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ABSTRACT

Research in the area of learning structural descriptions from examples is
reviewed, giving primary attention to methods of learning characteristic descrip-
tions of single concepts. In particular, we examine methods for finding the
maximally-specific conjunctive generalizations (MSC-generalizations) that cover
all of the training examples of a given concept. Various important aspects of
structural learning in general are examined, and several criteria for evaluating
structural learning methods are presented. Briefly, these criteria include (i) ade-
quacy of the representation language, (ii) generalization rules employed, (iii)
computational efficiency, and (iv) flexibility and extensibility. Selected learning
methods developed by Buchanan, et al., Hayes-Roth, Vere, Winston, and the
authors are analyzed according to these criteria. Finally, some goals are sug-
gested for future research.

3.1 INTRODUCTION
3.1.1 Motivation and Scope of Chapter

The purpose of this chapter is to introduce some of the important issues
affecting the design of learning programs—particularly programs that learn from
examples. This chapter begins with a survey of these issues. From the survey,
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42 CHAPTER 3: A COMPARATIVE REVIEW

four criteria are developed for evaluating learning methods. The remainder of
the chapter describes and evaluates five existing learning systems according to
these criteria.

We do not attempt to review all of the work on learning from examples
(also known as learning by induction). Instead, we focus on one particular
problem: the problem of learning structural descriptions from a set of positive
training instances.  Specificully, we survey methods for finding the maximally-
specific conjunctive  generalizations (called MSC-generalizations) that charac-
terize a given class of entities. This is one of the simplest learning problems that
has been addressed by Al researchers.  The problem of finding MSC-
generalizations lends itself to comparative analysis because several different
methods have been developed. This is unusual in current research on machine
learning, which is currently investigating a wide variety of learning problems and
learning methods.  Particular methods reviewed in this chapter include those
developed by Buchanan er al. [1971, 1976, 1978], , Hayes-Roth [1976a, 1976,
1977, 1978) Vere [1975, 1977, 1978, 1980], Winston [1970, 1975], and the au-
thors. This chapter is based on the article by Dietterich and Michalski [1981].

Before proceeding any further, let us explain our terminology. The chapter
deals first of all with structural descriptions. Structural descriptions portray ob-
jects as composite structures consisting of various components. For instance, a
structural description of a building could represent the building in terms of the
floors, the walls, the ceilings, the hallways, the roof, and so forth, along with
the relations that hold among these various components. Structural descriptions
can be contrasted with artribute descriptions, which specify only global
properties of an object. An attribute description of a building might list its cost,
architect, height, total square-footage and so forth. No internal structure is
represented.  Attribute descriptions can be expressed using propositional
logic—that is, null-ary predicates.! Structural descriptions, however, must be ex-
pressed in predicate logic. Each subcomponent is described globally using vari-
ables and unary predicates, and relations between components are expressed as
k-ary predicates and functions.? In this chapter, variables, predicates, and func-
tions are all referred to as descriptors.

The second item of terminology that requires explanation is the notion of a
maximally-specific conjunctive generalization. A conjunctive generalization is a
description of a class of objects obtained by forming the conjunction (AND) of a
group of primitive statements. For example, the class of houses might be
described as the set of all objects such that:

IThis is a slight simplification. With muiti-valued attributes such as color, one must either create a
separate predicate for each color or clse employ some form of multiple-valued logic, such as VL,.

2This is also a slight simplification. In principle, it is always possible to convert a structural
description into an attribute description, but such a conversion leads to a combinatorial explosion in
the number of attributes.
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the number of floors is less than four AND the purpose of the
building is to be used as a dwelling
We write this symbolically as a VL, expression:
[#-of-floors < 4} & [purposc-of-building = dwelling]
An example of a description that is not conjunctive is the definition of “not

married for tax purposes” as:

{marital status = single] V [marital status = married] [filing status = separate returns)

This is a disjunctive description.

A maximally-specific conjunctive generalization is the most detailed (most
specific) description that is true of all of the known objects in the class. Since
specific descriptions list many facts about the class, the maximally-specific con-
junctive generalization is the longest conjunctive generalization that still
describes all of the training instances.

Now that we have described the scope of this chapter, we introduce several
issues that are important in learning from examples. From these issues, we will
later develop four criteria for evaluating learning systems and apply these criteria
to the comparison of five existing learning methods.

3.1.2 Important Aspects of Learning From Examples

The process of inductive learning can be viewed as a search for plausible
general descriptions (inductive assertions) that explain the given input data and
are useful for predicting new data. In order for a computer program to formulate
such descriptions, an appropriate description language must be used. For any set
of input data and any non-trivial description language, a large number of induc-
tive assertions can be formulated. These assertions form a set of descriptions
partially ordered by the relation of relative generality [Mitchell, 1977]. The min-
imal elements of this set are the most specific descriptions of the input data in
the given language, and the maximal elements are the most general descriptions
of these data. The elements of this set can be generated by starting with the
most specific descriptions and repeatedly applying rules of generalization to
produce more general descriptions.

The view of induction as a search through a space of generalized descrip-
tions draws attention to the following aspects of learning:

¢ Representation. What description language is employed for expressing the
input examples and formulating the inductive assertions? What are
possible forms of assertions that a method is able to learn? What operators
are used in these forms?

e Type of description sought. For what purpose are the inductive assertions
being formulated? What assumptions does the induction method make
about the underlying process(es) that generated the data?,

¢ Rules of generalization. What kinds of transformations are performed on

the
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the input data and intermediate descriptions in order to produce the induc-
tive assertions? :

o Constructive induction. Does the induction process change the description
space; that is, does it produce new descriptors that were not present in the
input events?

e Control strategy. What is the strategy used to search the description
space: bottom-up (data-driven), top-down (model-driven), or mixed?

e General versus problem-oriented approach. Is the method oriented
toward solving a general class of problems, or is it oriented toward
problems'in some specific application domain?

We now discuss each of these aspects in more detail.
3.1.3 Representation Issues

Many representational systems can be used to represent events and
generalizations of events—for example, predicate calculus, production rules,
hierarchical descriptions, semantic nets, frames, and scripts. Much Al work on
inductive learning (the exceptions include the AM system [Lenat, 1976], and
work by Winston [1970]) has employed predicate calculus (or some closely re-
lated system), because of its well-defined syntax and semantics. (An important
study of theoretical problems of induction in the context of predicate calculus
was undertaken by Plotkin [1970, 1971].)

The mere statement that some learning method “uses predicate calculus”
does not tell us very much about that method. Most learning methods place fur-
ther restrictions on the forms of inductive assertions. For example, although a
learning system might in principle be able to represent disjunctive descriptions,
in practice it may have no mechanisms for actually discovering such descrip-
tions. One way to capture this distinction between “representable forms” and
“learnable forms” is to indicate which operators can actually be used in each.
The most common operators are conjunction (&), disjunction (\V), exception,
and the existential and universal quantifiers.

3.1.4 Types of Descriptions

Since induction is a search through a description space, one must specify
the goal of this search—that is, one must provide criteria that define the goal
description. These criteria depend upon the specific domain in question, but
some regularities are evident. We distinguish among characteristic, discriminant,
and taxonomic descriptions., ’

'A characteristic description is a description of a class of objects (or situa-
tions, events, and so on) that states facts that are true of all objects in the class.
It is usually intended to discriminate objects in the given class from objects in all
other possible classes. For example, a characteristic description of the set of all
tables would discriminate any table from all things that are non-tables. In this
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way, the description characterizes the concept of a table. The task of discover-
ing a characteristic description is a single-concept acquisition task (see Chapter
4 of this book). Since it is impossible to examine all objects in a given class (or
not in a given class), a characteristic description is usually developed by specify-
ing all characteristics that are true for all known objects of the class (positive
examples). In some problems, negative examples (counterexamples) are avail-
able that represent objects known to be outside the class. Negative examples can
greatly help to circumscribe the desired conceptual class. Even more helpful are
counterexamples that are “near misses”—that is, negative examples that just
barely fail to be positive examples (see Winston [1970, 1975]).

A discriminant description is a description of a class of objects in the con-
text of a fixed set of other classes of objects. It states only those properties of
the objects in the given class that are necessary to distinguish them from the ob-
jects in the other classes. A characteristic description can be viewed as an ex-
treme kind of discriminant description in which the given class is discriminated
against infinitely many alternative classes.

A taxonomic description is a description of a class of objects that sub-
divides the class into subclasses. In constructing such a description, it is as-
sumed that the input data are not necessarily members of a single conceptual
class. Rather it is assumed that they are members of several different classes (or
produced by several different processes). An important kind of taxonomic
description is a description that determines a conceptual clustering—a structuring
of the data into object classes corresponding to distinct concepts. Taxonomic
descriptions can be “flat”—with all object classes stated at the same level of
abstraction—or hierarchical—with object classes arranged in an abstraction tree.
A taxonomic description is fundamentally disjunctive. The overall class is
described by the disjunction of the subclass descriptions. Taxonomic description
is a kind of descriptive generalization rather than concept acquisition (see Chap-
ter 4 of this book).

Determination of characteristic and discriminant descriptions is the subject
of learning from (pre-classified) examples, while determination of taxonomic
descriptions (conceptual clustering) is the subject of learning from observation or
“learning without teacher”. This distinction between these two forms of learning
is examined in detail in Chapter 4 of this book.

In this chapter we restrict ourselves to the problem of determining charac-
teristic descriptions. The problem of determining discriminant descriptions has
been studied by Michalski and his collaborators [Larson & Michalski, 1977; Lar-
son, 1977; Michalski, 1973, 1975, 1977, 1980a, 1980b] (see also Chapters 4 and
I5 of this book.). A general method and computer program, CLUSTER/2, for con-
ceptual clustering is described by Michalski and Stepp in Chapter 11 of this
book.
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3.1.5 Rules of Generalization

The partially-ordered space of descriptions of different levels of generality
can be described by indicating what transformations are being applied to change
less general descriptions into more general ones. Consequently, determination of
inductive assertions can be viewed as a process of consecutive application of cer-
tain “generalization rules” to initial and intermediate descriptions. A generaliza-
tion rule is a transformation rule that, when applied to a classification rule
S, => K, produces a more general classification rule S, > K 3

This means that the implication S| > S, holds. A generalization rule is called
selective if S, involves no descriptors other than those used in §;. If S, does
contain new descriptors, then the rule is called constructive (see section 3.1.6).
Sclective rules of generalization do not change the space of possible inductive
assertions, while constructive rules do change it.

The concept of rules of generalization provides further insight into the view
of induction as a heuristic search of description space. The rules of generaliza-
tion specify the operators that the search uses to move from one node to another
in this space. The concept of generalization rules is also useful for comparing
different learning methods because these rules abstract from the particular
description languages used in the methods. In this chapter, we briefly outline
the concept of a generalization rule and present a few examples. Chapter
4 presents a much more detailed discussion of the subject and an extensive list of
generalization rules.

One of the simplest generalization rules is the dropping condition rule,
which states that to generalize a conjunction, you may drop any of its conjunc-
tive conditions. For example, the class K of “red apples” can be generalized to
the class of all “apples” of any color by dropping the “red” condition. This can
be written as: "

red(v) & apple(v) > K can generalize to apple(v) > K

This is a selective rule of generalization because it does not introduce any
new descriptors. An example of a constructive rule is the find extrema of partial
orders rule. This rule augments a structural description by adding new descrip-
tors for objects that are at the end points of ordered chains. For example, in a
description of a four-storey office building, we might have the statement that
“the second floor is on top of the first floor, the third floor is on top of the
second, and so on.” The find extrema rule would generate the fact that “‘the first
floor is the bottom-most and the fourth floor is the top-most floor.” The “on top
of” relations form an ordered chain. Symbolically, this is written as: .

ontop(f2,f1) & ontop(f3,f2) & ontop(f4,f3) I< most-ontop(f4) & least-ontop(f1)

3The notation S, ::> K means that all objects for which S is true are classified as belonging to
class K.
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where the 1< sign is interpreted as “can be generalized to”. Other selective
rules of generalization needed for this chapter include:

e the turning constants to variables rule
e the adding internal disjunction rule

o the closing interval rule

o the climbing generalization tree rule

These rules are explained in Chapter 4 of this book.

We also employ one rule of specialization. Any of the above rules of
generalization can become rules of specialization by using them in reverse.
However, one important rule of specialization is the introducing exception rule.
It can be applied to a description in order to specialize it to take into account a
counterexample. Suppose, for example, that a program is attempting to learn the
concept of a “fish”. Its initial hypothesis might be that a fish is anything that
swims. However, it then is told about a dolphin that swims and breathes air but
is not a fish. At this point, the program might guess that a fish is anything that
swims and does not breathe air. This can be written as:

current description: swims(v) > K
> swims(v) & ~breathes-air(v) > K

nepative example: swims(v) & breathes-air(v) > ~K

The 1> sign is interpreted as meaning “can be specialized to”.
3.1.6 Constructive Induction

As we have mentioned above, constructive induction is any form of induc-
tion that generates new descriptors not present in the input data. It is important
for learning programs to be able to perform constructive induction, since it is
well known that many Al problems cannot be solved without a change of
representation.  Many existing methods of induction (for example, [Hunt et al.,
1966, Hayes-Roth, 1976a, 1976b; Vere, 1975, 1980; Mitchell, 1977, 1978] ) do
not perform constructive induction. We say that these methods perform selective
induction, since the descriptors present in the generalizations produced by the
program are selected from those present in the input data.

There are several existing systems that perform some form of constructive
induction.  Soloway’s BASEBALL system [Soloway, 1978], for example, applies
several rules of constructive induction to convert raw snapshots of a simulated
baseball game into high-level episode descriptions that can be generalized to dis-
cover such concepts as “run”, “hit”, and “out”. In this system, the constructive
induction takes place first, followed by selective induction.

Larson’s INDUCE-1 system [Larson, 1977; Larson & Michalski, 1977], on
the other hand, performs constructive and selective induction simultancously.
INDUCE-1 implements the “find extrema of partial orders” rule of generalization
described above, along with a few other constructive induction rules. New
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descriptors are tested for discriminatory ability before they are added to all of the
training instances.

Unfortunately, most existing systems have not implemented constructive
induction rules in any general way. Instead, specific procedures are written to
generate the new descriptors. This is an important problem for future research.
In Chapter 4 of this book, Michalski presents more rules of constructive induc-

tion.
3.1.7 Control Strategy

Induction methods can be divided into bottom-up (data-driven), top-down
(model-driven), and mixed methods depending on the strategy that they employ
during the search for generalized descriptions. Bottom-up methods process the
input events one at a time, gradually generalizing the current set of descriptions
until a final conjunctive generalization is computed:

G,

4

~

Gy

.

Gz/
/ I
E| =G| Ez E_\ E4

G, is the set of conjunctive generalizations of E, and E,. G, is the set of con-
junctive generalizations obtained by taking each element of G, and generalizing
it with E,.

Methods described by Winston, Hayes-Roth, and Vere are reviewed in this
chapter. Other bottom-up methods include the candidate elimination approach
described by Mitchell [1977, 1978], the ID3 technique of Quinlan [1979a,
1979b] (see also Chapter 15 of this book), and the Uniclass method described by
Stepp [1970].

Top-down methods search a set of possible generalizations in an attempt to
find a few “best” hypotheses that satisfy certain requirements. The two methods
discussed in this chapter (Buchanan, et al. and Michalski) search for a small
number of conjunctions that together cover all of the input events. The search
proceeds by choosing as the initial working hypotheses some elements from the
partially-ordered set of all possible descriptions. If the working hypotheses
satisfy certain criteria, then the search halts. Otherwise, the current hypotheses
are modified by slightly generalizing or specializing them.  These new
hypotheses are then checked to see if they satisfy the termination criteria. The
process of modifying and checking continues until the criteria are met. Top-
down techniques typically have better noise immunity and can be easily extended
to discover disjunctions. The principal disadvantage of these techniques is that
the working hypotheses must be checked repeatedly to determine whether they
subsume all of the input events.
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3.1.8 General versus Problem-oriented Methods

It is a common view that general methods of formal induction, although
mathematically elegant and theoretically applicable to many problfems, are i.n
practice very inefficient and rarely lead to any interesthg solutions.  This
opinion has led certain workers to abandon (at least lemporar.xl.y) work.on general
methods and concentrate on learning problems in some spec1f}c domains (for ex-
ample, Buchanan, er «/. [1978] in chemistry or Lenat [1976) l‘n elemen'tary num-
ber theory). Such an approach can produce novel and practical s.olutmns. On
the other hand, it is difficult to extract general principles of induction from such
problem-specific work. It is also difficult to apply such special-purpose
programs L0 new areas.

An attractive possibility for solving this dilemma is to develop methods
that incorporate various general principles of induction (including constructive
induction) together with mechanisms for using exchangeable packages of
problem-specific knowledge. This idea underlies the development of the INDUCE
programs [Larson, 1977; Larson & Michalski, 1977; Michalski, 1980a] and the
Star methodology described by Michalski in Chapter 4 of this book.

3.2 COMPARATIVE REVIEW OF SELECTED METHODS
3.2.1 Evaluation Criteria

The selected methods of induction are evaluated in terms of several criteria
considered especially important in view of our discussion in Section 3.1.

I. Adequacy of the representation lunguage: The language used to represent in-
put data and output generalizations determines to a large extent the quality and
utility of the output descriptions. Although it is difficult to assess the adequacy
of a representation language out of the context of some specific problem, recent
work in Al has shown that languages that treat all phenomena uniformly must
sucrifice descriptive precision. For example, researchers who are attempting to
build systems for understanding natural language prefer rich knowledge represen-
lations, such as frames, scripts, and semantic nets, to more uniform and less
structured  representations, such as attribute-value lists and PLANNER-style
representations.  Although languages with many syntactic forms do provide
greater descriptive precision, they also lead to combinatorial increases in the
complexity of the induction process. In order to control this complexity, a com-
promise must be sought between uniformity and richness of representational
forms. In the evaluation of each method, a review of the operators and syntactic
forms of each description language is provided.

2. Rules of generalization implemented: The generalization rules implemented in
cach algorithm are listed.

3. Computational efficiency: To get some approximate measure of computational
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efficiency, we have hand simulated each algorithm on the test problem shown in
Figure 3-2. In the simulation, we have measured the total number of times an
inductive description was generated and the total number of times one inductive
description was compared to another (or compared to a training instance). These
provide good measures of computational effort, since generation and comparison
of structural descriptions are expensive operations. We have also computed the
ratio of the number of final descriptions output by the algorithm to the total num-
ber of descriptions generated by the algorithm. This provides a measure of over-
all efficiency, since a ratio of | indicates that every description generated by the
algorithm was correct, while a ratio of 0 indicates that none of the generaied
descriptions were correct.

Our cvaluation of these induction methods is not based entirely on these
numerical measures, however (particularly since they are derived from only one
test problem).  An additional value of the simulation is that it gives some general
idea of how the algorithms behave and shows the kinds of descriptions that the
algorithms are able to discover. The reader is admonished to treat the efficiency
measurements as highly approximate.

4. Flexibility and extensibility: Programs that can only discover conjunctive
characteristic descriptions have limited practical application. In particular, they
are inadequate in situations involving noisy data or in which no single conjunc-
tive description can describe the phenomena of interest. Consequently, as one of
the evaluation criteria, we consider the ease with which each method could be
extended to:

e discover descriptions with forms other than conjunctive generalizations, for

example, disjunctions and exceptions (see Section 3.1.4)

e include mechanisms that facilitate the detection of errors in the input data

e provide a general facility for incorporating externally-specified domain
knowledge into the induction process as an exchangeable package

e perform constructive induction

Two sample learning problems will be used to explain these methods. The
first problem (Figure 3-1) is made up of two examples (E! and E2). Each ex-
ample consists of objects (geometrical figures) that can be described by:

e attributes size (small or large) and shape (circle or square)
e relationships onrop (which indicates that one object is above another) and
insidle (which indicates that one object lies inside another)

The second sample problem (Figure 3-2) contains three examples of con-
structions made of simple geometrical objects. These objects can be described
by:

e attributes shape (box, triangle, rectangle, ellipse, circle, square, or
diamond), size (small, medium, or large), and texture (blank or shaded)
e relationships ontop and inside (the same as in the first sample problem)
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El E2

Figure 3-1: Sample problem for illustrating representation languages.

El E2 ES

Figure 3-2: Sample problem for comparing the performance of the methods.

In each sample problem, the task is to determine a set of maximally-
specific conjunctive generalizations (MSC-generalizations) of the examples. No
negative examples are supplied in either problem. In the discussion below, the
first problem is used to illustrate the representational formalism and the
generalization process implemented in each method. The second, more complex,
problem is used to compare the computational efficiency and representational
adequacy of each method. This comparison is based on a hand simulation of
each method.

3.2.2 Data-driven Methods: Winston, Hayes-Roth, and Vere

3.2.2.1 Winston: Learning Blocks World Concepts

Winston’s well known work [Winston, 1970, 1975] deals with learning
concepts that characterize simple toy block constructions. Although his method
uses no precise criterion to define the goal description, the method usually
develops MSC-generalizations of the input examples. The method assumes that
the examples are provided to the program by an intelligent teacher who carefully
chooses both the kinds of examples used and their order of presentation. The
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program uses so-called “near miss” negative examples to rapidly determine the
correct generalized description of the concept. A near-miss example is a nega-
tive example that differs from the desired concept in only one significant at-
iribute.  Winston also uses the near-misses to develop “emphatic” conditions
such as “must support” or “must not support”. These Must- type descriptors in-
dicate which conditions in the concept description are necessary to eliminate
negative examples.

As Knapman has pointed out in his review of Winston’s work [Knapman,
1978], many parts of the exposition in Winston's thesis [Winston, 1970] and
subsequent publication [Winston, 1975]) are not entirely clear. Although the
general ideas in the thesis are well-explained, the exact implementation of these
ideas is difficult to extract from these publications. Consequently, our descrip-
tion of Winston’s method is necessarily a reconstruction. We begin by discuss-
ing the knowledge representation employed by Winston. Then, we turn our at-
tention to his learning algorithm. :

A semantic network is used to represent the input events, the background
blocks-world knowledge, and the concept descriptions generated by the program
(sce Figures 3-3 and 3-4). The representation is quite general although the im-
plemented programs appear to process the network in domain-specific ways (see
Knapman [1978}; Winston [1970, page 196]).

Nodes in the network are used for several different purposes. We will il-
lustrate these purposes by referring to the corresponding concepts in first-order
predicate logic (FOPL). The first use of nodes is to represent various primitive
concepts that are properties of objects or their parts (such as small, size, circle,
shape). Nodes in this case correspond to constants in first-order predicate logic
expressions. There is no distinction between attributes and values of attributes in
Winston's network representation, and consequently, there is no representational
equivalent of the one-argument predicates and functions of FOPL.

Another use of nodes is to represent individual examples and their parts.
Thus, in Figure 3-3, we have the node El and two nodes A and B that make up
El. These can be regarded as quantified variables in predicate calculus. Dis-
tinct variable nodes are created for each training example.

Labeled links connecting these nodes represent various binary relationships
among the nodes. The links correspond to two-argument predicates. The first
two uses of nodes as constants and variables, plus the standard use of links as
predicates, constitute the basic semantic network representation used by Winston.

There is, however, a third use of nodes. Each link type (analogous to a
predicate symbol) is also represented in the network as a node. Thus, in ad-
dition to the numerous On-Top links that may appear in the network, there is an
On-Top node that describes the link type On-Top and its relationship to other
link types. For example, there might be a Negative-Satellite link that joins the
On-Top node to the Beneath node. Such a link indicates that On-Top and
Beneath are semantically opposite predicates. Similarly, there is a Must-be-
Satellite link connecting the Must-Be-On-Top node to the On-Top node.
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HAS-AS-PART
HAS-PROPERTY-OF K ON-TOP

small a b
BENEATH

A-KIND-OF

size

Q)

A-KIND-OF

Figure 3-3:  Network representing example El in Figure 3-1.

All of the nodes in the network are joined into one generalization hierarchy
~ through the A-Kind-Of links. This hierarchy is used to implement the climbing
generalization tree rule.

Now that we have described the network representation, we turn our atten-
tion to the learning algorithm. The learning algorithm proceeds in two steps.
First, the current concept description is compared to the next example, and a
difference description is developed. Then this difference description is processed
to obtain a new, generalized concept description.  Often, the second step results
in several possible generalized concept descriptions. In such a case, one general-
ized concept is selected for further refinement and the remaining possibilities are
placed on a backtrack list. The program backtracks when it is unable to consis-
tently generalize its current concept description.

The first step of the algorithm (the development of . the difference
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HAS-AS-PART

ON-TOP CONTAINS

INSIDE

BENEATH

\ HIAS-PROPERTY-OF
/-
P A-KIND-OF p
circle square
A-KIND-OF
object

Figure 3-4: Network representing example E2 in Figure 3-1.

description) is accomplished by graph-matching the current concept description
against the example supplied by the teacher, and annotating this match with com-
ment notes (C-NOTES). These C-NOTES describe conditions in the concept
description and example that partially matched or did not match. Winston's
description of the graph-matching algorithm is sketchy [Knapman, 1978;
Winston, 1970, pages 254-263]. The algorithm apparently finds one “best”
match between the training example and the current concept description. The
method does not address the important problem of muitiple graph sub-
isomorphisms, that is, the problem arising when the training example matches
the current concept description in more than one way. This problem was ap-
parently avoided by assuming that the teacher will present training instances that
can be unambiguously matched to the current concept description.
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Once this match between the concept description and the example is ob-
tained, a generalized skeleton is created containing only those links and nodes
that matched exactly. The C-NOTES are then attached to this skeleton. Each
C-NOTE is a sub-network of nodes and links that describes a particular type of
match. There are several types of C-NOTES corresponding to partially-matching
or mismatching nodes and partially-matching or mismatching links.  The dif-
ferent types are summarized in Table 3-1. In detail, there are the following
types of C-NOTES:

e For nodes:

c Intersection C-NOTES indicate that two nodes match exactly.

o A-Kind-of-Merge and A-Kind-Of-Chain C-NOTES indicate that two
nodes match partially. The A-Kind-Of-Merge C-NOTE handles the
case when two nodes are different but share a common A-Kind-Of
link, for example, when square partially matches triangle (since they
are both polygons). The A-Kind-Of-Chain C-NOTE handles the case
when a node matches a more general node, for example, when
square matches polygon.

o Exit C-NOTES indicate that two nodes do not match at all.
¢ For links:

o Negative-Satellite-Pair C-NOTES indicate that two semantically op-
posite links mismatched, for example, Muarries and Does-Not-Marry.
o Must-Be-Satellite-Pair C-NOTES indicate that a normal link, such as
Supports, matches an emphatic link, such as Must-Support.

© Must-Not-Be-Satellite-Pair C-NOTES indicate that a normal link
matches a Must-Not form of the same link.

o Supplementary Pointer C-NOTES indicate that two links do not
match at all.

Table 3-1:  Winston's c-NotE Categorics

Match Partially match Mismatch
Node Intersection A-Kind-Of-Merge Exit
A-Kind-Of Chain

Link Negative-Satellite-Pair Supplementary pointer
Must-Not-Be-Satellite-pair

The network diagram of Figure 3-5 shows the difference description that
results from matching the two networks of Figures 3-3 and 3-4 to each other.

The gencralization phase of the algorithm is fairly simple. Each C-NOTE is
handled in a way determined by the C-NOTE type and whether the example is a
positive or negative training example. Winston provides a table that indicates
what actions his program takes in each case [Winston, 1970, pages 145-146).
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Figure 3-5: Diffcrence description obtained by comparing El and E2 from Figure 3-1 and annotat-
ing the comparison with two C-NOTES.

Some C-NOTES can be handled in multiple ways. For positive examples,
only one C-NOTE causes problems: the A-Kind-Of-Merge. In this case, the
program can either climb the A-Kind-Of generalization tree or else drop the con-
dition altogether. The program develops both possibilities but only pursues the
former (leaving the latter on the backtrack list). The concept description that
results from generalizing the difference description of Figure 3-5 is shown in
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Figire 3-6. The alternative generalization would drop the Has-Property link
from node b.

E12

HAS-PROPERTY-OF HAS-AS-PART

Y ON-10p

— BENEATH
A-KIND-OF

N £ A-KIND-OF

Figure 3-6: Network representing the generalized concept resulting from generalizing the dif-
ference description of Figure 3-5.

Evaluation:

l. Representational adequacy. The semantic network is used to represent
properties, object hierarchies (using A-Kind-Of), and binary relationships. As in
most semantic networks, n-ary relationships cannot be represented directly. The
conjunction operator is implicit in the structure of the network, since all of the
conditions represented in the network are assumed to hold simultaneously. There
is no mechanism indicated for representing disjunction or internal disjunction.
The Not and Must-Not links implement a form of the exception operator. An
interesting feature of Winston's work is the use of the emphatic Must- relation-
ships.
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The program works in a depth-first fashion and produces only one general-
ized concept description for any given order of the training examples. Permuting
the training cxamples may lead to a different generalization. Two generaliza-
tions obtained by simulating Winston’s learning algorithm on the examples of
Figure 3-2 are shown in Figures 3-7 and 3-8.

E312

HAS-AS-PART 4
ON-TOP
a b C
BENEATH
A-KIND-OF
N__ 7 \ 71 |
polygon ‘J,

HAS-PROPERTY-OF
A-KIND-OF

Figure 3-7: The first generalization obtained by simulating Winston's learning algorithm on the
examples of Figure 3-2 (in the order E3, El, E2). An English paraphrase is: “There is
a medium, blunk polygon on top of another object that has a size and texture. There is
also another vbject with size and texture.”

The second generalization (Figure 3-8) is not maximally specific since it
does not mention the fact that all training examples also contain a small- or
medium-sized shaded object. The algorithm cannot discover this generalization
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HAS-AS-PART

HAS-PROPERTY-OF

A-KIND-OF

Figure 3-8: The second gencralization obtained by simulating Winston’s learning algorithm on the
examples of Figure 3-2 (in the order E1, E2, E3). An English paraphrase is: "There is
a large, blank object.”

due to the fact that the graph-matcher finds the “best” match of the current con-
cept with the example.  When the order of presentation of the examples is El
followed by E2 followed by E3, the “best” match of the first two examples
climinates the possibility of discovering the maximally-specific conjunctive
generalization when the third example is matched.

2. Rules of Generalization. The program uses the dropping condition rule (for
generalizing exit C-NOTES), the turning constants to variables rule (when creat-
ing the generalized skeleton), and the climbing generalization tree rule (for the
A-Kind-Of-Merge). It also uses the introducing exception specialization rule (for
the A-Kind-Of-Merge C-NOTE with negative examples).

3. Computational efficiency. The algorithm is quite fast: it requires only two
graph comparisons to handle the examples of Figure 3-2. However, the algo-
rithm does use a lot of memory to store intermediate descriptions. The first
graph comparison produces eight alternatives, of which only one is pursued.
The second graph comparison leads to four more alternatives from which one is
sclected as the “best” concept description. This incfficient use of memory is
reflected in our figure for computational efficiency (the number of output
descriptions / the number of examined descriptions), which is [/} or 9%.
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The performance of the algorithm can be much worse in certain situdttons.
When “poor” negative examples are used—those which do not match the current
concept description well—the number of intermediate descriptions explodes com-
binatorially.  Such situations are also likely to cause extensive backtracking.

Since the algorithm produces only one generalization for any given order

of the input examples. it must be executed repeatedly if several alternative
generalizations wre desired.
3. Flexibility and Extensibility. Iba [1979] has successfully extended this algo-
rithm to discover some disjunctive descriptions.  His solution is not entirely
general, however.  The main difficulty seems to be that Winston's algorithm
operates under the assumption that there is one conjunctive concept characteriz-
ing the examples, so the development of disjunctive concepts is not consistent
with the spirit of the work.

Since the program behaves in a depth-first manner, noisy training events
cause it to make serious errors from which it cannot recover without extensive
backtracking. This is not surprising since Winston assumes that the teacher is
inteltigent and does. not make any mistakes in training the student. [t seems to
be very difficult to extend this method to handle noisy input data.

The inductive generalization portion of the program does not contain much
problem-specific knowledge.  However, many of the techniques used in the
program, such as building complete difference descriptions and using a back-
tracking search, may become combinatorially infeasible in real-world problem
domains.  The A-Kind-Of generalization hierarchy can be used to represent
problem-specific knowledge.

The system of programs described by Winston performs some types of
constructive induction.  The original inputs to the system are noise-free line
drawings.  Some knowledge-based algorithms convert these line drawings into
the network representation. Winston describes an algorithm for combining a
group of objects into a single concept and subsequently using this concept in
other descriptions. The “arcade” concept ( [Winston, 1970], page 183) is a good
example of such a constructive induction process.
3.2.2.2 Hayes-Roth: Program SPROUTER

Hayes-Roth's work on inductive learning [Hayes-Roth, 1976a, 1976b;
Hayes-Roth & McDermott, 1977, 1978] is concerned with finding MSC-
generalizations of a set of input positive examples (he calls such generalizations
maximal abstractions or interference matches). Purameterized structural
representations (PSR’s) are used to represent both the input events and their
generalizations.  The PSR’s for the two events of Figure 3-1 are:

El: {{eircle:af{square:bH{small:a}
{small:b{ontop:a, under:b}}

E2: {{circle:cl{square:df{circle:e}
{small:c{large:d}{small:e}
{ontop:c, under:dfinside:e, outside:d}}
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El: {{circle:a{square:b}{small:a}
{small:bHontop:a, under:b}}

E2: {{circle:cHsquare:d}{circle:e}
{smaltt:cH{large:dH{small:c}
{ontop:c, under:dH{inside:e, outside:d}}

In Hayes-Roth’s terminology, the expressions such as {small:a} are called
case frames.  They are composed of case labels (such as small, circle) and
parameters (such as a, b, ¢, d). The PSR can be interpreted as a conjunction of
predicates of the form case-label(parameter-list). For example, {small:a} can be
interpreted as small(a), and {ontop:c, under:d} can be interpreted as ontop(c,d).
The parameters can be viewed as existentially-quantified variables denoting dis-
tinct objects.

The induction algorithm works in a purely bottom-up fashion. The first set
of conjunctive generalizations, G,, is initialized to contain only the first input
cxample.  Given a new example and the set of generalizations, G;, obtained in
the ith step, a new set of generalizations, G, is obtained by performing a par-
til match between each element in G; and the current training example. It is not
clear from publications [Hayes-Roth, 1976b; Hayes-Roth, 1976a; Hayes-Roth &
McDermott, 1977; Hayes-Roth & McDermott, 1978] whether or not these sets G;
are pruned during this process. Hayes-Roth calls each of the partial-matching
operations an interference match.

The interference match attempts to find the longest one-to-one match of
purameters and case frames (that is, the longest common subexpression). This is
accomplished in two steps. First the case frames in El and E2 are matched in
all possible ways to obtain the set M. Two case frames match if all of their case
labels match.  Each clement of M is a case frame and a list of parameter cor-
respondences that permit that case frame to match in both events:

M = {{circle:((a/e)(ale))},

{square:((b/d))},
{smalk:((a/c)(bre)(are)(ble))},
{ontop,under:((a/c b/d))}}

The second step involves selecting a subset of the parameter correspon-
dences in M such that all parameters can be bound consistently. This is con-
ducted by a breadth-first scarch of the space of possible bindings with pruning of
unpromising nodes. The search can be visualized as a node-building process.
Here is one such (pruned) search graph:
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M Interference match

{circle}

a’c i3 14

a’‘e 11 12
{squarc} /

b/d v 9 10
{small}

a/c 6 7

b/c 4 5

ale 3

ble 2 8

{ontop,under) /
ase brd 1

The nodes are numbered in order of their generation. One at a time, a pair
of corresponding parameters is selected from M and a new node is created for
them. Then this new node is compared with all previously generated nodes.
Additional nodes are created for each case in which the new parameter cor-
respondence node can be consistently merged with a previously existing node.
In the search graph above, when the parameter binding {small: (a/c)} is selected,
node 6 is created. Then node 6 is compared to nodes | through 5 and two new
nodes are created: node 7, which is created by merging node 6 (a/c) with node 2
(b’e), and node 8, which is created by merging node 6 (a/c) with node 1 (a/c b/d).
Node 6 cannot be merged with node 3, for instance, because parameter a would
be inconsistently bound to both parameters ¢ and e.

When the search is completed, nodes 7, 12, and 14 are bindings that lead
to conjunctive generalizations. Node 14, for example, binds a to ¢ (to give v1)
and b to d (to give v2) to produce the conjunction:

{{circle:v 1 H{square:v2Hsmall:v 1 ontop:v1, under:v2}}

The node-building process is guided by computing a utility value for each
candidate node to be built. The nodes are pruned by setting an upper limit on
the total number of possible nodes and pruning nodes of low utility when that
limit is reached.

Evaluation:

I. Representational adequacy. The algorithm discovers the following conjunc-
tive generalizations of the example in Figure 3-2:
a. {{ontop:v1, under:v2}{medium:v1}H{blank:v1}}
There is a medium blank object ontop of something.
b. {{ontop:v1, under:v2}{medium:v|}{large:v2H{blank:v2}}
There is a medium object ontop of a large, blank object.
c. {{medium:v1}{blank:v1}large:v3}{blank:v3}{shaded:v2}}
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There is a medium sized blank object, a large sized blank object, and
a shaded object.

PSR’s provide two symbolic forms: parameters and case labels. The case
lubels can express ordinary predicates and relations easily. Symmetric relations
may be expressed by using the same label twice as in {same!size:a, same'size:b}.
The only operator is the conjunction. The language has no disjunction or inter-
nal disjunction.  As a result, the fact that each event in Figure 3-2 contains a
polygon on top of a circle or rectangle cannot be discovered.

2. Rules of generalization. The method uses the dropping condition and turning
constants to variables rules.

3. Computational efficiency. On our test'example, the algorithm requires 22 ex-
pression comparisons and generates 20 candidate conjunctive generalizations of
which 6 are retained. This gives a figure of 6/20 or 30% for computational ef-
ficiency. Four separate interference matches are required since the first match of
El and E2 produces three possible conjunctive generalizations.

4. Flexibility and extensibility. An attempt has been made (Hayes-Roth, personal
communication) to extend this method to produce disjunctive generalizations and
1o detect errors in data. Hayes-Roth has applied this method to various problems
in the design of the speech understanding system HEARSAY II. However, no
facility has been developed for incorporating domain-specific knowledge into the
generalization process.

Also, no facility for constructive induction has been incorporated although
Hayes-Roth has developed a technique for converting a PSR to a lower-level,
finer-grained uniform PSR. This transformation permits the program to develop
descriptions that involve a many-to-one binding of parameters.

3.2.2.3 Vere: Program Thoth

Vere's earlier work on inductive learning [Vere, 1975] was also directed at
finding the MSC-generalizations of a set of input positive examples (in his work
such generalizations are called maximal conjunctive generalizations or maximal
unifying generalizations). Each example is represented as a conjunction of
literals. A literal is a list of constants called rerms enclosed in parentheses. For
example, the objects in Figure 3-1 would be described as:

El: (circle a)(square b)(small a)(small b)(ontop a b)

E2: (circle c)(square d)(circle e)(small ¢) (large d)(small e)(ontop ¢ d)(inside e d)

Although these resemble Hayes-Roth’s PSR’s, they are quite different.
There are no distinguished symbols. All terms (such as “small” and “e”) are
treated uniformly.

As in Hayes-Roth’s work, Vere’s method operates in a purely bottom-up
fashion in which the input examples are processed one at a time in order to build
the set of conjunctive generalizations. The algorithm for generalizing a pair of
events operates in four steps. First, the literals in each of the two events are

¢
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matched in all possible ways to generate the set of matching pairs MP. Two
literals match if they contain the same number of constants and they share at
least one common term in the same position. For the sample problem of Figure
3-2, we have:
MP = {((circle a)(circle ¢)),

((circle a).(eircle €))

((square b).(square d)),

(small ) smadl ¢3),

((smadl a),(small ¢)),

((small b),(small ¢)),

(tsmall b),(small ¢)),

((ontop a b).(ontop ¢ d))}

The second step involves selecting all possible subsets of MP such that no
single literal of one event is paired with more than one literal in another event.
Euach of these subsets eventually forms a new generalization of the original
events.

In the third step, each subset of matching pairs selected in step 2 is ex-
tended by adding to the subset additional pairs of literals that did not previously
match. A new pair p is added to a subset S of MP if each literal in p is related
to some other pair g in S by a common constant in a common position.  For
example, if S contained the pair ((square b),(square d)) then we could add to S
the pair ((ontop a b).(inside ¢ d)) because the third element of (ontop a b) is the
second element of (square b) and the third element of (inside e d) is the second
element of (square d) (Vere calls this a 3-2 relationship). New indirectly-related
pairs are merged into S until no more can be added.

In the fourth, and final, step, the resulting set of pairs is converted into a
new conjunction of literals by merging each pair to form a single literal. Terms
that do not match are turned into new terms, which may be viewed formally as
variables. For example, ((circle a),(circle ¢)) would be converted to (circle vl).

Evaluation:

1. Representational adequacy. When applied to the test example (Figure 3-2)
this algorithm produces many generalizations. A few of the significant ones are
listed below: -

e (ontop vl v2)(medium v1)(large v2)(blank v2)(blank v3)(shaded v4)
(vS v4)

There is a medium object on top of a large blank object. Another
object is blank. There is a shaded object. (The literal (vS v4) is vacuous
since it contains only variables. Variable v5 was derived by unifying
circle and triangle). .

e (ontop v! v2)(blank v1)(medium vI1)(v9 v1)(vS v3 vd)(shaded v3)
(v7 v3)(v6 v3)(blank vd)(large v4)(v8 v4)

There is a medium, blank object on top of some other object and
there are two objects related in some way (v5) such that one is shaded and
the other is large and blank.
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o (ontop v1 v2)(medium vl)(blank v2)(large v2)(vS v2)(shaded v3)(v7 v3)
(blank v4)(v6 v4)
There is a medium object on top of a large blank object. There is a
shaded object and there is a blank object.

The representation is basically an uninterpreted list structure and, con-
sequently, has very little logical structure. By convention the first symbol of a
literal can be interpreted as a predicate symbol. The algorithm, however, treats
all terms uniformly. This absence of semantic constraints creates difficulties
One difficulty is that the algorithm generates vacuous literals in certain situa-
tions. For instance, step 3 of the algorithm allows (circle a) to be paired with
(triangle b) to produce the vacuous literal (v5 v4) as in generalization | above.
Although these vacuous literals could easily be removed after being generated,
the algorithm would perform more efficiently if it did not generate them in the
first place. A second difficulty resulting from the relaxation of semantic con-
straints is that the algorithm creates generalizations involving a many-to-one
binding of variables. While such generalizations may be desirable in some situa-
tions, they are usually meaningless, and their uncontrolled generation is com-
putationally expensive.

The description language contains only the conjunction operator. No dis-
junction or internal disjunction is included.

2. Rules of generalization. The algorithm implements the dropping condition
rule and the turning constants to variables rule.

3. Computational efficiency. From the published articles [Vere, 1975, 1977,
1978, 1980] it is not clear how to perform steps 2 and 3. The space of possible
subsets of MP (computed in step 2) is very large, and the space of possible ex-
tensions to that set (computed in step 3) is even larger. An exhaustive search
could not possibly give the computation times that Vere has published.

4. Flexibility and extensibility. Vere has published algorithms that discover
descriptions with disjunctions [Vere, 1978] and exceptions (which he calls coun-
terfactuals, see [Vere, 1980]). He has also developed techniques to generalize
relational  production rules [Vere, 1977, 1978]. The method has been
demonstrated using the traditional Al toy problems of IQ analogy tests and
blocks-world sequences. A facility for using background information to assist
the induction process has also been developed. It uses a spreading activation
technique to extract relevant relations from a knowledge base and add them to
the input examples prior to generalizing them. The method has been extended to
discover disjunctions and exceptions. It is not clear how well the method would
work in noisy environments.

3.2.3 Model-driven Methods: Buchanan, et al., and Michalski

In addition to acquiring context-free concept descriptions, some systems
use models of the underlying domain to constrain the search for viable structural
descriptions.
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3.2.3.1 Buchanan, et al.: Program META-DENDRAL

META-DENDRAL is a program that discovers cleavage rules to explain the
operation of a mass spectrometer. A mass spectrometer is a device that bom-
bards small chemical samples with accelerated electrons, causing the molecules
of the sample to break apart into many charged fragments. The masses of these
fragments can then be measured to produce a mass spectrum—a histogram of the
number of fragments (also called the intensity) plotted against their mass-to-
charge ratio.

Analytic chemists can use the mass spectrum to guess the three-
dimensional structure of the molecules in the sample. An expert system has
been developed—the Heuristic DENDRAL program—that can also perform this
structure elucidation task. It is supplied with the chemical formula (but not the
three-dimensional structure) of the sample and its mass spectrum. Heuristic
DENDRAL first examines the spectrum to obtain a set of constraints. These con-
straints are then given to CONGEN, a program that can generate all possible
chemical structures satisfying the constraints. Finally, each of these generated
structures is tested by running it through a mass-spectrometer simulator. The
simulator applies a set of cleavage rules to predict which bonds in the proposed
structure will be broken. The result is a simulated mass spectrum for each can-
didate structure. The simulated spectra are compared with the actual spectrum,
and the structure whose simulated spectrum best matches the actual spectrum is
ranked as the most likely structure for the unknown sample. The purpose of the
META-DENDRAL system is to learn cleavage rules for use by the mass-
spectrometer simulator.

The cleavage rules employed by the simulator are written as condition-
action rules in which the condition part describes—in common ball-and-stick
language—a portion of the molecular structure, and the action part indicates (by
**) one or more bonds that will break (see Figure 3-9). The simulator applies
these rules by matching the condition part against the molecular structure of the
molecule being bombarded. Whenever the condition part matches, the simulator
predicts that the bonds corresponding to those mentioned in the action part will
break.

Figure 3-9 shows a typical cleavage rule. The atom descriptors have the
following meanings. Type is the atomic element of the atom. NAhs is the number
of hydrogen atoms bound to that atom. Nbrs is the number of non-hydrogen
atoms bound to the atom. Dots counts the number of unsaturated valence
electrons of the atom. This rule says that whenever a molecule containing the
four atoms w, x, y, and z (connected as shown in the molecule graph and with
the indicated atom descriptors) is placed in a mass spectrometer, then the bond
joining w to x will be broken.

How can META-DENDRAL discover these rules? META-DENDRAL is given as
input a set of molecules whose three-dimensional structures and mass spectra are
known. We can view these training instances as condition-action rules of the
form:
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CONDITION PART (BOND ENVIRONMENT):

Molecule graph: W Xy —2—

Atom descriptors: atom type nhs nbrs dots
w carbon 3 1 0
X carbon 2 2 0
y nitrogen | D) 0
z carbon 2 2 0

ACTION PART (CLEAVAGE PREDICTION):
Wy
Figure 3-9:  Typical Cleavage Rule.

<whole molecular structure> 2 <muss spectrum>

The first step in META-DENDRAL (carried out by subprogram INTSUM) is to
apply background knowledge and rules of constructive induction to convert these
training instances into the form of highly-specific cleavage rules:

<whole molecular structure> 2> <one designated broken bond>

To achieve this transformation, INTSUM must hypothesize, for each frag-
ment appearing in the mass spectrum, which bonds could have broken to produce
that fragment. INTSUM employs a very simple theory of mass spectrometry (the
so-called half-order theory) to propose these hypotheses. The result is one or
more highly-specific cleavage rules for every fragment that appeared in any of
the mass spectra in the original training instances.

These highly-specific cleavage rules are given to the second and third sub-
programs in the META-DENDRAL system: RULEGEN and RULEMOD. These two
programs seek to find a small set of generalized cleavage rules that cover most of
these highly-specific training rules. Notice that in this learning problem, no
single generalized cleavage rule (or equivalently, no conjunctive generalization)
can be expected to explain all of the training rules. In fact, since the INTSUM
interpretation process can produce incorrect training instances, there is no reason
to expect that even a set of cleavage rules will cover all of the training rules.
Consequently, RULEGEN and RULEMOD do not search for MSC-generalizations.
Instead, they develop a taxonomic description of the mass spectrometry data in
the form of a ser of cleavage rules that together cover the most important of the
training rules.

The generalization process is done in two steps. First, RULEGEN conducts
4 model-driven generate-and-test search of the space of possible cleavage rules.
This is a fairly coarse search from which redundant and approximate rules may
result. The second phase of the search is conducted by the RULEMOD program,
which cleans up the rules developed by RULEGEN to make them more precise and
less redundant.  We will concentrate on the description of the RULEGEN program,
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since it employs a top-down, model-driven algorithm that can be compared, in
part, to the other learning methods described in this chapter.

The RULEGEN algorithm chooses as its starting point the most general
cleavage pattern (x ¥ y) with no properties specified for either atom. Since this
pattern matches every bond in every molecule, it predicts that every bond will
break.  RULEGEN generates successively more refined rules by specializing this
pattern.  The algorithm performs a sort of breadth-first search. At each iteration
(cach level of the scarch wtree) it specializes a parent cleavage pattern by making
a change to all atoms at a specified distance (radius) from the ** bond—the bond
designated to break. The change can involve either adding new neighbor atoms
or specifying an atom feature. All possible specializations are made for which
there are supporting training instances. The technique of modifying all atoms at
a particular radius causes the RULEGEN search to be coarse.

After each cycle of specialization, the resulting bond patterns are tested
against the training instances, and a heuristic measure of “improvement” is com-
puted that indicates whether a newly specialized bond pattern is more plausible
than its parent pattern. If a pattern is determined to be an improvement, it is
retained, and the specialization process continues.  If all specializations of a
parent pattern are less plausible than their parent, the parent pattern is output as a
new cleavage rule, and no more specializations of that pattern are considered.

The improvement criterion states that a child pattern graph is more
plausible than its parent if:

o It predicts fewer fragmentations per training molecule (that is, it is more
specific).

e It still predicts fragmentations for at least half of all of the training
molecules (that is, it is sufficiently general).

o It predicts fragmentations for ds many molecules as its parent—unless the
parent graph was “too general” in the sense that the parent predicts more
than 2 fragmentations in some single training molecule or on the average it
predicts more than 1.5 fragmentations per molecule.

Thus, RULEGEN can be viewed as following paths of increasing specializa-
tion through the space of possible bond patterns until the improvement criterion
achieves a local maximum. The result of this process is a set of such plausible
bond patterns.  RULEMOD improves this set by performing detailed hill-climbing
searches in the region immediately around each generated bond pattern. For the
detailed searches, ncgative training instances are employed as part of the
plausibility criterion. Negative training instances are bond patterns for which the
actual spectrum shows that the designated bond did nor break. RULEMOD also
compares the generated bond patterns with one another and removes bond pat-
terns that are redundunt.  The result of the RULEMOD processing is a smaller set
of more precise bond patterns. Each of these bond patterns is converted into a
cleavage rule and printed out.

Evaluation:
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It is somewhat difficult to compare META-DENDRAL to the other methods
Jdescribed in this chapter since it is such a complex system and since even the
RULEGEN subprogram is not searching for MSG-generalizations. However, we
have included META-DENDRAL because it is such an important and powertul
[carning system.
| Representational adequacy. The bond-pattern representation was adequate for
the task of developing cleavage rules. It was specifically designed for use in
chemical domains and is not general. The descriptions can be viewed as con-
junctions.  Individual rules developed by the program can be considered to be
linked by disjunction.

3. Rules of generalization. The dropping condition and turning constants to vari-
ables rules are used “in reverse” during the specialization  process.
\ETA-DENDRAL also uses the generalization by internal disjunction rule. For ex-
ample, it can learn that the number of non-hydrogen neighbors (nbrs) of an atom
is “greater-than one.” In related work on nuclear magnetic resonance (NMR),
Schwenzer and Mitchell [1977] present an example in which the value of nhs is
listed as “greater than or equal to one” (which indicates an internal disjunction).
3. Computational efficiency. The comparison of computational efficiency is not
provided for META-DENDRAL because it is not possible to hand simulate its opera-
tion on the sample problem of Figure 3-2. First of all, it is impossible to
represent the sample problem as a chemical graph because the problem uses nvo
Jifferent connecting relationships (ontop and inside) whereas META-DENDRAL
only allows one (chemical bonding). Secondly, as mentioned above, the algo-
rithm seeks a taxonomic—not characteristic—description of the input examples.
Thirdly, the termination criteria for the RULEGEN algorithm are stated in purely
chemical terms that have no counterpart in the domain of geometric figures. The
current program is considered to be relatively inefficient [Buchanan er al., 1976].
. Flexibility and extensibility. META-DENDRAL has been extended to handle
NMR spectra [Schwenzer & Mitchell, 1977]). The program works well in an
crror-laden  environment, It uses domain-specific knowledge extensively.
However, there is no strict separation between a general-purpose induction com-
ponent and a special-purpose knowledge component. It is not clear whether the
methods developed for META-DENDRAL could be easily applied to any non-
chemical domain,

5. META-DENDRAL has extensive constructive induction facilities. In particular,
program INTSUM performs sophisticated transformations of the input spectrum in
vrder to develop the bond-environment descriptions.  Unfortunately, this part of
the program is highly procedural. None of the rules of constructive induction
have been made explicit nor is there a general tacility for accepting additional
rules of constructive induction from the user. The user can alter some of the
purameters of the half-order theory, however.
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3.2.3.2 Michalskl and Dietterich: Program INDUCE 1.2

Michalski and his collaborators have worked on many aspects of inductiv.
learning. Most relevant here are works by Larson and Michalski [Larson &
Michalski, 1977; Larson, 1977, Michalski, 980a]. Thesc articles describe a
general method (and program) for determining disjunctive structural descriptions
that can also be used (somewhat inefficiently) to discover MSC-generalizations.
The method presented here is different from previous work and is specially
designed for finding MSC-generalizations.

The language used to describe the input events is VL, [Michalski, 980a],
an extension to first-order predicate logic (FOPL) that was developed specifically
for use in inductive inference.* Each event is represented as a conjunction of
selectors. A selector is a relational statement that typically contains a function
or predicate descriptor (with variables as arguments) and a_list of values that the
descriptor may assume. For example, the selector [size(vl)=small, medium] as-
serts that the size of vl may take the values small or medium. Another form of
selector is an n-ary predicate in brackets, which is interpreted in the same way as
in FOPL. For example, the selector [ontop(v1,v2)] asserts that object vl is on-
top of object v2. A conjunction of selectors is denoted by their concatenation.
The events in Figure 3-1 are represented as:

El:  3vi, v2 [size(v]) =small]{size(v2) = small] &
[shape(v1) = circle]{shupe(v2) = square}{ontop(v1,v2)]

E2: 3vl, v2, v3 [size(v]) = smali)[size(v2) = large] &
[size(v3) = small]{shape(v1) = circle] &
[shape(v2) = square][shape(v3) = circle] &
{ontop(vi,v2)linside(v3,v2)]

In this method, we attempt to accelerate the search for plausible generaliza-
tions by using techniques similar to those of hierarchical planning [Sacerdoti,
1973] . First, we separate all descriptors into two classes, unary and non-unary.
We call the unary descriptors artribute descriptors since they are typically used
to represent attributes such as size or shape. Non-unary descriptors are called
structure-specifying descriptors since they are typically used to specify structural
information (for example, relationships ontop and inside).

The basic idea of the method is to first search the description space that is
defined by the structure-specifying descriptors. Once plausible generalizations
are found in this abstract structure-only space, attribute descriptor space is
searched to fill out the detailed generalizations. There are several advantages to
this two-phase approach as compared to a standard search of the entire descrip-
tion space: .

The first is representational. As we have seen above, it is usually neces-

4A somewhat modified and gencralized form of VL,,, called the annotated predicated calculus, is
described in Chapter 4 of this book.



oiEHERICH & MICHALSKI 4

sary to use a graph (or equivalent data structure) to represent an event in a struc-
tral learning problem. This is due to the fact that a graph is the most compact
way to represent binary relationships among n objects when the number of such
relationships is substantially less than the n(n-1) possible relationships (that is,
when the relationship matrix is sparse). Thus, in our method, the structure-only
cvents are represented as graphs. But once we have located plausible points in
this structure-only space, we can continue the search in attribute space. Attribute
(or unary) descriptors can be represented as vectors that are substantially more
compact and more efficiently manipulated than graphs.

The second advantage of this hierarchical approach is computational. The
tusk of comparing two graph structures is NP-complete. Any decrease in the
vize of these graph structures leads to large decreases in the cost of a graph com-
parison.  Furthermore, we can confine graph comparisons to the first phase of
the algorithm. ‘

A third advantage of this approach is that we can take “large steps” during
the search for plausible descriptions by conducting much of the search in a
sparse, abstract space. This is similar in spirit to the coarse search employed in
RULEGEN.,

There are also several disadvantages to this approach. Firstly, no speedup
will be obtained unless the learning problem uses both unary and non-unary
Jescriptors.  There are some learning problems in which attributes play almost
no role at all. In such cases, the structure-only search space is the same as the
complete search space, so no computational savings will be obtained. There are
also learning problems that require only unary descriptors (as in [Hunt er al.,
1966]). These are not structural learning problems, and the structure-only space
I cmpty.

A second disadvantage of this approach involves the problem of defining

- “plausible” descriptions in structure-only space. One fact that can be used is the
lllowing: If g is a MSC-generalization in structure-only space, then there exists
4 full description G, such that g is the structure-only portion of G and G is a
MSC-generalization in the complete space.

Thus, if we find all MSC-generalizations of the input events in structure-
vnly space, then we can use these to find MSC-generalizations in the complete
space.  However, we will not necessarily find all possible MSC-generalizations
in this fashion, since there may exist MSC-generalizations in the complete space
whose  structure-only component is nor maximally specific in structure-only
pace.  To avoid this problem, the algorithm may accept less than maximally-
specific  generalizations in  the structure-only space (that is, more general
descriptions) and terminate the search using some problem-oriented knowledge.

Another difficulty concerns how to conduct the attribute search once
plausible structure-only descriptions have been located. Our approach is to use
cach structure-only description to define a new attribute-only space into which all
of the input events are translated. Unfortunately, an input event can be mapped
‘o more than one attribute-only description as shown below. This complicates
the search,
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The algorithm searches structure-only space using a “beam search”—a
form of best-first scarch in which a set of best candidate descriptions is main-
tained during the scarch (see [Rubin & Reddy, 1977)). First, all unary descrip-
tors are removed from the input events (thus abstracting them into structure-only
space). Then a random sample of these events is taken to form set By, the in-
itial set of generalizations (the initial beam set). In each step, B; is first pruned
w0 a fixed sized beam width by removing unpromising generalizations. (Promise
is determined by the application of the heuristic evaluation functions described
below). Then B; is checked to see if any of its generalizations covers all of the
input examples. If any do, they are removed from B; and placed in the set C of
candidate conjunctive generalizations. Lastly, B, is generalized to form B; by
taking each clement of B; and generalizing it in all possible ways by dropping
single selectors.  When the set of candidates C reaches a prespecified size, the
search halts. The set C contains conjunctive generalizations of the input data,
some of which are maximally specific. The size limit on C determines how
decply the algorithm searches.

The program allows the user to employ simultaneously several criteria for
evaluating the promise of intermediate generalizations. These criteria are com-
bined to form a lexicographic evaluation functional with tolerances [Michalski,
1973]. Some of the criteria presently included in the program are:

e maximize the number of input events covered by a generalization.
e maximize the number of selectors in a generalization.

e minimize the total “cost” of the descriptors in a generalization. Different
descriptors can be given costs according to their difficulty of measurement
and other domain-dependent properties.

The user creates the evaluation functional by selecting criteria from a list
of available criteria and ordering them in decreasing order of importance. Each
criterion is accompanied by a tolerance that specifies the allowed departure of the
associated criterion from the optimum value (see [Michalski, 1973}).

Once the structurc-only candidate set C has been built, each candidate
generalization in C must be filled out by finding values for its attribute descrip-
tors. Each candidate generalization g in C is used to define an attribute-only
space that is then searched using a beam search technique similar to that used to
search the structure-only space. The attribute-only space is defined as follows.
Let {v;, v5, .., v} be the existentially quantified variables used in the candidate
structure-only generalization g. The attribute-only space generated by g is the
space of all mxk-tuples consisting of the values of the m attributes describing the
k objects denoted by the quantified variables {v;y v3, =, vt. In cases where
some of the m attributes are not applicable to some of the objects, the attribute-
only space will be correspondingly smaller.

In order to search this space, all of the input events must first be translated
into this attribute-only space. This is accomplished by matching g against all
input events and extracting the attributes of the variables in the input events that
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match v, v, .., v¢ in g. The values of these attributes form a single mXxk-tuple.
For example, if g = [ontop(vl, v2)] and the variables vl and v2 have two at-
tributes, size and shape, then the attribute-only space generated by g is the space
of all 4-tuples of the form: ’
< size(vl), size(v2), shape(vl), shape(v2) >
Let E| be the following input event:
E;: 3pl, p2, p3 [ontop(p!, p2)llontop(p2, p3)] &
[size(pl) = l|[size(p2) = 3|[size(p3) =5] &
[color(pl) = red}lcolor(p2) = green][color(p3) = blue]
Then we can translate E, into this attribute-only space in two different
ways—since g matches E; in two distinct ways.
When g is matched to E; so that vl is matched with pl and v2 with p2,
the resulting attribute-only 4-tuple is:
< 1, 3, red, green >
When v1 is matched to p2 and v2 to p3, then the resulting event is:
< 3, S, green, blue >

During the search of this attribute-only space, the goal is to find an MSC-
generalization that covers at least one of these two translated events (and thus
covers E;). Such an MSC-generalization is in the form of an mxk-tuple as
above, except that each position in the tuple may contain a set of values of the
corresponding attribute.  This set of values is expressed by an internal disjunc-
tion in the final corresponding formula.

The beam search of attribute-only space is similar to the search of
structure-only space. A random sample of events is selected and generalized
sep-by-step by extending the internal disjunctions in the events. The generaliza-
tion process is guided by a means-ends analysis to detect relevant differences be-
tween the current generalizations and events that have not yet been covered.
Heuristic criteria are used to prune the beam set to a fixed beam width. Can-
didate generalizations that cover all of the input events (ihat is, at least one of
the attribute-only events translated from each input event) are removed from the
beam set and added to the candidate set C’. Each candidate in C’ provides pos-
sible settings of the attribute descriptors that, when combined with the structure-
specifying descriptors in g, produces an output conjunctive generalization G.

Among all conjunctive generalizations produced by this algorithm, there
may be some that are not maximally specific. This occurs when the search of
structure-only space is permitted to produce candidate structure-only generaliza-
tions that are not maximally specific. In most observed cases such candidate
generalizations become maximally specific when their attribute descriptors are
filled in during the second phase of the algorithm.

Evaluation:

I. Representational adequacy. Using only selective rules .of generalization, the
algorithm discovers, among others, the following generalizations of the events in
Figure 3-2:
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e dv1, v2 [ontop(v1,v2)] [size(v1) = medium]
[shape(v])= polygon] [texture(v1)=blank]
[size(v2) = mediumV large] [shape(v2)= rectangle\Vcircle)

There exist two objects (in each event), such that one is a blank,
medium-sized polygon on top of the other, a medium or large circle or
rectangle.

e 3vi, v2 [ontop(vl,v2)] [size(v1) = medium]
[shape(vl) = circleVsquare Vrectangle] [size(v2) = large)
[shape(v2) = box Vrectangle \Vellipse] [texture(v2) = blank]

There exist two objects such that one of them is a medium-sized
circle, rectangle, or square on top of the other, a large, blank box, rec-
tangle, or cllipse.

e 3v1, v2 [ontop(vl,v2)] [size(v1) = medium] [shape(v1) = polygon]
[size(v2) = mediumVlarge] [shape(v2)= rectangleVellipseVcircle]
v

There exist two objects such that one of them is a medium-sized

polygon on top of the other, a large or medium rectangle, ellipse, or circle.

e v [size(v])=smallVmedium]
[shape(v1) = circleVVrectangle] [texture(v1) = shaded]
There exists one object, a medium or small shaded circle or rec-
tangle.

A few simple constructive induction rules have been incorporated into the
current implementation. These include rules that count the number of objects
possessing certain characteristics and rules that locate the top-most and bottom-
most parts of an object (or more generally, extremal elements in a linearly-
ordered set defined by any transitive relation, such as On-top). Other construc-
tive induction rules can be specified by the user. Using the built-in constructive
induction rules, the program produces the following conjunctive generalization of
the input events in Figure 3-2:

o [# Vv's = 34)[# Vs with texture blank =2] &
Av1, v2 [top-most(v1)] [ontop(v1,v2)]
[size(v])=medium) [shape(v1)=polygon]
[texture(v1) =clear] [size(v2) = medium, large]
[shape(v2) =circle, rectangle]
There are either three or four objects in each event. Exactly two of
these objects are blank. The top-most object is a medium-sized, clear
polygon and it is on top of a large or medium-sized circle or rectangle.

This algorithm implements the conjunction, disjunction, and internal dis-
junction operators. The representation distinguishes among descriptors, vari-
ables, and values. Descriptors are further divided into structure-specifying
descriptors and attribute descriptors. The current method discriminates among

three types of descriptors:
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e nominal—which have unordered value sets
o lincar—which have linearly ordered value sets
e structured—which have tree-ordered value sets

This variety of possible representational forms is intended to provide a bet-
ter “fit” between the description language and any specific problem.
Y. Rules of generalization. The algorithm uses all rules of generalization men-
tioned in Section 3.1.5 and also a few constructive induction rules. It does not
implement the introducing exception specialization rule. The effect of the turn-
ing constants to variables rule is achieved as a special case of the generalization
by internal disjunction rule.

3. Compuiational efficiency. The algorithm requires 28 comparisons and builds
13 rules during the search to develop the descriptions listed above. Four rules
are retained so this gives an efficiency ratio of 4/13 or 30%.

i. Flexibility and extensibility. The algorithm can be modified to discover dis-
unctions by altering the termination criteria for the search of structure-only space
0 accept structure conjuncts that do not necessarily cover all of the input events.
lhe same general two-phase approach can also be applied to problems of deter-
nining discriminant descriptions. (See papers by Larson and Michalski [1977),
arson [1977], Michalski [1975, 1980a,b] and Chapter 4 of this book.)

The algorithm has good noise immunity. Noise events can be discovered

ccause the algorithm tends to place them in separate terms of a disjunction.

Domain-specific knowledge can be incorporated into the program by defin-
g the types and domains of descriptors, specifying the structures of these
'mains, specifying certain simple production rules (for domain constraints on
2al combinations of variables), specifying the evaluation functional, and by
oviding constructive induction rules. These forms of knowledge representation
: not always convenient, however. Further work should provide other facilities
"knowledge representation. '

As mentioned above, this method does perform a few general kinds of con-
ictive induction. The method provides mechanisms for adding more rules of
istructive induction.

The comparison of the above methods in terms of the criteria of Section
.1 is summarized in Table 3-2.

CONCLUSION

This chapter has discussed various aspects of inductive learning of struc-
descriptions and has presented several criteria for evaluating learning
ods. These criteria have been applied to the evaluation of five selected

ods for learning structural descriptions. The main features revealed by this
'sis are:
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tional efficiency on the one hand, and flexibility and extensibility on the
other. Bottom-up methods tend to be faster, but have lower noise im-
munity and less tlexibility.  Top-down methods have good noise immunity
and can be easily modified to discover disjunctive and other forms of
generalization.  They do tend to be computationally more expensive.
The description lunguage employed by a learning method is critically im-
portant. A learning method that uses a language with little structure (that
is, that has few operators and few types of operands) tends to be relatively
efficient and easy to implement but may not be able to learn descriptions
that are most useful in real-world applications. On the other hand, a
method that uses a language that is too rich will lead to enormous im-
plementation problems that will be detrimental to successful research in
machine learning.
A significant problem in current research on inductive learning is that each
- research group is using a different notation and terminology. This not only
makes the exchange of research results difficult, but it also makes it hard
for new researchers to enter the field. This chapter has attempted to devel-
op a set of concepts and criteria that abstract from these differences in
notation and terminology.

The analysis raises some important problems to be addressed in future
rescarch:

¢ Further work on representations. Present learning programs are limited by
the kinds of operators and variable types they allow, and also by the forms
of descriptions they can produce.  Methods for handling additional
operators, variable types, and forms of descriptions need to be designed
and implemented.  Rules of generalization corresponding to these
operators, types, and forms should also be developed. Among the forms
that are particularly desirable are hierarchical and related forms in which a
name of one description is used to build other, more complex descriptions.
Some initial work in this area has been done by Winston [1970, 1975],
Cohen and Sammut [1978], and in the area of grammatical inference in
general (for example, Biermann [1972]).

The Principle of Comprehensibility. In applications where people will
need to use the generalizations produced by a learning program, it is im-
portant that the learning method produce generalizations that are easy to
understand and close to corresponding natural language descriptions. This
means that the descriptions developed by an inductive method must be
structured to take into consideration human information processing limita-
tions. As a rough guideline, conjunctions should involve no more than
three or four conditions, full descriptions should involve only two or three
disjunctive terms, and there should be no more than two quantifiers in the
description.  Descriptions should correspond to single “‘chunks” of infor-
mation.  Hierarchically-structured descriptions may provide a way to meet
these guidelines. For more details, see Chapter 4 of this book.
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mation. Hierarchically-structured descriptions may provide a way to meet
these guidelines. For more details, see Chapter 4 of this book.

e Constructive induction. The constructive induction techniques developed to
date are very limited. New rules of constructive induction need to be iden-
tified and implemented. An important problem is the development of ef-
ficient mechanisms for guiding the process of constructive induction
through the potentially immense space of possible derived descriptors.

e [ntegration of problem-specific knowledge. Further work should be done
on the problem of when and how to use problem-specific knowledge in a
general induction method. The use of typed variables is a good example
of a general way to incorporate problem-specific knowledge.

e Extension to discriminant and taxonomic descriptions. Much work has
been done on characteristic generalization. Discriminant and taxonomic
descriptions are very important, especially in noisy environments. More
work on this subject is needed.

e User interface. As Al learning programs become more powerful, their
functions will become more opaque. Learning programs should provide
explanation facilities for justifying their generalizations.

e Handling errors and missing data. Very little attention has been paid to the
problem of developing methods that work well in noisy environments.
There is need for research on methods of learning from uncertain input in-
formation, from incomplete information, and from information containing
errors.
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