
Proceedings of the Fifth International Workshop on Multistrategy Learning (MSL-2000),
Guimarães, Portugal, pp. 41-58, June, 2000.

 1

Combining Machine Learning with Evolutionary Computation:

Recent Results on LEM

Guido Cervone

Ryszard S. Michalski*
Kenneth K. Kaufman

Liviu A. Panait

Machine Learning and Inference Laboratory
George Mason University

Fairfax, VA, 22030

*Also with the Institute of Computer Science, Polish Academy of Sciences, Warsaw,
Poland

Abstract

The Learnable Evolution Model (LEM), first presented at the Fourth International
Workshop on Multistrategy Learning, employs machine learing to guide
evolutionary computation. Specifically, LEM integrates two modes of operation:
Machine Learning mode, which employs a machine learning algorithm, and
Darwinian Evolution mode, which employs a conventional evolutionary
algorithm. The central new idea of LEM is that in machine learning mode, new
individuals are “genetically engineered” by a repeated process of hypothesis
formation and instantiation, rather than created by random operators of mutation
and/or recombination, as in Darwinian-type evolutionary algorithms. At each
stage of evoluation, hypotheses are induced by a machine learning system from
examples of high and low performance individuals. New individuals are created
by instantiating the hypotheses in different ways. In recent experiments concerned
with complex function optimization problems, LEM has significantly
outperformed selected evolutionary computation algorithms, sometimes achieving
speed-ups of the evolutionary process by two or more orders of magnitude (in
terms of the number of generations). In another recent application involving a
problem of optimizing heat exchangers, LEM produced designs equal or superior
to best expert designs. The recent results have confirmed earlier findings that
LEM is able to significantly speed-up evolutionary processes (in terms of the
number of generations) for certain problems. Further research is needed to
determine classes of problems for which LEM is most advantagious.

.

 2

1 Introduction

The idea that machine learning can be used to directly guide evolutionary computation
was first presented at the Fourth International Workshop on Multistrategy Learning
(Michalski, 1998). This presentation described the Learnable Evolution Model (LEM),
which integrates a machine learning algorithm with a conventional evolutionary
algorithm, and reported initial results from LEM's application to selected function
optimization problems. Presented results were very promising but tentative. They were
obtained using LEM1, a rudimentary implementation of the proposed method, and the
experiments were performed only on a few problems.

Subsequently, a more advanced implementation, LEM2, was developed, and many more
experiments were performed with it (Cervone, 1999). The original methodology was also
substantially extended and improved (Michalski, 2000). One of the important
improvements is the development of the adaptive anchoring discretization method,
ANCHOR, for handling continuous variables (Michalski and Cervone, 2000). This paper
presents recent results from the application of LEM2 to a range of function optimization
problems and to a practical problem of designing optimal heat exchangers. To provide
the reader with a sufficient background information, the next section briefly reviews the
latest version of the Learnable Evolution Model.

2 A Brief Overview of the Learnable Evolution Model

The Learnable Evolution Model (LEM) represents a fundamentally different approach to
evolutionary processes than Darwinian-type evolutionary algorithms. In Darwinian-type
evolutionary algorithms, new individuals are generated by processes of mutation and/or
recombination. These are semi-blind operators that take into consideration neither the
experience of individuals in a given population (like in Lamarckian type of evolution),
nor the past history of evolution. In LEM, the evolution is guided by hypotheses derived
from the current and, optionally also past generations of individuals. These hypotheses
identify the areas of the search space (landscape) that most likely contain the global
optimum (or optima). The machine learning program is used in LEM either as the sole
engine of evolutionary change (the uniLEM version), or in combination with the
Darwinian-type of evolution process (the duoLEM version).

The duoLEM version integrates two modes of operation: Machine Learning mode and
Darwinian Evolution mode. The Darwinian Evolution mode implements a conventional
evolutionary algorithm, which employs mutation and/or recombination operators to
generate new individuals. The Machine Learning mode generates new individuals by a
process of hypothesis generation and instantiation. Specifically, at each step of evolution,
it selects two groups of individuals from the current population: High-performing
individuals (H-group), which score high on the fitness function, and Low-performance
individuals (L-group), which score low on the fitness function. These groups are selected
from the current population or from some combination of the currrent and past
populations. These two groups are then supplied to a learning program that generates
hypotheses distinguishing between the H-group and the L-group. New individuals are

 3

generated by instantiating the hypotheses in various ways. These new individuals
compete with the existing individuals for the inclusion in the new population.

In the duoLEM version, LEM alternates between the two modes of operation, switching
to another mode when a mode termination condition is met (e.g., when there is an
insufficient improvement of the fitness function after a certain number of populations). In
the uniLEM version, the evolution process is guided solely by the machine learning
program. When the mode termination condition is met, a StartOver operation is
performed. In such an operation, system generates a new population randomly, or
according to certain rules (Michalski, 2000).

Figure 1 presents a flowchart of uniLEM and duoLEM version of LEM. For a
comprehensive description of the LEM methodology refer to (Michalski, 1998, Cervone,
1999, Michalski, 2000).

Select H and L
groups

Generate new population

Evaluate individuals

Adjust parameters

uniLEM version duoLEM version

Generate new individuals
via hypotheses creation

and instantiation

Adjust parameters

Startover Startover

Generate new individuals
via mutation and/or

crossover

Select Parents

Evaluate individuals

Select H and L
groups

Generate new population

Switch mode

Generate new individuals
via hypotheses creation

and instantiation

Figure 1. A flowchart of the uniLEM and duoLEM versions.

Below is a brief description of the individual steps, with an indication of how they are
implemented in the LEM2 system.

StartOver: This operator generates a new population randomly or according to cetain
rules. In LEM2, a new population is generated randomly, with a proviso that a number of

 4

the best performing individuals from the past populations are added to the newly
generated population (elitism).

Select H-group and L-group: This selection can be done in LEM2 using one of two
methods: Fitness-Based Selection (FBS), or Population-Based Selection (PBS). In FBS,
the H-group (L-group) consists of individuals whose fitness is above the HFT% from the
top value (below the LFT% from the lowest value). In PBS, the H-group (L-group)
consists of HPT% highest-fitness (LPT% lowest-fitness) individuals in the population.
Figure 2 illustrates these two selection methods and the parameters HFT (high fitness
threshold), LFT (low fitness threshold), HPT (high population threshold), LPT (low
population threshold).

Figure 2. An example of the fitness profile function, and an illustration of
parameters HFT, LFT, HPT, LPT would select the H and L groups.

Select parents: The selection of the parents is related to the Darwinian mode. It selects
representative individuals (parents) from the current population that will be mutated
and/or recombined. LEM2 implements two types of mutation: deterministic and uniform.
In the first every individual in the population is selected, while in the latter, every
individual has the same chance of being selected, independently from its fitness.

Generate new individuals via hypothesis creation and instantiation: The LEM
methodology is not constrained to any particular learning algorithm, but can be used, in
principle, with any concept learning method. LEM2 employs AQ18 rule learning
program that is highly suitable for LEM due to its various characteristics, such as the
ability to learn rules with different levels of generality, the use of internal disjunction
operator, and a powerful knowledge representation.

Figures 3 and 4 show an example of the input and output from AQ18, respectively (after
small editing).

Generate new individuals via mutation and/or crossover: Individuals in the parent
population are mutated and/or recombined. Research on Darwinian-type evolutionary
algorithms has investigated many different forms of mutation and recombination.

Evaluate individuals: For each new individual, its fitness is evaluated according to a
given fitness function or by some process, e.g., simulation. In the latter case, this
operation may be costly and time-consuming.

Generate new population: This step involves creating a new population that combines
individuals from the previous population with new individuals generated according to the
rules learned. Different methods can be used for this purpose. These methods can be

 5

divided into intergenerational and generational. In the methods of the first group, both
newly generated and previous individuals compete for inclusion in the new population. In
the methods of the second group, only newly generated individuals compete for the
inclusion.

Adjust Parameters: LEM keeps statistics regarding the number of successful births, the
change in the highest-so-far fitness score, and others. Using these statistics, it can adjust
its behavior in the evolutionary process. For example, it may find that at a given step
generating more general or more specific rules may be more desirable, that parameters
controlling the selection of H-group and L-group need to be changed, or that the mutation
rate for the Darwinian evolutionary mode need to be adjusted.

3 LEM Implementations: LEM2, LEM1, and ISHED1

LEM2 is the newest general-purpose implementation of LEM, and represents a significant
improvement over LEM1, the first, rudimentary implementation (Michalski and Zhang,
1999). LEM1, presented at MSL98, employs the AQ15c machine learning program in
Machine Learning mode and GA1 and GA2, two simple evolutionary algorithms, in
Darwinian evolution mode. GA1 and GA2 use a deterministic selection mechanism and a
real-value representation of the variables. The main differences between the two are that
GA1 generates new individuals only through a uniform Gaussian mutation operator,
while GA2 uses also a uniform crossover operator. Continuous variables are discretized
into a fixed number of values. LEM1 was applied to function optimization (Michalski
and Zhang, 2000), and a problem in designing non-linear digital filters (Coletti et al.
1999).

LEM2 was programmed using EC++, a generic Evolutionary Computation Library
(Cervone and Coletti, 2000). In Machine Learning mode, it employs the AQ18 rule

����� �����	�
��� �
�
����������� �����
� �����	�������	��������������� ���
 !���#"$��%&��"$�	'(� ' �)�

*+���
� ����, �	�
-.��%+"��/��� 0��/'��	���1�)�����
 (, � � 32 3465�57�+ 34 �8
9 , � � 32 3465�57� 9 4 � 9
: , � � 32 3465�57� : 4 � :
;<, � � 32 3465�57�=;>4 ��;

?A@B�C� ����"��	D����)�
�
-.�8 �� 9 � : �=;FE���� �CG)�
 (HIHJHIKJ 9
9 HILJLIH7M
: HILJHIKJH
;<LILJHIKJ2
2(LIHJLIKJ2

NO@ �C� ���3"��	D��������
-.�8 �� 9 � : �=;PE���� �CG)�
 (LILJ �;QKI2
9 LIHJ �;QK :
: HIHJ �;QHI

RTS$U�V WYX�W+Z�W+S$[+V \]�\ Z�X_^a`�WYbdc�X�S$e8UCfhg

i�jlkAmonCpqpqrCs&tui�jlvCmonApqpqrCs&tui�jlwCmonApqp�xAs&tyi�j+zdmorAp�pqxAs

{|`C\ }~V W+[+S�ZC\ ZCX�f�S$e8�	W+}	}~UC}	W+�hg
��� }�^aW+��^a\ ��Wlg�� p ��}	W+�	e8Z��C}
�h}	W+Sl^a\ ��Wlg � p ��}	W+�	e8ZC��}

Note: The values in the conditions of the
rule above are symbols representing ranges
of original values of these variables, not the
original values. These ranges have been
detemined in the process of adaptive
anchoring quantization (Michalski and
Cervone, 2000).

�
Figure 3. AQ18 input. Figure 4. AQ18 output.

 6

learning program (Kaufman and Michalski, 2000a). The main features or improvements
introduced to LEM2 in relation to LEM1 include:

A. A new method for discretizing continuous variables has been developed and
implemented. The method, called Adaptive Anchoring Discretization, briefly
ANCHOR (Michalski and Cervone, 2000) gradually and adaptively increases the
resolution of continuous variables in the process of evolution. The method has
drastically improved the efficiency of LEM in the case when individuals are
described by continuous variables.

B. New individuals are generated by instantiating multiple rules rather than only the
strongest rule in the ruleset generated by the learning program. This allows the
system to explore in parallel several subareas of the search space, which is
important in the case of multi-modal landscapes.

C. The number of new individuals generated from a single rule is not fixed, but is
proportional to the rule fitness, defined as the sum of fitnesses of examples covered
by the rule.

D. In addition to the population-based method for selecting the H-group and L-group,
LEM2 can also uses the fitness-based method.

E. The cost of variables in adjusted dynamically in the evolution process. Each time a
variable is included in a ruleset generated by the learning program, its cost is
increased. This way, the system gives preference to variables that were not included
in the previously learned ruleset. This feature has proven to be useful in optimizing
functions with very large numbers of variables.

F. The uniLEM version has been implemented, that is, the evolution process
repetitively executes only Machine Learning mode. There is no separate Darwinian
Evolution mode.

G. A simple version of the StartOver operation has been implemented for the uniLEM
version. Specifically, when the fitness profile function is flat for a controlled
number of generations, new individuals are created randomly and inserted into the
current population.

H. Parameters controlling the creation of H-group and L-group in each step of
evolution, the population lookback and the description lookback, have been
implemented in LEM2 (Michalski, 2000).

LEM2 was applied to a range of optimization problems, and its performance was
compared to that of conventional Darwinian-type evolutionary algorithms (Cervone,
1999). ISHED1 is an implementation of the LEM methodology tailored toward a specific
application domain, namely, to the design of heat exchanger systems. Specifically, it
conducts an evolutionary optimization process to determine the best arrangement of the
evaporator tubes in the heat exchanger of an air conditioning system under given
technical and environmental constraints (see Section 4.2). Special structure modifying
operators have been implemented that modify structures according to the expert domain
knowledge. A detailed description of ISHED1 is in (Kaufman and Michalski, 2000).

 7

4 Experiments

This section presents selected results from testing and validating the LEM methodology
using LEM2. To maximize the objectivity of LEM2 testing, the results from
conventional evolutionary algorithms on the same problem, which were found in the
literature or on the web, were compared with the corresponding results from LEM2.

For problems for which we were unable to find such results in the literature or on the
web, we applied a conventional evolutionary algorithm, ES, reimplemented in C++ from
an existing version in C (that was obtained from Ken De Jong). ES uses a real-valued
representation and deterministic selection (i.e., each parent is selected and then mutated a
fixed number of times, defined by the brood parameter). The mutation is done according
to the Gaussian distribution, in which the mean is the value being mutated and the
standard deviation is a controllable parameter. Each variable has 1/L probability of being
mutated, where L is the total number of variables defining an individual. New
individuals and their parents are sorted according to their fitness, and the popsize highest-
fitness individuals are included in the next generation, where popsize is a fixed
population size.

For some of the problems, we found on the web results from the application of Parallel
GA (PGA). PGA is a standard genetic algorithm (that uses a binary-string representation,
mutation and crossover operators, and fitness-proportional selection) that simultaneously
maintains separate subpopulations of individuals (the number of subpopulations and their
sizes are specified by user-provided parameters).

4.1 Application to Function Optimization

This section presents a selection of results from the application of LEM2, ES, and PGA
(when a to three well-known function optimization problems, namely, the Rosenbrock
function, the Rastrigin function and the Gaussian Quartic function.
 Problem 1. Find the minimum of Rosenbrock function (Rosenbrock, 1960) in which
the number of arguments, n, is raised to 100, and each argument ranges between –5.12
and 5.12:

This is a rather complex optimization problem because the function has a very narrow
and sharp ridge and runs around a parabola, so the variables are interrelated (Figure 5).

Figure 5. An inverted graph of a two-dimensional projection of the Rosenbrock function.

))1() ((100),..,(2
i

2
1

1

2
1i21 −+−⋅= � −

=

+ xxxxxxRos
n

i
in

 8

 For comparison, the ES algorithm was also applied to the same problem. The results of
this experiment are graphically presented in Figure 6. Two different population sizes
were used, 100 and 150, for both LEM2 and ES. Each experiment was repeated 10 times
and the results averaged.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

70
00

0

LEM2 vs. ES- Rosenbrock Function
 100 Variables - Each curve is the average of 10 runs

LEM2

ES

9, 14

10, 15
11, 16

12, 13

17,18
3

2

1 5 7 6, 8

1 - LEM 150 .3 .3
2 - LEM 150 .3 .1
3 - LEM 150 .1 .3
4 - LEM 150 .1 .1
5 - LEM 100 .3 .3
6 - LEM 100 .3 .1
7 - LEM 100 .1 .3
8 - LEM 100 .1 .1
9 - ES 150 .1
10 - ES 150 .3
11 - ES 150 .5
12 - ES 150 .7
13 - ES 150 .9
14 - ES 100 .1
15 - ES 100 .3
16 - ES 100 .5
17 - ES 100 .7
18 - ES 100 .9

4

Number of
births

Figure 6. Results from LEM2 and ES for the Rosenbrock function optimization.

 In Figure 6, LEM a,b,c means that the method was LEM2, the population size was a,
and HPT and LPT parameters were b and c, respectively. ES a,b means that population
size was a and mutation rate b. As shown in Figure 6, LEM2 was significantly less
dependent on the input parameters than ES, and also converged to the function minimum
much faster. It is possible to notice that some of the LEM curves (e.g. 5,6,7,8) show a
long horizontal line, meaning that for several births the algorithm did not improve the
global optimum, and then a steep vertical line. This behavior is the result of the startover
operator, which introduced new individuals in the population, therefore allowed LEM to
discover those areas of the space most favorable to direct the evolution.

 LEM2’s results were also compared with the best available results previously
published for this function (CHC). These results concern the Rosenbrock function with a
much smaller number of variables (only 2 and 4). They are summarized in Table 1,
which shows the number of evaluations needed to come δ-close to the global optimum,
and the relative speedups.

 The value of δ-close specifies the number of generations after which the relative
distance from the solution to the target (global optimum) produced by an algorithm
becomes smaller than δ. The speedup of algorithm A over B for a given δ, is defined as
the ratio, expressed in percentage, of the number of births required by B to the number of
births required by A to achieve the δ-close result.

 In the case of two variables, the best result was achieved using the CHC+BLX
algorithm (briefly, CHC) that required 4893 evaluations (Eschelman and Shaffer, 1993).
In contrast, LEM2 found the global minimum using only 101 evaluations (a speedup of
nearly 5000%).

 9

Rosenbrock function
minimization 2 vars

 δ=0

LEM2 (uniLEM) 101

CHC 4893

Speedup LEM2/CHC 4800%

Table 1. Results for the Rosenbrock function of 2 variables.

In the case of four variables, the best published result was achieved by a breeder GA, that
required about 250,000 evaluations (births) to achieve a result with δ=0.1 (Schlierkamp-
Voosen and Muhlenbein 1994). LEM2 found the global optimum (δ=0) with only 281
evaluations, that is, the speedup of LEM2 over GA was at least 75,000% (since the result
published for GA referred to δ=0.1 rather than δ=0.1). Table 2 summarizes the results.
These results indicate that LEM2 was able to rapidly locate the portion of the landscape
containing the global optimum.

Rosenbrock function
minimization (4 variables)

LEM2 (uniLEM) δ=0: 281

GA δ=0.1: 77,000

Speedup LEM2/GA ≥ 27,500%

Table 2. Results for the Rosenbrock function of 4 variables.

Figure 7 illustrates sample rules that AQ generated when LEM was applied to find the
minimum of the Rosenbrock function with four variables, and also how they match the
H-group individuals. The variables are discretized using the values shown in the Table 3.

Value
0

–2 .. -
1.2

Value
1

–1.2 .. -
.4

Value
2

–.4 .. -.4

Value
3

.4 ..
1.2

Value
4

1.2 .. 2

Table 3. A correspondence of the symbolic values to real values of variables in Figure 7.

 10

The minimum is found when all the Xs are equal to 1, and this will be represented in the
diagram by value 3, since 3 describes the range between -.4 and 1.2, which includes 1.
The global solution is indicated in Figure 7 by a circle.

Figure 7 .Learned Hypotheses and H-group individuals.

The learned hypotheses (attributional rules) shown in Figure 7 are:
Rule1: [x1=1..3] & [x2=1..4] & [x3=1..4]
Rule2: [x2=3..4] & [x4=1..3]

Both rules include the individual that represents the function minimum: (3,3,3,3).

Problem 2. Find the minimum of the Rastrigin function:

in which the number of arguments, n, was set to 100, and each x was bounded between –
5.12 and 5.12.

Figure 8. A 2D projection of the Rastrigin function.

The Rastrigin function has many local optima, and it is easy to miss the global solution
(Figure 8). In this experiment, both uniLEM and duoLEM versions were employed, and
their results were compared with the best available result from a conventional
evolutionary method, which was obtained by a parallel GA with 16 subpopulations and

))**2cos(*10 (10*),..,(
1

2
i21 i

n

i
n xxnxxxRas π−+= �

=

 11

20 individuals per subpopulation (Muhlenbein, Schomisch, and Born, 1991). This result
is shown by the point PGA in Figure 9. The LEM2' results were also compared with the
performance of ES.

The results of uniLEM, duoLEM, ES and the Parallel GA are shown in Figure 9.

Figure 9 illustrates the evolutionary process conducted by uniLEM, duoLEM, and ES. It
also shows a point indicating the best result obtained by the parallel GA. Each curve
represents an average of 10 runs. The y-axis represents the fitness using a logaritmic
scale, and the x-axis represents the number of births. As one can see, both uniLEM and
duoLEM relatively quickly. DuoLEM reached the global minimum with δ=0.0001 in all
10 runs after about 26000 evaluations. UniLEM found the global minimum 7 times out of
10 (hence the average of the fitness function is higher than in the case of duoLEM). The
parallel GA, which achieved the best result found in the literature on this problem,
required 109072 evaluations to achieve δ=0.001 (it used 8 subpopulations, each with 20
individuals). Thus, the speedup of duoLEM over parallel GA (PGA) was more than
420%. We also investigated the rate of convergence to the optimum obtained of these
four algorithms by repeating the experiment for 20, 50, and 100 variables.

Rastrigin's Function with 100 Variables
Each curve is the average of 10 runs

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0

3,
00

0

6,
00

0

9,
00

0

12
,0

00

15
,0

00

18
,0

00

21
,0

00

24
,0

00

27
,0

00

30
,0

00

10
9,

07
2

Number of Births

F
itn

es
s

(L
og

ar
itm

ic
 S

ca
le

)

. . .

. . .

. . .

. . .

. . .

uniLEM

duoLEM

ES

PGA

Figure 9. Results obtained by ES, LEM2's uniLEM and duoLEM versions, and a Parallel

GA for the Rastrigin function with 50 variables.

Figure 10 shows the dependence of the evolution duration (measured by the number of
births required to reach the near-optimal solution) on the number of function arguments
for different methods. As seen in the figure, the evolution duration in case of LEM2 has
only slightly increased with the number of arguments, while in the case of ES and Parallel
GA it has increased much faster.

 12

How Many Births are Needed as the Number of Variables
Increases

0

20000

40000

60000

80000

100000

120000

20 Vars 50 Vars 100 Vars

ES

Parallel
GA

uniLEM
duoLEM

Figure 10. The number of births needed to reach the optimum as a function of the

number of arguments.

Problem 3. Find the minimum of the Gaussian Quartic function:

in which the number of arguments, n, was set to 10, 50 and 100, and each x was bounded
between –5.12 and 5.12. This is a simple unimodal function padded with noise (Figure
11). The Gaussian noise ensures that the algorithm never gets the same value on the same
point. Algorithms that do not do well on this test function will do poorly on noisy data.
In this experiment uniLEM was compared with ES.

 Figure 11. A 2D projection of the Gaussian Quartic function.

Table 4 presents the result of comparing LEM2 in uniLEM version with ES using
different population sizes. Results are shown for different deltas.

This experiment confirms the results of the problem 2, where it was shown that the
speedup of LEM vs. Darwinian Evolutionary Algorithms increases as the number of

)1,0(),..,,(
1

4
21 GaussixxxxGauss

n

i

in +=
=

 13

dimensions increases. This is to be attributed to the fact that blind operators such as
mutation and recombination tend to be less effective with large search spaces. This
experiment also shows the ability of LEM to work with noisy functions.

 (# vars) 10 50 100

 δ0δ0δ0δ0 δ0.01δ0.01δ0.01δ0.01 δ0.1δ0.1δ0.1δ0.1 δ0δ0δ0δ0 δ0.01δ0.01δ0.01δ0.01 δ0.1δ0.1δ0.1δ0.1 δ0δ0δ0δ0 δ0.01δ0.01δ0.01δ0.01 δ0.1δ0.1δ0.1δ0.1

LEM 100
.3 .3 1000 800 700 4900 4400 3900 21400 10500 10100

ES 100
 .7 3600 3200 2900 40100 40100 36700 432860 391979 92455

Speedup
LEM/ES 300% 400% 400% 800% 900% 900% 2000% 3700% 900%

Table 4. Results and relative speedups of LEM2 over ES for the Gaussian Quartic

function.

4.2 Design of Heat Exchangers

In order to test LEM on a practical problem, we applied it to the optimization of heat
exchanger designs under various technical and environmental constraints. To this end, we
developed a specialized system, ISHED1, that customized LEM to this problem. To
explain this application, let us briefly explain the problem. In an air conditioning unit, the
refrigerant flows through a loop. It is superheated and placed in contact with cooler
outside air in the condenser unit, where it transfers heat out and liquefies. Coming back
inside to the evaporator, it comes into contact with the warmer interior air that is being
pushed through the heat exchanger, as a result cooling the air while heating and
evaporating the refrigerant. The heat exchanger consists of an array of parallel tubes
through which the refrigerant flows back and forth. Different orderings of the flow of the
refrigerant through the individual tubes may have a profound effect on the air
conditioner's cooling ability.

 ISHED1 applies a version of duoLEM tailored to this problem. Individuals in a
population represent designs (structures) of heat exchangers. Each design is defined by a
vector that characterizes the arrangement of tubes on the path from the input and the
output. In Darwinian Evolution mode, ISHED1 employs eight structure-modifying
operators, which make changes in the structures (analogous to mutation operators in
evolutionary algorithms). For example, one operator may create a split in a refrigerant
path by moving the source of a tube's refrigerant closer to the inlet tube; second operator
may swap the tubes in the structure; and another operator may graft a path of tubes into
another path, etc. (Kaufman and Michalski, 2000b). The application of these operators is
domain knowledge driven, that is, operators are applied according to known technical
constraints.
 Machine learning mode in ISHED1 is also tailored to the heat exchanger design task.
The hypotheses generated describe abstractions of the individual structures. They specify
only the location of inlet, outlet and split tubes. Beyond that, the instantiation module
may choose among the different structures that fit the learned template, and generate the
most plausible one according to the real-world background knowledge. ISHED1 uses

 14

high and low fitness thresholds of 25% to select the H-group and L-group. Once rules are
generated, an elitist strategy is used to form the next generation of proposed architectures.
The best architecture found so far, as well as all members of the H-group are passed to
the next generation, along with various instantiations of the learned rules.

An ISHED1 run proceeds as follows. Given instructions characterizing the environment
for the target heat exchanger, an initial population of designs (specified by the user or
randomly generated), and parameters for the evolutionary process, ISHED1 evolves
populations of designs using combination of Darwinian and machine learning operators
for a specified number of generations. ISHED1 returns a report that includes the best
designs found and their estimated quality (capacity). Throughout the execution, design
capacities are determined by a heat exchanger simulator (Domanski, 1989).
Exchanger Size: 16 x 3
Population Size: 15 Generations: 40
Operator Persistence: 5
Mode Persistence: GA-probe=2 SL-probe=1
Initial population:
Structure #0.3: 17 1 2 3 4 5 6 7 8 9 12 13 29 15 31 I 18 33 20 36 22 38 24 40 26 42 11 2 7 45 14 47 16 34 35 19 37 21 39 23 41 25

43 44 28 46 30 48 32: 5.5376
Structure #0.8: 17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 44 13 46 30 48 34 35 36 I 21 37 23 39 25

41 27 43 29 45 31 47: Capacity = 5.2099
and 13 others

Selected Members: 3, 2, 3, 7, 9, 3, 9, ...
Operations: NS(23, 39), SWAP(8), SWAP(28), ...,
 SWAP(29), SWAP(25), SWAP(1)
Below is one of the structures created by the application of a SM operator in Darwinian mode (by swapping the two tubes following
tube 29 in Structure #0.8)
Generation 1:
Structure #1.13: 17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4 13 45 30 48 34 35 36 I 21 37 23 39 25

41 27 43 46 29 31 47: Capacity=5.2093
and 14 others.

Selected Members: 6, 15, 11, 3, 13, 1, ...
.
The program soon shifts into Symbolic Learning Mode:
Generation 5: Learning mode
Learned rule:

[x1.x2.x3.x4.x5.x6.x7.x8.x9.x11.x12.x13.x14.x15.x17.x18.x19.x20.x21.x22.x23.x24.x25.x26.x27.x28.x29.x30.x31.x32.x33.x3
4.x35.x36.x37.x38.x39.x40.x41.x42.x43.x44.x45.x46.x47.x48=regular] & [x10=outlet]&[x16=inlet] (t:7,u:7,q:1)

An example of a generated structure:
Structure #5.1: 17 1 2 3 4 5 6 7 8 9 12 29 45 30 31 I 18 33 20 36 22 38 24 40 26 42 11 27 13 15 47 48 34 35 19 37 21 39 23 41 25

43 44 28 46 14 32 16: Capacity=5.5377
.
Below is a structure from the 21st generation:
Generation 21: Learning mode
Structure #21.15 2 18 4 1 6 3 5 7 8 9 12 13 45 15 31 I 33 17 35 36 22 39 24 40 42 25 11 44 30 46 32 47 34 19 20 37 21 23 38 41 26

43 28 27 29 14 48 16: 5.5387
and 14 others

Selected Members: 11, 4, 4, 13, 15, 10, 12, 13, 15, 15, 12, 2, 3, 5, 10.
.
ISHED1 continues to evolve structures, and finally achieves:
Generation 40:
Structure #40.15: 33 17 2 41 4 5 6 9 7 8 12 29 46 45 47 I 1 34 20 36 22 38 24 3 42 43 44 27 13 15 32 16 18 11 19 37

21 32 23 25 40 26 28 35 30 14 48 31: Capacity=6.3686

Figure 12. An excerpt from the log of an ISHED1 run.

 15

Many experiments have been conducted. Initial experiments concerned a poblem with a
known expert solution (design) regarding the heat exchanger size and airflow pattern.
The best design found by ISHED1 was comparable to the expert designs widely used by
industry. Further experiments utilized different exchanger sizes and airflow patterns.
The latter changes were especially significant, because the commercially built air
conditioners typically do not take into account an uneven airflow. When confronted with
such situations, their cooling ability suffers. In the case of non-uniform airflow, the
ISHED1-designed heat exchangers performed significantly better than the currently-used
expert-designed structures (Kaufman and Michalski, 2000b).

An example of the output from an ISHED1 run is shown in Figure 12. This run was done
in a verbose mode, and as such, the log details every structure tested, every operator
applied, and the rules learned. The figure only shows a very small sample of the full
output in order to give the reader a flavor of ISHED1 in action. Added comments are
given in italics.

5 Summary

This paper presented a selection of recent results from the research on Learnable
Evolution Model that employs machine learning to speed up evolutionary computation.
The results were obtained by system LEM2, which can operate in two versions, uniLEM
and duoLEM. The uniLEM version executes repeatedly Machine Learning mode, which
uses rule learning and instantiation as basic operators (the Startover operator allows the
system switch the population). The duoLEM version alternates between Machine
Learning and Darwinian Evolution mode. The latter mode applies a conventional
evolutionary computation algorithm.

LEM2, described in this paper, is an improvement of the earlier system, LEM1. It
implements a multiple rule instantiation (catering to multiple global optima), adaptive
anchoring discretization (an automatic adjustment of the precision in discretizing
continuous attributes), and a uniLEM version. The results from LEM2 have confirmed
previous strong results (Michalski and Zhang, 1999), and demonstrate that the LEM
methodology can be highly useful for some problems.

 ISHED1 is a version of LEM tailored to a class of problems in engineering design
(optimization of heat exchangers). It applies task-specific operators in a LEM-type
control environment. Results have confirmed significant benefits from integrating
Darwinian Evolution and Machine Learning modes of evolution. By doing so, ISHED1
was able to achieve or exceed the cooling capacity of commercially designed systems
under a variety of conditions, with only a moderate amount of domain knowledge.

 The processs of generating new individuals by hypothesis generation and instantiation
used in LEM is computationally more intensive than the process of generating new
individuals by mutation and/or recombination. This is offset by the reduction, sometimes
very significant, in the number of evaluations needed to reach the evolution goal. Thus,
LEM appears to be particularly well-suited for evolutionary computation problems in

 16

which evaluating fitness of individuals in a population is a costly and/or time-consuming
operation (as is, e.g., in the case of heat-exchanger design).

The LEM methodology is at an early stage of development and opens many interesting
problems for further research. They include a theoretical and experimental investigation
of the trade-offs inherent in LEM, an implementation of more advanced versions of LEM,
an experimentation with different combinations of conventional evolutionary algorithms
and machine learning algorithms, and testing in variety of practical domains.

Acknowledgments

The authors thank Jeff Bassett and Paul Wiegand for their help in plotting the Rastrigin
function.

This research has been conducted in Machine Learning and Inference Laboratory at
George Mason University. The Laboratory’s research that enabled the work presented in
the paper has been supported in part by the National Science Foundation under Grants
No. IIS-9904078 and IRI-9510644.

References

Baeck, T., Fogel, D.B. and Michalewicz, Z. (eds.) (1997). Handbook of Evolutionary
Computation. Oxford: Oxford University Press.

Cervone, G. (1999). An Experimental Application of the Learnable Evolution Model to
Selected Optimization Problems. Master’s Thesis, Dept. of Computer Science, George
Mason University, Fairfax, VA.

Cervone, G. and Michalski, R.S. (2000). Design and Experiments with the LEM2
Implementation of the Learnable Evolution Model. Reports of the Machine Learning and
Inference Laboratory, George Mason University, Fairfax, VA (to appear).

Cervone, G. and Coletti, M. (2000). EC++, a Generic C++ Library for Evolutionary
Computation. Reports of the Machine Learning and Inference Laboratory, George Mason
University, Fairfax, VA. (to appear).

Coletti, M., Lash, T., Mandsager, C., Michalski, R.S., and Moustafa, R. (1996).
Comparing Performance of the Learnable Evolution Model and Genetic Algorithms on
Problems in Digital Signal Filter Design. Proceedings of the 1996 Genetic and
Evolutionary Computation Conference.

Domanski, P.A. (1989). EVSIM-An Evaporator Simulation Model Accounting for
Refrigerant and One Dimensional Air Distribution. NISTIR 89-4133.

Eshelman, L. J. and Schaffer, J. D. (1993). Real-Coded Genetic Algorithms and Interval
Schemata. Foundation of Genetic Algorithms 2, San Mateo, CA.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley.

 17

Holland, J. (1975). Adaptation in Artificial and Natural Systems. Ann Arbor: The
University of Michigan Press.

Kaufman, K.A. and Michalski, R.S. (2000a). The AQ18 System for Machine Learning
and Data Mining: User's Guide. Reports of the Machine Learning Laboratory, MLI 00-3,
George Mason University, Fairfax, VA.

Kaufman, K.A. and Michalski, R.S. (2000b). Applying Learnable Evolution Model to
Heat Exchanger Design. Proceedings of the Twelfth International Conference on
Innovative Applications of Artificial Intelligence, Austin, TX (to appear).

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolutionary
Programs. Springer Verlag.

Michalski, R.S. (1998). Learnable Evolution: Combining Symbolic and Evolutionary
Learning. Proceedings of the Fourth International Workshop on Multistrategy Learning,
organized by the University of Torino, Desenzano del Garda, Italy, June 11-13, pp.14-20.

Michalski, R.S. (2000). LEARNABLE EVOLUTION MODEL: Evolutionary Processes
Guided by Machine Learning. Machine Learning 38(1-2), pp. 9-40.

Michalski. R.S. and Cervone, G. (2000). Adaptive Anchoring Quantization of Continuous
Variables for Learnable Evolution. Reports of the Machine Learning and Inference
Laboratory, George Mason University, Fairfax, VA (to appear).

Michalski. R.S. and Zhang, Q. (1999). Initial Experiments with the LEM1 Learnable
Evolution Model: An Application to Function Optimization and Evolvable Hardware.
Reports of the Machine Learning and Inference Laboratory, MLI 99-4, George Mason
University, Fairfax, VA.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.

Muhlenbein, H., Schomisch, M. and Born, J. (1991). The Parallel Genetic Algorithm as
Function Optimizer, Proceedings of the Fourth Int'l Conference on Genetic Algorithms
and their Applications.

Ravise, C. and Sebag, M. (1996) An Advanced Evolution Should Not Repeat Its Past
Errors. Proceedings of the Thirteenth International Conference on Machine Learning.

Reynolds, R.G. (1994). An Introduction to Cultural Algorithms. Proceedings of the third
Annual Conference on Evolutionary Programming.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least value of
a function, Computer Journal 3:175, 1960.

Schlierkamp-Voosen, D. and Muhlenbein, H. (1994). Strategy Adaptation by Competing
Subpopulations, Parallel Problem Solving from Nature, Proceedings of the Third
Workshop, PPSN III, Jerusalem.

Sebag, M. and Schoenauer, M. (1994). Controlling Crossover Through Inductive
Learning. Proceedings of the Third Conference on Parallel Problem Solving from
Nature, Springer-Verlag.

 18

Sebag, M., Schoenauer M., and Ravise C. (1997). Inductive Learning of Multation Step-
size in Evolutionary Paramter Optimization, Proceedings of the Sixth Annual Conference
on Evolutionary Programming.

