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ABSTRACT 

MONITORING AGRICULTURAL DROUGHT USING GEOGRAPHIC 

INFORMATION SYSTEMS AND REMOTE SENSING ON THE PRIMARY CORN 

AND SOYBEAN BELT IN THE UNITED STATES 

Adel Al-Shomrany , Ph. D. 

George Mason University, 2017 

Dissertation Director: Dr. John J. Qu 

 

Agricultural drought can be defined as inadequate soil water availability caused 

by low precipitation, and or high atmospheric water demand due to potential 

evapotranspiration which results in a reduction in crop yield. Agricultural drought serves 

as a major threat to food security and economic prosperity. In other words, the greater the 

drought, the greater the reduction of food production which leads to higher prices due to 

economic supply and demand. 

Climate events caused by extreme weather has the potential to create disasters 

affecting agricultural production. Climate changes create various impacts when taking 

into consideration the ever increasing population of the planet, and thus the potential for 

food shortages caused by extreme weather events. As a result, it has become necessary to 

assess the potential impacts droughts and other climate events can have on the political 

and economic scales of the world. Such analysis and evaluation often requires 
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quantitative understanding.   

The efforts of this research are focused on the Midwestern US, which is one of the 

major agricultural regions in the world, and comprises of 12 states: North Dakota, South 

Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Illinois, Indiana, Michigan, 

Wisconsin, and Ohio. In the past decade, the Midwest has experienced many drought 

events. Remote sensing measurements over the primary Corn and Soybean regions of the 

United States were analyzed from 2000 to 2012, and the 2012 drought event was 

investigated as a particular case study.  

The study aims to evaluate various remote sensing drought indices to assess those 

most fitting for monitoring agricultural drought. The objectives are (1) to assess and 

study the impact of drought effect on (corn and soybean) crop production by crop 

mapping information and GIS technology; (2) to use Geographical Weighted Regression 

(GWR) as a technical approach to evaluate the spatial relationships between precipitation 

vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level 

case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, 

NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought 

detection based on remote sensing measurements to determine the relationship between 

US county-level yields versus relatively common variables collected. 

Extreme drought creates low corn and soybean production where irrigation 

systems are not implemented. This results in a lack of moisture in soil leading to dry land 

and stale crop yields. When precipitation and moisture is found across all states, corn and 

soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation 
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management methods assist in strong crop yields throughout SPI monthly averages. The 

data gathered on irrigation consisted of using drought indices gathered by the national 

agricultural statistics service website. For the SPI levels ranging between one-month and 

nine-months, Kansas and Nebraska performed the best out of all 12-states contained in 

the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and 

Nebraska's results was due to a more efficient and sustainable irrigation system, where 

upon South Dakota lacked. South Dakota was leveled by strong correlations throughout 

all SPI periods for corn only. Kansas showed its strongest correlations for the two-month 

and three-month averages, for both corn and soybean. 

Precipitation regression with irrigated and non-irrigated maize (corn) and soybean 

levels show yields as a function of precipitation. The GWR models predicted that yields 

were significantly better than OLS performances for maize (corn) and soybean. The OLS 

regression model when used showed a general trend of correlation between observed 

yields and long-term mean precipitation totals, with 84% and 63% of the variability in 

mean yield explained by the mean annual precipitation for the non-irrigated crops. The 

GWR technique performance in predicting yields was significantly better than OLS 

performances. For instance in the months of June, July, and August precipitations had 

greater impacts on maize (corn) yields than soybeans under non-irrigated conditions as a 

result of the greater sensitivity maize (corn) had to water stress. 

SPI is capable of offering various time-scales enabling it to show initial warning 

signs of drought conditions and accompanying severity levels. SPI calculation techniques 

used for various locations are reflected upon the precipitation records acquired during 
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those periods. Over the 3, 6, and 9-month periods, NDII6 performed the best out of all of 

the MODIS indices as shown in its results in monitoring vegetation moisture and drought 

detection. NDII6 performed the best due to its detection abilities. The 9-month SPI 

provides an indication of inter-seasonal precipitation patterns over medium timescale 

duration.  

A new approach used is to average corn and soybean yields for all counties of the 

study area in comparison with average anomalies of the MODIS indices for the growing 

season between May through September from 2006-2012. There was a strong correlation 

between average corn yields versus MODIS NDII6 averages for these years with R
2
 

equaling 0.62. That means NDII6 is the best indicator to show drought conditions and 

vegetation moisture monitoring. There was a weak correlation with R
2
 = 0.16 between 

averages of soybean yields and averages of precipitation. Irrigation and management 

systems, technological improvements from hybrids, producer management techniques, 

and other management practices have an impact on crop yield productions.
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CHAPTER ONE: INTRODUCTION 

Agricultural drought is defined as an insufficient amount of soil moisture, 

precipitation, and humidity during crop growing season, which in turn affects the healthy 

growth of crop and production. Agricultural drought links characteristics of 

meteorological drought to agricultural impacts. Precipitation shortages, differences 

between actual and potential evapotranspiration, soil water deficits, reduced ground water 

or reservoir levels, and so forth. (Anderson, Martha C., Verdin, James P., Wardlow, Brian 

D. - James P. Verdin, 2012.). Plant water demand depends on prevailing weather 

conditions, biological characteristics of the specific plant, its stage of growth, and the 

physical and biological properties of the soil. Drought has been broadly grouped into four 

categories based on the American Meteorological Society (American Meteorological 

Society, 1997).  

The environmental stresses resulting from drought and high temperature affects 

crop growth and production during all stages of development. Drought can be 

meteorological (reduced precipitation), agricultural (precipitation shortages, soil water 

deficits, reduced ground water and reservoir levels), or hydrological (reduced 

precipitation on water-supply resources). Drought in general affects all climatic systems 

and therefore has a heavy effect upon economic systems and society on a wide scale as 

shown in the (Figure 1) below. 
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Figure 1 Physically Based Perspectives of Drought. Many of these impacts have the capacity to be monitored by 

remote sensing techniques. Data Source: Anderson, Martha C., Verdin, James P., Wardlow, Brian D. - James P. 

Verdin, 2012. 

 

 

Agriculture is one of the most vulnerable sectors when it comes to drought 

impacts and effects. In 2012, a great drought had a drastic effect upon the Corn Belt 

region of the United States (Kimery, 2012). This led to crop production failures well 

below the previous year’s crop production, for both corn and soybean (USDA, 2013). 

Improvements in water and farming practices during the past few decades have 

positively mitigated drought impacts causing crop yield reductions during the crop 

growing season. Spatial and temporal variations of drought showed crop yield reductions 

in various cropping regions throughout the primary Corn and Soybean Belt. The 2012 

corn yield in Illinois was 33.1% lower than in 2011, and the 2012 corn yield in Indiana 

was 32.2% lower than in 2011, but the 2012 corn yield in Minnesota was 6.5% higher 

than in 2011. Therefore, a more detailed spatial and temporal characterization of drought 
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is necessary to assess the impacts of drought on crop yield. 

In the USA specifically, drought has accounted for more than 14-billion dollars of 

economic loss annually (NCDC 2011). The factors that affect agricultural drought 

includes climate and weather such as precipitation, evaporation, temperature, humidity 

and wind, as well as soil types and moisture, crop types and stages of growth, water stress 

in  crops, and irrigation. Weather stations, derived from ground-based measurements tend 

to lack continuous spatial coverage. The Palmer Drought Severity Index and other 

climate drought indices are used to monitor droughts effectively, as well as the 

standardized precipitation index, however large scale monitoring poses a challenge when 

using such methods (Sheffield and Wood, 2011). The challenge of accurately analyzing 

meteorological measurements at a regional level, rather than in unique areas, is 

significant. This is due to delay in obtaining timely information in certain areas 

containing complex terrains, such as mountainous regions or difficult to set up 

monitoring stations. (Ashcroft et al., 2009). The use of interpolation to estimate 

meteorological variables also produces uncertainties due to large data gaps over extended 

drought condition areas (Flannigan et al., 1998). These challenges in data collection and 

weather monitoring render the examination of regional drought areas difficult. 

Drought monitoring is also limited by the technical aptitude and institutional 

capabilities in different countries. First world nations often have much more advanced 

methods and systems for monitoring weather, as opposed to third world countries which 

are in their beginning stages in acquiring and establishing drought monitoring systems 

and management institutions (Thenkabail et al., 2004). By using remote sensing 
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techniques however, drought monitoring tools are able to assist in detecting drought 

onset, the duration of their severity, and they provide farmers and scientists with 

information of spatial coverage, which has encouraged the use of remote sensing 

capabilities over the recent past decades (Thiruvengadachari and Gopalkrishna, 1993). 

The makeup of such techniques consists of various remote sensing drought indices and 

weather indices, which utilize different portions of the atmospheric spectrum to provide 

the monitoring of drought and crop growth.  

Agricultural drought mitigation is done through water management improvements 

and drought planning procedures. Information about the onset, magnitude and duration of 

droughts during the crop production cycle period gives important information as to which 

agricultural drought strategies are most suitable for use. Satellite observations of 

vegetative conditions which correlate to water stress environments provide a basis for 

agricultural drought monitoring (Marshall, Funk, and Michaelsen 2012; Sheffield and 

Wood 2011). Visible and infrared bands provide unique techniques for quantifying 

vegetation areas, including growth status, and leaf area coverage. 

Crop growth is based upon various factors, from genetic crop cultivar, to soil, 

weather, and the cultivation practices involved. This includes the month and time of crop 

seeding, and the amount of irrigation and fertilizer used. Generally speaking, year to year 

yields have been modeled as a predictor by using empirical and crop simulation 

approaches. Multi-spectral sensors, such as those of visible and near-infrared, have 

provided yield models and have therefore played an important role in obtaining data 

onboard earth-observing satellites. Remote sensing gives accurate and timely crop 
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growing condition estimations, and recent technologies in GIS have also allowed for the 

capture of and the storage and retrieval of modeling geographically linked data sets. 

Remote sensing data has an advantage when it comes to meteorological observations in 

that it is able to capture non-meteorological factors. Together, GIS and remote sensing are 

a powerful and effective means when it comes to monitoring and modeling crops at 

spatial distances and range-scales.  

Crop growth and yield are determined by the potential of crop cultivar, weather, 

soil, and cultivation practices such as the date of sowing and the amount of irrigation and 

fertilizer used. Nevertheless, year-to-year yield variability has been modeled as a 

predictor using either empirical and crop simulation approaches. The ability to use multi-

spectral (visible, near-infrared) sensors on polar orbiting earth observation satellites has 

served as an important factor for yield modeling. Remote sensing data provides accurate 

and objective estimations of crop growing conditions for issuing yield forecasts at a range 

of spatial scales. Remote sensing data has some advantages over meteorological 

observations for yield modeling, such as dense observational coverage, direct viewing 

and the ability to capture effects of non-meteorological factors. Recent developments in 

GIS technology allow for the capture, storage, retrieval, visualization, and modeling of 

geographically linked data. An integration of the three technologies - viz., crop 

simulation models, Remote sensing data and GIS provide an excellent solution for 

monitoring and modeling crops from various spatial scale ranges.   

Remote sensing techniques can capture information over large areas through the 

use of sensors and spectral band satellites. Satellites orbiting planet earth are able to 
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explore and capture the earth’s surface at various intervals on a regular basis. The 

retrieved data provides a data layer for specific areas. Aircrafts used for monitoring on 

the other hand are able to capture detail-specific features in much smaller areas. The 

spectral bands used by these sensors cover spectral regions form visible and micro-wave 

portions of the spectrum.  Advancements in computer science and GIS facilities consist 

of the analyzing and processing of remote sensing data observations from satellites. The 

integration of information derived from remote sensing techniques with other datasets - 

both in spatial and non-spatial formats fosters techniques for identification, monitoring, 

and assessment of agricultural drought. 

 Remote sensing has been adopted in many countries around the world. Studies on 

soil and water conservation using remote sensing and GIS have improved and procedures 

for pre-harvest estimations of major crops have also evolved and enhanced greatly. The 

key is to find specific remote sensing products that can be utilized in agricultural 

information systems for specific crops. Agricultural production encompasses various 

activities related to crops, climate, and the local weather of the region. Remote sensing 

technology has become operational in many other research environments where data 

integration has been applied. This includes the capturing of agricultural crop areas, 

growth conditions, and crop type identification. Understanding total production enables 

estimation for yields per unit areas. All of this has great potential in providing 

information on food-related security in times of environmental disasters. 

 Studies for estimating acreage production for different types of crops in various 

countries around the world show a near 90 percent accuracy level. (Das, H.P, 2000). 
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Production forecasting and crop-yield modeling, and crop-stress detection is all done 

using remote sensing data. Yield is affected and influenced by many different factors, 

including specific crop genotypes, soil characteristics, cultural and agricultural practices 

put to use, and the existence and impact of diseases and pests in such areas. Many 

approaches have been evaluated to determine the various parameters that affect crop 

growth and crop yielding. Such methods have been developed to assess crop growth, and 

from several sources of information; surveys of farm operators, crop condition reports 

from field surveys, and local weather information. Remote sensing technology is able to 

provide other spatial data in order to give timely information on crop conditions and their 

potential yields. The timely evaluation of potential yields is quite important due to the 

growing economic impact of agricultural production on economies across the world. The 

NDVI parameter is an important method of assessment for crop conditions and yield 

estimation when it comes to remote sensing techniques. 

 Various factors have resulted in frequent outbreaks of crop pests and diseases 

causing huge crop losses. This includes intensive cultivation, mono-cropping, changing 

weather conditions and the use of pesticides. Mono-cropping these losses is one way of 

enhancing grain production, and remote sensing tools have been useful in monitoring 

these large areas frequently, and in monitoring weather and ecological conditions 

favorable for crop pests and diseases. Weather conditions such as temperature, humidity 

(moisture), sunshine hours (light) and wind all influences the densities of pest population 

habitats. Remotely sensed meteorological parameters are temperature, soil moisture, 

moisture cloud, and precipitation. These parameters can also be used in the development 
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of crop yield modes.  

 The lack of information on average precipitation levels and the consequent 

drought conditions which in turn affect agricultural productivity are natural calamities 

affecting crop production. Drought conditions may be monitored using data obtained by 

satellites. During agricultural drought, changes of vegetation may become apparent. 

Satellite sensors can show these changes by means of spectral radiance measurements 

and the manipulation of such measurements. Such  indices  are  sensitive  to  the  changes  

in  vegetation  affected by  moisture  stress.  Visible and near infrared bands on satellites 

allow for the monitoring of vegetation greenness. Moisture stress in vegetation due to 

increased rainfall deficiency levels is shown by the lowering of vegetation index values.  

These  decreases  could  also  be  caused  by  other  stresses  such  as  pest diseases,  

nutrient  deficiency  and  soil  geo-chemical  effects. Reliable drought interpretation 

requires a Geographical Information System (GIS) based approach. This is because 

topography,  soil  type,  spatial  rainfall variability,  crop  type  and  variety,  irrigation  

support,  and  management  practices are  all  relevant  parameters. In  recent  years,  

many  investigations  have  demonstrated  the  capability  of satellite-borne  sensors  to  

provide  information  on  various  drought  indicators, which has helped to  monitor   

agricultural drought  more  effectively.  

1.1 Objectives and Scopes 
 

The first objective is to assess and study the impact of drought effect on (corn and 

soybean) crop production by crop mapping information and GIS technology. This 

objective of the study will be focused on: (1) The assessment of drought impact effect on 
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crop yields for corn and soybean; (2) The differences between separate irrigated and non-

irrigated crops of corn and soybean; (3) The coefficient of determination (R
2
) during 

growing season and yield of corn and soybean for the Midwestern US from 2000-2012. 

The second objective is to use of Geographical Weighted Regression (GWR) to 

quantifying the spatial relationships of precipitation on irrigated and non- irrigated corn 

and soybean yield, using a Nebraska county level data for the case study.  

The third objective is to use remote sensing indices to identify to evaluate drought 

detection among these indices. A time series of the indices will be created between the 

years 2000 to 2012 for the corn and soybean growing season (June -September), which 

will then be compared to the Standardized Precipitation Index (SPI), based on a pixel-to-

weather station approach. A correlative relationship between SPI and the other remote 

sensing indices being utilized will be produced.  

The fourth objective is to evaluate the connection between US county-level corn 

and soybean yields versus relatively common variables collected via remote sensing 

throughout the crop growing season months. The variables being assessed for both corn 

and soybean were a time series of NDVI, (NDII band 6 and band 7) based on information 

from both vegetation greenness and vegetation water content as derived by from EOS 

Terra MODIS sensor, and precipitation estimates from National Weather systems (NWS) 

Nexrad Doppler Weather radar system. 
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1.2 Major Data Sources 
 

The datasets employed in this study includes data from the National Climatic Data 

Center (NCDC), MODIS data products from NASA DAAC (MODIS daily surface 

temperature, MODIS L3 surface reflectance products, and MODIS Land cover products), 

and agricultural data from USDA.  

More Detailed Specific Datasets Used Include 
 

1) MODIS 8-day surface reflectance(MOD09A1) 

MODIS 8-day reflectance is a level-3 composite of daily surface reflectance. The 

datasets provide MODIS band 1-7 surface reflectance at 500m resolution. Each pixel is 

derived from the best possible L2G observation in an 8-day period. The L2G consists of 

gridded Level 2 data, and was developed to separate geo-locating from compositing and 

averaging. This format preserves data from the maps to a given pixel for observations at 

that pixel. Programs producing level 3 data are able to have all available data at each 

pixel to choose from without the need to geo-locate everything themselves. Level 2G-lite 

provides a minimal level of compositing daily level 2G data. However, MODIS surface 

reflectance data is found in the MOD09 series of data products. MOD09A1 for 13 years 

(2000-2012) is used in this study for selected study areas and were downloaded from the 

Land Processes Distributed Active Archive Center. 

2) MODIS Land Cover Type (MCD12Q1) 

MCD12Q1 is MODIS yearly land cover type data which describes land cover 

properties based on yearly input from Terra and Aqua. It contains multiple classification 

schemes. In this study land cover type 2 developed by the University of Maryland, was 
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used which identifies 13 land cover types including 10 natural vegetation classes, 

croplands and 2 non-vegetated land classes. 

3) MODIS land surface temperature (MOD11A2)  

      MODIS land surface temperature datasets provide per-pixel surface temperature. 

MOD11A2 is an 8-day MODIS level-3 product at 1 km resolution. 

4) Crop data  

Crop data is collected from the National Agricultural Statistics Service (NASS), 

which helps USDA to collect, summarize, analyze and publish agricultural information. 

In this study, acreage, yield of corn and soybean were collected for both crop mapping 

and the drought impact study. 

5) United States Drought Monitor (USDM) 

The US Drought Monitor produces weekly maps of drought conditions each 

Thursday morning, with map measurements based on climatic, hydrological and soil 

conditions taken from impacts and observations of more than 350 sources around the 

United States (Macon, 2014). 

6) Precipitation data from the NOAA/ (National Weather Service (NWS) Advanced 

Hydrologic Prediction Service, Silver Spring, Maryland. (Seo, 1998: Seo, Breidenbach, 

and Johnson, 1999).   

7) Precipitation data can be obtained from the High Plains Regional Climate Center 

automated weather data network (AWDN) for 64 AWDN stations distributed across the 

state of Nebraska. 
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8) Cropland Data Layer (CDL) 

      Cropland data layer (CDL) maps by the USDA were used to detect the major crop 

regions in the primary Corn and Soybean Belt. The USDA CDL is a crop-specific geo-

reference product covering the whole continental United States in 30m resolutions. CDL 

is based on measurements from multi-date, multi-spectral Thematic Mapper (TM), 

Enhanced Thematic Mapper (ETM+), and Advanced Wide Field Sensor (AWiFS) 

instruments (Swain et al., 2011). Corn and soybean crop spatial information was 

extracted from the 2012 CDL and re-projected from Albers Conical Equal Area to 

Sinusoidal projection to generate corn cover map at 500m resolution. 

1.3 Study Area 

 
The study area focuses on agricultural drought and its effect on the most intensive 

corn and soybean planting areas, the Midwestern region of the United States. Corn and 

soybean are the two dominant crops cultivated in 12 states of the Midwestern US region 

and they are also two major and minor crops areas common in this region as shown in the 

map (Figure 2) below: The study area consists of 12 Midwestern states and includes 

North and South Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Illinois, Indiana, 

Michigan, Wisconsin, and Ohio. The study years range from 2000-2012. 
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Figure 2 The study area of the Midwestern US comprises 12 states. 

 

Corn and soybean production is influenced by the soil in the region, which is 

fertile and rich in organic material and nitrogen. The fertile land together with warm 

nights and well-distributed temperatures contribute to the ideal environment for raising 

corn and soybean. The Midwest region accounts for over 75% of the total national 

production and the major corn and soybean areas are in dark green and account for three-

fourths of national production. The yellow numbers in the maps represent the percentage 

each state contributed to the total crop production between 2006 and 2010. Insignificant 

corn and soybean is depicted in the light green colors as shown in the maps below of 

(Figure 3).  
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Figure 3 Corn and soybean production maps for the United States (2006-2010). (Data Source: USDA/WAOB). 

 

Crop planting takes place in late April to June when soil temperatures are warm, 

often done two-weeks prior to soybean planting. Soil temperature can support or stall 

corn growth, and air temperature is one of the main factors influencing soil temperature. 

By late September the crops are fully matured and are then harvested throughout the 

month of October. Nearly half of all soybean production in the United States is exported 

to Europe, Mexico, South Korea, and Japan. Additionally, 40% of the corn is exported to 

nations outside of the US. Soybean seeds are usually planted between May and early 

June. Soybean then begins to bloom beginning in July and through to early August. 

Soybean is then harvested between late September and early November. Corn on the 

other hand is planted from late April to late May. The corn crop then blooms between 

July and mid-August. From late September to early November, corn yields are harvested.  
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1.4 Organization of Dissertation 
 

The dissertation consists of six chapters. Chapter one is the introduction providing 

general information and the objectives and the scope as well as major data sources and 

the identified study area. Chapter two is the literature review, specifically touching upon 

agricultural drought monitoring with meteorological data, and satellite remote sensing.  

Chapter three addresses the impact of drought effect on corn and soybean crop production 

using crop mapping information and GIS technology, including the assessment of drought 

impact effect on crop yields for corn and soybean; the differences between separate 

irrigated and non-irrigated crops of corn and soybean yields; the coefficient of 

determination (R
2
) for (time scales of 1, 2, 3, 6, and 9-month average SPI Values at all 

stations) during growing season and yield of corn and soybean for each of the 12 States 

of the Midwestern US from 2000-2012, and the chapter summary. Chapter four uses the 

use of GWR to evaluate relationships between precipitation vs. irrigated and non-

irrigated corn and soybean yield, using a Nebraska County Level data as Case Study and 

followed by chapter summary. Chapter five assesses MODIS indices for agricultural 

drought monitoring and evaluates the use of Standard Precipitation Index (SPI) to assess 

MODIS drought indices using a percentage histogram and chapter summary. Chapter six 

is the new approach for agricultural drought detection based on remote sensing 

measurements to determine the relationship between US county-level yields versus 

relatively/common variables collected, as well as crop yield statistics, remote sensing of 

crop yields, study area, the development of a new approach for agricultural drought 

monitoring, phenology of crops for corn and soybean time series, and chapter summary. 
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Chapter seven focuses on the chapter summaries of previous chapters and gives 

limitations, originalities, and discussions upon future directions and constitutes the 

conclusion and the discussion. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Agricultural Drought Monitoring with Meteorological Data 
 

The ability to identify the onset of drought, and the severity and duration of its 

existence allows us to understand the potential impact it may have, providing the ability 

to alleviate damage due to the environment and to minimize economic losses as a result. 

Reduction of drought impact comes from improving the accuracy of drought monitoring 

tools. Drought indices serve as useful indicators to identify related variables such as 

temperature, rainfall, evapotranspiration, and runoff. These indices give a holistic idea of 

the severity of the drought based upon past occurrences, allowing for scientists to 

compare and contrast droughts in various regions at different points in time in terms of 

intensity, duration, and spatial coverage. Such drought indices also provide a platform for 

evaluation by agricultural producers and policymakers alike who are able to take 

measured actions in dealing with such dilemma. 

Drought indexes provide uniform characterizations of drought. Such indexes are 

classified through thresholds established for the sole purpose of rating a drought’s 

severity on a scale between “moderate”, “severe” and “extreme”. Additionally, 

quantitative methods may be expressed through values seen in mathematical formulae.  

 The drought magnitude (M) level at any particular time (t): q and 𝜃 represent the 

drought index expressed.  
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𝑀𝑡 = 𝑞0(𝜃) − 𝑞(𝜃)𝑡 

  The intensity (I) is the mean deficit over the drought duration 

𝐼 =
1

𝐷
∑ 𝑞0 (𝜃) − 𝑞(𝜃)𝑡

𝑡1+𝐷−1

𝑡=𝑡1

 

𝑆 = 𝐷 ×  I 

𝑆 = ∑ (𝑞0(𝜃) − 𝑞(𝜃)𝑡)

𝑡1+𝐷−1

𝑡=𝑡1

 

 Regional drought characteristics include the spatial extent of drought which is 

defined as the ratio of the area in deficit to the total area of the region.  

𝐴 =
∑ 𝐴(𝑖) ∈ (𝑞(𝜃) ≤ 𝑞0(𝜃))𝑁

𝑖=1

∑ 𝐴(𝑖)𝑁
𝑖=1

 

Where A (i) is the area of the elementary geographic unit of data values (e.g., a 

model grid cell or a river catchment) and N is the total number of units in the region of 

interest. 

 Drought indices were developed as a means to measure drought. A drought index 

accommodates data on rainfall, snow peak and melt, stream flow and other water –supply 

into a comprehensible picture. There are several indices that measure how much 

precipitation for a given period of time has deviated from historically norms. Some of the 

widely used drought indices include the Palmer Drought Severity Index (PDSI), Crop 

Moisture Index (CMI), the Standardized Precipitation Index (SPI), Palmer Moisture 

 The severity of drought can be calculated based upon duration (D) and intensity: 
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Anomaly Index (Z-index), Soil Moisture Index (SMP),and Surface Water Supply Index 

(SWSI). 

Example of Agricultural Drought Indices 

A drought index is used to capture drought characteristics thereby contributing to 

reliable and comprehensive information (Lake, 2011). A large number of agricultural 

drought indices exist, each incorporating various variables and each providing different 

measures of drought. The Palmer Drought Severity Index (PDSI) is an example of 

agricultural drought indices. The Standard Precipitation Index (SPI) and the Crop 

Moisture Index are widely used (Palmer 1965; McKee et al., 1993). The U.S. Drought 

Monitor (USDM) is an advanced tool of operational drought monitoring which 

incorporates information from multiple sources, and has attracted increased attention in 

recent years. 

The Palmer Drought Severity Index (PDSI): 

The Palmer Drought Severity Index was the first indicator developed for the 

United States. Its algorithm is based on a two-layer soil water balance equation which 

includes precipitation, moisture supply and moisture demand variables (Palmer, 1965). 

The index is a sum of the current moisture anomaly and a fraction of the previous 

index value. The moisture anomaly (D) can be defined as:  

𝐷 = 𝑃 − Q 

Q =  𝐸𝑇̅̅ ̅̅  + �̅�  +  𝑅𝑂̅̅ ̅̅  −  �̅� 

Where P is the total monthly precipitation, and 𝑄 is the precipitation value for 

existing conditions’ (Palmer 1965). �̅� represents the water balance equation defined as: 
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𝐸𝑇̅̅ ̅̅   is the evapotranspiration, �̅� is the soil water recharge, and 𝑅𝑂̅̅ ̅̅  defines the run off, and 

𝐿 ̅is the water loss from soil. Overbars represent such figures as average values for any 

given month. 

  The palmer moisture index anomaly for Z index is 

𝑍 = 𝐾 ×  D 

K represents a climate-weighting factor. PDSI values range from -6.0 to +6.0 and 

is classified under 11 groups. A -6.0 PDSI signifies severe drought. The index is based on 

precipitation and temperature values. The time duration of a drought is also taken into 

consideration. 

Despite the widespread acceptance of PDSI, the Palmer Index has faults of its 

own (HEIM, 2002). The index is used specifically for monitoring arid regions where 

precipitation is a main source of moisture (Doesken et al., 1991). When calculating the 

PDSI, one uses a simplified two-layer lumped parameter model which is not accurate for 

capturing drought conditions in a single site. An average water holding capacity of the 

top two soil layers is also cataloged for the region of interest, however with various soil 

properties at different locations, this makes it tough to spatially delineate a drought 

affected region. 

Other drawbacks of PDSI include arbitrarily selected drought values being 

selected based upon Palmer’s research in Iowa and Kansas. Snowfall and snow cover are 

also not included in the index, making the index value inaccurate in snowy conditions. 

Palmer also overlooked the natural lag time between precipitation and the resulting 

runoff. 
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Thornthwaite’s method is used to calculate the potential evapotranspiration in 

PDSI. This is based on an empirical relationship between ET and temperature 

(Thronthwaite, 1948), which shows poor performance among various methods that 

estimate ET in a study carried out by ME Jensen et al., 1990. The fact that PDSI tends to 

underestimate drought severity due to underestimated evapotranspiration in humid 

regions is another concern (McKee et al., 1993; Rosenberg et al., 1983). 

Standardized Precipitation Index (SPI):  

SPI, which stands for the Standardized Precipitation Index, was developed to 

examine the impacts of precipitation deficiencies on soil moistures, ground water, stream 

flows, and snowpack (McKee et al., 1993). SPI is also better at measuring drought 

conditions than PDSI because it is able to represent long-term precipitation records at 

various locations. As rainfall measurements are strictly positives, the SPI fits the 

historical precipitation data uses a gamma probability distribution function and then 

transform the Gamma distribution to a normal distribution which has a mean of zero and 

a standard deviation of one (Edwards and McKee, 1997). Such transformation separate 

the rainfall measurements as above or below normal (SPI=0) situations.  

As soil moisture quickly responds to drought while precipitation of ground water 

responds to longer time scale. SPI is classified into 7 different levels, which ranges from 

extreme wet to extreme drought conditions. Positive SPI values indicate greater than 

median precipitation and negative values indicate lower than median. Compared to PDSI, 

SPI is deemed a better representation of the water stress (Guttman, 1999; Rhee et al., 

2010). SPI however does not account for the effect of soil nor temperature anomalies 
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which are critical for agricultural drought monitoring (Narasimhan and Srinivasan, 2005). 

Soil moisture also greatly impacts the growth of crops more so than the natural rainfall 

that precipitates, therefore SPI lacks in that respect when such factors are at play.  

Climatic or Crop Moisture Index (CMI): 

Three years after PDSI was developed, Palmer (1968) developed the Crop 

Moisture Index (CMI) for agricultural drought monitoring (Heim, 2002). The CMI is 

based on a monthly mean temperature and precipitation, measuring evapotranspiration 

deficits and excessive wetness. The CMI measures short-term drought on a monthly basis 

and has been widely used to evaluate drought influences throughout growing seasons. 

The PDSI is a meteorological drought index that responds to weather conditions which 

have been abnormally dry or abnormally wet. The Crop Moisture Index (CMI) uses a 

meteorological approach to monitor week-to-week crop conditions (W.C. Palmer, 1968). 

SPI is designed for short-term soil moisture demands of crops, and responds 

greatly to conditions quick to change. CMI is however inefficient in monitoring long-

term drought and this creates misleading information regarding its ability to pick up 

quick response information to changing conditions (Nagarajan and Vloemans, 2010). 

CMI is unsuitable for additional reasons. When long-term drought monitoring is wanted, 

CMI begins and ends each growing season near zero. This limits CMI’s reliability during 

the general growing season.  

Soil Moisture Percentiles (SMP): 

The SMP, soil moisture percentile, is used to calculate modeled and observed soil 

moisture data. It measures soil moisture reflecting hydrological input and output statistics 
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for complex hydrological models (Sheffield, Wood; 2011). SMP is used often when it 

comes to mapping desertification and the ratio of actual-to-potential evaportranspiration 

which quantifies actual conditions on the ground (Sheffield and Wood, 2011).  

Palmer Moisture Anomaly Index (Z-index): 

The Palmer Z-index measures monthly moisture anomalies showing moisture 

conditions per month in comparison to normality. The Z-index is used as an intermediate 

for PDSI computation, not taking into account previous moisture conditions. When we 

compare the PDSI to the Z-index, the Z-index value varies more quickly from month to 

month. PDSI in itself varies slower because much of its value incorporates preceding 

conditions. As a result, data values of both PDSI and the Z-index differ (Quiring and 

Papakryiakou, 2003). 

The Z-index is used to track agricultural drought due to its quick response to 

variations of soil moisture (Keyantash and Dracup, 2002). Z-index is deemed better than 

PDSI and more preferable when measuring agricultural drought and is likened to more 

than CMI when quantifying agricultural drought (Karl, 1986).  With that said, the Z-index 

suffers from a complex formulation and computation which limits its usage due to 

specificity. 

USA Drought Monitor (USDM): 

The U.S Drought Monitor maps of current drought conditions have been issued 

weekly since 1999. The USDM is an index that combines information from various 

existing drought indicators, including PDSI and SPI. It also reports from state 

climatologists and observers across the nation. The USDM results from an active 
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operation between the NDMC and the National Oceanic and Atmospheric Administration 

(NOAA). The U.S. Drought Monitor map provides a summary of drought conditions 

across the United States and the map is updated weekly by a variety of data-based 

drought indices and indicators that local experts input into a single composite drought 

indicator. The USDM is an advanced method for monitoring drought here in the US 

(Anderson et al., 2011). Furthermore, the USDM statistics are made available via inter-

web. This centralization of data contributes more value to its usage and dependency. A 

D0-D4 scheme is used to classify droughts by their intensity from least to most intense 

with D0 reflectance showing abnormally dry conditions and D4 visuals indicating 

exceptional drought occurrences based on a ranked percentile approach as shown in 

(Figure 4).  
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Figure 4  USDM drought map for July 10, 2012.The black box is the study area of the Midwestern US 

 

2.2 Agricultural Drought Monitoring with Satellite Remote Sensing 
 

Obtaining hydrological data from ground-based measurements remains a 

challenge in less developed regions where gauges are sparely distributed (Sheffield and 

Wood, 2011). To overcome this, the data obtained from remote sensing is able to provide 

a consistent visual of water cycles over a regional and global scale. Remote sensing has 

evolved to the point where it is now able to measure large numbers of hydrological 

variables ranging from precipitation, to soil moisture, to evapotranspiration, and water 

levels (Schmugge et al., 2002). Remote sensing is also able to provide useful information 

regarding biological variables such as plant productivity and health, and vegetative states.  
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As a result of such abilities, remote sensing has garnered popularity compared to 

traditional drought monitoring methods, and is used as a powerful tool for providing data 

and products when it comes to large-scale water cycle evaluations. Data acquired from 

multiple satellite sensors are used to quantify the characteristics of drought for 

hydrological and vegetative indices. High spatial resolution data obtained from satellites 

makes it an important tool for assessing droughts in areas where weather stations are 

lacking (Caccamoa et al., 2011; Ji and Peters, 2003; Peters et al., 1991). Remote sensing 

can also detect the onset of drought, its duration and its severity, and may provide 

agricultural producers and researchers with comprehensive pictures showing the 

development of drought (Figure 5) below from (Thenkabail et al., 2004) shows a 

schematic of the capability of remotes sensing in the visible / Infrared bands.  
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Figure 5 Optical remote sensing uses visible near infrared and short-wave infrared sensors by detecting the solar 

radiation reflected from targets on the ground. Data Source: Patel, Dhiren P., (1994). 

 

The Advanced Very High Resolution Radiometer (AVHRR) onboard the National 

and Atmosphere Administration (NOAA)’s Polar-orbiting Operational Environmental 

Satellites (POES) has been frequently used for large-scale drought monitoring due to its 

global spatial coverage and relatively long time record. This scanning radiometer uses 6 

detectors that collect Vis/ IR bands of radiation wavelengths. With the launch of Terra 

and Aqua platforms in 1999 and 2002, the Moderate Resolution Imaging Spector-

radiometer (MODIS) instruments improves upon the heritage AVHRR in terms of its 

spatial resolution ranging from 250m to 500m and 1km. It also includes more spectral 

channels, more accurate geo-location, and improved atmospheric corrections (Fensholt 

and Sandholt, 2003). 
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Whereas AVHRR is utilized for large-area drought monitoring, MODIS improves 

upon the performance of AVHRR by providing higher spatial resolution and greater 

spectral resolution, enabling more detailed analyses of the study location 

(http://visibleearth.nasa.gov/view.php?id=54075). 

Both Terra and Aqua satellites carry MODIS sensors. MODIS is a 36-band sensor 

and offers a total of 20 Reflective Solar Bands (RSB) (1-19 and 26) with narrower 

spectral bandwidths covering visible to shortwave infrared regions. These reflective 

bands along with thermal bands provide opportunity for studying vegetative conditions 

and variations. Agricultural drought monitoring with remote sensing measurements 

provides long-term availability and consistency of sensor data. The Visible Infrared 

Imaging Radiometer Suite (VIIRS) is developed for long-term continuity of AVHRR and 

MODIS. VIIRS is an instrument onboard the Suomi National Polar-orbiting Partnership 

(NPP) satellite that was launched in October, 2011. VIIRS has 22 bands between 0.4 um 

and 12.5 um. (Lee et al., 2006). 

When comparing the MODIS bands in the VIS/NIR, the 16 MODIS bands have 

been replaced by 9 VIIRS bands. In the short-wave and mid-wave infrared 

(SWIR/MWIR), 11 MODIS bands have been replaced by 8 VIIRS bands (Murphy et al., 

2001). Since VIIRS serves as a continuation of the MODIS data record, agricultural 

drought monitoring methods based on MODIS measurements may be migrated to VIIRS 

measurements through efforts on cross-sensor comparison.  

Satellite observations of conditions showing vegetative states provides another 

basis for drought monitoring methods (Marshall et al., 2012) because the state of 

http://visibleearth.nasa.gov/view.php?id=54075
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vegetation is generally representative of environmental water stress, especially in arid and 

semi-arid regions (Sheffield and Wood, 2011). Visible channels on the AVHRR were 

exploited for vegetation monitoring in research studies at varying scales (Tucker, 1979). 

As a result of quick and direct responses of vegetation to drought, much 

vegetation in remote sensing indices have been developed for quantifying drought 

conditions at the regional, national, and global scale (Gu et al., 2007; Ji and Peters, 2003; 

F N Kogan, 1995b; Peters et al., 1991; Unganai and Kogan, 1998). Vegetation index is 

generated by spectral reflectance which is influenced by different mechanisms as shown 

in (Figure 6).  

 

 
Figure 6 Typical reflectance and absorption characteristics of vegetation (Adapted from Jensen, 2000) 
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In regards to the reflectance of visible bands, chlorophyll and leaf pigments 

control such vegetative reflectance (Zarco-Tejada et al., 2000). High reflectance in the 

0.7-1.2um regions is dominated by the cell structure of the vegetative materials (Hoffer, 

1978). This reflectance of vegetation canopies in the red band and is inversely related to 

chlorophyll concentrations due to photosynthetic chlorophyll by vegetation in this region 

(Anyamba and Tucker, 2012). Red, NIR and SWIR bands are used more often than other 

bands when characterizing vegetation indices. 

There are various spectral vegetation indices. The most widely known and used is 

the Normalized Difference Vegetation Index (NDVI) known as (NIR-Red)/ (NIR+Red) 

(R0.86 um -R0.66 um)/ (R0.86 um + R0.66 um). The reflectance value of the 0.86 μm 

channel (R0.86μm) is useful in discriminating pixels of crop production and the lack 

thereof. The red channel is located in the strong chlorophyll absorption region, while the 

near IR channel is located in the high reflectance of vegetation canopies. (Anyamba and 

Tucker, 2012). 

To measure and map the density of green vegetation across the earth's landscapes, 

scientists use satellite sensors to observe distinct wavelengths of visible and near-infrared 

sunlight that is absorbed and reflected by plants. Calculating the ratio of the visible and 

near-infrared light reflected back up to the sensor yields a number between (-1) and (+1). 

The result of this calculation is called the Normalized Difference Vegetation Index. In 

addition, an NDVI value of zero means no green vegetation, whereas a close to +1 

indicates the highest possible density of green leaves of vegetation. 
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Normalization allows NDVI to minimize directional reflectance and to reduce 

effects of sun-angles and shadows and topographic variations (Holben and Fraser, 1986). 

NDVI has been used in many studies for vegetation conditions and drought monitoring 

purposes (Gu et al., 2007; Tucker and Choudhury, 1987; Unganai and Kogan, 1998; Wan 

et al., 2004). 

 In light of NDVI, a number of NDVI-based vegetation indices have been 

proposed and used. The Vegetation Condition Index (VCI) “compares the current NDVI 

to the range of values observed in the same period in previous years. The VCI is 

expressed in % and gives an idea where the observed value is situated between the 

extreme values (minimum and maximum) in the previous years. Lower and higher values 

indicate bad and good vegetation state conditions, respectively” 

(http://land.copernicus.eu/global/products/vci). VCI is used for drought detection by 

scaling values of NDVI from [0-1]. Other vegetation indices applied include the 

Temperature Condition Index (TCI) and Vegetation Health Index (VHI), which combine 

VCI and TCI together for estimations of vegetation water stress levels. TCI outperforms 

NDVI and VCI in areas where soil has high moisture content due to excessive rainfall 

and persistent cloudiness (Liu and Kogan, 1996). Such vegetation indices present unique 

signatures of vegetation, including leaf area coverage and growth statuses, all of which 

provide for estimating vegetative conditions (Huete et al., 2002). 

Other indices reflect SWIR bands, known as vegetation water indices and they are 

also used in drought study. An example is the Normalized Difference Water Index 

(NDWI) for remote sensing of vegetation liquid water from space., calculated as (NIR – 

http://land.copernicus.eu/global/products/vci
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SWIR)/ (NIR + SWIR) (R0.86-R1.24)/ (R0.86 + R1.24), based on the fact that the 1.24µm 

band is on the edge of the vegetation liquid water absorption, while the 0.86µm band is 

insensitive to water content changes (Gao, 1996), which is sensitive to changes in liquid 

water content of vegetation.  

The Normalized Difference Infrared Index (NDII) is able to monitor vegetation 

moisture content. Strong absorbance by water makes this band suitable for estimating the 

water content found in plants. Using the difference between two water absorption 

channels centered at 1640 nm and 2130 nm, the Normalized Multi-band Drought Index 

(NMDI) NIR-(Modis6-Modis7)/ (NIR+(Modis6-Modis7) was developed to provide both 

soil and vegetation moisture results (Wang and Qu, 2007). The NMDI utilizes 860 nm 

channels as the reference instead of using a liquid water absorption channel. However, it 

uses the difference between two liquid water absorption channels centered at 1640 nm 

and 2130 nm as the soil and vegetation moisture sensitive band. The information from 

multiple near infrared and short wave infrared channels has enhanced the sensitivity to 

drought severity and is suited to estimate soil and vegetation moisture.  

Other water content indices in usage include the Global Vegetation Monitoring 

Index (GVMI) (Ceccato et al., 2002), and the Shortwave Infrared Water Stress Index 

(SIWSI (Fensholt and Sandholt, 2003). More remote sensing indices that are used can be 

seen in the (Table 1) below. 
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Table 1 Spectral indices used for drought monitoring 

Data Source: Di, Wu (2014), An Investigation of Agriculture Drought on the United States Corn Belt Using 

Satellite Remote Sensing and GIS Technology. 

 

 

Index Definition Author 

NDVI (NIR-Red)/(NIR+Red) (Tucker, 1979) 

VARI (Green-Red)/(Green+Red-Blue) (Gitelson et al., 2002) 

SR NIR/Red (Tucker, 1979) 

EVI 2.5(NIR-Red)/(NIR+6Red-7.5Blue+1) (Huete et al., 2002) 

NDIIb6 (NIR-Modis6)/(NIR+Modis6) (Hunt and Rock, 1989) 

NDIIb7 (NIR-Modis7)/(NIR+Modis7) (Hunt and Rock, 1989) 

D1640 1- Modis6/(0.55NIR+0.55Modis7) (Van Niel et al., 2003) 

NDWI (NIR-SWIR)/(NIR+SWIR) (Gao, 1996) 

NRV (RVI – 1)/(RVI+1) Baret and Guyot, 1991) 

MSAVI 2NIR + 1 − √(2NIR + 1)2 − 8(NIR − Red)

2
 

(Qi et al., 1994) 

VCI  (NDVI–NDVImin)/(NDVImax–NDVImin) (Kogan, 1995b) 

TCI  (Tmax–T)/ (Tmax–Tmin) (Kogan, 1995b) 

VHI VHI =𝛼VCI +(1 − 𝛼) TCI (Kogan, 1995b)  

NDDI (NDVI-NDWI)/(NDVI+NDWI) (Gu et al., 2007) 

SAVI (NIR-Red)(1+L)/(NIR+Red+L) (Huete, 1988) 

NMDI NIR − (Modis6 − Modis7)

NIR + (Modis6 − Modis7)
 

(Wang and Qu, 2007) 

VTCI (LSTNDVImax-LSTNDVI)/(LSTNDVImax-LSTNDVImin) (Wan et al., 2004) 

 
VSWI NDVI/T (Carlson et al., 1990) 
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Depending on the climatic region and surface type, the selection of the most 

appropriate remote sensing index for drought monitoring is considered. In the primary 

Corn and Soybean Belt using the MODIS time series from 2000 to 2012, four MODIS 

indices were used including NDVI, NDWI, NDII6, and NMDI. These indices particularly 

are sensitive to agricultural drought. 

In summary, some advantages of remote sensing are that it is capable of providing 

information on a large number of hydrological variables such as precipitation, soil 

moisture, evapotranspiration and water levels. Satellite remote sensing provides cost-

effective and rapid methods of acquiring up-to-date information over a big large 

geographical area. Remote sensing is also a practical way to obtain data from inaccessible 

areas as it is capable of continuous coverage. Satellite remote sensing also has standard 

tools and techniques which enables versatile usage. Repetitive coverage allows the 

monitoring of dynamic themes like water and agriculture. Satellite remote sensing 

provides useful information of biological variables such as vegetation state, plant 

productivity and health.  

Some limitations of remote sensing are that some phenomena are cataloged with 

indirect measurements. It is also apt to finding interference from cloud cover and 

atmospheric particles, as well as encountering geometric issues, sensor calibration issues.  

There is a difference between satellite measurements and surface quantities which has an 

effect on hydrological and vegetative indices (Sheffield and Wood, 2011). Additionally 

earth radiances taken by satellite sensors require conversion to fit surface parameters that 

depict quantitative characterizations of drought. The method of retrieving using remote 
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sensing is also imperfect due to land-atmosphere radiations. Cloud contamination is 

another limitation. 
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CHAPTER THREE: DROUGHT EFFECTS ON CORN AND SOYBEAN CROP 

PRODUCTIONS USING GIS TECHNOLOGY 

This section of the study is focused on three parts of the research: (1) The 

assessment of drought impact effect on crop yields for corn and soybean; (2) The 

differences between separate irrigated and non-irrigated crops of corn and soybean; ( 3) 

The coefficient of determination (R
2
) SPI and yield across several time scales of 1, 2, 3, 

6, and 9-month average SPI values at all stations during growing season for corn and 

soybean, for all 12 States of Midwestern US study area from 2000-2012.  

3.1 The Assessment of Drought Impact Effect on Crop Yields for Corn and 
Soybean 

 

Geographical Information System (GIS) is a toot for organizing geographic data 

for analysis and presentation. In agriculture application, GIS helps in mapping features 

such as crops and the visualization of agricultural environments. GIS has continued to 

improve over the years and has begun to become utilized by scientists and researchers to 

map crop distributions and patterns, taking into account variables such as drought effects, 

flood effects, and hurricane effects on crop yields. GIS also helps in publishing crop data 

for sharing. Special organizations such as the National Agricultural Statistics Service 

(NASS) collect, summarize, and publish mass agricultural data sets. The World 

Agricultural Outlook Board (WAOB) is another organization that publishes maps of 

agricultural areas illustrating crop patterns and like features, using GIS spatial data layers. 
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This has enabled policy makers and analysts to observe evaluate, and decision make 

about weather and climate related impacts regarding agricultural trade and production. 

GIS technology allows the development of maps which define major crop 

producing areas for the United States. As shown in (Figure 7) below, the major corn and 

soybean areas are in dark green and account for three-fourths of the total nation’s 

production. The yellow numbers in the maps represent the percentage each state 

contributed to the total crop production between 2006 and 2010. The minor corn and 

soybean is depicted in the light green colors.  The two maps at the bottom were created 

using ArcGIS 10.4 from the United States Drought Monitor data source. 

 

 
Figure 7 The top two maps show Corn and Soybean production from 2006 to 2010 (Data source: USDA/WAOB).  
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The two maps on top were acquired from the Agricultural Weather Assessment 

from the World Agricultural Outlook Board. The two maps on the bottom as shown in 

(Figure 7) above generated using ArcGIS for July and September 2012. These maps show 

that there is drought in the study area during this time period. 

To better provide information for decision makers in agriculture, drought maps 

are created and updated at various time scales. Beyond addressing the spatial influence of 

drought upon crops, drought impact on crop production is also factorized into research. 

Drought events have had significant effects upon the United States, and in 2012 

America’s corn production reached a low point among its past decade. 

The effect of drought on corn and soybean yields shows a correlation between 

these two factors. Drought and high temperatures during the 2012 growing season affect 

agricultural productions in many regions of the United States. We generated maps using 

ArcGIS10.4 for July and September 2012 depicting the effects of the exceptional drought 

and high temperatures which afflicted the Midwest of the United States during this time 

period. A review of the drought and yields for 2012 were presented to better understand 

the effect of drought has on crop yields. 

In (Figure 8) below, the extreme dry weather conditions of 2012 were similar to 

June 1988 that afflicted the growing season and illustrates the hot and dry results for July 

2012 across the twelve selected corn and soybean producing states. The (Figure 8) data 

was acquired from the National Oceanic and Atmospheric Administration, Nation 

Climatic Data Center. 
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Figure 8 Shows June precipitation, July temperature and weighted-average precipitation levels for all 12-states. 

 

 

Results of this unfavorable heat was seen in a sharp reduction of corn yield for 

2012 - down to 123.4 bushels per acres, and a decrease of soybean yields to 39.6 bushels 

per acre as shown in the (Figure 9) below. 

 



40 

 

The 2012 drought increased in its effect during the summer season and negatively 

impacted great portions of the major field crops in the top corn-producing states 

including in Illinois, Indiana, Iowa, Nebraska, and Ohio. It exceeded, in most measures, 

the 1988-1989 North American Drought, used for comparison (Kimery 2012). Both corn 

and soybean yields therefore showed great reductions in 2012 according to the Crop 

Production 2012 Annual Report released by the USDA. (Figure. 9), acquired by the 

(USDA) National Agricultural Statistics Service (NASS) Quick Stats Database also 

shows the time series of USA corn and soybean yields from 1980 to 2012. 

 

 

 
Figure 9 U.S. Corn and Soybean Yields with time series (1980-2012) 

 

 



41 

 

3.2 Differences between Separate Irrigated and Non-Irrigated Crops of 
Corn and Soybean Yields 

 

The two states that were used to illustrate the irrigation and non-irrigation farming 

methods for corn and soybean productions were Nebraska and Kansas Midwestern US 

and were mapped for 2007. Because irrigation is unlikely to vary on a year-to-year basis, 

no change was assumed during the three years (from 2009 to 2011) as shown in (Figure 

10). Various areas in both Nebraska and Kansas are heavily reliant on irrigation. Whether 

rain occurs or not, corn and soybean crops can still have adequate moisture as a result. 

Additionally, 2012 turned out to be an outlier year in terms of US weather in the Corn 

Belt (Fuchs, Brian A., Deborah A. Wood, and Dee Ebbeka, 2011). Nebraska is also a 

major corn producer, however much of its corn is irrigated using Ogallala Aquifer. The 

total corn planted in Nebraska in the year of 2012 was 10 million acres, among which 

nearly 6 million was irrigated. 

NEBRASKA: Dry conditions allowed the drought to reach extreme levels. 

Various factors contributed to the warm temperatures during the winter season, including 

strong southerly winds, minor snow fall to the north, and a jet stream pattern keeping 

cold arctic air north of the state. Intense heat during the spring months caused a rapid 

decline in soil moisture conditions which were further propagated by hot and dry 

drought-like conditions. The continuation of heat and a lack of rainfall quickly led to the 

development of drought conditions. These conditions impacted various sectors from 

agriculture to infrastructure and water supplies.  

KANSAS: Approaching the year 2012, Kansas in 2011 experienced a run-up to 

the extreme drought it experienced by the time May came around, caused by high 
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temperatures and a lack of precipitation. As a result, the production of corn and soybean 

were all below normal. Low precipitation rates caused the impacts in the 2012 growing 

season. The livestock industry was affected by drought due to poor pasture conditions, 

high feeding costs, and low water availability, ultimately resulting in lower profit margins 

for farmers and producers alike due to high temperatures and humidity. 

 

 
Figure 10  Irrigation of corn and soybean in Nebraska and Kansas for 2007. Data Source:  Gong; Myneni; 

Chaoqing; Xin. (2013). 
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(Figures 11-18) were acquired from (USDA) National Agricultural Statistics 

Service (NASS) Quick Stats Database, and show irrigation and non-irrigation graphs for 

corn and soybean productions in Nebraska and Kansas states as shown below:  

(Figure 11) shows soybean irrigated yield measured in (BU/Acre) for Nebraska 

state (1980-2012) as shown below. In 2012 irrigated crop yields reached a peak. The 

Irrigation ascending constantly from 1980 up until 2012, with some years showing 

decline, followed by increases on a consistent basis.  There is a trend in the yield, which 

may be due to technological advances, fertilization, and improved farming methods. 

Since we do not have enough information about the impact of these advances, we will not 

attempt to model the effect here. Hence it should be noted the trend variance will become 

part of the follow-up studies.    

 

 
Figure 11 Soybean Irrigated by Yield Measured in (BU/Acre) for Nebraska State (1980-2012). 
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(Figure 12) shows soybean non- irrigated yield measured in (BU/Acre) for 

Nebraska state (1980-2012). There were non-irrigated yields for Nebraska from 1980 to 

2012 and in 2012 there was no irrigation, similar to 1984 due to drought.  

 

 
Figure 12 Soybean Non- Irrigated by Yield Measured in (BU/Acre) for Nebraska State (1980-2012). 

 

 

(Figure 13) shows soybean irrigated yield measured in (BU/Acre) for Kansas state 

(1984-2009). The only data available above was between 1984 and 2009. In 2009, there 

was a sharp irrigation yield of soybean for Kansas.  
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Figure 13 Soybean Irrigated by Yield Measured in (BU/Acre) for Kansas State (1984-2009). 

 

(Figure 14) shows soybean non- irrigated yield measured in (BU/Acre) for Kansas 

state (1984-2009). The figure shows non-irrigated data and shows zero irrigation in 1984 

with a decrease in irrigation occurring toward the end of 1999, followed by an increase 

and then a decline.   

 

 
Figure 14 Soybean Non- Irrigated by Yield Measured in (BU/Acre) for Kansas State (1984-2009).  
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(Figure 15) shows corn irrigated yield measured in (BU/Acre) for Nebraska state 

(1980-2012). Corn irrigated yields increased between 1980 and 2012, although 1993 

showed a sharp decline but quickly picked up the following couple of years, in 1994 and 

1995. 

 

 
Figure 15 Corn Irrigated by Yield Measured in (BU/Acre) for Nebraska State (1980-2012). 

 

 (Figure 16) shows corn non-irrigated yield measured in (BU/Acre) for Nebraska 

state (1980-2012). Non-irrigation corn yields in 2012 showed no irrigation due to 

extreme drought. 
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Figure 16 Corn Non- Irrigated by Yield Measured in (BU/Acre) for Nebraska State (1980-2012). 

 

(Figure 17) shows corn irrigated yield measured in (BU/Acre) for Kansas state 

(1980-2012). Between 1980 and 2012, corn irrigated yields showed steady increase with 

maximum in 2004 and 2009. 

 

 
Figure 17 Corn Irrigated by Yield Measured in (BU/Acre) for Kansas State (1980-2012). 
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(Figure 18) shows corn non-irrigated yield measured in (BU/Acre) for Kansas 

state (1980-2012). Between 1980 and the data showed minimum in 1983 and 2012. 

 

 
Figure 18 Corn Non- Irrigated by Yield Measured in (BU/Acre) for Kansas State (1980-2012). 

 

3.3 The Coefficient of Determination (R2) between Precipitation and 
Yield  

 

The SPI over different months and time- scales are used as an index of rainfall excess 

of deficit or each state. Calculations were carried out for the 1-, 2-, 3-, 6-, and 9- month 

average SPI Values (growing season) and annual corn and soybean yield (see Appendix 

A). The sum of SPI computed over for several time scales (1 month, 2 month, 3 month, 6 

month, and 9 month) for the corn and soybean yield in growing season are shown in 

increasing order using the average SPI for all stations; this will give the average SPI per 

state for specific years from 2000 to 2012. Following this is the yield correlation of the 

SPI between the years 2000 and 2012. 
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Overall, there is an average of between 100-180 BU/Acre of corn-yield, and 30-50 

BU/Acre for soybean-yield, both for many of the mid-western states during the five-

month growing season. The correlations between averaged SPI and yield are computed.   

The results for SPI 1-month, 2-month, 3-month, 6-month, and 9-month SPI show 

that as sample size increases, the more correlations will cluster around zero. Significance 

levels for Pearson's correlation using different sample sizes vary. Level of significance is 

based upon the likely and most unlikely determined observations according to percentage 

values. The most likely observations are based on a 95% probability density whereupon 

very unlikely observations are based upon the 0.025 area curve. 

There was non-significant correlation in Kansas for corn SPI month 1 average and 

a strong correlation in Kansas for soybean SPI 1-month average, due to a well-established 

irrigation system installed, being R
2
 = 0.63. For Nebraska SPI 1-month, there was a non-

significant correlation for the corn and for South Dakota SPI 1-month, there was average 

correlation for the corn yield with an irrigation system, being R
2
 = 0.54. For South 

Dakota SPI 1-month, there was a non-significant correlation for the soybean yield with an 

irrigation system due to due to ineffective realization, similar for the corn yield. 

There was a significant correlation in Kansas for corn SPI 2-month average, with 

an irrigation system, being R
2
 = 0.47. There was a significant correlation in Kansas for 

soybean SPI 2-month average, due to the irrigation system installed, being R
2
 = 0.67. For 

Nebraska SPI 2-month, there was average correlation for the corn with an irrigation 

system, being R
2
 = 0.49. For Nebraska SPI 2-month, there was a significant correlation 

for the soybean yield with an irrigation system, being R
2
 = 0.58. For South Dakota SPI 2-
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month, there was significant correlation for the corn yield with an irrigation system, 

being R
2
 = 0.60. For South Dakota SPI 2-month, there was a non-significant correlation 

for the soybean yield with an irrigation system due to ineffective realization, being R
2
 = 

0.34. 

There was a significant correlation in Kansas for corn SPI 3-month average, with 

an irrigation system, being R
2
 = 0.64. There was a significant correlation in Kansas for 

soybean SPI 3-month average, due to the irrigation system installed, being R
2
 = 0.61. For 

Nebraska SPI 3-month, there was average correlation for the corn with an irrigation 

system, being R
2 

= 0.47, being R
2
 = 0.47. For Nebraska SPI 3-month, there was an 

average correlation for the soybean yield with an irrigation system, being R
2 

= 0.52. For 

South Dakota SPI 3-month, there was average correlation for the corn yield with an 

irrigation system, being R
2
 = 0.55. For South Dakota SPI 3-month, there was a non-

significant correlation for the soybean yield with an irrigation system due to ineffective 

realization, being R
2
 = 0.28, due to drought conditions. 

There was a significant correlation in Kansas for corn SPI 6-month average, with 

an irrigation system, being R
2
 = 0.51. There was a non-significant correlation in Kansas 

for soybean SPI 6-month average, due to the irrigation system installed, being R
2
 = 0.36. 

For Nebraska SPI 6-month, there was average correlation for the corn with an irrigation 

system, being R
2 

= 0.44. For Nebraska SPI 6-month, there was an average correlation for 

the soybean yield with an irrigation system, being R
2 

= 0.47. For South Dakota SPI 6-

month, there was average correlation for the corn yield with an irrigation system, being 

R
2 

= 0.41. For South Dakota SPI 6-month, there was a non-significant correlation for the 
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soybean yield with an irrigation system due to ineffective realization, being R
2 

= 0.26, 

due to drought conditions. 

There was an average correlation in Kansas for corn SPI 9-month average, with 

an irrigation system, being R
2
 = 0.41. There was a significant correlation in Kansas for 

Soybean SPI 9-month average, due to the irrigation system installed, being R
2
 = 0.32. For 

Nebraska SPI 9-month, there was average correlation for the corn with an irrigation 

system, being R
2 

= 0.52. For Nebraska SPI 9-month, there was an average correlation for 

the soybean yield with an irrigation system, being R
2 

= 0.53. For South Dakota SPI 9-

month, there was average correlation for the corn yield with an irrigation system, being 

R
2 

= 0.54. For South Dakota SPI 9-month, there was a non-significant correlation for the 

soybean yield with an irrigation system due to ineffective realization, being R
2 

= 0.36, 

due to drought conditions. 

 When there is extreme drought in the mid-western states that do not utilize 

irrigation systems, there is a low production of corn and soybean crops per Bu/Acre. 

However, when there is extreme drought in the states that do contain irrigation systems, 

Kansas, Nebraska, and South Dakota. Finally, when high- precipitation and moisture is 

found, there is a consistency in the amount of BU/Acre production that occurs in each of 

the states. The irrigation systems are only useful and show affect when drought is in 

effect. Otherwise, precipitation results in similar BU/Acre outputs of corn and soybean 

crops across all the Midwestern region states combined. 
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3.4  Chapter Summary 
 

GIS technology was used to show maps and crop yields for the United States to 

identify major corn production areas. The corn maps illustrate corn-planting patterns 

presenting both major and minor corn and soybean areas. As the 2012 drought covered 

most of the US, the corn yield maps help us focus on the efforts on the most affected 

areas, the primary Corn and Soybean Belt, the most intensive agricultural region in the 

United States. Corn and soybean yield mapping serves as a useful tool for understanding 

climate variations of crop productivity. The 2012 devastating drought is demonstrated by 

comparing the yield map of 2012 with that of the previous year. Significant yield losses 

were noted across most areas of the primary Corn and Soybean Belt. Crop mapping with 

GIS technology provides a framework for better agricultural assessment activities. When 

used in conjunction with climate/weather products and satellite remote sensing products, 

the crop maps facilitate climate/weather fluctuations on agriculture and of water-stressed 

agricultural losses. 

In conclusion, Chapter 3 demonstrates the utility of GIS in deterring the effects of 

drought on corn and soybean crop production. The first section of the chapter shows that 

GIS has improved in collecting and evaluating drought impact and the display of 

variables and patterns which accompany its effects during various time-scales (1, 2, 3, 6, 

and 9-month SPI). Section 3.2 examines the impact of water deficit for irrigated and non-

irrigated crops of corn and soybean yields based on Nebraska and Kansas state level data. 

The livestock industry was affected by drought due to low water availability, poor pasture 

conditions, raising feeding costs, and ultimately resulting in lower profit margin for 
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farmers and producers. The profit depends on the sale price/bushel. Usually when the 

yield/acre is low, the price per bushel goes up, and with government subsidy, farmers 

usually make money in low yield years. 

Section 3.3 touches on the various time-scale SPI value impacts, upon which 

irrigation systems prove to be useful only when drought is in effect. For the SPI levels 

ranging between 1-month and 9-months, Kansas and Nebraska shows the highest 

coefficient of variance out of all 12-states contained in the Midwestern primary Corn and 

Soybean Belt. Kansas and Nebraska showed the strongest correlations due to irrigation 

system installations. South Dakota was leveled by strong correlations throughout all SPI 

periods for corn only. Average correlation yields resulted for all SPI levels for Nebraska 

for both corn and soybean yields. Kansas showed its strongest correlations for the 2-

month and 3-month averages, for both corn and soybean, averaging out at an R
2
 of 0.60. 

The lowest R 
2
 for Nebraska was found in its SPI 1-month correlation for corn with an R

2
 

= 0.39. Kansas showed similar low R
2
 for its 1-month average SPI for corn, and its 6-

month SPI average for corn. Extreme drought creates low corn and soybean production 

where irrigation systems are not implemented. The opposite is true for states such as 

Kansas, Nebraska, and South Dakota, where irrigation management methods assist in 

crop yields throughout much of the SPI-monthly averages. The "low R
2)

 -levels during 

these SPI-months prove much stronger than are considered 'weak' yields for state SPI-

levels for all of the other Midwestern belt states. When precipitation and moisture is 

found across all states, corn and soybean production flourishes. 
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CHAPTER FOUR: USE OF GWR TO EVALUATE RELATIONSHIPS BETWEEN 

PRECIPITATION VS. IRRIGATED AND NON- IRRIGATED CORN AND 

SOYBEAN YIELD  

The relationship between spatial distribution of precipitation and crop yields on 

county, state, and regional scales while still taking into consideration spatial 

heterogeneity, assists managers to better evaluate long-term productivity trends in 

agriculture. This allows for accurately improved assessments in food security, policy 

making, the assessment of resources including water and land, and in managerial 

decision-making. The technique of Geographically Weighted Regression (GWR) gives us 

the ability to account for spatial non-stationarity with space. While its application is 

growing in other scientific disciplines (i.e., social sciences), such technique has not yet 

been established in agricultural settings. Geographic information systems (GIS), as well 

as GWR and the ordinary least square regression technique were utilized to analyze the 

relations found between precipitation categories and irrigated and non-irrigated maize 

(corn) and soybean yields for all counties in Nebraska from 2000 to 2012. 

Using ArcGIS10.4, precipitation was spatially interpolated. GWR and OLS 

predicted fields, both measured, were correlated with annual (January 1 to December 31), 

seasonal (May 1 to September 30), and monthly (May, June, July, August, and 

September) precipitation for each county. Average annual precipitation in the state of 

Nebraska between the year of 2000 until 2012 was an average 24.6 inches (maximum: 
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32.3 inches; minimum: 14 inches). The average precipitation decreased from May to 

September during the growing season and the county's average yields follow a similar 

trend. The OLS regression model, when used, had a correlating trend between observed 

yield and the long-term average precipitation total with varying coefficients of 

determination. GWR's technique in predicting yields of spatially interpolated 

precipitation for irrigated and non-irrigated maize (corn) and soybean was much better 

than the performance of the OLS model. This significant improvement was based upon 

the GWR's ability to analyze the relationship between precipitation and yield, due to its 

ability to account for the heterogeneity spatial impact on the precipitation versus yield 

relationship. 

Analogue data sources and manual processing has been the best means of this in 

the past. However, modern technological advances have led to an increase of computers 

and information technology enabling a wide array of ways to handle data of all sorts. 

Geographic Information Systems is an example used by various disciplines as tools for 

spatial data handling in a geographic environment. GIS consists of hardware, software, 

data and live-ware faculties. GIS is a very important tool when it comes to solving 

problems and dealing with geo-information. Spatial analysis plays an important role in 

GIS, as it provides the means to monitor spatial areas which in turn creates data-sets and 

features used for monitoring, analysis, and evaluation.  

An important step for evaluating variations of yield on a regional scale is to 

understand the relationship between yield and surrounding environmental factors. 

Precipitation is one of the main drivers of crop productivity, and its variability in many 
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agricultural production areas, such as in Nebraska, is significant for irrigated and also 

non-irrigated corn and soybean lands which comprise of significant portions of the total 

cultivated lands in the Midwestern US. Practical tools and methods for mapping and 

analysis are used for predicting irrigated and non-irrigated crop yields and to for also 

understanding the interactions between yield and primary climatic variables (i.e., 

precipitation) for decision makers allows for better planning, manning, and allocation of 

natural resources for crop production on large scales.  

The relationship between precipitation and yield enables for greater understanding 

of present water needs, allowing for the evaluation of future water usage, and the 

evaluation of sustainability in production systems. Regional variations in yield can be 

large because of the differences in irrigated and non-irrigated productivity. Relationships 

between yield and climate variables on a spatial and temporal scale are extremely 

important when it comes to assessing food security, policies, and implementing land and 

water resource management decisions on large (watershed, statewide, regional) scales.  

An improvement in the integration of GIS and spatial data analysis has come 

through the development of local spatial statistical techniques. One of the newer non-

parametric modeling methods which has provided interpretable measures of sources of 

local variation and reduces variable co‐linearity is the Geographically Weighted 

Regression (GWR) technique. GWR is among the new developments of local spatial 

analytical techniques. The Geographically Weighted Regression (GWR) allows variations 

in relationships between predictors and outcome variables (Fotheringham, Brunsdon, and 

Charlton 2002; National Centre for Geo-computation 2009). This means GWR is a local 
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spatial statistical technique which relies on a form of kernel regression within a multiple 

linear regression framework to develop local relationships between the dependent and 

independent variables.  

  When modeling the spatial relationship between weather variables and crop and 

surface characteristics (e.g., precipitation vs. yield; precipitation vs. soil moisture, 

vegetation indices vs. radiation or temperature, etc.), the spatial heterogeneity of these 

relationships must be taken into account. Spatial non-stationarity is indicated when the 

measurement or estimation of the relationships among variables differs from location to 

location (Mennis, 2006). It shows that the relationship between variables vary from one 

location to another depending on physical factors of the environment, which are spatially 

auto correlated (Propastin et al., 2007). 

The development of local spatial non-stationarity relationships between variables 

facilitates an exploratory analysis of the stationary assumption of a global multiple linear 

regression model. Commonly used regression models include conventional ordinary least 

squares, which is the most popular regression technique. It is the base level of spatial 

regression analysis and provides various models based on variables to create a single 

regression equation which does not account for the spatial non-stationarity of variables. 

Unlike OLS and other conventional regression models which provide a single regression 

equation to describe general relationships among explanatory and dependent variables, 

GWR generates spatial data that expresses spatial variations in relationships among 

variables. Maps generated from these analyses play a key role in describing and 

interpreting spatial non-stationarity between the variables (Mennis, 2006).  
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The objectives for the research in this chapter are to map the long-term spatial 

distribution of non-irrigated corn and soybean yields for all Nebraska counties using 

OLS, GWR, and GIS to assess the impact of precipitation on non-irrigated yields; to 

develop correlations between the months of May, June, July, August, and September, 

seasonal (May 1 to September 30), and annual (January 1 to December 31) precipitation 

and crop yields to determine the impact of non-irrigated and irrigated crop yields based 

on the three precipitation categories; and to evaluate the potential differences in using 

GWR over OLS in predicting crop yields on a county scale. 

The utilization of geographic information systems to analyze correlations between 

precipitation categories and irrigation and non-irrigated maize (corn) and soybean yields 

for using a Nebraska State by county level as case study between 2000 and 2012 is 

proposed. Analyzing such correlations enables scholars and managers alike to make 

better decisions on food health, natural management plans, resource assessments, and 

land and water resources. GWR is an example of a technique which is able to take into 

account non-stationaries with space. This is a new method in agricultural setting. 

4.1 Materials and Methods 
 

Study Area 

 
The study area of Nebraska (latitude 40° N to 43° N, longitude 95° 19′ W to 104° 

3′ W) (Figures 19 and 20)  below  has 93 counties with a population of 1.7 million (mean 

population density of about 9 people km-2). Nebraska’s water resources (ground and 

surface) are regulated by the Nebraska Dept. of Natural Resources and 23 districts. The 

state is one of the leading farming and ranching states in the U.S. with a total area of 
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approximately 200,355 km2, and a mean elevation of 793 m above mean sea level. 

Nebraska’s climate is mainly continental and is divided into an eastern and central park 

which are humid/sub-humid continental climate, and a western third which has arid 

climate. 

Nebraska experiences a wide array of seasonal variations in terms of temperature 

and precipitation. The weather in Nebraska is influenced by cold dry continental air 

masses flowing from Canada in the winter and of warm air rising from the Gulf of 

Mexico during the summer. The high wind speeds that happen between January and early 

June, along with daily average wind speeds show significant fluctuations, with the lowest 

wind speeds occurring in the hot and humid summer months (Irmak, 2010). 

Nebraska is divided into three broad environmental regions based upon 

environmental characteristics, climatic conditions and soil and topographic 

characteristics: the eastern region, the central region, and the western region. The eastern 

region has high amounts of precipitation with superior silt-loam soils rich in organic 

matter and high agronomic productivity. The central region is characterized by rich silt 

and loam soils with high organic matter with generally flat topography and moderate 

precipitation. The western region has less precipitation and soils with a lower potential 

for agronomic productivity as compared with the eastern and central regions (Searcy and 

Longwell, 1964).  

The Sand Hills area consists of sand dunes and soils with sparse grasslands. The 

Sand Hills area covers 20+ counties in the north and north-central parts of the state. 
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Water availability is the dominant yield-reducing factor in Western Nebraska, where 

irrigation is necessary for producing average or high yields.  

 

 
Figure 19 Nebraska county borders.  
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Figure 20 Weather Stations Distributed across the State of Nebraska by The High Plains Regional Climate 

Center Automated weather data network (AWDN). 

 

Datasets 

 

USDA- NASS Crop Yield Data 

 

 The USDA National Agricultural Statistical Service (www.nass.usda.gov) is an 

important source of information when it comes to gathering long-term yield data. The 

service provides yield data predictions almost for every county in the U.S. Yield data for 

irrigated and non-irrigated corn and soybean crops can be obtained for the counties of 

Nebraska from 2000 to 2012 from the USDA-NASS website. Yield is defined as the 

county average yield for either non-irrigated or irrigated crops which are reported. The 

USDA-NASS does not take into account the average irrigation amount applied per 

growing season, therefore irrigation and yield relationships were not included in this part 

of the study. County yield was averaged across the 12 years (2000 to 2012). Irrigated and 

non-irrigated crop yields were used as the dependent variables in the GWR model. The 
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county yield can be defined as total harvested yield divided by the total area of harvested 

yield per year per county. Some of the counties in Nebraska did not report corn or 

soybean production from 2000-2012. In some parts of Nebraska (northwest and northern 

edge of the state near the sand hills), corn and soybean are not produced. In some 

counties, there were incomplete or missing yield data. Therefore, the counties with 

missing data were excluded from our analysis.  

Precipitation Data  

 

 Precipitation data can be obtained from the High Plains Regional Climate Center 

(HPRCC; http://hprcc1.unl.edu/cgi‐hpcc/home.cgi) automated weather data network 

(AWDN) for 64 AWDN stations distributed across the state of Nebraska (Figure 20) 

above. Precipitation data were defined into three categories: (1) long-term monthly (May, 

June, July, August, or September) average precipitation from 2000 to 2012, (2) long-term 

average seasonal (growing season) total precipitation from 2000 to 2012, and (3) long-

term annual total precipitation from 2000 to 2012. Yield vs. precipitation relationship 

analyses can be conducted for all three categories to evaluate both irrigated and non-

irrigated crop yield responses to the magnitudes of the three precipitation categories. The 

growing season can be considered from June 1 to September 30, which is typical for corn 

and soybean production in the region. The major assumption here is that the growing 

season can be assumed to be the same across the state. Other assumptions include similar 

corn hybrids and soybean varieties across Nebraska. Disease and weed pressure and other 

field management issues, such as nitrogen deficiency, that may cause yield reduction 

were not taken into account in this part of analyses. 
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GWR Model  

 

The relationship between yield and precipitation is modeled using OLS regression 

and GWR. The model can be derived by OLS regression and can be applied globally to 

the entire study region from which measured data has been taken based on the 

assumption of spatial heterogeneity in the relationship between the variables under study 

(Foody, 2003). Spatial stationary assumes that statistical properties of an attribute are 

independent of a location and that the mean and variance of observed attribute values at 

different locations across the study region are constant. For example, precipitation might 

not vary across a small area. However, if there is spatial heterogeneity, then the global 

prediction of spatial relationships using OLS regression will misrepresent the relationship 

between precipitation and yield. Therefore, the relationship between these two variables 

is also examined with the GWR technique.  

GWR is a local spatial statistical technique that can be used to analyze spatial 

non-stationarity when the input variable differs from location to location. It provides a 

local model to predict an independent variable or process (e.g., plant growth, yield) by 

fitting a regression equation to the available datasets of dependent variables. It enables 

identification of the yield stability of a region as well as the association of the 

independent environmental factors to the yield. The main advantage of GWR over OLS 

regression is its ability to deal with spatial non-stationarity (Propastin et al., 2007). 

Global regression techniques such as OLS may ignore local information and, therefore, 

indicate incorrectly that a large part of the variance in yield was unexplained. 
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GWR is useful for evaluating the spatial heterogeneity of a dependent variable. 

Spatial heterogeneity can exist when the structure of the process being modeled varies 

across the study area, whether it is county or state. The GWR method constructs separate 

equations by incorporating dependent and explanatory variables of features which are 

within the bandwidth distance of the target features. The shape and size of the bandwidth 

is dependent on the kernel type, bandwidth method, distance, and the number of features. 

Instead of calibrating a single equation, GWR generates a separate regression equation 

for each observation (i.e., spatially interpolated precipitation and yield) and thus allows 

parameter values to vary continuously in geographical space. Each equation is calibrated 

using a different weighting of the observations contained in the dataset. Because the 

regression equation is calibrated independently for each observation, a separate parameter 

prediction (z‐value) and R
2
 value are calculated for each observation. In GWR, a form of 

kernel regression and multi‐linear regression can be used to build a model expressed as: 

𝑌𝑖 =  β𝑜(𝑖) +  β1(𝑖)𝑋1(𝑖) +  β2(𝑖)𝑋2(𝑖) + β3(𝑖)𝑋3(𝑖) + 𝐾 + β𝑘(𝑛)𝑋𝑘(𝑛) +  𝜀𝑖  

Where 𝑌𝑖 is the interpolated yield at location 𝑖 (where 𝑖 captures the coordinate location), 

β𝑜  is the intercept, β𝑘(𝑖)  is the kth local parameter prediction at the 𝑖 th location (i.e., 

coefficient for the independent variable), 𝑋𝑘(𝑖) is the kth independent variable 

(precipitation) value at the 𝑖th location, and n represents the last location. In GWR, the 

weight assigned to each observation is based on a distance decay function centered on 

observation𝑖. The distance decay function, which may take a variety of forms, is modified 

by a bandwidth setting at which distance the weight rapidly approaches zero (Mennis, 

2006). 
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 A spatial kernel provides geographical weightings in the models. A key coefficient 

in the kernel is the bandwidth which controls the size of the kernel. Bandwidths can be 

considered as smoothing functions of the local parameter predictions (Fotheringham, et 

al., 2002). 

 A fixed bandwidth is based on defined diameters of circular search 

neighborhoods, and diameter scalar units are the same as the various location variables 

with different choices being available. A GWR model depends upon the number of 

variables in the model and the bandwidth.  Akaike Information Criterion (AIC) is better 

than the use of other bandwidths due to the interaction between the bandwidth and the 

complexity of the model.  

 Geographic weighting occurs when a bandwidth, kernel type, and regression 

model is chosen. The influence of data on the local parameter prediction is the basis for 

the geographic distance from the regression point. Locations that are close to the 

regression point of interest is weighted far heavier than points located further away 

(Fotheringham et al., 2002). 

Statistical Analysis  

 

 The mean annual, growing season, and monthly precipitation values for each 

county are essential requirements of this part of the study. The zonal statistic can be used 

to calculate the precipitation values for each county defined by name (string attribute 

field) of the Nebraska county feature class based on the precipitation value from the 

precipitation raster dataset.  
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The Zonal statistics tool (Spatial Analyst tool of ArcGIS ver.10.4) calculates 

statistics on the value of a raster within the zone of another dataset. The zonal statistic 

tool summarizes the value of the precipitation raster within the county and reports the 

result as the mean, maximum, minimum, and range values.  

4.2 Results and Discussion 
 
The Results of Precipitation Amounts Distribution 

 

 The spatial distributions of long‐term average annual (January 1 to December 31) 

precipitation and long‐term average growing season (May 1 to September 30) total 

precipitation for all Nebraska counties are presented in (Figures 21a and 21b)  

respectively. Long-term monthly (May, June, July, August, and September) average 

precipitation for all counties is presented in (Figures 21c through 21g) respectively. The 

graduated circles display the quantitative values of precipitation found among each of the 

Nebraskan counties as arranged from smallest to largest. The precipitation data statistics 

are presented in (Table 2) below. 

 The precipitation across the state of Nebraska in inches between the years 2000 to 

2012 shows the greatest amount of rain distribution in the most-eastern part of the state 

with limited to no amounts of precipitation depicted in western part of Nebraska. 
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Figure 21 Variation of Long-Term Average (2000-2012) a- Annual, b- seasonal, c- May, d- June, e- July, f- 

August, and g- September Precipitation (inches) Across Nebraska. Data Source: The High Plains Regional 

Climate Center (AWDN). 

 



68 

 

Table 2 Precipitation (P) statistics for the observation period of 2000-2012 for the counties of Nebraska. 

Parameter Max(in)   Min(in) Mean(in)  
County with 

Max Precip 

County with 

Min Precip 

Long‐term average annual P 32.4 14.1 24.6 Richardson Scotts Bluff 

Long‐term average growing season P 19.6 8.9 15.4 Richardson Scotts Bluff 

Long‐term average May P 5.2 2.0 3.7 Otoe Scotts Bluff 

Long‐term average June P 4.8 2.4 3.8 Richardson Banner 

Long‐term average July P 3.8 1.7 2.8 Richardson Scotts Bluff 

Long‐term average August P 4.3 1.3 2.9 Nemaha Sioux 

Long‐term average September P 3.2 1.2 2.1 Dixon Kimball 

 

The spatial trends presented in the table above and the map-graphs above show a 

gradual increase in precipitation from the eastern part of Nebraska to the western side of 

the state. The graphs show an estimated average annual difference of about 11 inches 

between the eastern and western counties throughout the years. During the seasonal 

growth months of the year (May, June, July, August, and September) there is a limiting 

factor of difference between the central counties of the states and the eastern borders. 

Between all other months, precipitation differences are vastly different between the west 

and the eastern parts of Nebraska. June and August show the least amount of precipitation 

in inches, while May, July, and September show substantial precipitation levels. 

 Soil types and the water-holding capacities as well as irrigation methods and other 

factors influencing irrigation practices vary significantly across the counties of the state. 

Crop irrigation requirements also vary, and since growing season precipitation varies, 

crop irrigation requirements also exhibit various variabilities.  
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The Results of Irrigated and Non-Irrigated Corn and Soybean Yields 

  

 The 13 year average non-Irrigated and irrigated corn and soybean yields are 

presented in (Figures 22, 23, 24, and 25) below. Summary statistics of historical crop 

yields are provided in (Table 3) below. The white‐colored counties in figures below 

indicate counties with no data. 

 

  

 
Figure 22  Distribution of long-term (2000-2012) average mean yields (BU/ ACRE) for Irrigated corn of 

Nebraska by County Level. 

 

 For the average mean yields for corn in the map -figure above, there is strong 

irrigation in the south (Gosper, Red Willow, Furnas, Harlan, Webster, Kearney, Adams, 
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Clay) along with counties toward the eastern border of the state, such as Wheller, 

Washington, Douglas, Cedar, and Stanton.  

 

 

 
Figure 23  Distribution of long-term (2000-2012) average mean yields (BU/ ACRE) for Non-Irrigated corn of 

Nebraska by County Level. 

 

For the non-irrigation map, there was much precipitation in the eastern part of 

Nebraska, touching on the counties of Wayne, Stanton, Colfax, Dodge, Burt, Washington, 

Douglas, Cuming, and Sarpy.  
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Figure 24 Distribution of long-term (2000-2012) average mean yields (BU/ ACRE) for Irrigated soybean of 

Nebraska by County Level. 

 

The average mean yields for soybean in the map-figure above shows much 

irrigation occurring in the southern part of the state for the counties Phelps, Kearney, 

Adams, Clay, Fillmore, Hamilton, York, and Seward. 
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Figure 25 Distribution of long-term (2000-2012) average mean yields (BU/ ACRE) for Non- Irrigated soybean of 

Nebraska by County Level. 

 

The distribution of long-term average mean yields for soybean in the non-

irrigated areas of Nebraska is found most along the eastern border of the state, in the 

counties Wayne, Cuming, Burt, Dodge, Washington, Saunders, Douglas, and Sarpy as 

shown in the figure above. 
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Table 3 Statewide average crop yield (BU/ACRE) statistics from 2000-2012 in Nebraska (N = number of 

counties; SD = standard deviation). 

Crop type N Mean Max Min SD Median Skewness 

Irrigated maize 

(corn) 
71 12388.9 13997.8 10613.6 834.9 12475.9 -0.338 

Non-irrigated 

maize (corn) 
71 6437.9 9427.1 2823.6 2823.6 6808.0 -0.457 

Irrigated soybean 52 2792.5 3079.0 2494.1 2494.1 2766.0 -0.020 

Non-irrigated  

soybean 
52 1820.6 2442.0 1013.7 1013.7 1965.0 -0.460 

  

A negative skewness displayed in (Table 3) above regards the yield distribution 

where the number of counties with a below mean yield exceeds the number of counties 

with above mean yields. Even though Nebraska has some of the best soil for agriculture 

in the whole country, the productivity of the land lacks in the skewness distribution 

displayed due to only a few of the counties producing its highest yields. The greater 

amount of marginal land is displayed in the western part of the state.  

The reason for non-irrigated corn and soybean yields being lower in the western 

part of the state is due to the lack or irrigation methods and the low amount of 

precipitation as compared with the eastern and central portions. The soils in the western 

part of Nebraska are a combination of Tassel – Busher and rocky association which have 

weathered sandstone’s that have lower water-holding capacities and organic content as 

compared with soils in the west central, and eastern portions.    
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The Results of Precipitation vs. Observed Yield Using OLS Regression  

 

 The coefficient of determination (R
2
) between the observed yield and 

precipitation (using long‐term average mean annual, seasonal, and monthly total 

precipitation for each county) for irrigated and non-irrigated maize (corn) and soybean 

using the OLS model are presented in (Table 4) below. The performance of the observed 

yield vs. long‐term average mean annual total precipitation using OLS depicts a solid 

parallel for non-irrigated maize (corn) and soybean. For non-irrigated crops of maize 

(corn) and soybean, 84% for maize (corn) and 63% for soybean of the variability in mean 

yield is explained by the mean annual precipitation. About 38% and 30% of the 

variability in mean yield was explained by mean annual precipitation for irrigated maize 

(corn) and soybean, respectively. The R
2
 was much lower for irrigated crops. As found 

with the annual total precipitation and yield, the correlation between seasonal 

precipitation and yield for non-irrigated crops was stronger than for irrigated crops (Table 

4) between 2000 and 2012. When correlated to the yield, the annual precipitation may 

have an advantage in that it accounts for the seasonal precipitation that is also carried 

over and available to the crop as available soil moisture in the beginning of the growing 

season. In terms of individual‐month total precipitation, the R
2
 for non-irrigated maize 

(corn) ranged from 21% to 84%, and ranged from 13% to 62% for non-irrigated soybean. 

There was a strong correlation between seasonal precipitation and yield, but in the 

irrigated crops there was a weak and reverse correlation between precipitation and 

irrigated maize (corn) and irrigated soybean respectively, where the R
2
 of individual‐

month total precipitation for irrigated maize (corn) ranged from 19% to 40%, and for 
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irrigated soybean ranged from 37% to 24%. Level of significance is based upon the likely 

and most unlikely determined observations according to percentage values. The most 

likely observations are based on a 95% probability density whereupon very unlikely 

observations are based upon the 0.025 area curve. 

 

Table 4 Relationships between observed yield vs. long-term average mean annual, seasonal, and monthly 

precipitation by OLS (N = number of counties). 

Coefficient of Determination (R
2
) 

Crop N Annual Seasonal May June July August September 

Non-irrigated  maize 

(corn) 
71 0.84 0.82 0.77 0.78 0.21 0.84 0.77 

Non-irrigated  soybean 52 0.63 0.60 0.52 0.53 0.13 0.62 0.49 

Irrigated maize (corn) 71 0.38 0.38 0.32 0.28 0.39 0.40 0.19 

Irrigated soybean 52 0.30 0.30 0.14 0.10 0.24 0.35 0.37 

 

 

The Results of Long Term Average Annual Precipitation vs. Predated Yield Using 

GWR 

 

 The following two sections assess the connection between the long‐term mean 

annual, seasonal total (May-September), and monthly precipitation levels contrasted with 

predicted non-irrigated maize (corn) and soybean yields for each county using the GWR 

model. The relationship between predicted yield and long-term average mean annual total 

precipitation and the residuals of the regression between predicted and measured yield for 

irrigated and non-irrigated maize (corn) and soybean are shown in (Figures 26 a through 

26 d) below. The results of the GWR model showed good performance for non-irrigated 

maize (corn) and soybean. The statistics between measured and predicted yield are 

presented in (Table 5) below. For non-irrigated maize (corn) and soybean, about 96% and 
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67% of the variation in yield was explained by the mean annual precipitation alone. For 

irrigated maize (corn) and soybean crops, about 68% to 72% of the variation in yield was 

explained by the mean annual precipitation as shown in (Table 5). 

The results of the standard deviation (SD) of the GWR predictions and the 

residual maps indicated that the residuals (observed-predicted yield) were within 2.5 of 

the SD. For all crops, less than 2% of the counties fell outside the 1.5 SD range. GWR 

analysis with the observed and predicted yields using mean annual precipitation 

presented a positive relationship at 5% significance level (Table 5). The t‐test showed that 

the intercept and slope of the regression line were significantly different from unity (p < 

0.05). Further analyses of the regression model showed that for most of the counties of 

the northeastern part of the state (including Dixon, Dakota, Wayne, Cuming, Thurston, 

and Burt), yields for non-irrigated crops were under predicted (higher value of residual 

SD) (Figures. 26a and 26b) even though precipitation is in the adequate range for crop 

production in those counties (Figure. 21a). This is because precipitation is not the only 

limiting factor driving crop yield, and other factors such as evapotranspiration, air 

temperature, solar radiation, soil type and water-holding capacity, organic matter content, 

pH, irrigation management, crop characteristics, disease and pests pressure, soil 

management, technological improvements from hybrids, fertilizers, producer 

managements techniques, and other management practices impact the yield thereby 

influencing the relationship between precipitation and irrigated and non-irrigated yields. 

Similarly for the irrigated crops, yield was under predicted for the counties in the central 

part of the state. Since precipitation is less in these counties as compared with the 
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counties in the eastern part, irrigation has more influence on yield predictions. In general, 

the regression model over predicted the yield for high yielding conditions and under 

predicted for low yielding conditions. On a statewide average, the R
2
 values were greater 

for non-irrigated maize (corn) and soybean than for irrigated maize (corn) and soybean 

(i.e., R
2
 = 0.96, 0.67, 0.68, and 0.72 for non-irrigated maize (corn), non-irrigated 

soybean, irrigated maize (corn), and irrigated soybean, respectively; (Table 5) below. 

When compared to the OLS predictions, the GWR technique provided better predictions 

of yields for both irrigated and non-irrigated crops. When the R
2
 values in (Table 4 and 5) 

are considered, the R
2
 values for the GWR predictions were higher for irrigated maize 

(corn) and soybean than the R
2
 values for the OLS regression. 
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Figure 26 Predicted vs. (a) observed non-irrigated maize (corn), (b) non-irrigated soybean, (c) irrigated maize 

(corn), and (d) irrigated soybean yields across Nebraska using long-term average annual precipitation. Data 

points in each graph represent the yield of each county. Residual maps on the left side of each graph show 

counties where yield is under- or over predicted. 
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Table 5 Statistics for the state- average observed vs. predicted yields using GWR for the period of 2000-2012. 

Yield was predicted using mean annual precipitation (N = number of counties, SE = standard error, and DF = 

degrees of freedom). 

Crop N R
2 SE DF F‐Ratio p > F 

Non-irrigated  

maize (corn) 
71 0.96 341 15 180.80 <0.0001 

Non-irrigated  

soybean 
52 0.67 42 40 115.30 <0.0001 

Irrigated maize 

(corn) 
71 0.68 410 40 66.40 <0.0001 

Irrigated soybean 52 0.72 19 39 100.85 <0.0001 

 

 

The Results of Long Term Average Seasonal Precipitation vs. Predicted Yield Using 

GWR 

 

The measured and predicted maize (corn) and soybean yields for irrigated and 

non-irrigated conditions using seasonal total (May 1 to September 30) precipitation is 

presented in (Figures 27 a through 27 d). The statistical analyses are presented in (Table 

6) below. For non-irrigated crops, there was a strong correlation between seasonal 

precipitation and yield, with R
2
 of 0.94 and 0.74 for maize (corn) and soybean, 

respectively. The GWR SD residual maps indicate that the residuals were within the 2.5 

SD ranges, which was higher than the SD with the annual precipitation. For all four 

crops, less than 2% of the counties fell outside the 1.5 SD range. The standard error of 

estimation for non-irrigated maize (corn) was higher when using seasonal precipitation 

than when using annual precipitation. The slopes of the regression line between 

precipitation and yield were significantly different from unity (p < 0.05). Slope is defined 

as the rise over the run, right?  That is, the slope or steepness of a line (or hill) is equal to 

how fast it goes up with respect to how far it goes over. A line may have positive slope, 

negative slope, zero slopes, or undefined slope. Y is always equal to 1.  All of the points 
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on this line will have 1 as their y coordinate. The x-values can be any number, but y must 

always be 1. The null hypothesis represents the default, the status quo and relates to a 

statistical method of interpreting conclusions among a sample. 
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Figure 27 Predicted vs. (a) observed non-irrigated maize (corn), (b) non-irrigated soybean, (c) irrigated maize 

(corn), and (d) irrigated soybean yields across Nebraska using long-term average seasonal precipitation. Data 

points in each graph represent the yield of each county. Residual maps on the left side of each graph show 

counties where yield is under- or over predicted. 
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Table 6 Predicted yields for Nebraska counties for the observation period of 2000-2012 using mean seasonal 

 total precipitation (N = number of counties, SE = standard error, and DF = degrees of freedom). 

 

Crop N R
2
 SE DF F‐Ratio p > F 

Non-irrigated  maize 

(corn) 
71 0.94 364 55 246.6 <0.0001 

Non-irrigated  

soybean 
52 0.74 40 55 113 <0.0001 

Irrigated maize(corn) 71 0.67 195 15 37.7 <0.0001 

Irrigated soybean 52 0.62 20 17 140.7 <0.0001 

 

 

The Results of Long Term Average Monthly Precipitation vs. Predicted Yield Using 

GWR  
 

Correlations between long‐term average monthly total precipitation for May, 

June, July, August, and September vs. long‐term county average yield for non-irrigated 

maize (corn), non-irrigated soybean, irrigated maize (corn), and irrigated soybean are 

presented in (Figures 28 through 31). The R
2
 values between monthly precipitation and 

yields are summarized in (Figure 32) below. The residual maps for yield vs. precipitation 

for each month (May, June, July, August, and September) for each county for non-

irrigated maize (corn), non-irrigated soybean, irrigated maize (corn), and irrigated 

soybean are presented in (Figures 33, 34, 35, and 36), respectively. 

The R
2
 values ranged from 0.54 to 0.95 for non-irrigated crops and from 0.53 to 

0.80 for irrigated crops. Differences appear regarding the impact of individual monthly 

total precipitation on crop yields across the state (i.e., R
2
 between individual months’ 

precipitation vs. yield varied from the eastern part to the western part). This is due to 

varying precipitations from east to west, in the impact of precipitation on yield which is 

also due to differences in the planting date across the state. In the eastern part, maize 
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(corn) hybrids that have a longer maturity date (114 to 120 days) are planted. The 

maturity date of the maize (corn) hybrids in the central region is on average 112 days, and 

the maturity for those in the western portion of the state is on average 93 days. 

Depending on the location, seasonal date, climate conditions, and hybrid, the potential 

kernel development for maize (corn) normally begins in June, and tasseling in mid-July, 

with silking/pollination occurring in late July and grain fill occurring during early to mid- 

August throughout the study region. 

The most important growth stage for maize (corn) occurs between tasseling and 

silking. During this stage, plant water stress can delay silking relative to pollen shedding 

and can reduce seed set. Usually, the water stress during the vegetative growth period is 

not as critical as the tasseling‐silking stage, and the stress during the grain fill can be 

intermediate in terms of its impact on yield (Musick and Dusek, 1980). Maintaining 

healthy plants in all growth stages is important for achieving high yields. 

What also causes spatial non-stationarity of the relationship between the yield and 

precipitation is the significant variable variations in tillage managements practiced by 

maize (corn) and soybean farmers in Nebraska. Based on the survey conducted by the 

USDA Natural Resources Conservation Service (USDA‐NRCS, 2009), the tillage 

practices not only change with locations but also show great variability for the same 

location and same crop between farmers. For example, based on the assessment by the 

USDA‐NRCS, a larger percentage of maize (corn) was planted on no‐till in the eastern 

part of Nebraska than in the central and western parts. Madison, Douglas, Johnson, Sarpy, 

Gage, and Jefferson County in the eastern part of Nebraska had >77% of the planted 
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maize (corn) as no‐till. Banner was the only county, located in western Nebraska, that had 

more than 70% of the maize (corn) land area planted as no‐till. For soybean, eastern 

Nebraska had a higher percentage of land planted on no‐till than the central part. Soybean 

is not grown extensively in western and north-central Nebraska (USDA‐NRCS, 2009).  

There is a gradual decrease in maize (corn) and soybean no‐till planting land area 

across the state of Nebraska, from east to west. For maize (corn), the percentage of no- 

till maize (corn) planting followed an opposite trend with precipitation. Disk-till is 

another tillage practice commonly used in central and west-central Nebraska. These 

practices impact the spatial non-stationarity relationships between precipitation and yield, 

as tillage practice influence the available soil water and precipitation relationship; 

depending on several factors, disk till fields, in general, may have greater soil evaporation 

than no‐till fields. 

July precipitation was the most critical for the high crop yield for both crops 

under-irrigated and non-irrigated conditions. This is due to the sensitivity of maize (corn) 

to water stress during critical growth stages (tasseling and silking), which usually occurs 

in July, depending on the location in the state. July precipitation had more impact on 

maize (corn) yield than on soybean under non-irrigated conditions. In all months and in 

both irrigated and non-irrigated treatments, yield was proportional to precipitation. For 

irrigated yields, July precipitation had more impact on soybean yield than on maize 

(corn). 
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Figure 28 Predicted vs. observed non-irrigated maize (corn) yields across Nebraska using geographically 

weighted regression from mean monthly precipitation for (a) May, (b) June, (c) July, (d) August, and (e) 

September 
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Figure 29 Predicted vs. observed non-irrigated soybean yields across Nebraska using geographically weighted 

regression from mean monthly precipitation for (a) May, (b) June, (c) July, (d) August, and (e) September 
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Figure 30 Predicted vs. observed irrigated maize (corn) yields across Nebraska using geographically weighted 

regression from mean monthly precipitation for (a) May, (b) June, (c) July, (d) August, and (e) September 
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Figure 31 Predicted vs. observed irrigated soybean yields across Nebraska using geographically weighted 

regression from mean monthly precipitation for (a) May, (b) June, (c) July, (d) August, and (e) September 
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Figure 32 Coefficient of Determination (R2) between observed and predicted irrigated and non-irrigated maize 

(corn) and soybean yields using GWR from mean monthly precipitation (May‐September) 

 

 

The R
2
 values with standard error values are presented in (Table 7) below. For 

non-irrigated maize (corn), the initial precipitation in May is of importance for setting 

potential with regard to the number and size of kernels. On the other hand, precipitation 

in July is most important for yield potential. Counties with more July precipitation 

usually had higher yields, and findings are in agreement with those of other researchers 

who also reported that less precipitation during the months of July, August, and 

September in the Great Plains region may reduce yield (Robin and Domingo, 1953; 

Denmead and Shaw, 1960; Musick and Dusek, 1980; Schlenker and Roberts, 2006). 

A field study of maize (corn) conducted in west-central Nebraska; Payero et al. 

(2009) resulted in data showing irrigations applied in July had the highest positive 

correlation with yield. This high correlation decreased considerably for irrigations applied 

in August, and became negative for irrigations in September. The best positive correlation 
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between the soil water deficit factor and yield happened during weeks 12 through 14 of 

the “milk” and “dough” growth stages. Yield was poorly correlated to stress during weeks 

15 and 16, and the correlation became negative after week 17. Reports showed that if 

water is limiting, then applying a larger proportion of the allocation in July is a good 

strategy, which supports the findings that, for both irrigated and non-irrigated maize 

(corn) and soybean, July precipitation had the strongest correlation with yield (Table 7) 

below, (Figure. 32) above. 

 

Table 7 Predicted vs. observed yields for Nebraska counties for the period of 2000-2012 using mean monthly 

precipitation (May 1 to September 30). The intercept and slope were obtained from regression: Y = a + bx,  

where Y = predicted yield and x = precipitation. 

Crop N 
  Coefficient of Determination (R

2
)   Standard Error  

 
May June July August September 

 

May June July August September 

Non-irrigated  

maize (corn) 
71 

 
0.85 0.87 0.89 0.97 0.93 

 
10.54 14.70 14.44 10.62 13.89 

Non-irrigated  

soybean 
52 

 
0.60 0.54 0.70 0.90 0.70 

 
3.07 3.68 3.82 2.09 2.95 

Irrigated 

maize (corn) 
71 

 
0.57 0.64 0.68 0.68 0.66 

 
5.14 6.95 6.54 6.92 8.89 

Irrigated 

soybean 
52   0.53 0.80 0.82 0.81 0.78   3.09 2.28 2.75 2.82 2.37 

 

GWR standard deviation residual maps show that residuals were usually within 

the 1.5 SD ranges (Figures. 33 through 36). GWR analysis showed a significant 

relationship between observed and predicted yield in (Table 7) above. The t‐test showed 

that the predicted values for intercept and slope of the regression line were significantly 

different from unity (p < 0.05). Similarly, for non-irrigated soybean, May precipitation is 

important for the initial potential pod development, and July precipitation is most 

important for maximum yield. 
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The R
2
 values were lower for irrigated maize (corn) and soybean than for non-

irrigated maize (corn) and soybean conditions for July. Counties with higher July 

precipitation had higher yields. The GWR SD residual maps indicate that the residuals for 

irrigated crops were usually within the 2.5 SD ranges (Figures.33 through 36). When all 

the months are considered, none of the counties fell outside the 2.5 SD range for July. 

Between observed and predicted yields, the relationship was significant (p < 0.05) (Table 

8 below).  

In many cases, the GWR model performed well in predicting county‐average 

yields of precipitation across Nebraska, except for under-predicting the northeast part of 

the state. In general, the model over-predicted yields for high‐yielding conditions and 

under predicted for low‐yielding conditions. 
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Figure 33  Residual maps for (a) May, (b) June, (c) July, (d) August, and (e) September for non-irrigated  maize 

(corn) showing counties where yield is under- or over predicted based on the data presented in figure 28. 

 

 

 

 
Figure 34 Residual maps for (a) May, (b) June, (c) July, (d) August, and (e) September for non-irrigated  

soybean showing counties where yield is under- or over predicted based on the data presented in figure 29. 
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Figure 35 Residual maps for (a) May, (b) June, (c) July, (d) August, and (e) September for irrigated maize(corn) 

showing counties where yield is under-or over predicted based on the data presented in figure 30. 

 

 

 
Figure 36 Residual maps for (a) May, (b) June, (c) July, (d) August, and (e) September for irrigated soybean 

showing counties where yield is under or over predicted based on the data presented in figure 31. 
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Table 8 F- ratio statistics of mean yields for observation period of 2000-2012 using mean monthly  

Precipitation (May 1 to September 30). 

Crop N DF 
F-Ratio  

p > F 
May June July August September 

Non-irrigated 

maize (corn) 
71 69 5.77 6.30 6.30 15.87 13.82 <0.0001 

Non-irrigated 

soybean 
52 50 4.58 3.63 10.86 9.68 8.79 <0.0001 

Irrigated maize 

(corn) 
71 69 5.77 6.30 9.39 10.99 13.82 <0.0001 

Irrigated soybean 52 50 4.58 3.63 10.86 9.68 8.79 <0.0001 

 

 

Evaluated analysis was completed for the irrigated and non-irrigated maize (corn) 

and soybean yield variations for Nebraska at the county level between 2000 and 2012. 

Geographically weighted regression (GWR) and ordinary least square (OLS) models 

correlated relationships between yield and precipitation levels. Yields for the county level 

and statewide average basis were conducted for point measurements and spatially 

interpolated stationary annual (January to December), seasonal (May to September) and 

monthly (May, June, July, August, September) precipitation levels for all of the counties. 

Precipitation regression with irrigated and non-irrigated maize (corn) and soybean 

levels show yields as a function of precipitation. The GWR model's predicted yields were 

significantly better than OLS performances for maize (corn) and soybean. The OLS 

regression model when used showed a general trend of correlation between observed 

yields and long-term mean precipitation totals. 84% and 63% of the variability in mean 

yield was explained by the mean annual precipitation for the non-irrigated crops. 

Irrigated maize (corn) and soybean had 38% and 30% variability in mean yields with 

mean annual precipitation. 
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The GWR technique performance in predicting yields was significantly better 

than OLS performances and when the GWR technique was utilized, non-irrigated maize 

and soybean variation yields showed 68% and 72% variation levels with R
2
 of 0.94 and 

0.74 for maize (corn) and soybean. The annual mean total precipitation levels accurately 

predicted non-irrigated maize (corn) more so than non-irrigated soybean yields. The 

correlation between precipitation and yields were lower for irrigated maize (corn) and 

soybean, and irrigated yields had lower standard error of prediction than non-irrigated 

yields. On a statewide average, July precipitation had the highest correlation with yield 

for both maize (corn) and soybean. June, July, and August precipitations had greater 

impacts on maize (corn) yields than soybeans under non-irrigated conditions as a result of 

the greater sensitivity maize (corn) had to water stress than soybean. July precipitation 

levels had a greater impact on soybean yield than on maize (corn) for irrigated yields. 

The superiority of the GWR technique over conventional OLS regression 

approach in analyzing the relation between yield and precipitation and predicting yields 

for irrigated and non-irrigated maize (corn) and soybean was depicted in the study. As a 

result, analysis can be used to show maize (corn) and soybean yields as a function of 

spatially interpolated monthly precipitation levels ahead of the harvest season. GWR’s 

technique superiority is due to the accounting impact of the spatial non-stationarity of the 

precipitation versus yield relationships. Such attributes of the OLS model present a 

challenge in predicting yields on large scales. In addition to the precipitation, further 

application and evaluations of the relatively new GWR technique in similar agricultural 

research topics can improve the yield predictions by accounting for spatial non-
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stationarity of other climatic variables (i.e., radiation levels, air temperature, etc.), and 

management practices.  

4.3 Chapter Summary 
 

 The use of GWR proves useful in evaluating spatial heterogeneity across various 

study areas between precipitation vs. irrigated and non-irrigated corn and soybean yield. 

The superiority of the GWR technique over conventional OLS regression approach in 

analyzing the relation between yield and precipitation and predicting yields for irrigated 

and non-irrigated maize (corn) and soybean was depicted in the study. 

Long-term monthly (May, June, July, August, and September) average 

precipitation for all counties is presented among each of the Nebraskan counties. During 

the seasonal growth months of the year (May, June, July, August, and September) there is 

a limiting factor of difference between the central counties of the states and the eastern 

borders. Soil types and the water-holding capacities vary significantly across the counties 

of the state. The strongest irrigation results for corn were shown in the southern parts of 

Nebraska as well as with counties in the east. Non-irrigation results for corn were most 

relevant on the eastern side of Nebraska with mean yields reaching as high up as 110 

BU/Acre and more. The greatest yields for irrigated soybean yields in Nebraska were 

found most in the south-central counties with mean soybean yields reaching as much as 

62 BU/Acre. Non-irrigated soybean mean yields delivered the most in results at the 

eastern border of the state of Nebraska between the years 2000 to 2012. 

The coefficient of determination (R
2
) between the observed yield and 

precipitation (using long‐term average mean annual, seasonal, and monthly total 
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precipitation for each county) for irrigated and non-irrigated maize (corn) and soybean 

using the OLS model for the observed yield vs. long-term average mean annual, seasonal, 

and monthly precipitation statistics reached as much as 0.84 for non-irrigated maize 

(corn) and as low as 0.30 for irrigated soybean. The annual coefficient of determinants 

(R
2
) coincided with the seasonal results for the respective months (May, June, July, 

August, September), with July having the lowest R
2
 numbers and August the highest 

consistently.  

The results of the GWR model showed very good performance for non-irrigated 

maize (corn) and soybean. GWR’s technique superiority is due to the accounting impact 

of the spatial non-stationarity of the precipitation versus yield relationships. On a 

statewide average, the R
2
 values were greater for non-irrigated maize (corn) and soybean 

than for irrigated maize (corn) and soybean. For non-irrigated maize (corn) and soybean, 

about 96% and 67% of the variation in yield was explained by the mean annual 

precipitation alone. For irrigated maize (corn) and soybean crops, about 68% to 72% of 

the variation in yield was explained by the mean annual precipitation. Precipitation is not 

the only limiting factor driving crop yield, as other factors contribute such as 

evapotranspiration, air temperature, solar radiation, soil type and water-holding capacity 

impact the yield thereby influencing the relationship between precipitation and irrigated 

and non-irrigated yields. For non-irrigated crops, there was a strong correlation between 

seasonal precipitation and yield, with R
2
 of 0.94 and 0.74 for maize (corn) and soybean. 

The R
2
 values between monthly precipitation and yields show that the R

2 
values 

ranged from 0.54 to 0.95 for non-irrigated crops and from 0.53 to 0.80 for irrigated crops. 
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Differences appear regarding the impact of individual monthly total precipitation on crop 

yields across the state (i.e., R
2
 between individual months’ precipitation vs. yield varied 

from the eastern part to the western part). This is due to varying precipitations from east 

to west, in the impact of precipitation on yield which is also due to differences in the 

planting date across the state. Depending on the location, seasonal date, climate 

conditions, and hybrid, the potential kernel development for maize (corn) normally 

begins in June, and tasseling in mid-July, with silking/pollination occurring in late July 

and grain fill occurring during early to mid- August throughout the study region. Western 

Nebraska had more than 70% of the maize (corn) land area planted as no‐till. For 

soybean, eastern Nebraska had a higher percentage of land planted on no‐till than the 

central part. There is a gradual decrease in maize (corn) and soybean no‐till planting 

land area across the state of Nebraska. Disk-till is commonly used in central and west-

central Nebraska, and impacts the spatial non-stationarity relationships between 

precipitation and yield, as it influences the available soil water and precipitation 

relationship depending on several factors. In general, disk-till fields has greater soil 

evaporation than no‐till fields. 

July precipitation was the most critical for the high crop yield due to the 

sensitivity of maize (corn) to water stress during critical growth stages (tasseling and 

silking). In all months and in both irrigated and non-irrigated treatments, yield was 

proportional to precipitation. For irrigated yields, July precipitation had more impact on 

soybean yield than on maize (corn). 
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CHAPTER FIVE: ASSESSMENT OF MODIS INDICES FOR AGRICULTURAL 

DROUGHT MONITORING 

Among the various remote sensing drought indices, each use different bands, and 

most have been applied in prior drought studies (Caccamo et al., 2011; Gu et al., 2008; Ji 

and Peters, 2003; Kogan 1995; Tucker 1987; Wan et al., 2004). The happening of severe 

drought events increases the need for evaluating different remote sensing drought indices. 

Other than the AVHRR sensor, the Moderate Resolution Imaging Spectro-radiometer 

(MODIS) sensor is able to facilitate remote sensing applications with finer resolutions, 

particularly in the water sensitive spectrum bands; 1200nm, 1450nm, 1950nm). Many 

MODIS-based spectral indices have been used in past years for agricultural drought 

studies (Wang et al., 2007; Gu 2007; qin et al., 2008).  In this study, popular MODIS 

drought indices are used to examine drought: NDVI, NDWI, NDII6, NDII7, and NMDI. 

5.1  Use of Standard Precipitation Index (SPI) to Assess MODIS Drought 
Indices 

 

The first method used is the traditional drought indicator SPI to assess MODIS 

indices. This is done by utilizing data from the USA drought monitor website to obtain 

GIS data in the archive to utilize the county level statistics for 2012. Dividing the data 

into five categories and creating a map in ArcGIS using abnormally dry, moderate 

drought, severe drought, extreme drought, exceptional drought categories.  
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The goal is to evaluate between remote sensing drought indices and the metrological-

based SPI index. All remote sensing indices were related to SPI at various degrees. 

Choosing SPI over other drought indices is due to flexibility and the fact that it relies on 

precipitation information (Caccamo et al., 2011; Guttman, 1999). SPI can be computed 

for different time scales, and can provide early warnings of drought and can help assess 

drought severity. It is less complex than the Palmer Drought Index and many other 

indices. The SPI is designed to quantify the precipitation deficit for multiple timescales. 

These timescales reflect the impact of drought on the availability of the different water 

resources. Soil moisture conditions respond to precipitation anomalies on a relatively 

short scale. Groundwater, stream flow and reservoir storage reflect the long term 

precipitation anomalies. For these reasons, Mckee and others (1993) originally calculated 

the SPI for 1, 2, 3, 6, 9, 12, 24 and 48 moth timescales.  

Finding the SPI calculation for a specific location is determined by the long-term 

precipitation records for a desired time-period. The long-term records are fitted to 

probability distribution so that the mean SPI for the location desired is zero by means of 

normal distribution (Edwards and Mckee, 1997). Positive SPI values show greater-than 

median precipitation and negative values specify less-than median precipitation. Because 

the SPI is normalized and wetter and drier climates can be represented in the same way, 

wet periods can also be monitored using SPI. 

McKee and others (1993) in the SPI value in (Table 9) below, shows the SPI results 

for drought intensities. A criterion is also utilized to define a timescale for the drought 

event. This shows that a drought event takes place whenever the SPI reaches an intensity 
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of -1.0 or less. The event ends when the SPI becomes positive. Each drought event is 

defined by a beginning and end and shows the intensity for each month that the event 

continues. The drought’s “magnitude” is the positive sum of the SPI for all the months 

that a drought event happens. 

 

Table 9 SPI values 

2.0+ extremely wet 

1.5 to 1.99 very wet 

1.0 to 1.49 moderately wet 

-.99 to .99 near normal 

-1.0 to -1.49 moderately dry 

-1.5 to -1.99 severely dry 

-2 and less extremely dry 
Data Source: http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf  

 

 

Monthly precipitation uses weather station of Midwestern USA. The SPI is computed 

by NCEI for several time scales, ranging from one month to 24 months, to capture the 

various scales of both short-term and long-term drought. Here, the analysis includes 4 

time intervals or time scales of 1-month or 2- month, 3 month, 6-month, and 9- month 

SPI for each weather station and each month in the corn and soybean - growing season 

from 2000 to 2012.  

 Longer timescales (e.g., SPI -12) was not incorporated in the analysis because 

precipitation integrated over such long timescales becomes less coupled with the current 

state of vegetation (Rossi and Niemeyer, 2012).  

 

http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf
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 The Standardized Precipitation Index (SPI) is a probability index which calculates 

precipitation. The given amount of precipitation recorded is standardized so as to show 

average precipitation amounts. Negative represents a drought and positive represents wet 

conditions, based upon severity. SPI is computed for a range of time, typically spanning 

between one month and up to 24 months.  

The figures below show the time series of 1-month, 2- month, 3-month, 6-month, and 

9-month for several time scales of SPI based on spatially averaged data over the primary 

Corn and Soybean Belt. 

 

 
Figure 37 1 month average SPI Values at all stations from 2000-2012 for 12 states of the Midwestern US study 

area. 

 

The 1-month SPI map is beneficial in summarizing the action of droughts, or lack 

thereof, on a 4-week average basis. The (Figure 37) above displays the 1-month average 

of SPI values at all stations between the years of 2000 and 2012 for 12 states of the 
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Midwestern US. Through the whole decade, there is a consistent ebbing and spiking of 

the graph characterizing consistent rains and consistent dry periods. 

 

 
Figure 38 2 month average SPI Values at all stations from 2000-2012 for 12 states of the Midwestern US study 

area.  

 

The 2-month average shows drought in much of the beginning of the decade, 

followed by steady precipitation periods throughout the end of the decade starting mid-

way through. Then very heavy drought strikes again between the mid and end of the year 

2012 as shown in the (Figure 38) above.  
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Figure 39 3 month average SPI Values at all stations from 2000-2012 for 12 states of the Midwestern US study 

area. 

 

 The 3-month average for SPI values at all stations from 2000-2012 displays much 

drought in the beginning of the decade followed by averaging precipitation in the middle 

of the decade leading into heavy precipitation between 2007 and 2011, by which time 

drought comes back  effect during the 2012 year as shown in the (Figure 39) above.  

 

 
Figure 40 6 month average SPI Values at all stations from 2000-2012 for 12 states of the Midwestern US study 

area.  
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3-month average SPI values at all stations from 2000-2012 for 12 states of the Midwestern US   
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6-month average SPI values at all stations from 2000-2012 for 12 states of the Midwestern US   
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 The 6-month average SPI values in (Figure 40) above show heavy sways through 

this historical period. Seasonal to medium-term trends in precipitation is indicated. Heavy 

drought extends from the beginning of the decade and at the end of the decade with the 

average SPI showing much precipitation throughout the middle years of this timespan. 

 

 
Figure 41 9 month average SPI Values at all stations from 2000-2012 for 12 states of the Midwestern US study 

area. 

 

The 9-month SPI provides an indication of inter-seasonal precipitation patterns over 

medium timescale duration. Droughts usually take a season or more to develop, and the 

9-month interval shows a consistency in precipitation throughout the decade with much 

of the positive SPI values being found toward the mid-end rear of the (Figure 41) above. 

The research in the corn and soybean agricultural areas display remotely sensed data 

for short-term water deficiencies of 1-month SPI, 2-month SPI, and 3-month SPI, and 

longer-periods of water deficiencies for approximately 6-month SPI, and 9-month SPI. 
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The figures below present scatter plots of MODIS spectral index anomalies (NDVI, 

NDWI , NDII6 ,NDII7, and NMDI) on 3, 6, and 9 month SPI values for corn and 

soybean growing season ( May – Sep) from 2000 to 2012.  

(Figure 42 and 43 and 44) below represent the scatter plots of the MODIS spectral 

index anomalies on a 3-month, and 6-month, and 9-month SPI scale respectively. In 

Figures below, the best indicator used to show these drought conditions was the NDII6, 

which outperformed all of the MODIS indices for vegetation moisture monitoring and for 

detecting drought, over the pro-longed periods of 3, 6, and 9-months, out-performing all 

of the other MODIS indices, portraying drought conditions as most affected for the years 

of 2005 and 2006 and extreme drought in 2012. Among the various MODIS spectral 

indices used, analysis showed important differences in their relationships with SPI. The 

spectral indices that correlated best with SPI were in the SWIR water absorption region 

which showed that changes in vegetation water content were more pronounced than the 

changes found in the greenness properties of high biomass ecosystems. 
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Figure 42 Scatter plots of MODIS spectral index anomalies and 3- month SPI for corn and soybean- growing 

season from 2000 to 2012.
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Figure 43 Scatter plots of MODIS spectral index anomalies and 6- month SPI for corn and Soybean- growing 

season from 2000 to 2012. 
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Figure 44 Scatter plots of MODIS spectral index anomalies and 9- month SPI for corn and soybean- growing 

season from 2000 to 2012. 
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5.2 Assessing MODIS Drought Indices Using a Percentage Histogram 
 

 

Histograms of a drought index are a graphical representation showing visual 

impressions of the distribution of index values from which performance is evaluated. For 

the preliminary tests, 4 MODIS drought indices will be assessed as shown in the (Table 

10) below.  

Four indices are used because they are sensitive to capturing features of agricultural 

drought as shown in the (Table 10) below. Similar information can be gathered using 

MODIS by means of investigating agricultural drought using MODIS-based drought 

indices such as NDVI and LST (land surface temperature) data. 

 

 

Table 10 MODIS spectral indices evaluated in this study. 

NDVI 
𝐁𝐚𝐧𝐝 𝟐 − 𝐁𝐚𝐧𝐝 𝟏

𝐁𝐚𝐧𝐝 𝟐 + 𝐁𝐚𝐧𝐝 𝟏
 

Tucker (1979) 

NDWI 
𝐁𝐚𝐧𝐝 𝟐 − 𝐁𝐚𝐧𝐝 𝟓

𝐁𝐚𝐧𝐝 𝟐 + 𝐁𝐚𝐧𝐝 𝟓
 

Gao (1996) 

NMDI 
𝐁𝐚𝐧𝐝 𝟐 − (𝐁𝐚𝐧𝐝 𝟔 − 𝐁𝐚𝐧𝐝𝟕)

𝐁𝐚𝐧𝐝 𝟐 + (𝐁𝐚𝐧𝐝 𝟔 − 𝐁𝐚𝐧𝐝𝟕)
 

Wang and Qu (2007) 

NDII6 
𝐁𝐚𝐧𝐝 𝟐 − 𝐁𝐚𝐧𝐝 𝟔

𝐁𝐚𝐧𝐝 𝟐 + 𝐁𝐚𝐧𝐝 𝟔
 

 

Hunt and Rock 

(1989) 

Data Source: Di, Wu (2014), An Investigation of Agriculture Drought on the United States Corn Belt Using 

Satellite Remote Sensing and GIS Technology 

 

The identification of drought events and selections of drought and normal years 

are based on weekly USDM statistics, which present percentages of total areas within 

each state at specific drought severity levels. The USDM statistics indicate a clear 
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separation between drought and non-drought affected years. The primary Corn and 

Soybean Belt states which serve as the study area, from 2000 to 2012, showed in 2012 

major dry months during the growing season.  

Local agricultural systems suffered from water-deficiency which adversely 

impacted the drought. Corn and soybean suffered big losses as a result of the drought. 

Toward the end of August 2012, the main drought areas in the US included moderate to 

exceptional drought stretching from the central Rockies into Mississippi and the Ohio 

valleys and southern great lakes. A contracting area of moderate to exceptional drought in 

the southeast and areas of moderate to severe droughts in the mid-Atlantic existed. 

 

 
Figure 45 USDM drought maps for July 10, 2012 on the left side and August 14, 2012 on the right side.   

 

The Maps in (Figure 45) depict results between July 2012 - Aug of 2012 for the 

entire US and with Midwestern study-area states being the most stressed. The 2012 

drought tells of the necessity to fully assess remote sensing drought indicators when 
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considering extreme droughts. Despite previous studies comparing the performances of 

remote sensing indices for drought monitoring, the study focuses on the comparison 

between in-depth time series analysis to assess the performance of remote sensing indices 

in agricultural drought monitoring across the primary Corn and Soybean Belt.  

MODIS surface reflectance products were extracted for the 12 states making up 

the primary Corn and Soybean Belt study area. The analysis focuses on the corn and 

soybean growing season from June to September, and the 4 MODIS spectral indices that 

were used: NDVI, NDWI, NDII6, and NMDI. 

 

Comparisons of MODIS Indices between 2012 and Non-Drought Years (2000-2011)  
 

 The 8-day, 500-m MODIS surface reflectance products (MOD09A1) from 2000-

20012 are the primary satellite data in this study. The Midwestern US can be almost fully 

covered by four MODIS tiles. For each MODIS tile, all MOD09A1 scenes from 2000 to 

2012 for the growing season were downloaded from the Land Processes Distributed 

Active Archive Center for four tiles (h10v04, h10v05, h11v04, and h11v05) covering the 

study area. 

By averaging the eight day MODIS indices over normal years for crop pixels in 

the primary Corn and Soybean Belt, the normal growing condition for corn and soybean 

during their respective growing seasons is established. Mosaic and re-projection (the 

North America Datum 1983) are used for resampling, for each of the 8-day periods to get 

data for the study area. The MODIS Tool was used to import four files constituting the 

research study area. Using Mosaic reduces the study area scope making it much easier to 

view, analyze, and evaluate, to then configure the coordinates using latitude and 
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longitude points. 

Using normal vegetative conditions from historical indices, MODIS indices with 

normal conditions are able to assess current crop conditions. As seen in (Figure 46) below 

in the histograms showing the MODIS indices, these show data for the normal-year 

average (2000-2011) of the corn and soybean growing seasons, from June to September. 

The normal-year average is shown as a blue line, and the 2012 data is shown as a red line. 

The red signifies the drought, and the blue signifies the normal years. The histograms use 

lines instead of conventional bar charts to facilitate the analysis. 

The histogram created is based upon crop pixels in the primary Corn and Soybean 

Belt within the NDVI range from [0 to 1] of each month. The remote sensing data 

reflectance is from the first week and last week of each month during the growing season. 
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Figure 46  Histograms of four MODIS drought indices were compared between 2012 data and normal-year 

average for corn and soybean-growing season. 
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(Figure 46) shows graphs articulating details about the indices used in the 

research. The significance of these graphs in is showing the impact each index has in 

displaying the data acquired using them, showing positive and negative trends for each 

one. The histograms also show the impact of drought on distributions of MODIS indices. 

In 2012, warm temperatures during the months of April and May allowed corn and 

soybean growers to begin their planting season early. In the 2012 growing season, the 

histograms of such tested indices showed similarities between 2012 and normal years. 

Generally speaking, the normal year (2000-2011) average gives a standard 

reference of crop conditions at specific growing stages. In the earlier corn and soybean -

growing seasons, indices reported larger values indicating greater conditions for corn and 

soybean production. However, the 2012 drought season increased in severity starting in 

July, and persisted into August as shown by the data skewing to the left toward a negative 

direction and lowering in peak. Index values showed decreases for the rest of the growing 

season, including in crop biomass, water content, and leaf areas, all after-effects of the 

drought.  

 The increase in value among the x-axis shows that healthy vegetation exists in the 

reflectance spectrum. If the value on the x-axis is toward the lower end of the value 

system, then there is stressed vegetation reflectance. 

The X-axis represents the bin size which represents which cells are created to 

specifically identify the area of the range; the range represents the study area. For 

example, the number of zeros divided by the total of square cells multiplied by 100 = the 

percentage. Finding the number of zeros divided by the total, and multiplied by 100 gives 
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a percentage reflectance of the NDVI and the same thing as the rest of indices. The y axis 

represents the reflectance. 

The range minimum is 0 (-1) and the maximum is 1 for NDVI. NDVI stands for 

Normalized Difference Vegetation Index. This is a commonly used remote sensing 

technique to help identify vegetation and to provide a measure of its health and vitality. 

The NDVI is based upon a spectral signature of vegetation, using an x-axis and y-axis 

used for portraying reflectance of vegetation. High NIR reflectance and Low Red 

reflectance portrays healthy vegetation. Less NIR reflectance and more or high (red 

visible) reflectance signifies unhealthy and sparse vegetation levels. NDVI combines NIR 

and red bands into a single value by subtracting the reflecting in the red spectral band 

from that in the near infrared band. NDVI has been used for agricultural mapping and 

monitoring (Maselli et al., 1992). 

NDVI is a simple two band mathematical transformation that capitalizes on the 

differential response of chlorophyII absorption and internal spongy mesophyll layer 

reflectance from pant levers in the visible red and near infrared (NIR) spectral regions, 

respectively.  

The launch of MODIS, with an increased number of land related spectral bands 

and expanded spectral coverage into the shortwave –infrared region (SWIR) led to the 

development of several new VIS incorporating SWIR observations. MODIS has two 

SWIR bands that are sensitive to changes in plant (Band 6: 1628-1652nm) and soil (Band 

7: 2105-2155nm) water content. 
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NDWI stands for Normalized Difference Water Index and portrays surface water 

bodies and the differential response of the NIR (i.e., high reflectance by intercellular 

spaces) and SWIR reflectance (i.e., high absorption by plant water content) in healthy 

vegetation. NDWI produces an image where positive values are characterized as open-

water areas, and negative values are portrayed as non-water features, such as terrestrial 

vegetation and bare soil cover areas. Like NDVI, NDWI has a native scaling of -1 to +1. 

(NDVI= 0 to 1) and (NDWI=-0.4 to 0.2). 

With regard to spectral indices testing, NMDI shows peak average at .5 for both 

normal year and 2012 data during the first and last months of June, July, and August. 

NMDI presents a smaller variation during drought when compared to NDVI, NDWI, and 

NDII6, portraying NMDI insensitivity to agricultural drought. The NMDI shows a right-

skewed shift at the end of the 2012 growing season, unlike the histograms of other 

indices above. The NMDI range goes from 0 to 0.8 NMDI and is used to detect and 

monitor the moisture of vegetation and soil over large areas (Lingli Wang and John J Qu, 

2007). The NMDI band stands for Normalized Multi-band Drought Index, which 

incorporates data from MODIS “SWIR bands, as well as the NIR band. NMDI utilizes 

the differences between the two SWRI bands, which are sensitive to soil and plant water 

content. The relative difference between these two SWIR bands changes according to 

fluctuation in both soil and plant water content.  

NDII6 is able to capture variations of normal year averages and 2012 data values. 

The skew extends towards the right, indicating a positive trending. The NDII6 band 

ranges from -0.4 – 0.6. The greater the value among the x-axis, the healthier vegetation 
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reflectance there is. If the value on the x-axis is negative, then there is stressed vegetation 

reflectance. The NDII6 index is a normalized difference infrared index that integrates 

both the NDVI and NDWI indices and is able to be derived to monitor vegetation 

moisture content. Strong absorbance by water makes this band suitable for estimating the 

water content found in plants. NDII6 is able to capture variations of normal year averages 

and 2012 data values. The skew extends towards the right, indicating a positive trend. 

Lastly, Normalized Difference Infrared Index (NDII) is a widely-used index to remotely 

sense Equivalent Water Thickness (EWT) of leaves and canopies. Considering that 

MODIS has three SWIR bands at 500 m resolution, two of which have been used in 

NDWI and NDII respectively, we apply the last SWIR band 7 to generate the similar 

calculation: R860 nm-R2130 nm / R860 nm + R2130 nm. NDII7 is used in this study. 

5.3 Chapter Summary 
 

This study has evaluated the capability of MODIS measurements in agricultural 

drought monitoring through analysis of time series of 13-year NDVI, NDWI, NDII6 and 

NDII7, NMDI products. The correlation between anomalies in MODIS indices and 

precipitation-based SPI data was examined across the primary Corn and Soybean Belt to 

evaluate MODIS index to detect agricultural drought caused by precipitation deficits. The 

SPI values calculated at different timescale were also examined to evaluate vegetation 

response to precipitation anomalies at different time steps. The results showed that the 

index anomalies were better correlated with the 6-month SPI than 3-month SPI and 9-

month SPI suggesting these anomalies are reflective of agricultural drought conditions 

caused by median-scale rainfall deficiency. Among the tested indices, NDII6 showed the 
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highest overall correlation with all SPI over 3, 6, and 9-months, demonstrating good 

sensitivity of NDII6 to water stress over large agricultural areas and therefore has 

potential for application as a suitable index to monitor agricultural drought conditions.  
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CHAPTER SIX: A NEW APPROACH FOR AGRICULTURAL DROUGHT 

DETECTION USING REMOTE SENSING MEASUREMENTS  

6.1 Crop Yield Statistics  
 

The basis of this objective is to analyze and evaluate the relationship between US 

county-level averages of corn and soybean yields versus common variables collected 

through the entire crop growing season by remote sensing measurements. Crop yield 

statistics is to highlight natural events such as weather and climatic condition. 

Additionally, the statistics show strategies playing out and identify regions that are 

chronically underperforming. These strategies include planting irrigation, fertilizer and 

pesticide uses. 

 The statistics are gathered from the National Agricultural Statistics Service 

(NSAA) and from the United States Department of Agriculture (USDA) to establish state 

and national level yield estimates. Corn and soybean are the two largest commodities 

grown by land area and the planted acreage has steadily expanded in reach by about 25% 

over the last couple of decades (USDA/NASS Quick Stats) and yield trends for these two 

crops have been increasing. They are both high value commodities for the global export 

market of the United States. 
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6.2 Remote Sensing of Crop Yield 
 

Specific crop focuses have been emphasized on corn and soybeans. These two 

crops have been studied often partly due to the widespread quintiles of geography, and 

also due to other potential crops. With regard to remote sensing technologies which have 

been progressed, there is a newer and more sophisticated sensor called the Moderate 

Resolution Imaging Spectroradiometer (MODIS), which improves on AVHRR in terms 

of spectral responses, spatial resolutions, and greater emphasis placed on land related 

observations (Justice et al., 2002). MODIS is aboard two earth science research oriented 

satellites, Terra and Aqua, launched in 1999 and 2002. MODIS carries about 36 spectral 

bands with most having a nadir ground resolution of about 1 km, similar to AVHRR. Two 

of the key bands for land observations, the red and NIR, have finer resolutions of about 

500 m. 

 Additionally, remote sensing techniques being used to derive precipitation data 

gives context to yields considering rainfall rates vary based upon locations. To measure 

rainfall amounts, the Tropical Rainfall Measuring Mission (TRMM) has been established 

to provide accurate spatial details. TRMM does not monitor the Corn Belt region of the 

United States however. This is because its orbit around planet earth is positioned for it to 

focus only on the equatorial tropics and subtropics, so it does not capture imagery beyond 

35 degrees north and south. Within the US however, there is an alternative option, the 

NWS part of the NOAA operates a ground based remotely sensed data set with coverage 

provided Doppler radars by which precipitation levels can be estimated (Seo, 1998). 
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6.3 Study Area 
 

The 12 states focused on are geographically contiguous, relatively flat and level, 

and have very fertile soils. These twelve states make up more than three-fourths of the 

US corn and soybean production, and therefore constitute the study area from which yield 

surveying satellites obtain data from as shown in (Figure 47) below.  

 

 
Figure 47 Distribution of corn and soybean within the US as depicted from the 2012 USDA Cropland Data 

Layer. Deeply shaded states are those that were used in analysis. 

 

 

6.4 Developing a New Approach for Agriculture Drought Monitoring  
 

 The main objective is to firmly understand the relationship between US county-

level average corn and soybean yields versus relatively common variables collected 

throughout the entire crop growing season (May - September) via remote sensing over all 
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of the years (2006-2012) by the Pearson coefficient of determination (R
2
).   

The results are shown in (Figures 48, 49, 50, and 51) for soybean and (Figures 52, 

53, 54, 55) for corn respectively. The variables assessed were a time series of the NDVI, 

NDII6, and NDII7 as derived by the Terra MODIS sensor, and precipitation estimates 

produced from the NWS Nexrad Doppler weather radar system. The Nexrad precipitation 

datasets were both considered novel in regard to what has been researched previously for 

predicting crop yields. Also, equal importance to corn and soybeans was given whereas in 

many studies only a single crop type is analyzed. 

This new approach involves datasets taken from NDVI, NDII6, NDII7, and 

Precipitation. The datasets detail spatial characteristics and enable the modeling of crop 

field levels. The NDVI and NDII6, NDII7 resolution is 500 m. The precipitation is about 

4 km. Temporal revisit times are also high with all of these products as raw input data for 

each are collected daily. On any given date cloud cover impacts quality of imagery from 

remote sensing satellites and MODIS composite products help simplify data management 

and processing. The precipitation dataset is also produced and distributed but not 

impacted by cloud cover due to the penetrating ability of radar used. The entire data 

series time window was only to cover the primary Corn and Soybean Belt crop growing 

season typically from May through September during the years of 2006 to 2012. 

The dependent variables for which remote sensing dataset were compared and 

came from annual county level corn and soybean yields as published by the USDA NASS 

and an annual average yield for each county for both corn and soybeans across the 

primary Corn and Soybean Belt, years 2006-20012 was gathered. 
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Figure 48 Scatter plots of 2006 -2012 for average of soybean yield for all counties of the study area versus 

average anomalies of MODIS index for NDVI during growing season from May through Sep for each year from 

2006-2012.    

 

 
Figure 49 Scatter plots of 2006 -2012 for average of soybean yield for all counties of the study area versus 

average anomalies of MODIS index for NDII6 during growing season from May through Sep for each year from 

2006-2012.    
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Figure 50 Scatter plots of 2006 -2012 for average of soybean yield for all counties of the study area versus 

average anomalies of MODIS index for NDII7 during growing season from May through Sep for each year from 

2006-2012.    

 

 

 
Figure 51 Scatter plots of 2006 -2012 for average of soybean yield for all counties of the study area versus 

average of precipitation in inches during growing season from May through Sep for each year from 2006-2012.    
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Figure 52 Scatter plots of 2006 -2012 for average of corn yield for all counties of the study area versus average 

anomalies of MODIS index for NDVI during growing season from May through Sep for each year from 2006-

2012.    

 

 

 
Figure 53 Scatter plots of 2006 -2012 for average of corn yield for all counties of the study area versus average 

anomalies of MODIS index for NDII6 during growing season from May through Sep for each year from 2006-

2012.    
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Figure 54 Scatter plots of 2006 -2012 for average of corn yield for all counties of the study area versus average 

anomalies of MODIS index for NDII7 during growing season from May through Sep for each year from 2006-

2012.    

 

 

 
Figure 55 Scatter plots of 2006 -2012 for average of corn yield for all counties of the study area versus average of 

precipitation in inches during growing season from May through Sep for each year from 2006-2012.   
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The approach used is the average of corn and soybean yields for all counties of 

the study area versus average anomalies of the MODIS indices for the growing season 

between May through Sep for each year. The focus of the research extends to a six-year 

period, with drought beginning in 2006 up until 2012, whereupon extreme drought effects 

were experienced in this year. 

The results shown in (Figure 53) above show a strong correlation between 

average corn yields versus MODIS NDII6 averages for the years 2006-2012 between 

May to September. This is as R
2
 equals 0.62, and NDII6 is the greatest indicator to show 

drought conditions and vegetation moisture monitoring over the Corn Belt region. There 

is also great correlation between precipitation and corn yields affected on the Corn Belt 

regions for the year 2012 due to extreme drought as shown in (Figure 55). The best 

results are shown in (Figure 49) and (Figure 50), whereupon correlations show soybean 

yields for all counties of the study area in comparison with MODIS NDII6 and NDII7 

results between May to September for 2006 to 2012. The weak correlation between R
2 

= 

0.16 averages of soybean yields as shown in (Figure 51) means that there are irrigation 

and management systems and practices in place. Solar radiation, soil type and water-

holding capacity, organic matter content, crop characteristics, disease and pests pressure, 

soil management, technological improvements from hybrids, producer management 

techniques, and other management practices that have an impact on crop yield 

productions on a consistent basis. 
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6.5 Phenology of Crop for Corn and Soybean Time Series 
 

 The (Figure 56) below shows the national average corn-growing progress during 

the important growing stages of the year, between April and November, between the 

years 2008 to 2012. The chart below shows the timeline in which the corn crops were 

planted began emerging, silking, doughing, and then became dented, matured, and finally 

harvested. Emerged refers to the visibility of the plant from the soil. Silking follows after 

the tassel emerges. Dough then establishes in all kernels as a dough-like substance. Dent 

happens when all kernels are dented and the ear is firm and solid, with no milk present in 

the majority of the kernels. Mature is considered safe from frost with shucks opening and 

green foliage presented. Soybean phenological stages take place similarly with emerged 

blooming setting pods, and dropping leaves taking place. Figures below acquired by 

https://www.nass.usda.gov/Publications/National_Crop_Progress/ 

 

 
Figure 56 Corn growing progress (national average from 2008-2012) 
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 The (Figure 57) below shows the national average corn-growing progress during 

the important growing stages of the year, between May and November from 2008 to 

2012.  

 

 
Figure 57 Soybean growing progress (national average from 2008-2012) 

 

  

The (Figure 58 and 59) show the percentage the progress of crop development 

given during the phenological stages during the corn and soybean production for each 

state. The percentages relate to the percentage of plants within a given acre currently in a 

given phenological stage. Half the expected acreage equates to 50 percent to be used. A 

figure of 100 percent, weather permitting, gives the time when planting ceases. 50 

percent distinguishes when a given field has reached a particular stage, for both corn and 
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 (Figure 58) below gives corn-planting progress for the twelve mid-western corn 

producing states between the years 2000-2012 from April to mid-June. Also, the (Figure 

59) below gives soybean-planting progress of the twelve mid-western soybean producing 

states between the years 2000-2012 from the end of April to mid-June.  
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Figure 58 Corn Planting Progress for 12 States of Midwestern US from 2000-2012.   
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Figure 59 Soybean Planting Progress for 12 States of Midwestern US from 2000-2012.  
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6.6 Chapter Summary 
 

In summary, four datasets were used to forecast models of county level corn and 

soybean yields across the US primary Corn and Soybean Belt. The datasets tested 

included NDVI, NDII6, and NDII7 gathered from space-borne MODIS sensors and 

precipitation using the NWS Nexrad weather monitoring system. There was a strong 

correlation between the average corn yields versus MODIS NDII6 averages for the years 

2006-2012 between May to September. NDII6 proved itself as the most suitable and 

efficient indices for showing drought conditions and vegetation moisture monitoring over 

the primary Corn and soybean Belt. County-level data from NASS between the years 

2006 - 2012 was used to verify explanatory power throughout the growing season.  

In conclusion, chapter 6 touches upon the approaches used for drought detection. 

The adequacy of various remote sensing techniques applied to derive precipitation data 

gives context to yields considering rainfall rates vary depending on the location attributes 

considered. The various phenological stages are also covered in this section, with details 

of production during each state of development showing results. There is a strong 

correlation between average corn yields versus MODIS NDII6 averages for the years 

2006-2012 between May to September. There was also strong correlation between 

precipitation and corn yields affected on the Corn Belt regions for the year 2012 due to 

extreme drought. 
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CHAPTER SEVEN: CONCLUSION AND DISCUSSIONS 

The dissertation explores the possible applications of remote sensing and GIS 

technology to agriculturally monitor corn and soybean in the Midwest. With the impact of 

the 2012 drought over the primary Corn and Soybean Belt, the usage of four indices for 

monitoring agricultural drought was analyzed. In assessing agricultural drought, the 

remote sensing drought indices used were NDVI, NDWI, NDII6 and band 7 and NMDI. 

NDII6 proved to be the most useful for analysis as a result of its ability to capture 

agricultural yielding under various circumstances. Remote sensing measurements from 

multiple optical channels were used to monitor soil and vegetation drought based on the 

spectral reflectance change responding to vegetation and soil moisture variations. 

7.1 Conclusion 
 

The main achievements of this research included: 1) Kansas and Nebraska as 

having performed the best results contained in the Midwestern primary Corn and 

Soybean belt. The reasoning behind Kansas and Nebraska's results was due to a more 

efficient and sustainable irrigation system, where upon South Dakota lacked. 2) 

Precipitation regression with irrigated and non-irrigated levels had high correlations and 

greater impacts in the month of July. 3) SPI proved itself to offer the best means of using 

data from the various time-scales with the 3, 6, and 9-month NDII6 performing the 

strongest. NDII6 performed the best due to its detection abilities. 4) The new approach 
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used is the corn and soybean average for all counties between May and September with 

the results showing strong correlations between average corn yields versus MODIS 

NDIII6 averages.  

7.1.1 Assessment of the Impact of Drought Effect on Crop Production Using GIS 
Technology 
 

GIS captures, stores, manages, analyzes, and presents geographic data as a 

technology. When used toward agricultural means, GIS enables accurate crop mapping 

and visualization of agricultural environments. In this study, crop yielding and crop 

production delineates using GIS technology based on different sets of background data. 

Such maps allow us to better identify agricultural areas and focus on drought monitoring 

efforts on the most intensive crop yields. 

Over the recent years, GIS as a technology has played a critical role in enabling 

farmers, scientists, and government agencies to view crop patterns and distributions 

affecting productivity. GIS also aids in crop data publications, facilitating agricultural 

data between various agencies. 

Crop production maps were produced based upon World Agricultural Outlook 

Board standards. Consistent years of crop production data were used to depict crop 

patterns using the ArcGIS 10.4 software platform. Crop production data at the county 

level was sorted from the most intensive agricultural areas to the least intensive areas. 

Major crop regions identified made up for 75% of the total national production crop areas 

combined. Crop maps for 13 crops in the US were generated to show corn and soybean. 

For the corn and soybean crop calendar, there was useful tool provided portraying crop-
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growing information including planting, sowing and harvesting periods of certain crop 

species. This support crop growth of agricultural researchers across the world made 

proper decisions on crops and in guiding agricultural production and sowing periods, 

respecting agro-ecological dimensions. 

Yielding crop maps serve as important sources in illustrating precise farming and 

agricultural data. The corn and soybean yield maps based on county level data was 

developed for each year since 2000 to depict the corn output. By comparing yield maps 

throughout the years, variations in the maps are used to evaluate existing factors that 

contribute to yield limitations. 

GIS technology links data from various sources, and when coupled with weather 

and climate datasets, benefits agricultural policy makers and analysts by highlighting 

crop areas where weather and climate might have the greatest impact on agricultural 

productions and trade. 

GIS technology was used to show maps and crop yields for the United States to 

identify major corn production areas. Corn and soybean yield mapping serves as a useful 

tool for understanding climate variations of crop productivity. When used in conjunction 

with climate/weather products and satellite remote sensing measurements, the crop maps 

facilitate climate/weather fluctuations on agriculture and of water-stressed agricultural 

losses. During the growing season months of May, June, July, August and September, 

through the primary Corn and Soybean Belt, Kansas and Nebraska showed the strongest 

correlations as a result of implemented irrigation systems. South Dakota had strong 

correlations throughout all SPI periods only for corn, and not soybean. 
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7.1.2 The Use of GWR to Evaluate Precipitation vs. Irrigated and Non-irrigated 
Corn and Soybean Yield 
 

GWR proved useful in evaluating spatial heterogeneity study areas between 

precipitation vs. irrigated and non-irrigated corn and soybean yield. The strongest 

irrigation results for corn were shown in the southern parts of Nebraska as well as with 

counties in the east. Non-irrigation results for corn were most relevant on the eastern side 

of Nebraska with mean yields reaching as high up as 110 BU/Acre and more. The 

greatest yields for irrigated soybean yields in Nebraska were found most in the south-

central counties with mean soybean yields reaching as much as 62 BU/Acre. The results 

of the GWR model showed very good performance for non-irrigated maize (corn) and 

soybean. Precipitation is not the only limiting factor driving crop yield; other factors such 

as evapotranspiration, air temperature, solar radiation, soil type and water-holding 

capacity impact yielding. In all months and in both irrigated and non-irrigated treatments, 

yield was proportional to precipitation. 

7.1.3 Assessment of MODIS Indices for Agricultural Drought Monitoring 

 
The 2012 drought in the primary Corn and Soybean Belt assisted in assessing the 

four MODIS indices used: NDVI, NDWI, NDII6, and NMDI to detect drought over 

agricultural areas. This study evaluated the capability of remote sensing indices in 

agricultural drought monitoring using 13-year observations. 

The results show that index anomalies were better correlated with the 6-month 

SPI than 3-month SPI and 9-month SPI. This is the result of agricultural drought 

conditions caused by median-scale rainfall deficiency. Among the tested indices, NDII6 
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showed the highest overall correlation with all SPI over 3, 6, and 9-months, 

demonstrating good sensitivity of NDII6 to water stress over large agricultural areas with 

potential for application as a suitable index to monitor agricultural drought conditions.  

The various remote sensing maps and drought maps have been conducted to better 

understand the complementary drought information that MODIS drought indices can 

provide. Although the discrepancies in spatial-temporal drought patterns captured by 

remote sensing maps and USDM maps existed, both MODIS drought maps and USDM 

maps depict rapid intensifications of drought conditions 

7.1.4 An Agricultural Drought Detection Approach Using Remote Sensing to 
Determine the Correlation between US County-Level Yields  
 

The adequacy of various remote sensing techniques applied to derive precipitation 

data gives context to yields considering rainfall rates vary depending on the location 

attributes considered.  

There is a strong correlation between average corn yields versus MODIS NDII6 

averages for the years 2006-2012 between May to September. There was also strong 

correlation between precipitation and corn yields affected on the Corn Belt regions for the 

year 2012 due to extreme drought. The best results were shown in the correlations of 

soybean yields for all counties of the study area in comparison with MODIS NDII6 and 

NDII7 results between May to September for 2006 to 2012. 
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7.2 Limitations of This Work 
 

The Geographically Weighted Regression (GWR) allows variations in 

relationships between predictors and outcome variables. This means GWR is a local 

spatial statistical technique which relies on a form of kernel regression within a multiple 

linear regression framework to develop local relationships between the dependent and 

independent variables. The geographical weighted regression result is great for spatial 

heterogeneity with space. GWR is among the new developments of local spatial 

analytical techniques. GIS is a very important tool when it comes to solving problems 

and dealing with geo-information. Spatial analysis plays an important role in GIS. An 

improvement in better integration of GIS and spatial data analysis has come through the 

development of local spatial statistical techniques. GIS and GWR were used to analyze 

relations found between precipitations and irrigated and non-irrigated corn and soybean 

yields between 2000 and 2012 for Nebraska. GWR was good because it showed irrigated 

and non-irrigated corn and soybean yields. GWR's technique in predicting yields of 

spatially interpolated precipitation for irrigated and non-irrigated maize and soybean was 

much better than the performance of the OLS model. The OLS regression model, when 

used, had a correlating trend between observed yield and the long-term average 

precipitation total with varying coefficients of determination. An improvement in better 

integration of GIS and spatial data analysis has come through the development of local 

spatial statistical technique. 

The development of a new approach for Agricultural Drought Monitoring is for 

the purpose of understanding the relationship between US county-level average corn and 
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soybean yields versus relatively common variables collected throughout the entire crop 

growing season (May - September) via remote sensing over all of the years (2006-2012) 

by the Pearson coefficient of determination (R
2
). The approach used is the average of 

corn and soybean yields for all counties of the study area versus average anomalies of the 

MODIS indices for the growing season between May through September for each year. 

The focus of the research extends to a six-year period, with drought beginning in 2006 up 

until 2012, whereupon extreme drought effects were experienced in this year. 

There was a strong correlation between average corn yields versus MODIS NDII6 

averages for the years 2006-2012 between May to September, with R
2
 equaling 0.62. 

There is also great correlation between precipitation and corn yields affected on the Corn 

Belt regions for the year 2012 due to extreme drought. The best results showed 

correlations of soybean yields for all counties of the study area in comparison with 

MODIS NDII6 and NDII7 results between May to September for 2006 to 2012. 

There was a weak correlation with R
2 

= 0.16 between averages of soybean yields 

and averages of precipitation. That means there are irrigation and management systems, 

technological improvements from hybrids, producer management techniques, and other 

management practices that have an impact on crop yield productions on a consistent 

basis. 

With regard to remote sensing, it plays a major role in applications of soil 

moisture and drought monitoring. Remote sensing based estimations of soil and 

vegetation moisture has shown a lot of promise for drought monitoring in this study. The 

cost effectiveness and the easy availability of remote sensing data with higher spatial and 
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temporal solutions in near real time make remote sensing based operational systems for 

drought monitoring very practical. This has not been thoroughly investigated here, and 

would be a key direction for the future work. 

7.3 Future Works 
 

 With GIS application, further work of application and evaluations of the 

relatively new GWR technique in similar agricultural research topics can improve the 

yield predictions by accounting for spatial heterogeneity of other climatic variables 

except precipitation which was done by this study (i.e., air temperature, solar radiation, 

etc.) and management practices. 

 The next generation of MODIS sensor, the Visible and Infrared Scanner (VIRS) 

provides the ability to monitor weather and climate. Additional research will be able to 

integrate multiple satellite sensors to establish climate data records for more effective 

drought climate study over agricultural regions. Different satellite sensors have different 

spectral, spatial and temporal specifications, cross-sensor calibration and validation is 

essential to generate long term CDRs (climate recording data), critical for monitoring and 

assessing drought as well as other natural hazards.  

This study illustrated a new approach for agricultural drought monitoring, and 

additional research can be conducted for corn and soybean areas in the world with 

different climatic regions using MODIS remotely sensed variables for further evaluation 

and validation; crop yields of cotton, potatoes, wheat, and barley to name a few.         

In identifying corn and soybeans phonological profiles using remote sensing, we 

are able to accurately assess a stage by stage development of crop yield and fruition. 
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Precipitation shortages, differences between actual and potential evapotranspiration, soil 

water deficits, and reduced ground water or reservoir levels are all examples. These 

assessments enable early identification, which may also be applied to remote sensing 

applications, using the electromagnetic spectrum to capture earth features reflecting and 

emitting energies from earth’s surface. Such advances in remote sensing techniques 

provide the potential to greatly improve agricultural drought detection and assessment. 
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APPENDIX A 

 
Coefficient of Determination (R

2
) between Corn and Soybean Yield with SPI 1 Month 
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SPI (1) month Values 

Coefficient of Determination (R2) between 1 month average SPI Values at all stations 
during growing season only and Corn Yield for Ohio State from 2000-2012 
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Coefficient of Determination (R2) between 1 month average SPI Values at all stations 
during growing season only and Soybean Yield for Ohio State from 2000-2012 
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SPI (1) month Values 

Coefficient of Determination (R2) between 1 month average SPI Values at all stations 
during growing season only and Corn Yield  for South Dakota  State from 2000 -2012 
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Coefficient of Determination (R2) between 1 month average SPI Values at all stations 
during growing season only  and Soybean Yield  for South Dakota  State from 2000 -2012 
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SPI (1) month Values 

Coefficient of Determination (R2) between 1 month average SPI Values at all stations 
during growing season only  and Corn Yield  for Wisconsin  State from 2000-2012 
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Coefficient of Determination (R2) between 1 month average SPI Values at all stations 
during growing season only  and Soybean Yield  for Wisconsin State from 2000 -2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for Illinois State from 2000-2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Illinois State from 2000-2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for Indiana State from 2000-2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Indiana State from 2000-2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield for Iowa State from 2000 -2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for Iowa State from 2000-2012 



161 

 

 
 

 

2000 
2002 2003 

2006 
2011 

2012 
y = 5.2961x + 128.75 

R² = 0.4725 

0

20

40

60

80

100

120

140

160

180

-8 -6 -4 -2 0 2 4 6 8

C
O

R
N

-Y
IE

LD
 M

EA
U

R
ED

 IN
 B

U
/A

C
R

E 
 

SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for Kansas State from 2000-2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Kansas State from 2000-2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for Michigan State from 2000-2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only  and Soybean Yield  for Michigan State from 2000-2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for Minnesota State from 2000-2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Minnesota State from 2000-2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for Missouri State from 2000-2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Missouri  State from 2000 -2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for Nebraska State from 2000-2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Nebraska State from 2000 -2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for North Dakota State from 2000 -2012 
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Coefficient of Determination(R2) between 2 month average SPI Values at all stations 
during growing season only  and Soybean Yield  for North Dakota State from 2000 -2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield for Ohio State from 2000-2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Ohio State from 2000-2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield  for South Dakota  State from 2000 -2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for South Dakota State from 2000 -2012 
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SPI (2) month Values 

Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Corn Yield for Wisconsin State from 2000-2012 
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Coefficient of Determination (R2) between 2 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Wisconsin State from 2000-2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield  for Illinois State from 2000-2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield for Illinois State from 2000-2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield for Indiana State from 2000-2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield for Indiana State from 2000-2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield  for Iowa State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Iowa State from 2000-2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield  for Kansas State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield for Kansas State from 2000-2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield for Michigan State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Michigan State from 2000 -2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield  for Minnesota State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Minnesota State from 2000 -2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield  for Missouri State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Sobean Yield  for Missouri State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield  for Nebraska State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Nebraska State from 2000-2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only  and Corn Yield  for North Dakota State from 2000 -2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield  for North Dakota State from 2000 -2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield  for Ohio State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield for Ohio State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield  for South Dakota  State from 2000 -2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield  for South Dakota State from 2000 -2012 
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SPI (3) month Values 

Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Corn Yield for Wisconsin State from 2000-2012 
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Coefficient of Determination (R2) between 3 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Wisconsin State from 2000 -2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield  for Illinois State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield for Illinois State from 2000-2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield  for Indiana State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield for Indiana State from 2000-2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield for Iowa State from 2000 -2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Iowa State from 2000-2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield for Kansas State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield for Kansas State from 2000-2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield  for Michigan State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield for Michigan State from 2000-2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield for Minnesota State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Minnesota State from 2000-2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield  for Missouri State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield for Missouri  State from 2000-2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield  for Nebraska State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Nebraska  State from 2000-2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only  and Corn Yield for North Dakota State from 2000 -2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only  and Soybean Yield  for North Dakota State from 2000 -2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield  for Ohio State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield for Ohio State from 2000 -2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield  for South Dakota  State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only  and Soybean Yield  for South Dakota State from 2000 -2012 
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SPI (6) month Values 

Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Corn Yield for Wisconsin State from 2000-2012 
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Coefficient of Determination (R2) between 6 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Wisconsin  State from 2000-2012 
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SPI (9) month Values 

Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield for Illinois State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Illinois State from 2000-2012 
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SPI (9) month Values 

Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only  and Corn Yield for Indiana State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Soybean Yield for Indiana State from 2000-2012 



196 

 

 
 

 

2000 

2002 2003 

2005 

2006 

2012 

y = 0.3668x + 160.06 
R² = 0.0061 

0

20

40

60

80

100

120

140

160

180

200

-8 -6 -4 -2 0 2 4 6 8

C
O

R
N

-Y
IE

LD
 M

EA
U

R
ED

 IN
 B

U
/A

C
R

E 
 

SPI (9) month Values 

Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only  and Corn Yield for Iowa State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Soybean Yield  for Iowa State from 2000-2012 
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SPI (9) month Values 

Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield for Kansas State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Soybean Yield for Kansas State from 2000-2012 
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SPI (9) month Values 

Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield for Michigan State from 2000-2012 

2003 

y = 0.9952x + 35.898 
R² = 0.2584 

0

5

10

15

20

25

30

35

40

45

50

-8 -6 -4 -2 0 2 4 6 8SO
Y

B
EA

N
-Y

IE
LD

 M
EA

U
R

ED
 IN

 B
U

/A
C

R
E 

 

SPI (9) month Values 

Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield for Minnesota State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only  and Soybean Yield  for Minnesota State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield for Missouri State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield for Nebraska State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only  and Soybean Yield  for Nebraska  State from 2000-2012 



202 

 

 
 

 

2002 

2000 2006 

2008 
2012 

y = 0.4498x + 115.14 
R² = 0.0453 

0

20

40

60

80

100

120

140

-10 -8 -6 -4 -2 0 2 4 6 8 10

C
O

R
N

-Y
IE

LD
 M

EA
U

R
ED

 IN
 B

U
/A

C
R

E 
 

SPI (9) month Values 

Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield  for North Dakota State from 2000 -2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Soybean Yield  for North Dakota State from 2000 -2012 
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Coefficient of Determination(R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield  for Ohio State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Soybean Yield for Ohio State from 2000-2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield  for South Dakota  State from 2000 -2012 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
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Coefficient of Determination (R2) between 9 month average SPI Values at all stations 
during growing season only and Corn Yield for Wisconsin State from 2000-2012 
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