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SERIES 
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Thesis Director: Dr. Donglian SUN 
 
 
 

Geostationary Operational Environmental Satellite (GOES) have been 

continuously monitoring earth surface since early 1970. The frequent observations 

provided by GOES sensors make them attractive for deriving information on the diurnal 

land surface temperature (LST) cycle and diurnal temperature range. These parameters are 

of great value for the research on the Earth’s diurnal variability and climate change. 

Accurate extraction of satellite-based LSTs has long been an interesting and challenging 

research area in thermal remote sensing. However, derivation of LST from satellite 

measurements is a difficult task because surface emitted thermal infrared radiance is 

dependent on both land surface temperature and land surface emissivity (LSE), two closely 

coupled variables.  

Satellite LST retrievals have been conducted for over forty years from a variety of 

polar-orbiting satellites and geostationary satellites. Literature relevant to satellite-based 



 

 

 

LST retrieval techniques have been reviewed. Specifically, the evolution of two LST 

algorithm families, temperature and emissivity separation method (TES) and Split 

Window (SW) approach, have been studied in this work. This work also summarizes the 

LST retrieval methods especially adopted for geostationary satellites. All the existing 

methods could be a valuable reference to develop the LST retrieval algorithms for 

generating GOES LST product. 

The primary objective of this study is the development of models for deriving 

consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval 

algorithms will be studied according to the characteristics of sensors onboard the GOES 

series.  

A new TES approach is proposed in this study for deriving LST and LSE 

simultaneously by using multiple-temporal satellite observations from GOES 8 to GOES 

12 series. Two split-window regression formulas are selected for this approach, and two 

satellite observations over the same geolocation within a certain time interval are utilized. 

This method is particularly applicable to geostationary satellite missions from which 

qualified multiple-temporal observations are available. Dual-window LST algorithm is 

adopted to derive LST from GOES M (12)-Q series. Instead of using conventional training 

method to generate optimum coefficients of the LST regression algorithms, a regression 

tree technique is introduced to automatically select the criteria and the boundary of the 

sub-ranges for generating algorithm coefficients under different conditions.  

GOES measurements as well as ancillary data, including satellite and solar 

geometry, water vapor, cloud mask, land emissivity etc., have been collected to test the 



 

 

 

performance of the proposed LST retrieval algorithms. In addition, in order to validate the 

retrieval precision, the satellite-based temperature will be compared against ground truth 

temperatures, which include direct skin temperature measurements from the Atmospheric 

Radiation Measurement program (ARM), as well as indirect measurements like surface 

long-wave radiation observations over six vegetated sites from the SURFace RADiation 

Budget (SURFRAD) Network. The validation results demonstrate that the proposed GOES 

LST algorithms are capable of deriving consistent surface temperatures with good retrieval 

precision. Consistent GOES LST retrievals with high spatial and temporal coverage are 

expected to better serve the detections and observations of meteorological phenomena and 

climate change over the land surface. 
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Chapter 1  Introduction 

1.1 Land surface temperature and diurnal temperature changes 

Land surface temperature (LST) plays a critical role in the interaction between land 

surface and atmosphere by controlling upward terrestrial radiation and affecting surface 

sensible heat and latent heat flux exchange with the atmosphere. Thus, LST, as a key 

parameter for the Earth’s surface energy balance and exchange, is of great value to the 

research in the fields of climatology, hydrology, meteorology and ecology, as well as a 

wide range of interdisciplinary research areas (Camillo 1991; Running 1991; Schmugge, 

Becker et al. 1991; Running, Justice et al. 1994; Zhang, Lemeur et al. 1995).  

Surface skin temperatures can be achieved from field observations, such as the First 

International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment 

(FIFE) (Sellers, Hall et al. 1992), Boreal Ecosystem-Atmosphere Study (BOREAS) 

Experiment (Sellers, Hall et al. 1995; Sellers, Hall et al. 1997), the Atmospheric Radiation 

Measurement Program (ARM) Experiment (http://www.arm.gov), the MONSOON 

Experiment (Kustas and Goodrich 1994), the Oklahoma Mesonet Network 

(http://okmesonet.ocs.ou.edu), the CASES experiment (http://www.mmm.ucar.edu/cases), 

U.S. Climate Reference Network (USCRN, http://www.ncdc.noaa.gov/crn/) and many 

more field experiments. Even though LSTs from field measurements have been widely 

used in climate change research, the limited number of observation stations makes field 
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measurements less useful for the detection of global change. Moreover, weather stations 

are usually located in relatively densely populated regions where anthropogenic impacts 

may affect measurements, and thus the temperature record may not be representative of 

global change. Thermal infrared satellite observations, however, present an efficient and 

practical way of capturing temperature variability globally and continuously. Deriving 

accurate satellite-based LSTs has long been an interesting and challenging research area in 

thermal remote sensing (Lorenz 1986; Nerry, Labed et al. 1990).  

A satellite-based LST product is an important input to meteorological, hydrological 

and ecological models. The LST product generated from Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard the Earth Observation System satellites (EOS) Terra 

and Aqua provides global land surface temperature distribution in different spatial 

resolutions (1km and 5km) and in different temporal resolutions (daily, 8-daily, and 

monthly). LST products can also be acquired from Advanced Along-Track Scanning 

Radiometer (AATSR) onboard ESA’s Envisat Satellite in 1km spatial resolution with the 

accuracy of 2.5K in the daytime and 1K in the night time (Noyes, Corlett et al. 2007). 

These LST products from polar-orbiting satellite sensors, such as MODIS or AATSR, have 

the advantage of high spatial resolution, but the temporal resolution is limited to two 

observations per day on average.  

However, surface temperature, especially land surface temperature, has a strong 

diurnal cycle, which cannot be captured at the temporal resolution (approximately two 

views per day) of polar-orbit satellites. Braganza et al. (Braganza, Karoly et al. 2004) 

addressed the issue that mean surface temperature alone is not as useful an indicator of 



 

3 

 

climate changing as the change in daily maximum and minimum temperatures. Trends in 

mean surface temperature are due to changes in either maximum or minimum temperature, 

or relative changes in both. The recently reported global warming over land is associated 

with relatively larger increases in daily minimum temperature rather than in maximum 

temperature (Karl, Jones et al. 1993; Kin'uyu, Ogallo et al. 1999). This means diurnal 

temperature range (DTR) is an important index of climate change (Karl, Kukla et al. 1984), 

and is susceptible to urban effects. Under these circumstances, only geostationary orbit 

satellites have the potential abilities to provide frequent LST observations for climatology 

and support the research on diurnal changes. 

1.2 Geostationary Operational Environmental Satellites 

Geostationary Operational Environmental Satellite (GOES) have been 

continuously monitoring earth surface through three generations starting from early 1970 

and provided qualitative and quantitative land surface measurements. GOES series are now 

heading to the 4th generation. GOES-R, as a representative of the new generation of the 

GOES series, is scheduled to be launched in 2015. Obtaining better coverage and accuracy 

of surface temperatures is one of the most essential objectives for new GOES generations 

(Dittberner, Grid et al. 1996). Two adjacent thermal infrared bands of Advanced Baseline 

Imager (ABI) equipped in GOES-R, which are especially designed for LST retrieval, will 

be considerably improved in terms of spatial resolution (up to 2km), noise equivalent 

temperature (0.1K) and refresh rate (5 min). The ABI measurements with high temporal 

resolution over the hemisphere will be a unique data source for studies of the Earth’s 

diurnal variability. 
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Since the design of algorithms is closely dependent on the channel settings of the 

sensors, the GOES series are divided into two categories in our study according to channel 

allocation of infrared bands. The imagers with split window (SW) channels belong to the 

first category, while those without SW channels are the second.  

GOES 8-11 as well as the new generation GOES-R belong to the first category, 

which have SW channels (Schmit, Gunshor et al. 2005). The channels allocation and more 

designed parameters of GOES 8-11 and GOES-R are shown in Table 1-1 and Table 1-2, 

respectively. Imagers onboard on GOES-M (12) to GOES-Q belong to the second category, 

which have only one thermal window channel. The parameters of GOES M (12)-Q are 

shown in Table 1-3. 

 

 

Table 1-1 Channels allocation of GOES 8-11 

Infrared 
channels 

Wavelength 
range (μm) 

Central 
Wavelength

(μm) 

Range of 
measurement 

(K) 

Spatial 
resolution 

(km) 

Meteorological 
objective and 

maximum 
temperature 

range 

4 10.20 - 11.20 10.7 4 - 320 4 

Surface 
temperature and 

water vapor 
(space – 335 K)

5 11.50 - 12.50 12.0 4 - 320 4 

Surface 
temperature and 

water vapor 
(space – 335 K)
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Table 1-2 Channels allocation of GOES-R  

Infrared 
channels 

Wavelength 
range (μm) 

Central 
Wavelength 

(μm) 

Spatial 
resolution 

(km) 

Range of 
measurement 

(K) 

Sample use

14 10.8-11.6 11.2 2 233-333 

Imagery, 
Surface 

temperature, 
clouds, 
rainfall 

15 11.50 - 12.50 12.3 2 233-333 
Total water, 
ash and SST

 

 

Table 1-3 Channel allocation of GOES 12 - Q 

Infrared 
channels 

Wavelength 
range (μm) 

Range of 
measurement

Detector 
type 

Spatial 
resolution 

(km) 

Meteorological 
objective and 

maximum temperature 
range 

2 3.80 - 4.00 4 - 335 K InSb 4 
Nighttime clouds 
(space – 340 K) 

4 10.20 - 11.20 4 - 320 K HgCdTe 4 
Surface temperature 

and water 
vapor (space – 335 K)

 

 

Currently, GOES LST product is generated as a byproduct of GOES Surface and 

Insolation Products (GSIP). The GSIP LST product is poor in resolution with unknown 

accuracy. With the qualitative and quantitative archive from current and oncoming GOES 

missions, consistent GOES LSTs with better accuracy and high resolution are needed to 

meet the increasing requirements in research projects related to ecosystems, weather and 

climate. 
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1.3 Outline of the thesis 

This thesis is organized as following. A review of literatures relevant to LST 

retrieval methods is given in Chapter 2. Methodology outline will be described in Chapter 

3, followed by detailed introduction on the principle and implementation of LST retrieval 

algorithms adopted in this study. Chapter 4 introduces datasets which are collected to 

support the implementation of the proposed algorithms, including GOES measurements, 

ancillary data set and validation data. The results of LST retrievals are presented in Chapter 

5. And a validation effort is made by comparing the retrieval LST with the ground truth 

temperature measurements in the last part of Chapter 5. Finally, discussions and 

conclusions are presented in Chapter 6 and 7, respectively.  
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Chapter 2  Literature Review 

Due to the complexity of the land surface, the heterogeneity of LST, and the 

limitations of thermal remote sensors, the accuracy of retrieved LSTs may not meet some 

application requirements. How to increase retrieval accuracy has always been a primary 

objective in the thermal remote sensing community. The studies in thermal remote sensing 

may be briefly categorized into three areas, temperature and emissivity separation (TES), 

removing atmospheric effect and component temperature inversion. The objective of this 

study is to derive LSTs at the pixel level from GOES series data. Thus, the component 

temperature at the sub-pixel level will not be considered here. 

An overview of LST retrieval methods from the previous-mentioned two algorithm 

families (temperature and emissivity separation and removing atmospheric effect) will be 

presented in this section. In addition, literature relevant to LST inversion from 

geostationary satellites especially from the GOES series will be reviewed afterwards.  

2.1 LST retrieval algorithms 

2.1.1 Temperature and emissivity separation 

High resolution LST is usually derived from thermal infrared (TIR) satellite 

observations using multi-channel technique. However, accurate derivations of LST and 

land surface emissivity (LSE) from satellite measurements are difficult tasks mainly 

because they are always closely coupled. In general, surface emitted TIR radiance is 
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dependent on both its temperature and emissivity, which also varies with the wavelength. 

This is particularly true for most land surfaces where emissivities are significantly less than 

unity. A problem of the LST retrieval from TIR measurements cannot be solved simply by 

adding observations in different wavelengths, because the number of unknowns is always 

at least one more than the measurements (Li and Barker 1993; Li, Becker et al. 1999; Liang 

2001). A single measurement with N spectral bands presents N equations but have N+1 

unknowns (N spectral emissivities plus LST). Without any prior information, it is 

impossible to retrieve both LST and LSE simultaneously.  

Therefore, temperature and emissivity separation has always been a fundamental 

and essential problem in temperature inversion. Several attempts have been made to solve 

this problem by the use of additional constraints or prior knowledge. Examples of early 

TES algorithms include spatial ratio method (Watson 1992a), Alpha derived emissivity 

(Kealy and Gabell 1990), graybody method (Barducci and Pippi 1996), 

maximum-minimum difference (Matsunaga 1994), reference channel method (Kahle and 

Rowan 1980), and normalized emissivity method (Gillespie 1985).  

The temperature and emissivity separation method (Alpha emissivity method) was 

presented and compared with the reference channel method and the normalized emissivity 

method by Kealy and Hook (Kealy and Hook 1993) using multispectral thermal infrared 

radiance data from Thermal Infrared Multispectral Scanner (TIMS) and Advanced 

Spaceborne Thermal Emission Reflectance Radiometer (ASTER). They pointed out that 

the Alpha emissivity method showed a primary advantage in deriving LSTs from terrains 

with widely varying and unknown emissivities. 
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A TES algorithm was applied to generate the ASTER LST product (Gillespie, 

Matsunaga et al. 1998) based on thermal infrared measurements from five channels. This 

method consisted of four major modules: NEM module (estimating the surface 

temperature and subtracting reflected sky irradiance), Ratio module (Ratio algorithm), 

MMD module (estimating TES emissivities and temperature) and final correction for sky 

irradiance and bias in β. 

Liang (Liang 2001) further developed an optimization procedure to constraint 

errors in the simultaneous determination process for the LST and the emissivities from 

MODIS and Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER). Five thermal channels from ASTER and six from MODIS are utilized in this 

algorithm. The validation effort was carried out by comparing the LST retrievals against 

the ground-measured LSTs, and the results showed that the differences of 84% validation 

pixels were within 1.5 degree. 

There are also other alternative retrieval approaches to separate temperatures and 

emissivities, which took advantage of measurements at different times or/and different 

channels to compensate for the lack information of surface emissivity, such as the 

two-measurement method (Watson 1992b) and the Temperature-independent spectral 

Indices (TISI) method (Barker and Li 1990b). Ma et al. (Ma, Wan et al. 2002) proposed an 

extended twp-step physical algorithm to retrieve LST, surface emissivity and atmospheric 

profiles simultaneously from MODIS Airborne Simulator. It is also applicable to MODIS 

data. 
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In brief, the common strategy of TES methods is to bring in prior knowledge or 

constraint conditions. When extracting LST with accompanying unknown parameter, 

emissivity, which varies with both wavelength and land cover, especially in the situation of 

retrieving atmospheric parameters simultaneously, it is inevitable to bring in more 

available information, such as special characteristics of remotely sensed data 

(multi-temporal measurements, multiple channel measurements etc.), and all kinds of prior 

knowledge (known shape of emissivity curve, the relationship between emissivity and land 

cover etc.).  

2.1.2 Split window algorithms 

The SW algorithm (McMillin 1975), which achieved great success in Sea Surface 

Temperature (SST) retrieval, led to a big advance in the research area of temperature 

retrieval and greatly extended the applications of quantitative thermal remote sensing. The 

SW method corrects the atmospheric effect to a great extent using a linear combination of 

radiances from two adjacent infrared bands. It is still successfully being used to extract sea 

surface temperature (SST) with the accuracy of 0.5K (Minnett 1986; Ottlé and 

Vidal-Madjar 1992).  

However, this method has some limitations in temperature retrieval over complex 

land surfaces because the emissivities of land covers are not equal to 1 and vary depending 

on the channels. Therefore, researchers have tried many possible ways to extend this 

method to LST extraction. Price (Price 1984) first tried to apply an AVHRR SST split 

window algorithm to agricultural land and concluded that the LST could be extracted with 

SST SW algorithm with the accuracy of 3. The local split window method is one of the 
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successful examples (Barker and Li 1990a) of extending the SST SW algorithm to land 

surfaces. This method requires prior knowledge of sufficiently accurate emissivities in two 

adjacent channels. Additionally, researchers in this area pointed out that more accurate 

LSTs can be derived if emissivities are given with sufficient accuracy.  

Becker, Li, Sobrino, and Wan et al. are the pioneers who introduced the SW 

technique to land surface temperature remote sensing. The MODIS team (Wan and Dozier 

1996) proposed a day/night algorithm that utilized day and night measurements from 7 

bands of MODIS. Specifically, the bands at 12.91, 12.25, 11.98, 8.6, 4.70, 4.11, 3.74 

microns were adopted to create a 14-equation set. The coefficients of this algorithm were 

determined for each sub-range separately according to the ranges of atmospheric water 

vapor and surface air temperature.  

A number of LST SW algorithms have been developed since 1990 and widely 

applied to produce satellite-based LSTs (Vidal 1991; Ulivieri, Castronouvo et al. 1992; 

Prata 1994; Caselles, Coll et al. 1997). Even though their models are different in form, the 

essence of the theory are almost the same; that is to build a linear relationship between the 

LST and the brightness temperatures of two adjacent thermal channels, where the 

algorithm coefficients depend on the spectral land surface emissivities. LST SW 

algorithms are keeping the similar form to SST SW algorithm. Among a variety of 

developed LST SW algorithms from the literature, nine have been adapted as candidate 

LST algorithms to generate LST product for the next GOES generation (Yu, Tarpley et al. 

2009a), shown in the Table 2-1. Each algorithm is composed of two parts: the base split 

window algorithm and path length correction (the last term in each algorithm). The base 
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split window algorithms are adapted from those published split window algorithms as 

referred in the references, while the path length term is particularly added for additional 

atmospheric correction. 

 

Table 2-1 Nine candidate LST algorithms for next GOES generation* 

 
No 
 

Formula# Reference 
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#Note:    
 ૚૚ represent the top-of-atmosphere brightness temperatures of GOES܂ ૚૚ and܂ (1

IMAGER channels 14 and 15, respectively; 
2) ઽ ൌ ሺઽ૚૚ ൅ ઽ૚૛ሻ/૛  and ∆ઽ ൌ ઽ૚૚ െ ઽ૚૛ where ઽ૚૚  and ઽ૚૛  are the spectral 

emissivity values of the land surface at GOES IMAGER channels 14 and 15, 
respectively; 

  .is the satellite view zenith angle ࣂ (3
* Source note: The creator of this table is Yunyue Yu (Yu, Tarpley et al. 2009a). 
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Among those LST SW models, some are empirical (Vidal 1991) or semi-empirical 

models(Kerr, Lagouardeb et al. 1992) which are suitable for local regions; some are 

physical models (Ulivieri and Cannizzaro 1985; Ottlé and Vidal-Madjar 1992; Prata 1994) 

based on a radiative transfer mechanism. 

Since the combination of two adjacent thermal channels used in SW algorithms is 

proven to be able to correct atmospheric effect to a great extent, the coefficients of most 

LST SW algorithms depend only on the spectral emissivities rather than atmospheric 

conditions. And yet, the SW algorithm proposed by Prata (Prata 1994) and Sobrino et al. 

(Sobrino, Li et al. 1994) took both land surface emissivity and atmospheric transmittance 

into account. Furthermore, water vapor, regarded as the major absorbing gas in the split 

window bands, many researchers developed the SW models with coefficients varying with 

the atmospheric water vapor content (Becker and Li 1995; Francois and Ottle 1996; Coll 

and Caselles 1997). The problem of these kinds of algorithms is that accurate water vapor 

data cannot be always easily obtained and hence the error of water data itself may 

unavoidably lead to the LST retrieval error. 

2.2 LST retrieval from Geostationary Satellites 

The above mentioned studies are mostly focusing on the polar orbiting satellites. 

Relatively less research has been carried out to extract LST from geostationary satellites 

observations. However, the emphasis on the research of LST diurnal cycle has drawn 

scientists’ attention to LST retrieval from geostationary satellites, which can provide high 

temporal observations. Investigations have been performed to derive LSTs from 
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geostationary satellites, such as the Japanese Geostationary Meteorological Satellite 5 

(GMS-5) (Prata and Cechet 1999), and METEOSAT of the European Meteorological 

Satellite Programme (EUMETSAT) (Morcrette 1991; OLesen, Kind et al. 1995; Cresswell, 

Morse et al. 1999; Hay and Lennon 1999; Gottsche and Olesen 2001; Schadlich, Gottsche 

et al. 2001; Dash, Gottsche et al. 2002; Sun and Pinker 2007) and GOES (Sun and Pinker 

2003; Sun and Pinker 2004a; Sun, Pinker et al. 2004b). All LST retrieval studies for either 

polar-orbiting satellites or geostationary satellites are of significant reference value in the 

development of the GOES LST retrieval algorithms. 

GOES series have been operated by National Oceanic and Atmospheric 

Administration (NOAA) for more than 35 years. The current LST product of GOES series 

is produced from Sounder sensor (Ma, Schmit et al. 1999). The temperature and water 

vapor profiles were achieved through the inverse solution of the nonlinear radiative 

transfer equation. However, the intermediate product from Sounder radiance observations 

is poor in resolution and with unknown accuracy. 

The performance of Imagers has been improved since the second generation of 

GOES series were launched in April 1994. Many investigators have studied operational 

LST algorithms for GOES Imagers (Hayden 1988; Hayden, Wade et al. 1996; Sun and 

Pinker 2003; Sun and Pinker 2004a). 

Faysash and Smith (Faysash and Smith 1999) addressed a combined land surface 

temperature-emissivity retrieval algorithm from two radiance measurements acquired at 

two different times of GOES-8. An optimization scheme was adopted to solve the system 

of equations. The validation showed that the biases between the retrieved LSTs and surface 
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measurements in the Australian, FIFE, and ARM CART study areas are approximately 

0.088°, 1.78°, and 1.48°, respectively. 

In the era of GOES M-Q, the LST SW algorithms are greatly limited due to the lack 

of SW channels. Under this constraint, a dual-window method and an approach utilizing 

total precipitable water were presented by Sun and Pinker (Sun, Pinker et al. 2004b) for 

deriving LST from the GOES M-Q. This method is proven to have less atmospheric 

attenuation than the split window channels.  

For the next generation of the GOES series, a LST product is expected to be 

generated independently with more accuracy and higher resolution, which is capable of 

estimating the diurnal cycle and DTR, as well as supporting the research projects in the 

field of meteorology, climatology and ecology. Yu et al. (Yu, Tarpley et al. 2009a) 

investigated the performance of nine SW LST algorithms to generate GOES-R LST 

product , in which the surface emissivities at the two TIR channels can be obtained as 

priors. The analysis of accuracy and sensitivity of those retrieval algorithms showed that 

even though most of the LST algorithms could meet the GOES-R RMD requirement (less 

than 2.5K), the emissivity uncertainty significantly impacted the retrieval accuracy. 

Recently, a similar TES procedure has been applied to GOES R data for producing land 

surface emissivities from its Advanced Baseline Imager (ABI). A Simplified method was 

briefly described for extracting LSTs at two time stamps and emissivities at two channels 

from the ABI data onboard the future GOES-R (Yu, Xu et al. 2009) 
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2.3 Problems in LST retrieval methods 

As mentioned in section 2.1, a variety of LST algorithms have been developed for 

years and can be adapted for extracting LSTs from GOES satellites, including both 

GOES-W and GOES-E. In order to choose reliable LST retrieval algorithms to generate 

consistent GOES LST values, the problems in the existing LST algorithms should be 

carefully analyzed and improvement may be made when necessary.  

2.3.1 Problems in TES algorithms 

For the TES problem, a set of multi-spectral thermal measurements in N bands can 

create N equations with N+1 unknowns, N spectral emissivities and LST. In order to deal 

with this so-called ill-posed inversion problem, a variety of approaches have been tried to 

compensate for the lack of information. Most of the TES methods for simultaneous 

retrievals of LST and LSE depend on a well-determined or over-determined matrix 

problem which is built on a multiple-channel dataset from the satellite infrared radiometer 

or imager and spectral radiative transfer equations (Peres and DaCamara 2006). An 

atmospheric profile that is usually obtained through a microwave sounder is required in 

solving the radiative transfer equations, which is usually in coarser spatial resolution than 

the thermal infrared data. The solution of the matrix problem may be unreliable as the 

method is known to be sensitive to noise in the input data (Peres and DaCamara 2004; 

Peres and DaCamara 2006). Moreover, intensive numerical computation time is required 

for processing the radiative transfer equations and for solving the matrix problem. 

Instead of applying the radiative transfer model and the atmospheric profiles for 

building up the matrix inversion problem, a simplified TES method based on two satellite 
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observations will be presented in this study to derive LSTs and LSE simultaneously. The 

new TES algorithm is particularly applicable to GOES 8-11 missions in which qualified 

multiple-temporal observations in split window channels can be obtained. This method 

also shows promise for application to the new generation of GOES series. 

2.3.2 Problems in traditional coefficients training 

For most of the LST regression algorithms, the optimum coefficients have been 

determined by separating the ranges of parameters, such as atmospheric water vapor, 

boundary temperature and so on. The selection criteria and the boundary of the sub-ranges 

were always made manually, mostly based on experience.  

Take the generalized split-window (GSW) algorithm as an example. Wan and 

Dozier (Wan and Dozier 1996) extended the local SW algorithm proposed by Becker and 

Li (Barker and Li 1990a) to a GSW algorithm by making the coefficients varying 

according to different conditions. 

Tୱ ൌ C ൅ ൬Aଵ ൅ Aଶ
1 െ ε

ε
൅ Aଷ

∆ε
εଶ ൰ ሺTଵଵ ൅ Tଵଶሻ ൅ ൬Aସ ൅ Aହ

1 െ ε
ε

൅ A଺
∆ε
εଶ ൰ ሺTଵଵ െ Tଵଶሻ 

൅DሺTଵଵ െ Tଵଶሻሺsecθ െ 1ሻ                             (Eq. 2-1) 

Where Tଵଵ  and Tଵଶ  represent the top-of-atmosphere brightness temperature at 

around 11 and 12 microns, respectively; ε ൌ கభభାகభమ

ଶ
 and ∆ε ൌ εଵଵ െ εଵଶ; εଵଵ, εଵଶ are the 

emissivities at the two channels; θ is the satellite view zenith angle; A୧ሺi ൌ 1,2, … 6ሻ and 

C are algorithm coefficients that depend on the spectral emissivities only. 

In this GSW algorithm, Wan and Dozier made the coefficients in Becker and Li’s 

SW algorithm changing according to some suggested initial guess values, or some kind of 
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bins of 9 viewing angles (Cosine values of these angles are 0.415059, 0.445869, 0.475084, 

0.529560, 0.626080, 0.713005, 0.781367, 0.966438, and 0.998631), 7 surface air 

temperatures (273, 281, 289, 295, 300, 305, 310, units:K), and 11 atmospheric column 

water vapor amount (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, units:cm/km). How to 

determine these threshold values for different surface and atmospheric conditions may be 

the tricky part and mostly predefined based on experience. Regression Tree algorithm can 

allow us to integrate all the possible candidate predictors, such as GOES brightness 

temperatures and emissivities at the window channels, solar and satellite geometry, 

atmospheric column water or total precipitable water etc., and at the same time, it can 

determine the threshold values for different conditions, and give accuracy estimates.   

2.3.3 Other problems 

LST retrieval algorithms are extremely dependent on the channel settings of the 

sensors. GOES 8-11 and GOES-R have two split windows bands, while GOES M-Q series 

have not. GOES LST retrieval algorithms will be designed under different principles 

according to the two different sets of channel setting in GOES sensors. Moreover, there is 

very poor validation for current GOES LSTs. Validation methodology of GOES LST 

retrievals should be one of the concerns in this study.  

2.4 Summary of literature review 

Literatures have shown that consistent LST data set with high spatial and temporal 

coverage are in great demand to better serve the detections and observations of 

meteorological phenomena over the land surface. The unique characteristic of 

geostationary satellite data with hourly temporal resolution is of tremendous value for the 
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studies of the Earth’s diurnal variability. How to develop proper LST retrieval algorithms 

to generate consistent LST products for GOES series according to the characteristics of 

onboard sensors becomes the primary objective of this study. 

After reviewing the literatures relevant to pixel-level LST retrieval methods, the 

major problems in deriving LST from thermal remote sensing observations have been 

analyzed. In brief, the uncertainty in complex matrix problem in current TES algorithms is 

still a great concern, and the generation of optimum coefficients in LST regression 

algorithm is also a challenging work. Furthermore, poor validation of current GOES LST 

product greatly limited its applications.  

Improvement will be made in this work for the above mentioned aspects. 

Specifically, to avoid solving complex matrix based on radiative transfer model and 

atmospheric profiles, a simplified TES method will be proposed to derive LSTs and LSE 

simultaneously by utilization of multiple-temporal thermal observations. Secondly, 

decision tree will be introduced to automatically derive algorithm coefficients and 

threshold values. Furthermore, the performance of satellite-based LSTs will be validated 

against the ground truth of skin temperature observations, including direct skin 

temperature measurement such as LST observations from the Atmospheric Radiation 

Measurement program (ARM), MESONET and U.S. Climate Reference Network 

(USCRN), as well as indirect measurements like surface long-wave radiation observations 

over eight vegetated sites from the SURFace RADiation Budget Network (SURFRAD).  
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Chapter 3  Methodology 

3.1 Overview  

The methodology outline of this study is summarized in the flow chart in Figure 3-1. 

The process is started by extracting and pre-processing measurements from GOES imager 

sensor. The process is then divided into two branches according to the two different types 

of GOES sensors (with/without SW bands). The new TES approach will be applied to the 

data from GOES Imagers with SW bands, whereas the dual-window LST retrieval 

approach will be adopted for GOES sensors without SW bands. The principles and 

procedures of these two algorithms will be described in detail in section 3.3 and 3.4, 

respectively. The ancillary datasets are required for both algorithms, including 

satellite/solar geometry, cloud mask, monthly emissivity, total water vapor, and land/ocean 

mask. Following that, the satellite-based LSTs will be compared with in-situ skin 

temperature measurements to validate the performances of the retrieval models. The 

ground-based measurements include skin temperature measurements from ARM, 

MESONET and CRN, as well as long-wave radiation observations over eight vegetated 

sites from SURFRAD, which are converted to temperatures before comparison with LST 

retrievals.  
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Figure 3-1. Methodology outline of the study 

 

3.2 Data pre-processing 

3.2.1 Data calibration 

The original GOES data downloaded from the CLASS are in the format of GVAR 

(GOES variable format) which are scaled radiances in 10-bit digits. The GVAR data need 

to be converted to brightness temperatures in several steps (Weinreb, Jamieson et al. 1997). 

Firstly, the 10-bit GVAR value should be converted to scene radiance by a linear 

conversion equation. The radiance is then converted to effective brightness temperature 

through the inverse of the Planck function. Finally, the effective temperature is converted 

to a top-of-atmosphere brightness temperature. 

1. Conversion of Imager GVAR Count to Scene Radiance 

Original Imager GVAR Count needs to be converted to scene radiance with the 

formula: 

R ൌ ሺX െ bሻ/m                          Eq. 3-1 
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where R is radiance (unit: nw · mିଶ · srିଵ · cmିଵ) and X is the GVAR count 

value. Parameters of b and m vary with the sensors. The b and m values for GOES 8-O are 

shown in Table 3-1. 

 

Table 3-1 GOES-8 through -O Imager Scaling Coefficients  

GOES Channel m b 

GOES-8-11 2 227.3889 68.2167 

GOES-8-11 4 5.2285 15.6854 

GOES-8-11 5 5.0273 15.3332 

GOES-12-O 2 227.3889 68.2167 

GOES-12-O 4 5.2285 15.6854 

Data source: 

http://www.oso.noaa.gov/goes/goes-calibration/gvar-conversion.htm 

 

 

2. Conversion of Scene Radiance to Temperature 

Before transferred to temperature, scene radiance needs to be converted to effective 

temperature Tୣ ୤୤ (K) by the inverse of Planck function: 

Tୣ ୤୤ ൌ
ୡమכ୬

୪୬ ሾଵାሺୡభכ୬యሻ/Rሿ
                     Eq. 3-2 

The constants cଵ and cଶ are invariant for GOES sensors, whereas n value depends 

on the channels. Further, the effective temperature can be converted to actual temperature 

T (K) by the following relationship: 

T ൌ a ൅ b כ Tୣ୤୤                        Eq. 3-3 

The constants a, b and n in the above formulas vary with the channels and sensors, 

which are specifically given in Table 3-2. 
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Table 3-2 GOES-8 through -O Imager Coefficients  

GOES Channel n　  a　  b　 

GOES-8 2 2556.71 -0.578526 1.001512 

GOES-8 4 934.30 -0.322585 1.001271 

GOES-8 5 837.06 -0.422571 1.001170 

GOES-9 2 2555.18 -0.579908 1.000942 

GOES-9 4 934.59 -0.384798 1.001293 

GOES-9 5 834.02 -0.302995 1.000941 

GOES-10 2 2552.9845 -0.60584483 1.0011017

GOES-10 4 936.10260 -0.27128884 1.0009674

GOES-10 5 830.88473 -0.26505411 1.0009087

GOES-11 2 2562.07 -0.644790 1.000775 

GOES-11 4 931.76 -0.306809 1.001274 

GOES-11 5 833.67 -0.333216 1.001000 

GOES-12 2 2562.45 -0.650731 1.001520 

GOES-12 4 933.21 -0.360331 1.001306 

GOES-13 2 2561.74 -1.437204 1.002562 

GOES-13 4 937.23 -0.386043 1.001298 

GOES-14 2 2572.47 -1.530285 1.002507 

GOES-14 4 934.04 -0.263369 1.001176 

Data source: http://www.oso.noaa.gov/goes/goes-calibration/gvar-conversion.htm 

 

 

3.2.2 Navigation or geolocation 

As mentioned in section 3.2.1, the GOES observations are formatted in GVAR. 

GVAR provides two types of information, which are supplemental data and sensor data 

(NOAA/NESDIS 1998). Navigation (NAV) block, one of three major blocks (Directory 
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block, Navigation block and Calibration block) in the sensor data, provides orbit and 

attitude (O&A) coefficient set, which can be used for earth location determination. 

Parameters concerning the sensing geometry (interior orientation) and position/attitude of 

the sensing (exterior orientation) are recorded in NAV block, more specifically, 

information like satellite orbit position, the compensation parameters for spacecraft 

disturbance, spacecraft attitude angles (roll, pitch and yaw), as well as epoch date and time.   

Given the relationship between instrument-related coordinate systems and 

geographic coordinates, the transformations between pixel coordinates (i, j) and 

earth-fixed coordinated can be conducted based on the principles of photogrammetry. The 

transformation process consists of a series of multiplication of rotation matrices, which are 

set up according to the interior orientation, exterior orientation, imaging time and attitude 

misalignment angles etc. 

3.2.3 Compute satellite and solar geometry  

The radiance acquired by sensors is affected by the variability in solar and satellite 

geometry. Therefore, the solar zenith angel for each pixel will be calculated according to 

the longitude, latitude, Julian day and GMT time. Also a satellite zenith angle or satellite 

viewing angle will be computed according to the orbit height, spatial resolution etc. 

3.3 The new TES method for GOES 8-11/R 

3.3.1 Mathematic description 

Wan et al. (Wan, Member of IEEE et al. 1997) first developed a two-measurement 

algorithm for deriving LST and LSE simultaneously using polar orbiting satellite 

measurements of infrared channels. The basic assumption of this method is that during the 
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two-time measurements (i.e., day and night for the polar orbiting satellite), the surface 

emissivities of infrared channels remain the same. Limitations of this method have been 

discussed in the LST community. Firstly, since the two-measurement method requires the 

measurements from the day and night observations, cloud-free condition for the two 

measurements greatly limited the retrieval availability. Secondly, the algorithm is much 

affected by the assumption that emissivity of each infrared channel does not vary from 

daytime to nighttime. In addition, the algorithm relies on atmospheric profile, which is 

obtained in a coarse resolution and may introduce significant errors, for solving the 

radiative transfer equations. 

However, it is a promising attempt to extend this two-measurement approach to 

extract LST from geostationary-orbiting satellite observations. High temporal refresh rate 

of the GOES satellite observation not only ensures significantly large number of the 

cloud-free data pairs for the retrieval availability, but also enriches the assumption that the 

surface emissivity remains the same in a short temporal interval. If dependency on the 

radiative transfer process can be released from the two-measurement method, which also 

implies that the real-time atmospheric profile information is not needed, it would be ideal 

applying this approach to the GOES satellite mission. To reach this goal, a basic principle 

of the new TES method is briefly introduced here. 

Assuming that there are two established algorithms, Fሺሻ and Gሺሻ, for deriving the 

satellite LST (Tୱ) for a given pixel. In our case, Fሺሻ and Gሺሻ represent two linear SW LST 

algorithms. When applying these two algorithms to two measurements at two different 

times at tଵ and tଶ, we have: 
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Tୱ,୲౟
ൌ f଴൫Tଵଵ,୲౟

, Tଵଶ,୲౟
, θ୲౟

൯ ൅ fଵ൫Tଵଵ,୲౟
, Tଵଶ,୲౟

, θ୲౟
൯Xଵሺεଵଵ, εଵଶሻ

൅ fଶ൫Tଵଵ,୲౟
, Tଵଶ,୲౟

, θ୲౟
൯Xଶሺεଵଵ, εଵଶሻ 

Tୱ,୲౟
ൌ g଴൫Tଵଵ,୲౟

, Tଵଶ,୲౟
, θ୲౟

൯ ൅ gଵ൫Tଵଵ,୲౟
, Tଵଶ,୲౟

, θ୲౟
൯Xଵሺεଵଵ, εଵଶሻ

൅ gଶ൫Tଵଵ,୲౟
, Tଵଶ,୲౟

, θ୲౟
൯Xଶሺεଵଵ, εଵଶሻ 

                        i ൌ 1, 2.                             Eq. 3-4 

where Tଵଵ,୲౟
 and Tଵଶ,୲౟

, are the brightness temperatures measured by the satellite 

sensors around 11 µm and 12 µm at time t୧; εଵଵ, εଵଶ are the emissivities at the two 

channels;  θ୲౟
 is the satellite view zenith angle at time t୧, and θ୲భ

 and θ୲మ
are the same for 

the geostationary satellite sensor observing a certain ground area; functions f୨ሺሻ and f୨ሺሻ  

(j=0, 1, 2) are certain brightness temperature dependencies in the two SW LST algorithms 

F() and G(), respectively; Xଵሺεଵଵ, εଵଶሻ and Xଶሺεଵଵ, εଵଶሻ are fixed relationships derived 

from εଵଵ and εଵଶ, such as  Xଵሺεଵଵ, εଵଶሻ ൌ ሺεଵଵ ൅ εଵଶሻ/2.  

These independent equations can be posed as a linear algebra problem in the matrix 

form: 

                           aX ൌ b                                    Eq. 3-5 

where X ൌ ሺTୱ,୲భ
 Tୱ,୲మ

 Xଵ Xଶሻ. To be more specific, 
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There are four unknowns (Tୱ,୲భ
, Tୱ,୲మ

, εଵଵ and εଵଶ) in the matrix X, which can be 

solved uniquely if the equations are not singularly posed. Thus, the algorithms F() and G() 

must be independent, and the two measurement (Tଵଵ,୲భ
, Tଵଶ,୲భ

ሻ,  ሺTଵଵ,୲మ
, Tଵଶ,୲మ

ሻ must be 
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significantly different. To avoid singularity in this approach, temperatures at the two 

selected times should have significant difference, while the emissivities at the 

two-measurement times should remain the same.  

In our application, two SW LST algorithms are utilized as these established linear 

regression formulas, fሺሻ  and  gሺሻ . Assuming fሺሻ  represents the SW LST algorithm 

developed by Wan and Dozier in 1996 (Wan and Dozier 1996), which is mathematically 

written as:  

Tୱ ൌ C ൅ ൬Aଵ ൅ Aଶ
1 െ ε

ε
൅ Aଷ

∆ε
εଶ ൰ ሺTଵଵ ൅ Tଵଶሻ ൅ 

൬Aସ ൅ Aହ
1 െ ε

ε
൅ A଺

∆ε
εଶ ൰ ሺTଵଵ െ Tଵଶሻ ൅ 

                                                       DሺTଵଵ െ Tଵଶሻሺsecθ െ 1ሻ.                 Eq. 3-6 

 

Again, in Eq. 3-6, Tଵଵ and Tଵଶ  represent the top-of-atmosphere brightness 

temperatures of the TIR channels at 11 µm and 12 µm, respectively; εଵଵ and εଵଶ are the 

spectral emissivity values of the land surface at ABI channels 14 and 15, respectively; 

ε ൌ ሺεଵଵ ൅ εଵଶሻ/2  and ∆ε ൌ εଵଵ െ εଵଶ ; a path-length correction term ሺTଵଵ െ

Tଵଶሻሺsecθ െ 1ሻ is used to minimize the water vapor effects with increasing view angle of 

the satellite, which cannot be ignored to geostationary orbit satellites with high orbit 

altitude (Yu, Privette et al. 2008). Eq. 3-6 can be rearranged in this method, in terms of the 

unknown matrix X, which is:  

Tୱ ൌ ሾC ൅ AଵሺTଵଵ ൅ Tଵଶሻ െ AଶሺTଵଵ ൅ Tଵଶሻ ൅ AସሺTଵଵ െ Tଵଶሻ െ  AହሺTଵଵ െ Tଵଶሻ ൅ DሺTଵଵ

െ Tଵଶሻሺsecθ െ 1ሻሿ ൅ ሾAଶሺTଵଵ ൅ Tଵଶሻ ൅ AହሺTଵଵ െ TଵଶሻሿXଵ 
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                ൅ሾAଷሺTଵଵ ൅ Tଵଶሻ ൅ AହሺTଵଵ െ TଵଶሻሿXଶ             Eq. 3-7 

Similarly, if gሺሻ stands for the SW LST algorithm developed by Vidal in 1991 

(Vidal 1991), which is written as: 

Tୱ ൌ C ൅ AଵTଵଵ ൅ AଶሺTଵଵ െ Tଵଶሻ ൅ Aଷ
ଵିக

க
൅ Aସ

∆க

கమ ൅ DሺTଵଵ െ Tଵଶሻሺsecθ െ 1ሻ   Eq. 3-8 

Then, the formula will be adapted in the new method as: 

Tୱ ൌ  C ൅ AଵTଵଵ ൅ AଶሺTଵଵ െ Tଵଶሻ െ Aଷ ൅ DሺTଵଵ െ Tଵଶሻሺsecθ െ 1ሻ 

     ൅AଷXଵ ൅ AସXଶ                             Eq. 3-9 

where Xଵ and Xଶ denote 1/ε and 
∆க

கమ, respectively. In our application, all the SW 

LST algorithms selected for the new TES method are stratified atmospheric conditions 

(dry/moist) and illumination conditions (daytime/nighttime). 

Similar to the combination of Wan and Dozier and Vidal’s algorithms 

(Combination A), another combination of two algorithms (Coll and Valor, 1997 and Price, 

1984; Combination B) is derived and implemented for comparison. Among currently 

available SW LST algorithms (Price 1984; Ulivieri and Cannizzaro 1985; Barker and Li 

1990a; Vidal 1991; Ulivieri, Castronouvo et al. 1992; Coll, Caselles et al. 1994; Prata 1994; 

Sobrino, Li et al. 1994; Wan and Dozier 1996; Caselles, Coll et al. 1997), some other 

combinations are also feasible to the this method(e.g., the combination of Ulivieri’s 

(Ulivieri and Cannizzaro 1985) and Sobrino’s (Sobrino, Li et al. 1994)). However, some 

are not appropriate for this method because of potential singularity problem or 

computational complexity. 
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3.3.2 Implementation 

The main process procedures of the new TES method are given in Figure 3-2. The 

essential steps for the implementation of the new TES method include: 

1. Read in parameters pertinent to the measurements such as observing date, time 

interval and so on; 

2. Read in the specific matrix coefficients of the two algorithms needed to be 

combined; 

3. Read in the satellite data along with the relevant attributes of the observation 

such as satellite zenith angle, cloud cover, water content and so on; 

4. Calculate the LST and emissivity pixel by pixel 

a) Read in 2-measurement data; 

b) Ensure the two measurements are close enough (intervals less than three 

hours); 

c) Ensure the observation is cloud-free; 

d) Read in the matched algorithm coefficients according to the atmospheric 

condition: Daytime (solar zenith < 85 deg) or nighttime,  dry 

(atmospheric total column water vapor <=2.0 g/cm2)  or moist 

atmospheric conditions; 

e) Calculate the matrix A and matrix B; 

f) Calculate the solution vector X by solving generalized inverse matrix 

using Singular Value Decomposition method. 
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5. Output the results of LST at two adjacent times and emissivities at two 

channels pixel by pixel. 

 

 

Figure 3-2 Flow chart of the new TES method for GOES 8-11/R 
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3.4 Dual-window algorithm for GOES M-Q 

3.4.1 Mathematic description 

Instead of two TIR channels in GOES8-11series, sensors onboard GOES M (12)-Q 

series have only one thermal window centered at 11.0 microns. Therefore, the traditional 

split window LST algorithms cannot be applied to extract LST from GOES M (12)-Q. In 

this case, Sun and Pinker (Sun, Pinker et al. 2004b) proposed two algorithms based on 

radiative transfer theory to derive LST from GOES M(12)-Q. One is the dual-window 

algorithm by introducing the middle infrared channel (centered at 3.9 microns) to improve 

the atmospheric correction. Mathematically the models for day time and night time are 

expressed as: 

Daytime: LST ൌ a଴ ൅ aଵTଵଵ ൅ aଶሺTଵଵ െ Tଷ.ଽሻ ൅ aଷሺTଵଵ െ Tଷ.ଽሻଶ 

൅aସሺsecθ െ 1ሻ ൅ aହTଷ.ଽcosθୱ ൅ a଺ሺ1 െ εሻ ൅ a଻∆ε 

Nighttime: LST ൌ a଴ ൅ aଵTଵଵ ൅ aଶሺTଵଵ െ Tଷ.ଽሻ ൅ aଷሺTଵଵ െ Tଷ.ଽሻଶ 

                                        ൅aସሺsecθ െ 1ሻ ൅ aହሺ1 െ εሻ ൅ a଺∆ε                     Eq. 3-10 

where θ is the satellite zenith angle, θୱ, is the solar zenith angle, and ε ൌ ሺεଵଵ ൅

εଷ.ଽሻ/2, and ∆ε ൌ εଵଵ െ εଷ.ଽ. 

The other model utilized total precipitable water (TPW) as ancillary input data, 

which can be presented as: 

                 LST ൌ a଴ ൅ aଵTଵଵ ൅ aଶWsecθ ൅ aଷሺ1 െ εଵଵሻ       Eq. 3-11    

 

These two models are derived from radiative transfer theory and formed into a 

regression-based relationship. These two algorithms will be adopted in this study to derive 

LST from GOES M (12)-Q. In order to obtain the algorithm coefficients, machine learning, 
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as a substitution for the traditional regression, will be utilized to train the coefficients from 

the matched observations. Two kinds of regression trees (Witten and Frank 2005) have 

been adopted in this study. Compared with traditional regression, in which the conditional 

judgments are made manually mostly based on experience, machine training presents a 

more rigorous and repeatable method for generating rules based on the analysis of the 

samples themselves.  

3.4.2 Implementation 

The process of implementation of dual-window algorithm for GOES M-Q series is presented in 

Figure 3-3, which includes: 

1. Read in GOES imager sensor datasets in McIDAS AREA format; 

2. Calculate pixel geolocation, solar-target-sensor geometry; 

3. Perform calibration; 

4. Calculate the LST retrieval pixel by pixel 

a) Ensure the land type is land type (algorithm applied to non-ocean pixel 

only); 

b) Ensure the observation is cloud-free; 

c) Read in the matched algorithm coefficients, which are stratified according 

to the atmospheric condition: Daytime (solar zenith < 85 deg) or nighttime,  

dry (atmospheric total column water vapor <=2.0 g/cm2)  or moist 

atmospheric conditions; 

d) Calculate pixel LST retrieval 
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5. Output the results of LST at two adjacent times and emissivities at two 

channels pixel by pixel. 

 

 

 

Figure 3-3 Flow chart of the new TES method for GOES M-Q 

          



 

34 

 

3.5 Validation 

The in-situ LST measurements will be collocated with the retrieved GOES LSTs at 

the same time over the same location. Spatial and temporal re-samplings are used when 

necessary. The ground-based LST measurements available include direct skin temperature 

measurements such as ARM, MESONET and CRN, as well as indirect measurement like 

surface long-wave radiation observations from SURFRAD. 

The SURFRAD observed surface long-wave radiation (upwelling and 

downwelling radiative fluxes) by a precise infrared radiometer (PIR), in the spectral range 

from 3µm to 50µm, can be converted to surface skin temperature by the following 

equation: 

                           Tୱ ൌ ቂ
F՛ିሺଵିகሻF՝

க஢
ቃ

ଵ
ସൗ

                   Eq. 3-12 

Where ε is the surface broadband emissivity, σ is the Stefan-Boltzmann constant.
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Chapter 4  Data 

GOES measurements as well as ancillary data (satellite and solar geometry, water 

vapor, daily or monthly land emissivity, land/sea mask et al.) are utilized as input data to 

the GOES LST retrieval models. 

4.1 GOES measurements  

GOES Imager data are mainly available from the Comprehensive Large Array-data 

Stewardship System (CLASS) of National Oceanic and Atmospheric Administration 

(NOAA) (available online at http://www.nsof.class.noaa.gov/saa/products/welcome). 

Details of the availability of GOES data are shown in Table 4-1. 

 

      Table 4-1 Availability of GOES data in CLASS  

Satellite Start Date End Date Location Longitude 

GOES-8 09/01/94 04/01/03 East 75°W 

GOES-9 01/09/96 07/21/98 West 135°W 

GOES-9++ 04/23/03 07/13/04 GMS-5 155°E 

GOES-10 07/21/98 06/21/06 West 135°W 

GOES-10 06/27/06 Present South America 60°W 

GOES-11 06/21/06 Present West 
104°W, 

135°W 

GOES-12 04/01/03 Present East 75°W 

GOES-13 05/24/06 Present Central 105°W 

GOES-14 06/27/09 Present Central 89.5°W 
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4.2 Ground-based measurements 

1. ARM: The Near-Surface Observation Data Set-1997 (NESOB-97) from the 

ARM provides continuous temperature measurements with a thirty-minute 

interval from the Cloud and Radiation Testbed (ARM/CART) site, which is 

located at Lamont, Oklahoma (36.607N, -97.489W).  

2. MESONET: Skin temperature observations from the Oklahoma Mesonet 

network. 

3. USCRN: Skin temperatures are measured by Apogee Instruments IRTS-P 

infrared temperature sensor with 5-min interval over 114 stations distributed in 

the continental United States. 

4. SURFRAD: It continuously monitors components of the surface radiation 

budget, which is then converted to skin temperatures. 

4.3 Collected data and data sources 

The summary of the collected data and its sources are shown in Table 4-2. 
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Table 4-2 Collected data and data sources 

Parameter Date Format Resolution Volume Location

GOES-81,2 April, July, Dec. 1997 raw 0.5° 15.6GB U.S. 

GOES-122 Jan., April, July, Dec. 2004 NetCDF 4km 25.64GB U.S. 

Emissivity 1,3 Jan., April, July, Dec. 2004 HDF 0.05° 532.7MB Global 

Cloud mask1 
April, July, Dec. 1997 

Jan., April, July, Dec. 2004
raw 0.5° 1.7GB U.S. 

Snow mask4 
April, July, Dec. 1997 

Jan., April, July, Dec. 2004
HDF 0.05° 5.25GB Global 

Water vapor1 
April, July, Dec. 1997 

Jan., April, July, Dec. 2004
raw 0.5° 1.7GB U.S. 

Satellite/solar 

geometry1 

April, July, Dec. 1997 

Jan., April, July, Dec. 2004
raw 0.5° 1.7GB U.S. 

ARM5 1997, 2004 TXT - - 1.59MB U.S. 

MESONET6 1997, 2004 TXT - - 480MB Oklahoma

CRN7 1997, 2004 TXT - - 18.3MB U.S. 

SURFRAD8 1997, 2004 TXT - - 193.2MB U.S. 

Data source: 
1. NOAA GOES Surface and Insolation Products (GSIP) 
2. Comprehensive Large Array-data Stewardship System (CLASS), National Oceanic and 

Atmospheric Administration (NOAA) 
3. National Aeronautics and Space Administration (NASA), Warehouse Inventory Search Tool 

(WIST). https://wist.echo.nasa.gov/api/ 
4. National snow and ice data center (NSIDC) 
5. Atmospheric Radiation Measurement (ARM) Climate Research Facility. http://www.arm.gov/
6. Mesonet, Oklahoma. http://www.mesonet.org/ 
7. The U.S. Climate Reference Network (USCRN). 

ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/hourly02/ 
8. Earth System Research Laboratory, NOAA. ftp://ftp.srrb.noaa.gov/pub/data/surfrad/ 
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Chapter 5  Results of LST retrievals and validation 

5.1 Calibration results 

As introduced in section 3.2, calibration will be carried out in pre-process 

procedures. The GOES measurements before and after calibration are shown in Figure 5-1 

and Figure 5-2. The scale bars demonstrate the conversion from GVAR value to brightness 

temperature. The GVAR data ranges from 0 to 8758, while calibrated image ranges from 

205K to 315K. 

 

 

Figure 5-1 GOES measurement before calibration 
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Figure 5-2 GOES measurement after calibration 

 

5.2  Implementation of the LST algorithms  

5.2.1 The new TES method 

The new TES method is applied to the two GOES-8 observations acquired at 9:00 

a.m. and 10:00 a.m. on July 14th, 1997. The monthly average brightness temperature 

measured by GOES-8 on July, 1997 is shown in Figure 5-3. The two-time measurements 

(9:00 a.m. and 10:00 a.m. UTM, July 14th, 1997) from Channel 4 and Channel 5 

measurements of GOES-8 Imagers are shown in Figure 5-4 and Figure 5-5, respectively. 

Since the algorithm is sensitive to cloud conditions, it is only applied to cloud free pixels to 

calculate LST and emissivities. The cloud fractions (available from NOAA GOES Surface 

and Insolation Products) at 9 a.m. and 10 a.m. (July 14th, 1997) are shown in Figure 5-6 

and Figure 5-7. Figure 5-8 and Figure 5-9 show the LST retrievals at 9 a.m. and 10 a.m., 

respectively. Figure 5-10 and Figure 5-11 are retrieved emissivities at 11 μm and 12 μm, 

respectively. 
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The spatial variation of retrieved temperatures shown in Figure 5-8 and Figure 5-9 

are mostly latitudinal. The majority of the southern area is warmer than the northern 

counterpart. The highest temperatures appeared in the region of low latitudes, like southern 

Texas. Besides, extremely high temperatures are detected in the arid and hot desert in south 

eastern California. The emissivity of north western U.S. continent is generally higher than 

that of south-eastern U.S. This distribution is similar to that of the MODIS monthly 

emissivity product (Wan 2008).  

 

 

Figure 5-3 Monthly average brightness temperature of GOES-8 at 12݉ߤ(July, 1997) 
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Figure 5-4 GOES-8 brightness temperature at 12µm at 9 a.m. (July 14th, 1997) 
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Figure 5-5 GOES-8 brightness temperature at 12µm at 10 a.m. (July 14th, 1997) 
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     Figure 5-6 Cloud cover at 9 a.m. (July 14th, 1997) 
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Figure 5-7 Cloud cover at 10 a.m. (July 14th, 1997) 

 

 

 

 

 

 

 



 

45 

 

 

 

 

 

 

Figure 5-8 LST retrievals at 9 a.m. on July 14th, 1997. 
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Figure 5-9 LST retrievals at 10 a.m. on July 14th, 1997. 
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Figure 5-10 Retrieved emissivity at 11 µm (July 14th, 1997) 
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Figure 5-11 Retrieved emissivity at 12 µm (July 14th, 1997) 

 

 

5.2.2 The dual-window LST algorithms with Machine learning 

The dual-window LST algorithm has been applied to GOES-12 measurements 

from January 2004. From the whole month observations, the algorithm coefficients are 

obtained through the training of matched GOES brightness temperatures and SURFRAD 

ground-based measurements at the same time and location.  

Based on the input datasets, algorithm coefficients are first generated from a 

conventional regression method. Algorithm coefficients for day-time and-night time are 

shown in Table 5-1. Statistics of LST retrieval from conventional regression method are 

shown in Table 5-2. From the results with traditional regression training, we can see the 
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results cannot meet the requirement of 2.5 K precision. The regression tree method is then 

applied to the same dataset. The training result is shown in Table 5-4. The training 

correlation coefficients for day time and night time are around 0.9 and the mean absolute 

errors are around 2.5K. 

 

Table 5-1 Algorithm coefficients from conventional regression method 

Time a 0 a 1 a 2 a 3 a 4 a 5 a 6 

Day time 175.9503 0.3703 -1.10670 -0.01718 24.04888 -0.00167 -41.3955

Night time 244.9676 0.1343 -0.74661 -0.11190 19.86255 0.00289 -44.1981

   
 

Table 5-2 Statistics of LST retrieval for day time 

Temperature 

Range 
Precision Accuracy Uncertainty 

Maximum 

Error 

Sampling 

No. 

275.00 - 280.00 1.773 10.5544 10.7023 12.8287 6 

280.00 - 285.00 2.9119 5.2842 6.0334 10.6514 39 

285.00 - 290.00 3.0368 2.1595 3.7263 17.1741 303 

290.00 - 295.00 4.0505 0.3796 4.0682 17.9907 468 

295.00 - 300.00 4.1596 -0.0412 4.1598 14.5395 279 

300.00 - 305.00 4.3836 -0.9523 4.4858 12.4006 194 

305.00 - 310.00 4.2899 -2.4878 4.9591 16.8173 98 

310.00 - 315.00 5.2491 -3.4572 6.2853 11.6495 46 

315.00 - 320.00 4.8057 -2.7836 5.5536 11.4238 35 

200.00 - 320.00 4.3663 0.2758 4.375 17.9907 1468 
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Table 5-3 Statistics of LST retrieval for night time 

Temperature 
Range 

Precision Accuracy Uncertainty
Maximum 

Error 

Sampling 
No. 

275.00 - 280.00 0.9887 11.8219 11.8631 13.5231 6 

280.00 - 285.00 2.0253 6.3193 6.636 11.2979 38 

285.00 - 290.00 1.7653 1.9859 2.6571 6.3432 281 

290.00 - 295.00 1.9598 -1.2809 2.3413 7.6159 354 

295.00 - 300.00 3.3289 -1.7759 3.773 8.549 151 

300.00 - 305.00 2.463 -1.6577 2.9689 8.3787 46 

305.00 - 310.00 2.3326 -5.48 5.9558 10.9977 13 

200.00 - 320.00 3.2618 0 3.2618 13.5231 889 

 

 

Table 5-4 Machine training result  

(GOES-12 measurements of July 2004) 

 

 

 

Data 

Source 
Time

Ground-based 

Temperature 

Sample 

size 

Training result 

Correlation 
coefficient 

Mean 
absolute 

error 
precision

CLASS 
Day 

time 
SURFRAD 105 0.9793 2.6264 1.2558 

CLASS 
Night

time 
SURFRAD 861 0.8895 2.5788 2.6482 
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soz <= 70.3 : LM1 (497/51.419%) 

soz >  70.3 :  
|   (sec(stz)-1.) <= 0.399 :  
|   |   Tb11 <= 289.95 :  
|   |   |   Tb11 <= 284.25 : LM2 (49/22.849%) 
|   |   |   Tb11 >  284.25 : LM3 (162/26.724%) 
|   |   Tb11 >  289.95 :  
|   |   |   Tb11 <= 292.75 :  
|   |   |   |   (sec(stz)-1.) <= 0.338 :  
|   |   |   |   |   (Tb3.9-Tb11) <= 2.35 : LM4 (39/25.375%) 
|   |   |   |   |   (Tb3.9-Tb11) >  2.35 : LM5 (55/19.789%) 
|   |   |   |   (sec(stz)-1.) >  0.338 :  
|   |   |   |   |   Tb3.9*cos(soz) <= 173.972 : LM6 (72/24.417%) 
|   |   |   |   |   Tb3.9*cos(soz) >  173.972 :  
|   |   |   |   |   |   (Tb3.9-Tb11) <= 1.4 : LM7 (17/27.951%) 
|   |   |   |   |   |   (Tb3.9-Tb11) >  1.4 : LM8 (9/21.196%) 
|   |   |   Tb11 >  292.75 : LM9 (54/19.391%) 
|   (sec(stz)-1.) >  0.399 :  
|   |   (sec(stz)-1.) <= 0.855 :  
|   |   |   (1-ems) <= 0.032 :  
|   |   |   |   Tb11 <= 289.65 :  
|   |   |   |   |   Tb11 <= 285.25 : LM10 (32/13.478%) 
|   |   |   |   |   Tb11 >  285.25 : LM11 (42/9.933%) 
|   |   |   |   Tb11 >  289.65 :  
|   |   |   |   |   soz <= 91.05 :  
|   |   |   |   |   |   Tb3.9*cos(soz) <= -205.606 : LM12 (3/3.038%) 
|   |   |   |   |   |   Tb3.9*cos(soz) >  -205.606 : LM13 (8/9.606%) 
|   |   |   |   |   soz >  91.05 :  
|   |   |   |   |   |   soz <= 113.4 :  
|   |   |   |   |   |   |   Tb11 <= 291.25 : LM14 (10/4.911%) 
|   |   |   |   |   |   |   Tb11 >  291.25 : LM15 (10/4.682%) 
|   |   |   |   |   |   soz >  113.4 : LM16 (6/4.052%) 
|   |   |   (1-ems) >  0.032 :  
|   |   |   |   Tb11 <= 289.95 :  
|   |   |   |   |   Tb11 <= 285.85 : LM17 (166/31.369%) 
|   |   |   |   |   Tb11 >  285.85 :  
|   |   |   |   |   |   (Tb3.9-Tb11)^2 <= 0.905 : LM18 (73/20.981%) 
|   |   |   |   |   |   (Tb3.9-Tb11)^2 >  0.905 : LM19 (37/28.525%) 
|   |   |   |   Tb11 >  289.95 : LM20 (71/33.84%) 
|   |   (sec(stz)-1.) >  0.855 :  
|   |   |   Tb11 <= 288.1 :  
|   |   |   |   soz <= 88.25 :  
|   |   |   |   |   soz <= 83.85 : LM21 (10/16.105%) 
|   |   |   |   |   soz >  83.85 : LM22 (11/10.213%) 
|   |   |   |   soz >  88.25 :  
|   |   |   |   |   soz <= 103.25 :  
|   |   |   |   |   |   (Tb3.9-Tb11) <= 2.9 : LM23 (13/16.552%) 
|   |   |   |   |   |   (Tb3.9-Tb11) >  2.9 : LM24 (10/11.962%) 
|   |   |   |   |   soz >  103.25 : LM25 (55/17.966%) 
|   |   |   Tb11 >  288.1 : LM26 (34/12.18%) 
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The regression tree based on the sample data is shown above. The tree nodes are all 

variables in Eq. 3-10 “soz” stands for solar zenith angle; “stz” stands for satellite zenith 

angle; “Tb11” stands for Tଵଵ; “ems” stands for ε. All the LM models are listed below.  

LM num: 1 
LST =  
 -0.1163 * soz  
 + 31.1268 * (sec(stz)-1.)  
 + 0.1409 * Tb11  
 + 0.0173 * (Tb3.9-Tb11)  
 - 0.0002 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 42.8102 * (1-ems)  
 + 252.9434 
 
LM num: 2 
LST =  
 -0.0476 * soz  
 + 8.8863 * (sec(stz)-1.)  
 + 0.0648 * Tb11  
 - 0.2894 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 1.9043 * (1-ems)  
 + 275.8915 
 
LM num: 3 
LST =  
 -0.0473 * soz  
 + 47.484 * (sec(stz)-1.)  
 + 0.2212 * Tb11  
 + 0.9213 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 1.9043 * (1-ems)  
 + 213.1048 
 
LM num: 4 
LST =  
 -0.0053 * soz  
 + 11.672 * (sec(stz)-1.)  
 + 1.154 * Tb11  
 + 0.2987 * (Tb3.9-Tb11)  
 + 0.0285 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
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 - 1.9043 * (1-ems)  
 - 50.1612 
 
LM num: 5 
LST =  
 -0.0053 * soz  
 + 11.672 * (sec(stz)-1.)  
 + 0.2857 * Tb11  
 + 0.2395 * (Tb3.9-Tb11)  
 + 0.0285 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 1.9043 * (1-ems)  
 + 204.75 
 
LM num: 6 
LST =  
 -0.0053 * soz  
 + 11.4714 * (sec(stz)-1.)  
 + 0.1322 * Tb11  
 + 0.2851 * (Tb3.9-Tb11)  
 - 0.0893 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 1.9043 * (1-ems)  
 + 250.9104 
 
LM num: 7 
LST =  
 -0.0053 * soz  
 + 11.4714 * (sec(stz)-1.)  
 + 0.1322 * Tb11  
 + 1.1972 * (Tb3.9-Tb11)  
 - 0.2206 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 1.9043 * (1-ems)  
 + 250.5369 
 
LM num: 8 
LST =  
 -0.0053 * soz  
 + 11.4714 * (sec(stz)-1.)  
 + 0.1322 * Tb11  
 + 0.1775 * (Tb3.9-Tb11)  
 - 0.2206 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 1.9043 * (1-ems)  
 + 250.231 
 
LM num: 9 



 

54 

 

LST =  
 -0.0792 * soz  
 + 39.2267 * (sec(stz)-1.)  
 + 0.1718 * Tb11  
 + 0.0399 * (Tb3.9-Tb11)  
 + 0.0319 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 1.9043 * (1-ems)  
 + 238.2564 
 
LM num: 10 
LST =  
 -0.0151 * soz  
 + 4.8917 * (sec(stz)-1.)  
 + 0.0867 * Tb11  
 + 0.3539 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 8.2748 * (1-ems)  
 + 268.2738 
 
LM num: 11 
LST =  
 -0.0151 * soz  
 + 4.8917 * (sec(stz)-1.)  
 - 0.1624 * Tb11  
 + 0.2047 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 8.2748 * (1-ems)  
 + 340.6268 
 
LM num: 12 
LST =  
 0.063 * soz  
 + 4.8917 * (sec(stz)-1.)  
 + 0.2795 * Tb11  
 + 0.3807 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 - 0.0028 * Tb3.9*cos(soz)  
 - 8.2748 * (1-ems)  
 + 208.5952 
 
LM num: 13 
LST =  
 0.0519 * soz  
 + 4.8917 * (sec(stz)-1.)  
 + 0.2795 * Tb11  
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 + 0.3807 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 - 0.0022 * Tb3.9*cos(soz)  
 - 8.2748 * (1-ems)  
 + 209.2599 
 
LM num: 14 
LST =  
 -0.0122 * soz  
 + 4.8917 * (sec(stz)-1.)  
 + 0.3173 * Tb11  
 + 0.3105 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0.0004 * Tb3.9*cos(soz)  
 - 8.2748 * (1-ems)  
 + 202.4238 
 
LM num: 15 
LST =  
 -0.0357 * soz  
 + 4.8917 * (sec(stz)-1.)  
 + 0.3173 * Tb11  
 + 0.3105 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 8.2748 * (1-ems)  
 + 204.9661 
 
LM num: 16 
LST =  
 -0.0268 * soz  
 + 4.8917 * (sec(stz)-1.)  
 + 0.3163 * Tb11  
 + 0.3105 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 8.2748 * (1-ems)  
 + 204.1748 
 
LM num: 17 
LST =  
 -0.0088 * soz  
 + 14.7171 * (sec(stz)-1.)  
 + 0.0507 * Tb11  
 + 0.9589 * (Tb3.9-Tb11)  
 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0 * Tb3.9*cos(soz)  
 - 4.681 * (1-ems)  
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 + 265.8688 
 
LM num: 18 
LST =  
 -0.0113 * soz  
 + 3.4094 * (sec(stz)-1.)  
 + 0.056 * Tb11  
 + 0.228 * (Tb3.9-Tb11)  
 + 0.9345 * (Tb3.9-Tb11)^2  
 - 0.0014 * Tb3.9*cos(soz)  
 - 4.681 * (1-ems)  
 + 273.3429 
 
LM num: 19 
LST =  
 -0.0131 * soz  
 + 3.4094 * (sec(stz)-1.)  
 + 0.056 * Tb11  
 + 0.2622 * (Tb3.9-Tb11)  
 + 0.0366 * (Tb3.9-Tb11)^2  
 - 0.0004 * Tb3.9*cos(soz)  
 - 4.681 * (1-ems)  
 + 275.031 
 
LM num: 20 
LST =  
 -0.0143 * soz  
 + 2.5918 * (sec(stz)-1.)  
 + 0.5193 * Tb11  
 + 0.1772 * (Tb3.9-Tb11)  
 + 0.0673 * (Tb3.9-Tb11)^2  
 + 0.0026 * Tb3.9*cos(soz)  
 - 4.681 * (1-ems)  
 + 142.4011 
 
LM num: 21 
LST =  
 0.8285 * soz  
 + 2.6176 * (sec(stz)-1.)  
 + 0.4466 * Tb11  
 + 0.5955 * (Tb3.9-Tb11)  
 + 0.3331 * (Tb3.9-Tb11)^2  
 + 0.0003 * Tb3.9*cos(soz)  
 - 5.265 * (1-ems)  
 + 98.1796 
 
LM num: 22 
LST =  
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 0.3668 * soz  
 + 2.6176 * (sec(stz)-1.)  
 + 0.2745 * Tb11  
 + 0.5955 * (Tb3.9-Tb11)  
 + 0.3203 * (Tb3.9-Tb11)^2  
 + 0.0003 * Tb3.9*cos(soz)  
 - 5.265 * (1-ems)  
 + 185.1115 
 
LM num: 23 
LST =  
 -0.0702 * soz  
 + 2.6176 * (sec(stz)-1.)  
 - 0.0079 * Tb11  
 + 0.6601 * (Tb3.9-Tb11)  
 - 0.0712 * (Tb3.9-Tb11)^2  
 + 0.0003 * Tb3.9*cos(soz)  
 - 5.265 * (1-ems)  
 + 307.9789 
 
LM num: 24 
LST =  
 -0.0459 * soz  
 + 2.6176 * (sec(stz)-1.)  
 + 0.002 * Tb11  
 + 0.6481 * (Tb3.9-Tb11)  
 - 0.0712 * (Tb3.9-Tb11)^2  
 + 0.0003 * Tb3.9*cos(soz)  
 - 5.265 * (1-ems)  
 + 302.5407 
 
LM num: 25 
LST =  
 0.0571 * soz  
 + 2.6176 * (sec(stz)-1.)  
 + 0.0025 * Tb11  
 + 0.874 * (Tb3.9-Tb11)  
 + 0.1801 * (Tb3.9-Tb11)^2  
 + 0.0003 * Tb3.9*cos(soz)  
 - 5.265 * (1-ems)  
 + 288.6851 
 
LM num: 26 
LST =  
 -0.0087 * soz  
 + 2.6176 * (sec(stz)-1.)  
 + 0.5576 * Tb11  
 + 0.7354 * (Tb3.9-Tb11)  
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 - 0.0001 * (Tb3.9-Tb11)^2  
 + 0.0007 * Tb3.9*cos(soz)  
 - 5.265 * (1-ems)  
 + 139.0177 
 
As we can see from the results, the precision from conventional training is 4.3K for 

day time samples, and 3.2K for night time. Results from regression tree give the precision 

of 2.6264K during day time and 2.5788K during night time. 

5.3 Validation 

5.3.1 GOES 8-11/R 

The Near-Surface Observation Data Set-1997 (NESOB-97) from the U.S. ARM 

facility is utilized to validate the LST retrievals from the new TES retrieval algorithm. The 

continuous temperature observations with a thirty-minute interval were acquired at the 

ARM Cloud and Radiation Testbed (ARM/CART) site which is located at Lamont, 

Oklahoma (36.607ºN, 97.489ºW). Multi-Filter Radiometer is used to detect the 

diffuse/total upwelling irradiance, which is then converted to the skin temperature based on 

the NOAA/Atmospheric Turbulence and Diffusion Division algorithm (Peppler, Lamb et 

al. 1996; Flynn and Hodges 2005). The consistency and easy availability of the ARM data 

make it a favorable observation dataset to validate the retrievals from remotely sensed data. 

The ARM data have been adopted by Pinker et al. (Pinker, Sun et al. 2009) and Faysash 

and Smith (Faysash and Smith 1999) to estimate the performance of LST retrievals from 

the GOES satellite observations.  

The LSTs retrieved from cloud-free GOES-8 thermal infrared measurements are 

compared with the ARM ground-based observations at the same location and at the same 

time. The retrieved LST and LSE, the ground-measured temperature, as well as the biases 
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are listed in Table 5-5. To better demonstrate the validation, the differences between 

ground-measured and retrieved temperatures are graphically presented in Figure 5-12. The 

brightness temperatures from the original data are also shown in the figure for ease of 

comparison. As can be seen from Table 5-5 and Figure 5-12, the satellite-retrieved 

temperatures agree with the ground observations very well. The skin temperature shows an 

overall increase by 1.24K from July 1st to July 28th with small fluctuation in between.  

The absolute difference between retrieved and ground-measured temperatures reaches the 

smallest (0.07K) on July 27th and the largest (1.15K) on July 25th.  The mean absolute 

error and root mean squared (RMS) error of retrieved LST against the ARM measurements 

are 0.45K and 0.31K, respectively. The retrieved emissivity at 11m differs very little 

from that at 12 m with the mean absolute difference of merely 0.0088. The same pattern 

can be found in the MODIS monthly emissivity product over the U.S. continent of July 

1997, in which the mean emissivity at MODIS Channel 31 (10.78 -11.28 m) and Channel 

32 (11.77 -12.27 m) are 0.752821 and 0.754554, respectively. We also notice from the 

retrieved emissivity that the emissivity varies within the month at the rate of 3.4%. In 

summary, the new TES algorithm retrieved reasonable temperatures and emissivity with 

good accuracy. 
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Table 5-5 Ground-based observations and retrieved temperatures 

Date   
t1:9 a.m., 
t2:10 a.m. 

Retrieved 
temperature 

(RT) 
(K)  

Ground-observed 
Temperature 

(GT)  
(K)  

Differences 
between 

GT and RT

Retrieved 
emissivity  

at  
Channel4 

Retrieved 
emissivity 

at  
Channel5 

070/10/97 
(t1) 

295.82 295.48 
0.34 

0.96188 0.95387 

070/10/97 
(t2) 

295.56 295.09 
0.47 

0.96188 0.95387 

07/12/97 
(t1) 

296.14 296.24 
0.10 

0.97147 0.9684 

07/12/97 
(t2) 

296.17 295.83 
0.34 

0.97147 0.9684 

07/14/97 
(t1) 

296.62 297.18 
0.56 

0.93849 0.92109 

07/14/97 
(t2) 

297.05 296.98 
0.07 

0.93849 0.92109 

07/24/97 
(t1) 

297.33 297.66 
0.33 

0.96316 0.95656 

07/24/97 
(t2) 

297.7 297.46 
0.24 

0.96316 0.95656 

07/25/97 
(t1) 

297.86 297.16 
0.70 

0.95739 0.94943 

07/25/97 
(t2) 

297.83 296.68 
1.15 

0.95739 0.94943 

07/27/97 
(t1) 

296.68 297.44 
0.76 

0.96353 0.95398 

07/27/97 
(t2) 

296.35 296.28 
0.07 

0.96353 0.95398 

07/28/97 
(t1) 

297.57 297.94 0.37 0.95829 0.94913 

07/28/97 
(t2) 

297.06 297.83 0.77 0.95829 0.94913 
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Figure 5-12 Validation results for the LST retrievals, using the dataset from U.S. 
Atmospheric Radiation Measurement (ARM) facility 

 

5.3.2 GOES M-Q 

Table 5-7 shows the evaluation results of the GOES-12 LST retrievals against the 

SURFRAD observations at the six stations. The station ID (TSAID) of SURFRAD six 

observation sites are listed in Table 5-6. The accuracy (ACC), precision (Prec) and N 

represent the mean bias (difference), and standard deviation error between GOES LSTs 

and SURFRAD observations.  N indicates the total sample numbers.   
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Table 5-6 List of SURFRAD observation sites 

Site No. Site Location Lat(N)/Lon(W) Surface Type* 

1 Bondville, IL 40.05/88.37 Crop Land 

2 Fort Peck, MT 48.31/105.10 Grass Land 

3 Goodwin Creek, MS 34.25/89.87 Deciduous Forest 

4 Table Mountain, CO 40.13/105.24 Crop Land 

5 Desert Rock, NV 36.63/116.02 Open Shrub Land 

6 Pennsylvania State University, PA 40.72/77.93 Mixed Forest 

*IGBP surface types 
 

 

Table 5-7 Accuracy/Precision Estimations of Four Mid-seasons months from GOES-12 
LST Retrieval  

Site 
No. 

January April July October 

N Acc Prec N Acc Prec N Acc Prec N Acc Prec

1 164 -1.64 1.46 120 -1.83 1.93 151 -2.18 1.49 121 -0.32 1.75

2 188 -1.27 2.28 71 -2.88 1.54 146 -2.94 1.48 74 -0.38 2.57

3 208 -1.13 1.64 183 -1.53 1.89 104 -2.89 1.43 163 0.12 1.81

4 206 -0.53 2.15 145 -0.02 2.28 209 0.11 1.95 192 -1.01 1.85

5 182 -1.33 2.00 127 -1.42 2.49 167 -1.41 2.08 135 -0.13 2.65

6 133 -1.68 2.34 99 -1.46 2.23 169 -1.08 2.30 133 1.56 2.65

 

 

Shown in Table 5-7 are the accuracy/precision values for the four seasons, 

respectively. It is worth of noting that the seasonal precision values are still around 2.5K.  

But the seasonal accuracy patterns vary from site to site. It is unsure whether such distinct 
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seasonal patterns might be related to the different surface covers and regional climates.  

All these statistical features will be further studied in the future. 

Big errors are found in winter, especially over cold surfaces where surface 

temperatures are below the freezing point or less than 273 K or 0º C. A possible reason for 

this may be the snow contamination. Therefore, snow and snow-free cases are analyzed 

separately, as shown in Table 5-8. However, it is found that snow-free cases don’t show 

improvements to the precision. As shown in Table 5-9, for the pixels with snow cover less 

than 5%, there are still many pixels with extremely low observed brightness temperature, 

which can be different from the SURFRAD measurements as big as 28 degrees. Big 

retrieval errors are caused by these pixels with extremely low temperature.  

In the next step, temperatures of cloud and snow cover pixels are analyzed. For 

cloudy pixels, as shown in Table 5-10, the average temperatures of GOES measurement at 

11µm and ground observations for all the pixels with cloud cover possibility larger than 90% 

are computed, which are 252.27 and 270.55, respectively. The average difference can 

reach as large as 18 degrees. While for snow pixels with snow cover larger than 5% (Table 

5-11), average brightness temperature at 11 µm is not that different from the ground 

measurements. The mean difference is less than 5 degrees.  From this analysis, a safe 

conclusion can be drawn that the big differences are more probably not caused by snow, 

but rather by cloud contamination, which the cloud cover algorithm may fail to detect.  If 

all these contaminative pixels with the Tଵଵ less than the average cloud top temperature, 

then the results show many improvements (Table 5-12).   
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Table 5-8 Accuracy/Precision estimations from LST retrieval from GOES-12 for Jan. 2004 

Date  Time  
Ground 

Temperature 
Sample 

size  
Correlation 
coefficient 

Bias 
error  

Precision 

0401  daytime  SURFRAD 98  0.9554  1.6401  2.3280 

0401  Nighttime  SURFRAD 798  0.8614  2.8162  3.0006 

0401  Daytime‐snowfree  SURFRAD 70  0.9448  1.7335  2.2032 

0401  Nighttime‐snowfree  SURFRAD 696  0.8614  2.5822  3.0233 

0401  Daytime‐snow  SURFRAD 13  0.9534  1.4844  0.8024 

0401  Nighttime‐snow  SURFRAD 32  0.9356  1.4157  0.8750 

 
 

 

Table 5-9 Records with big errors from NCDC data (Cloud free && snow free) 

T11  
Retrieved  

temperature 
(LST)  

SURFRAD
 (Ts)  

Differences 
(Ts‐T11)  

Differences 
(Ts‐LST) 

Snow 
cover  

Cloud 
cover 

244.983  252.481  273.544  28.561  21.063  0  0  
259.486  262.779  284.125  24.639  21.347  0  0  
253.324  257.159  274.78  21.457  17.621  0  0  
253.211  258.288  273.93  20.719  15.642  0  0  
250.29  255.969  270.233  19.942  14.264  0  0  

255.457  259.804  275.249  19.791  15.445  0  0  
261.585  263.889  281.067  19.482  17.178  0  0  
266.798  269.673  285.263  18.465  15.59  0  0  
261.753  265.402  280.157  18.404  14.755  0  0  
251.984  258.238  269.789  17.806  11.551  0  0  
246.885  252.16  264.61  17.725  12.45  0  0  
259.854  264.458  277.126  17.272  12.669  0  0  

257.4  269.883  274.586  17.185  4.702  0  0  
263.07  265.67  280.136  17.067  14.466  0  0  

267.701  269.405  284.76  17.06  15.355  0  0  
267.566  288.035  284.273  16.707  3.762  0  0  
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Table 5-10 Statistics of cloud cover pixels 

cloud GOES T11 (K) 
SURFRAD 

(K) 
Differences (K) 

Max 285.759 296.6778 68.9041 
Min 214.591 236.1 0.0062 

average 252.2728 270.5534 18.40956 
 

 

Table 5-11 Statistics of snow cover pixels 

snow  GOES T11 (K)  
SURFRAD 

(K) 
Differences (K)  

Max  265.235  268.9851  27.4411  

Min  223.919  247.2088  0.0141  

average  254.2187  258.9029  4.919885  

 

 

Table 5-12  Accuracy/Precision estimations from LST retrieval from GOES-12 for Jan. 
2004 (cloud contaminative pixels exclusive) 

Date  Time  
Ground 

Temperature 
Sample 

size 
Correlation 
coefficient 

Bias 
error  

Precision

0401  daytime  Surfrad  96  0.9829  1.1725  1.3324 

0401  Nighttime  Surfrad  752  0.9408  1.9687  1.8893 

0401  Daytime‐snowfree Surfrad  68  0.9797  1.0963  1.3307 

0401  Nighttime‐snowfree Surfrad  654  0.9422  1.8102  1.8706 

0401  Daytime‐snow  Surfrad  13  0.9534  1.4844  0.8024 

0401  Nighttime‐snow  Surfrad  32  0.9356  1.4157  0.8750 
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5.3.3 Error Budget 

The test results shown in the above Section indicate that overall both the accuracy 

and precision of the selected algorithm meet requirements (2.5K). Such assessment is 

based on both the simulation dataset, and ground observations from the SURFRAD.  

As mentioned earlier, there are several issues that should be further studied in the 

match-up dataset comparisons. Particularly, difference between the satellite pixel-size 

measurement and the ground spot-size measurement must be characterized for a high 

quality validation procedure.  

Accuracy of the SURFRAD LST estimation is also a concern since it is calculated 

from the upwelling and downwelling irradiance with a broadband surface emissivity value. 

The emissivity values are estimated from the surface type classification and the emissivity 

library (Snyder, Wan et al. 1998), and MODIS narrow band emissivity, which may 

introduce errors to the ground LST estimation. 

Cloud contamination is still a problem even if we have used a stringent cloud 

filtering procedure in generating the match-up dataset. It is found that a little threshold 

value or procedure change will have a significant impact on the output match-up data pairs, 

though the overall validation results are not obviously affected.   

All the above factors may potentially degrade the algorithm performance.  
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Chapter 6  Discussion 

6.1 Issues in the new TES method 

Some issues relevant to the new TES algorithm need further discussion. Singularity 

is a serious concern for the new algorithm. Eq.3-5 is theoretically solvable even when the 

two time measurements are slightly different. However, when the two measurements are 

too close in value, the solution would be inevitably significantly affected by the random 

noise in the data. Cautions, therefore, must be taken to avoid singularity of Eq.3-5.  First, 

the brightness temperatures ( Tଵଵ, Tଵଶ ) must be significantly different from different 

observation times to guarantee a reliable retrieval. Usually, a sufficient time interval 

between the observations can result in significant temperature difference. However, a large 

time interval may break the emissivity constancy. Other authors experienced the similar 

problem. Watson pointed out that the two-measurement method required distinct 

temperature and emissivity invariance, which is not easy to be satisfied at the same time, 

particularly for polar-orbiting satellite data (Watson 1992b). In our experiment the most 

stable results were obtained when the temporal interval between the two measurements is 

set in a range from one to three hours, which ensures sufficient temperature difference and 

emissivity constancy at the same time. Similar temporal interval is reported by Li et al. (Li 

and Schmit Sept. 2008) and Yu et al.(Yu, Xu et al. 2009). Second, the applied SW LST 

algorithms, F() and G(), should be independent. It is not sufficient to identify whether the 
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two SW LST algorithms are independent from their formula. Experimental testing using 

actual satellite data is important as well. In this study, we use two sets of the SWLST 

algorithms developed by Yu et al. (Yu, Tarpley et al. 2009a) , which is part of their LST 

algorithm development for the U.S. GOES-R satellite mission. The experimental results 

have demonstrated the feasibility of the new TES method in practice. 

The main error related to this new TES algorithm may come from (1) the accuracy 

limitation of the SW LST algorithms themselves; (2) sensitivity to emissivity; and (3) 

cloud contamination. 

It is worth mentioning that the time interval does not have to be fixed to a certain 

value (e.g. three hours) all the time. When the measurements at three-hour interval are not 

available for some reason such as cloudiness, the algorithm could automatically search for 

observations at other time stamps within the allowed time interval (one to three hours). 

Considering that geostationary satellites usually can provide high temporal observations 

(e.g., 15 min refresh rate of GOES Imager), more data pairs would be available for the new 

TES retrieval process. This flexible selection method will increase the number of qualified 

pairs of observations, which is of great value to operational production of LST product. 

6.2 Issues in the uncertainty of emissivity 

We found that the solution for emissivity is not as stable as that for temperature, 

which may result in falsely retrieved emissivity, either negative or greater than one. The 

sensitivity to emissivity is understandable, which inherits the problem from which most 

SW LST algorithms suffer. Yu et al. (Yu, Tarpley et al. 2009a) analyzed the emissivity 

sensitivities of nine SW LST algorithms and indicated that small uncertainty in emissivity 
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could cause significant uncertainty in LST retrievals (over 3K). One option to minimize the 

effect brought by uncertainty in emissivity is to find the optimal combination from those 

SW LST algorithms that are less sensitive to emissivity. According to the previous 

research (Yu, Tarpley et al. 2009a), SW algorithms developed by Prata et al. and Uliveri et 

al. showed low sensitivity to emissivity since the emissivity differences are not introduced 

in the algorithms. 

6.3 Issues in the angular anisotropy 

The effect of angular anisotropy is not taken into account for most existing LST 

retrieval algorithms. Table 6-1 presents the research on the angular effects of thermal 

emitted radiation. It has been noticed that brightness temperature varies with sun-view 

geometry and the difference in brightness temperature between vertical and oblique 

measurements could reach as high as 9.3K for certain land types according to Paw U’s 

research (Paw U 1992). On average, the brightness temperature varies 1-4K with the 

viewing angle. Meanwhile, some scientists analyzed the directional emissivity effect, 

which showed that the apparent emissivity varies from 0.9560 to 0.9680 (Sobrino, Li et al. 

1994).  

The angular anisotropy should be a concern to the future GOES LST product 

because of the distinct characteristics of the GOES series. Currently, the GOES series have 

two operational positions, GOES-W located at the west longitude of 135°W over the 

Pacific Ocean, and GOES-E at 75°W over the Amazon River, as shown in Figure 6-1. 

Measurements of the common area from GOES-E and GOES-W may be significantly 
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different due to the obvious different observing angles. The consistence of LST retrievals 

between GOES-W and GOES-E will be a very important research topic in the future study. 

 

 

Table 6-1 Some experiments and results about BRDF effects of LST/emissivity 

 
Date 

 
Scientist Land type Research conclusion Reference 

1983 Kimes etc. 
Crop 

canopies 

Difference of BT reaches 4K 
between vertical and oblique 

measurements 

(Kimes and 
Kirchner 

1983) 

1982 Doizer etc. snow 
Difference of BT reaches 3K 

because of directional 
emissivity effect 

(Dozier and 
Warren 
1982) 

1987 
Balick, 

Hutchinson 

broad-leaved 

forest 
Difference of BT reaches 7K 

(Balick, 
Hutchison et 

al. 1987) 

1986 Barton,Talashima bare soil 
emissivity rapidly decreases 
when viewing angle larger 

than 60° 

(Barton and 
Talashima 

1986) 

1991 Labed and Stoll bare soil 
emissivity rapidly decreases 
when viewing angle larger 

than 60° 

(Labed and 
Stoll 1991) 

1992 Paw U sunflower The biggest difference 
reaches 9.3 K 

(Paw U 
1992) 

2000 Lagouarde corn 
Difference of BT reaches 4K 
between vertical and oblique 

measurements 

(Lagouarde, 
Ballans et al. 

2000) 

2000 Lagouarde Bare soil 
Difference of BT reaches 
3.5K between vertical and 

oblique measurements 

(Lagouarde, 
Ballans et al. 

2000) 
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Figure 6-1 Coverage of GOES-East and GOES-West 
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Chapter 7  Conclusion and future work 

Land surface temperature is of fundamental importance to the net radiation budget 

at the Earth’s surface and it is also an important indicator for both the greenhouse effect 

and the energy exchange between the atmosphere and earth surface. Compared to the 

sparely distributed in-situ surface air temperature measurements, the use of 

satellite-derived data could contribute to a large-area consistent measurement (Gallo, 

Owen et al. 1999). Satellite LSTs, when assimilated into climate, mesoscale atmospheric 

and land surface models, are capable of analyzing long term climate change on large scales 

due to their rich archive which is routinely produced from satellite imagery data. Since 

surface temperature has a strong diurnal cycle, and since only geostationary satellites are 

capable of providing good diurnal coverage, the consistent LSTs from GOES series will 

substantially improve the accuracy of global and mesoscale modes, and allow the 

estimation of DTR, which is an important climate change indicator. 

According to the unique characteristics of the GOES series, two sets of LST 

retrieval algorithms are presented in this study to generate consistent land surface 

temperatures from GOES-8 to GOES-14.  

The new TES method is described in detail to derive temperature and emissivity 

simultaneously from two-time TIR observations from GOES 8 to GOES 11 as well as the 

new generation (GOES R). This method has the advantage of simplicity in using two 
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measurements within a period of time without having to solve radiative transfer equations. 

The flexibility of integration of the established LST retrieval algorithms makes the method 

easy to implement. Two combinations of SW LST algorithms are adapted in this method, 

and both produce reasonable results. Validation results demonstrate that the TES algorithm 

is capable of simultaneously deriving qualified LST and LSE with good retrieval precision. 

The bias error of the algorithm is estimated around 1.15K.  

A machine learning technique using a regression tree method has been introduced 

to the dual-window LST algorithm to retrieve LSTs from GOES M (12) to GOES Q. The 

advantages of the regression tree method make it attractive for applications that 

operationally derive LSTs with high accuracy. RT can provide flexible and robust 

analytical methods for identifying the relationships between complex environmental data 

(De'ath and Fabricius 2000). The application of RT techniques to LST retrieval is 

innovative and creative, with real potential to make contributions about how to determine 

regression relationships under different conditions. That is certainly an evolutionary step in 

the use of massive, dynamic, ambiguous and possibly conflicting digital data. The 

evaluation results between GOES 12 and SURFRAD observations shows that the seasonal 

retrieval precision is around 2.5K, around 1K improvement compared to the conventional 

training method.  

Error sources have been carefully analyzed for the new TES algorithm as well as 

the dual-window LST algorithm. The main error related to the TES retrieval algorithm may 

come from (1) the accuracy limitation of the SW LST algorithms themselves; (2) 

sensitivity to emissivity; and (3) cloud contamination.  
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For the new TES method, further study is necessary for the completeness and 

practicality of this algorithm. First, only two combinations of SW LST algorithms have 

been selected and implemented here. Combinations of other existing SW LST algorithms 

are also feasible in theory and effective in practice, but their retrieval precision and stability 

need to be investigated. Second, singularity is still a major concern for the new algorithm. 

More experiments in the future are needed to gain an in-depth understanding of how to 

choose optimal data pairs with both independent temperatures and constant emissivity.  

In addition, the difficulties with comparison of satellite retrievals with ground 

observations are well known and common to many other satellite products. One problem of 

this kind is caused by the incompatibility between pixel-sized satellite observations and 

surface point measurements. 

Finally, the large diurnal variability of LST is something that is conceptually 

understood, but which is poorly described quantitatively and not explicitly accounted for in 

the algorithm. Surface type, especially the green coverage and soil moisture, is a crucial 

factor for the amplitude of the diurnal cycle. Bare dry soil has a high Bowen ratio while 

transpiring vegetation is low, and therefore, pixels with low vegetation present much 

larger diurnal variation (Sun, Pinker et al. 2006). A second contributor to LST variation is 

the fraction of surface shadowing which can be seen from the observing satellite for the 

reason that shaded surfaces are significantly cooler than sunlit surfaces. And the apparent 

shadow fraction varies according to the relative geometry of the sun and satellite and is 

changing throughout daylight hours. All of these factors should be factored into the LST 

algorithm in future research.  
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