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LEARNING AND GENERALIZATION O

EVALUATION CRITERIA AND COMPARATIVE

Thomas G. Dietterieh
Degartment of Comguter Sclence
University of Illigeils

Urbana, Illincis 61801

Some recent work in the area of 1earnin§
light of the need in many diverse dis
analysis. Such programs deseribe
tionships which caarpot

tant asiects of the problem of learning structural descrigtions are examine

n Methods published
Vere [22-25), ate analyzed according to these
Finally some pgoals are suggasted for future research.

evaluat current work is presented.

1691, and
eveloped by the authors.

1. INTRODUCTION
1.1 Motivatlon and Basic Concepts

There are many problem areas where large
volumes of data are gemerated about a class of
objects, the behavior of z system, & Pprocess,
etc. &cientists in fields as diverse as agri-
culture, chemistry, and psychology are faced
with the need to analyze such data in order to
detect regularities and common patterns. Trad-
ftfonal tools for dara analysis include various
statistical techniques, curve-fitting tech=
niques, numerical taxonomy, etc. These
methods, however, are often not satisfactory
because thé¥ impose an overly restrictive
mathematical framework on the scope of possible
solutions. For example, statistical methods
describe the datz {n rerms of probabiliry dis-
tribution functions placed on random variables.

A3 a result, the types of patterns which they
can discover are limited to those which can be
expressed by placing constraintsa upod the

of various probability distributior

unctions. Because of the mathematical Fframe-
works upon which cthey are baged, tradicional
wethods cannot detect conceptual patterns such
s the logical, causal, or functinnal relation-
ships that are typfcal of descriptions producer
by humans. This is a well-known problem in AL,
namely that a system in order to learn some=

arameters

thing must [Firsc be able to express it. The
solution rtequires Introducing more powerful
representations for hypotheses and developing

corresponding techniques of data analysis anc
pattern discovery. Work done in Al and related
areas on computer indnction and learning struc—
tural descriptions from examples has laid the
groundwork for researh in this area. This is
not accidental, because, as Michie [i8] has
pointed out, the development of systems which
deal with problems in human conce tual terms ig
a fundamental characteristic of AE researche«

In this paper, We examine some of the recent

work iIn Al on the subject of learning and gen-

erallzatfon of structural descriptions. In
4
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F CHARACTERISTIC DESCRIPTIONS:

structural descriptions from examples
¢iplines for.pro¥rams which can
complex data in terms o

be discovered using traditional data anslysis techniques.
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iz reviewed 1in
perform conceptuzl data
logical, functional, and causal rala-
Various impor=

and criteria for
[1=3,20), Hayes-Roth

y Buchanan, et.al,
to a method

criterfa and compared

we will review four recent methods
of inductive generalization: Buchanan et. ale,
' Vere, and our own work (Earlier
well-knowa . work by Winston was recently re-
viewed by Knapman [11]). We also outline some
gealg for regseatch in this area. Attention Is
given primarily to the simplest form of pgen=
eralization, namely the maximally specific con-
junctive statements which characterize a single
set of input events (called for short, conjunc=-
tive generalizatlions). The reason for thia
choice 1is that most work deme in this area ia
addyessin this, quite restricted, subject.
Many of the researchers whose work we review in
this paper have done woerk on other aspects of
machine learning including generalization usinﬁ
el

partlcular,

negative  examples (Vere, Michalskl) 3
developing discriminant descriptions of several
classes of objects (Michalaki). Due t0 space

Timitations, we have been unable to ingc ude

these topics in this paper. Insteady, thhese
contritutions are mentioned 4n the sections
concerning extensions. We begin the analysis

b¥ first discussing several important aspects
oi the problem of learning comceptual descrip~-
tions:
« types of descriptions:
versus discriminant
« forms of descrigtions
. types of generalization processes Llovolved
in generzlizing descriptions {rules of gen-
eralization)
s ccostructive versus
duction
« general versus problem-orieatéd methods of
{aductico.

1.2 Types of Descriptions

Wa dilstinsuish between characreristie znd
diacriminant descripilons [161. A characteris-—
tic description is a descriprion of 2 SIngle
sBt of_oﬁiects (examples, events) which is fa-
tepded to discriminate that set of objeccs from
all other Eﬂasible obiecrs. For examgle. a
characteristie description of the ser 0 11
tubles would discriminate any table from all
thin%s which are nor-tables. Psycholoxists
consider this problem under the name af concedt
formation (e.g- Hunt {10})« Simce it is Impoe-

characteristic

non-constructive in-



sible to examine all other possible objects, a

characteristic desc¢ripticn 1s usvally developed

by sgecif'inﬁ all characteristics which are
- kno

rrue for all wn objects of the class (posi-
tive examples). Alternatively, in some Frpb—
lems there are available so-called ‘nedx
misses which can be used to more precisely

circumscribe the given class.

A diseriminant description 1is a description of
a “single cIaSE‘BT"Eg;EETs in the context of a
fixed set of other e¢lasses of objects. It

states only those properties of objects in the
class under consideraticn which are mnecessary
to distinguish them from the objects in the
other classes. A characteristic description
can be viewed as a discriminant description in
which the given class {8 discriminated against
infinitely many alternative tlasses.

In this paper we restrict ourselves to the
problem of determining characteristic descrip-
tions. The problem of determining discriminant
descrigtions has been studied by Michalski and
his esllaborators [13=17]).

1.3 Forms of Descriptions

Descriptions, either characteristic or discrim-
inant, may take several forms. In this paper
we concentrate on generalizations in coniunc-
tive form. Other ferms inciude disjunctions,
exceptions, production rules of various GEypes,
hierarchical and multilevel descriptions, se-
mantie nets, and frames.

1+4 Ceneralization Pules

The process of 1nducin§ a general description
from examples can be viewed as a process of ap-
plying certain generalfzation rules to the ini-
tial descriptions to transform them into more
general output descriptions. This viewpolnt
ermite one to characterize various methods of
nduction by specifying the rules of generali-
zation which thE{ ise. Below ia a brief review
of various generalization rules based on the
paper [17]). .

i) Propping Condition Rule. 1If a descrip~
tion {s viewed as a conjunction of conditions
whnich must be satisfied, then one way to gen-
eralize it is to drop one or more of these con-
ditions. For example:

red(x) A big(x) |[|< red(z)
(this reads: "the description “xs which are red

and big’ can be generalized to the description
xs which 3FtTe redi;'|< denctes the peneraliza-
tion operator)

1i) Turning Constants to
If we, have two or more descriptions, each Of
which refers teo a specific object (in a set to
be characterized), we can generalize these by
creating one deseription which contains a vari=-
sble in place of-the specific object:

tall(Fred) Fr
tall 531;;,{“““2?31;‘;-‘1) [< Vx tall(x)Aman(x)
assuming Ehgt the value set of x is (Fred, Jim,
#ee¢ }«  "x" can be interpreted as representing
a person from the group under consideration.’

These fivst two rules of generallization are the
rules most comconly used in the literature on
computer induction. " Both rules cgan, however,
3:1 viewed as special cases of the following

e‘

111) CGeneralizing by Internal DPisjunction
Rule, A description san be penerallzed by ex—
tending the set of wvalues that & descriptor
(i.e. variable, function, or predicate) 1a per=-
mitted to take on in order that the description
i satisfied. This process involves an opera-

Variables Fule.
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tioT called the internal disfunction. For ex-
ample:

shape(x,square) K
shapesx.triang{e)

shape{x, (square or triangle or rectangle))
where statements on the left of |< describe

some single objects in a e¢lass, and the state=-
ment on the right i1s a plausible generaliza=
tion. '

Using the notarion of wvariable-valued logic
system VL [17] this rule can be expressed
somewhat mate compgetly:

[chapetxd-aquare] K

[shape(x)=square, triangle, rectangle)

he *,” 1n the expression on the right of the
< denotes the internal disjunction. Although
it may seem at fIrst gplance that ¢tne intecpal

disjunction 1s just a notstional abbreviation,
this operation appears to be one of the funda-
mental operations people use in generalizing
descriptions.

In general this rule can be expressed:
W[L = R1] |¢ WL = R2]

where W is some conditlion and where Rl and R2

are sets of values linked by internal disjunc-
tion, and, Pl R2. -

There are two important specfal cases of this
tule. First, when the descriptor involved
tskes on values which are linearly ordered (s
lioear descriptor) and the second when the

descriptor takes on values which represent con=
cepts at varicus levels of generality (& struc=
tured descriptor).

In the case of a linear descriptor we have:

i¥) Closins Interval Rule. For example
suppose ~Ewo objects of the same class have all
the same characteristics except that they have
different sizes, a eand b. Then, it {is plau=-

sible to hypothesize that all objects which
share these charactecistics but which have
sizes between a and are alse 1in this
class.

B [sizetxal [« v lstzetx) = aib)

In the case of structured descriptors we have:

v} €Climbing Generallzation Tree Rule. Sug-
pose thé value seéf of The shape descriptor is
the tree of concepts: .

fylane geometric figq{:f
polygon oval Yigure
trianéii

u
rectangle ellipse E:}rcle

With this rree strueture, wvalues such as trian-
ile and r&ctanfle ¢an be generalized by climb=—
ng the generallzation tree:

[shape(x)=rectangle] ) -
[Shageix)-trtnngie] '< [shape(x)=polygon]

1.5 Constructive Induction

Most methods of Induction produce descriptions
which involve the same descriptors which were
present in the dnirial data. These methods
operate by selecting descriprors from the fnput
data and putting ther into a form which i3 an
appropriate generalization. Such methods per- .
form non-constructive {nduction. A method per-
forms  constructive 1induction {f {1t includes
mechani&ms which can gemerate new descriptors
not Eresent fn the {input data. These new
descriptors are generated by applying rules of




constructive f{nduction. 'Such rules may be
written ss proecedutres or as roduction rules
and may he based on general knowledpge or on
problem-oriented knowledge (for .examples o
econstructive peneralization rules see [17]).
Constructive induction rules can iaterpret the
faput data in cterms of knowledge about the
problem domain, Frequently, the solution to a

toblem 13 dependent ‘wpon Einding the proper

escription for the problem; as In the mucrilat-
ed checkerboard problem. &n {nductive program
should contain facilities for constructive 4in=-
duction including a libra;g of general con=-
structive induction rules. e user should be
able to suggest new rules for the program to
examine. TIn ovder to activate those rtules
which would be most useful, the program must be
able to efficiently search the space of possi~
ble constructive induction rules.

Programs which perform construetive 1Induction
are more likely to find useful and dinteresting
patterns in complex data since they have the
ability to examine the data using many dif-
ferent representations.

1.6 General versus Problem-orfented Metrhoda

It 13 a common view that geperal methods of in-
duction although 'mathemaclcally elegant and
theoret{cally applicable to many problems, are
in practice very inefficient and rarely lead to
any I{nteresting solutions. This copinion seems
to have lead certain workers to akandon (at
least temporarily) work on general methaods and
concentrate on some speaific problem fa%ﬁ"
Buchanan, et. al. (1,2,3] or tenat [13]). isg
apftoach often leads to interesting and practi-
cel solutions. On the other hand, it is often
difficult to extract general principles of in-
duction from such problem-specific work. It is
also difffcult to apply such special-purpese
Programs to mew areas. '

dn_  attractive possibility for solving this
dilemma {s to develop methods which incorporate
various general principles of induction (in-
cludin constructive 4Induction) together with
mechanisms for using exchangeable packages of
problem-specific knowledge. In this way a gen-
eral method of induction, provided with an ap=-
progriate. rackage of knowledge, could be both
eas 1yfagil cable to different prohlems and
also efficient and practically useful. This
idea underlfes the development of the INDUCE
programg {14,17,4].

2. COMPARATIVE REVIEW OF SELECTED METHODS

2.1 Evaluation Critetia

We evaluate the selected methods of {nduction

in terms of several criteria considered espe-

§§811¥ important in view of the remarks in sec=—
oo l. =

ii Adeguacy of the representation language.
The anguage used 0 Teprasent Input data and
ocutput generalizations determines to & large
extent the quality and ussfulness of the output
descriptions. Mcthough 1t fs difficult to as-
Bess the adequacy of 2 representarion lan uage
cut of the context of some specific proﬁlem,
recent work 4n AT has shown that languages
which treat all phenomena unlformlg must sacri-
0

fice descriptive precision. r example,
researchers who are attempting to  build
patural-language systems prefer the richer
knowledge representations such as frames and
@emantic nets (with their tremendous variety of
syntactic forms) to. more uniform and ess
structured representarions such as attribute=-

value 1lists and PLAMNER-style databases, In
our own work on inductive learning, we have
chosen to use the represencation language vLZl
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(see below) which has a vider variety of aym-
tactic forms than our earlier Language VL.
Although languages with many syntactic forms Jo
provide greiter deseriptive " precision, they
also make the indection process more complex.
In order to control this complexity, a comprom-
fse must be sought between uniformity and rich-
neas of forms. In the evaluation of each

method, a review of the operators and syntactic

forms of each description language {s provided.

11} Rules of generalization iImplemented.
The genetalizafion rtrules Implemented in each
algorithm are listed.

111} Computational efficiency. The exact
analysils "ol the computational efficiency of

these algorithms is very difficult due borh’ to
the 1inherent complexity of the alporithms and
te the lack of precise formulations of the al-
ﬁortthms in_available publicationa. Fowever,
t seems useful to have some data comparing the
effictency of these algorithms even if that
data is spproximate an based on | hand-
simulations. To pet sama indication of the ef-
ficiency we measure the total number of
deseription generations or comparisons required
by ea:ﬁ method to perform a test example (sese
Fig. 1}. Ve .alsc measure Ethe ratio of the
number of outgut conjunctive generalizations to
the total number of generalizations examined on
this example. Since these numbers are derived
from only one éxample; it is not appropriate to
draw scronf conclusions from them concerning
the general performance of the algorithms. Our
conclusions are based Erimarily on the general
behavior of the algorithms. '

iv) Flexibilir and extensibilitv. Mere
conjunctive characteristic generallizatlons are
not particularly useful for conceptual data
apalysis because of their limired forwat and
thelr lack of formal mechanisms for handling
errorg In the input data. Tt i3 lmportant In
evaluating these algorithms ¢to consider the
ease witn which each method could be extended
Lo

a) discover descriptions with forms other

than conjunctive generalizations (see section
- ]

b) 1include mechanisms which facilitate

detection of errors in the input data,

c) provide a general faeility for incorfcrat-
ing domain-specific knowledge into the induc~
tion rocess 8§ an exchangeablae package
(Ideally, the domain—aﬁec'fic knowledge
should be isolated from the general-purpose
inductive process.), and

d) perform constructive induction.

It is difficelt to asssess the flexibility and
extensibility of the algorithms presented here.

Ve base our evaluation on the general ap-

groaches of the methods and on extensions which
ave already been made to them.

In the following sectlons, we deseribe each
method b{ h?resenting the deseription language
c

the

uaed, ske lng the underlying algorithm, and
evaluating the method 4n terms of the above
criteria. Tach method will be illustrated us-

ing the test example shown im Fig. l.

2 @

Flgure 1




2.2 Data~driven Methods: Hayes-Roth and Vere.

¥ethods can be divided {into bottom-up (data~
driven), top-down (model-driven), aund mixed
methods. Bottam-up methods genera{ize the 1in=-
put events rairvise until the final conjunctive
generalization 18 computed:

,F&

G3

. ¢ \
Blélgi E3 E4

G2 18 the set of conjunctive ¥eneralizations of
El and E2. Gi is the set @ conjunctive gen-
eralizations obtained by takin% pach element of
Gi-1 and generaglizing it with Ei.

We consider here only the methods described by
Hayes—Roth and Vere. Other bottom=-up methods
inelude the candidste elimination %gproach
described bi Mitchell [191 and the Uniclass
method described by Stepp [21].

2,2:1 Hayes-Roth: Program SPROUTER [6~9]

Hayes-Roth uses the term maximal abstraction or
interference match for maximally specific con-
Junctive §enetalization. He uses parameterized
structura] representations (PSRs) to represent
both the input events and thelr generaliza-
tions. For _example, consider the two events
described in Fig. g:

o
] O

B} E2
Pigure 2
The PSRs for these could be:

El: { circle:a}(square:b}{small:a}
small:b)gontop:a. under:b

E2: {{circle:c){square:d}{circle:e}

small :c){large:d}{smallie)

ontop:c, underid

insidese, outside:d}}

The expresslons such as {small:a} are case
frames wade up of case labels (small, circle,
etc,) and parameters (a, b, ¢, d). The PSR can
be interpreted as a conjunction of predicates
of the form small{a) where the garameters are
existentially guantified variables which are
asgumed to be distinet.

The irterference match attempts te find the
longest one-to-nne match of parameters and case
frames (i.e., the longest common subexpres—
sion)s This 4s accomplished in two steps.
First the case relations in El and E2 are
matched d1n 2]l possible wags to obtain the set
M. Two case relations mateh 1f all of their
cage labels match. Each element of M is 8 case
relatfon and a 1ist of parameter correspon-
dences which permit that case telation to match
in both events:

¥ = {{cizele:(( / b/d
(fetxeles (/) (910 Maguarss ((o/0))
{ontop,under:((a/e b/d))})

The second step involves selecting a subset of
the parametér correspondences im ¥ such that
all parameters can be bound consistently. This
is conducted h{ a2 breadth-first searcz of the
space of possible bindings with pruning of
unpromising mnodes. The search can be visual-
ized as a node-building process. Fere 1is one
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such (pruned) search:
M Interfe

rence matceh

{ontop,undar}
alg'byd——-—‘

The nodes are numbered in order of generation.

One at & time, a node
with all other consisten

ready been examined. The nodes 5, R, and

conjunctive ;eneralizaci
¢ (to give 1? and b to d
the conjunctions

{{circletl}{s uware:2})
Eontop:l. unger:Z}}

The node-~building proces
fng a utility value for
be bullt. The nodes are
upper limir on the ¢
nodes and pruning nodes

that limit is reached.

Fvalyation:
i) Representational

i{s examined and

Joined

t nodes which have al=-

g are

ons. Node 9 binds a to
(to give 2) to produce

{small:1}

s 1 gulded by

compuf-—

sach candidate node to

pruned by sett
ptal numbe

ing an

r of possible

of low utility when

adequacy. The

slgo~,

rithm discovers the following conjunctive gen=

aralizatione of the exam

}. {{ontop:l, under:2
Thers gs a medium
something,

ple tn Fig. 1:

)imedium:l){clea
glear object ont

r:1})
op 0

2. {iontop:ls,undér:?}{medium:1){1arge=2}

cleart2}}
There is a medium
large, tlear objec

ogbject ontop of
t.

3. {Emedium:li{clear:l}{large:3){clesr:3}

gized clear object,
a large sized clear objlect, and a

shaded12}}
There is a wmedium

shadad object.

PSRs provide two symbolic forms: paramefers and
ease labels., The case labels can express ordi-

nary predicates and re
metric velations may b
same  label twice i

unction. The language
aternal disjunctions
that the top element in
a square or & diamond ca

i11) FRules of genera
useg the drOpEing- con
stants to variables rule

{id) Computacional

test example, the algord
{sons and generates 20

a8
samelsize:b), . The onlﬁ
A

lations easily. Sym—
e expresed by using the
in {same!size:a,

s no disjunect

Fig. 1 1g always

operator 13 the con-

ien or

g a result, the fact

either

nnot be discovered.

l1ization., The

method

dition and turning con=-

5.
efficiencys

O our

thm reguires 22 compar—
di

can ate <con

generalizations of which 6 are retaine

gives a figure of 6/20 o

efficiencys Four segara

are required since the f

r 307 for comput

unctive
« This
ational

te interferepnce matches

irst match of El

and E2

produces three possible conjunctive generaliza=

tions.

{v} Flexibility and
Roth has 4ndicated (p
that this method has bee
disjunctive generalizat
rors in data- Fayes~R
method to various proble
speech understanding sys

extensibility.
erscnal communi
n extended to
ions and to det

oth has applied

ms in the design
tem Hesrsay II.

“3139‘
cation)
produce:
ect er—

this
of the
Howev—-



er,
poratln% domaln-specific
generallizacion process.

Also, no facility for constructive {nductian
, has heen Incorporated zlthough Payes-Roth has
developed a technlque for converting a PSR to a
lower~level finer-grafned uniform PSR. This
transformation ﬁermtts the program to develop
descriptions which involve a many-to=-omne bind-
ing of parameters.

2.2.2 Vere: Praogram Thoth [22-25]

Vere uses the term maximal conjunctive general-
ization or maxipal unifying generalization to
denote the maximally specific conjunctive gen-=

ne facility has been developed for incor-
' knowledge Into the

erallzaticn. Each event 1is represented as a
conjunction of literals. A literal 1s a
Earenthesized 1ist of constants called terms.
or example, the objects im Fig. 2 would be
described:
El:

circle a) (square b){(small a)(small b)
ontog a b)

cirele ¢)(square d)(circle &)

small e)({large d)(small e)

ontop ¢ d)(inside e d)

Although these resemble Hayes-Poth’s PSRs, they

E2:

are  quite differant. There are no dis-
tinguished symbols. 411 terms are treated uni-
formly.

The algorithm operates In four stepss First,
the 1iterals in each of the two events to be
generalized are matched in 2ll possible ways_to
generate the set of matching palrs MP. Two
Aterals match if they contain the same number
of constants and they share a common term in
the same position. For the example of Fig. 2,
Hp= ( circle a)-(circle q% .
cirele a}-(ecircle =}),
aquare h)-(gquare d)),
amall a}—-small_cl),

small a)-(small e)),

amall b)=(small c; 4
{small b)=(small e)},

mntar a hi=fontop c d)) )

The second sc§¥ uiwvoives selecting all possible
subsets of suecn that no single literal of
one event is pafred with more than one literal
in another event. Fach of these subsets even=-
tually forms a new generalization of the eorigi-
nal events. -

In the third step, each subset of matching
pairs selected in step 2 is extended b{ adding
to the subset additional pairs of literals
which did not Ereviously match. A new pair p
is added to a subset § of MP 1f each literal in
p 48 related to some other pair g ia § by a
¢ommon ¢onstant in a common position. For ex-
ample, if S contained the pair ((square b)-
Esguare-d}) then we could add to § the palr

(ontop a b)-(inside e d)) because the third
element of (ontop a b) is the second element of

Ssquare b) and the third element of (inside e
) is the second element of (square d) {(Vere
calls this a 3-2 relationship). We continue

addipg new palrs wntil no more can be added.
In step & the resulting set of pairg is con-

verted Into a new conjunction of literals by
. merping each palr to form a single lireral.
Constants which do¢ not match are turned inte

new constants which may be viewed as variables.
For example, ((circle a)-(circle c)) would be
converted to (circle 1)«

Evaluation:

1) Pepresentational adequacy. When -ap-
plied to the test example (_L?. 1) this algo-
rithm produces many peneralizatlions. A few of
the significant ones are listed here:
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ls gontop 1 2)(medium 1)(large 2}(clear 2)
clear 3)(shaded 4)(5 4)
There is a medium object on togj of a
e

large clear object. Ancther o ct ia
clear. Thnere 1s a shaded oh{ecc. (Fore
also the vacuous relationship 5 derdved

from unifying circle and triangle).

2. p 1 2)(clear 1)medium 1)(9 1) (5
éiggﬁg?ed M55 S 1A gl

There is a medium, clear object on top of
some other object and there are two ob-
jects related in some way . such that
one is shaded and the other 1s large and
clear. (Note the vacuous relationships
6, 75 B, and 9).

3. (ontop 1 2)(medium 1)(clear 2y (large 2)(5
2 B et 3747 37 (clesr 4) (6 el
ere 4s a medium object on top of =&

large clear object. There is a shaded
object and there 1s a clear object.
;§ute the wvacuous relationships 5, 6, and
The representation is varg general. By conven-
tion the first symbol of a literal can be in-
terpreted as a predicate symbol. The algo~
rithm, however, treats all constants uniformly.
This creates difficulties. For 4instance the

algorithm generates vacuoug literals in certain
situations. Literals can be formed by palring
{red %) with (big y) to produce mean nﬁlgss
generalizations. One advantage of this relaxa-
tion of  semantic constraints is that the pro-
iram can discever conjunctive eneralfzatlons
nvolving a mapy-to-~one tinding of variables.

e pontalns only s conjunction opera-

The langua
sjunction or internal disjunction is

EOr . wo d
included.

44) Pules of geneéralization. The algo-
rithm implements the dropping cendition rule
and the turning constants to variables rule.

Computational efficiency. From the
published articies [22-25] ir is not clear how
to perform step 2. The space of possibilities
is wvery large and an exhaustive search could
not possibl %ive the computation times which
Vere has published. It would be intereating to
find out what heurlstics being wused to
gulde the search.

iv) TFlexibility and extensibility. Vere
has published  algovithms which discover
descriptions with disjunctions [24] and excep-
tions [25]« He has also developed techniques
to generalize relational  production  rules
[23,24]. The method has been demorstrated us-—
ing the traditional AL tog problems of I0 anal-
ogy tests and blorks-world sequences. A facili-
ti for using background information to assist
the induction process has also been daveloped.
1t usesg a sprea in§ activation techmnique to ex=

a

111)

are

tract relevant relations from a knowledge base
and add them to the infut examples prlor to
generalizing them. Since the method has been
extended to discover disiuncrions and excep=

tions, 1t would be expected that the method
could also operate in noisy environments.

2.3 Model-driven Methods:  Puchanan ets
and Pichalski.

Model-driven methods search a set
ﬁeneralizaticns in an agttempt
best" hypotheses which satisfy
quirements. The two methods

search for a small number of conjunctions
together cover all of the lnput events: e
search proceeds by choosing as the inttial
workini hypothesis sone atartini Eoiﬁb'in the
partially ordered set of all poasible deacrip=

al.,

pf posasible
to find a few
certain rve=
discussed hare
which



tions. If the working hypotheses satisfy cer-
tain termipation criteria, then the search
halts. ©Otherwise, the cutrent hypotheses are

modified by slightly generalizipg or gpeclaliz-
ing them, ese new hypotheses are then
checked to see if they satisFy the termination
criteria. The process of modifying and check-
ing continues wuntil the criteria are met.
Top-down techniques typically have better noise
immunity and can easily be axtended to discover
disjunctions. The principal disadvantage of
these techniques is that the working hypotheses
muist repeate 1{ be checked to determine whether
they subsume all of the input events.

2.3.1 PBuchanan, et. al.: Program Met a~DENDRAL
[1-3,20]

The algorithm which we describe here 1s taken
from the RULEGEN program (part of the Meta~
DENDRAL system). Meta=PENDRAL was designed to
discover cleavage rules to explain mass spec=
trometry data. The descriptive Jlangusge is
based on the ball-and-stick model of chemical
molecules. FEach input event is a2 bond eavirou-
ment  which descrihes some portion of a
molecule. Tha environment is represented b¥ a
graph of the atoms in the molecule with Four
escriptors attached to each atom and forms the
left and side of a cleavage rule. The right
hand side of the tule predicts a _cleavage based
on the existence in a moltecule of the lefr-hand
side of the rule (hreakbond (**) indicates that
the ** bond is predicted to be broken)s A CLYp-—
ical cleavage rule (with atoms W, X, ¥, and " z)
B:

LEFT-HAND SIDE (BOND ENVIRONMENT):

Malecule graph: WAR E o= § == Z ==
Atom descriptors:

atom type nhs nbrs dots
w ¢arbon 3 1 0
x carbon 2 2 0
y nitrogen 1 2 1)
z carbon b 2 0

RIGRT-HAND SIDE (GLEAVEGE.PREDICTION):
=> Breakhbond (%%}

The algorithm chooses as its starting oint the
most general bond enviroment { x %ry with no
properties specified for elither atom. During

the search, 'this deseription is grown by suc=-
cessively speclalizing a property of one of the
atoms in the graph or by adding a mew atom to
the ﬁragh. After each specialization, the new
grap s checked to see if 1t is "hetter” than
the garent gragh from which is was derived.
dau% ter graph is better than its parent if it
still covers at least half of the _imput rules
(it"s general enough) and still focusses on
only one clesvage process (it’s epecifie
enough). _ The cleavage rules built by this al-
ﬁ{%ﬁ%g afe further improved by the program

Evaluation: .
1) Representational adequacy. The
representation was adequate for the gpecifie
task of developing cleavage rules. It was mnot
intended to be a general representation for ob~-
eets outside o the chemical world. The
escriprions can be viewed as conjunctlons.
Individval rules developed by tha program can
be considered to be linﬁed by disjunction.

11) Rules of generalization: The dropging
condition and turning constants to variables
tules azre used "in reverse" during the spectal-
1zation process. RULEGEN does not seem to have
the abilitg to handle an internal disjunction
but RULEMOD apparently does. For example, it
can ind{cate that the type of atom is "anything
except hydrogen”. In similar work on nuclear
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magnetic resonance (NMR) M{tchell presents &n
example in which the value of nhs s listed as
fgreater thap or equal to one" (which indicates
an internal disjunction).

114) Comgutational efffeciency. Because
this 1s a prohlem-specific algorithm, we cannot
supplﬁ comparison figures here for how thies al-
gorithm would work on our test example. The
current program s considered to be relatively
fnefficient [2].

iv) Flexibility and extensibility.
DENDPAL has been extended to handle NMF épec=
tra. The program works well in an errorfu
environments It uses domain-specific knowledge
extensively. However, there §{s ne atrict
separation between a ieneral-purpose induction
component and a special-purpose knowledge com=
penent. It is not clear whether the methods
developed for Meta-DENDRAL could be easlly ap=
plied "to any nomn-chemical domain. The program
does not perform constructive induction in any
general waﬁ. However, the INTSUM program does

erform sophisticated transformations on the
nput spectra ipn order to develop the bond=
environment descriptions.

2.3.2 Michalski and Dietterich: Program INDUCE

1.2

The algorithm deseribed here is one of three
algorithms designed by Michalski and his colla=
boFators. The others are 3 data-driven method
described by Stepp ([21] and a mixed method
described by Larson and Micnalski [13,14]. The
language used to describe the input eveunts is .
VL,,, an extenslon o first-order predicate
10&1& (FOPL) [17). EFach event is Tepresente
as a conjunction of selectors. A selector typ=-
ieally contaips 2 functioen or predicate
descriptor (with variables as arguments) and a
1ist of values that the descriptor may assume.
The selector [size(x1)=small, medium] asserts
that the size of x] may take the values small
or medium. The events in Fig. 2 are represent=
éd as}

El:

Meta-

size(;ll-smalll[aize(xz)-smalll
shape{x yecircie] [shape(x2)=square]
ontop(xl,x2)]

sizeExlg-small }size(x2)-large]
gize{x3)=small Ehaﬁe(xi)-circle]
[shapeix2)=square]ls ape(xB}-circle]
ontoplixl,x inside(x3;x

{ 1,%2)] [ins{de(x3;x2)]

tn this method, descriptors are divided inato
two classes: attribute descriptors and
structure~-specifying descriptors. Attribute
descriptors describe attributes such as silze or

E2:

shage or distance which are applicable to all
variables (representing, €x8., ohiect partsl.
Structure-specifying descriptors Include a 1

other descriptors. Theg typlecally represent
relationships among variables such as ontop or

inside. Each input conjunction is broken into
tws conjuncts=-one bullt of selectors contain~
ing on attribute descriptors (the attribute
co?junct and one built of selectors contalning
only

Btructure-sgecifying descriptors (the
structure conjunct}.

The algorithm Is based on the observation that
the structure-specifying descriptors = are
responaible for the comgutational complexity of
generalizing structura descriptione., If we
could determine conjunctions of  structure-
specifging selectors which were relevant for
describing & particular class of objects, then
the generalization of the attribute confuncte
could be handled quickly by an appropriate cov-
ering algorithms The algorithm seeks to deter=-
mine such a set of structure conjuncts wvhich
appear likely to he part of a maximally sRecif-
{ic conjunctive generalizstion of all of the in-



put events. It

does this by finding_eoniunc-
tiona which are maximally specific

generailiza-

tions of the input structure conjuncts con-~
sidered alone. Such conjupctive generalliza-
tions of the structure conjuncts must he con~

tained in some maximally specific generaliza-
tions of the entire set of input events. How=
ever, there may be makximally specifle conjunc=
tive generaliZzations of the Input events Which
contain few If any structure-specifying selec-
tors. This algorichm also finds these general=-
1zations by considering structure conjuncts
which are less than maximally specific.

The algorithm operates im two phases. The
first phase 1s the structure-determining phase.

A random sample of the input structure con-
Juncts 1s taken. ‘This sample becomes the ini=-
In each step,

tial set of generzlizations Gp.
Gy 1= first pruned to a fixeg
uﬁprqmising feneralizations. The G s
checked to see 1f any of its generalizitlons
covers all of the structure conjuncts. If any
do, they are removed Erom G, and placed in the
get C of candidate conjunctive generalizations.
Lastly, G; is generallzed to form G by tak=-
ing each eiement'qf €, and generalizlﬁ ft i1n
all possible ways by aropping gingle selectors.
When the set "of " candidates C reaches a
prespecified size, the search stops.

The second phase is the at:rtbute-dgtermining
phase. In this phase, the problem is converte

to a multiple-valued logic covering problem us-—
ing the propoaitgonal caleulus [15,16).
Each candidafe cover A in C is matched against
all input events and cthe relevant variables are
identified. For each match, the appropriate

size by removing

attribute conjuncts are extracted and used to
form a VLy event. For example,
if A

= {ontop(pl,p2)) and
El = Onbﬂpfglsggiieontog(p2 3]
size(pl)=1]) {size(p?)=3] (size(p3)=5]
colorspl hred]fco or(p2)=green]

color(p3)=blue

then we get tuwo VLy events:
Vi= EI, 3, red, green) and
V2= (3, 35, green, blue).
These are - vectors of attributes
cerrespond here te the descriptors:

(size(pl), size(p2}, color(pl), color(p2))
for pl and p2 in A.

All input events are converted into VL, events

in this manner. In general, more that one VL

event Is cresated from each input event. Thé

get of UL; events can be covered using a tover-
t

which

ing algorithm. A cover could be obtained by
formigf the union of the values taken on by
iacg i attribute. Such an approach uwsually
.Eada o

overgeneralization since only one VL
event derived from each {input sevent need bé
covered. We wuse a beam-search technique to
gelect a subset of the VL, events to be
covered.

This two-phase algorithm provides two computa=
tional advantages. First, the time required to
compare expressions in the structure-
determining phase {s reduced because the struc-

ture conjuncts are usually much smaller than
ghe foell input ceniunctss Second, the manipu-
ag is very easy since ‘they

lation of VI.; formu
EA{ be rap}esented as bit strioegs and manipu-
lated using fast bit-parallel aoperatioms. The

v this algorithm is that it

chief disa antaﬁe of
ia difficult to decide when to terminate the
structure-determining phase.
Evaluation:
1) Representatisnal adequar=~. The algo-
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ithm discovers, among others, the following
generalizations of the events in Fig. 1:

1. ontopfpl p2)) [stze{pl)=medium]
shape Els-clrcle,square.rectanglel
slze(p2)=large]
shape(pl)=box,rectangle,eliipse)
texture(p2)=clear]
There {s a medium-sized etrcle, reetangle
or square on top of a large, clear box,
rectangle, or ellipse.

2. [onto 1,p2) ] [size(pl)=medium]
shapgsglsgpo{ygou] [texture}pl]-clear]
size(pZ)=medium,large]
shape{p2)=rectangle,circle)

There 1s a clear, medium-sized polygon on
top of a medium or large circge oF rec—
tangle,

3. ontppspl p2)ltsize(pl)~medium
ghape 515=p0 yegon] .
size(p2)=meédium,large]
shape{p2)=rectangle,ellipse,circle]

There 18 8 medium-sized polygon on top of
ai lirge or medium rectangle, ellipse or
circles

4. [size(pl)=small,medium]
sha e(pl)-circie;rectanglel
texgure(p1)=shaded
There is a shaded object which ta either
medium or small in size apd has a circu-
lar or rectangular shape.

-This algorithm implements the conjunction, dis-

ynction and Internzl disjunction operators.

t provides a falrly non-uniform set of

representational facilities. Descriptors,
variables, and values are all distingulshed.
Nescriptors ara further analyzed {nto

atructure-spe:i%ring descriptora and sttribute
descriptors. he current methed frovtdes for
descripters which have unordered, linearly or-
dered, and tree oprdered wvalue sets. This
variety ?f'pGBsible representations permits a
better "fit" between the description language
and any specific problem.

11) Pules of generalization. The algo-
rithm wuses all rules mentioned in section ].4
and also a few constructive iInduceion rules
(see below). All constants are coded as vari-
ables. The effect of the turning-constants to
variables rule is achleved as a special case of

th% generalization by internal disjunction
rule.

ii1) Computational efficiency. The algo-
rithm reguires 28 comparisons "and builds 13

rules during the search to develop the descrip-
tions listed above. Four rules are retained so
this glves an efficiency ratio of 4/13 or 30%.

iv) Flexibility and extensibilicy. The al-
gorithm can easil¥ discover disjunctions by
altering the termination ecriteriza for the
structure~deternining phase to accept structure
conjuncts which do not secessarily cover all of
the 1nput avents. The same general two-phase
approach can also be applied to problems of
determining discriminant generalizations. Lar-
son and Michalski have done work on determining
diseriminant classification rules [13,14,15].

The algorithm has good noise {mmunity. WNoise
events can ba discovered because the algorithm
tends to place them in saparate terms of a dis—
Junction.

Domain-specific knowledge can be 1iIncorporated
into the program by defining the domains of
descriptors, specifying the structures of these
domains, sgecifyinﬁ certain simple production
rules, and by Frovi ing constructive fnduction

rules. These forms of knowledge representation



are mot always
vork shoulg
knowledge representation.

convenient,

A few simple constructive inducrion rules
incorparated into the current implementa-
Other constructive in-
specified by
construceive
program produces the following con-
generalfzation of the ifnput events in

baen
tion 38 B pPreprocessor.
duction rules can be
Using the bullt=-in
rules the
unctive
i.g- 1s

howBVer
provide other

Further
faciliries for

have

the user.
induction

P p’s with texture clear=2] {top-most(pl)]
antepsplSp2)i[sizfggl)=medium

shape(pl)=polygon
sizefpg)tmediu%,large]

shape{p2)=circle, rectangle]

exture{pl)=clear]

There are exactly two clear objects in each

event. The top mosL

pbject

is a medium

sized, clear pplygon and it"is on top of a
5

large or medium
We hope to exgand this

facility in the future.
2 +4 Summa Ez

The comparison of

in Fig. 3.

Ized circle or rectangle.
constructive induction

various methods is summarized
The table shows the distinct advan-

tages and disadvantages of top-down methods as

opposed to bottom-up methods,

Bottom~up methods

3,0 CONCLUSION

tne of the preb
{5 that each research grou
language
the exchange of information
s intended to help

tanding of the state of the

duction

different

makes
This paper wa

et a better unders

This
Cult .

formal

art in this area,

Some important problems to be addressed in fu-

ture research include:

1)
langua
pothes

11) extensfon of the scopes )
s which an inductive grogram ¢can effi-

and

of dnduction

the
ies and knowledge rtep
& formulation and madification;
of operatora
forn
clently use during hypothesis
111) the develoEment of general mechanisms

can be guided by problem~

developmeat

whic

léms of current research on
p is uvsing a

terming

8

and

of adequate

ormulation;

specific packets of knowledge; and

iv) 1ncurgorat1nn in the program of
sive facilities for comstructive
multi-lavel schemes of description. In
ular, an dinductive program should be sble to
assign names to various gubdescriptions and use
thess names in the formulation of hypotheses

(1.e. geasrate hilerar

chical forms).

tend to be faster but noise fmmunity and flexi- Finslly, an important principle which should
bility suffer as a consequence. Top—down guide ¥ﬁture fgsearch 15 whacpug call the
mathods have good noise {mmunity and are easlly ciple of com rehengibility. This princ
modified to discover disjunctive and other ; gfgfgs ﬁfhgf“—%ﬁg—aﬁaﬁ?Iﬁftﬁns which an Al pro-
forms of ggneralization. They do tend to be gram uses and the concepts which it geperates
computationally more expensive. By sepsrating should be easil: comprehensible by peaples
the structure-determinipng phase from tha the context © work on  induction,
attribute-determining phase in our method, a comprehensibility principle requires that the
considerable speed-up has been achieved. descriptions be short and use operators which
Method: Rayes=Roth Vere Buchanan et.al. Michalski
Criterion
Intended application: general general discovering general
mass spectro-
metry rules
Language: Parameterized Cuantifier- Chemical model Variable-valued
Structural free FOPL logic system VL2l
) Representation
syntactic concepts: case frames literals molecule graph selectors
paramaters constants attributes descriptors
case labels ) constants in dummy variablea
in walue sets constants in
operators N N NN /‘flue sers
- / E] ¥
internal ¥V internal V
Generalization Rules:
dropging condition? yes yes yes yes
constants to variables? yes yes yes yes
generalizing by internal v? no no yes yes
climhing tree? no no no yes
closing intervals? no ne no yes:
Efficlency:
comparisons: 22 complete not applicable 2R
algorithm
conjunctions not known
genersfed during search: 20 ——— not applicable 13
ratio output to totals 6/20308 20 ==mee not applicable 4/13=30%
Fxtenslbilicy:
applications speech none mass spectre-  soybean digease
_ analysis metry, diagnosis
disjunctive forms? no yes yes yes
noise immunity low probably good excellent very good
domain, knowledge? no + yes yes, buile-in  yes ‘
) to program )
construetive induction? no no no limited
. facility
Figure 3.
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readere

formal
resentatiens for hy~

exten-
induction and
partic=



can be eas{ly interpreted in natural language.
Furthermore, systems should be designed to pro-
vide flexible interactive facilities. This ap-
proach has been adopted in our work because we
expect that the most signifleant applications
of AL inductive programs will he as Enterzctive
tools for conceptual data analysis.
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