes by —~45 degrees cach time,
while the ORIENTATION of the bar increascs by +45 degrees each
time. Finally, thc NUMBER OF NODES in the center graph alternates
between 4 and 8. If the above regularities indeed constitute the
generating law, we can hypothesize that the next graph in the
scquence will have 8 blank nodes, and then after that there will be a
graph that is a slantcd bar with crossell nodes and ORIENTATION of 225
degreos (slant downwards to left).  Thus, with regard to the first
predicted object, we know only two propertics (NUMBER and TEXTURE
of nodes), and with regard to the second predicted object, we know it
completely. It is easy to see that the problem of letter-sequence
prediction (or extrapolation) is a special case of the NDP problem
where cach object is a letter of an alphabet whose observable property
is its name. It also has onc derived property that is its position in the
alphabet. (The order of letters in the alphabet is externally-provided
domain knowledge.) Since cach object (in this casc a character) is
defined completely by specifying its name (or its position in the
alphabet), letter series prediction is necessarily a DP problem.

2.1. An exemplary NDP problem: the card game Eleusis

An interesting NDP problem occurs in the card game Elcusis,
invented by Robert Abbott [Abbott, 1977; Gardner, 1977} Eleusis is
an inductive gamc in which players attempt to discover a “secret rule”
invented by the dealer. The sceret rule is the generating rule for a
sequence of cards. Fach player, in his or her turn, adds one card to the
scquence, and the dealer indicates whether the card is a correct
extension of the sequence (i.e., satisfies the sccret scquence-gencrating
rule). Players who play incorrectly are penalized by having additional
cards added to their hands. The goal of each player is to get rid of all
of the cards in his hand, which is only possible if correct cards arc
played. The cards played during the game arc displaycd in the form of
a layout in which the correct cards form a "main line” and incorrect
cards form "side lincs” branching down from the main line at the card
that they followed. Figure 2-2 shows a typical Elcusis layout for the
sequence-generating rule "Play altcrnating red and black cards.” In
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this game, the 3 of hearts was played first, followed by a 9 of spades,
and a Jack of diamonds. All of these werc correct. Following the
Jack, a 5 of diamonds was played. It appears on a sideline below the
Jack, becausc it was not a correct extension of the sequence. (At this
point a black card is required.) The 4 of clubs was then correctly
played, and so on.

Main 1ine: 3H 0S JD 4C JD 2C 10D 2C ©&H
6D

Side V1ines: AH AS BH
8H 10S 7H
QD 10H

Figure 2-2: A sample Eleusis layout

Eleusis provides a good domain for studying the usc of task-
oricnted data transformations to aid learning. Frequently, the
generating law for an Eleusis sequence is stated in terms of descriptors
that are not present in the initial sequence. In this example, for
instance, the generating law is stated in terms of the color of the cards,
but the original scquence supplics only the RANK and SUIT of cach
card. Table 2-1 provides some cxamples of generating laws from
Eleusis. Note that the terms in which these laws are expressed (e.g.,

"strings of cards of the same suit", “alternating sequence") are quite
different from terms such as RANK and SUIT that described the
original sequence. To bridge this difference, appropriate description-
space transformations have to be performed.

o If the last card was a spade, play a heart; if last card was a
heart, play diamonds; if last was diamond, play clubs; and
if last was club, play spades.

o The card played must be one point higher than or one
point lower than the last card.

o If the last card was black; play a card higher than or equal
to that card; if the last card was red, play lower or cqual.

o Play altcrnating cven and odd cards.

® Play strings of cards such that each string contains cards all
in the same suit and has an odd number of cards in it.

Table 2-1: Some examples of sequence-generating rulcs in Eleusis

Eleusis also provides a good domain for studying the usc of todels
for guiding the induction process. The spuce of possible Eleusis rules
using descriptors such as SUIT, RANK, COLOR, FACEDNESS, PARITY,
PRIMENESS, and RANK MODULO 3 is very farge. In our description
language, there are more than 10" possible sequence-generating
rules involving four or fewer conjunctive expressions! A breadth-first
scarch of this space, such as is conducted by the candidate-elimination

]'nm cstimate is based on computing the space of all syntactically legal VL1
ining the f ing set of descriptors (after cach descriptor is listed the

number of clements in its value set and the numbcer of possible sclectors that can be
formed using those elements): SUIT (4,9). RANK (13, 91), COLOR (2,3), FACEDNESS (2,3),
PARITY (2,3), PRIMENESS (2,3), RANKMODS (3,7), b-suitol (4,9), D-surroz (4,9). D-RANKOL
(25.300), D-RANKO2 (25,300), s-RANKOI (25.300), s-ranko2 (25.300), p-coLorol (2,3),




algorithm, would clearly be impossible. Fortunately, the rules used by
people tend to cluster into certain classes that can be well-described by
threc modcls: periodic rules, decomposition rules, and DNF rules.
Thus, a model-dirccted approach can be used to discover sequence-
gencrating rules in Eleusis.

3. Overview of Solution

‘This section gives an overview of the approach taken to solving the
NDP problem defined in section 2. The approach is a combination of
bottom-up data transformation, top-down model specialization, and
data-driven instantiation of the specialized modcls to fit the
transformed data. Thesc three processes can be bricfly explained as
follows:

1. Bottom-up data transformation involves applying various
transformation  operators to the initial scquence
description to obtain a derived sequence description. We
use four basic data transformations: adding derived
attributes, scgmenting, splitting, and blocking. Details of
these arc described in section 4.

2. Top-down model specialization involves specifying
particular valucs for the paramcters of gencral rule models
to obtain a parameterized rrodel. Wc usc three gencral
models: the disjunctive normal form model (DNF), the
decomposition model, and the periodic model. FEach of
these models has one or morc parameters. For cxample,
both thc DNF and decomposition modcls have a single
paramcter: the lookback, L. (i.c., the number of objects
back from the given object in the sequcﬁcc that are
assumed to determine the next object). The periodic
model has two parameters: the lookback, L, and the period
length, P, which indicates the icngth of the repeating
period in the sequence. Details of the model specialization
process arc described in section .

3. The modcl-instantiation process attempts to fit the
parameterized model to the derived sequence description
to producé an instantiated paramctcrized model. A model
that has been parameterized and instantiated serves as a
sequence-gencrating rule.  This process is described in
section 6.

The above three steps are illustrated schematically in figure 3-1.

Model instantiation, as used in this paper, is an extension of the
well-known Al technique of schema instantiation.  Schema
instantiation has been applied, for example, by Schank and Abelson
[1975] to interpret natural language, by Engelmore and Terry [1979] to
interpret X-ray diffraction data in protcin chemistry, and by Friedland
{1979] to plan genctics experiments. Modcl instantiation differs from
schema instantiation in the complexity of the instantiation process.

D-COLORO? (2.3), D-FACEDNESS0L (2,3), D-FACEDNESSO? (2,3), D-PARITY0! (2,3), D-PARITY02
(2.3), DP (2.3). DPI (2,3). D-RANKMOD30!1 (3.7), DRANKMODI-0?
(3.7). The surr and RANKMOD3 descriptors arc cyclically ordered, while the RANK
descriptors arc intcrval descriptors. Al others are nominal. In a block of three adjacent
cards (with lookback L=2), the first seven descriptors appear three (imm—once{or
cach card. Hence, lhcz total numbcrﬁl' possible conjuncts is (9°91°3*3%3%3*7)" *
(9'300'300‘3'3'3%‘1) = 2.112%510 . If there are four conjuncts in a rule, then we
obtain [2.11221*107 ] = 1.99*10° 7",
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—_— Classes of models
Generate
specific
model
( ) Specific
model
Fit mode!
to data )
Derived
sequence
Transform
original
description

Original sequence

Figurc 3-1: Schematic description of the rule discovery process

Mode! instantiation involves not only filling in predetermined slots or
substituting constants for variables, but also synthesizing a logical
formula of an assumed type. For example, in order to instafntiate each
of the thrce models described below. the program must synthesize a

" conjunction of predicates or a disjunction of such conjunctions that

satisfics certain constraints. Model-instantiation_mcthods share with
schema-instantiation methods the advantage that they arc efficient,
and also cffective with noisy and uncertain data. . The constraints
provided by the modcls (or schemas) drastically reduce the size of the
spacc that the prograin must search. )

"The principal “disadvantage of modcl- and schema-instantiation
mcthods is that they require . substantial amounts -of domain
knowledge to be built into the program.  In order to keep this domain
knowledge explicit and easily modificd, we employ a ring architccture
in the design of the lcarning program, as described in section 6. This
architecture facilitates the application of the system to a variety of
problems by simplifying the process of changing the domain-specific
parts of the program.

4. Describing and Transforming Training
Instances
Now that we have defined the problem to be solved (the NDP
probiem) and sketched the solution, we launch into the details of that
solution.  This scction presents the description language for
representing the original sequences and the transformation operators
that can be applied to modify that representation.

4.1. Representing the initial sequence
A sequence of objects is represented as an indexed sequencc2

<q,. 9 .92
It is assumed that the only rclevant relationship between two objects is
their ordering in the sequence. Each object is described by a set of
attributes (also called descriptors) fl' fz, e £ o which can be viewed as _

functions mapping objects into attribute values. To state that attribute
fi of object q has value r, we write

[ri(qay)=r].

2I\ sumniary of the notational conventions used in this paper 2ppears in section 9.



‘This notation is calied a selector. For examplc, if I'l is colorand r is red,
then the selector

[color(q))=red]
states that the color of the j-th object in the scquence is red.

Each attributc is only permitted to take on values from a finite value
sct called the domain, D(F), of that attribute. This constraint is part of
the background knowlcdgc that has to be given to the program. For
cxample, in a deck of cards, the domain of the SUIT attributce is {clubs,
diamonds, hcarts, spades}. Additional knowledge about the domain
sct can be represented. In particular. the domain set may be linearly
ordered, cyclically ordered (i.c., in a circular, wrap-around ordering),
or trec ordered. We will sec below how these domain orderings are
applied to the problem of representing cards in an Eleusis game.

A complcte initial description of a single object, q,, called an event,
is an cxpression giving the valucs for all of the attributes of 9; This is
usually written as a conjunction of sclectors:

[r1(qi)=r1][f2(qj)=r2]...[?n(q] )"‘ﬂ]
It can also be represented as a vector of attribute values:
('1' Fyeeen rn).

This vector notation suggests that each object description can be
viewed as a point in the event space E:

E = DX(f) X D(f)) X.. X IXf)
This event space contains all possible events.

A complete description of the initial sequence is a sequence of

conjunctions of sclectors (or alternatively, a sequence of attribute

vectorsy—one conjunction for cach object in the sequence. The space
of all possible sequences can be gencrated by selccung all possible
sequences of events chosen from E.

4.2. Transforming the Sequence

As we mentioned in section 1, it is often necessary to transform the
initial scquencc into a derived sequence in order to facilitate the
discovery of scquence-generating rules. Such a data transformation
can be viewed as a mapping T from onc set of scquences S, containing
objects Q, described by attributes F, to another sct of derived sequences
S', containing derived objects Q’, and described by derived attributes F'.

T :<5,Q, P --><8,Q,F>
Py Py

where p,, ..., p, are parameters of the transformation that control its
application. We have found four basic transformations to be
especially useful for discovering sequence-generating rules: (a) adding
derived attributes, (b) segmenting, (c) splitting into phases, and (d)
blocking. Each of these is described in turn.

4.2.1. Adding derived attributes

The simplest transformation docs not change the sct of sequences,
S, or the set of objccts, Q, but .only the set of attributes, F. For
example, in Elcusis, the initial set F contains only two attributes: the
RANK and SUIT of a card. Thesc can be augmented by deriving such
attributes as COLOR (red or black), FACEDNESS (faced or nonfaced),
PARITY (odd or even), and PRIMENESS (prime or not prime in rank).
The adding-derived-attributes transformation has no parameters.

4.2.2, Segmenting

The segmenting transformation derives a new sequence made up of
a new sct of objects, Q’, and described with a new set of attributes, F'.
The new sequence is produced from the original sequence by dividing
the original sequence into non-overlapping segments. Each scgment
becomes a derived object in the new scquence. The only parameter of
the scgmenting transformation is the segmentation condition that tells
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how the original sequence should be divided into segments. Three
types of scgmentation conditions can be distinguished: (a) those that
use propertics of the original objects to detcrminc where the sequence
should be broken, (b) those that use propertics of the original objects to
determine where the sequence should nof be broken, and (c) those
that usc propertics of derived objects to determine where the original
sequence should be broken.

For cxample, supposc the original sequence consists of physical
objects described by attributes such as WEIGHT, COLOR, and HEIGHT,
An example of cach type of segmentation condition follows:

1. Break
[weight(qi-1)>10][weight(q1)<<10].

when

According to this condition, the original scquence is to be
broken (between q;.; and q;) at the point where the weight
of an object changes from above 10 to under 10.

2. Don't break as long as
[color(qi)=color(qi-1)][weight(qi)>10].

This condition states that the original sequence will not be

broken (betwecn q;, and qi) if the color_stays the same

and the weight remains above 10. It will be broken at any
= point where these conditions do not both hold.

3. Break so that [ Tength(qi')=2].

This condition states that derived objects (qi‘) should be
subsequences of length 2 from the original sequence (i.e.,
pairs of adjacent abjects from the original sequencc).

The choice of attributes, F°, for describing the newly-derived
objects, Q’, depends on the segmentation condition used to segment
the scquence. For example, if the [1ength(q1i’)=2] condition is
used, attributes of interest might include the sum of the VALUES of the
two original objects, the maximum VALUE, the minimum VALUE, and
so on. The LENGTH of the segment would not be of interest, since by
definition, it is a  constant However, if the
[color(qi)=color(qi-1)] condition is used, the LENGTH of the
segment could be quite interesting and should be derived. Also, the
ICOLOR shared by all of the cards in the segment might be of interest.
In our implementation, the user specifies which attributes should be
derived. All user-specified attributes are derived unless the program
can prove from the segmentation condition that those attributes would
not have a well-defined value for each segment in the sequence or else
would be trivially constant for all segments.

Often, a segmentation condition leads to the creation of incomplete
segments at the beginning and end of the original sequence. These
boundary cases can create difficultics during model instantiation, so
they are ignored during rule discovery, but checked during rule
evaluation.

4.2.3. Splitting

The splitting transformation splits a singlc sequence into a Sequence
of P separate subscquences: <ph,, ph,, ..>. Sequence ph; starts with
object g; (the object at the i-th posmon in_the original scqucnce) and
continues with objects taken from succeeding positions at distance P
apart in the orizinal sequence. Each of the derived sequences is called
a phase. P is the parameter of the splitting transformation that denotes
the number of phases. Figure 4-1 shows the splitting operation for P
=3



Original scquence: <q1 g2 g3 44 qb q6 q7 q8 q»
Derived scquence: <ph1 ph2 ph3>, where
phi: <q1 qé4 q7>
ph2: <q2 qb q8>
ph3: <q3 q6 q9>

Figure 4-1:  Splitting transformation with P=3

The objects within cach phasc retain the linear ordering that they
had in the original scquence. The phases themsclves can be
considered to be cyclically ordered so that phl precedes ph,, which
precedes ph,, and so on, until php, which is followed by phl again,
Consider, for example, the following sequence:

<18293104 11>

The splitting transformation with P=2 would produce the scquence
<ph1 ph2> where

phi = <123 &
ph2 = <8 9 10 11>

Since the splitting transformation simply breaks the original scquence
of objects into subsequences, no new objects are created.
Furthermore, no new descriptors are defined. The set of descriptors
uscd to characterize the objects in cach of the phases is the same as the
set of descriptors used to characterize the objects in the original
sequence.

The splitting transformation can be applied to break one sequence-
prediction problem into several subproblems—one for each phase.
This is how periodic rules are discovered.

4.2.4. Blocking - : - -

The blocking transformation converts the original sequence into a
new sequence made up of a new set of objects B' and a new sct of
attributes . The new sequencc is created by breaking the original
sequence into overlapping segments called blocks. Each object b, in
the new sequence describes a block of 1.+1 consecutive objects from
the original sequence, starting at object q; (called the head) and
proceeding backwards to object q;; (where L is the lookback
parameter of the blocking transformation). Figure 4-2 shows the
blocking operation for L=2 (Block length of 3).

Several attributes are derived to describe each block. For each
atribute A applicable to- the objects in the original sequence, the
attributes A0, Al ..., AL are defined that are applicable to the objects in
the derived scquence. Ao(bi) has the same valuc as AQ); Al(b,) has
the same value as A(q.rl); and so on until AL(bi), which has the same
value as A(q,;)- In other words, the original attributes are retained in

Original scquence: <q1 q2 g3 ¢4 g6 q6 q7 q8>
Derived sequence: <b3 b4 b6 b6 b7 b8>
where b, arc derived objects defined as follows:

b3: <q1 q2 g3>

b4: . <q2 q3 g%

bb: © <q3 q4 gb>

b6: <q4 qb 06>

b7: <q6 q6 .q7>
b8: <q6 q7 08>

The underlined object in each block is the head object.
'Figure 4-2:  The Blocking Transformation with L=2,

47

the new sequence, but they are renamed so that they apply to whole
blocks rather than to individual objects in the original sequence. The
nuncrical suflix on the new names encodes the relative position of the
original ubjcct g; in block bj.

For example, supposc we have the scquence <g1 42 g3 q4 gb>
with attributes RANK and SUIT, wherce
[rank(q1)=2]{suit(ql)=H]
[rank(q2)=4][suit(q2)=S]
[rank(q3)=6][suit(y3)=C]
[rank(q4)=8][suit(q4)=D]
[rank(q6)=10][suit(qb)=H]
Now supposc we apply the blocking transformation to this sequence
with L=2 to obtain the derived sequence of blocks <b3 b4 b6>.
Then the descriptors RANKO, RANK1, RANK2, SUITO, SUITI, and SUIT2
will be derived with the values
[rank2(b3)=2][suit2(b3)=H]
[rank1(b3)=4][suiti(b3)=S]
[rank0(b3)=6][suit0(b3)=C]
[rank2(b4)=4][suit2(b4)=S]
[rank1(b4)=6][suiti(bs)=C]
[rank0(b4)=8][suitd(b4)=D]
[rank2(b5)=6][suit2(b6)=C]
[rank1(b5)=8][suiti{b6)=D]
[rank0(b6)=10][suit0(b6)=H)

This transformation leads to a highly redundant representation of
the information in the original sequence. For example, the
information about SUIT and RANK of the original object q, is repeated
as SUITo and RANKO of block b3, SuITrl and RANK1 of block b,, and
suUIT2 and RANK2 of block b5' However, this derived sequence of
blocks facilitates the representation of the relationships between
objects in the original scquence, Many scquence-prediction rules
involve such relationships. _

To represent relationships between objects, additional descriptors
calied sum and difference descriptors are defined. In the casc of the
above sequence, the descriptors S-RANKOL, S-RANKO02, D-RANKO1,
D-RANKO02, D-SUITOl, and D-SUITO2 are crcated. The value of
S-RANKOl(bi) is the sum of RANKO(b.) and RANK1(b). The value of
D-RANKOl(bi) is the differcnce between RANKO(bi) and RANKl(bi).
Thus, in addition to the selectors shown above, the following selectors
would also be derived for the new sequence:

[s-rankOl(ba)-lo][s-rankOZ(b3)-8]
[d-rank01(b3)=2][d-rank02(b3)=4]
[d-suit01(b3)=1][d-suit02(b3)=2]

[s-rankOl(b4)t14][s-rank02(b4)-12]
[d-rank01(b4)=2][d~rank02(b4)=4]
[d-suit01(b4)=1][d-suit02(b4)=2]

[s-rankOl(bB)=18][s-rank02(b5)-16]
[d-rank01(b6)=2][d-rank02(bb)=4]
[d-suit01(b6)=1][d-suit02(b5)=2]

From this representation, it is relatively easy to discover that
[d-rank01(b1)=2]is true for all blocks b1.

Ordinarily, sum and difference attributes only make sense for
attributes such as RANK whose domain sets are lincarly ordered. We
have cxtended the definition of differcence to cover.unordered and
cyclically ordered domain sets as well. For an unordered attribute
such as COLOR, whose domain set is {red, black}, D-COLORO1 takes on
the value 0 if the cor.ono(bi) = COLORL(b,) and 1 otherwise. For’
attributes with cyclically-ordered domain scts, such as SUIT (with
values {clubs, diamonds, hearts, spades}), D-SUITOL is equal to the
number of steps in the forward direction that are required to get from
SUITUD) to sum)(bi). If SUITl(bi):diamonds and §m'm(bi)=clubs,
D-SUITO](bi)=3.

The sum and difference attributes make the ordering of the original
scquence explicit in the attributes that describe each block.



Conscquently, it is no longer necessary to represent the ordering
between blocks. Hence, the model-fitting algorithms discussed below
treat the derived sequence (of blocks) as an unordered set of events.

" One difficulty with the above approach is that the numerical suffix
notation is not very easy to read, especially when it is combined with a
sum or difference prefix, Hence, we have devcloped an alternative
representation that is more comprehensible. In this notation, scicctors
that refer to blocks, such as [suit1(b1)=H], arc writtcn as sclectors

that refer to objects in the original sequence, such as
[suit(qi-1)=H]. Similarly, sclectors  such as
[d-rank01(bi)=3] are written as

[renk(qi)=rank(qi-1)+3). This notation makes the mcaning
of the sclectors clear without having to explicitly mention the blocks
b For purposcs ol implementation, the first notation is better
becausc it cnables the program to treat all ‘sequences—including
derived sequences—uniformly. However, the sccond notation is more
understandable and hence will be used for the rest of this paper.

5. Representing Sequence-generating Rules
and Models

A sequence-gencraling ride is a function g that assigns to each
sequence of objects, <q;, G, .., G; >, a non-empty sct of admissible next
objectsQ, _ 1 _

g {€qp ap . 921 > {Q 1}

Qk +1 18 The set of all objects that could appear as the next object in the
scquence.  For example, in the rule "Play a card whose rank is one

higher than the previous card”, g(<... 4C>)=Qk 4+ 1 the set of cards
{SC, 5D, 5H, 58}.

The set Qk 1 may contain only one event, or it may contiin a large
set of possible events. If for all k, the sequence <q), Q,, ..., > is
mappcd by g into a singlcton sct, then the rule is a deterministic rule;
otherwise, it is a nondeterministic rule. This paper addresses the
problem of discovering a nondeterministic scquence-gencrating rule,
g, given the sequence <q L

The sequence <q, g, ..., q,> can be viewed as the set of assertions

a, € g(O)
9, € 2(<q)

q, €e(a,,...q 7)

These assertions are positive instances of the desircd sequence-
generating rule.

In Fleusis, ncgative instances are provided by the cards on the
sidelines—that is, the cards rejected by the dealer for being incorrect.
A sidcline card q,~ played after card q, provides a negative instance
of the form;

9;” € 8(<q;, 9 9

The goal is to find a description for g that is consistent with these
training instances and satisfics some preference criterion.

The preference criterion in our methodology (and in all learning
systems) attempts to evaluate a candidatc rule in terms of its
generality, predictive power, simplicity, and so on. These semantic
propertics are difficult to compute, however. Instcad, virtually all
learning systems employ syntactic critcria that correspond in some way
to these scmantic criteria.  Syntactic criteria—such as the number of
selectors in a conjunction and the number of conjuncts in a
disjunction—will only correspond to the scmantic criteria if the

48

representational framework is well chosen (Sce McCarthy [1958]). As
we noted in the introduction, most previous Al research on learning
has employed a single representational framework or model for
describing the rules or concepts to be learned. In Elcusis, a single
framework is insufficicnt. Instead, we have developed three basic
models that were found to be uscful: the DNF model, the
decomposition model, and the periodic model. When these models
arc employcd, syntactic criteria can be used to approximate semantic
criteria during evaluation.

A model is a logical schema that specifies the syntactic form of a
class of descriptions (in our case, sequence-gencrating rules). A model
consists of model parameters and a set of constraints that the model
places on the forms of descriptions. The process of specifying the
values for the parameters of a model is called paramelerizing the
model. The process of filling in the form of the parameterized model
is called instantiating thc model. A fully-parameterized and fully-
instantiated model forms a sequence-gencrating rule. Modcls can be
instantiated using the original sequence, or, morc typically, using a
sequence derived by applying some of the data transformations
discussed in the previous scction.

All threc models usc the representation language VL22 as a
building block for expressing sequence-generating rules. VL22 is an

- extension to the predicate calculus that uscs the selector as its simplest

kind of formula. The VL22 sclector is substantially more expressive
than the simple selector presented above in section 4.1. The simple
selector has the form: )
[(fi(qd)=r]
whereas the VL22 selector has the form:
[fi(x1, x2, ..., xn) =ri vr2v ... Vv ra]
In the VL322 selcctor, attributes f; can take any number of arguments
(x], Xgy ey X n). Furthermore, the attributes fican take on any one of a
set of valucs {rl, Ty rm}. The v denotes the internal disjunction
operator. Thus, the selector
[rank(gi)=9 v 10 v J v Q v K]

indicates that the rank of object g, can be either 9, 10, J, Q, or K. The
internal disjunction represents disjunction over the values of a single
variable. In this casc, it could be expressed alternatively as
[rank(qi)>9].

since the domain of the RANK attributc is known to be linearly
ordcred with a maximum value of K (King). To aid
comprchensibility, VL22 provides the operators £, >, <, >, and #, in
addition to the basic = operator.

Examples of typical selectors include:

[rank(qi)=rank(qi-1)]
(paraphrasc: the RANK of q, is different from
the RANK of q, ;)

[suit(qi)=suit(qi-1)+1]
(paraphrase: the SUIT increases by one from q, qi)

[rank(qi)+rank({qi-2)>10]
(paraphrase: the sum of the RANKs of q
and q , is greater than 10)

Now that we have introduced the basic notation of VL22, each of
the three rule models is presented in turn.

5.1. The DNF model
The DNF modcl supports the broad class of rules that can be
expressed as a universally quantified VL22 statement in disjunctive



normal form. The DNF model has one paramcter, the degree of
lookback, L. An exampic of a DNF rule (with L=1) is:

Vi ([color(gi)=color{qi-1)] V
[rank(qi)=rank(qi-1)])

In general, a DNF rule is a collection of conjuncts of the form
Vi (CiveC2ave3Iv...VcCk)

The universal quantification over 1-indicates that this description is
truc for all objects q in the sequence.

An additional constraint specified in the DNF modecl is that the
number of conjuncts, k, should be close to the minimum that produces
a description consistent with the data,

5.2. The Decomposition Model
The decomposition modcl constrains the description to be a set of
implications of the form:
L1 => R1
L2 => R2

.

Lm => Rm
where the => sign indicates logical implication.

The model states that the left- and right-hand sides, L. and R, must
all be VL22 conjunctions. The left-hand sides must be mutually
exclusive and exhaustive—that is,

L, VL,V..L_=TRUF,and
Vik Gk =>([; A L, = FALSE)).

A decomposition rule describes the next object in the sequence in
. terms of characteristics of the previous objects in the sequence. For
example, the rule

Vi([color(qi-1)=black]=>[parity(qi)=odd] V
[color(qi-1)=red] =>[parity(qi)=even])
is a decomposition rule that says that if the last card was black, the

next card must be odd, and if the last card was red, the next card must
beeven.

The decomposition model has a lookback parameter, L, that
indicates how far back in the sequence the description "looks” in order
to predict the next object in the sequence. The above rule has a
lookback parameter of 1, because is examines Q.

5.3. The Periodic Model

This model consists of rules that describe objects in the sequence as
having attribute values that repeat periodically. For example, the rule
"Play alternating red and black cards” is a periodic rule. The periodic
model has two parameters: the period length, P, and the lookback,
L. The period length parameter, P, gives the number of phases in the
. periodic rule. A periodic rule can be viewed as applying a spliiting
transformation to split the original sequence into P separate scquences.
Each separate phase sequence has a simple description. The lookback
parameter, L, tells how far back, within a phase sequence, a periodic
rule "looks"” in order to predict the attributcs of the next objcct in that
phase. The periodic model imposes the additional constraint (or
preference) that the diffcrent phascs be disjoint (i.e., any given card is
only playable within onc phase).

A periodic rule is represented as an ordered P-tuple of VL22
conjunctions. The j-th conjunct describes the j-th phase scquence.
The rule

<[color(qi)=red], [rank(qi)=>rank(qi-1)]>

. and the DNF rule
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is a periodic rule with P=2 and L =1, which says that the sequence is
made of two (interleaved) phascs. Each card in the first phasc is red;
each card in the second phasc has at least as large a rank as the
preceding card in that phasc. Hence, one scquence that satisfics this
rule is C2H 3C 10H 5S AD 6S 6H 6C>.

A more complex periodic rule is the rule used to generate the
sequence shown in Figurc 2-1. It can be represented as

< [texture-of-nodes(qi)=solid black] &
[shape(q1)=T-junction] &
[orientation(gqi)=orientation(qi-1)-45],

[texture-of-nodes(qi)=clear] &
< [number-of-nodes(qi)=4],
[number-of-nodes(qi)=8] >, '

[texture-of-nodes(qi)=cross] & ~
[shape(qi)=bar] &
forientation(qi)=orientation(qi-1)+45] >

Notice that this is a periodic rule with three phases and a lookback
of 1. The middle phase of the period is itself a periodic rule with the
NUMBER-OF-NODES alternating between 4 and 8.

5.4. Derived models

The three basic modeis can be combined to describe more complex
rules. Basic models can be joined by conjunction, disjunction, and
ncgation. For example, the rule "play alternating rcd and black cards -
such that the cards are in non-decreasing order™ is a conjunction of the
periodic rule

< [color(qi)=red], [color(qi)=black] >

[rank(qi) > ranl;(q1-1)].

5.5. Model Equivalences and the Heuristic Value of
Models
The reader may have noticed that the decompuosition and periodic
models appear to be special cases of the DNF model. For instance,
given that the clauses in a decomposition rule are mutually-exclusive
and exhaustive, the decomposition rule

L,=>R &
L,=>R,&
L, =>R_

can be written as the DNF rule
[Ll&RI] \Y [Lz&Rz) V.V [Lm&R_m]

Similarly, if the clauses of a periodic rule are mutually-exclusive and
exhaustive, then the periodic rule

<C.C,..C,>
can be expressed as a decomposition rule of the form

C, =>C,
C2 => C3

1 =>C
=>C,.



Fven when the constraints of mutual exclusion and cxhaustion are
violated, it is usually possible to develop some equivalent DNF rule
for any periodic or decomposition rule. For instance, in the periodic
rule

¢ [color(qi-0)=red], [rank(qi-0)=even] >
(paraphrase: play alternating red and cven cards)
the different phascs arc overlapping. The above transformation into a
decomposition rule
[color(qi-1)=red]=>[parity(qi)=even] &
[parity(qi-1)=even]=>[color(qi)=red]

does not work, because, for example, the scquence
<3D 2D 4C ...>

satisfics the second rulc (the first if-then clause can be applicd twice),
but not the first rule (since the 4C is not red). However, it is possible
to get around this particular problem by defining a new descriptor for
cach object in the original scquence, called POSITION, that has the
value i for object q; With this descriptor, the above rule can be
encoded as ) . -
[position(qgi)=0dd] => [color(qi)=red]
{position(qi)=aven] => [parity(qi)=even]

Hence, it appears that all rules can be written as DNF rules.

~ Given this fact, it is reasonable to ask why multiple modcls should
be used at all. The answer is that the primary value of multiple models
is that they provide heuristic guidance to the search for plausible rules.
Hence, though the DNF model is capable of representing all of these
rules, it is not helpful for discovering them. In short, it is
epistemologically adeguate but not heuristically adequate (see
[McCarthy and Hayes, 1969: McCarthy, 1977]). Each model directs
the attention of the.learning system to a small subspace of the space of
all possible DNF VL22.rules. The next scction shows how- the
constraints associated with cach model! are incorporated into special
model-fitting induction algorithms. i )

6. Architecture and Algorithms

In section 3 we described the three' basic processes involved in
discovering  scquence-gencrating rules: (a) transformation of the
original scquence to obtain a derived scauence. (b) selection of
appropriate modcls for the given scquence, and (c) fitting of the
models to the derived sequence. In sections 4 and §, the four data
transformations and the three models were presented. This section
covers the third step of fitting the specialized models to the
transformed sequence.  The model-fitting process is most casily
understood in the context of the program architecture, so this scction
also discusses the architecture in detail.

6.1. Overview of the Program

The processes in the program (sce Figure 6-1) are structured into
four components—the three basic components mentioned above plus
an evaluation step. The processes of transforming the initial sequence
and of sclecting and parameterizing a model are performed in parallel.
Then, specialized model-fitting algorithms usc the transformed
sequence to instantiate the model to obtain a candidatc scquence-
gencrating rule.  Thesc candidate rules are then cvaluated to
determine a final sct of rules.

The reason for perfonning data transformation and model sclection
in parallel is that these two processes are interdependent. For
example, if a periodic model is sclected (with period length P), then a
splitting transformation (with number of phases P) needs to be applied
to the sequence. These two processes can be viewed as simultancous
couperative searches of two spaces: the spacc of possible data
transformations and the spacc of possible paramcterized models.
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6.2. Overview of the Concentric Ring Architecture

In order for the learning program to be easily modificd to handle
entirc classes of NDP problems, the program is structured as a set of
concentric knowledge rings (sce Figure 6-2). A knowledge ring is a set
of routines that perform a particular function using only knowlcdge
appropriate to that function. The precedures within a given ring may
invoke other procedures in that ring or in rings that are inside the
given ring. Under these constraints, the concentric ring structurc
forms a hierarchically organized system.

Idcally, the rings should be organized so that the outermost ring
uscs the most problem-specific knowledge and performs the most
problem-spccific opcrations and the inner-most ring uses the most
general knowledge and performs the most genceral tasks. Such an
architccture improves the program’s gencrality because it can be
applied to increasingly different NDP problems by removing and
replacing the outer rings. In order to apply the program to radically
different learning problems, all but the inner-most ring may nced to
be replaced.

‘The ring architecture is uscd here as follows. The outer-most rings
perform uscr-interface functions and convert the initial sequence from
whatcver domain-specific notation is being used into a sequence of

Initial Sequence Model Space
Transform by applying Search model
adding attributes, space to develop
segmenting, a parameterized
splitting, and modet}

blocking operations

Instantiate model
to fit derived data

Evaiuate resulting
candidate rules

Final set
of rules

Figure 6-1: The Model-fitting Approach

Transform A;mm Evaluate

Y

Figure 6-2: The knowledge ring architecture




"VL22 cvents. The inner-most ring perforins the model-fitting
functions. It expects the data to be properly transformed so that the
data have the same form as the modcls to which they are to be fitted.
The intervening rings conduct the simultancous processes of
developing a properly parameterized modcel and transforming the
input scquence into an appropriate form.

The intervening rings also evaluate the rules discovered by the
inner-most ring using the knowledge available in each ring.

6.3. The Program SPARC (ELEUSIS version)

SPARC (Scquential PAttern RcCognition) is a general program
designed to solve a varicty of NDP problems using the ring
architecture. So far, we have implemented only a more specific
version of the program, called SPARC/E, tailored specifically to the

problem of rule discovery in the game Eleusis. SPARC is made up of-

five rings, as shown in Figure 6-2. This scction describes the functions
of cach ring in the SPARC/E version of the program. To illustrate
these ring functions, we use the Eleusis layout shown in Figure 6-3.
Recall that in an Eleusis layout, the main line shows the correctly-
played scquence of cards (positive examples). The side lines, which
branch out below the main line, contain cards that do not satisfy the
rule—that is, incorrect continuations of the sequence (negative
examples).

Main 1ine: 3H 0S 46 JD 2C 10D 8H 7H 2C

Side lines: JD AH AS 10H
6D 8H 10S
QD

Figure 6-3: Sampie Eleusis Layout

6.3.1. Ring 5: User Interface

Ring 5, the outer-most ring, provides a user interface to the
program. It executes user's commands for playing the card game
Eleusis, as well as commands for controlling the scarch, data
transformation, generalization, and evaluation functions of the
program. One command in Ring 5 is the INDUCE command that
instructs SPARC/E to look for plausible NDP rules that describe the
current sequence. When the INDUCE command is given, Ring 5 calls
Ring 4 to begin the rule discovery process.

6.3.2. Ring 4: Adding Derived Attributes

Ring 4 applics the adding-derived-attributes transformation to
convert the Eleusis layout into a sequence of VI.22 events. This
involves creating derived attributes that make explicit certain
commonly known characteristics of playing cards that are likely to be
used .in an Eleusis rule: COLOR, PARITY, FACED versus NON-FACED
cards, and so on. Figure 6-4 shows the layout from Figure 6-3 after it
has been processed by Ring 4. The plusses and minuses along the
right-hand side of the figurc indicatc whether the event is a positive
example or a negative example of the sequence-generating rule. These
derived events are passed to Ring 3 for further processing.

6.3.3. Ring 3: Segmenting the Layout

Ring 3 is the first Elcusis-independent ring. It applies the
segmenting transformation to the sequence supplied by Ring 4. In the
present implcmentation, the end points of cach segment are
determined by applying a segmentation predicate, P(card, , card) to
all pairs of adjacent events in the sequence. When the predicate P
evaluates to FALSE, the sequence is broken between card, ; and card,
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VL22 event positive or

negative

[rank(card1)=3][suit(card1)=H}
[pari;y(cardl)-odd][color(cardi)-red]
[prime(cardl)eN][faced(cardi)=Y] +

[renk(card2)=9][suit(card2)=S]
[purity(cardZ)-odd][color(cardZ)nblack]
[prime(card2)=N][faced(card2)=N] +

[rank(card3)=J][suit(card3)=D]
[parity(card3)=odd][color(card3)=red]
[prime(card3)=Y][faced(card3)=Y] -

[rank(card3)=5][suit(card3)=D]
[parity(carda)-odd][color(carda)-red]
[prime(card3)=N][faced(card3)=Y] -

[rank(card3)=4][suit(card3)=C]
[parity(card3)=even][color(card3)=black]
[prime(card3)=N][faced(card3)=N] +

[rank(card4)=J][suit(card4)=D]
[parity(card4)=odd][color(card4)=red]
[prime(card4)=Y][faced(card4)=Y] +

etc.

Figure 6-4: Derived layout after Ring 4 processing.

to form the end of a segment. _Typical segmentation predicates used
are:

[rank(card,)= rank(card, )]
[rank(card].) = rank(cardi_ 1) +1]
[color(card))=color(card, )]
[suit(card,)= suit(card, )]
[parity(cardi) =pari ly(cardi_l)] ~

Other techaiques for performing segmemation; such as providing a
predicate that becomes TRUE at a scginent boundary (sce scction
4.2.2), are not implemented in SPARC/E.

Ring 3 scarches the space of possible segmentations using two
search pruning heuristics. ~ Aftcr cach attempt to scgment the
sequence, it counts the number of derived objects (segments), k, in the
derived sequence. If k is less than 3, the scgmentation is discarded
since there are too few derived objects to use for generalization, Ifk is
more than half of the number of objects in the original scquence, the
scgmentation is also discarded becausc in this case many segments
contain only one original object. Segmented sequences that survive
these two pruning heuristics are passed on to Ring 2 for further
processing.

One scgmentation that Ring 3 always performs is the "null"
segmentation—that is, it always passes the unsegmented sequence
directly to the inner rings. Figure 64 shows a sample layout and the
resulting derived layout after segmcentation using the segmentation
condition: [suit(cardi)=suit(cardi+1)]. The derived
objects (segments) are denoted by variables string. The negative
event [suit(string2)=D][color(string2)=red]
[length(string2)=3] isobtaincd from the segment <6D 2D 4D.

SPARC/E derives the descriptors COLOR, SUIT, and LENGTH to'
describe each derived object. The choice of which descriptors to
dcrive involves three steps. First. LENGTH is derived whenever the
segmentation transformation is applicd. Sccond, any descriptor that is
tested in the segmentation predicate (in this case, SUIT) is also derived.
Third, any descriptor is derived whosc value can be proved to be the
same for all cards in each scgment. In this case, COLOR is derived
because, if SUIT is a constant, then COLOR is also a constant. Using this



The layout:
3H 6D 2D 7C AC 9oC JH 6H 8H QH KS
5S 4D AH
18
The derived sesquence:

description of
derived object

positive or
negative .

[suit(stringl)=H])[color(stringl)=red]
[length(stringl)=1]
[suit(string2)=D]{color(string2)=red]
[length(string2)=2]
[suit(string2)=D][color(string2)=red]
[Yength(string2)=3] -
[suit(string3)=C][color(string3)=black]
[tength(stringd)=3]
{suit(string4)=H][color(string4)=red]
[Tength(string4)=4]

Figure 6-5: Sample layout and scgmented sequence.

segmentation, SPARC can use the DNIF modecl to discover that the
segmented sequence can be described as

[length(stringi)=length(stringi-1)+1]
That is, the LENGTII of each scgment of constant SUIT (in the main
lin¢) increases by 1. -

6.3.4. Ring 2: Parameterizing the Models

Ring 2 scarches the space of parametcrizations of the three basic
models. Each model is considered in turn. For each model, Ring 2
develops a set of derived events based on cach allowed value of the
lookback parameter, L., and the number of phases parameter, P. The
user can control which modcls should be inspected and what range of
values for L. and P should be investigated. By default, the program
will inspect the decomposition model with 1. = 0, 1, or 2, and the
periodic model withP = lor2andL = Oor 1.

Spccifically, Ring 2 performs the following actions depending on
which model is being parameterized:

A. For the decomposition model with lookback parameter L., Ring 2
applies the blocking transformation to break the sequence received
from Ring 3 into blocks of length L. After blocking, all of the
attributes that described the original objects are converted into
attributes that describe the whole block (as described in section 4
above). Furthermore, sum and difference descriptors are derived to
represent the relationships between adjacent objects in the original
sequence. The resulting derived cvents can be viewed as very specific
if-then clauses of the felinwing form.

Given an initial sequence of objects (ql, Gy, oo qm>, Iet us look at
block b, which describes the subsequence <q, , ... G;p. 9. Let F]
denote thc selectors of object 9 renamed so that they apply to b
For cxample, F, could be the selectors
[suiti(bi)=H][ranki(bi)=3]—sclectors that originally
referred to object q ;. Let d(F..Fk) denote all of the diffcrence
selectors obtained by “subtracting” event Fk from event F,, and let
s(F,, Fk) denotc all of the summation selectors obtained by

“summing" events F, and F,. For example, d(F, F,) could include
the sclectors [d= su*tOI(b‘l)-Z][d rankOl(b‘l )--3] obtained
from "subtracting” F, from F
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With these definitions, the derived events for the decomposition
model have the form:

Fl&..&F_ =) F&d(F,F)&..&dF, F)&

F)&..&s(FyF)

These dcrived events no longer need to be ordered since the
ordering information is madc explicit within the events. These events
have the form of very specific if-then clauses. This facilitates the
model-fitting process in Ring 1. .

B. For the DNF model with lookback paramcter L, the scquence
derived in Ring 3 is blocked in a very similar manncr, except that only
the selectors describing q; arc retained in the description of block b,
The derived cvents have the followmg form:

Fo& d(Fy, F)) & .. & d(F, F,) & S(Fy, F)) & ... (Fy, F))

These events arc very specific conjuncts that are passed to the A%
algorithm in Ring 1, wherc they arc generalized to form a DNF
description.

C. For the periodic model with period length P and lookback L,
Ring 2 performs a splitting transformation followed by a blocking
transformation. First, the sequence obtained from Ring 3 is split into
P scparate sequences. Then cach separate sequence is blocked into
blocks of length 1.+ 1. The derived cvents-have the same form as the
events derived for the DNF modgl. Note that because the blocking
occurs after the splitting, the lookback takes place only within a phase.

To provide an example of the function of Ring 2, Figure 6-6 shows
some events from Figure 6-3 after they have been transformed in
preparation for fitting to a decomposition model with L=1.

6.3.5. Ring 1: The basic_model-fitting algorithms .
Ring 1 consists of three separate model-fitting algorithms: the A9
algorithm, the decomposition algorithm and the periodic algorithm.

The A9 algorithm [Michalski and Kulpa, 1971] is used to fit the
DNF model to the data. A9 attempts to find the DNF description
with the fewest number of conjunctive terms that covers all of the
positive examples and nonc of the ncgative examples. The algorithm
operates as follows. First, a positive example, callcd the seed, is
chosen, and the set of maximally-general conjunctive expressions
consistent with all of the negative examples is computed. This set is

[rank1(b2)=3][suiti(b2)=H]
[parity1(b2)=0dd][colori(b2)=red]
[primel(b2)=Y][facedi(b2)=H] =

[rank0(b2)=8][suit0(b2)=S][parity0(b2)=o0dd]
[color0(b2)=black][prime0(b2)=N]
[taced0(b2)=N][d-rank01(b2)=+8]
[d-suit01(b2)=+1][d~parity01(b2)=N]
[d-color01(b2)=Y][d-prime01(b2)=Y]
[d-faced01(b2)=Y][s-rank01(b2)=12] +

[rank1(b3)=9][suiti(b3)=S]
[parityl(b3)=odd][c010r1(b3)-b1ack]
[prime1(b3)=N][facedi(b3)=N]

[rank0(b3)=J][suit0(b3)=D][parity0(b3)=odd]
[colorO(b3)=red][prime0(b3)=Y]
[faced0(b3)=Y][d-rank01(b3)=+2]
[d-su1t01(b3)=+2][d-parity01(b3)=N]
[d-color01(b3)=Y][d-prime01(b3)=Y]
[d-faced01(b3)=Y][s-rank01(b3)=20] -

Figure 6-6: Some events of Figure 6-3 transformed for
decomposition L=1.




called a star, and it is equivalent to the G-set in Mitchell's [1978)
version space approach. One clement from this star is chosen to be a
conjunct in the output DNF description, and all positive cxamples
covered by it are removed from further consideration. If any positive
cxamples remain, the process is repeated, selecting as a new seed some
positive example that was not covered by any mcmber of any
preceding star.  In this manner, a DNF description with few
conjunctive terms is found. If the stars are computed without any
pruning, then A9 can provide a tight bound on the number of
conjuncts that would appear in the optimal DNF description with
fewest conjunctive terms.

The decomposition algorithm is an iterative algorithm that secks to
fit the data to a decomposition model. The key task of the
decomposition algorithm is to identify a few attributes, called
decomposition attributes, from which the decomposition rule can be
developed. A decomposition attribute is an attribute that appears on
the Ieft-hand side of an if-then clause of a decomposition rule. For
example, the decomposition rule .

[color(cardi-1)=black] => [parity(cardi)=odd] V
[color(cardi-1)=red] => [parity(cardi)=even]
decomposes on COLOR. Hence, COLOR is the single decomposition
attribute.

The algorithm uses a generate-and-test approach of the following
form:

decompositionattributes := {} The empty set

while rule is not consistent do
begin

generate a trial decomposition
(based on positive evidence only)
for each possible decomposition attribute

test these trial decompositions against
the data - -

select the best decomposition attribute and
add it to the set decompositionattributes

end

“The process of generating a trial decomposition takes place in two
steps. First, a VL22 conjunction is formed for each possible value of
the decomposition attribute. All positive events that have the same
value of the decomposition attribute on their left-hand sides are
merged together to form a single conjunction of selectors. This VL22
conjunction forms the right-hand side of a single clause in the
decomposition rule. Within this conjunction, a selector is created for
cach attribute by forming the internal disjunction of the valucs in the
corresponding selectors in the events. For example, using all of the
cvents derived in Ring 2 for the sample layout in Figure 6-3, the
decomposition algorithm generates the trial decomposition shown in
Figure 6-7for the PARI‘I‘Y(cardi_l) attribute.

Since there are only two values (ODD and EVEN) for the
decomposition attribute in the sequence shown in Figure 6-3, two
conjunctions are formed. The first conjunction is obtained by merging
all of the positive events for which [parity(cardi-1)=o0dd].
There are four such events. The first selector in that conjunction,
[rank(card1)=9 v 4 v 2], is obtaincd by forming the intcrnal
disjunction of the values of rank(card{) in cach of the four events.

The second step in forming a trial decomposition is to generalize
each clause in the trial rule. The generalization is accomplished by
applying rules of generalization to extend internal disjunctions and
drop selectors. (Sce [Michalski, 1983) for a description of various rules
of generalization.) Corresponding attributes in the different clauses of
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[parity(cardi-1)=0dd] => [rank(éardi)=9 v 4 v 2]
[suit(cardi)=S v C)[parity(cardi)=even v odd]
[color(cardi)=black][prime(cardi)=Y v N]
[faced(cardi)=N]

[d-rank(cardi,cardi-1)=46 v -6 v -7]
[d-suit(cardi,cardi-1)=1 v 2 v 3]
[d-parity(cardi,cardi-1)=Y v N]
[d-color(cardi,cardi-1)=Y v K]
[d-prime(cardi,cardi-1)=Y v N]
[d-faced(cardi,cardi-1)=Y v N]
[s-rank(cardi,cardi-1)=12 v 13 v 9]

[parity(cardi-1)=oven] =>
[rank(cardi)=d v 10 v 8 v 7]
[suit(cardi)=H v D][parity(cardi)=even v odd]
[color(cardi)=red][prime(cardi)aY v N]
[faced(cardi)=Y v N] :
[d-rank(cardi,cardi-1)=7 v 8 v -2 v -1]
[d-suit(cardi,cardi-1)=0 v 1]
[d-parity(cardi,cardi-1)=Y v N]
[d-color(cardi,cardi-1)=Y v K]
[d-prime(cardi,cardi-1)=Y v N}
[d-faced(cardi,cardi-1)=Y v N]
[s-rank(cardi,cardi-1)=16 v 12 v 18]

Figure 6-7: Trial decomposition on the PARITY(card, ) attribute

the decomposition rule are compared, and sclectors whose value sets
overlap are dropped. When these rules of generalization are applied
to the trial decomposition for PARITY, for example, the following
generalized trial decomposition is obtained:

[parity(cardi-1)=0dd] =>
[suit(cardi)=C v S][color(cardi)=black]

[parity(cardi-1)=even] => )
[suit(cardi)=H v D][color(cardi)=red]

This is a very promising trial decomposition. However, it has been
developed using only positive evidence, and it has been gencralized
without considcring that the generalization may have caused the rule
to cover negative events. Hence, the trial decomposition must be
tested against the negative cvents to determine whether or not it is
consistent. It turns out that the generalized trial decomposition shown
above is indeed consistent with the negative evidence.

After a trial decomposition has been developed for each possible
decomposition attribute, the best decomposition attribute is selected
according to a heuristic attribute-quality functional. The attribute-
quality functional tests such things as the number of negativc events
covered by the trial decomposition, the number of clauses with non-
null right-hand sides, and the complexity of the trial decomposition
(defined as the number of selectors that cannot be written with a single
operator and a single valuc). The chosen trial decomposition forms a
candidate scquence-prediction rule.

If the candidate rulc is not consistent with the data (ie., still covers
some negative examples), then the decomposition algorithm must be
repeated to select a second attribute to add to the left-hand sides of the
if-then clauses. ‘This has the effcct of splitting each of the if-then
clauses into several more if-then clauses. For cxampie, if we first
decomposcd on PARl'l‘((cardi_ 1) and then on FACED{card, ), we would
obtain four if-then clauses of the form:

[parity(cardi-1)=odd][faced(cardi~1)=N] => ...
[parity(cardi-1)=odd][faced(cardi-1)=Y] => ..,
[parity(cardi-1)=aven][faced(cardi-1)=N] => ...
[parity(cardi-1)=even]{faced(cardi-1)=Y] => ...

The periodic algorithm is nearly the same as the decomposition
algorithm. For each phase of the period, it takes all vof the positive



events in that phase and combines them to form a single conjunct by
forming the internal disjunction alt of the valuc sets of corresponding
sclectors. Next, rules of generalization arc applied to extend internal
disjunctions and drop sclectors. Finally, corresponding attributes in
different phases are compared, and scleetors whaosc values scts overlap
arc dropped if this can be donc without covering any ncgative
examples.

6.3.6. Evaluating the NDP rules

Once Ring 1 has instantiated th¢ parameterized models to produce
a sct of rules, the rules are passcd back through the concentric rings of
the program. Fach ring cvaluates the rules according to plausibility
criteria based on knowledge available in that ring. Ring 2, for
cxample, checks to see that the rule docs not predict an end to the
sequence. It is assumed that a valid sequence can be continued
indefinitely. Ring 3 checks the last (partial) scgment to see if it is
consistent with the rule. It is possible to inducce a rule, using only the
complete segments, that is not consistent with the final segment. Ring
4 tests the rule using the plausibility criteria for Eleusis. These criteria
are:

1. Prefer rules with intermediatc degree of complexity. In
Fleusis, Occam’s Razor does not always apply. The dealer
is unlikely to choosc a rule that is extremely simple,
because it would be too casy to discover. Very complex
rules will not be discovered by anyone, and, since the rules
of the game discourage such an outcome, the dealer is not
likely to choose such complex rules either.

2.Prefer rules with an intermediate degrec of non-
determinist. Rules with a low degree of non-determinism
‘Icad to many incorrect plays, thus rendering them casy to
_discover. Rules that are very nondeterministic generally
lead to few incorrect plays and are therefore difficult
discover.

Rules that do not satisfy these heuristic criteria arc discarded. The
remaining rules are returned to Ring 5 where they arc printed for the
user.

7.Examples of Program Execution

In this section, we present some example Elcusis games and the
corresponding  sequence-gencrating laws that were discovered by
SPARC/E. Each of thesc games was an actual game among people,
and the rules arc presented as they were displayed by SPARC/E (with
minor typesetting changes).

The raw scquences prescnted to SPARC/E had only two attributes:
sUIT and RANK. SPARC/E was given definitions of the following
derivable attributes:

® COLOR (red for Hearts and Diamonds; black for Clubs and
Spades)

 FACE (true if card is a faced, picture card, false otherwise)
 PRIME (truc if card has a prime rank, false otherwise)

@ MOD2 (the parity valuc of the card, 0 if card is even, 1
othcrwise)

@ MOD3 (the rank of the card modulo 3) -

54

o LENMOD? (When SPARC/E scgments the main sequence
into derived subsequences, it computes the LENGTH of
each of the subsequences moduto 2)

Three cxamples of the program. exccution arc: prescnted: one
showing the program at its best, onc showing: some of the
shortcomings of the program, and onc demonstrating weaknesses of
the program. A few explanations arc required. First, each rule is
assumed to be universally quantificd over all events in the scquence.
This quantification is not explicitly printed. Second, when the value
set of a sclector includes a set of adjacent valuces (eg.
[rank(cardi)=3 v 4 v Bb], this is printed as
[RANK(CARDI)=3..6]. The computation times given arc for an
implementation in PASCAL on the CDC CYBER 175.

7.1. Example 1
In this example, we show the program discovering a segmented
rule. The program was presented with the following layout:

Main 1ine: AH 7C 6C 98S 10H 7H 10D JC AD
Side 11ines: KD - b8 QD
JH
continued: 4H 8D 7C 9S 10C KS 2C 10S JS
as 9H QH

8H AD

The program only discovercd onc rule for this layout, precisely the
rule that the dealer had in mind (1.2 seconds required):

RULE 1: LOOKBACK: O NPHASES: 1 PERIODIC MODEL

CRITERION=[ COLOR(CARDI)=COLOR(CARDI-1)7:
_PERIOD([LENMOD2 (STRINGI)=1])

The rule states that onc must play strings of cards with the same
color. The strings must always have odd length. The CRITERION =
gives the segmentation critcrion that a segment is a string of cards all
of the same color. CARDI rcfers to the I-th card in the original -
sequence. STRINGI refers to the I-th string in the segmented
scquence. SPARC/E discovered this rule as a degencrate periodic
rule with a period length, P, of 1. Actually, the rule that the dealer had
in mind had onc additional constraint: a queen must not be played
adjacent to a jack er king. Rules containing such exception clauses
cannot be discovered by SPARC/E.

7.2.Example 2
‘The sccond example requires the program to discover a fairly

simple periodic rule. SPARC/E discovers three equivalent versions of
it.e .

Herc is the layout:

Main line: JC 4D QH 35 QD 9H QC 7H QD
Side 11ines: KC &S 43 10D

78
continued: 90 QC 3H KH 4C KD 6C JD 8D

continued: JH 7C JD 7H JH 6H KD

The program discovered the following d(scnpuons of this layout
(0.49 scconds were required):




RULE 1: LOOKBACK: 1 NPHASES: 0
DECOMPOSITION MODEL

[FACE(CARDI~1)=FALSE] =>
[RANK(CARDI ) =>JACK]
[RANK(CARDI)>RANK(CARDI-1)]
[ FACE(CARDI )=TRUE ]

[FACE(CARDI-1)=TRUE] =>
[RANK(CARDI =3, .9]
[RANK( CARDI ) CRANK{ CARDI~1)]
[FACE(CARDI) =FALSE]

RULE 2: LOOKBACK: 1 MPHASES: 1 PERIODIC MODEL

PERTOD([RANK(CARDI)>3]
[RANK (CARDI ) =RANK(CARDI-1)]
[FACE(CARDI)#FACE(CARDI-1)])

RULE 3: LOOKBACK: 1 NPIIASES: 2 PERIODIC MODEL

PERIOD([RANK(CARDI)=>JACK]
[RANK(CARDI ) =>-RANK(CARDI~1)+20]
[FACE(CARDI)=TRUE],

[RANK(CARDI)=3..9]
[RANK(CARDI )=-RANK(CARDI-1)+6. .14]
[FACE(CARDI)=FALSE])

Rule 1 is a decomposition rule with a lookback of 1. Rule 2
expresses the rule as a single conjunction. This is possible because
FACE versus NON-FACE is a binary condition, and there arc preciscly
two phases to the rule. Rule 3 expresses the rule in the "natural” way
as a periodic rule of length 2. :

Notice that, although the program has the gist of the rule, it has
discovered a number of redundant conditions. For example, in rule 1,
the program did not use knowledge of the fact that
[rank(cardi)>jack] implics [face(cardi)=true], and
therefore, it did not remove the former sclector. Similarly, because of
the intcraction of the two conditions,
[rank(cardi)>rank(cardi-1)] is completely redundant.
SPARC/E aircady has cnough background knowledge about the
meanings of its attributes to support these inferences.  Additional
routines nced to be written to actually perform them (as is done in the
INDUCE-2 program—sec [Michalski, 1983]).

7.3.Example 3

The third example shows the upper limits of the program’s abilities.
During this gamc, only one of the human players even got close to
guessing the rule, yet the program discovers a good approximation of
the rule using only a portion of the layout that was available to the
human players. Hcre is the layout:

Main line: 4H 6D 8C JS 2C 6S AC 6S 10H
Side lines: 7C 6S KC AH 6C AS

JH 7H 3H KD

4C 2C Qs

108 78

8H 6D

AD 6H

2D 4C

The program produced the following rules after 6.5 seconds:
RULE 1: LOOKBACK: 1 NPHASES: 0 DNF MODEL

[RANK (CARDI )<<6J[SUIT(CARDI)=SUIT(CARDI-1)+1] V
[RANK(CARDI)=>6][SUIT(CARDI)=SUIT(CARDI-1)+3]
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RULE 2: LOOKBACK: 1 NPHASES: 1 PERIODIC MODEL

PERIOD([RANK(CARDI ) =RANK(CARDI-=1)-07]
[RANK(CARDI)=-RANK(CARDI-1)+4,6,7,11,13,17]
[SUIT(CARDI)=SUIT(CARDI-1)+1,2,3])

RULE 3: LOOKBACK: 1 NPHASES: 2 PERIODIC MODEL

PERIOD( [ RANK(CARDI )=ACE,2,8,10] :
[RANK(CARDI ) =-RANK (CARDI-1)+1,8,9,10],

[RANK(CARDI)=5. , JACK][SUIT(CARDI)=SPADES]
{RANK(CARDI ) ~RANK (CARDI-1)+-0..6]
[RANK(CARDI ) =-RANK({CARDI-1)+8..14]
[SUIT(CARDI)=SUIT(CARDI-1)+0..2]
{COLOR(CARDI ) «BLACK ][ PRIME(CARDI )=PTRUE]
[PRIME(CARDI)=PRIME{CARDI-1)]

[MOD2 (CARDI ) =1][MOD2 (CARDI ) =HOD2( CARDI-1)+0]
[MOD2(CARDI ) »-MOD2 (CARDI-1)+0][MOD3(CARDI)=2]
_[MOD3(CARDI ) =MOD3 (CARDI-1)+0]
{MOD3(CARDI ) =-MOD3 ( CARDI-1)+1])

The rule that the dealer had in mind was:

[SUIT(CARDI)=SUIT(CARDI-1)+1]
[RANK (CARDI ) >>RANK(CARDI-1)] 'V

[SUIT(CARDI)=SUIT(CARDI-1)+3]
[RANK( CARDT ) <RANK(CARDI-1)]

There is a strong symmetry in this rule: the players may cither play
a higher card in the next “higher” suit (recall that the suits are
cyclically ordered) or a lower card in the next “lower” suit. The
program discovered a slightly simpler version of the rule (rule 1) that
happened to be consistent with the. training instances. Note that
adding 3 to the SUIT has the effect of computing the next lower suit.

The other two rules discovered by the program are very poor. They
are typical of the kinds of rules that the program discovers when the
model docs not fit the data very well. Both rules arc filled with
irrelevant descriptors and values. The current program has very little
ability to assess how well a model fits the data. These rules should not
be printed by the program since they are highly implausible,

8. Summary

We have presented here a methodology for discovering sequence-
generating rules for the nondeterministic prediction problem. The
main ideas behind this methodology are

1. the usc of task-oricnted transformations of the initial data
and

2. the usc of different rule models to guide the search for
scquence-gencrating rules,

Four different task-oricnted transformations (adding attributes,
blocking, splitting into phascs, and scgmenting) and three modcls
(DNF, periodic, and decomposition) have been presented.

The main part of the methodology has been implemented in the-
program SPARC/E and applied 1o the NDP problem that arises in the
card game Eleusis. The performance of the program indicates that it
can discover quite complex and interesting rules.

This methodology is quite general and can be applied to other
nondeterministic prediction problems in which the objects in the
initial scquence are describable by a small set of finite-valucd
attributes, The main strengths of the method are (a) that it can solve



learning problems in which the initial training instances require
substantial task-oricnted transtormation and (b) that it can scarch very
large spaces of possible rules using a set of rule models for guidance.

Many aspects of this methodology remain to be investigated. We
have not considercd NDP problems in which (a) the training instauces
are noisy, (b) the training instances have internal structure so that an
attribute veetor represcntation cannot be used, and (c) the sequence-
generating rules are permitted to have exceptions. Application of this
methodology to rcal world problems will probably also require the
developmeut of additional sequence transformations and rule models.
Also, more heuristics need to be developed that can be uscd to guide
the application of transformations and models.

The implementation of the methodology in program SPARC/E has
demonstrated that the method can be uscd to discover many Eleusis
sceret rules. ‘There are some shortcomings of the implementation,
however. ‘The program presently conducts a ncarly exhaustive depth-
first scarch of the possiblec models and transformations. Much could
be gaincd by having the program conduct a best-first heuristically-
guided scarch instead. Another weakness of SPARC/E is its poor
ability to evaluate the plausibility of the rules it discovers. It is also not
able to simplify rules by removing redundant sclectors, nor is it able to
estimate the degree of nondeterminism of the rule. Both of these can
be implemented without too much difficuity by including inference

_routines that make morc complete usc of the background knowlcdge
alrcady available to the program. Finally, an important weakness of
the program is its inability to form composite modcls. SPARC/E is
not presently able to handie the NDP problem shown in Figure 1,
because it involves a periodic rule in which one of the phases contains
an imbedded periodic sequence (sce scction 5.3).

In addition to these spcci'ﬁc problems, there are some more general

problems that further rescarch in the arca of scquence-generating laws -

“should address. First, in some real world problems, there arc several
example sequences available for which the sequence-generating law is
believed to be the same. Such problems occur, in particular, in
describing the process of disease development in medicine” and
agriculture, A specific problem of this type that has been partially
investigated involves predicting the time course of cutworm
infestation in a cornficld and estimating the potential damage to the
crop (sce [Davis, 1981], [Baim, 1983], and [Boulanger, 1983]). In this
problem, several sequences: of observations arc available—one for
cach field—and there is a necd to develop a sequence-gencrating law
that predicts all of these sequences.

A sccond general problem for further research is to handle
continuous processes. Al research has so far given littie attention to
this case.
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APPENDIX

Notational conventions

‘The following notational conventions are cmployed in this paper.
In general, lowercase letters denote objects in some sequence (g, ph, b)
or index variables (i, j, k) or the lengths of scquences (m, - n).
Uppercase letters denote sets of objects, attributes, and so on (Q, F, S)
as well as paramcters of models and transformations (L, P). Small
capitals denote attributcs (COLOR, RANK) and their values (RED,
KING).

<O Angle brackets denote sequences of objects, e.g., <2
4 6 8 and also pcriodic rules, eg.,
<[color(qi) =red] fcolor(qi) = black]>.
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q;orqt The i-th object in an input sequence,
q’ ‘The i-th object in a derived sequence,
q" An object that constitutes an incorrect extension of
the sequence after object q;
b orbi The ith block in a sequence derived by the
blocking transformation.
phi The i-th phase derived by the splitting
) transformation.
F. The starting set of attributes for a transformation.
S The starting sct of sequences for a transformation.
Q ‘The starting sct of objects for a transformation.
F The sct of derived autributes from a transformation.
S The sct of derived scquences from a transformation.
Q The sct of derived objects from a transformation.
Fj The set of sclectors describing object 9 in block b,
4 - The scquence-gencrating function that maps a
sequence into a set of objects Q.1 that can appear
as continuations of the sequence.
Qk +1 The sct of objects that can appcar as continuations
of the sequence <q,, Gy oo G-
P ) The number of phascs paraneter of the -splitting
transformation and the periodic model. - -
L . The lookback parameter of the blocking

transformation and all three models.

[fi(qj)= rk] or[fi(qj)=rk]
A simple selector, which' asserts that feature f‘ of
object q has the value L

r2 v r3]
A sclcctor containing an internal disjunction. Tt
asserts that fl can have the valuc T ore, orr,.

[Ti(qd)=rt v

d prefix The d prefix on an attribute name indicates that it
is a difference attribute. Hence, D-RANK(q;q;.,) is
equal to RANK(q;) — RANK(q, ).

8 prefix The s prefix on an attribute name indicates that it
is a summation attribute. Hence, S-RANK(qi,qi'l) is
equal to RANK(q)) + RANK(q; )

d(F;, Fj) The set of difference sclectors obtained by
"subtracting” selectors Fj from F.

s(Fi, Fj) The set of summation selectors obtained by
u"adding” sclectors F, and F T

= Logical implication.



