


Abstract— Conducting  human  subjects  research  has
some challenges for bioengineers such as lack of repeatability of
bio-signals,  IRB  approval  and  recruitment.  The  COVID-19
pandemic has made it  even more difficult for researchers to
access  research  subjects. One  biosignal  that  is  economical,
portable  and  quick  to  collect  data  from  is
Electroencephalography (EEG). Here we present  a solution to
researchers’  reduction of  access  to in vivo EEG signals.  The
solution  is  in  the  form  of  a  patient  EEG  simulator  that  is
controlled  by  an  ATmega328P,  connected  to  an  analog  to
digital converter and other analog circuitry. Other commercial
devices  exist  but  this  device  was  also  constructed  for
educational  purposes.  The  output  signal  can  be  adjusted  to
better  match  a  real  bio-potential  from  a  human.
Neurophysiology recordings  can be loaded onto the device for
use. Open source data is readily available for download to add
to  the  database  on  the  device.  This  simulator has  other
potential  applications  such  as  unit  testing  for  devices  under
development  and  more  convenient  and  rapid  prototype
iteration. Optimization of the device is also discussed.

I. INTRODUCTION

Many  studies  conducted  by  bioengineers  involve  the
collection and processing of biosignals. These signals are any
metric that can be continuously monitored and sampled from
the body. For example, one study uses functional Magnetic
Resonance Imaging (fMRI) biosignals to reconstruct what the
brain is seeing [1]. Still another study uses four scan lines of
ultrasound  to  determine  the  volitional  motor  intent  of  a
prosthesis  user  [2].  There  are  also  many  efforts  to  build
devices that  can collect  multiple types of biosignals at the
same  time,  such  as  devices  discussed  in  [3].  Some  are
wearable and can measure a wide array of items including
photoplethysmography,  electrocardiography  and   galvanic-
skin response. Most are wearable while others are designed to
fit  over  a  mattress  or  over  an  automobile  seat  to  monitor
sleep and driving, respectively.  Thus, access  to a patient’s
biosignals is often very important for research efforts and the
development of new medical devices.

To enhance ease of access to different biosignals, many
types of patient simulators have been constructed. We will
discuss several examples to make clear different use cases.
Perhaps one of the most well known is the Human Patient
Simulator  (Medical  Educational  Technologies,  Inc.).  This
device is mainly used to train nurses and other physiology
students. It can reproduce many features a real patient could
such as pulse, pupil dilation and lung sounds. In addition, the
accompanying  faux  patient  monitoring screen  can  produce
many of the same indicators  that  would be seen on a real
patient  monitoring  machine  such  as  blood  pressure,  an
electrocardiogram  plot,  blood  gasses,  respiratory  rate  and
more   [4].  By contrast,  the next  patient  simulation device
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discussed has a more narrow use. It simulates pressure
changes  measured  by  a  Blood  Pressure  Meter  (BPM)
machines.  Specifically,  the  pressure  signals  used
oscillometric BPMs. The authors suggest that it can enable
more reliable testing of new devices [5]. Still another patient
simulator that has been developed is one that mimics specific
aspects of a human upper limb. The creators claim it will help
physical  therapists  improve delivery of  therapy for  muscle
spasticity, particularly of stroke patients  [6]. Hence, we see
that  patient  simulators  as  well  as  biosignal  recordings  can
have  a  wide  range  of  uses.  Further,  we  see  that  patient
simulators that incorporate biosignals can be useful.

Electroencephalography (EEG) is another  example of a
widely used biosignal. It is a device that can measure macro
electrical  properties  of  the brain.  To detect  a  signal,  there
must be many neurons firing action potentials at the same
time. The  smallest  neural  event is  thought to be ~100,000
synchronous pyramidal cells arranged in a similar direction
[7]. Measured amplitudes from one review ranged up to 200
μV [8].

EEG has many uses [9, Ch. 3]. For example, it has been
discovered  that  the  alpha  rhythm  has  a  role  in  tuning
occipito-parietal  areas  and  is  associated  with  regulating
attention  [10]. It has also been shown that individuals with
less left frontal activity (in contrast to right) can help identify
patients  with  major  depressive  disorder.  However,  this
interhemisphere  asymmetry  has  been  observed  in  other
patient groups as well and more research is needed [11]. EEG
is also used for neurofeedback for the treatment of ADHD
[12]. It  would be amiss not to mention the use of EEG in
sleep studies as well. Certain features of EEG recordings are
associated  with  different  phases  of  sleep,  which  is  well
documented in several different studies as outlined in [13]. In
addition, EEG has uses in sports fitness, education, prediction
of diseases such as Epilepsy and has even been researched as
a form of bio-metric identification [14]. 

Given  the  widespread  uses  of  EEG,  patient  simulators
which are capable of mimicking these signals can have many
uses. In this manuscript, we will discuss the design of such a
patient  simulator.  Given  that  there  already  exist  patient
simulators for EEG  [15], this device was created as part of
the course requirements at George Mason University with the
primary  goal  of  teaching  its  creators  about  EEG  and
electronics.

II. COMPONENT SELECTION

The  device  consists  of  an  Arduino  Uno  development
board, an SD card shield, an external momentary button and a
digital to analog converter (DAC).

The Arduino Uno was selected due to its ubiquity and the
ability to remove the microcontroller from the development
board  to  use  in  a  stand  alone  configuration.  The
microcontroller  is easy to remove as it  is in a dual in line
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package  (DIP).  The part  number  of  the  microcontroller  is
ATmega328P. The only external components that are needed
for  the  ATmega328P  to  function  independently  from  the
development board is the 16 MHz oscillator, two supporting
capacitors and a resistor to connect the reset pin to Vcc so it
is  not  floating.  The  microcontroller  has  hardware  SPI
communication  to  interface  with  the  SD  card  and  also
hardware I2C communication to interface with the digital to
analog converter.

A SD card shield was selected to add flexibility to the
design. Storing data on an SD card allows the user to easily
place new EEG recordings on the device without having to
reprogram the ATmega328P. In addition, the microcontroller
only has a limited amount of memory which would likely not
be suitable for many EEG recordings. It has 2 KB SRAM, 32
KB of flash memory (which is not writable by the program,
only the programmer) and 1 KB of EEPROM. The EEPROM
is writable by the program and would be the most logical
place to store such data but is not very large. Assuming a 12
bit value needs to be stored for each sample, this would only
amount  to  682  EEG  samples  [(1024×8)÷12=  682.67].  In
contrast, even a 4 GB SD card is about 4 million times larger.

The digital to analog converter comes in a 6 lead small
outline transistor (SOT-23) package. It is a 12 bit resolution,
rail  to  rail.  It  was  selected  because  the  package  has  a
hardware pin that allows the I2C address of the device to be
changed depending on if the pin is set to a high or a low
voltage level. This is important because it allows for multi
channel  DAC  output  of  the  device.  This  is  possible  by
keeping all the DACs address pins low except for the one that
needs  to  be  addressed  at  a  certain  time.  The  DAC  to  be
addressed has its I2C address pin set to high. As such, it will
be the only device with a specific address on the bus. Once it
is set, its I2C address pin can be lowered and the next DAC’s
pin can be brought high. This type of configuration is limited
only  by  the  available  pins  on  the  master  microcontroller.
With enough channels, in theory this type of addressing could
cause slower refresh  rates  but this should not be an issue.
More research and testing would be needed to determine the
maximum  number  of  allowable  channels  to  maintain  a
minimum desired refresh rate. A prototype of the system can
be seen in figure 1.

III. SYSTEM DESIGN & FEATURES

The system was coded in Arduino IDE V 1.8.16. It  is
capable  of  optionally  “writing”  the  EEG voltage  value  to
pulse width modulation (PWM) pin in addition to the DAC.
This is controlled via a boolean flag set at programming time.
However,  the  PWM  on  the  ATmega328p  has  only  8  bit
resolution so this is likely not suitable for direct output as a
signal. It is more intended to drive a status indicator such as
an LED. The program currently allows a gain value to be set
dynamically by sending an integer over the microcontroller's
serial port.

The simulator reads a previously saved comma separated
value file from an SD card. The data has no header, only a
time value (read into the program as an int datatype) and an
EEG  voltage  value  (read  into  the  program  as  a  float
datatype). It was decided that the system would skip samples
if it detects that it is too far behind the time stamp in the file.
This way, if the system is unable to attain the sample rate of
the file, at least the envelope of the signal is preserved as well
as the temporal aspect. The system dynamically updates how
many samples to skip and converges on an appropriate value
for  the  given  data.  The  program  went  through  several
iterations but the current version’s execution is as follows:

• Initialize the DAC object and set the voltage to zero.

• Initialize the serial port for sending status messages
back to a host computer (if present, not required for
operation)

• Turn on a pull up resistor within the microcontroller
for button pin

• Initialize  output  pins  as  low  impedance  output
instead of high impedance input pins

Figure 1: Photograph of the system



• Initialize the SD card, halt execution if failure

• Waits for button press to begin execution

• After button is pressed, opens SD card file

• Within a loop while the file still has data:

◦ Check serial terminal for a new gain value

◦ Read in the current line of the file and parse it

◦ Compare the time stamp of the EEG data and
output  immediately  if  behind,  if  ahead  wait
until proper time and then “write”

◦ If the system detects it has been behind for two
samples  or  more:   skip  a  certain  amount  of
bytes  in  the  file  and  increase  the  amount  of
bytes to skip [note 1]

◦ If it was ahead of the time stamp in the file the
last time, decrease the amount of bytes skipped

◦ After skipping, find the next valid line in the
file

• Close the file and send statistics about samples to
serial port

Note 1- the system currently does not skip any part of the
file  unless  it  has  been  behind  for  a  minimum number  of
samples. This prevents this logic from running and slowing
the system down if it has been successfully able to keep up
with the sample rate in the file.

IV. SYSTEM SPEED TESTS & OPTIMIZATION

To test system performance, a file was loaded that had a
1925.926  Hz  sample  rate  and  was  27.47198  seconds  in
length.  The  sampling  rate  of  commercial  EEG  recorders
range from 128 Hz to 16 kHz [14]. The file was selected as a
typical recording file of EEG systems. It was well above the
minimum sample rate but not close to the maximum possible
either. A future version of the prototype should be tested with
a file  recorded  at  16 kHz.  The portion of the code which
checks  skipped samples  was disabled  for  this  test  and the
code was allowed to just write samples as fast as possible.

The code took an average of 138 seconds to execute over
4 trials. This is approximately 5 times too slow. Dividing the
original sample rate by this slow down, we get a rate of ~383
Hz. Clearly some improvements were required.

The goal of the first optimization was to remove all non-
essential parts of the program such as status indicator LEDs
and messages sent over a serial port. The only thing done in
the loop was to read the data from the SD card and write that
value to the DAC. This decreased the time to 85.7 seconds,
which is still ~3.1 times too slow.

The  next  optimization  step  executed  was  to  eliminate
code that  wrote the values to the DAC. This was done to
ascertain if the SD card reads or the DAC writes were taking
up  the  most  time.  The  program  took  an  average  of  77.9
seconds to execute over 4 trials-- an improvement yet still
~2.8 times too slow.

Next, the portion of the program that read the SD card
was optimized. Research indicated that the functions used to
parse the integers and floats from the SD card file consume a
significant portion of time. To test this, these functions were
replaced with functions that simply read a certain number of
bytes  from the file  into a  buffer.  With a one byte buffer,
execution time was finally reduced to an acceptable level –
26.0  seconds.  When  the  buffer  size  was  increased  to  100
bytes, the execution time was reduced to 3.8 seconds. This is
~34 times faster than the fully featured code. It is ~6.9 times
faster than the code that has only a 1 byte buffer. Thus, we
can conclude that  parsing numbers  from the file  takes  the
bulk of the time in the loop. Also interesting to note is that
speed  increase  does  not  scale  linearly  with  buffer  size
because increasing the buffer size from 1 byte to 100 would
have yielded a 100 times speed increase instead of the 6.9
times increase that was seen experimentally.

V. FUTURE WORK

The most important feature to continue this project is to
implement  multichannel  output.  Commercial  systems have
between 2 and 256 channels [14]. The second feature would
be to have the system parse the data before execution and
save the data to a binary data file so that the 34 times speed
increase outlined above could be realized.
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