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Abstract 

The Learnable Evolution Model (LEM), first presented at the Fourth International 
Workshop on Multistrategy Learning, employs machine learing to guide 
evolutionary computation. Specifically, LEM integrates two modes of operation: 
Machine Learning mode, which employs a machine learning algorithm, and 
Darwinian Evolution mode, which employs a conventional evolutionary 
algorithm. The central new idea of LEM is that in machine learning mode, new 
individuals are “genetically engineered”  by a repeated process of hypothesis 
formation and instantiation, rather than created by random operators of mutation 
and/or recombination, as in Darwinian-type evolutionary algorithms. At each 
stage of evoluation, hypotheses are induced by a machine learning system from 
examples of high and low performance individuals. New individuals are created 
by instantiating the hypotheses in different ways. In recent experiments concerned 
with complex function optimization problems, LEM has significantly 
outperformed selected evolutionary computation algorithms, sometimes achieving 
speed-ups of the evolutionary process by two or more orders of magnitude (in 
terms of the number of generations). In another recent application involving a 
problem of optimizing heat exchangers, LEM produced designs equal or superior 
to best expert designs. The recent results have confirmed earlier findings that 
LEM is able to significantly speed-up evolutionary processes (in terms of the 
number of generations) for certain problems. Further research is needed to 
determine classes of problems for which LEM is most advantagious. 
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1 Introduction 

The idea that machine learning can be used to directly guide evolutionary computation 
was first presented at the Fourth International Workshop on Multistrategy Learning 
(Michalski, 1998).  This presentation described the Learnable Evolution Model (LEM), 
which integrates a machine learning algorithm with a conventional evolutionary 
algorithm, and reported initial results from LEM's application to selected function 
optimization problems. Presented results were very promising but tentative. They were 
obtained using LEM1, a rudimentary implementation of the proposed method, and the 
experiments were performed only on a few problems.  

Subsequently, a more advanced implementation, LEM2, was developed, and many more 
experiments were performed with it (Cervone, 1999). The original methodology was also 
substantially extended and improved (Michalski, 2000).  One of the important 
improvements is the development of the adaptive anchoring discretization method, 
ANCHOR, for handling continuous variables (Michalski and Cervone, 2000). This paper 
presents recent results from the application of LEM2 to a range of function optimization 
problems and to a practical problem of designing optimal heat exchangers.  To provide 
the reader with a sufficient background  information, the next section briefly reviews the 
latest version of the Learnable Evolution Model. 

2 A Brief Overview of the Learnable Evolution Model 

The Learnable Evolution Model (LEM) represents a fundamentally different approach to 
evolutionary processes than Darwinian-type evolutionary algorithms.  In Darwinian-type 
evolutionary algorithms, new individuals are generated by processes of mutation and/or 
recombination. These are semi-blind operators that take into consideration neither the 
experience of individuals in a given population (like in Lamarckian type of evolution), 
nor the past history of evolution. In LEM, the evolution is guided by hypotheses derived 
from the current and, optionally also past generations of individuals. These hypotheses 
identify the areas of the search space (landscape) that most likely contain the global 
optimum (or optima).  The machine learning program is used in LEM either as the sole 
engine of evolutionary change (the uniLEM version), or in combination with the 
Darwinian-type of evolution process (the duoLEM version). 

The duoLEM version integrates two modes of operation: Machine Learning mode and 
Darwinian Evolution mode. The Darwinian Evolution mode implements a conventional 
evolutionary algorithm, which employs mutation and/or recombination operators to 
generate new individuals. The Machine Learning mode generates new individuals by a 
process of hypothesis generation and instantiation.  Specifically, at each step of evolution, 
it selects two groups of individuals from the current population: High-performing 
individuals (H-group), which score high on the fitness function, and Low-performance 
individuals (L-group), which score low on the fitness function. These groups are selected 
from the current population or from some combination of the currrent and past 
populations. These two groups are then supplied to a learning program that generates 
hypotheses distinguishing between the H-group and the L-group. New individuals are 
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generated by instantiating the hypotheses in various ways. These new individuals 
compete with the existing individuals for the inclusion in the new population. 

In the duoLEM version, LEM alternates between the two modes of operation, switching 
to another mode when a mode termination condition is met (e.g., when there is an 
insufficient improvement of the fitness function after a certain number of populations). In 
the uniLEM version, the evolution process is guided solely by the machine learning 
program. When the mode termination condition is met, a StartOver operation is 
performed. In such an operation, system generates a new population randomly, or 
according to certain rules (Michalski, 2000).  

Figure 1 presents a flowchart of uniLEM and duoLEM version of LEM. For a 
comprehensive description of the LEM methodology refer to (Michalski, 1998, Cervone, 
1999, Michalski, 2000).  

Select H and L
groups

Generate new population

Evaluate individuals

Adjust parameters

uniLEM version duoLEM version

Generate new individuals
via hypotheses creation

and instantiation

Adjust parameters

Startover Startover

Generate new individuals
via mutation and/or

crossover

Select Parents

Evaluate individuals

Select H and L
groups

Generate new population

Switch mode

Generate new individuals
via hypotheses creation

and instantiation

 

Figure 1.  A flowchart of the uniLEM and duoLEM versions. 

Below is a brief description of the individual steps, with an indication of how they are 
implemented in the LEM2 system.  

StartOver:  This operator generates a new population randomly or according to cetain 
rules. In LEM2, a new population is generated randomly, with a proviso that a number of 
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the best performing individuals from the past populations are added to the newly 
generated population (elitism). 

Select H-group and L-group:  This selection can be done in LEM2 using one of two 
methods: Fitness-Based Selection (FBS), or Population-Based Selection (PBS). In FBS, 
the H-group (L-group) consists of individuals whose fitness is above the HFT% from the 
top value  (below the LFT% from the lowest value). In PBS, the H-group (L-group) 
consists of HPT% highest-fitness  (LPT% lowest-fitness) individuals in the population. 
Figure 2 illustrates these two selection methods and the parameters HFT (high fitness 
threshold), LFT (low fitness threshold), HPT (high population threshold), LPT (low 
population threshold).   

 

Figure 2.  An example of the fitness profile function, and an illustration of  
parameters HFT, LFT, HPT, LPT would select the H and L groups. 

Select parents:  The selection of the parents is related to the Darwinian mode.  It selects 
representative individuals  (parents) from the current population that will be mutated 
and/or recombined. LEM2 implements two types of mutation: deterministic and uniform.  
In the first every individual in the population is selected, while in the latter, every 
individual has the same chance of being selected, independently from its fitness. 

Generate new individuals via hypothesis creation and instantiation: The LEM 
methodology is not constrained to any particular learning algorithm, but can be used, in 
principle, with any concept learning method.  LEM2 employs AQ18 rule learning 
program that is highly suitable for LEM due to its various characteristics, such as the 
ability to learn rules with different levels of generality, the use of internal disjunction 
operator, and a powerful knowledge representation. 

Figures 3 and 4 show an example of the input and output from AQ18, respectively (after 
small editing). 

Generate new individuals via mutation and/or crossover: Individuals in the parent 
population are mutated and/or recombined.  Research on Darwinian-type evolutionary 
algorithms has investigated many different forms of mutation and recombination. 

Evaluate individuals:  For each new individual, its fitness is evaluated according to a 
given fitness function or by some process, e.g., simulation.  In the latter case, this 
operation may be costly and time-consuming.  

Generate new population: This step involves creating a new population that combines 
individuals from the previous population with new individuals generated according to the 
rules learned.  Different methods can be used for this purpose. These methods can be 
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divided into intergenerational and generational.  In the methods of the first group, both 
newly generated and previous individuals compete for inclusion in the new population. In 
the methods of the second group, only newly generated individuals compete for the 
inclusion.   

Adjust Parameters:  LEM keeps statistics regarding the number of successful births, the 
change in the highest-so-far fitness score, and others. Using these statistics, it can adjust 
its behavior in the evolutionary process.  For example, it may find that at a given step 
generating more general or more specific rules may be more desirable, that parameters 
controlling the selection of H-group and L-group need to be changed, or that the mutation 
rate for the Darwinian evolutionary mode need to be adjusted.  

 

3 LEM Implementations: LEM2, LEM1, and ISHED1 

LEM2 is the newest general-purpose implementation of LEM, and represents a significant 
improvement over LEM1, the first, rudimentary implementation (Michalski and Zhang, 
1999). LEM1, presented at MSL98, employs the AQ15c machine learning program in 
Machine Learning mode and GA1 and GA2, two simple evolutionary algorithms, in 
Darwinian evolution mode.  GA1 and GA2 use a deterministic selection mechanism and a 
real-value representation of the variables.  The main differences between the two are that 
GA1 generates new individuals only through a uniform Gaussian mutation operator, 
while GA2 uses also a uniform crossover operator.  Continuous variables are discretized 
into a fixed number of values. LEM1 was applied to function optimization (Michalski 
and Zhang, 2000), and a problem in designing non-linear digital filters (Coletti et al. 
1999). 

LEM2 was programmed using EC++, a generic Evolutionary Computation Library 
(Cervone and Coletti, 2000). In Machine Learning mode, it employs the AQ18 rule 
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Note: The values in the conditions of the 
rule above are symbols representing ranges 
of original values of these variables, not the 
original values. These ranges have been 
detemined in the process of adaptive 
anchoring quantization (Michalski and 
Cervone, 2000).  
  

�
Figure 3. AQ18 input.                           Figure 4. AQ18 output. 
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learning program (Kaufman and Michalski, 2000a).  The main features or improvements 
introduced to LEM2 in relation to LEM1 include: 

A. A new method for discretizing continuous variables has been developed and 
implemented. The method, called Adaptive Anchoring Discretization, briefly 
ANCHOR (Michalski and Cervone, 2000) gradually and adaptively increases the 
resolution of continuous variables in the process of evolution.  The method has 
drastically improved the efficiency of LEM in the case when individuals are 
described by continuous variables. 

B. New individuals are generated by instantiating multiple rules rather than only the 
strongest rule in the ruleset generated by the learning program. This allows the 
system to explore in parallel several subareas of the search space, which is 
important in the case of multi-modal landscapes.  

C. The number of new individuals generated from a single rule is not fixed, but is 
proportional to the rule fitness, defined as the sum of fitnesses of examples covered 
by the rule.  

D. In addition to the population-based method for selecting the H-group and L-group, 
LEM2 can also uses the fitness-based method.  

E. The cost of variables in adjusted dynamically in the evolution process.  Each time a 
variable is included in a ruleset generated by the learning program, its cost is 
increased. This way, the system gives preference to variables that were not included 
in the previously learned ruleset. This feature has proven to be useful in optimizing 
functions with very large numbers of variables. 

F. The uniLEM version has been implemented, that is, the evolution process 
repetitively executes only Machine Learning mode. There is no separate Darwinian 
Evolution mode.  

G. A simple version of the StartOver operation has been implemented for the uniLEM 
version. Specifically, when the fitness profile function is flat for a controlled 
number of generations, new individuals are created randomly and inserted into the 
current population. 

H. Parameters controlling the creation of H-group and L-group in each step of 
evolution, the population lookback and the description lookback, have been 
implemented  in LEM2 (Michalski, 2000).  

LEM2 was applied to a range of optimization problems, and its performance was 
compared to that of conventional Darwinian-type evolutionary algorithms (Cervone, 
1999).  ISHED1 is an implementation of the LEM methodology tailored toward a specific 
application domain, namely, to the design of heat exchanger systems. Specifically, it 
conducts an evolutionary optimization process to determine the best arrangement of the 
evaporator tubes in the heat exchanger of an air conditioning system under given 
technical and environmental constraints (see Section 4.2). Special  structure modifying 
operators have been implemented that modify structures according to the expert domain 
knowledge. A detailed description of ISHED1 is in (Kaufman and Michalski, 2000).  
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4  Experiments 

This section presents selected results from testing and validating the LEM methodology 
using LEM2.   To maximize the objectivity of LEM2 testing, the results from 
conventional evolutionary algorithms on the same problem, which were found in the 
literature or on the web, were compared with the corresponding results from LEM2.  

For problems for which we were unable to find such results in the literature or on the 
web, we applied a conventional evolutionary algorithm, ES, reimplemented in C++ from 
an existing version in C (that was obtained from Ken De Jong). ES uses a real-valued 
representation and deterministic selection (i.e., each parent is selected and then mutated a 
fixed number of times, defined by the brood parameter). The mutation is done according 
to the Gaussian distribution, in which the mean is the value being mutated and the 
standard deviation is a controllable parameter.  Each variable has 1/L probability of being 
mutated, where L is the total number of variables defining an individual.  New 
individuals and their parents are sorted according to their fitness, and the popsize highest-
fitness individuals are included in the next generation, where popsize is a fixed 
population size. 

For some of the problems, we found on the web results from the application of Parallel 
GA  (PGA). PGA is a standard genetic algorithm (that uses a binary-string representation, 
mutation and crossover operators,  and fitness-proportional selection) that simultaneously 
maintains separate subpopulations of individuals (the number of subpopulations and their 
sizes are specified by user-provided parameters).      

4.1  Application to  Function Optimization 

This section presents a selection of results from the application of LEM2, ES, and PGA 
(when a to three well-known function optimization problems, namely, the Rosenbrock 
function, the Rastrigin function and the Gaussian Quartic function.  
     Problem 1. Find the minimum of Rosenbrock function (Rosenbrock, 1960) in which 
the number of arguments, n, is raised to 100, and each argument ranges between –5.12 
and 5.12: 

This is a rather complex optimization problem because the function has a very narrow 
and sharp ridge and runs around a parabola, so the variables are interrelated (Figure 5).  

 
Figure 5.  An inverted graph of a two-dimensional projection of the Rosenbrock function. 
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 For comparison, the ES algorithm was also applied to the same problem. The results of 
this experiment are graphically presented in Figure 6.  Two different population sizes 
were used, 100 and 150, for both LEM2 and ES. Each experiment was repeated 10 times 
and the results  averaged. 
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Figure 6. Results from LEM2 and ES for the Rosenbrock function optimization. 

     In Figure 6, LEM a,b,c means that the method was LEM2, the population size was a, 
and HPT and LPT parameters were b and c, respectively.  ES a,b means that population 
size was a and mutation rate b. As shown in Figure 6, LEM2 was significantly less 
dependent on the input parameters than ES, and also converged to the function minimum 
much faster. It is possible to notice that some of the LEM curves (e.g. 5,6,7,8) show a 
long horizontal line, meaning that for several births the algorithm did not improve the 
global optimum, and then a steep vertical line.  This behavior is the result of the startover 
operator, which introduced new individuals in the population, therefore allowed LEM to 
discover those areas of the space most favorable to direct the evolution. 

     LEM2’s results were also compared with the best available results previously 
published for this function (CHC). These results concern the Rosenbrock function with a 
much smaller number of variables (only 2 and 4).  They are summarized in Table 1, 
which shows the number of evaluations needed to come δ-close to the global optimum, 
and the relative speedups.  

     The value of δ-close specifies the number of generations after which the relative 
distance from the solution to the target (global optimum) produced by an algorithm 
becomes smaller than δ. The speedup of algorithm A over B for a given δ, is defined as 
the ratio, expressed in percentage, of the number of births required by B to the number of 
births required by A to achieve the δ-close result.  

     In the case of two variables, the best result was achieved using the CHC+BLX 
algorithm (briefly, CHC) that required 4893 evaluations (Eschelman and Shaffer, 1993). 
In contrast, LEM2 found the global minimum using only 101 evaluations (a speedup of 
nearly 5000%).  
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Rosenbrock function 
minimization 2 vars 

             δ=0 

LEM2 (uniLEM)              101 

CHC            4893 

Speedup LEM2/CHC         4800%  

Table 1. Results for the Rosenbrock function of 2 variables. 

In the case of four variables, the best published result was achieved by a breeder GA, that 
required about 250,000 evaluations (births) to achieve a result with δ=0.1 (Schlierkamp-
Voosen and Muhlenbein 1994).  LEM2 found the global optimum (δ=0) with only 281 
evaluations, that is, the speedup of LEM2 over GA was at least 75,000% (since the result 
published for GA referred to δ=0.1 rather than δ=0.1). Table 2 summarizes the results. 
These results indicate that LEM2 was able to rapidly locate the portion of the landscape 
containing the global optimum.  

 

Rosenbrock function 
minimization (4 variables) 

 

LEM2 (uniLEM)    δ=0:               281 

GA    δ=0.1:       77,000  

Speedup LEM2/GA              ≥ 27,500% 

Table 2. Results for the Rosenbrock function of 4 variables. 

Figure 7 illustrates sample rules that AQ generated when LEM was applied to find the 
minimum of the Rosenbrock function with four variables, and also how they match the 
H-group individuals. The variables are discretized using the values shown in the Table 3. 
 

Value 
0 

–2   .. -
1.2 

Value 
1 

–1.2 .. -
.4 

Value 
2 

–.4 .. -.4 

Value 
3 

.4   ..   
1.2 

Value 
4 

1.2 ..  2 

Table 3. A correspondence of the symbolic values to real values of variables in Figure 7. 
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The minimum is found when all the Xs are equal to 1, and this will be represented in the 
diagram by value 3, since 3 describes the range between -.4 and 1.2, which includes 1.  
The global solution is indicated in Figure 7 by a circle. 

 
Figure 7 .Learned Hypotheses and H-group individuals. 

 
The learned hypotheses (attributional rules) shown in Figure 7 are: 
Rule1:  [x1=1..3]  & [x2=1..4] &  [x3=1..4]  
Rule2:  [x2=3..4] & [x4=1..3]  

Both rules include the individual that represents the function minimum: (3,3,3,3). 

Problem 2. Find the minimum of the Rastrigin function:  

in which the number of arguments, n, was set to 100, and each x was bounded between –
5.12 and 5.12. 

 
Figure 8.  A 2D projection of  the Rastrigin function. 

The Rastrigin function has many local optima, and it is easy to miss the global solution 
(Figure 8). In this experiment, both uniLEM and duoLEM versions were employed, and 
their results were compared with the best available result from a conventional 
evolutionary method, which was obtained by a parallel GA with 16 subpopulations and 
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20 individuals per subpopulation (Muhlenbein, Schomisch, and Born, 1991). This result 
is shown by the point PGA in Figure 9. The LEM2' results were also compared with the 
performance of ES. 

The results of uniLEM, duoLEM, ES and the Parallel GA are shown in Figure 9. 

Figure 9 illustrates the evolutionary process conducted by uniLEM, duoLEM, and ES. It 
also shows a point indicating the best result obtained by the parallel GA. Each curve 
represents an average of 10 runs. The y-axis represents the fitness using a logaritmic 
scale, and the x-axis represents the number of births.  As one can see, both uniLEM and 
duoLEM relatively quickly. DuoLEM reached the global minimum with δ=0.0001 in all 
10 runs after about 26000 evaluations. UniLEM found the global minimum 7 times out of 
10 (hence the average of the fitness function is higher than in the case of duoLEM). The 
parallel GA, which achieved the best result found in the literature on this problem, 
required 109072 evaluations to achieve  δ=0.001 (it used 8 subpopulations, each with 20 
individuals).  Thus, the speedup of duoLEM over parallel GA (PGA) was more than 
420%. We also investigated the rate of convergence to the optimum obtained of these 
four algorithms by repeating the experiment for  20, 50, and 100 variables. 

Rastrigin's Function with 100 Variables 
Each curve is the average of 10 runs
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Figure 9. Results obtained by ES,  LEM2's uniLEM and duoLEM versions, and a Parallel 

GA  for the Rastrigin function with 50 variables. 
 

Figure 10 shows the dependence of the evolution duration (measured by the number of 
births required to reach the near-optimal solution) on the number of function arguments 
for different methods. As seen in the figure, the evolution duration in case of LEM2 has 
only slightly increased with the number of arguments, while in the case of ES and Parallel 
GA it has increased much faster. 
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How Many Births are Needed as the Number of Variables 
Increases
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Figure 10.  The number of births needed to reach the optimum as a function of the 

number of arguments. 

Problem 3. Find the minimum of the Gaussian Quartic function: 

in which the number of arguments, n, was set to 10, 50 and 100, and each x was bounded 
between –5.12 and 5.12.  This is a simple unimodal function padded with noise (Figure 
11). The Gaussian noise ensures that the algorithm never gets the same value on the same 
point. Algorithms that do not do well on this test function will do poorly on noisy data.  
In this experiment uniLEM was compared with ES. 

 Figure 11. A 2D projection of the Gaussian Quartic function. 

 
Table 4 presents the result of comparing LEM2 in uniLEM version with ES using 
different population sizes.  Results are shown for different deltas. 

This experiment confirms the results of the problem 2, where it was shown that the 
speedup of LEM vs. Darwinian Evolutionary Algorithms increases as the number of 
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dimensions increases.  This is to be attributed to the fact that blind operators such as 
mutation and recombination tend to be less effective with large search spaces.  This 
experiment also shows the ability of LEM to work with noisy functions. 
 
 

 (# vars)  10   50   100  

 δ0δ0δ0δ0    δ0.01δ0.01δ0.01δ0.01    δ0.1δ0.1δ0.1δ0.1    δ0δ0δ0δ0    δ0.01δ0.01δ0.01δ0.01    δ0.1δ0.1δ0.1δ0.1    δ0δ0δ0δ0    δ0.01δ0.01δ0.01δ0.01    δ0.1δ0.1δ0.1δ0.1    

LEM 100 
.3 .3 1000 800 700 4900 4400 3900 21400 10500 10100 

ES 100 
 .7 3600 3200 2900 40100 40100 36700 432860 391979 92455 

Speedup 
LEM/ES 300% 400% 400% 800% 900% 900% 2000% 3700% 900% 

 
Table 4. Results and relative speedups of LEM2 over ES for the Gaussian Quartic 

function. 

4.2 Design of Heat Exchangers 

In order to test LEM on a practical problem, we applied it to the optimization of heat 
exchanger designs under various technical and environmental constraints. To this end, we 
developed a specialized system, ISHED1, that customized LEM to this problem. To 
explain this application, let us briefly explain the problem. In an air conditioning unit, the 
refrigerant flows through a loop. It is superheated and placed in contact with cooler 
outside air in the condenser unit, where it transfers heat out and liquefies. Coming back 
inside to the evaporator, it comes into contact with the warmer interior air that is being 
pushed through the heat exchanger, as a result cooling the air while heating and 
evaporating the refrigerant.  The heat exchanger consists of an array of parallel tubes 
through which the refrigerant flows back and forth.  Different orderings of the flow of the 
refrigerant through the individual tubes may have a profound effect on the air 
conditioner's cooling ability.  

     ISHED1 applies a version of duoLEM tailored to this problem.  Individuals in a 
population represent designs (structures) of heat exchangers. Each design is defined by a 
vector that characterizes the arrangement of tubes on the path from the input and the 
output.  In Darwinian Evolution mode, ISHED1 employs eight structure-modifying 
operators, which  make changes in the structures (analogous to mutation operators in 
evolutionary algorithms).  For example, one operator may create a split in a refrigerant 
path by moving the source of a tube's refrigerant closer to the inlet tube; second operator 
may swap the tubes in the structure; and another operator may graft a path of tubes into 
another path, etc. (Kaufman and Michalski, 2000b).  The application of these operators is 
domain knowledge driven, that is, operators are applied according to  known technical 
constraints.  
     Machine learning mode in ISHED1 is also tailored to the heat exchanger design task.  
The hypotheses generated describe abstractions of the individual structures. They specify 
only the location of inlet, outlet and split tubes.  Beyond that, the instantiation module 
may choose among the different structures that fit the learned template, and generate the 
most plausible one according to the real-world background knowledge.  ISHED1 uses 
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high and low fitness thresholds of 25% to select the H-group and L-group. Once rules are 
generated, an elitist strategy is used to form the next generation of proposed architectures. 
The best architecture found so far, as well as all members of the H-group are passed to 
the next generation, along with various instantiations of the learned rules. 

An ISHED1 run proceeds as follows. Given instructions characterizing the environment 
for the target heat exchanger, an initial population of designs (specified by the user or 
randomly generated), and parameters for the evolutionary process, ISHED1 evolves 
populations of designs using combination of   Darwinian and machine learning operators 
for a specified number of generations. ISHED1 returns a report that includes the best 
designs found and their estimated quality (capacity). Throughout the execution, design 
capacities are determined by a heat exchanger simulator (Domanski, 1989).  
Exchanger Size: 16 x 3 
Population Size: 15   Generations: 40 
Operator Persistence: 5 
Mode Persistence: GA-probe=2 SL-probe=1 
Initial population: 
Structure #0.3:  17 1 2 3 4 5 6 7 8 9 12 13 29 15 31 I 18 33 20 36 22 38 24 40 26 42 11 2 7 45 14 47 16 34 35 19 37 21 39 23 41 25 

43 44 28 46 30 48 32:  5.5376 
Structure #0.8:  17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 44 13 46 30 48 34 35 36 I 21 37 23 39 25 

41 27 43 29 45 31 47:  Capacity = 5.2099 
and 13 others 
 
Selected Members:  3, 2, 3, 7, 9, 3, 9, ... 
Operations: NS(23, 39), SWAP(8), SWAP(28), ..., 
          SWAP(29), SWAP(25), SWAP(1) 
Below is one of the structures created by the application of a SM operator in Darwinian mode (by swapping the two tubes following 
tube 29 in Structure #0.8)  
Generation 1:  
Structure #1.13: 17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4 13 45 30 48 34 35 36 I 21 37 23 39 25 

41 27 43 46 29 31 47:  Capacity=5.2093 
and 14 others. 

 
Selected Members:  6, 15, 11, 3, 13, 1, ... 
. . . . . .  
The program soon shifts into Symbolic Learning Mode: 
Generation 5: Learning mode 
Learned rule: 

[x1.x2.x3.x4.x5.x6.x7.x8.x9.x11.x12.x13.x14.x15.x17.x18.x19.x20.x21.x22.x23.x24.x25.x26.x27.x28.x29.x30.x31.x32.x33.x3
4.x35.x36.x37.x38.x39.x40.x41.x42.x43.x44.x45.x46.x47.x48=regular] & [x10=outlet]&[x16=inlet] (t:7,u:7,q:1) 

 
An example of a generated structure: 
Structure #5.1:  17 1 2 3 4 5 6 7 8 9 12 29 45 30 31 I 18 33 20 36 22 38 24 40 26 42 11 27 13 15 47 48 34 35 19 37 21 39 23 41 25 

43 44 28 46 14 32 16:  Capacity=5.5377 
. . . . . . . . .  
Below is a structure from the 21st generation: 
Generation 21: Learning mode 
Structure #21.15 2 18 4 1 6 3 5 7 8 9 12 13 45 15 31 I 33 17 35 36 22 39 24 40 42 25 11 44 30 46 32 47 34 19 20 37 21 23 38 41 26 

43 28 27 29 14 48 16:  5.5387 
and 14 others 
 
Selected Members:  11, 4, 4, 13, 15, 10, 12, 13, 15, 15, 12, 2, 3, 5, 10.  
. . . . . . . . .  
ISHED1 continues to evolve structures, and finally achieves: 
Generation 40: 
Structure #40.15: 33 17 2 41 4 5 6 9 7 8 12 29 46 45 47 I 1 34 20 36 22 38 24 3 42 43 44 27 13 15 32 16 18 11 19 37 

21 32 23 25 40 26 28 35 30 14 48 31: Capacity=6.3686 

Figure 12.  An excerpt from the log of an ISHED1 run. 
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Many experiments have been conducted.  Initial experiments concerned a poblem  with a 
known expert solution (design) regarding the heat exchanger size and airflow pattern.  
The best design found by ISHED1 was comparable to the expert designs widely used by 
industry.  Further experiments utilized different exchanger sizes and airflow patterns.  
The latter changes were especially significant, because the commercially built air 
conditioners typically do not take into account an uneven airflow.  When confronted with 
such situations, their cooling ability suffers. In the case of non-uniform airflow, the 
ISHED1-designed heat exchangers performed significantly better than the currently-used 
expert-designed structures (Kaufman and Michalski, 2000b).  

An example of the output from an ISHED1 run is shown in Figure 12.  This run was done 
in a verbose mode, and as such, the log details every structure tested, every operator 
applied, and the rules learned.  The figure only shows a very small sample of the full 
output in order to give the reader a flavor of ISHED1 in action.  Added comments are 
given in italics. 

5 Summary 

This paper presented a selection of recent results from the research on Learnable 
Evolution Model that  employs machine learning to speed up evolutionary computation.  
The results were obtained by system LEM2, which can operate in  two versions, uniLEM 
and duoLEM. The uniLEM version executes repeatedly Machine Learning mode, which 
uses rule learning and instantiation as basic operators (the Startover operator allows the 
system switch the population). The duoLEM version alternates between Machine 
Learning and Darwinian Evolution mode. The latter mode applies a conventional 
evolutionary computation algorithm.  

LEM2, described in this paper, is an improvement of the earlier system, LEM1.   It  
implements a multiple rule instantiation (catering to multiple global optima), adaptive 
anchoring discretization (an automatic adjustment of the precision in discretizing 
continuous attributes), and a uniLEM version.  The results from LEM2 have confirmed 
previous strong results (Michalski and Zhang, 1999), and demonstrate that the LEM 
methodology can be highly useful for some problems.  

     ISHED1 is a version of LEM tailored to a class of problems in engineering design 
(optimization of heat exchangers). It applies task-specific operators in a LEM-type 
control environment.  Results have confirmed significant  benefits from integrating 
Darwinian Evolution and Machine Learning modes of evolution.  By doing so, ISHED1 
was able to achieve or exceed the cooling capacity of commercially designed systems 
under a variety of conditions, with only a moderate amount of domain knowledge. 

     The processs of generating new individuals by hypothesis generation and instantiation 
used in LEM is computationally more intensive than the process of generating new 
individuals by mutation and/or recombination. This is offset by the reduction, sometimes 
very significant, in the number of evaluations  needed to reach the evolution goal. Thus, 
LEM appears to be particularly well-suited for evolutionary computation problems in 
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which evaluating fitness of individuals in a population is a costly and/or time-consuming 
operation (as is, e.g.,  in the case of heat-exchanger design).   

The LEM methodology is at an early stage of development and  opens many interesting 
problems for further research. They include a theoretical and experimental investigation 
of the trade-offs inherent in LEM, an implementation of more advanced versions of LEM, 
an experimentation with different combinations of conventional evolutionary algorithms 
and machine learning algorithms, and testing in variety of practical domains. 
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