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ABSTRACT

STATE-OF-THE-ART METABOLOMICS: FROM METHOD DEVELOPMENT TO
RAPID DIAGNOSTICS, DETECTION, AND PROFILING
Allyson L. Dailey, Ph.D.

George Mason University, 2017

Dissertation Director: Dr. Robin Couch

Metabolomics is a science concerned with the isolation and identification of small
molecules (metabolites) from biological samples. A common goal of metabolomics is to
investigate these molecules in order to better understand the intricate interactions
between them and their relationship to human health. Metabolomic profiling has shown
great potential in detecting and understanding biomarkers of a variety of diseases, of
infectious or non-infectious origin. The goal of this dissertation research was to develop a
state-of-the-art metabolomics approach to the investigation of metabolite alterations in
juxtaposed biological cohorts (eg. healthy vs. disease; infected vs. uninfected). To
establish a metabolomics pipeline of data acquisition and analysis, a series of research
projects were pursued within the general context of rapid diagnostics, pathogen detection,
and/or molecular profiling. From gastrointestinal health to identification of bacterial
infection, this dissertation research aimed to develop the tools necessary for rapid-

diagnostics of an array of diseases.



INTRODUCTION

Since the advent of medicine, physicians have called upon various tools for rapid
and accurate disease diagnosis. From Aristotle’s idea of the four humors to the
examination of the color, smell, and consistency of excrement to determine a patient's
disease state, there has always been this notion of a "biomarker™ and its relation to human
health?. As medicine and science have evolved, the desire for elucidating a biomarker
has flooded the journals. Though some of these molecules have been validated and are
now routinely tested as a true measurement of disease, many act as mere puzzle pieces in
our understanding of the complexities of disease. By identifying and/or monitoring
metabolite concentration and presence, conclusions can be drawn about the potential
phenotypic changes occurring within the patient, which often complements information
derived from genomics, transcriptomics, and/or proteomics>*.

The following overview will introduce metabolomics as a tool to understanding
changes in health and disease, and will discuss the instrumentation often used in a

metabolomics analysis.

Metabolomics: An Overview
The goal of metabolomics is to investigate small molecule metabolites and
understand the intricate interactions among them. Metabolomic profiling has shown great

potential in detecting and understanding biomarkers of a variety of diseases, which may



or may not have an infectious origin®°. For example, through metabolomic profiling, it is
possible to screen for various protozoan infections (Nuclear Magnetic Resonance
(NMR)), the presence of candidiasis (Gas Chromatography-Mass Spectrometry (GC-
MS)), and early stages of breast cancer (NMR) using human urine”®. The elucidation of
altered metabolites related to atherosclerosis has been studied using plasma or serum
samples (GC-Flame lonization Detector (GC-FID), NMR, Liquid Chromatography-Mass
Spectrometry (LC-MS))™. In addition, the identification of changes to the porcine
intestinal tract upon whipworm (Trichuris suis) infection is possible using collected fecal
material'!. Further, metabolomic profiling, whether achieved through a broad spectrum
NMR study or lipidomics using LC-MS, has also been shown to be promising in the
detection of schizophrenia. In this case, the profiles obtained can be linked to side effects
of antipsychotic drugs as well as metabolite changes due to natural disease
progression™?*.

A metabolomics analysis is typically based on GC-MS, LC-MS, and/or NMR
platforms, and is often targeted (i.e. focused on a group of specific analytes) or global in
design (i.e. profiling of all detectable analytes (also known as non-targeted)). Regardless
of the approach, the metabolites are generally extracted from the biological sample (e.g.
tissue, feces, breath, bacterial culture, etc) and then analyzed by LC, GC, or NMR. The

resulting chromatograms/spectra subsequently undergo data processing, chemometrics,

and statistical analysis to identify key metabolites of interest (Figure 1).
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Figure 1. A Typical Approach to a Metabolomics Analysis.

Illustrated here is a flowchart detailing the components of a typical metabolomics investigation. The first stage of
analysis is the preparation of the sample and metabolite extraction. Depending on the course of the study, there are
two stages to this analysis: analysis of volatile metabolite or analysis of non-volatile metabolites. To extract the
volatile metabolites, | employ the use of headspace solid-phase microextraction (RSPME) and subsequently use
GC coupled to an MS detector or flame ionization detector (FID, not shown). To extract the non-volatile
metabolites, | use an organic extraction and subsequently run the extractions on our LC-QToF (labeled here as the
LC-MS). Following data acquisition, molecular features (metabolites) are extracted from the chromatograms and
spreadsheets are generated for further analysis. The data analysis pipeline will be described in detail later, but
encompasses multivariate and univariate statistical analysis, the results of which can be used to determine
alterations to biochemical pathways in juxtaposed biological systems.

A metabolomics investigation typically focuses on both analyte presence and its
relative abundance, and as such, the resulting data set is multidimensional. Accordingly,
multivariate statistical techniques (e.g., Principal Component Analysis and Hierarchical
Clustering Analysis) are employed to analyze the data'®. These statistical techniques
make it possible to explore what is occurring within the data and identify trends.

The final phase of a metabolomics investigation often involves biomarker

identification or pathway analysis. These can be performed by looking at the area under a



Receiver Operating Characteristics (ROC) curve to evaluate a metabolite's potential for
serving as a biomarker of disease, or through the use of Network Analysis, which allows
the visualization of relationships and interactions amongst various metabolites to further

understand the disease®®°.

1. Metabolite Extraction

In the course of a metabolomics investigation, the metabolites are typically
extracted from the sample matrix and are then analyzed. Biological molecules of interest
fall into two broad categories: volatile metabolites (also known as volatile organic
compounds (VOCs)) and non-volatile metabolites (Figure 1). For the volatile analyses,
solid-phase microextraction (SPME) is used to extract and concentrate the VOCs present
in the headspace above the sample. On the other hand, non-volatile metabolites are
generally extracted using an organic solvent, following cryogenic homogenization of the
sample via a bead mill. The specific approach to metabolite extraction can however be

project specific, and will be elaborated on throughout this dissertation.

2. Metabolite Detection

Following metabolite extraction, the extracts are separated/resolved using gas
(volatile metabolites) or liquid (non-volatile metabolites) chromatography®®%. The
chromatographic separation of the analytes within the complex mixtures typically enables

better detection and identification of the individual analytes.



2.1 GC-Based Analysis of Volatile Metabolites

Following extraction of the volatile metabolites, a Gas Chromatograph (GC) is
commonly used to separate/resolve the complex mixture. To accomplish this, the VOCs
are typically captured and concentrated using SPME, the SPME fibers are then inserted
into the inlet of the GC, the VOCs desorb off of the fiber into the chromatography
column and are then resolved by gas-liquid partition chromatography (commonly using a
capillary column (5-100 m in length)). Partitioning of the volatile analytes is achieved via
their interaction with the stationary phase of the capillary column. For example, a column
containing (5%Phenyl)-methylpolysiloxane (DB-5) will retain nonpolar analytes. By
starting the analysis at low temperatures (35°C), the analytes with a higher affinity to the
stationary phase (low polarity) are retained while the others (high polarity) flow through.
By gradually increasing the temperature, retained nonpolar analytes begin to elute of the
stationary phase and through the column, typically in order of their relative volatility.
Following separation, the analytes travel into the detector. A variety of different detectors
are available for use in a GC based analysis of VOCs, two of the most common being the

Flame lonization Detector and the Mass Spectrometer.

2.1.1 Flame lonization Detector (FID)

The FID employs a hydrogen fueled flame to burn the hydrocarbons eluting from
GC column, producing detectable ions (Figure 2). More specifically, the analytes elute
into a bias potential electrode, undergo pyrolysis, and become ionized®. The newly
formed ions accumulate on a collecting electrode (conventionally the cathode) located

adjacent to the tip of the flame. The resulting ion current is amplified and converted into



a chromatogram. Though it is a highly sensitive detector, an important caveat for the use

of the FID is that the sample must contain hydrocarbons that are ionizable by the flame?®”.

This is typically the case for biological samples.

Examples of the use of the FID in VOC analyses includes evaluation of the
human fecal metabolome performed in the Couch lab®, detection of coffee flavor

ageing?’, and environmental applications including wastewater monitoring®.

Collector
Sm—. £ |octrode

Air Air

Bias
Electrode

GC column

Figure 2. Schematic depicting the components of the flame ionization

detector.

The analyte passes through the GC column and into the FID. Inside, the
hydrogen flame burns the analyte, producing ions which collect on the
collector electrode. The resulting current is then amplified and digitized by

the computer.




2.1.2 Mass Spectrometer (MS)
Another common detector used in GC-based analysis of volatile metabolites is the

mass spectrometer (MS). For example, GC-MS has been utilized in metabolomic

9 30,31

profiling of breath composition in lung cancer”® and cystic fibrosis patients*®*",

examination of the human fecal metabolome?®3233

, alterations to intestinal mucosa in
infected pigs™*, detection of candidiasis’ and bacterial strains®, and in the identification of
VOCs found in wine*. The MS generates and separates gas-phase ions by their mass to
charge (m/z) ratio, facilitating the identification of molecules of interest®. As the
production of ions is the foundation to the analysis, an important caveat of MS analysis is
that the analytes must be readily ionizable®* . To achieve this, the MS has three main
components, resulting in a three step process:
1. lon Source

The first step is ionization, which occurs in the ion source. In GC-MS, there are
two main approaches to ionization: Electron Impact (Electron lonization, EI) and
Chemical lonization (CI). El, characterized as a hard ionization, occurs when the VOCs
enter the ion source following separation via the column and are bombarded by high
energy electrons emitted from a heated filament (typically comprised of tungsten or
rhenium). The collision of the analyte and electrons results in the expulsion of an
analyte's electron causing the analyte to become a radical cation (Figure 3). This collision
of electron and analyte is not really an impact but rather an interaction between a wave

and chemical bond. Each electron is characterized as a wave with a specific wavelength

at a particular kinetic energy (e.g., 1.4 A for 70 eV). If the wavelength of the electron is



close to any of the bond lengths within the analyte, the wave is perturbed and an energy
transfer can occur. If enough energy is transferred, the analyte's electron is expelled,
resulting in a radical cation. As the energy transferred is between 10-20 eV, any excess
energy leads to fragmentation of the parent molecule. This fragmentation results in a
characteristic spectral "fingerprint™ that is then used to identify molecules. However, due
to the nature of the collision, the fragmentation patterns can vary with the energy of the
electron. To circumvent this variability, the accepted standard of electron energy for

populating molecular databases is 70 eV*® %,

— +e —_
A(g) + e - A(g) + 2e

Figure 3. Chemical equation depicting
electron impact ionization.

Analyte (A) collides with the electron (¢7)
to form a radical cation (A*).

Cl, a soft ionization technique, occurs when a known reagent gas, separate from
the sample molecules, is introduced into the ion source. The gas (usually methane, iso-
butane, or ammonia) is then bombarded by the electrons emitted by a heated filament and
ionizes. When the sample analyte is introduced into the ion source, the analyte then reacts
with the now ionized reagent gas and thus becomes ionized itself (Figure 4). As the
energy used for ionization is lower than in EI, there is very little subsequent

fragmentation that results. Rather, the resulting mass spectrum acquired typically



contains adducts of the intact analyte ion, formed as a result of proton transfer from the

reagent gas and the analyte®* %,

NH; + e~ — NH3*" + 2e”
NH;** + NH; - NH,* + NH,’
NH," +A—- NH;+ [A+H]*

NH," + A—> [A+ NH,]*

Figure 4. Chemical equation depicting
chemical ionization.

Ammonia as the reagent gas collides with the
electron to form an ammonia radical cation. The
radical cation then reacts with additional
ammonia gas to form ammonium and an amino
radical. Ammonium reacts with the analyte (A)
to form two different species.

2. Mass Analyzers

Following ionization, ions traverse the mass analyzer where they are
separated/filtered according to their masses. While mass is predominately measured and
subsequently separated or filtered via the m/z ratio of the ions (as seen in the quadrupole),
mass analyzers such as those based on time of flight use principles such as velocity to
separate ions (the time of flight mass analyzer is described in the LC-MS section of the
thesis, below). Therefore, a fundamental difference between mass analyzers is the way in
which a static and/or oscillating electromagnetic field is used to achieve proper separation
of the ions.

Quadrupole mass analyzers are made up of four circular which are held parallel to

each other but oriented to approximate a hyperbolic path (Figure 5). The mass analyzer



separates and filters ions according to the ion's m/z ratio by tracking the stability of the

ion's trajectory as the ion passes through an oscillating electromagnetic field.

Detector

Detector

Figure 5. Schematic depicting the Quadrupole mass analyzer.

A. The blue line demonstrates an ion with a stable trajectory.

B. The orange line demonstrates an ion whose trajectory became unstable and will be filtered out. The
instability is a byproduct of the acceleration of the ion along the x and y axis. Depending on the ion's mass, this
rate of acceleration will be either too fast or too slow causing the ion to become dysregulated with respect to
the rate of the rod's change in potential.

The ions do not travel along a straight line, but rather in a three-dimensional space
(Figure 5). Following ionization from the source, the ion enters the space between the
rods (z-axis) at a fixed velocity. As the ion travels through the space, it will be drawn
towards an oppositely charged rod at either the x or y-axis in a circular fashion. As the
ion approaches the charged rod, the potential of the rod changes polarity, resulting in the

ion changing direction. However, if the ion collides with the rod prior to this occurring,
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the ion will become discharged and therefore filtered out. Thus, along the z-axis, the ions
maintain their velocity whereas, along the x and y-axis they are subjected to acceleration
from the alterations of the electric fields® *°. As the rate of acceleration is proportional to
the mass of the ion, only those ions with the stable trajectory pattern will be included in
the analysis. The trajectory of those ions which are too light or too heavy will become

destabilized, thus filtering them from the analysis™.

3. Detectors

After the ions are separated by the mass analyzer, they are detected and the signal
produced is transformed by an ion detector. As the quadrupole is a scanning instrument, it
detects the ions of one mass individually. Therefore, the detector that is coupled to this
mass analyzer must be capable of measuring the signal produced in this approach.
Continuous-dynode electron multipliers is the ion detector used for our quadrupole
(Figure 6). Following the separation of the ions, the ions enter the electron multiplier and
collide into an electrode called the continuous dynode®. This electrode is set at a high
potential with a charge opposite to the ion. As the ions collide into the electrode,
secondary particles (electrons) are emitted. The secondary particles are then converted
into electrons by colliding with the inner wall of the detector. As the electrons flow down
the electron multiplier, they continuously collide with the wall, because there is a
continuous voltage drop that attracts the secondary electrons to the outlet, thereby
producing more electrons and amplifying the signal by as much as a factor of 108,

Finally, at the very end of the electron multiplier tube, a metal anode collects the

11



incoming electrons. The resulting current is then measured and digitized by a computer

via an analog-to-digital converter (ADC)*"%®,

Figure 6. Schematic depicting the components of the continuous dynode electron multiplier.

The blue line depicts the ion as it travels from the quadrupole (Q) and into the conversion dynode (CD)
where it is converted into secondary electrons. From here, the electrons enter the electron multiplier (EM)
where the electron collides into the wall of the electron multiplier, thereby, producing additional electrons.
This process continues as the electrons travel down to the anode resistor where they are detected.

2.2 LC Based Analysis of Non-Volatile Metabolites

Following the extraction of the non-volatile analytes, a Liquid Chromatograph
(LC) is often used to separate the complex extract. In the LC, a liquid mobile phase is
continuously pumped into the system where it mixes and interacts with the liquid sample
extract as it is injected into the instrument (either manually or via an autosampler)*’. The
mobile phase and sample then travel to a packed (stationary phase) column where
separation occurs. In reversed phase liquid chromatography, the stationary phase is
comprised of non-polar alkyl hydrocarbons (typically of C-18, C-8 or C-5 in carbon chain

length) bound to an inert support (typically silica), while the mobile phase is comprised
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of an aqueous and an organic component. Initially, the instrument begins with a higher
concentration of the aqueous solvent resulting in a polar mobile phase. As the mixture of
polar mobile phase and sample flows into the column, those analytes with greater affinity
for the column (in this case higher hydrophobicity), will interact and bind to the
stationary phase of the column while the polar (hydrophilic) analytes will remain
interacting with the mobile phase and flow through. As the concentration the organic
solvent increases within the mobile phase, the mobile phase decreases in polarity and
those analytes whose polarity is similar to the mobile phase will elute off the column and
into the detector. Therefore on a reverse phase chromatogram, the order of analyte elution
is polar (shortest retention time), mixed polarity, and finally non polar (longest retention
time).

The ability to properly separate complex mixtures is related to the resolution
power of the column used. One way to increase the resolution, thereby increasing
separation, is by decreasing the particle size of the column®. However, as particle size
decreases, the resistance to flow increases. In conventional liquid chromatography, this
process occurs at ambient pressure, requiring the force of gravity to separate the complex
mixture. Therefore, the increase in resolution will decrease the flow rate. In an effort to
increase resolution without sacrificing the flow rate, techniques such as high performance
liquid chromatography (HPLC) were developed*®*!. In HPLC, the instrument is capable
of pumping the mobile phase through the stationary phase at higher pressures (500 bar),
allowing the flow rate to remain the same. Further, as HPLC instruments are capable of

running at much higher pressures, increasing the flow rate also allows an increase in
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analysis speed. However, the increase in flow rate reduces the efficiency of column
retention. Thus, in an effort to further decrease the particle size, increase resolution, and
increase speed, ultra performance liquid chromatography (UPLC) was developed®. In
UPLC, the instrument is capable of performing at even higher pressures (1200 bar) with a
smaller particle size (1.7um versus the 3.5um or 4.6um seen in HPLC), allowing the flow
rate to increase without sacrificing the column efficiency. Another feature of UPLC
instrumentation is the decrease in column size. A column's resolving power is related to
its length and particle size®, therefore by decreasing the length of the column, the
resolving power can be comparable to HPLC. Overall, this decrease in particle size and
column length allows the loading capacity to decrease, reducing the amount of sample
needed for an analysis*.

Following elution from the column, the analytes travel into the detector. Two of
the most common detectors used in a LC based metabolomics analysis is the UV-Vis

detector and the Mass Spectrometer.

2.2.1 UV-Vis Diode Array

Following elution from the chromatography column, the analytes flow into the
UV-Vis diode array detector (DAD) which detects the absorption spectrum in the
ultraviolet (100-400nm) and visible (400-700nm) regions of the electromagnetic
spectrum. The DAD has two separate lamps emitting light in either the ultraviolet or
visible regions. First, a tungsten (W) lamp emits light from the visible and near infrared
range (370-900nm). The emitted light enters a deuterium discharge lamp (D). Here, the

D, lamp couples UV light (180-370nm) to the visible light and the resulting beam passes
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through the flow cell. In the flow cell, the beam of light can be absorbed by an
appropriate chromophore and the resulting absorption profile is recorded by a detector®.
As each molecule has a characteristic absorption spectrum, analytes can be identified,

particularly when the absorption spectrum is compared to a reference library.

2.2.2 Mass Spectrometer (MS)

LC-MS based analyses permit the detection of a wide array of molecules found
within complex biological samples. The instrumentation itself is an intricate coupling
between HPLC (or UPLC) and a Mass Spectrometer®. However, this coupling presents
some challenges. First, the elution solvent needs to be eliminated to ensure a proper
vacuum in the MS. Second, all molecules need to be converted into gas-phase ions. This
includes any buffers found within the sample/mobile phase, therefore analysts need to be
aware of the volatility of the buffers or they risk introducing salts into the mass analyzer
during the ionization process?. As in GC-MS, the mass spectrometer can be broken

down into three main components:

1. lon Source
lonization in LC-MS occurs within a condensed or vapor phase under
atmospheric pressure, a condition referred to as Atmospheric Pressure lonization (API).
There are 3 main API techniques used as an ion source within LC-MS; Electrospray
lonization (ESI), Atmospheric Pressure Chemical lonization (APCI), and Atmospheric

Pressure Photoionization (APPI). As with CI in GC-MS, these three techniques are
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examples of soft ionization, as molecular fragmentation is not extensive relative to EI**
46.

ESI works by ionizing the molecules directly from the liquid matrix that elutes
from the column® 3944748 Depending on the pH of the solvents used, the analytes can
favor the ionic state in the solution, travels through the column, and ends at the capillary
tip. At this point, the charged media containing the analytes is sprayed into a chamber
containing a strong electrostatic field. The droplet that is formed becomes desolvated
using a heated drying gas, thereby leaving ionized gas phase analytes. The analytes are
then ejected into the sampling cone and continue to the mass analyzer. Because of the
desolvation process, ESI permits an analysis of a wide array of biomolecules including

44148 10 addition,

larger molecular weight proteins and thermally unstable analytes
molecules such as proteins which contain multiple ionizable sites produce multiply
charged ions. While the production of multiply charged species complicates the spectra, it
allows researchers to examine the intact molecule and is advantageous when using a mass
analyzer that has a narrow measurable mass range®®*. The one major drawback to ESI is
ion suppression due to a high concentration of non-volatile analytes. lonization will first
occur at the surface of the liquid droplets. If any non-volatile analytes are present on the
surface, they will become ionized, thereby inhibiting the formation of ionized gas phase
analytes and leading to ion suppression®®40484°,

APCI is another technique used to ionize non-volatile analytes of interest. In this

ionization technique, the analytes elute from the column and into a nebulizer where they

are converted into droplets®” 2. Unlike in ESI where the droplets themselves are ionized,
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the liquid droplets produced by APCI travel into a heated chamber where they vaporize
resulting in gaseous analyte and mobile phase. The heated mixture then travels along a
corona discharge electrode where the mobile phase becomes ionized (ionizing gas). The
analytes and ionizing gas react resulting in the analytes becoming ionized, akin to CI in
GC-MS (however, the electrons emitted from the corona discharge electrode do not come
from a heated filament, like they do with CI). This technique in particular works well
with small and thermally stable molecules which may not be ionized via ESI®. However,
due to the high temperatures, not all analytes will be detected, and unlike ESI, multiple
charging is not seen.

The third technique, APPI, ionizes the analytes using a photon of light to excite
and ionize gas phase molecules®. Similar to APCI, the liquid analytes elute from the
column and are desolvated and vaporized by a heated nebulizer. Once vaporized, the
gaseous analytes then interact with photons emitted from a UV lamp, resulting in
ionization. The UV lamp emits photons at a lower energy than the ionization potential of
the solvent, thereby preventing the solvent from becoming ionized, consequently
reducing the background noise®. Additionally, this technique is able to ionize
compounds such as non-polar molecules that are not readily ionized by ESI or APCI®.
However, this technique is the most sensitive to suboptimal experimental conditions.
Hence, proper solvent selection is imperative, as acidic solvents lead to analyte ion
suppression. As in APCI, this technique will result in only singly-charged

jons*4:46:49,46,50,39,36
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2. Mass Analyzer

After becoming ionized, the ions traverse through a mass analyzer where they are

separated/filtered according to their masses. Our LC-MS instrument (LC-QToF, Figure 7)

contains both a quadrupole and a ToF mass analyzer.

Reflectron

Flight Tube

ESI Source —2|

Collision cell

Quadrupole

Figure 7. The Couch Lab's Agilent 6530 QToF.
The QToF is an instrument capable of MS and MS/MS analyses. The QToF has an ESI ionization source, a

quadrupole as the first mass analyzer, a hexapole collision cell, and an orthogonal acceleration ToF. Indicated
on the ToF is the flight tube and reflectron. We affectionately refer to the QToF as a tricorder, as it is capable
of identifying metabolite composition in samples of interest. A photo of a tricorder from Star Trek is seen

affixed to the QToF.
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As stated previously (see the GC-MS section, above), quadrupole mass analyzers
consist of four circular rods which are held parallel to each other. The ions that elute from
the ion source are separated and filtered according to their m/z ratio by tracking the
stability of the trajectory of the ions through an oscillating electromagnetic field*">°,

Time of flight (ToF) mass analyzers separate ions via their velocity through a
space devoid of an electromagnetic field (i.e. field-free region) known as the flight tube.
Following ionization, the ions produced travel into an accelerated region where they
acquire the same kinetic energy (Ex). Therefore, once the accelerated ions travel into the
field-free region, their m/z ratio can then be related to the time (t) it takes to drift towards
the detector using the equation m/z = Kt?, where K is a fixed constant related to the
energy applied, the length of the accelerated region, and the length of the flight tube®”.
Therefore, the mass of the analyte is defined by the charge (z) multiplied by the squared
travel time (t) and the fixed constant K. Since all of the ions are produced in a short
amount of time and are temporally separated, all of the formed ions will reach the
detector at different times. Early ToF mass analyzers, known as linear ToF perform this
in one direction. However, due to a kinetic energy spread among ions with the same m/z
ratio, the mass resolution was poor. This has since been corrected by using either delayed
pulse extraction or a reflectron®®.

In delayed pulse extraction, ions are initially allowed to travel and separate
through the field-free region. After a specified amount of time, a voltage (extraction

pulse) is applied which provides additional energy to the ions still lingering by the

19



source. This process then allows the less energetic ions to reach the detector at the same
time as those more initially energetic ions of the same m/z ratio™®.

Another way to improve mass resolution is by using an electrostatic reflector,
referred to as a reflectron. The reflectron contains an opposing electric field that is of
greater magnitude than the acceleration region. lons with higher kinetic energy will
penetrate the deepest, thereby taking more time to reflect back to the detector and
correcting the kinetic energy dispersion between ions of the same m/z ratio®®.

ToF mass analyzers were developed initially for use with pulsed ionization
techniques (lasers, plasma) because they provide concise ionization regions at defined
time intervals. To incorporate the use of continuous ionization techniques such as
electrospray ionization, orthogonal acceleration (orthogonal injection) was developed®’
% In this technique, the sample is continuously ionized in the source and enters into the
orthogonal accelerator as a parallel beam using ion optics as a guide. Inside the
accelerator are a plate and two grids. In the first stage, the field-free space between the
plate and the first grid become filled with the ions. Once filled, the plate is supplied a
specified injection pulse voltage and the resulting change in the electric field thrusts the
ions in an orthogonal direction where they are accelerated past the second grid and into
the field-free flight tube where mass separation occurs. Once all the ions enter the flight
tube, the plate's voltage is restored and new ions from the source begin to accumulate the
space between the plate and the first grid again. The injection pulse will not be applied a
second time until the ion with the highest m/z ratio currently in the flight tube reaches the

detector®®,
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Mass analyzers can be combined to form a technique known as Tandem Mass
Spectrometry (MS/MS)*°. In MS/MS, two or more mass analyzers are coupled to
obtain better sensitivity and selectivity by fragmenting the ions isolated during the first
MS experiment. The first mass analyzer selects and isolates a precursor ion, the ion then
undergoes spontaneous or activated fragmentation, and the subsequent mass analyzer(s)
separates and analyzes the resulting product ions. This technique can be achieved in two
distinct ways, in time or in space. Instruments conducting this technique in time contain
an ion storage area which will conduct the steps throughout a sequence of events. Those
conducted in space contain separate instruments. With the in space instruments,
fragmentation occurs within a collision cell which lies between the mass analyzers. In the
collision cell, the ions can undergo fragmentation by colliding into a high pressure gas or
other fragments in a process known as Collision Induced Dissociation (CID). The amount
of energy used for the collision can vary resulting in different degrees of fragmentation.

The instrument | use for the LC-MS analyses is a Quadrupole Time of Flight
(QToF, Figure 8) and is one example of an MS/MS instrument. In the QToF, the
quadrupole acts as the first mass analyzer (Q1), a hexapole (g2) acts as the collision cell,
and the ToF is an orthogonal acceleration-ToF and acts as the second mass analyzer.
When acting in MS mode, the ToF is the sole mass analyzer as the two quadrupoles act
purely as ion guides. The collision cell, g2 may contain a collision gas to improve
resolution and the sensitivity of the ToF. In MS/MS mode, Q1 acts as the precursor ion
filter. The selected ions are then accelerated into g2 where they undergo fragmentation by

nitrogen at a specified collision induced dissociation. The resulting daughter ions and
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parent ions continue to collide and fragment resulting in a decrease in their Kinetic
energy, and increasing the resolution prior to analysis via the orthogonal acceleratation-

TOF37,38

il

Ql q2

o

A
ST

ESI —

Figure 8. Schematic depicting the various components of the QToF.

Shown here is a depiction of the QToF currently housed in the Couch lab. The blue line
depicts the ion's course as it is first generated by the ion source (ESI), guided into the
first mass analyzer via an octapole (not shown), travels through the quadrupole mass
analyzer (Q1) and into the hexapole collision cell (g2). The ion is then transferred into
the ion pulser (IP) where through orthogonal acceleration it travels into the flight tube,
deflects off the reflectron (R), and strikes the detector (D).

3. Detector
After the ions travel through the mass analyzer, they proceed to the detector.
While the quadrupole scans the ions from one m/z value at a time, the ToF detects all of
the ions of any given mass all at once®"*. Therefore, the LC-QToF contains an array
detector which collects all of the ions of various masses isolated in the instrument. To
detect the large collection of ions and ensure a precise arrival time, a microchannel plate

containing an electron multiplier is used (Figure 9). The plate contains microscopic
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parallel cylindrical channels and each channel acts as an electron multiplier®, When an
ion with enough energy collides into the microchannel plate, secondary electrons are
produced and travel through the channel becoming amplified. Because the signal
produced is at approximately -6000V, the amplified electrons will then collide with a
scintillator, emitting photons. The resulting photons are directed in a photomultiplier tube
where they are further amplified and the current is measured. By incorporating the
photomultiplier tube, the potential increases from -6000V to OV (ground potential)
allowing it to be measured by the anode resistor and subsequently digitized by the

computer®®".

Figure 9. Schematic depicting the components of the microchannel plate and
photomultiplier detector.

Shown here is a depiction of our QToF's detector. The blue line depicts the ion as it
travels from the flight tube (not shown) and into a well in the microchannel plate
(MCP). The resulting secondary electrons emerge and travel into the scintillator (S)
where they are converted into photons. The photons enter the photomultiplier tube
(PMT) where they are converted back into secondary electrons and strike the anode
resistor at the bottom.
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3. Metabolomics Data Analysis

Following metabolite detection, the resulting molecular features are extracted and
subsequently analyzed using multivariate statistical techniques. The approach to data
analysis was a central theme in this dissertation and the techniques will be described in
detail throughout.

The overarching goal of this research was to develop a state-of-the-art
metabolomics approach to the investigation of metabolite alterations in juxtaposed
biological cohorts (eg. healthy vs. disease; infected vs. uninfected). To establish a
metabolomics pipeline of data acquisition and analysis, a series of research projects
were pursued within the general contexts of rapid diagnostics, pathogen detection,

and/or molecular profiling.
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SPECIFIC AIMS AND PROJECT OVERVIEW

Project Overview

The goal of this research project is to develop and employ a metabolomics
pipeline to visualize and compare the metabolomes of biological systems. To achieve this
goal, | simultaneously performed 4 research investigations, each of which offering insight
into metabolomics methods of data acquisition and analysis. Collectively, these projects
defined the overall metabolomics pipeline that | developed. For clarity in this dissertation
document however, | present my research as two specific and separate aims, the first
describing the metabolomics pipeline and the second listing the series of projects that
were used to develop the metabolomics pipeline (each project organized into a sub-aim of
Specific Aim 2).

Specific Aims

Specific Aim 1: Develop a metabolomics pipeline of data acquisition and
analysis. Develop a method that utilizes GC and/or LC based platforms to perform a
global (untargeted) assessment of the metabolic state of biological samples. The pipeline
developed here will serve as the foundation for future metabolomics analyses.

Specific Aim 2: Application of the metabolomics pipeline. Develop and refine
the metabolomics pipeline by exploring alterations to the metabolome as a consequence

of a change in health.
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Specific Aim 2.1: Metabolomics as a biosensor; developing an electronic nose.

Use metabolomics as an electronic nose to determine if global metabolic profiling of
microbial volatile organic compounds can differentiate select biological warfare agents.

Specific Aim 2.2: Alterations to the human fecal metabolome due to alcohol

consumption. Use metabolomics as an electronic nose to explore the odor profile of fecal
material collected at home or via an endoscopy procedure to potentially identify
biomarkers of chronic alcohol consumption.

Specific Aim 2.3: Tissue-Related effects of a high fat diet and probiotic

supplementation in pigs. Use metabolomics to evaluate if a high fat diet and/or probiotic

supplementation have an effect on the pig tissue metabolome.

Specific Aim 2.4: Metabolic changes in pigs due to whipworm (Trichuris suis)

infection. Use metabolomics to characterize the metabolic changes associated with
various stages of T. suis infection in pigs and demonstrate how changes in certain

metabolites relate to mammalian inflammatory pathways.
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SPECIFIC AIM 1. DEVELOP A METABOLOMICS PIPELINE OF DATA
ACQUISITION AND ANALYSIS.

Objective: Develop a method that utilizes GC and/or LC based platforms to perform a
global (untargeted) assessment of the metabolic state of biological samples. The pipeline

developed here will serve as the foundation for future metabolomics analyses.

Introduction

As a branch of the "-omics" sciences, metabolomics is concerned with the
complete collection and analysis of small molecule metabolites (generally <600 Da) in a
biological sample®*. By identifying and/or monitoring the presence and concentration of
these metabolites, hypotheses can be made regarding the origin and meaning of the
phenotypic changes that are observed. The conclusions derived from a metabolomics
investigation often complements information resulting from genomics, transcriptomics,
and/or proteomics investigations. Due to the nature of the —omics sciences, it is not
uncommon for these analyses to generate data matrices containing thousands of
molecular features (i.e. the presence and relative abundance of metabolites, transcripts, or
proteins from metabolomics, transcriptomics, and proteomics investigations,
respectively). In order to analyze and interpret such large data sets, the —omics sciences
rely on multivariate statistical analyses (i.e. statistics involving two or more variable

quantities). Our goal was to develop a metabolomics investigative pipeline based upon
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our analytical instrumentation (GC and LC), utilizing relevant univariate and multivariate
statistical data analysis techniques. From sample processing to data acquisition and
analysis, | evaluated and implemented techniques/approaches to establish a metabolomics
pipeline, permitting both global (untargeted) and targeted metabolomics analyses.

As first mentioned in the Specific Aims section above, the development of this
metabolomics pipeline was an iterative process developed concomitantly with performing
the select research projects described in Specific Aim 2. Hence, the pipeline was refined
and developed over the course of this entire thesis work. While metabolite extraction
details specific to the biological samples are presented within Specific Aim 2, | present
here in Specific Aim 1 a description of the core data analysis pipeline pertaining to GC
and LC based analyses, a pipeline that is used regardless of the biological sample under
investigation. Within this section | present a discussion of the theory and/or rationale
behind each informatics step implemented in our current approach to performing a

metabolomics investigation.

Metabolomics Data Analysis

Our current approach to metabolomics data analysis is summarized in Figure 10,
with detailed Standard Operating Procedures (SOPs) presented in Appendix 1 and
Appendix 2. This approach was developed specifically for use in a global metabolomics
investigation, with LC and/or GC derived data, although it may also be readily used as-is
for targeted metabolomics investigations. The data analysis pipeline employs univariate
and multivariate statistical analyses, providing a comprehensive examination of the

metabolomes derived from biological samples. As described in detail below, the data
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analysis pipeline occurs in four stages: 1. Molecular Feature Identification, 2. Data
Preparation, 3. Multivariate Statistical Analysis and Data Visualization, and 4.
Determination and Identification of Metabolites of Interest. The first stage includes
identification and extraction of the molecular features from the chromatogram/spectra.
The second stage transforms the data set in preparation for multivariate analysis. The
third stage employs Principal Component Analysis (PCA), Hierarchical Clustering
Analysis (HCA), and Correlation Network Analysis to elucidate trends within the data.
Finally, in the fourth stage, to identify the key metabolites of interest (i.e. those that
differentiate cohorts from one another), | use a combination of Fold Change, P-value,

Box and Whisker Plots, and Receiver Operating Characteristics curves (ROC).

1. Frequency
Calculation

\

2. Missing value and
outlier imputation

3a.Z-score 3b. Fold Change and 3c. Correlation
standardization P-value calculation Networks

l 4b. Box and whisker
4a. PCA plots plots and ROC
curves

v

5. Key Feature
Identification Validation

Molecule
—_—

Figure 10. Metabolomics Pipeline.

The metabolomics pipeline allows us to examine the metabolome of biological systems. By examining key
contributors to variations and their connectivity to other metabolites present in the sample, | can identify
biomarkers and gain insight into the etiology of disease. See text for further discussion.
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Stage 1 of the Data Analysis Pipeline: Molecular Feature Identification

The first stage of the metabolomics pipeline is to identify the molecular features
extracted from the biological sample. Note that at this stage | refer to the extracted
metabolites as molecular features, as their identity is either unknown or is only
speculative. For non-MS derived data (e.g. chromatograms generated using the FID or
UV-Vis detector), the molecular feature is simply referred to by its chromatographic
retention time. For MS derived data, while retention time can also suffice for molecular
feature identification, molecular features are typically identified by deconvoluting the
chromatogram and matching the m/z value of a molecular feature to a molecular
database. More specifically, feature identification for GC-MS acquired data is performed
by using software known as the Automatic Mass Spectral Deconvolution and
Identification System (AMDIS), whereas features in LC-MS acquired data is identified
by using Agilent Technologies' MassHunter Qualitative Analysis, each of which is

described in more detail below.

GC-MS Molecular Feature Identification

AMDIS is a computer program that evaluates GC-MS chromatograms and
identifies molecular features (metabolites) within the chromatographic peaks by
comparison of extracted mass spectra with a mass spectral database (the National
Institute of Standards and Technology (NIST) Mass Spectral Library). This process is
achieved in four successive steps: 1. Noise Analysis, 2. Component Perception, 3.

Spectrum Deconvolution, and 4. Compound Identification®?.

30



Step 1. Noise Analysis

In this stage, AMDIS analyzes the chromatographic background and calculates a
noise threshold for each data file (Figure 11). This is performed by first calculating the
noise factor (Nf) which is the average random signal fluctuation divided by the square
root of the signal intensity®®. AMDIS generates a unique Ny for every data file by first
examining regions of constant signal intensities within the ion chromatogram. Next, the
average of all the signal intensities in this region is calculated. This information is then
plotted and if less than one-half of the number of scans do not cross the mean, then the
segment is rejected. For every accepted segment, the median value for the deviation is
calculated and then divided the square root of the mean intensity to obtain the Nt value
for that segment. Following the processing of the data file, the median of all the Nt values
is calculated and presented as the representative Ny for that sample data file. The median
is used in place of the average to prevent a high N resulting from normal

chromatography.
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Figure 11. Determination of noise in a chromatogram.

The portion circled in red is a baseline region which will be used for the noise calculation. The average
intensities of the scans found in this region is calculated and the information is plotted (see insert). If less than
one half of the scans do not cross the average line (the black line) then this segment will be rejected. If the
segment is accepted, the N¢ value is calculated for that segment. See text for further discussion.

The second portion of the noise analysis is to identify the threshold transitions®.
Typically when the instrument is tuned, a baseline abundance value (Ar) is established
and retained. During a sample run, any signal intensity that is above that value is
collected while those that fall below that threshold are not collected and given a value of
0. While this transition from a zero to a nonzero value is common in background signals,
they can be misinterpreted as a chromatographic peak. Therefore, AMDIS establishes a
threshold for each data file to eliminate such noise. This is calculated by first assuming
the smallest nonzero abundance is equal to Ar. Next, the ion chromatogram is divided
into equal length segments and for every m/z in the segments, the number of times a
transition from zero to nonzero occurs is counted. For those m/z ratios which were given
a value of 0, a new value is provided by multiplying At by the square root of the number

of transitions.
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The third and final portion of noise analysis is to establish m/z peak uniqueness®.
This is performed during the identification of the threshold transition. Here, for every m/z
value the number of nonzero abundance values is calculated. Then, the signal to noise
threshold is multiplied by the square root of the number of nonzero m/z values. This
process ensures that all m/z values are properly elucidated regardless of their signal

levels.

Step 2. Component Perception

In the second step of the molecular feature identification process, AMDIS
analyzes the chromatogram and tracks the increase and decrease in abundance for any
given ion and develops a model of the peak. If any other ions are found within that same
retention time and exhibit the same profile, then those ions are assumed to be a part of
that component (molecular feature)®?. As discussed previously, quadrupoles acquire data
by scanning a m/z range sequentially as the analytes elute from the column®".
Therefore, different mass spectral peaks are acquired at various times during the elution
profile.

The components (molecular features) are identified when ions for that feature
increase at the same time>2. This is established by first constructing a scan window using
the minimum intensity value on each side of the chromatographic peak and then drawing
a baseline between the two signal intensity points. Next, a second baseline (least-squares)
is calculated and drawn through the lower half of the points relative to the baseline.

Finally, the signal height is calculated between the least squares line and the maximum

signal intensity value. In order to be considered a peak, the height must exceed four times
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the noise factor (Nf) multiplied by the square root of the maximum signal intensity. If the

component passes, a parabola is fitted through this peak and will proceed onto step 3.

Step 3. Spectrum Deconvolution

The co-elution of metabolites during chromatography complicates the mass
spectra of a molecular feature through the extraneous contributions of ions from the co-
eluted metabolite®. The presence of the co-eluted ions may contribute peaks which may

not be characteristic of the molecular feature (Figure 12).

Resulting Spectra

Abundance
Abundance

v

Retention Time (min) m/z

Figure 12. Mass Spectra of Co-eluting Metabolites.

As indicated on the chromatogram, metabolites A and B are co-eluting metabolites. The resulting
mass spectra is then a combination of the mass spectra of these two metabolites. Shown in black is
the mass spectra of metabolite A while in blue the mass spectra of metabolite B. AMDIS will

resolve the spectra of these two metabolites.

This then provides a challenge when comparing the derived spectra to a database
of purified molecular standards, devoid of the extraneous ions. Thus, in this

deconvolution step, AMDIS corrects and resolves the mass spectra for a given molecular
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feature by extracting the ions unique to that feature. This is achieved by using the model
shape developed in step 2 and least squares method. Each ion chromatogram is fit into a
unique model profile resulting in a linear baseline. The signals from nearby features are

then subtracted from the first molecular feature thereby resolving the spectra®,

Step 4. Compound Identification

The final step in AMDIS is the identification of the molecular feature via spectral
comparison with the NIST Mass Spectral library. The resolved spectra are compared to
the library spectra (containing 242,466 metabolites) and a score is given to those known
standard spectra which closely resemble the unknown spectra (Figure 13). The higher the

score value, the more closely related the spectra®.

Unknown Spectra A Unknown Spectra B

Abundance
Abundance

| m/z ‘ m/z

Database Spectra Database Spectra

Figure 13. Molecular Spectral Library Matching.
The spectra for metabolite A matches the spectra found in the database while
the spectra for metabolite B does not match the one found in the database.
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LC-MS Molecular Feature Identification

Molecular feature identification with LC-MS based analysis utilizes the molecular
feature extraction algorithm located in Agilent Technologies' MassHunter Qualitative
Analysis software. This proprietary software resolves and locates the mass spectra of a
molecular feature by elucidating the ions that are covariant (proportionally increase and
decrease in abundance), similar to the method employed by AMDIS*>**. The ions are
then grouped by their charge state, isotopic distribution, and/or the presence of adducts or
dimers. Finally, the algorithm assigns these ions to a neutral molecule referred to as a

molecular feature.

Stage 2 of the Data Analysis Pipeline: Data Matrix Preparation

Prior to analysis with statistical tools, the molecular features derived from the
biological samples are compiled in a spreadsheet and are examined for missing data
between samples, outliers are identified, and the measured abundance values are all
scaled for comparative examination via multivariate analyses. It is notable that this initial
step has a profound effect on the results obtained downstream and the importance of how

the data is prepared should not be overlooked or understated (Figure 14).
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Figure 14. Effects of Data Preparation Prior To Principal Component Analysis.

In the PCA plots shown, each data point represents the metabolome from a biological sample, color coded by their
associated cohort (5 samples per each of the 4 cohorts). The first plot (A) is the result of an analysis performed
with metabolites identified in at least 2 of the 20 samples analyzed, without any additional data preparation.
Contrast this with the second plot (B) resulting from an analysis of metabolites appearing in at least 4 of the 20
samples analyzed. The third plot (C) depicts the PCA from B but performed following outlier removal from the
data set. Finally, the fourth plot (D) illustrates the PCA from B performed following median replacement, outlier
removal, and z-score normalization. The approach to data preparation clearly has an effect on the outcome of the
analysis, with the latter approach clearly differentiating each of the samples into their associated cohorts (as
illustrated by the color coded clustering of the points within the plot). The principles of PCA are described in
detail within the text.
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As a first step in data matrix preparation, | eliminate what | refer to as “one-off”
metabolites (that is, molecular features that appear sporadically in only a few number of
samples in the analysis). To accomplish this, the frequency of appearance of each
identified molecular feature is calculated across each cohort (cohort frequency), in
addition to across the entire sample set (total frequency). A histogram is generated by
plotting the number of metabolites as a function of total frequency of appearance (Figure
15). By examining the shape of the histogram and slope in the decline in total
metabolites, | am able to determine a minimum total frequency value. For example, in
Figure 15, there is significant decline in the number of metabolites present between 10%
and 11% of samples. Then from 11% to 31% of samples, the number of metabolites
present continues to decline but at a slower rate. However, from 31% to 100%, the
number of metabolites present in each 10% interval remains similar. Given this, 31%

would be set as the value for our minimum total frequency value.
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Figure 15. Histogram of Metabolite Appearance Among
Numerous Biological Samples.

To visualize the distribution of metabolites across all of the biological
samples, | generate histograms. The histogram shown here highlights
numerous one-offs in the data matrix (nearly 1400 metabolites appear
in 10% or fewer biological samples). Once identified, these one-offs
are typically removed from the metabolite matrix, so as to not impact
subsequent statistical analyses.

To further filter the data, |1 impose a second frequency cutoff that considers the
frequency of a molecular feature within each of the cohorts (rather than across all

samples in the analysis, as described for the first frequency cutoff step).

S=A"+ B+ C" + -

Equation 1. Scoring criteria to
determine low frequency metabolites.
S: score of metabolite

A: Frequency of metabolite in Cohort A
B: Frequency of metabolite in Cohort B
C: Frequency of metabolite in Cohort C
n: total number of cohorts
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As indicated in Equation 1, I calculate a score for each metabolite then simply
use a score value greater than or equal to the one acquired from the minimum total
frequency value. For example, if the data set has 5 samples in 4 distinct cohorts (i.e. 20
samples in total) and the minimum total frequency value is set equal to 20%, as
determined by the histogram (i.e. the metabolite is required to appear in at least 4 of the
20 samples), but I am specifically interested in a cohort frequency of 80% (i.e. 4 of 5
samples in any one of the four cohorts must contain the molecular feature), then the
minimum score value would be 4*+0%+0*+0* which equates to 4* or 256. Therefore, |
would first restrict our data set to metabolites with a total frequency of 20% or greater,
then would retain only those metabolites with a score value greater than or equal to 256.

Once the one-off metabolites have been removed from the data set, missing
values within the matrix of data are then addressed. Missing values arise for various
reasons such as the stringency of the peak identification settings (stage 1 molecular
feature identification), the complexity of the chromatographic peak (masking of a feature
by co-eluting metabolites), metabolite abundance below the limit of detection, or a
metabolite simply being absent from a sample. Due to the nature of the downstream
statistical analysis techniques and their associated calculations, there cannot be any empty
(valueless) cells within the metabolite matrix (data set). Therefore, either the molecular
feature with the missing value must be entirely removed from the data set or a value must
be inserted (imputed) in place of the missing value. Since the former is extreme and can
needlessly eliminate important metabolites from an analysis, missing values are typically

imputed.
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There are a variety of different ways to impute a missing value, some approaches
include populating the empty cells with a value of 1 or 0, using the average value of that
metabolite detected across a cohort, or using the median value for that metabolite®®. Since
metabolite abundance is a direct reflection of the ion abundance value reported by the
MS, and ion abundance is typically on the order of 10* counts or greater, imputing a
value of 0 or 1 for missing data can have a profound and misleading effect on the
distribution of metabolite abundance in that cohort. Therefore, imputation with the
statistical mean or median metabolite value is preferred. The median metabolite value is
used since it is least likely to have a significant effect on the Gaussian-like distribution of
metabolite abundance across a cohort.

Following missing data imputation, metabolite abundance outliers are then
palliated. Outliers may result from unintended variation in the extraction process among
samples, from sample degradation during storage or processing, from chromatographic
variations, or may simply reflect the metabolic state of that particular sample. Outliers are
not uncommon in biological data sets and several mathematical methods of outlier
identification have been developed®”®°. Our approach is to determine the relative error
(outlier value) in the distribution of our data set (Equation 2). Any instance where the
outlier value is 1.5 or greater, the outlier is identified and replaced with the median value

for that metabolite.
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(mean — median)

median

Equation 2. Determination of an outlier
present in a biological cohort.

O: outlier value

mean: average value of metabolite in that cohort
median: median value of metabolite in that cohort

The final step in data preparation involves the scaling of the relative metabolite
abundance values across all samples to permit their comparison to one another. Data
scaling specifically addresses differences in the ionizability of molecules in FID and MS
and differences in absorbance at various wavelengths in UV-Vis. Some metabolites may
be in low abundance yet ionize or absorb readily and produce a large peak intensity,
whereas some metabolites may be in high abundance yet ionize or absorb poorly thereby
resulting in small peak intensities. In fact, peak intensities in MS, FID, or UV-Vis can
vary across several orders of magnitude among a data set of metabolites. A comparison
of raw peak intensity values among these metabolites would then lead to erroneous
conclusions.

Molecular feature standardization such as z-score standardization (Equation 3)
converts all of the metabolite abundance values to a common scale, results in the
production of a zero-mean, and a produces a standard deviation equal to one®:. When
applied, the z-score standardization approach allows the data to then be analyzed on the
basis of correlation and allows each metabolite to be equally important, regardless of its

ionizability or absorbance at a specific wavelength®.
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(x — mean)

Z score =
standard deviation

Equation 3. Z-score standardization
approach for molecular feature
standardization.

x: value of metabolite in the sample

mean: average value of metabolite in all
samples/cohorts

standard deviation: standard deviation value
of metabolite in all samples/cohorts

Stage 3 of the Data Analysis Pipeline: Multivariate Statistical Analysis and Data
Visualization

Multivariate statistics is often used in a metabolomic analysis and is a necessity
during a non-targeted investigation'®. While univariate statistical analyses only examine
one variable at a time, multivariate statistics examines the large collection of variables
(molecular features) found within the data. Here | describe two different techniques
adopted for use in the multivariate statistical analysis portion our metabolomics analyses;

dimension reduction and cluster analysis.
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Dimension Reduction: Principal Component Analysis

As stated previously, the data set acquired during a metabolomics investigation is
comprised of a large collection of variables (molecular features and their relative
abundance) and associated observations (samples that were analyzed). In statistical
analysis techniques, each variable is supplied its own dimension. Therefore for an
analysis which identified over 1000 metabolites, there are over 1000 dimensions.
Because of this, it is challenging to elucidate specific trends between the samples in the
data set by plotting every possible metabolite combination. Dimension reduction
addresses this challenge. Dimension reduction is the process of minimizing the number of
dimensions while still conveying the same information, thereby allowing trends to be
identified within the data set®®®°.

Principal component analysis (PCA, Figure 16) is a form of dimension reduction
that uses linear transformations to elucidate the covariance structure of the metabolites
identified in the biological sample, culminating in the description of the total variance
identified in the data set. By using a covariance approach, not only are the differences
(eg. abundance levels) between the metabolites examined, the influences those variations

have on each of the metabolites are examined as well®>°.
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Figure 16. A 3D-PCA Plot demonstrating the variations
between juxtaposed biological cohorts.

An illustrative three dimensional PCA plot depicting the
differences in the metabolome composition of a healthy (blue
spheres) and diseased (orange spheres) state.

The principal components are derived from the direction that illustrates the
maximal variation within the data set. To illustrate the mathematical steps in principal
component analysis, Figure 17 depicts a three dimensional diamond characterized by
three variables: width, length, and height. This description of the three dimensional

diamond can be simplified by redefining the shape on an alternate (two dimensional)

coordinate system.
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Figure 17. Diamond with a known
width, length, and height depicted
in a three dimensional graph.

The diamond depicted here has three
variables: width, length, and height.
The values of each variable provides
the coordinates needed to plot the
diamond on the graph.

The alternate coordinate system is developed by first identifying the center of the
diamond (i.e. the center of the X, Y, Z coordinate values) and then establishing the
direction of a line that will provide the longest radius encompassing all of the data points
(Figure 18A). This direction (new variable) is denoted as principal component 1 (PC1).
Note that PC1 reflects the greatest variance in the data set. After defining PC1, the
direction with the second longest radius is defined. This direction is defined by first
drawing a line that is perpendicular to PC1 and then rotating the direction of the line to
define its longest radius. This second direction (second variable) is labeled as principal
component 2 (PC2), which reflects the second greatest variance within the data set. The
three dimensional diamond can now be described using these two directions by re-
plotting the diamond on a new coordinate system, defined by the two variables PC1 and

PC2 (Figure 18B). Consequently, the dimensions (variables) can be reduced from three to
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two while still retaining the same relative information about the diamond coordinate
values (width, length, and height). Thus, PCA is method of simplifying the data set

without losing any of the original information.
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Figure 18. Determining an alternate coordinate system using principal component analysis.

In Figure A, the center of the diamond is first identified and a straight line is drawn (black line) through the
center to determine the direction which provides the largest radius. This line is now referred to as PC1. Next, a
line (red line) is drawn perpendicular to the direction of PC1. The direction of the red line which provides the
second largest radius is labeled PC2. Using the largest and second largest radius and associate directions as
new coordinates, the diamond can be re-plotted. Figure B depicts the diamond in a new coordinate system
using the results obtained in Figure A.

A similar approach to dimension reduction can also be applied to metabolomics
data. Suppose there are ‘n” number of metabolites for ‘x> number of samples. If the data
provided in Figure 19 is plotted, it would appear as shown in Figure 19. Each point in the
multidimensional plot is derived from an individual sample and its position in

multidimensional space is a reflection of all of the metabolites pertaining to that sample.
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Figure 19. Acquired metabolomics data set visualized on a multidimensional
graph.

In this figure, the table represents a metabolomics data set with associated abundance
values acquired from GC or LC based analyses. In this data set, each metabolite is
designated as a variable and provides its own dimension. Therefore in the graph on the
right, the diamonds represent the samples and all of the metabolite information obtained
for that sample. The positioning of the samples on the graph is a reflection of metabolite
abundance.

To simplify the description of the samples, the data is transformed using the same
approach as described with the diamond. First the center of all of the data is identified
and the radius that provides the largest variance is used to define PC1 (Figure 20A).
Next, the direction perpendicular to the first that describes the second largest variance is
identified and labeled PC2. This process continues for m number of directions, so long as
it results in a measurable (nonzero) variance (m < n (the number of metabolites)). After
determining the direction of each component, the plot is redefined using the principal
components as the new axes and the resulting variance measured in each component as
the new coordinates (Figure 20B). As previously stated, each sample still contains the

same amount of information (x number of samples with the abundance values for n
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number of metabolites), but the dimensions are reduced from n number of metabolites to

m number of components.
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Figure 20. Using principal component analysis to reduce the dimensions in metabolomics data.

In Figure A, using the data acquired in

Figure 19, the center of all of the diamonds (samples) is determined first and the direction that provides
the most variation (the radius of the diamond) between the samples. This direction is referred to as PC1.
Next, a line is formed perpendicular to PC1, defining the direction that provides the second largest
variation (PC2). This process continues for m number of directions (a value less than the n number of
metabolites). The directions of the PC and their corresponding variance becomes the new coordinates
for the samples. In Figure B, the samples are re-plotted using these new coordinates. By expressing the
data in this manner, the number of dimensions is reduced while still retaining the original information.

To illustrate this analysis with actual metabolomics data, a PCA plot is shown in
Figure 21. This analysis investigated the influence of diet on the pancreatic metabolome
(fully described in Specific Aim 2.3). In this PCA plot, colored spheres represent the
pancreatic samples, and their positioning in the plot is a reflection of their metabolite
composition. The data has been transformed from a form similar to Figure 19 to the new
PCA axes which describe the variance in the metabolic profile obtained from the

samples. Therefore, spheres that are closely juxtaposed in the plot reflect similar
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metabolome composition, whereas spheres which are segregated from one another
exhibit significant variations in their acquired metabolomic profile. It is important to
note, the relative positioning of the spheres is a reflection of the samples included in the
analysis. Therefore, if another analysis was performed focused exclusively on the
samples that appear closely juxtaposed in Figure 21, those samples will be resolved in a

PCA plot, providing insight into the degree of variation amongst those particular samples.
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Figure 21. PCA plot depicting the variation in the metabolic profile
obtained from the pancreas of pigs consuming different diets.

Three dimensional PCA plots of metabolome composition derived from
the pancreas differentiates the four pig dietary cohorts (basal,
basal+probiotic, high fat, and high fat+probiotic) from each other,
demonstrating that dietary consumption (including probiotic
supplementation) can have a significant influence on the metabolite
composition of the organ tissues. Each sphere in the plot reflects the
metabolome of the pig tissue sample. Spheres are colored according to
the diet (orange - basal, blue - basal+probiatic, green - high fat, purple -
high fat+probiotic). Interestingly, grand variations between high fat and
high+probiotic supplemented pigs are observed. Conversely, basal and
basal+probiotic supplemented pigs display smaller variations, as they
are closely juxtaposed in the plot.
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Cluster Analysis: Hierarchical Clustering Analysis
Cluster analysis utilizes multidimensional data and categorizes the samples into

groups known as clusters, based on their similarities*®®®’

. These clusters, while
capturing the data's overall structure, is used as an exploratory analysis to provide an
assessment of the relatedness of the samples in regards to their metabolome composition.
There are different varieties of hierarchical clustering analyses, but agglomerative
hierarchical clustering is the only analysis which does not require the samples to
classified into their respective cohorts. This is important for metabolomics because it
reduces the amount of bias in your data (by not predefining cohorts, the samples are
grouped solely on their degree of relatedness in metabolome composition).
Agglomerative hierarchical clustering results are typically displayed as a dendrogram
(Figure 22), which resembles a phylogenetic tree, depicting the similarities between each

sample. In a metabolomics analysis, samples that are highly similar in metabolite

composition will appear closely juxtaposed in the dendrogram®®.
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Figure 22. Dendrogram depicting the similarities in the
metabolic profile obtained from samples at various stages of
infection.

This dendrogram describes the similarities between different
infection time points which are color coded at the bottom. While the
plot depicts 4 distinct time points with all samples in those time
point clustering together, the first major grouping between the time
points denotes similarities in the metabolic profiles between the
early (Day 10, orange) and late (Day 53, purple). Opposite to that is
the clustering of the middle stages of infection (Day 21 and Day 35,
blue and green respectively).

Agglomerative hierarchical clustering begins by comparing the metabolomes of
each sample (Figure 23). Next, the samples that have the most similar metabolic profile
are connected and referred to as a cluster (the mathematical approach to determining
similarities among the samples is described below). Each cluster is then connected to

another cluster based on the similarities of their metabolic profile. This process continues
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until all of the samples have been connected. Therefore, the closer the distance between

the samples, the more similar the metabolic profile®’.

Step 1.
Calculating

the distance
between

samples

Step 2.
Calculating
the distance
between
clusters

Figure 23. Steps involved in Agglomerative Hierarchical Clustering analysis to determine
the similarities between samples.

Step 1 calculates the distance between the samples (A, B, C, and D). As in the PCA, each sphere
represents all of the metabolite information found within the sample. If the metabolite profile
(appearance and abundance) is similar, a connection will be made. Therefore, since the
metabolic profile of A and B are similar, they are placed closer together, and a connection is
made, likewise for C and D. After the first connection is made, the groups of samples are
described as clusters. Step 2 calculates the distance between the clusters. If the cluster contains a
similar metabolic profile, a connection will be made. Therefore, the closer the clusters and
ultimately the samples are to each other, the more related their metabolic composition.
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There are two steps to calculating the distances in the dendrogram. The first step
is to calculate the distance between the samples. The second is to calculate the distance

between the sample clusters.

Step 1. Calculating the distance between samples

The most common approach to calculating the distance between two samples is
the Euclidean method®”®. This distance calculation uses the Pythagorean theorem
applied to multidimensional data. In this procedure, the distance is described as a line
segment connecting two distinct points (samples). The points exist in a multidimensional
space and are provided coordinates which equal the number of dimensions. As stated in
the PCA section of this dissertation, each variable (molecular feature) is supplied its own
dimension. For example, for an analysis examining 3 metabolites, there will be 3
dimensions, and the coordinates for samples a and b are described as (a;, a,, az) and (b,
bo, bs), respectively. Thus, for a metabolomics investigation one can assume that the
coordinates for sample a would equal (a3, az, ..., a,) where n is equal to the number of
metabolites. The distance between samples a and b would then be described as in

Equation 4.

d(a' b) = \/(bl - al)z + (bZ - a2)2 + -t (bn - an)z

Equation 4. Euclidean Distance calculation to determine the distance between
two points.

Distance (d) between two points a and b is calculated by the square root of the sum of
their squared differences where n is equal to the number of metabolites.
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Step 2.Calculating the distance between sample clusters

The second step in calculating the hierarchical cluster is to calculate the distance
between the clusters. The most common method, the Ward's method, aims to minimize
the variation within clusters®’. In this approach, the mean value of all the distances
calculated between the samples in the cluster (the distances calculated in step 1) is used
as the representative. The distance between clusters is then calculated by determining the
sum of the squared distance between those clusters. This process continues until the
distances between all clusters is calculated. The clusters with the shortest distance are

then connected and the process begins again®.

Correlation Network Analysis

Correlation Network Analysis (Figure 24) permits the visualization of the positive
and/or negative relationships and interactions amongst various metabolites (and/or other
biomolecules) in a sample™*®"*. Depending on the nature of the study, the networks can
include data derived from the metabolome, proteome, and/or genome, bridging a gap
which often occurs between the various "-omics" sciences, providing a more cohesive

analysis.
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Figure 24. Correlation Network depicting the
connections made within and between metabolites
and proteins.

The correlation network presented depicts the
correlations (r > |0.95|) identified within and between
the metabolites and proteins acquired from a
biological sample. The metabolites are shown in the
top circle and are illustrated using black points.
Within this circle, there are positive (green lines) and
negative (red lines) correlations identified between
the metabolites. The proteins are shown in the bottom
circle and are illustrated using blue points. As with
the metabolites, there are positive and negative
correlations identified between the various proteins
found within the biological sample. In addition, there
are connections drawn between various metabolites
and proteins. These connections illustrate the positive
and negative interactions/regulations between the
metabolites and proteins.

The networks pictorially represent the correlations between the metabolites,
where green lines represent a positive correlation and red lines denote a negative
correlation. When a unique network is prepared for each cohort, the connections made

within the plots can provide insight into the alterations to metabolite interactions. This in
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turn may lead to the identification of potential biomarkers or to mechanistic insight

(Figure 25)18:1971,

Correlation Network of Cohort A Correlation Network of Cohort B

Figure 25. Correlation networks of two juxtaposed biological cohorts.

The correlation network presented is a reflection of the correlations identified between the metabolites in cohorts
A and B. The plot depicts 22 different metabolites labeled numerically and are conserved between both plots. That
is, the metabolite labeled 1in cohort A is the same metabolite labeled 1 in cohort B. While it appears that both
cohorts exhibit similar correlations between the metabolites, the metabolites highlighted in yellow exhibit positive
correlations in cohort A and no correlations in cohort B. This indicates an alteration in the relationship of
metabolites 8, 12, and 20 between the two cohorts. By focusing my attention on those metabolites specifically, |
can determine their identity, biological relevance, and elucidate other pathway specific information.

Stage 4 of the Data Analysis Pipeline: Determination and Identification of

Metabolites of Interest
The final stages of a metabolomics investigation is to determine and identify key
metabolites of interest. This can occur by identifying alterations to specific pathways as a

consequence of disease or determining an appropriate biomarker for disease prediction.
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To determine the top metabolites of interest, | filter the data set by using
combination of univariate analyses such as fold change, p-value, and frequency values. |
generally focus my attention on metabolites that exhibit a high level of fold change (|log;
(fold change) > 1.5]), statistically significant p-value < 0.05, and at least a 50%
appearance in one of the cohorts under investigation (the process for determining fold
change and p-value is described in detail below). To identify the key metabolites, | use
AMDIS in combination with the NIST database for the GC-MS acquired data set, while |
compare the LC-MS/MS data to the Metlin and Human Metabolome Database (HMDB)
to identify nonvolatile metabolites. Finally, potential biomarkers are assessed using the

area under a Receiver Operating Characteristics (ROC) curve, as described below.

Fold Change
The relative fold change for a metabolite is calculated by comparing its median

abundance value in each cohort under investigation (Equation 5).

log, (Fold Ch = (media"A)
0g,(Fo ange) = log, median,

Equation 5. Calculation of log, fold change for
metabolite abundance in juxtaposed biological
cohorts.

median,: median value of metabolite in Cohort A
mediang: median value of metabolite in Cohort B
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The log; fold change value is used to determine whether the metabolite is up or
down regulated with respect to cohort B. While this analysis is straightforward, one
scenario arises where an additional consideration is required. That is, in the case where a
metabolite is present in one cohort but completely absent in the other cohort (i.e. there is
no median value for the latter cohort). In this case | impute a missing value of 1 for the
cohort lacking the metabolite, to avoid a mathematical error reflecting division by zero

(see Equation 5).

P-value

After calculating the fold change value for each metabolite in the data set, |
calculate the p-value of that metabolite. Here | utilize a two tailed unpaired (two-sample)
T-test and a statistically significant value of p < 0.05. As the selected T-test is unpaired
and two tailed, 1 am able to compare the two independent cohorts and examine the data in
both directions (the disease group can be either higher or lower than the healthy group)”.
It is important to recognize that a p-value of 0.05 means that there is a 5% chance of
obtaining the observed feature only if the null hypothesis is true (in this case, the feature's
inclusion is the result of random sampling and not attributed to alterations in
metabolites). Therefore, if a feature is retained because the p-value < 0.05, it may actually
be a false positive (discovery)”. To reduce the false discovery rate, adjusted p-values are
calculated using the Benjamini-Hochberg method. In this method, the p-values are listed

in ascending order and assigned a rank relative to their position. Next, the critical value is
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calculated (Equation 6) where the false discovery rate (Q) is a value chosen by the user.
The higher the false discovery rate value, the more stringent the results’®. After
calculating the critical value, the p-values are compared to the critical value. The largest
p-value that is still less than the critical value is then established as the new p-value
cutoff. Once the new cutoff is determined, the new p-value cutoff is transformed to
reflect a p-value < 0.05. This new adjusted p-value is calculated by multiplying the

original p-value by the ratio of the total number of tests (m) to the rank of the individual

(i).

i
itical value = (—
critical value (m)Q

Equation 6. Benjamini-Hochberg Critical Value
for the reduction of the false discovery rate.

i: the rank of the individual

m: total number of tests

Q: false discovery rate

Selection of Top Features

Following the calculation of fold change and adjusted p-values, | generate
volcano plots (Figure 26) to visualize the number of biologically significant metabolites
that are within our cut-off value (|logz(Fold Change) > 1.5| and p-value,gj < 0.05). By
selecting these cutoff values, | am able to focus my attention to only those highly varied

but statistically significant metabolites.

60



18

16 .

14
—
]
212 .
g 10 .. -

L[] L] L]

&, : . - .
=] . - o .'M..
s . e gee - *

[ .* .
[=] o T
- o ts Ta gl . L] ‘!.

4 T te e* Y

. - R
2 ty Ot . e,

-25 20 15 10 5 0 - 5 1=0 1=5 50 25
log, fold-change(Basal / Basal + Probiotic)

Figure 26. Volcano Plot depicting the fold change versus p-value acquired for differentially-

compared metabolites.

The volcano plot depicts the log, fold change values versus the -log;op-value. The metabolites that
are within our cutoff are colored in red, those are within either p-value or fold change cutoff are in
grey, and those that are not within either cutoff value are in black.

After determining which molecular features in the MS acquired data set are
statistically different between the cohorts, they are then identified via a database. For GC-
MS acquired data, the features have already been identified using the NIST database
(Step 4 in AMDIS). However, for the LC-MS acquired data, there is a list of unknown
molecular features. To identify the unknown features, | use the acquired MS/MS data
obtained from each molecular feature and match the acquired molecular spectra to a
library (Metlin and the Human Metabolome Database) molecular spectra using the CID
energies of 10eV, 20eV, and 40eV. After metabolite identification, | determine biological
relevance and if needed, whether the metabolite could serve as a good biomarker of the

disease (via a ROC curve).
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ROC Curves

The determination and identification of a biomarker for a particular disease or
organism requires the use of many statistical analyses, testing, and reproducibility to
ensure that marker is adequate for disease prediction. By using the statistical tools
described above, it is possible to first elucidate the metabolites associated with the
variations observed between healthy and diseased individuals. By identifying which
metabolites cause the greater amount of variance, those metabolites can be extracted from
the data set and a Receiver Operating Characteristics (ROC, Figure 27) curve is generated

to evaluate the metabolite's ability to serve as a good biomarker™.
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Figure 27. ROC Curve illustrating the potential of using dimethyl trisulfide or dimethyl disulfide as a
biomarker.

This ROC curve is depicting relationship of the true positive rate (sensitivity) versus the false positive rate (1-
specificity) of the metabolites dimethyl trisulfide and dimethyl disulfide®. The area under the ROC curve provides
an indicator for the feasibility of a metabolite to be biomarker. An excellent biomarker is described as having an
area under the curve (AUC) equal to 1, while an AUC of 0.5 means the analyte should not be used as a biomarker
of disease. For these analytes, the AUCs are 0.77 and 0.80 respectively and are considered good biomarkers.
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While the ROC curve itself serves as a visual tool, the value obtained from the
area under the ROC curve (AUC, C-statistic), determines the metabolite's ability to be a
good biomarker. The AUC is calculated using a non-parametric method known as the
trapezoid rule. In this method, each adjacent point under a curve is depicted as a

trapezoid. The area is then computed using the equation demonstrated in Equation 7.

Y, + Y. Y, + Y. Y, . +7Y,
AUC=<AX(12 2)+ AX(ZZ 3>+--~+AX (%))

Equation 7. Calculating the area under the curve using the trapezoid rule.

The area under the curve is calculated using the sum of the width of each trapezoid (Ax),
multiplied by the sum of the length of the points from the baseline (y), divided by the number
of points (2). This will continue for n number of points.

To be denoted as an excellent biomarker for a disease, the metabolite is described
as having the maximum area under the curve (AUC also known as the C-statistic)
possible and equates to a value of 1'®*". Conversely, those analytes whose curve lies
along the diagonal line exhibit areas equaling 0.5. This value of 0.5 is attributed to

random guessing and will exclude them from the analysis.

Summary

My goal in specific aim 1 was to develop an approach to a metabolomics based

analysis (Figure 28).
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Figure 28. The Metabolomics Pipeline for Data Acquisition and Analysis.

The flowchart illustrated above is a modified version of the original metabolomics pipeline from

Figure 10. In this modified version, | added the software used for determining the molecular features in GC-MS
(AMDIS), and LC-MS (Agilent's MassHunter Qualitative Analysis) acquired data sets. | also illustrated the
portion of the pipeline that differs between GC-MS and LC-MS data. This divergent step occurs after Step 5 in
the original pipeline. For LC-MS data, | identify the molecular features using the acquired MS/MS data. For the
GC-MS acquired data, AMDIS has already determined the identities of the molecular features in step 4 of its
analysis.

As mentioned earlier, this pipeline was developed alongside the metabolomics
analyses described in Specific Aim 2. The pipeline has been tailored primarily to a global
metabolomics analysis and encompasses both volatile and non-volatile investigation

routes, although is readily applicable to targeted analyses.
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Pitfalls and Limitations to the Pipeline

As illustrated in this specific aim, metabolomic based analyses require a multitude
of different components. A major limitation to this pipeline is the length of time for the
analysis. To obtain a comprehensive assessment of the metabolite composition of the
samples, | utilize multiple chromatography approaches (GC and LC based). While this
increases the amount of information | obtain from the samples, this also increases the
data acquisition analysis time. In addition, there is not one sole piece of software that can
acquire and analyze the data set, therefore | had to incorporate a vast amount of different
software platforms and algorithms, requiring me to develop technical expertise in each.

The ability to determine all metabolites of interest is limited for the LC-MS
acquired data set. Following the acquisition of MS data, MS/MS data is acquired for the
five most abundant ions using CID energies of 10eV, 20eV, and 40eV. After analyzing
MS/MS data generated from another lab, | discovered that their technique of pooling all
samples into one vial for MS/MS analysis resulted in very few of the top features
acquiring MS/MS data, due to out-competing of metabolites with similar retention times.
Because of this, | decided to collect MS/MS data on all samples. While | found that this
new approach significantly increases the number of features with MS/MS acquired data
(from 20% to at least 90%), this also significantly increases the analysis time as each
sample will have 4 chromatographic runs (MS, 10eV MS/MS, 20eV MS/MS, and 40eV
MS/MS).

Following the acquisition of the LC-MS acquired data, | match the acquired mass

spectra of the molecular feature obtained during the analysis to a mass spectra of a known
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compound in the Metlin and Human Metabolome Database (HMDB). While these
databases are among the most commonly cited, there is a limited number of metabolites
with MS/MS derived data within these databases. With the added stringency of matching
the 10eV, 20eV, and 40eV mass spectra to the database, many of the top features remain

unidentified.
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SPECIFIC AIM 2.1: METABOLOMICS AS A BIOSENSOR,;
DEVELOPING AN ELECTRONIC NOSE.

Objective: Use metabolomics as an electronic nose to determine if global
metabolic profiling of microbial volatile organic compounds can differentiate select

biological warfare agents.

Introduction

Francisella tularensis (the causative agent of tularemia), Burkholderia
pseudomallei (melioidosis), and Brucella melitensis (brucellosis) are zoonotic
intracellular parasites considered by the US Centers for Disease Control and Prevention
(CDC) as high risk biological warfare agents due to their high morbidity/mortality rate,
ease of dissemination, emergency response procedures, and projected social impact”.
Because these agents can be properly managed with early detection, rapid and accurate
pathogen identification is essential.

Though sensitive and selective detection techniques involving Polymerase Chain
Reaction (PCR), microbial culturing, and/or Enzyme-Linked Immunosorbent Assays
(ELISA) are well established,”® the techniques are typically time consuming, laborious,
and costly. To circumvent these issues and to enhance the capabilities of the biodefense
and public health sector, continued exploration of methods and approaches for the

detection of biological warfare agents is vital.

67



Microbial volatile organic compounds (mVOCs) are a large class of structurally
diverse, microbial-derived organic molecules, generally related by their volatility at room
temperature. In our lab, we have demonstrated the diagnostic potential of VOCs derived
from biological samples’®°. Similarly, other studies report on the differentiation of
bacteria using the mVOC metabolome. For example, studies comparing the mVOCs
produced by sepsis inducing bacteria have identified unique biomarkers indicative of S.
aureus, P. aeruginosa, and E. coli® ™, Differentiation of antibiotic susceptible and
resistant strains has also been achieved through mVOC profiling®.

To perform our analysis of VOCs emanating from biological samples, we utilize a
specialized sampling method known as headspace solid phase microextraction (h\SPME).
By using hSPME, we isolate and concentrate the analytes present in the sample, greatly

facilitating their detection (Figure 29)%%08%°87,
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Figure 29. Enhanced analysis of VOCs using hSPME.

With direct injection, headspace VOCs are too dilute and difficult to detect by GC (left chromatogram).
However, using hSPME, a sorbent (a polymer coating on a silica fiber) preconcentrates the headspace
VOCs before analysis (see Figure 30), thereby permitting their detection (right chromatogram). Both
chromatograms were derived from an identical biological sample and were analyzed using a GC equipped
with a flame ionization detector (FID). Note the difference in the magnitude of the Y-axis (signal
strength) and in the number of peaks (detected metabolites) when hSPME is used. A single hSPME fiber
type was used for the right chromatogram. Also note that with a 20 min hSPME and 25 min GC run,
VOC fingerprinting is complete in less than lhr.
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A typical hSPME analysis (Figure 30) involves the extraction of VOCs via
partitioning into a polymeric coating adhered to a fused silica rod (fiber), subsequent
desorption of the VOCs by heating the fiber in the injection port of a gas chromatograph,
separation of the VOCs by gas-liquid partition chromatography, and detection of the
VOCs via flame ionization or mass spectrometry. Comparison to a reference database

enables VOC identification.

Fused silica fiber

Polymer coating

——)- Headspace

Figure 30. Solid-phase microextraction of VOCs in the headspace
above a biological sample.

The SPME fiber is exposed to the headspace above the sample to facilitate
the extraction of VOCs. The volatile analytes emanating from the sample
enter the headspace where they interact and bind to the polymeric coating
on the SPME fiber.

The choice of polymeric coating is an important consideration when performing a
hSPME analysis, as it dictates the type of analytes that are extracted (“like dissolves
like”). Several SPME fiber coatings are commercially available, including polyacrylate

(PA), polydimethylsiloxane (PDMS), carbowax-polyethylene glycol (PEG), and mixed
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phases of carboxen (CAR)-PDMS, divinylbenzene (DVB)-PDMS, and CAR-DVB-
PDMS. While the polarity of the analyte of interest is typically used to guide the selection
of a particular SPME fiber, the Couch lab has shown that the multifarious nature of
biological sample composition dictates the use of multiple SPME fiber types for maximal
metabolomic coverage of the total VOCs®. The greater the number of metabolites
identified, the greater the probability of uniquely differentiating a biological cohort. Thus,
we have developed and currently employ a multi-hSPME approach to VOC metabolomic

investigations.

While multi-hSPME greatly increases the number of metabolites identified,
multiple sample extractions are required (at least one per fiber type), thereby slowing the
throughput of sample analysis. Our initial approach to addressing this issue was the use
of a combinatorial analysis to identify core three-, four-, and five-fiber groupings that
afford substantial (89-96%) coverage of the total VOC metabolome®. However, maximal
(i.e. 100%) coverage of the VOC metabolome is preferred, so we developed and patented
a novel extraction device that permits us to perform simultaneous multifiber extractions
of a sample (simulti-hSPME; Figure 31) using all of the commercially available fiber
types simultaneously, thereby ensuring maximal VOC metabolome coverage, while

dramatically increasing the throughput of a VOC metabolomics investigation.
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Figure 31. The simulti-hSPME device for multifiber extraction.

For clarity, the device is shown with only one hSPME syringe in place, but it can
accommodate up to nine syringes simultaneously. To extract the VOCs, sample
vials are placed within the device and then the SPME fibers are exposed to the
VOCs in a headspace chamber located directly above the sample vial.
Alternatively, the device is assembled with a base piece designed to connect
directly in-line with a sample, for example to monitor ambient, inhaled, or
exhaled air. Following the extraction, the fibers are then desorbed into a standard
GC. We have used the simulti-hSPME device to analyze a diverse array of
samples including blood, cell cultures, breath, feces, and ocular fluid.

Extraction duration is another important consideration when performing a simulti-
hSPME analysis, as it can dictate the number of analytes that are extracted. To illustrate
the effect of extraction duration, the Couch Lab used two different SPME fibers (a CAR-

DVB-PDMS and PA fiber) in conjunction with GC-MS to identify and quantify the
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VOCs extracted from a human fecal sample?®. To perform the analysis, samples were
placed in the simulti-hSPME device and then an individual SPME fiber was placed into
the headspace above the sample for various time intervals (ranging from 1 min to 16 hr;
the temperature was held constant throughout the extraction). Extracted analytes were
then immediately desorbed into a GC-MS and spectral comparison with the NISTO8
database facilitated analyte identification (only compounds with a 90% or greater
probability of match to a molecule in the NISTO8 library were scored). Figure 32

illustrates a plot of the number of analytes identified as a function of extraction duration.
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Figure 32. Extraction duration and headspace SPME of
human feces?.

A plot of the number of identified analytes as a function of
extraction duration is presented. Nonlinear regression fitting the
hyperbolic extraction curves yields a Y .y 0f 114 +/- 3 for the
CAR-DVB-PDMS fiber (RZ: 0.9937) and 94 +/- 4 for the PA
fiber (R%= 0.9791).

As seen in Figure 32, the CAR-DVB-PDMS fiber isolated a greater number of
identifiable analytes from the sample than did the PA fiber, regardless of the extraction
duration. This result highlights the influence of fiber choice on VOC metabolomics. For

both the PA and CAR-DVB-PDMS fibers, total analyte extraction appears hyperbolic,
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with a near maximum value (Ymax) occurring with a 960 minute (16 hour) extraction
duration (98% of Ymax). As illustrated with the CAR-DVB-PDMS fiber (Figure 33),
individual analyte extraction rates are analyte specific, with some metabolites (such as
indole and methyl indole) rapidly reaching equilibrium and others (such as acetic acid,
propanoic acid, and caryophyllene) proceeding more slowly. In some cases (such as
observed with methyl phenol and farnesene), metabolite titers plateau then subsequently
wane with increased exposure duration, a phenomena attributed to higher affinity
compounds displacing those with lower affinity for the fiber, thereby lowering the titer of

the latter.
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Figure 33. A plot of area under the
chromatographic curve as a function of time for the
indicated analytes obtained using the CAR-DVB-
PDMS fiber.

This plot illustrates the differences in the extraction
rates for the indicated metabolites. See text for further
discussion.
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The key to a successful comparative metabolomics analysis is the inclusion of a
sufficient number of metabolites to permit differentiation of the biological cohorts. To
reiterate, the greater the number of metabolites identified, the greater the probability of
uniquely differentiating a biological cohort. As the extraction profile of a biological
sample is hyperbolic, the extraction duration can be altered/optimized to increase or
decrease the total number of metabolites included in the derived VOC metabolome (i.e.
the number of metabolites in the resulting spreadsheet/data set is a reflection of the
extraction duration). For clinical diagnostics, the goal is to define the shortest extraction
duration permitting clear differentiation of the cohorts. The Couch Lab has illustrated the
impact of extraction duration in a fecal VOC analysis, wherein 18 hour and 20 minute
extractions (via simulti-hSPME) result in VOC metabolomes with a sufficient number of
metabolites to differentiate alcoholics from healthy study participants, while a 2 minute

extraction duration does not (Figure 34).
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Figure 34. 3D-PCA illustrating the effects of extraction duration and cohort differentiation.

Extraction duration determines the number of metabolites included in a metabolomics data matrix, and thus effects
the probability of successfully differentiating biological cohorts using statistical analyses. To illustrate this, we
performed a comparative fecal VOC analysis of healthy study participants vs. clinically diagnosed alcoholics.
Three dimensional PCA plots generated from the derived fecal VOC metabolomes are shown. Healthy participants
are identified as blue spheres, while alcoholic patients are denoted as yellow spheres. While an 18 hr (A) and 20
min (B) simulti-hSPME analysis of the feces permits the clear differentiation of the healthy and alcoholic patients,
a 2 min (C) simulti-hSMPE does not. Through optimization of the extraction duration used with simulti-hSPME, a
ranid diaanostic test can be develooed.
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To address the objective of Specific Aim 2.1, | sought to determine if global
metabolomic profiling of the mVVOC metabolome could generate a microbial fingerprint
to uniquely identify and differentiate select biological warfare agents (Francisella
tularensis, Burkholderia cenocepacia, and Brucella neotomae). A multifiber hSPME
analysis was performed, and to enable rapid visualization of the m\VOC metabolomes, |
converted the chromatograms into binary plots resembling retail Universal Product Codes
(UPC bar codes). In these binary plots, the presence of a white line indicates the presence

of a peak in the chromatogram at the specified retention time (Figure 35).
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Figure 35. Conversion of GC-FID chromatogram to a binary
plot.

On the left is a chromatogram obtained from a hSPME extraction
of an F. tularensis liquid culture. The analytes acquired during
the extraction were separated via gas-liquid partitioning and the
resulting chromatographic peaks were converted to the binary
plot. On the right, is the binary plot. This plot resembles a UPC
code where the white bars are indicative of a peak at a specified
retention time (y-axis).

This multifiber hSPME analysis was performed prior to the development of
simulti-hSPME in the Couch lab, and as such, single hSPME fibers were individually

used for the mVVOC extraction. The corresponding binary plots were generated for each
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of the fibers employed, then the plots were condensed/compiled into one single plot to
create a mVVOC fingerprint for the bacterium.

In addition, I also explored the influence of select environmental effectors on the
mVOC fingerprints generated above, and went on to produce mVOC fingerprints that
differentiate antibiotic sensitive and antibiotic resistant strains of the biothreat agents. All

of this work is described in detail below.

Materials and Methods

1. Bacterial Strains and Culture Media

The following reagents were obtained through the NIH Biodefense and Emerging
Infections Research Resources Repository, NIAID, NIH: Francisella tularensis spp.
novicida, Strain CG62, NR-580; Burkholderia cenocepacia, Strain LMG 16656, NR-701;
Brucella neotomae, Strain 5K33, NR-684, Yersinia pestis, Strain A1122, and F.
tularensis, Strain NIH B38. Bacterial cultures were grown using rich media containing
Tryptic Soy Broth (TSB) supplemented with 0.1% cysteine (TSBC), TSBC supplemented
with 50 pg/mL kanamycin, modified Muller-Hinton media (mMH; 0.025% ferric
pyrophosphate, 1 mM CaCl,, 1 mM MgCl,, 0.1% glucose, and 2% Isovitalex
supplement), mMH + 10ug/mL of kanamycin, or a defined minimal media (referred to as
Modified Chamberlin’s Defined Media (MCDM)) containing 0.4 g/L L-Arginine, 0.4 g/L
L-Aspartic Acid, 0.2 g/L L-Cysteine, 0.2 g/L L-Histidine, 0.4 g/L L-Isoleucine, 0.4 g/L
L-Leucine, 0.4 g/L L-Lysine, 0.4 g/L L-Methionine, 2.0 g/L L-Proline, 0.4 g/L L-Serine,

2.0 g/L L-Threonine, 0.4 g/L L-Tyrosine, 0.4 g/L L-Valine, 0.04 g/L Spermine
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disphosphate, 0.004 g/L Thiamine HCI, 0.002 g/L L-Calcium pantothenate, 4.0 g/L
Glucose, 10 g/L NaCl, 0.135 g/L MgSQO4+7H,0, 1.0 g/L KH,PQOy4, 1.0 g/L K;HPO,, 1.92
g/L Sodium Citrate, 0.002 g/L FeSO4+7H,0, and pH adjusted to 6.2. Agar was added at a
concentration of 20 g/L to prepare solid media for petri plates. All work was conducted

using aseptic technique in an approved BSL2 laboratory following approved protocols.

2. Bacterial Cultures

2.1. Multifiber Differentiation and Environmental Effectors

Individual bacterial colonies isolated from TSBC agar plates were used to
inoculate 2 mL of TSBC in a 15mL Falcon conical tube. The tube was capped with a
foam plug and the liquid cultures were incubated for either 8 or 18 hours at 37 °C, 250
rpm. A sterile serological pipette was used to dispense 250 pL aliquots of the culture into
amber autosampler vials (VWR Screw Top Vial Amber Glass 15 x 45mm; 4 mL), and the
vials were stored at -80 °C until the sample was analyzed.

Alternatively, cells from an overnight TSBC culture were harvested by
centrifugation (4 °C, 3800 x g, 15 min), washed three times with 1 mL of MCDM (cells
were collected by centrifugation after each wash), then resuspended to an ODgy = 1.0 in
MCDM or MCDM supplemented with 25 mM MgCl,, 12.5 mM NiCl,, or 6.25 mM
NaCl. Cultures were then incubated in a foam capped 125 mL Erlenmeyer flask at 37 °C,
250 rpm, for 8 hours, dispensed in 250 uL aliquots into amber autosampler vials, snap

frozen in liquid nitrogen, and stored at -80 °C until analyzed.
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2.2. Preparation of competent cells

Yersinia pestis competent cells were prepared as previously described with few
modifications®. Overnight liquid cultures of Yersinia pestis A1122 were grown at 28°C
in Tryptic Soy Broth with 0.1% cysteine (TSB-C) at 250 rpm. A healthy overnight
culture was diluted 1:50 in 50 mL fresh TSB-C and allowed to grow to an ODggo Of 0.5
(approximately 3 hours). Cells were harvested by centrifugation at 4000 x g for 10 min at
4°C, then washed once with sterile MilliQ water, and once with sterile Yersinia
transformation buffer (15% glycerol, 272 mM sucrose). Cells were resuspended in 400
ML of transformation buffer, aliquoted, snap frozen, and stored at -80 °C until used.

Francisella tularensis competent cells were prepared as previously described with
some modification®®. Liquid cultures of Francisella tularensis subsp. tularensis NIH B-
38 were grown in modified Muller-Hinton media (mMH; 0.025% ferric pyrophosphate, 1
mM CaCl,, 1 mM MgCl,, 0.1% glucose, and 2% Isovitalex supplement) at 200 rpm for 3
days. A healthy culture was diluted 1:10 in 80 mL fresh mMH and allowed to grow to an
ODgoo of 0.6 (approximately 3 days). Cells were harvested by centrifugation at 4000 x g
for 10 min at 4°C, then washed twice with sterile Francisella transformation buffer (500
mM sucrose). Cells were resuspended in 400 pL of transformation buffer, and used fresh

the same day for transformation.

2.3. Transformation of microbes
Transformation of Yersinia pestis was conducted essentially as described
previously®. 40 pL of competent cells were incubated with 5 uL of pHSG298 (~100

ng/pL) over ice for 1 min then transferred an ice-cold 0.2 cm electroporation cuvette.
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Cells were electroporated with a single electric pulse (25 pF, 200 Q) at a field strength of
12.5 kV/cm. Transformed cells were added to 1 mL of SOC medium and incubated at
28°C, 250 rpm for 2 hours. Transformants were identified by plating on TSB-C agar
plates with 50 pg/mL kanamycin; transformant colonies were visible within 24 hours.
Transformation of Francisella tularensis was conducted as described previously,
with some modification®. 200 pL of competent cells were incubated at room temperature
for 10 minutes with 2 uL of pFNLTP1 (~100 ng/uL) then transferred to an ice-cold 0.2
cm electroporation cuvette. Cells were electroporated with a single electric pulse (25 pF,
600 Q) at a field strength of 12.5 kV/cm. Transformed cells were added to 1 mL of
mMH broth and incubated at 37°C, 250 rpm for 6 hours. Transformants were identified
by plating on mMH agar plates with 10 pg/mL kanamycin; transformant colonies were

visible within 4 days.

2.4. Differentiation of Wild type and Kanamycin Resistance

Individual bacterial colonies isolated from TSBC agar plates for Y. pestis wild
type or TSBC + 50 pg/mL kanamycin agar plates for Y. pestis kanamycin resistance were
used to inoculate overnight seed cultures using 10 mL of TSBC (or 10 mL of TSBC + 50
pg/mL kanamycin) in a 25mL Falcon conical tube. For F. tularensis, individual bacterial
colonies isolated from MMH agar plates for wild type or MMH + 10 pg/mL kanamycin
agar plates for kanamycin resistance were used to inoculate overnight seed cultures using
10 mL of MMH (or 10 mL of MMH + 10 pg/mL kanamycin) in a 25mL Falcon conical
tube. The tube was capped with a loose lid and tapped to prevent the lid from falling off.

The liquid cultures were incubated for 18 hours at 37 °C, 250 rpm. The next morning,
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ODggo Was measured and production flasks were generated using 500 pL of an ODgy = 1
culture to 25 mL of fresh TSBC (or MMH) media in a 125 mL Erlenmeyer flasks. For the
resistance strains, 50 pg/mL (or 10 pg/mL) of kanamycin was added to the culture. The
liquid production flasks were incubated for 24 hours at 24 °C, 200 rpm. For the simulti-
hSPME extraction, the simulti-hSPME device was placed over top the culture. For all
other extractions, 250 pL aliquots of the production flask and corresponding media were
dispensed into amber autosampler vials, snap frozen in liquid nitrogen, and stored at -80

°C until analyzed.

3. mVOC Profiling

3.1. Multifiber Differentiation and Environmental Effectors

All samples were analyzed by hSPME. Sample vials were preheated to 37 °C for
30 minutes then a SPME fiber assembly was manually positioned into the headspace
above the culture and the fiber exposed to the volatiles for 60 minutes (the sample vial
temperature was held at 37 °C for the duration of the exposure). The fiber assembly was
then placed into the GC inlet for thermal desorption of the analytes. The following SPME
fibers (Supelco, Bellefonte, PA) were used in the investigation: DVB-PDMS 65 um, PA
85 um, CAR-PDMS 75 um, CAR-PDMS 85 um with stableflex, PDMS 100 um, PDMS
7 um, PEG 60 pm, and CAR-DVB-PDMS 50/30 um with stableflex. All fibers were
preconditioned before use, as per the manufacturer’s instructions (Table 1). After every
sample analysis, the fiber was reanalyzed (without exposure to a sample) to ensure

complete desorption of analytes. All analyses were performed in triplicate.
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Table 1. SPME Fiber Operational Conditions.

Fiber Inlet Temperature (°C) Precondition Time (min)

CAR/PDMS 75 pm 300 60
PDMS/DVB 65 pm 250 30

PDMS 7 pm 320 60
DVB/CAR/PDMS 50/30um Stableflex 270 60
CAR/PDMS 85 um Stableflex 300 60
CW (PEG) 60 pm 240 30

PDMS 100 pm 250 30

PA 85 pm 280 60

3.2. Differentiation of Wild type and Kanamycin Resistance

All samples were analyzed by hSPME. For the 60 minutes extraction trials,
sample vials were preheated to 37 °C for 30 minutes then a SPME fiber assembly was
manually positioned into the headspace above the culture and the fiber exposed to the
volatiles for 60 minutes (the sample vial temperature was held at 37 °C for the duration of
the exposure). The fiber assembly was then placed into the GC inlet for thermal
desorption of the analytes. The following SPME fibers (Supelco, Bellefonte, PA) were
used in the investigation CAR/PDMS 85 pm with stableflex, 100 pum PDMS,
PDMS/DVB 65 pum, PA 85 um, DVB/CAR/PDMS 50/30 um, PEG 60 um. All fibers
were preconditioned before use, as per the manufacturer’s instructions but for 15 minutes
each. Prior to the initial sample analysis, the fiber was analyzed (without exposure to a
sample) to ensure complete desorption of analytes. The analysis was performed in
triplicate.

For the 15 minutes extraction trials, sample vials were preheated to 80 °C for 15
minutes (to compensate for the shorter incubation and extraction duration) then a SPME

fiber assembly was manually positioned into the headspace above the culture and the
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fiber exposed to the volatiles for 15 minutes (the sample vial temperature was held at 80
°C for the duration of the exposure). The fiber assembly was then placed into the GC inlet
for thermal desorption of the analytes. The following SPME fibers (Supelco, Bellefonte,
PA) were used in the investigation CAR/PDMS 85 pm with stableflex, 100 um PDMS,
PDMS/DVB 65 pm, PA 85 um, DVB/CAR/PDMS 50/30 um, PEG 60 pm. All fibers
were preconditioned before use, as per the manufacturer’s instructions but for 15 minutes
each. Prior to the initial sample analysis, the fiber was analyzed (without exposure to a
sample) to ensure complete desorption of analytes.

For the simulti-hSPME trials, the sample flasks were preheated to 37 °C for 30
minutes then simulti-hSPME device was manually positioned on top of the flask. The
SPME fibers were inserted into the device and exposed to the volatiles in the headspace
above the culture 30 minutes (the sample vial temperature was held at 37 °C for the
duration of the exposure). The fiber assembly was then placed into the GC inlet for
thermal desorption of the analytes. The following SPME fibers (Supelco, Bellefonte, PA)
were used in the investigation CAR/PDMS 85 pum with stableflex, 100 um PDMS,
PDMS/DVB 65 pm, PA 85 um, DVB/CAR/PDMS 50/30 um, PEG 60 pm. All fibers
were preconditioned before use, as per the manufacturer’s instructions but for 15 minutes
each. Prior to the initial sample analysis, the fiber was analyzed (without exposure to a
sample) to ensure complete desorption of analytes. The analysis was performed in

triplicate.

82



4, Instruments

4.1. Multifiber Differentiation and Environmental Effectors

Samples were analyzed using an Agilent 6890 Plus GC-FID equipped with a
DB5-MS capillary column (Agilent, Palo Alto, CA), 15 m in length, 0.25 mm ID, and
0.25 um film thickness, and a 0.75 mm ID SPME injection port liner operated in splitless
mode at varying inlet temperatures (Table 1). Helium carrier gas was used at a flow rate
of 1.5 mL/min and the GC oven was held at an initial temperature of 35 °C for 1 min,
ramped to 80 °C at 3 °C/min, then to 120 °C at 10 °C/min, to 260 °C at 40 °C/min and
held for 2 min, and finally to 280 °C at 40 °C/min. The final temperature of 280 °C was

held for 2.5 min. The total run time for each analysis was 30 min.

4.2. Differentiation of Wild type and Kanamycin Resistance

For the GC-FID trials using the 60 minutes extraction duration, the samples were
analyzed using an Agilent 6890 Plus GC-FID equipped with a RXI-5Sil MS capillary
column (Restek, Bellefonte, PA), 30 m in length, 0.25 mm ID, and 0.5 um film thickness,
and a 0.75 mm ID SPME injection port liner operated in splitless mode at varying inlet
temperatures (Table 1). Helium carrier gas was used at a flow rate of 1.5 mL/min and the
GC oven was held at an initial temperature of 35°C for 1 min, ramped to 80°C at
3°C/min, then to 120°C at 10°C/min, to 260 °C at 40°C/min and held for 2 min, and
finally to 280°C at 40°C/min. The final temperature of 280°C was held for 2.5 min. The

total run time for each analysis was 30 min.
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For the GC-FID trials using the 15 minutes extraction duration, samples were
analyzed using an Agilent 6890 Plus GC-FID equipped with a RXI-5Sil MS capillary
column (Restek, Bellefonte, PA), 30 m in length, 0.25 mm ID, and 0.5 pm film thickness,
and a 0.75 mm ID SPME injection port liner operated in splitless mode at varying inlet
temperatures (Table 1). Helium carrier gas was used at a flow rate of 1.5 mL/min and the
GC oven was held at an initial temperature of 35°C for 1 min, ramped to 50°C at
3°C/min, then to 300°C at 27.5°C/min. The total run time for each analysis was 15.09
min.

For the GC-MS trials using the 60 minutes extraction duration, the samples were
analyzed using an Agilent 5977B MSD equipped with a Agilent HP-5ms ultra inert
column, 30 m in length, 0.25 mm ID, and 0.25 pum film thickness, and a 35 L ultra inert
SPME injection port liner operated in splitless mode at varying inlet temperatures (Table
1). Helium carrier gas was used at a flow rate of 1.5 mL/min and the GC oven was held at
an initial temperature of 35°C for 1 min, ramped to 80°C at 3°C/min, then to 120°C at
10°C/min, to 260 °C at 40°C/min and held for 2 min, and finally to 280°C at 40°C/min.
The final temperature of 280°C was held for 2.5 min. The total run time for each analysis
was 30 min.

For the GC-MS trials using the 15 minutes extraction duration, samples were
analyzed using an Agilent 5977B MSD equipped with a Agilent HP-5ms ultra inert
column, 30 m in length, 0.25 mm ID, and 0.25 pm film thickness, and a 35 L ultra inert
SPME injection port liner operated in splitless mode at varying inlet temperatures (Table

1). Helium carrier gas was used at a flow rate of 1.5 mL/min and the GC oven was held at
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an initial temperature of 35°C for 1 min, ramped to 50°C at 3°C/min, then to 300°C at
27.5°C/min. The total run time for each analysis was 15.09 min.

For the simulti-hSPME trials, the samples were analyzed using an Agilent 5977B
MSD equipped with a Agilent HP-5ms ultra inert column, 30 m in length, 0.25 mm ID,
and 0.25 pm film thickness, and a 35 pL ultra inert SPME injection port liner operated in
splitless mode at 240 °C. Helium carrier gas was used at a flow rate of 1.5 mL/min and
the GC oven was held at an initial temperature of 35°C for 1 min, ramped to 80°C at
3°C/min, then to 120°C at 10°C/min, to 260 °C at 40°C/min and held for 2 min, and
finally to 280°C at 40°C/min. The final temperature of 280°C was held for 2.5 min. The

total run time for each analysis was 30 min.

5. Data processing

Chromatograms were converted into binary plots via SciLab utilizing a custom
script (see Appendix 3 for the script) written in the MatLab technical computing
language. To expedite the throughput of binary plot generation, | wrote a custom Perl
script to automatically generate the plots once data was provided (see Appendix 4 for the
script). Following a sample run, the peaks in the chromatogram were integrated using
Agilent Technologies' ChemStation software. The information was exported into a .csv
file and converted into a binary matrix (where 1 denotes the presence of a peak and 0 an
absence at the specific retention time). The resulting matrix was graphed using white and
black horizontal bars to denote a peak presence or absence, respectively. The binary plots
only contain analytes attributed to the bacteria and disregard those found in the media

alone (i.e. blank subtracted). In addition, PCA plots, generated in R statistical software,
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were used to aid in the differentiation of mVVOCs. For a more detailed description of

PCA, see Specific Aim 1.

Results and Discussion

1. Single Fiber Differentiation of Biothreat Agents

Little is reported in the literature concerning the mVOCs produced by the
microorganisms F. tularensis, B. cenocepacia, and B. neotomae. To expand the current
knowledge in the field, | sought to ascertain whether the volatiles exuded by these
microorganisms are different and thus could be used to detect and differentiate the
bacteria. Liquid cultures of rich media (Tryptic Soy Broth (TSB) + 0.1% cysteine)
containing Francisella tularensis spp. novicida, Strain CG62, Burkholderia cenocepacia,
Strain LMG 16656, or Brucella neotomae, Strain 5K33 were incubated overnight.
Aliquots from each culture were acquired, and the mVOCs were extracted via hSPME
and subsequently desorbed onto a GC-FID. As depicted in Figure 36, a unique mVOC

profile was identified and attributed to each of the different bacterial cultures.
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Figure 36. The mVVOC fingerprints derived from liquid cultures of F.
tularensis novicida, B. cenocepacia, and B. neotomae.

A single fiber analysis using the CAR/PDMS 75um fiber was performed.
Figure A depicts the resulting GC-FID chromatograms for the three
bacteria (F. tularensis, B. cenocepacia, and B. neotomae). Figure B depicts
the corresponding binary plots derived from the chromatograms presented
in Figure A. The bacteria are identified along the x-axis while on the y-
axis is the retention time in minutes. The white bars represent the peak that
occurred at that particular retention time. Each fingerprint is blank
subtracted (media alone). As illustrated in the binary plot, the mVOC
fingerprint clearly differentiates the three bacteria.

To evaluate variability in this analysis, replicate extractions were performed and
the resulting mVVOC fingerprints were compared. As seen in Figure 37, replicate analyses
performed with F. tularensis novicida liquid cultures generate identical mVOC

fingerprints.
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Figure 37. Reproducibility of mVOC analysis.

The three binary plots reflect three replicate extractions performed using three
different cultures of F. tularensis novicida. The extractions were performed with a
CAR/PDMS 85um fiber. The replicate extractions (1, 2, and 3) are indicated along
the x axis, while the y-axis indicates the retention time (minutes). The binary plots
derived from each culture are identical.

2. Multifiber h\SPME

Although the single CAR/PDMS fiber was successfully used to differentiate F.
tularensis, B. cenocepacia, and B. neotomae, a multifiber analysis will extract a diverse
array of mVVOC metabolites (like dissolves like), further enabling the resolving power of
an mVOC analysis. An 8-fiber analysis was next performed for each of the three
microbes under investigation. Overnight liquid cultures of bacteria were dispensed into
aliquots, and the aliquots were singly extracted via hSPME, each extraction performed
using one of the 8 commercially available SPME fibers. The extracted analytes were

analyzed via GC-FID, and the resulting chromatograms were converted into binary plots
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then compiled into one composite fingerprint (Figure 38). As seen in the Figure, these

composite mVOC fingerprints clearly differentiate these bacteria.
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Figure 38. An 8 fiber hNSPME analysis of the mVVOC metabolome emanating from liquid cultures of F.
tularensis novicida, B. cenocepacia, and B. neotomae.

An 8 fiber hNSPME analysis of mVVOCs from F. tularensis novicida (A), B. cenocepacia (B), and B. neotomae (C)
liquid cultures (TSB + 0.1% cysteine). Binary plots were derived from chromatograms obtained using the
following SPME fibers: A: CAR/PDMS 75 um, B: PDMS/DVB 65 um, C: PDMS 7 um, D: DVB/CAR/PDMS
50/30um Stableflex, E: CAR/PDMS 85 pum Stableflex, F: CW (PEG) 60 um, G: PDMS 100 pm, H: PA 85 pm. A
compilation plot is generated by combining all of the plots into a single binary plot. The compilation plot shown in
A, B, and C are shown juxtaposed in panel D, clearly differentiating the three bacteria from one another. In the
binary plots, the y-axis is the retention time (min) for the corresponding peaks and the white bars represent the
chromatographic peaks.
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3. Environmental Effectors

Environmental effectors such as metal salts are well known to influence the
growth and metabolism of microbes, often through the regulation of gene expression®,
Hence, | sought to ascertain if select metal salts might influence the derived mVOC
fingerprints obtained from the three bacteria under investigation. As shown in Figure 39,
these metal salts can have an impact on F. tularensis novicida, B. cenocepacia, and/or B.
neotomae growth in liquid cultures. With F. tularensis novicida, the addition of either 25
mM MgCl, or 6.25 mM NacCl has little effect on the overall cell density of an overnight
culture, compared to MCDM alone, whereas the addition of 12.5 mM NiCl; has a drastic
influence, as it significantly inhibits the growth of the bacteria. On the other hand, the
MgCl;, NaCl, and NiCl; have little influence on B. cenocepacia overnight growth. For B.
neotomae, the addition of MgClI, significantly inhibited growth, but not to the extent
demonstrated by NiCl,. Somewhat surprisingly, the addition of NaCl to the B. neotomae
culture slightly increases the cell density of an overnight culture. Collectively, from these
growth profiles, conditions were selected that permit the growth of the bacteria and will

enable an evaluation of whether or not the added effector will have an influence on the

derived mVVOC fingerprint.
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Figure 39. Effectors of Bacterial Growth in Minimal Media.

The indicated bacteria were cultured in minimal liquid media (MCDM) supplemented with various selected
effectors (25mM MgCl,, 6.25mM NaCl, and 12.5mM NiCl,). Cultures were monitored for growth (ODgg) every

20 minutes for 16 hours at 37°C. See text for further discussion.

To evaluate the effects of the salt addition on the metabolic profile, overnight seed

cultures were used to inoculate the amended minimal media, and the bacteria were then

incubated in the media with shaking at 37°C for 8 hours. The mVVOCs were then extracted

from the cultures via multifiber hSPME and subsequently analyzed by GC-FID. The

resulting fingerprints are presented in Figure 40.
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Figure 40. Binary plots exhibiting the mVVOC profile obtained for F. tularensis novicida, B. cenocepacia, and
B. neotomae cultured in MCDM with and without the addition of various salts.

For each of the three indicated bacteria under investigation, the corresponding m\VVOC fingerprint derived from
minimal media (MCDM) is shown in panel A, from minimal media supplemented with 25 mM MgCl, is shown in
panel B, from minimal media supplemented with 6.25 mM NaCl is shown in panel C, from minimal media
supplemented with 12.5 mM NiCl, is shown in panel D. In all media compositions tested, the mVVOC fingerprints
uniquely differentiate the three bacteria. Panels E, F, and G illustrate how the media composition alters the derived
mVOC fingerprint for F. tularensis novicida, B. cenocepacia, and B. neotomae, respectively.
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As seen in Figure 40, regardless of the media composition, the mVOC
fingerprints generated all uniquely differentiate the three bacteria. Also seen in the Figure
is the manner in which the mVVOC fingerprint changes with media composition. When
compared to the MCDM binary plot (Figure 40A), the mVVOC metabolic profile obtained
for F. tularensis novicida exhibited different patterns for each of the salt conditions. This
alteration in the microbial fingerprint was also true for B. cenocepacia, and B. neotomae.
In addition, while the growth of F. tularensis novicida and B. neotomae was significantly
inhibited in NiCl,, the bacteria were still alive and exuding volatile metabolites,
producing a unique mVVOC fingerprint. Overall, while the addition of various salts had a
profound effect on the mVVOC metabolome, it is still possible to differentiate the

microbes in each environmental condition.

4. Differentiation of Wildtype and Antibiotic Resistant Bacteria

Following the success of differentiating the three bacteria (F. tularensis novicida,
B. cenocepacia, and B. neotomae), | next sought to determine if multifiber hSPME can
differentiate a kanamycin sensitive (wildtype) and engineered kanamycin resistant strain
of Yersinia pestis. A 500 pL aliquot of a 10 mL overnight liquid seed culture of each
strain (cultured in TSB + 0.1% Cys media, supplemented with 50 pg/mL kanamycin
where appropriate) was adjusted with sterile media to an ODgy = 1.0 and used to
inoculate 25 mL media in a 125 mL shake flask (the Kan® strain was cultured in media
containing 50 pg/mL kanamycin). The flasks were incubated at 250 rpm, 30 °C, for 24
hours, then 250 uL aliquots from each culture were dispensed into vials, stored at -80 °C,

then analyzed by multifiber hNSPME. Each extraction proceeded for 60 minutes, using one
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of 6 commercially available SPME fibers (CAR/PDMS 85 pum with stableflex, 100 pm
PDMS, PDMS/DVB 65 pm, PA 85 um, DVB/CAR/PDMS 50/30 pum, PEG 60 pum). The
extracted analytes were analyzed via GC-FID, and the resulting chromatograms were
converted into binary plots and compiled into a composite fingerprint (Figure 41). As
seen in the Figure, the composite mVVOC fingerprints and the companion PCA plot

clearly differentiate the bacterial strains.
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Figure 41. Differentiation of the mVVOC metabolome of Y. pestis wild type and kanamycin resistant
strains.

For each bacterial strain, a 6 fiber analysis was performed using an extraction duration of 60 minutes.
Figure A depicts the composite binary plot results from all 6 fibers and demonstrates the differentiation in
the extracted mVVOC metabolome of the two strains. The samples are indicated along the x-axis, while
retention time (min) is indicated along the y-axis. Figure B is a companion PCA plot illustrating the
metabolic variations that exist within the m\VOC metabolome. Each sphere in the plot reflects the
metabolome of the bacterial sample, with Y. pestis wild type colored green, and the kanamycin resistant
strain of Y. pestis colored purple.

To determine if differentiation could still be achieved using a shorter extraction

duration, | repeated the analysis using an extraction time of 15 minutes (Figure 42).
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Again, the composite mVVOC fingerprints and companion PCA plot clearly differentiate
the Y. pestis wild type and kanamycin resistant strains. While the binary plot for the
shorter extraction exhibits a greater number of peaks, this is a reflection of the increase in
the pre-incubation temperature from 37°C to 80°C to ensure enough volatiles were

present.
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Figure 42. Differentiation of the mVOC metabolome of Y. pestis wild type and kanamycin resistant
strains using an extraction duration of 15 minutes.

For each bacterial strain, a 6 fiber analysis was performed using an extraction duration of 15 minutes. Figure
A depicts the composite binary plot from all 6 fibers and demonstrates the differentiation in the extracted
mVOC metabolome of the two strains. The samples are indicated along the x-axis, while retention time (min)
is indicated along the y-axis. Figure B is a companion PCA plot illustrating the metabolic variations that exist
within the mVVOC metabolome. Each sphere in the plot reflects the metabolome of the bacterial sample, with
Y. pestis wild type colored green and the kanamycin resistant Y. pestis strain colored purple. Clearly an
extraction duration of 15 minutes is sufficient for differentiating the two bacterial strains.

Since the GC-FID based analysis successfully differentiates the two strains of

bacteria, | elected to determine if the GC-MS could do so as well. To this end, | repeated
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the procedure using a 60 minute then 15 minute extraction duration. As shown in Figure
43, with either extraction duration, the composite mVVOC fingerprints are able to
distinguish the two bacterial strains. In addition, the PCA plots demonstrate not only how
the two bacterial strains are differentiated, but how they relate to the VOCs associated
with the media alone. Therefore, like the GC-FID, mVVOC fingerprints generated via the

GC-MS can also be used to differentiate these strains of bacteria.
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Figure 43. Differentiation of the mVOC metabolome of Y. pestis wild type and kanamycin resistant strains
using a GC-MS and an extraction duration of either 60 minutes or 15 minutes.

For each bacterial strain, a 6 fiber analysis was performed using an extraction duration of 60 minutes (A and B) or
15 minutes (C or D). Figure A and C depicts the composite binary plots from all 6 fibers and illustrates the
differences in the extracted m\VOC metabolome of the two strains using extraction durations of either 60 minutes
(A) or 15 minutes (C). The samples are indicated along the x-axis, while retention time (min) is indicated along
the y-axis. Figure B and D are corresponding PCA plots illustrating the metabolic variations that exist within the
mVOC metabolome using an extraction duration of 60 minutes or 15 minutes, respectively. Each sphere in the
plot reflects the metabolome of the bacteria or blank media sample, with TSB + 0.1% cys colored orange, TSB +
0.1% cys + 50 pg/mL kanamycin colored blue, Y. pestis wild type colored green, and kanamycin resistant Y. pestis
colored purple. A multifiber hNSPME analysis of mVVOCs using the GC-MS and an extraction duration of either 60
or 15 minutes readily differentiates the two bacterial strains.

In light of the success with Y. pestis, | next performed the analysis with F.
tularensis. The wildtype strain (NIH B38) and engineered kanamycin resistant strain

were each cultured and analyzed as described above for Y. pestis. A multifiber h\SPME
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analysis was performed with the 6 commercially available fibers, a 15 minute extraction

duration, and either the GC-FID or GC-MS for analysis (Figure 44).
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Figure 44. Differentiation of the mVOC metabolome of F. tularensis wild type and kanamycin
resistant strains using a GC-FID or GC-MS with an extraction duration of 15 minutes.

For each bacterial strain, a 6 fiber analysis was performed using an extraction duration of 15 minutes.
Figures A and B depicts the composite binary plots from all 6 fibers and the companion PCA plot using the
GC-FID. F. tularensis with and without kanamycin resistance are clearly differentiated in each plot. Figures
C and D illustrate the composite binary plot from all 6 fibers and the companion PCA plot using the GC-
MS. The GC-MS can also differentiate F. tularensis with and without kanamycin resistance. For Figures A
and C, the samples are indicated along the x-axis, while retention time (min) is indicated along the y-axis.
Each sphere in the PCA plot reflects the metabolome of the bacteria or a blank media sample, with mMH
colored orange, mMH+ 10 pg/mL kanamycin colored blue, F. tularensis wild type colored green, and
kanamycin resistant F. tularensis colored purple.
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Concomitant with performing the above multifiber analysis, the Couch lab
developed the simulti-nSPME device (Figure 31). To determine if the device could be
used to successfully differentiate the wildtype and kanamycin resistant strains of Y.
pestis, a 6 fiber simulti-nSPME was performed with the GC-MS, using a 30 min mVVOC
extraction duration. As shown in Figure 45, the resulting PCA illustrates that the two

strains are well resolved from each other, based upon their m\VVOC composition.
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Figure 45. PCA plot demonstrating the difference in mVOC metabolome derived from liquid cultures of
wild type and kanamycin resistant strains of Y. pestis.

For each bacterial strain, a 6 fiber analysis was performed in the simulti-hSPME device using an extraction
duration of 30 minutes. The segregation of the samples along PC1 reflects the metabolic variation between the
mVOC metabolomes for the two strains. The analysis was performed with three different aliquots of each bacterial
culture. Each sphere in the plot reflects the metabolome of the bacterial sample, with Y. pestis wild type colored
green and kanamycin resistant Y. pestis colored purple. The contribution of PC2 to variation among the samples is
small (0.18%), yet accounts for the difference among the replicate runs for each strain.
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Conclusions and Future Applications

By utilizing hSPME, a VOC metabolomic fingerprint was developed for liquid
cultures of the bacteria F. tularensis novicida, B. cenocepacia, and B. neotomae. While |
was able to successfully differentiate between the three different bacteria, | also
determined that the environment/media in which the bacteria are cultured has a
significant impact on the associated mVVOC metabolome. In addition, | was able to
successfully differentiate wild type and kanamycin resistant strains of both Y. pestis and
F. tularensis. By incorporating the simulti-hSPME device, the overall analysis time was
reduced (due to the ability to perform 6 extractions simultaneously) while the bacterial
strains were still readily differentiated.

One future application of this work is the detection of infectious disease in
exhaled breath. There are several reports in the literature on performing breath
analysis?®3%°>% |n general, there are two distinct ways to use SPME to preconcentrate
and extract breath-derived VOCs: namely, active and passive approaches®. In an active
approach, the extraction is performed as the sample is being collected (i.e. in-line); while
in a passive approach, the sample is collected in a bag or a vial, then the exhaled
metabolites are extracted (Figure 46). It is noteworthy that the Couch lab has begun

preliminary trials using both of these approaches.
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Figure 46. Passive approach to SPME using
breath collection bags.

The patient provides a breath sample into the
bag. Following collection, the bag is sealed and
extraction via a SPME fiber can be performed.

An Active Approach to Breath Analysis
Along these lines, | took an initial foray into an active approach to breath analysis.
While not a defined objective of Specific Aim 2.1, | report here my preliminary results.
To address the feasibility of performing a simulti-hSPME fiber extraction during
breath collection, I first used a nose-only exposure chamber to extract the breath-derived

VOCs produced by healthy and influenza H3N2 infected mice (Figure 47).
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Figure 47. Schematic illustrating the active extraction
process of breath VOCs.

In this approach, the mice were restrained in a funnel which
was connected to the exposure chamber. Air is supplied to
the mice and the mixture of supplied air and exhaled breath
travels through the chamber and into the simulti-hSPME
device for metabolite extraction via the SPME fibers. The
air then travel out through a HEPA filter and into the
environment.

In this chamber, the mice are restrained in a plastic funnel with their nose exposed
to the chamber. Air is supplied through the chamber to the mice as they breathe normally.
The supplied air and breath travel through the chamber and are directed into the simulti-
hSPME extraction device containing the SPME fibers for extraction. Due to the use of
live animals and the breath collection procedure, | used an extraction duration of 30
minutes (and no longer). While one trial demonstrated differentiation amongst the two
cohorts (Figure 48), the second attempt did not. While the purpose of my analysis was to
provide proof of principle (which it did), further investigation is clearly required to

elucidate the cause of this variation.
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Figure 48. Breath Analysis of Mice Infected with the Flu Virus.

The chromatogram obtained in Figure A demonstrates the differences obtained
between infected mice, uninfected mice, and the blank device. The binary plot in B
indicates how the infected mice are differentiated from the healthy mice.
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SPECIFIC AIM 2.2: ALTERATIONS TO THE HUMAN FECAL METABOLOME
DUE TO ALCOHOL CONSUMPTION.

Objective Use metabolomics as an electronic nose to explore the VOC profile of
fecal material, collected at home or via an endoscopy procedure, to potentially identify
biomarkers of chronic alcohol consumption.

This research performed in this specific aim resulted in a co-authorship in PLOS One®.
Paper I: Alcohol Induced Alterations to the Human Fecal VOC Metabolome

Couch RD, Dailey A, Zaidi F, Navarro K, Forsyth CB, et al. PLoS One. 2015; 10
(3):0119362. doi: 10.1371/journal.pone.0119362

Synopsis

A comparative analysis of healthy versus alcoholic participants demonstrated the
profound affect alcohol has on the fecal VOC metabolome. Irrespective of the collection
method (home or endoscopy) we identified numerous metabolic alterations within the
alcoholic cohort. Some of the most notable alterations include an increase in oxidative
stress, decrease in short chain fatty acids responsible for maintaining epithelial health,

and decrease in the attenuation of hepatic steatosis.

Attributions and Contributions
Reproduced with permission from the Public Library of Science and per the
Creative Commons License agreement®. | was responsible for performing the

experiments, analyzing the data, and generating Figures 3 through 10 and Table 2 in the
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manuscript. The published manuscript and all supplementary information is presented in
Appendix 5 and 6 (per Mason guidelines, embedded papers must be placed in the

Appendix of the thesis).
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SPECIFIC AIM 2.3: TISSUE-RELATED EFFECTS OF A HIGH FAT DIET AND
PROBIOTIC SUPPLEMENTATION IN PIGS

Objective: Use metabolomics to evaluate if a high fat diet and/or probiotic

supplementation have an effect on the pig tissue metabolome.

Introduction
Probiotics are live microorganisms which resemble/reflect those found in the

natural gut flora®®

. Probiotics, particularly from the genera Bifidobacterium and
Lactobacillus, have been associated with a number of health effects including
competitive exclusion of food pathogens, stimulation of immune function, lowering gas
distension, aiding in food digestion and adsorption, synthesis of vitamins, lowering of

cholesterol levels,*® %

and may aid in the curing of gastrointestinal diseases and
autoimmune disorders®®*%° While few studies have yet addressed the potential of
probiotics for the management of obesity, a high-fat diet is known to induce diabetes and
endotoxemia in mice, and negatively correlates with the level of Bifidobacterium spp. in
the mouse intestine'*!. By supplementing these mice with the prebiotic oligofructose,
enhanced growth of intestinal Bifidobacterium occurs with accompanying normalization
of the inflammatory state (decreased endotoxemia, decreased plasma and adipose tissue

pro-inflammatory cytokines), suggesting that Bifidobacterium in the gut microbiota may

prevent the deleterious effects of high-fat diet-induced metabolic disease. Furthermore, a
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selected strain of L. rhamnossus has also been reported to protect mice from diet-induced
obesity, likely due to the production of conjugated linoleic acid by the bacteria'*?. Even
with the increasing accumulation of clinical data on the benefits of pre- and probiotics,
the mechanism of modulation still remains largely uncharacterized, especially with
respect to the host metabolome. Hence, to further explore the effect of a high fat diet and
the consequences of probiotic supplementation, in collaboration with Drs. Gloria Solano-
Aguilar and Joe Urban at the United States Department of Agriculture (USDA) and Dr.
Kati Hanhineva at the University of Eastern Finland, Specific Aim 2.3 examines pig
tissue metabolomes through non-targeted metabolomic profiling.

Given their anatomical and metabolic similarities to humans, Ossabaw pigs

(Figure 49) were selected for use as a model organism in this study.

Figure 49. Ossabaw pigs are the model
organism used in this probiotic
supplementation study.

Ossabaw pigs serve as models of juvenile
obesity%.
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In a previous metabolomics investigation, it was shown that a high fat diet alters
the metabolomic composition of select Ossabaw pig tissues, relative to tissues in pigs fed

a nutritionally balanced diet™®

. In light of this, my investigation sought to determine if
dietary supplementation with probiotics also has a measurable effect on the host tissue
metabolism. To accomplish this, | specifically compared metabolomic profiles from

select organ tissues obtained from pigs fed either a nutritionally balanced (basal) or

obesogenic (high fat) diet, with or without probiotic supplementation (Figure 50).

Cohort 2
Basal+Probiotic

Cohort 3
High Fat High Fat+Probiotic

Figure 50. Schematic depicting the four distinct dietary cohorts
of pigs used in this investigation.

For this study, twenty pigs were equally distributed among the four
indicated cohorts (5 pigs in each cohort). The first two cohorts
contain pigs fed a basal diet, with pigs in cohort 2 also receiving a
probiotic supplement (the supplement is depicted as an orange and
white colored capsule in the illustration). The second two cohorts
(3 & 4) contain pigs fed a high fat diet, with pigs in cohort 4
receiving a probiotic supplement.
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Twenty pigs were equally distributed among four cohorts (basal, basal+probiotic,
high fat, and high fat+probiotic), and after 38 weeks of a cohort-specific diet, the pigs
were euthanized, tissue samples were collected, snap frozen and stored at -80 °C, and a
non-targeted LC—QToF based metabolite profiling of cortex, heart, kidney, liver, muscle,

and pancreas tissue was performed on every member of each cohort.

Tissue Sample Processing

To extract the metabolites from the frozen tissue samples, the samples are
homogenized while frozen (cryo-ground using a bead beater) then extracted using a 1:1
methanol:water solution (Figure 51). The tissue extracts are clarified by centrifugation
and subsequently filtered to remove any residual particulates. The filtered samples are
then analyzed by LC-QToF using both ESI positive and ESI negative modes, with a
reversed phase (C18) or HILIC (Si) column (i.e. 4 MS chromatograms per sample are
obtained (ESI pos+C18, ESI neg+C18, ESI pos+HILIC, ESI neg+HILIC), for a total of
480 chromatograms generated for the six tissue types (not including blanks, quality
control samples, and MS/MS chromatograms)). By using the two ionization modes (ESI
positive and negative) in conjunction with two types of chromatography columns
(reversed phase and HILIC), the number of metabolites identified within the extract
increases (relative to a single ionization mode with a single column). The specific details
used to perform this investigation are described in the Materials and Methods section,

below.
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Figure 51. Tissue Sample Processing for Metabolome Determination

The frozen tissues are homogenized via a TissueLyser (bead mill). The stainless steel cylinder and ball bearing
used to grind the samples are housed in liquid nitrogen to prevent thawing of the sample while grinding. Once
powderized, the sample is dispensed into a microcentrifuge tube (100 mg sample), and extracted with a 1:1
methanol:water solution. The extract is clarified by centrifugation, filtered, then placed into an autosampler vial at
4°C and analyzed by the LC-QToF.

Materials and Methods

For Specific Aim 2.3, the pigs were housed and the tissue samples collected at the
USDA. The tissues were processed through the combined effort of Dr. Robin Couch and
the laboratory of Dr. Kati Hanhineva (University of Eastern Finland). | assisted with
performing select MS and MS/MS evaluations using the LC-QToF, and | exclusively
performed the data analysis as described in Data Processing, Chemometrics and

Statistical Analysis, below.

1. Maintenance of Animals and Experimentation
Ossabaw pigs, born at the Indiana University Ossabaw production Unit, were

transported in kennels and delivered overnight to the USDA-Beltsville Maryland animal
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facility according to standardized procedures of quarantine and under the approval of
Beltsville Area Animal Care and Use Committee (protocol number 12-02). After arrival,
the pigs were housed in an isolated building with individual pens with free access to
water and fed a standard mini pig grower diet (5L80 Purina TestDiet, Inc, Richmond, IN)
specifically designed for miniature swine (18.5% kcal from protein, 71.0% carbohydrates
and 10.5% from fat)'**. After acclimatization of pigs, all eight week old pigs were
randomized by weight and split into four treatment groups. Pigs in cohorts I (n=5) and Il
(n=5) continued eating the mini pig grower diet 5L80 (CONV) with gradual bi-weekly
step increases from 750 to 3600 kcal/day to adjust for nutrient requirements for growth
during the 24 weeks of the study. A standard high fat, obesogenic pig diet was given to
the other two treatment groups (cohort I11 (n=5) and IV (n=5)). This diet was prepared at
the Beltsville feed mill by mixing a commercial diet (5KA6 Purina TestDiet, Inc,
Richmond, IN; composed of ground corn, soybean meal, wheat, and alfalfa) with 17%
hydrogenated soybean oil containing 56% trans fatty acids (#170, Columbus Foods,
Chicago, IL), 2.4% corn oil, 1% cholesterol, 0.7% cholic acid, and recommended levels
of minerals and vitamins for swine. This mixture yields 13.0% of total kcal from protein,
57% kcal from carbohydrates, and 30% kcal from fat. The pigs on the high fat diet
received bi-weekly step increases from 2000 to 4500 kcal/day for the duration of the
study. Daily food rations were pre-weighed and consumption was individually monitored
and recorded daily. Starting at week 8, all dietary groups were supplemented daily with
an oral gavage of either the probiotic bacteria (Lactobacillus paracasei (W8); 1 x 10%°

cfu/day) (Ch. Hansen, Denmark) (cohorts Il and IV) or an equivalent volume of a
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probiotic-free vehicle (placebo) dissolved in 5ml of phosphate buffered saline (PBS)
solution (cohorts | and IlI). Aliquots of lyophilized probiotic provided by the
manufacturer (Ch. Hansen) were tested weekly to verify dose and viability. At the
completion of the study, each pig was euthanized using the standard approach (500 mg
ketamine (Ketaset, Fort Dodge Animal Health, lowa), 80 mg tiletamine (Telazol, Fort
Dodge Animal Health, lowa), 80 mg zolazepam (Telazol) and 333 mg xylazine (Xyla-
Ject, Phoenix Pharmaceutical, St Joseph, MO) per 100 kg body weight) and the tissue
samples were collected, immediately snap frozen in liquid nitrogen, and stored at -80 °C.
All animal experiments and procedures were conducted in accordance with guidelines

established and approved by the Beltsville Area Animal Care and Use Committee.

2. Sample Preparation for Metabolite Profiling

While using liquid nitrogen to keep the tissue samples frozen, the samples were
ground into fine powder (TissueLyser Il, Qiagen, Germantown, MD) then weighed into
pre-chilled microcentrifuge tubes (~100 mg aliquots). The powdered tissues were then
extracted using a methanol:water solution (1:1), added in a ratio of 3 pL of solvent/mg
frozen tissue. The sample was vortexed, sonicated at room temperature for 5 min,
clarified by centrifugation (15 min at 16.1 rcf), and the supernatant was collected and

stored on ice until analyzed.

3. LC—QToF Analysis
Samples were analyzed via an Agilent 1290 Infinity UPLC coupled to an Agilent

6450 Accurate Mass QToF running in ESI positive and negative modes. Analyte
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separation was performed using two different chromatographic systems in order to gain
wide coverage of metabolites (Amide HILIC column (BEH, Waters) and a C18 reversed
phase column). A quality control (QC) sample was prepared by pooling a small aliquot of
each sample to represent the total metabolite composition present in the analysis. This
QC sample was injected after every 12 randomized analytical samples to serve as to

monitor for potential problems in the chromatography and/or in ion response.

4. Data Processing, Chemometrics and Statistical Analysis

Molecular features were identified in the raw chromatograms using Agilent
Technologies' MassHunter Qualitative Analysis software (ver B.06.00). The molecular
features and their relative abundance (peak height) were then tabulated using Agilent
Technologies' Mass Profiler Professional software (ver 12.6), resulting in a metabolomics
data set containing the molecular features identified by HILIC ESI positive, HILIC ESI
negative, reverse phase ESI positive, and reverse phase ESI negative modes. Metabolites
present in <19% of the total number of samples processed were treated as one-offs and
were removed from the matrix. The score value for each metabolite was calculated, and
the data was filtered to include only those which were present in at least 4 of 5 pigs for
any 1 cohort (Equation 1). The samples in the metabolite matrix were organized by their
appropriate cohort (a nutritionally balanced basal cohort, a basal cohort supplemented
with probiotics, a high fat obesogenic cohort, and a high fat cohort supplemented with
probiotics) and the outlier peak area values were identified in each cohort using an
analysis of (mean-median)/median for each analyte and a cutoff value >1.5 (Equation 2).

Outliers were replaced with the median value for that metabolite within the cohort.
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Metabolite peak height values were then standardized across the two cohorts by
conversion to Z-scores (Equation 3). A principal component analysis was then performed
using the standardized metabolite matrices and the R statistical package. XLSTAT was
used to perform two-sample T tests between cohorts for each metabolite and Benjamini-
Hochberg critical values were calculated (Equation 6) to adjust for the false discovery
rate. Pearson’s correlation coefficients were calculated using Microsoft Excel and a
correlation network was created using the R statistical package. Fold change calculations
were performed using Microsoft Excel. Finally, for the molecular features of interest,
Extracted lon Chromatograms (EIC) were generated using Agilent's Mass Hunter
Qualitative Analysis software. Features were deemed significant when they appear as a
single symmetrical peak at the expected retention time (see Appendix 7). Only significant
molecular features were considered in the assessment of the effects of probiotic

supplementation.

Results and Discussion

1. Data Preparation

A total of 480 chromatograms were generated (via LC-QToF) from the isolated
pig tissue samples. Molecular features were identified in the chromatograms using
Agilent Technologies' MassHunter Qualitative Analysis software (see Specific Aim 1:
Stage 1 of the Metabolomics Pipeline for more information). Following the identification
of molecular features, an all-inclusive molecular feature data set was then compiled. This

data set comprises all of the tissue metabolomes from each member of the four cohorts
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and contains a grand total of 70,957 molecular features. To filter out low frequency one-
off metabolites, | restricted the analysis to include only those features detected in >20%
of the tissue-specific samples profiled (i.e. for each tissue type, metabolites appearing in
>4 of 20 pigs were retained in the data set, regardless of their distribution among the four
dietary cohorts, while metabolites detected in <3 of the 20 pigs were removed from the
data set). Subsequently, | further refined the data set by retaining and analyzing only
those tissue-specific molecular features that appeared in a minimum of 3 of 5 pigs in any
one of the four dietary cohorts, as determined by my score value calculation (see
Equation 1 in Specific Aim 1: Stage 2 of the metabolomics pipeline). As a consequence
of this data filtration process, the data set was constrained to include between 2600-6000

molecular features per tissue type, with a combined total of 9788 molecular features.

2. Multivariate Statistical Analysis and Data Visualization
Principal component analysis (PCA) of the 9788 molecular features clearly
differentiates each of the pig organs from one another, underscoring the tissue-specific

makeup of the metabolome composition (Figure 52).
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Figure 52. PCA plot of all derived pig tissues metabolomes.

A total of 20 pigs were distributed equally into 4 distinct dietary cohorts (a nutritionally balanced basal
cohort, a high fat obesogenic cohort, a basal cohort supplemented with probiotics, and a high fat cohort
supplemented with probiotics). After maintaining their diet for 38 weeks, the pigs were euthanized and the
metabolomic makeup of the indicated organ tissues were derived and compared. The 3D PCA plot
distinguishes the pig tissue metabolomes from each other (that is, the samples distinctly aggregate and
segregate by tissue type in the plot). Each sphere in the plot reflects the metabolome of the pig tissue
sample, with liver samples colored purple, kidney samples green, heart muscle samples blue, skeletal
muscle black, pancreas pink, and cortex orange. For emphasis, the kidney samples obtained from the high
fat pig cohort are colored dark green and the high fat cortex samples are colored dark orange (they are also
denoted HF in the plot). This PCA plot demonstrates that a high fat diet particularly alters the composition
of the kidney and cortex tissue metabolomes such that these samples are distinct from the other kidney and
cortex dietary cohorts (i.e. for these tissues, the high fat samples are uniquely clustered away from the basal,
basal+probiotic, and high fat+probiotic cohort samples).

Not surprisingly, the heart and skeletal muscles appear closely juxtaposed in the
PCA plot, a reflection of the greater similarity in their overall metabolome composition in
comparison to the other tissues. This is further apparent in Figure 53, where the heart and
muscle tissues organize as sister clades in a dendrogram produced from the tissue

metabolomes.
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Figure 53. Total Organ Dendrogram.

The tissue samples are identified in the figure, labeled to reflect the basal (B), high fat (HF), basal+probiotic
(BP), and high fat+probiotic (HFP) cohorts. Note that without exception, the 5 samples from each dietary cohort
cluster together by tissue type. While the pancreas uniquely separates into its own clade in the dendrogram,
differentiating it from the other tissue types, the heart and muscle tissues organize into sister clades, based upon
the similarities in their metabolomes. It is also noteworthy that the high fat cortex and high fat kidney samples
cluster together, whereas the remainder of the cortex and kidney samples are within their own corresponding
clades.

Interestingly, both the PCA plot and dendrogram suggest that the metabolomic
composition of the kidney and cortex tissues are particularly sensitive to a high fat diet.
These tissues obtained from the high fat pig cohort appear distinctly clustered away from
those same tissues obtained from the cohorts of pigs fed either a basal, basal+probiotic, or
high fat+probiotic diet. It is also noteworthy that probiotic supplementation to the high
fat diet appears to alter the high fat kidney and cortex tissue metabolomes. Here, the high
fat+probiotic samples cluster tightly with the basal and basal+probiotic samples and
differentiate from high fat in both the dendrogram and PCA plot.

To gain higher resolution in comparing the metabolomes, focused tissue-specific

PCAs were performed. The resulting plots illustrate how the metabolomes derived from
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each of the four pig dietary cohorts differ from one another, within the context of each

tissue type (Figure 54).
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Figure 54.3D PCA plots demonstrating the diet derived metabolome variations in individual tissues.

Three dimensional PCA plots of metabolome composition derived from each of the indicated tissue types clearly
differentiate the four pig dietary cohorts from each other, demonstrating that dietary consumption (including
probiotic supplementation) can have a significant influence on the metabolite composition of the organ tissues.
Each sphere in the plot reflects the metabolome of a pig tissue sample. Spheres are colored by cohort, as indicated
in the figure legend. The analysis was confined to molecular features appearing in >20% of the total number of
pigs and a minimum of 3 of 5 pigs in any one of the four pig cohorts, as per Figure 52.

Regardless of tissue type, the samples distinctly cluster and segregate into basal,
basal+probiotic, high fat, and high fat+probiotic groups in the PCA plots, a reflection of

their unique diet-associated metabolome composition. Thus, dietary consumption has a
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significant effect on the metabolite composition of the organ tissues. For example, the
cortex metabolome is altered when pigs are fed an obesogenic high fat diet rather than a
nutritionally balanced basal diet (i.e. the metabolomes derived from the 5 pigs fed a basal
diet are clustered in the cortex PCA plot and clearly segregate from the clustered
metabolomes of the 5 pigs in the high fat cohort; Figure 54). Similarly, high fat diet
associated alterations in the metabolome are also observed among the other pig tissues
analyzed, emphasizing the effect of a high fat diet on the organs of the body. In
agreement with previous findings'™®, metabolites such as phosphatidylcholines and

lysophosphatidylcholines contribute to the difference between the cohorts.
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Figure 55. Number of metabolites contributing to the variation among the four tissue cohorts.

Each graph is restricted to the first three principal components and metabolites are arranged by descending
contribution to the principal component (squared cosine of the variable value). The plots indicate that for each
organ analyzed, numerous metabolites collectively contribute to cohort segregation. It is noteworthy that for PC1
more metabolites contribute to the variation observed in the liver and pancreas, relative to the other organs.
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Although numerous metabolites collectively contribute to cohort segregation
(Figure 55), the top 30 contributors are sufficient to isolate the four cohorts in a PCA plot

of each tissue type (Figure 56).
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Figure 56. Tissue-specific PCA plots based on the top scoring metabolites.

The top ten metabolites were determined by the weight loadings (squared cosines of the variable) for each of
PC1, PC2, and PC3 (derived from

Figure 54), which represent the three largest contributions to variation among the samples, to identify the top 30
metabolites differentiating the cohorts within each tissue type. The PCA plot shows that by using these top 30
metabolites, the four cohorts are still distinguishable. The analysis was confined to molecular features appearing
in >220% of the total number of pigs and a minimum of 3 of 5 pigs in any one of the four pig cohorts, as per

The top 30 metabolites are listed in Table 2, organized by principle component

and tissue type.
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Table 2. Top 30 metabolites for each tissue t

Top Contributors to PC1

pe contributing the most to cohort segregation in the PCA

Cortex
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Probiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
N-lactoyl-phenylalanine 1 1 3
6-Succinoaminopurine 1 3 0 1
3-(4-Hydroxy-3-methoxyphenyl)-2-
methyllactic acid 0 1 3 1
Malyngamide | 0 0 1 3
Prostaglandin Al-biotin 0 0 3 1
(R)-2-Hydroxybutane-1,2,4-
tricarboxylate 2 3 1 1
Dihydroferuloylglycine 0 0 1 4
Molecular feature 110.01 3 1 0 1
Molecular feature 390.30 0 0 3 1
Tumonoic Acid F 0 0 2 4
Heart
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Probiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
Quinapril hydrochloride 1 1 3 0
Molecular feature 365.14 1 1 3 0
Molecular feature_584.36 4 3 1 0
Molecular feature 549.17 1 3 1 0
Malonyl CoA 5 1 2 0
(R)-Byakangelicin 2'-glucoside 1 0 0 3
Molecular feature 158.03 1 3 1 0
PC(2:0/18:1(92)) 2 4 2 0
PG(19:0/22:2(13Z,162)) 3 1 1 4
Palmitoililicerone ihosihate 4 4 3 0
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Probiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
Molecular feature _564.33 1 1 4 1
3,3-Difluoro-5alpha-androstan-
17beta-yl acetate 3 2 0 0
Molecular feature 564.35 3 3 1 1
Molecular feature 870.26 3 1 0 0
Succinic acid 3 2 1 0
Cyclocommunin 0 0 2 3
6-Hydroxymelatonin glucuronide 0 0 2 3
Phenylamil 0 0 2 4
Molecular feature 1151.66 0 0 4 3
Molecular feature 432.42 3 2 0 0
Liver
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Probiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)

121




8-Epidiosbulbin E acetate 1 3 0 0
Triglochinin 1 3 0 0
Indole-3-acetic-acid-O-glucuronide | 0 0 3 1
IPSP 3 1 0 0
FMNH2 0 0 3 1
(x)Fenfluramine 0 0 1 3
Molecular feature 192.93 3 1 0 0
Molecular feature 702.31 0 0 1 3
Deserpidine 0 0 5 5
Molecular feature 1035.67 0 0 1 4
Muscle
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Praobiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
Molecular feature 2470.57 0 0 2 4
GDP-glucose 0 0 2 3
Molecular feature_360.13 0 0 1 3
Molecular feature 617.15 4 1 0 1
Molecular feature 315.03 0 0 3 1
Luteolin 3'-methyl ether 7-
glucuronosyl-(1->2)-glucuronide 0 0 1 3
Molecular feature 1054.18 0 0 1 3
(S)-10,16-Dihydroxyhexadecanoic
acid 0 0 2 4
Notoginsenoside T2 1 1 3 2
Cholesterol glucuronide 0 0 3 4
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Probiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
Molecular feature_379.97 1 3 0 0
Molecular feature 642.11 0 0 1 3
Molecular feature 322.99 1 3 0 0
3-Hydroxy-2-nitroestra-1,3,5(10)-
trien-17-one 0 0 2 4
PA(6:0/6:0) 0 0 1 3
6-(2-Carboxyethyl)-7-hydroxy-2,2-
dimethyl-4-chromanone glucoside 2 3 0 0
Molecular feature 1317.18 0 0 2 3
Hydroxychloroquine 3 2 0 0
7alpha-1(10->19)-Abeo-7-
acetoxyobacun-9(11)-ene 0 0 3 4
PC(16:0/5:0(COOH 3 2 0 0
Top Contributors to PC2
Cortex
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Probiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
Molecular feature 676.93 1 0 0 3
Umbelliprenin 0 3 2 0
Afrormosin 7-O-(6""-
malonylglucoside) 1 0 0 3
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GW 7647 3 1 1 0
Molecular feature_712.06 0 3 1 0
3-hexanoyl-NBD Cholesterol 1 1 3 2
Quinidinone 4 0 0 1
5,7,3'-Trihydroxy-6,4'5'-
trimethoxyflavanone 3 0 0 1
O-Acetylserine 1 0 0 3
Molecular feature 279.14 1 0 0 4
Heart
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Praobiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
N1-(2-Methoxy-4-methylbenzyl)-n2-
(2-(pyridin-2-yl) ethyl)oxalamide 1 3 2 2
4-Hydroxyazobenzene 3 4 0 1
Malvidin 3-(6-acetylglucoside) 2 1 1 3
Acepromazine 1 1 0 4
Ganoderenic acid C 0 1 2 3
Molecular feature_116.93 1 2 0 3
Molecular feature 966.01 0 1 1 3
24-Nor-5p-cholane-3a,12a,23-triol 1 3 0 0
Spergualin 1 1 1 3
PS(P-
18:0/22:6(42,72,102,132,162,19Z2)) | O 1 4 2
Kidney
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Probiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
Molecular feature_778.432 2 4 0 1
Neorauteen 1 1 0 3
Ziprasidone 3 1 1 1
Molecular feature 1713.73 4 3 1 0
Benzethonium chloride 2 3 1 0
PC(16:1(9E)/0:0) 4 2 3 3
Vilazodone 3 1 1 0
Aminoethoxyacetic acid 4 4 1 0
Ganoderenic acid E 2 3 1 3
2,4-Dihydroxyacetophenone 5-
sulfate 1 5 1 0
Liver
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Probiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
Isogingerenone B 1 4 0 2
Arachidonoyl-CoA 3 2 0 1
Molecular feature _972.67 1 3 0 1
Cyclic adenosine diphosphate ribose | 3 2 0 1
Bromodiphenhydramine 3 2 1 1
Norstictic Acid Pentaacetate 3 3 0 2
PE(13:0/20:5(52,82,112,142,172)) |1 3 1 0
2R-hydroxy-stearic acid 3 3 1 0
Molecular feature 712.28 3 2 1 2
Molecular feature 590.33 4 4 0 1
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Muscle

Metabolite Name

Frequency:

Basal
(n=5)

Frequency:
Basal+Probiotic
(n=5)

Frequency:
High Fat
(n=5)

Frequency:
High
Fat+Probiotic
(n=5)

Glucoliquiritin apioside

Neobifurcose

Molecular feature 1790.69

Molecular feature_176.14

W IN|N

Plwih~|lw

NP

o|o|o|o

2-Hydroxy-4,7-dimethoxy-2H-1,4-
benzoxazin-3(4H)-one

Hydroxytetrabenazine glucuronide

Molecular feature 326.34

Molecular feature 205.09

Theasapogenol A

WIN|WIN|W

Molecular feature 149.02

Metabolite Name

WIN|BAIN|FP D>

0

Pancreas

Frequency:

Basal
(n=5)

Frequency:
Basal+Probiotic
(n=5)

OR[N IW|O

Frequency:
High Fat
(n=5)

ok |o|k|-

Frequency:
High
Fat+Probiotic
(n=5)

Molecular feature 554.22

1

3

LysoPC(0:0/18:0)

3

0

Malvidin 3-O-(6-O-(4-O-malonyl-
alpha-rhamnopyranosyl)-beta-
glucopyranoside)-5-O-(6-O-
malonyl-beta-glucopyranoside)

Minoxidil-O-glucuronide

Molecular feature 1286.87

PE-Cer(d14:1(4E)/20:0(20H))

Molecular feature 749.32

Molecular feature 339.29

PS(16:1(92)/22:2(13Z,162))
PPA(18:1(92)/18:1(9Z

To

Metabolite Name

S BIEEIESNEESE

Contributors to PC3
Cortex

Frequency:

Basal
(n=5)

Frequency:
Basal+Probiotic
(n=5)

Nk |k |o|o|k|k|o

Frequency:
High Fat
(n=5)

O|Oo|Oo|IN|FP|O|oN

Frequency:
High
Fat+Probiotic
(n=5)

Molecular feature 557.15

[EEN

3

o

Molecular feature 3098.70

o

w|Oo

0

N

UDP-N-acetyl-alpha-D-
galactosamine

Avadharidine

Molecular feature 552.86

S-Seven

PS(14:1(92)/16:1(92))

7-Methylinosine

Oleoyl glycine

Molecular feature 164.98

Metabolite Name

o~ |O(_|INWw|A~[O

Heart

Frequency:

Basal
(n=5)

wo|h~[O|Oo|O|O|F

Frequency:
Basal+Praobiotic
(n=5)

NINOIN|A~|IN(F|O

Frequency:
High Fat
(n=5)

N[O O|O|Oo|Oo|w

Frequency:
High
Fat+Probiotic
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(n=9)

Molecular feature 3028.44

Molecular feature 499.99

Molecular feature 554.12

Normetanephrine glucuronide

Epinephrine glucuronide

olRr|lwlio|o

N|OO|lw|w

o|w|r|O|Oo

w|o|o|w|F-

3,4-
Hexahydroxydiphenoylarabinose

Guanosine 3'-phosphate

Molecular feature 697.44

Molecular feature_635.14

Molecular feature 361.03

Metabolite Name

= IN|NO|O

Kidney

Frequency:
Basal
(n=5)

olo|o|w|w

Frequency:
Basal+Probiotic
(n=5)

w|w|lw|o|o

Frequency:
High Fat
(n=5)

o |o|o|INvIN

Frequency:
High

Fat+Probiotic

(n=5)

Molecular feature 887.11

Molecular feature 398.09

Molecular feature 358.18

2-Ethyl-1-hexanethiol

ga|w|lw|o

OOk

NI

NP |IN| W

b-D-Xylopyranosyl-(1->4)-a-L-
rhamnopyranosyl-(1->2)-D-fucose

Molecular feature 892.13

Molecular feature 302.93

11'-Carboxy-alpha-tocotrienol

9-0x0-2E-decenoic acid

Molecular feature 922.80

Metabolite Name

o|o|o|~|O|O

Liver

Frequency:
Basal
(n=5)

Rk ko|k|k

Frequency:
Basal+Probiotic
(n=5)

RINININ(FP| -

Frequency:
High Fat
(n=5)

WWA (P W~

Frequency:
High

Fat+Probiotic

(n=9)

PIP(16:0/22:2(13Z,162))

1

Molecular feature 560.14

o

1

[y

w

Molecular feature 290.0343

1

26,27-diethyl-1a,25-dihydroxy-
20,21-methano-23-oxavitamin D3 /
26,27-diethyl-1a,25-dihydroxy-
20,21-methano-23-
oxacholecalciferol

Molecular feature 365.25

Molecular feature 450.84

Molecular feature 998.29

Molecular feature 464.41

Molecular feature 561.37

Molecular feature 1635.51

Metabolite Name

O|O|RPr|WFk|O|w

Nk |Oo|k|rk|r|o

Muscle

Frequency:
Basal
(n=5)

Frequency:
Basal+Probiotic
(n=5)

RPIWIN|FRPIWIFLIN

Frequency:
High Fat
(n=5)

IR RIS L B L

Frequency:
High

Fat+Probiotic

(n=9)

Xanthine

Dolichyl b-D-glucosyl phosphate

=W

o|o

==

W

Diguanosine triphosphate
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Moricizine sulfone 4 2 1 1
Cyanidin 3,5,3'-triglucoside 0 3 1 0
Oleamide 1 1 1 3
Mono-N-desisopropyldisopyramide | 0 1 2 4
Butoctamide hydrogen succinate 2 0 3 3
(5-heptyl-6-
methyloctahydroindolizin-8-
yl)methanol 1 2 1 3
4-Bromophenol 1 1 2 3
Pancreas
Frequency:
Frequency: Frequency: Frequency: High
Basal Basal+Praobiotic High Fat Fat+Probiotic
Metabolite Name (n=5) (n=5) (n=5) (n=5)
PS(22:4(72,10Z,137,167)/0:0) 1 0 1 5
4'-0O-Demethylrebeccamycin 1 0 1 3
Molecular feature 730.09 2 1 3 2
P1(22:1(112)/22:4(7Z2,10Z,137,1627)) | 3 0 1 1
Succinic acid 1 0 3 2
Molecular feature _690.00 1 3 2 2
Molecular feature 506.24 0 1 3 2
Molecular feature 1033.77 1 0 1 4
Molecular feature_932.55 1 0 3 4
6-bromo-tetracosa-5E,9Z-dienoic
acid 1 0 3 4
n is equal to the number of samples in the cohort
Features with associated names were putatively identified via MS. Metabolites which are not currently
included in the Metlin or HMDB databases are provided the name Molecular Feature coupled to their
respective m/z value.

When examining all three principal components, the metabolites which contribute
the most to cohort segregation in all tissues studied include phosphatidylcholines,
phosphatidylserines, phosphatidylethanolamines, and phosphatidylinositols (all MS
confirmed) which are all membrane glycerophospholipids, present in either the outer or
inner sheet of membranes. Interestingly, phosphatidylcholines were among the top
contributors to variance in principal component 1 and 2, the greatest and second greatest
contribution of overall variation among the samples. Phosphatidylcholines are located
primarily in the outermost sheet of membranes, interacting with extracellular

environment. This is in contrast to phosphatidylserines, phosphatidylethanolamines, and
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phosphatidylinositols, (contributors to principal components 2 and 3) which are located
primarily in the inner sheet, interacting with the intracellular environment. Research has
shown that dietary oils do indeed have an effect on membrane lipid composition, leading
to metabolic syndrome™. Thus, it can be proposed that while a high fat diet has a
profound effect on the membrane composition, probiotic supplementation, irrespective of
diet, results in alterations to membrane composition with the greatest amount of variation

occurring in the outermost sheet.

3. Metabolites Altered Due to Probiotic Supplementation

Supplementation of the diet with probiotics leads to detectable alterations in the
tissue metabolomes, as evidenced in all six of the organs analyzed (Figure 54). That is,
the basal and basal+probiotic cohorts are clearly segregated and distinct in the PCA plot,
as are the high fat and high fat+probiotic cohorts, regardless of tissue type. Figure 57
presents tissue-specific volcano plots comparing the basal vs. basal+probiotic and the
high fat vs. high fat+probiotic cohorts. Within every tissue examined, irrespective of the
diet, numerous metabolites were found to be either unaffected, significantly increased in

abundance, or significantly decreased by probiotic supplementation.
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Figure 57. Tissue Specific VVolcano Plots comparing the Basal versus Basal+Probiotic and High Fat vs High
Fat+Probiotic Cohorts of Pigs.

Within each identified tissue type, the fold change in metabolite abundance is calculated as the ratio of the median
chromatographic peak height in the basal cohort relative to the corresponding median peak height in the
basal+probiotic cohort, or the median peak height in the high fat cohort relative to the corresponding median peak
height in the high fat+probiotic cohort, as indicated. In the volcano plots, the —log;, of the Benjamini-Hochberg
corrected p-value for each metabolite is presented as a function of the log, of the relative abundance fold change,
using a Benjamini-Hochberg critical cutoff value of 0.05 to perform the p-value corrections. The horizontal
dashed line in the plots identifies a corrected p-value of 0.05 (i.e. —log(p-value)=1.3), while the black vertical
dashed lines denote a 1.5 log, fold change in metabolite abundance (increase and decrease). Each metabolite is
represented as a circle in the plot, with circles colored grey having a statistically insignificant alteration in fold
change (i.e. a corrected —logg(p-value) <1.3). Metabolites found to be generally unaffected by probiotic
supplementation are colored brown (corrected —log;o(p-value) >1.3 and a log, fold change value between -1.5 and
1.5). Metabolites significantly increased by probiotic supplementation are colored blue (corrected —log;o(p-value)
>1.3 and a log, fold change value between -1.5 and -10). Metabolites significantly decreased by probiotic
supplementation are colored green (corrected —log;o(p-value) >1.3 and a log, fold change value between 1.5 and
10). Metabolites drastically reduced with probiotic supplementation are colored orange (corrected —log;,(p-value)
>1.3 and a log, fold change value >10). Metabolites drastically increased with probiotic supplementation are
colored red (corrected —log;o(p-value) >1.3 and a log, fold change value <-10). Within each tissue type, this
analysis was restricted to only the molecular features appearing in a minimum of 3 of 5 pigs (60%) in any one of
the two pig cohorts.

To identify the top 10 metabolites that are greatly influenced by probiotic
supplementation (identified by comparison of basal versus basal+probiotic tissue samples
along with comparison of high fat versus high fat+probiotic tissue samples), | focused my

attention on tissue features present in at least 80% of any one cohort (i.e. the affected
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tissue metabolite was identified in at least 4 of the 5 pigs in any one of the two compared
cohorts, and thus appeared in at least 4 of the 10 pigs in the two compared cohorts), and
ranked these metabolites by fold change, p-value, and quality of EIC, resulting in a list of
10 statistically significant features (Table 3; see Appendix 8 for the associated EICs and
TICs). Of these 10 metabolites, 3 were subsequently identified via MS/MS fragmentation
(10 eV, 20 eV, and 40 eV for each metabolite) and corresponding fragment pattern
matching to fragmentation patterns of known compounds curated in the Metlin and/or
Human Metabolome Database (HMDB). The MS/MS fragmentation pattern matching for
these 3 metabolites is shown in Appendix 9. Conversely, the remaining 7 metabolites did
not match the MS/MS fragmentation pattern of any molecules in Metlin or HMDB, and
thus are not discussed further (these 7 metabolites are simply identified as a ‘molecular
feature’ in Table 3, with the corresponding m/z value listed), the 3 identified metabolites

are discussed in detail below.

Table 3. Top 10 metabolites exhibiting the greatest degree of change in all tissues when comparing basal versus
basal+probiotic and high fat versus high fat+probiotic.

Cortex

Basal versus Basal+probiotic

Frequency: Frequency:
Metabolite Name log,(Fold Change) -logyo(p-value) Basal Basal+probiotic
(n=5) (n=5)
Molecular Feature 273.12 -17.94 4.67 0 4

High Fat versus High Fat+probiotic

Frequency: Frequency: High
Metabolite Name log,(Fold Change) -logyo(p-value) High Fat Fat+probiotic
(n=5) (n=5)
Molecular Feature 355.26 17.09 4.30 4 0

Heart
Basal versus Basal+probiotic

Frequency: Frequency:
Basal Basal+probiotic
(n=5) (n=5)

Metabolite Name log,(Fold Change) -logyo(p-value)
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Based on the imposed inclusion criteria, no metabolites were highlighted in this comparison.
High Fat versus High Fat+probiotic

Molecular Feature 348.15 1907 467 0] 4]
Kidney

Basal versus Basal+probiotic

Uridine diphosphate-N-
acetylglucosamine 22.10 4,62 4

High Fat versus High Fat+probiotic

Liver
Basal versus Basal+probiotic

Muscle
Basal versus Basal+probiotic

Based on the imposed inclusion criteria, no metabolites were highlighted in this comparison.
High Fat versus High Fat+probiotic

Molecular Feature 291.07 1956 270/ 4] 0]
Pancreas
Basal versus Basal+probiotic

Molecular Feature 322.05
Proline -6.04 2.53 5 5

Based on the imposed inclusion criteria, no metabolites were highlighted in this comparison.
Criteria for Selection: Frequency > 80%; -log;o(p-value) > 1.3; |log,(Fold Change) > 1.5]; Median abundance values
> 25000
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Note: A positive fold change when comparing basal diets versus basal+probiotic indicates an increase in abundance
for the basal cohort. A positive fold change when comparing high fat versus high fat+probiotic diets indicates an
increase in abundance for the high fat cohort. n equals the number of total samples in the cohort. Features with
associated names are putatively identified via MS/MS using the Metlin and HM DB databases Metabolites which
are not currently included in the Metlin or HMDB databases are provided the name Molecular Feature coupled to
their respective m/z value.

1. Uridine Diphosphate-N-Acetylglucosamine
The tissue metabolomics investigation revealed that probiotic supplementation of
the basal diet results in significantly decreased levels of Uridine Diphosphate-N-
Acetylglucosamine (commonly referred to as UDP-GIcNACc) within the kidney tissue of
Ossabaw pigs (Table 3). In fact, UDP-GICNAc was undetected in all 5 of the kidney
samples obtained from the basal+probiotic cohort pigs, while it was abundant in 4 of the
5 kidney samples obtained from the basal diet cohort of pigs. Synthesized de novo from

fructose 6-phosphate and glucosamine via the hexosamine biosynthetic pathway'®'’,

UDP-GIcNAc is utilized by the Golgi apparatus for O-linked protein glycosylation'®*%.
Metabolic flux through the hexosamine biosynthetic pathway is a reflection of nutrient
availability, particularly glucose, glucosamine, UDP, and acetyl-CoA™®. Since 3-5% of

glucose is typically destined for UDP-GIcNAc production™®**’

, it may be that probiotic
supplementation results in alterations in the availability of these nutrients, thereby
affecting the intracellular UDP-GIcNACc concentration. This probiotics-associated drop in
UDP-GIcNAC level is unique to the kidney tissue, as it was not observed in any of the
other tissues we analyzed (the UDP-GIcNACc level was consistent among the cohorts in

these other tissues). However, the drop in UDP-GIcNACc level was observed in the high

fat+probiotics cohort relative to the high fat cohort, with probiotic supplementation
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linked to a complete absence of UDP-GIcNACc in all 5 of the pig kidney tissue samples
(data not shown). While the cause of the probiotics-associated decrease in kidney UDP-
GIcNACc levels remains uncertain, studies have shown that O-linked glycosylation is

positively regulated by the intracellular concentration of UDP-GIcNAC*?

, suggesting that
a consequence of low levels of UDP-GICNAc would be altered glycoprotein production
in the basal+probiotic and high fat+probiotic pig cohort kidney cells. Interestingly,
increased O-linked glycosylation of proteins has been implicated in insulin resistance and
obesity*?. It remains unknown if probiotic supplementation might serve to reduce the
risk of metabolic syndrome by reducing intracellular kidney UDP-GIcNAC levels.
2. Saccharopine

The metabolomics investigation also discovered that probiotic supplementation to
the basal diet leads to significantly decreased saccharopine concentration within the liver.
While 4 of the 5 liver tissues obtained from the basal diet pig cohort have abundant
saccharopine within, none of the basal+probiotic pig liver tissues had detectable levels of
saccharopine. Saccharopine is an intermediate within a lysine catabolic pathway in the
liver’?2 Unlike other amino acids, lysine does not undergo direct transamination.
Rather, lysine and a-ketoglutarate condense to form saccharopine, which is subsequently
oxidized to form a-aminoadipic &-semialdehyde and glutamate via the bifunctional
enzyme aminoadipic semialdehyde synthase'?>*%*!%® Downstream metabolic pathways
can route a-aminoadipic o-semialdehyde and glutamate for nitrogenous biomolecule
biosynthesis and energy production in the liver, so it is tempting to suppose that with the

basal diet the pigs are utilizing dietary lysine as an energy source, but with probiotic
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supplementation the added probiotic bacteria utilize the lysine pool in the GI tract,
thereby lowering the saccharopine concentration within the liver. Notably, the liver
saccharopine concentration is essentially the same in the high fat and high fat+probiotics
cohorts, suggesting the caloric abundance of the high fat diet does not necessitate amino
acid oxidation by the probiotic bacteria (or the liver). While the cause of the reduced liver
saccharopine concentration in the basal+probiotic pigs remains speculative, perhaps more
importantly the significance/effect of the reduced saccharopine concentration in the liver
of the pigs requires further investigation.
3. Proline

The third top 10 metabolite identified by MS/MS as significantly influenced by
probiotic supplementation is the amino acid proline. With a frequency of appearance of
100% in all 4 pig pancreas cohorts (5 of 5 pigs in the basal, basal+probiotic, high fat, and
high fat+probiotic cohorts), probiotic supplementation results in a significant increase in
the abundance of proline in the pancreas of the basal+probiotic cohort, relative to basal
(~100 fold increase in median abundance). Notably, probiotic supplementation of a high
fat diet increases pancreas proline levels approximately 2 fold relative to the high fat diet
alone. More significantly, relative proline levels are approximately 100 fold higher in the
basal+probiotic, high fat, and high fat+probiotic cohorts compared to the basal diet. A
high activity of mitochondrial proline oxidase is known to reside in the intestinal
absorptive cells in pigs, and as a consequence up to 90% of dietary proline becomes
metabolized to ornithine, citrulline, and arginine, thereby lowering the amount of dietary

proline available to the extraintestinal tissues'?"*?%, Given that probiotic supplementation
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of the basal diet increases the pancreatic level of proline 100 fold, probiotic
supplementation of the high fat diet increases the pancreatic level of proline 2 fold, and
that a high fat diet yields 100 fold more pancreatic proline than does a basal diet, it
appears that both a high fat diet and probiotic supplementation influence intestinal

mucosal proline metabolism, resulting in increased dietary uptake of proline.

4. Probiotic Induced Metabolic Reversions

While probiotic induced changes to the tissue metabolomes are of interest in this
investigation, a more important goal was to identify if probiotic supplementation of a
high fat diet can ‘revert’ metabolomic changes associated with the high fat diet (relative
to a healthy basal diet) back to metabolite levels on par with the basal diet. Intriguingly, it
was discovered that for many tissue metabolites, probiotic supplementation of a high fat
diet does indeed lead to alterations in metabolite abundance such that they assume a level
associated with the basal diet. That is, probiotic supplementation effectively reverts these
high fat-associated metabolite levels to a level linked with a nutritionally balanced basal

diet, even though the pigs continued to consume an obesogenic diet.
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Kidney

rotiotc

Figure 58. Tissue-specific metabolite correlation networks for the basal, high fat, and high fat+probiotic
metabolomes

For each tissue type, Pearson’s correlation coefficients were calculated for metabolites present in a minimum of 3
of 5 pigs in any one of the three pig cohorts, and only metabolites common to all three cohorts were included in the
network. Positive Pearson correlation values, r > 0.90, are depicted as a green line between metabolites, while
negative correlations, r < -0.90, are depicted as a red line between metabolites. To facilitate comparison of the
networks, metabolites are represented as a small alpha numerically labeled circle and their placement around the
circumference of each network is fixed among the plots for each tissue. For all tissues, comparison of the
metabolite correlation networks indicates that probiotic supplementation of the high fat diet alters the metabolome
relative to the high fat diet alone, and for the cortex, heart, and kidney tissues in particular, probiotic
supplementation changes the high fat metabolome in such a manner so as to make it appear more similar to the
correlation networks associated with the basal diet.

To demonstrate this reversion on a global metabolomic scale, | generated a series
of network correlation maps depicting the relationship among metabolites within the
tissues (Figure 58). Within the cortex tissue, for example, numerous metabolites
demonstrate positive and/or negative correlations with each other in the basal diet cohort.
However, for many of these metabolites, the network correlations are significantly altered
within the high fat cohort, as evidence in the corresponding correlation map (compare the
appearance of basal vs. high fat in Figure 58). Intriguingly, the supplementation of

probiotics to the high fat diet results in a reversion of the interrelationship between many
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of these metabolites to a network correlation pattern more reflective of that which occurs
with the basal diet (note how high fat+probiotics is similar in appearance to basal in
Figure 58). This reversion phenomenon is also apparent in the heart and kidney tissue.
Hence, probiotic supplementation confers measurable changes to the composition of the
tissue metabolome, and for some of the tissues, reverts a high fat associated metabolome

to one that is more akin to the basal cohort (Table 4).

probiotic induced reversion of the high fat metabolome.

;Cortex
Metabolite Name log,(Fold log,(Fold Frequency: Frequency: Frequency:
Change) High Change) High High Fat Basal High
Fat vs Basal Fat+probiotic (=) (n=5) Fat+probiotic
vs Basal

S- 19.00
Adenosylhomocysteine*

Heart

Metabolite Name log,(Fold log,(Fold Frequency: Frequency: Frequency:
Change) High Change) High High Fat Basal High
Fat vs Basal Fat+probiotic (n=5) (n=5) Fat+probiotic
vs Basal (n=5)

CDP-glycerol 16.77 o000 3 |0

Kidney
Metabolite Name log,(Fold log,(Fold Frequency: Frequency: Frequency:
Change) High Change) High High Fat Basal High
Fat vs Basal Fat+probiotic (n=5) (n=5) Fat+probiotic
vs Basal (n=5)

_Indoxyl sulfate* 1767 /161 /0 /3 [3
Liver
Metabolite Name log,(Fold log,(Fold Frequency: Frequency: Frequency:
Change) High Change) High High Fat Basal High
Fat vs Basal Fat+probiotic (n=5) (n=5) Fat+probiotic
vs Basal (n=5)
Based on the imposed inclusion criteria, no metabolites were highlighted in this comparison.

Muscle
Metabolite Name log,(Fold log,(Fold Frequency: Frequency: Frequency:
Change) High Change) High High Fat Basal High
Fat vs Basal Fat+probiotic ()] (n=5) Fat+probiotic
vs Basal (n=5)

phosphate

Pancreas

Table 4. Metabolites associated with
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Metabolite Name log,(Fold log,(Fold Frequency: Frequency: Frequency:
Change) High Change) High High Fat Basal High

Fat vs Basal Fat+probiotic (n=5) (n=5) Fat+probiotic
vs Basal (n=5)

Estradiol disulfate

Criteria for Selection: Frequency > 60% in High Fat or Basal AND High Fat+Probiotic; p value < 0.05; |log,(Fold
Change) > 10| in High Fat vs Basal AND |log,(Fold Change) < 10| in High Fat+Probiotic vs Basal; Median
abundance values > 25000. n is equal to the number of samples in the cohort.

Note: A positive fold change when comparing high fat versus basal diets indicates an increase in abundance for
high fat pigs. A positive fold change when comparing high fat+probiotic versus basal diets indicates an increase in
abundance for the high fat+probiotic cohort.

* Indicates metabolite was putatively identified via MS/MS; all others were putatively identified via MS.

To identify the top metabolites that are responsible for this reversion, | elected to
include only those metabolites that are present in at least 80% of any one of the three
cohorts (high fat, high fat+probiotic, and basal) with the caveat that if the metabolite was
present in the high fat cohort, it must be undetected in the high fat+probiotic and basal
cohorts. This resulted in a list which contained only 4 metabolites. Therefore, | lowered
the frequency to 60% with the same restrictions resulting in a data set which included a
total of 17 metabolites. Next, | further refined the data using the EIC for each metabolite,
as described previously (see Appendix 9, for the EICs and companion TICs). Table 4
presents the top 5 metabolites that undergo reversion. Of these 5 metabolites, 2 could be
successfully identified via MS/MS by fragmentation pattern matching known compounds
curated in the Metlin library and HMDB. These two compounds are discussed in further
detail below. The remaining 3 of the top 5 reversion metabolites could not be identified
by MS/MS (the compounds are not in the reference database). However, putative

identification is possible by MS, and a discussion of them is also included below.
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1. S-adenosylhomocysteine

Within the cortex, probiotic supplementation of the high fat diet results in a
suppression of the elevated intracellular concentration of S-adenosylhomocysteine (SAH)
observed in 3 of the 5 pigs in the high fat cohort, thus reverting the metabolite to a
phenotype more akin to that found within the healthy basal diet cohort of pigs. SAH is a
member of the methyl cycle, and is an immediate product derived from S-
adenosylmethionine (SAM), a powerful methylating agent in numerous biosynthetic
reactions (catalyzed by a variety of methyl transferases)****!. SAH is known to act as a
negative regulator of several of these methyltransferases, thereby inhibiting the rate of
methylation using SAM™*, Studies have shown that increased intracellular concentration
of SAH is correlated to DNA hypomethylation, leading to an increase in reactive oxygen
species (ROS) levels related to inhibition of the methylation of tRNAs responsible for
translating the selenoproteins which reduce H,O, levels™2. Additionally, SAH has been
linked to an increase in cognitive impairment and disease progression in Alzheimer's
patients'***3*. Thus, while the mechanism underlying the phenomenon remains unknown,
the effect of suppressing the intracellular SAH abundance via probiotic supplementation
is highly desirable.

2. Indoxyl sulfate

Indoxyl sulfate (also referred to as indican) is a product of tryptophan degradation
and protein putrefaction’®***®. Within the intestines, tryptophan is converted by bacteria
into indole, which can be absorbed into the blood stream and then further metabolized in

the liver. Indole accumulation is toxic (due to its ability to disrupt membrane integrity™"),
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so indole is converted by the liver into indoxyl sulfate, which migrates to the kidneys and

is excreted in the urine®

. While a basal healthy diet leads to measurable levels of
indoxyl sulfate in kidney tissue, kidneys obtained from pigs fed a high fat diet were found
to be devoid of this metabolite. While the reason for this is unclear (perhaps the microbes
preferentially utilize the abundance of fat for fuel, rather than protein degradation),
probiotic supplementation of pigs fed the high fat diet reverts the level of indoxyl sulfate
to that observed with the basal diet (possibly due to the abundance of probiotic bacteria in
the GI tract consuming the additional fat and reestablishing protein putrefaction).
3. CDP-Glycerol
Probiotic supplementation of the high fat diet results in a suppression of the
intracellular heart concentration of cytidine diphosphate-glycerol (CDP-glycerol; MS
identified). Not detected in the hearts of pigs in the basal diet cohort, an elevated level of
CDP-glycerol was found in 3 of 5 pigs in the high fat cohort. CDP-glycerol is an
intermediate in glycerophospholipid metabolism®*®. As an increase in intermediates
associated with glycerophospholipid metabolism have been linked to an increase in
coronary heart disease (CHD), it is interesting to postulate that probiotic
supplementation to a high fat diet may result in an alteration to the pathways associated
with glycerophospholipids, thereby reducing the risk of CHD.
4. Sedoheptulose 7-phosphate
Probiotic supplementation of the high fat diet also resulted in an alteration in the

muscle sedoheptulose 7-phosphate concentration, an intermediate of the reversible

nonoxidative phase of the pentose phosphate pathway**°**2. Sedoheptulose 7-phosphate
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was detected in 4 of the 5 pigs in the high fat cohort, with probiotic supplementation
reducing the level below the limits of detection in 5 of 5 pigs, akin to that found in the
basal diet cohort (0 of 5 pigs had detectable amounts of sedoheptulose 7-phosphate in the
basal cohort). Increased sedoheptulose 7-phosphate levels may reflect enhanced
degradation of xylulose 5-phosphate (a precursor of sedoheptulose 7-phosphate), an
intermediate of the pentose phosphate pathway that directly upregulates the process of
fatty acid biosynthesis (thus the high fat diet associated degradation of xylulose 5-
phosphate to sedoheptulose 7-phosphate would decrease metabolic flux to fatty acid
biosynthesis). However, since the expression of the fatty acid synthase gene is very low

or nonexistent in skeletal muscle!*

, the alteration of the sedoheptulose 7-phosphate
levels detected here may in fact originate within muscle associated adipose cells (ie.
marbling of the muscle) isolated when the muscle samples were obtained from the pigs.
This, as well as elucidating the mechanism by which probiotic supplementation reduces
sedoheptulose 7-phosphate levels, will require further investigation.
5. Estradiol disulfate

Within the pancreas, probiotic supplementation of the high fat diet resulted in an
elevation in the intracellular concentration of the steroid conjugate, estradiol disulfate
(MS identified; undetected in the high fat cohort, yet found in all of the basal diet pigs
and 3 of the 5 high fat+probiotic diet pigs). Estradiol is a cholesterol derived steroid
hormone, synthesized within the ovaries and adipose tissue. As with other steroid

hormones, estradiol acts as a signaling molecule for a variety of different metabolic

processes such as the regulation of sodium intake, inhibition of testosterone synthesis,
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and energy homeostasis*****®, To control the intracellular concentration of estradiol,
processes such as sulfation are used for inactivation, transport, and subsequent excretion
from the body***!’. A reduction in estradiol has been shown to reduce leptin and
increase appetite, thereby increasing a risk for obesity****®, In addition, when compared
to a healthy weight, a reduction in the levels of steroid sulfates, such as estradiol

disulfate, has been shown in overweight and obese girls'’

. Thus, as probiotic
supplementation of the high fat diet resulted in an increase in estradiol disulfate levels,
one can propose that probiotic supplementation may alter steroid biosynthesis and

decrease the risk for obesity.

Summary

Based on the tissue metabolomics results presented here, | conclude that a change
in diet alone has a profound effect on the tissue metabolome, agreeing with the old adage
that you are what you eat. As depicted in Figures 52 and 54, a high fat diet has an impact
on all of the tissues examined in this investigation, from heart and skeletal muscle, to
pancreas, liver, kidney, and cortex, with the greatest amount of variation resulting from
an alteration in membrane lipid composition. The kidney and cortex appear particularly
sensitive to intake of a high fat diet (Figures 52 and 53). Further, this study demonstrates
how probiotic supplementation can also have an effect on the metabolome composition,
creating metabolic phenotypes that are differentiated from those obtained with a basal
and high fat diet (Figure 54). Notably, the metabolic differences identified by probiotic
supplementation include alterations to metabolic flux through the hexosamine

biosynthetic pathway resulting in a reduction of intracellular UDP-GIcNAC levels within
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the kidney; suggesting an altered abundance in glycoprotein production and (when
coupled to an obseogenic diet) a possible prevention of metabolic syndrome.
Additionally, probiotic supplementation on the nutritionally balanced basal diet resulted
in an alteration in lysine catabolism within the liver, presumably a reflection of
preferential lysine utilization by the microbes within the Gl tract. Finally, probiotic
supplementation to the basal diet resulted in an increase in intracellular proline
concentration within the kidney suggesting an alteration in its utilization comparable to
what was measured within the high fat cohorts (with and without probiotic
supplementation).

Through an in-depth analysis of the basal, high fat, and high fat+probiotic
cohorts, | discovered that with probiotics supplementation, some potentially aberrant
metabolites identified in the high fat cohort tissues were reverted to levels associated with
those found in pigs fed a healthy, nutritionally balanced diet. Some of these metabolites
include those that are associated with restoring processes associated with DNA
methylation and the removal of toxic by-products of protein putrefaction. In addition, |
identified possible alterations to glycerophospholipid metabolism and utilization of
available fatty acids, a reduction in intermediates of the pentose phosphate pathway, and
potential restoration of steroid biosynthesis. Coupled together, the reversion of the
intracellular concentration of these metabolites to a level akin to a healthy diet depicts the

beneficial nature of probiotic supplementation.
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SPECIFIC AIM 2.4: METABOLIC CHANGES IN PIGS DUE TO WHIPWORM
(TRICHURIS SUIS) INFECTION.

Objective: Use metabolomics to characterize the metabolic changes associated
with various stages of T. suis infection in pigs and demonstrate how changes in certain

metabolites relate to mammalian inflammatory pathways.

Introduction

The autoimmune disorder Inflammatory Bowel Disease (IBD), characterized by
chronic inflammation of the intestinal tract, affects over 1.3 million people in the United
States alone’®. Two of the most widely discussed and common variants of this disease
are Crohn's and Ulcerative Colitis (UC)*° ™. Crohn's disease is characterized by the
continual inflammation of the gastrointestinal tract (from mouth to rectum),
predominately occurring throughout the intestinal lining of the ileum, resulting in severe
abdominal pain and diarrhea during symptomatic periods. Alternatively, Ulcerative
Colitis is characterized by chronic inflammation and ulcers found exclusively within the
innermost lining of the colon and rectum. As IBD is a chronic disorder, treatments range
from drug therapies such as anti-inflammatory drugs, immunosuppressants, and/or

antibiotics (in the case of UC)™

, to surgical intervention to excise the afflicted portions.
As the inflammation in UC often occurs throughout the entire colon or rectum, many UC

patients have to undergo surgery resulting in partial or complete removal of the affected
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organ. Conversely, inflammation associated with Crohn’s disease occurs in patches; as a
temporary solution, approximately 50% of Crohn's patients have the damaged portions of
their intestines removed. While this may abate symptoms, lack of treatment of the
underlying causes of inflammation result in possible reoccurrence, resulting in more
surgery to excise the newly afflicted portions™?*>*. Because current therapies are so
invasive and do not treat underlying biochemical causes of inflammation, researchers are
exploring alternative approaches to ease patient pain and address IBD etiology.

One proposed therapy, helminthic therapy, is a treatment that stems from the
hygiene hypothesis. The theory states that lack of exposure to parasites can increase the
chance of development of an autoimmune disorder such as IBD™**° Therefore, by
administering helminths, in particular Trichuris suis ova which cannot reproduce within
the human host, those who are afflicted with autoimmune disorders will see their
symptoms subside. There have been several clinical trials involving the use of T. suis in

IBD treatment™®%%: current research has established that a continuous dose of 2500 T.

suis ova is safe and effective in UC and Crohn's patients™®".

The helminth used in these trials, T. suis, is a parasitic nematode infectious to
pigs. Though the natural host is the pig, T. suis has been shown to have immune
modulating effects on people with IBD*®. The ova has a characteristic oval shape with
two polar plugs while the mature worms are long and “whip-like.” The life cycle of T.
suis is typical to most nematodes and begins once the embryonated egg (ova) is ingested.

Once ingested, the first infective stage larvae (L1), hatch in the ileum, cecum, and

proximal colon mucosa (PCM). The larva buries itself into the mucosal lining where it
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undergoes four subsequent molts. The first molt (L1 to L2) begins at approximately day
10 post infection, the second, a transition to L3, occurs between days 16-21. At this point
the worm's posterior emerges from the mucosa. The third and fourth molts, L4 and L5
(young adult), occur around days 32 and 37. By day 41, the worms are mature adults and
begin to produce eggs'®.

In collaboration with Dr. Joe Urban at the United States Department of
Agriculture (USDA), the goal of Specific Aim 2.4 was to characterize the metabolic
changes associated with various stages of T. suis infection in pigs and determine if these
metabolic changes are related to any inflammatory pathways implicated in the
development of IBD. To achieve this, | separated the larval lifecycle into three specific
stages. The first stage corresponds to the first and second molt (L1 to L2, Days 1-15).
The second stage corresponds to the transition into the young adults (L3-L4, Days 16-
37). The final stage corresponds to when the adult worm begins to produce and lay eggs
(L5, Days 38-53). | then tracked the appearance and levels of the non-volatile metabolites
identified from gastrointestinal tissue (Jejunum, lleum, and Proximal Colon Mucosa
(PCM)) and fecal material (Jejunum, Illeum, and PCM) (Figure 59). The data was
acquired using an Agilent 6530 LC-QToF, and further processed using principal
component analysis, hierarchical clustering analysis, correlation networks, and fold

change analysis.
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Figure 59. Schematic examining the metabolic alterations as a consequence of T. suis infected stage.

In this investigation, | examined the alterations to the metabolic composition for the various time points during the
infection. For clarity, | have broken the investigation down into three stages, comprising of four different time
points, 32 samples in total. For stage 1, | have Day 10 containing intestinal tissue and content from pigs infected
with L2 larvae. For stage 2, | have two different time points. Day 21 illustrates the early portion of stage 2 with
intestinal tissue and content from pigs infected with L3 larvae. Day 35, late portion of stage 2, contains intestinal
tissue and content from pigs infected with L4 larvae. Finally, stage 3, | have Day 53, containing intestinal tissue
and content from pigs infected with adult worms.

Materials and Methods

For Specific Aim 2.4, the pigs were housed and infected using the T. suis
infection protocol at the USDA. In addition, all intestinal tissue and content samples were
collected at the USDA. | exclusively processed the samples and performed the data

analysis as described in methods below.

1. T. suis Infection Protocol.

Adult female worms were cultured in fresh complete Dulbecco's Modified Eagle's
Medium (DMEM (pH 7.2) supplemented with 250 U/mL penicillin, 250 pg/mL

streptomycin, 0.625 pg/mL amphotericin B, 400 pg/mL chloramphenicol at
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approximately 20 worms/mL. Plates were stored in a 37 °C incubator with 10% CO; in
air and left undisturbed for 24 hours. The adult worms release eggs into the media which
were then harvested by centrifugation, washed in PBS with antibiotics, and maintained at
room temperature for 45-60 days to allow development of infected larva inside the egg.
The pigs were then inoculated with 2,000 - 20,000 eggs/per pig depending on the age of
the pig and amount of larvae or adult worms that were needed. Following the specified
infection duration, the pigs were euthanized and their organs were collected. The worms
were removed from the intestines and their physiology was recorded. The tissue samples

were stored at -80 °C until they are ready to be analyzed.

2. Sample Preparation.

Using liquid nitrogen to keep the tissue samples frozen, the samples were ground
into fine powder using a TissueLyser 1l (Qiagen, Germantown, MD) then weighed into
pre-chilled microcentrifuge tubes (~100 mg aliquots). The powdered tissues were then
extracted using a methanol:water solution (1:1), added in a ratio of 3 pL of solvent/mg
frozen tissue. The sample was vortexed, sonicated at room temperature for 5 min,
clarified by centrifugation (15 min at 16.1 rcf), and the supernatant collected, filtered
using Supelco (54145-U) Iso-disc, N-4-2 nylon, 4 mm x 0.2 um filters (Sigma-Aldrich),
and transferred to high-recovery amber vials (Agilent Technologies, Inc., Santa Clara,

CA).
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3. UPLC-QToF Analysis.

Samples were analyzed using an Agilent 1290 Infinity UPLC equipped with a
C18 column (Zorbax Eclipse XDB-C18, 2.1 x 100 mm, 1.8 um) and coupled to an
Agilent 6530 QToF and data was acquired in ESI positive and negative modes. The
mobile phase was dispensed by a binary pump at a flow rate of 0.4 mL/min. In ESI
positive mode, solvent A was composed of LCMS Grade Water + 0.1% v/v formic acid
(Proteochem, Loves Park, IL) and solvent B was composed of HPLC Grade Methanol +
0.1% v/v formic acid (Fisher Scientific). In ESI negative mode, solvent A was composed
of Milli-Q Water + 0.01% v/v formic acid and solvent B was composed of HPLC Grade
Methanol + 0.01% v/v formic acid (Fisher Scientific). Regardless of the ESI mode used,
the solvents were dispensed over a gradient: 0 min 2% solvent B, 10-14.5 min 100% B,
14.51-16.50 min 2% B. The flush port was set to clean the injection needle for 2 seconds.
The column was maintained at an isothermal temperature of 50 °C. Mass spectrometric
analysis was performed by the QToF and the ESI source was set for a detection mass
range from mass-to-charge ratio (m/z) 100-600 and a scan rate of 1.67 spectra/sec. To
achieve accurate mass correction, a dedicated isocratic pump continuously introduced
reference standards of purine (Agilent Technologies, Inc.) and hexakis-H, 1H, 3H-
tetrafluoropropoxy-phosphazine, or HP-921 (Agilent Technologies, Inc.) at a flow rate of
0.5 mL/min. The nebulizer pressure was set at 45 psi with a sheath gas temperature of
350 °C and a gas flow rate of 11.0 L/min. The drying gas temperature was set at 325 °C
with a flow rate of 10.0 L/min. For tandem MS analysis, the collision energy varied

between 10, 20, and 40 eV. The data was acquired using Agilent Technologies'

148



MassHunter Acquisition SW Version, 6200 series ToF/6500 series Q-ToF B.05.01

(B5125.1).

4. Data Processing, Chemometrics and Statistical Analysis

Molecular features were identified in the raw chromatograms using Agilent
Technologies' MassHunter Qualitative Analysis software (ver B.06.00). Molecular
features and their relative abundance (peak height) were tabulated using Agilent
Technologies' Mass Profiler Professional software (ver 12.6), resulting in a metabolomics
data set containing the features identified by reversed phase ESI positive and reversed
phase ESI negative modes. Metabolites present in <9% of the total number of samples
processed were treated as one-offs and were removed from the matrix®®. The score values
(Equation 1) were calculated for each of the metabolites and filtered to include only
metabolites appearing in at least 3 of 6 samples in any 1 cohort. The samples in the data
set were organized by their appropriate infection duration, and the outlier peak area
values were identified in each cohort using an analysis of (mean-median)/median for each
analyte and a cutoff value >1.5. Outliers were replaced with the median value for that
metabolite within the cohort. Metabolite peak height values were then standardized
across the two cohorts by conversion to Z-scores (Equation 3). A Pearson (n) principal
component analysis was then performed using the standardized metabolite matrices and
the R statistical package. XLSTAT was used to perform two-sample T tests between
cohorts for each metabolite. Benjamini-Hochberg critical values were calculated. A
correlation network was created using the R statistical package. Fold change calculations

were performed using Microsoft Excel.
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Results and Discussion

1. Data Preparation

Following data acquisition by the LC-QToF, molecular features were acquired via
Agilent Technologies' MassHunter Qualitative Analysis software as illustrated in Specific
Aim 1: Step 1 of the metabolomics pipeline for every MS acquired data. Following the
extraction of molecular features, an all-inclusive metabolite data set was then compiled
for each tissue and content, from each member of the four cohorts, containing a grand
total of 331,407 molecular features. The data consisted of four infection time points along
the three stages of infection as illustrated in Figure 60, with a total number of 32 samples
per tissue and content type. For Stage 1, the time point was Day 10 post infection (6
samples) and consisted of pigs with L2 larvae. For Stage 2, there are two different time
points examining the early and late portions: Day 21 post infection (6 samples)
constituted early stage 2 with pigs infected with L3 larvae while Day 35 post infection (8
samples) constituted late stage 2 with pigs infected with L4 larvae. Finally, for stage 3,
the time point was Day 53 (12 samples) which consisted of pigs infected with adult

WwOorms.
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Time Point: Day 10  Time Point: Day 21 Time Point: Day 35 Time Point: Day 53
T. suis Stage: Larvae T. suis Stage: Larvae T suis Stage: Larvae T. suis Stage: Adult
(L2) (L3) (L4) Worms

| | Days Post \ |
Infection

Figure 60. Timeline indicating the four infection time points used when examining T.
suis disease progress.

The timeline shown above illustrates the four infection time points samples used for this
analysis. Each time point contains a unique T. suis and belongs to one of the three
infection stages used for this analysis as previously shown in Figure 59. See text for
additional information.

As each time point did not include the same number of samples (minimum
number of samples: 6; maximum number of samples: 12; total number of samples: 32); |
restricted the analysis to include only those features detected in 3 of 6 pigs within one
cohort, 3 of 32 overall. Due to the filtration process, the data set was constrained to
include between 2520-3507 (grand total of 18036) molecular features within the six
different intestinal tissue and content types analyzed, a significant reduction from the

initial total.

2. Multivariate Statistical Analysis and Data Visualization

Due to the large number of molecular features acquired, | began my analysis by
generating high resolution, focused PCAs of the intestinal tissue and content to examine
the disease progression (Figure 61). The PCA plots depict significant alterations to the
porcine intestinal tract as the disease progresses. During the initial stage of infection, L1
larvae hatch from the eggs and adhere to the porcine intestinal mucosa in the ileum,

cecum, and proximal colon where they undergo their first molt into L2. In the subsequent
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stages of infection, larvae molt from L2 into L3, at which point the posterior ends of the

larvae begin to extend out of the mucosa, and into L4, as they transition into adult worms.
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Figure 61. Disease Progression and the resulting intestinal tissue and content metabolome.
A total of 32 pigs were distributed among the four distinct time points (Day 10 post infection, Day 21 post
infection, Day 35 post infection, and Day 53 post infection). The three dimensional PCA plot depicts the
alterations in the metabolic profile obtained from each of the four time points. Each sphere on the plot reflects
the metabolome of the pig intestinal tissue or content sample. Spheres are colored as indicated in the figure. The
analysis was confined to molecular features appearing in a minimum of 3 of 6 pigs in any one of the four pig
cohorts.

While all individual time points are distinct from the others, the two second stage
cohorts are more tightly clustered in the PCA plots, demonstrating a greater similarity in
their overall metabolome composition relative to the other time points (Days 10 and 53).

The only exception to this trend is found in the ileum content where Day 10 and Day 21
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are most tightly clustered. This is expected as the L2 larvae in Day 10 will molt into the
L3 larvae of Day 21 within the intestinal mucosa of the ileum. Notably, within the tissue
and content of the ileum and proximal colon mucosa, the relative positioning of the
spheres are in counter-clockwise order as the infection progresses from stage 1 through
stage 3. Finally, while it appears there is only one sphere for each time point, the PCA
plot is a collection of all samples, illustrating minute metabolomic variations occurring
within each time point.

While the PCA plots focused on the differences elucidated in the metabolic
profile, dendrograms focusing on the intestinal tissue and content illustrate the
similarities between the time points (Figure 62). Interestingly (with the exception of the
jejunum and PCM tissue), the dendrograms cluster in a similar fashion as the PCA
ordering from the distant to closest relative, Day 53, Day 10, Day 21 and Day 35. The
dendrograms again illustrate the relative similarities of the metabolic profile obtained
from Days 21 and 35 and the differentiation from the Day 53 (adult) profile. This
clustering pattern is present in all sample types except for the PCM tissue where there are

two distinct clusters, Days 21 and Days 53 versus Days 10 and Days 35.
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Figure 62. Dendrogram generated by unsupervised hierarchical clustering of the intestinal tissue and
content samples according to the similarity of the metabolome composition.
The intestinal tissue and content samples are labeled in the figure and color coded based on their respective time
points. Note that without exception, the samples from each time point, cluster together with their respective
cohort. With the exception of the PCM tissue, the Day 21 and Day 35 cohorts organize into sister clades. It is also
noteworthy that, with the exception of the jejunum and PCM tissue, the time points all follow the same clustering
pattern: featuring sister clades Day 21 and 35, followed by segregation of Day 10 and higher Day 53. This
illustrates the similar transition from adult worm to ova and subsequent molts from L1 to L4.

Due to the vast amount of positive and/or negative interrelationships amongst the
metabolites, it was difficult to discern any potential trends in the data set using
correlation networks (r > |0.99|, Figure 63). When 1 increased the stringency of the
correlation value to r > |0.999|, | was still unable to elucidate any potential trends in the
data. A correlation value of r > |1| was deemed too stringent as there were no more than 7

metabolites that would appear in any of the networks. Based on this assessment, |
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determined that correlation networks of r > |0.99| indicated that further analysis beyond
correlation mapping would be required to elucidate potential trends. While distinct trends
were difficult to elucidate from the correlation mapping itself, it is clear that the
relationships between metabolite abundance over time is drastically altered as the

infection progresses, given the distinctly different maps generated at each time point.
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Figure 63. Intestinal tissue and content specific metabolite correlation networks for the time points: Day 10,
Day 21, Day 35, and Day 53.

For each tissue and content type, Pearson’s correlation coefficients were calculated for metabolites. Positive
Pearson correlation values, r > 0.99, are depicted as a green line between metabolites, while negative correlations,
r <-0.99, are depicted as a red line between metabolites. To facilitate comparison of the networks, metabolites are
represented as a small, alpha numerically labeled circle. Their placement around the circumference of each
network is fixed among the plots for each intestinal tissue and content. Each individual correlation network is
representative of the following time points: Day 10 (top left), Day 21 (top right), Day 35 (bottom right), and Day
53 (bottom left). For all intestinal tissue and content, there is an enormous amount of positive and negative
interrelationships occurring amongst the metabolites in each cohort. Increasing the stringency stepwise to r > |1]
significantly reduced the number of correlated metabolites in each cohort, but did not provide further insight.
Based on the results presented, | can conclude that the metabolome is significantly altered as the disease
progresses.

3. Metabolites Associated with Disease Progression
Worm maturation through the stages of infection leads to detectable alterations in

the intestinal tissue and content metabolomes, as evidenced in all six of the intestinal
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tissue and content samples. That is, stages 1, 2, and 3 are all clearly segregated and
distinct in the PCA plot. Within every intestinal tissue and content examined, irrespective
of the infection stage, numerous metabolites were found to be either unaffected,
significantly increased, or significantly decreased by worm maturation. For each
intestinal tissue and content sample, | compared the metabolome of all four time points
culminating in 6 different comparisons (36 total comparisons for all four cohorts): Day
10 versus Day 21, Day 10 versus Day 35, Day 10 versus Day 53, Day 21 versus Day 35,
Day 21 versus Day 53, and Day 35 versus Day 53. To focus my attention, | used the
following cutoff values: |log, (fold change) > 1.5|, p-value,qj; < 0.05, and abundance value
> 2.4x10% ensuring all significant features were above the baseline. This resulted in a
grand total of 1477 significant metabolites, with the proximal colon mucosa and ileum
tissue exhibiting the highest (611 molecular features) and second highest (334 molecular
features) number of significant features, respectively. Following MS/MS identification, |
identified a list of 7 metabolites (see Appendix 12 for the associated EICs and TICs)
associated with intestinal motility and/or inflammatory pathways. Interestingly, all
metabolites tabulated in Table 5 were exclusive to the stage 2 samples. The metabolites
presented were all putatively identified via MS/MS and were undetected when compared
to a concurrent analysis using the collected intestinal tissue and content from control
(uninfected) pigs at the same time points. The top metabolites of interest are categorized
into two distinct groups, serotonin metabolism and eicosanoid production, and are

described in detail below.
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Table 5. Metabolites exhibiting the greatest degree of change in all tissues and content and associated with
pathways implicated in intestinal motility and/or inflammation.

Metabolite  Frequency:  Frequency:  Frequency:  Frequency: Associated
Day 10 Day 21 Day 35 DEVAK) with:

(n=16) (n=16) (n=8) (n=12)
0 5 2 0

Tryptophan Serotonin
Metabolism™**
12-HETE 0 5 2 0 Eicosanoid
Production®3164
6-Keto- 0 5 3 0 Eicosanoid
prostaglandin Production®®3164
Fla
8-Isoprostane 0 5 5 0 Eicosanoid
Production®3164
Niacin 0 6 8 0 Serotonin
Metabolism™*
5- 0 3 8 0 Serotonin
Hydroxyindole Metabolism®**
acetic acid
15-deoxy-d- 0 5 7 0 Eicosanoid
12,14-PGJ, Production'®31%
Criteria for Selection: Frequency > 60%; -l0g;o(p-value) > 8; |log,(Fold Change) > 1.5|; Median abundance values >
24000. All metabolites were identified via MS/MS (CID = 10 eV, 20 eV, 40 eV) using Metlin and the Human
Metabolome Database (HMDB).
n is equal to the number of samples in each cohort.

1. Serotonin Metabolism
The analysis identified an increase in metabolites associated with serotonin
metabolism (tryptophan, niacin, and 5-hydroxyindoleacetic acid). Approximately 95% of

165-167 " \where it aids in intestinal secretion and

serotonin is produced in the intestines
motility. Dysregulation of serotonin in the intestines can lead to diarrhea or constipation
depending on its relative concentration in the body. In addition, serotonin can act as a
pro-inflammatory molecule, where an increase in its bioavailability results in an increase
in intestinal inflammation®%’. In the first step of the biosynthetic pathway, tryptophan,
is converted into 5-hydroxy-L-tryptophan'***®®. The results indicate a significant increase

in the levels of tryptophan in the Day 21 samples (5 of 6 pigs) when compared to Days

10, 35, and 53. Conversely, the degradation of serotonin results in the production of 5-
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hydroxyindoleacetic acid, a metabolite that is significantly increased in the Day 35
samples (8 of 8 pigs) when compared to Days 10, 21, and 53. Finally, there was a
significant increase in niacin in the Day 21 (6 of 6) and Day 35 samples (8 of 8) when
compared to Days 10 and 53. As niacin is generated via an alternative tryptophan
degradation pathway, it is interesting to postulate that its appearance may indicate an
alteration to potential serotonin levels***®®, Further investigation would be required to
substantiate this claim.
2. Eicosanoid production

Eicosanoids (such as 12-HETE, 6-Keto-prostaglandin Fla, 8-isoprostane, and 15-
deoxy-d-12,14 - PGJ2), another important class of intestinal health modulators'®3%,
were significantly increased in Days 21 and 35 with respect to Days 10 and 53. While
eicosanoids are commonly implicated in inflammation, they are also important for
maintaining intestinal health by modulating epithelial cell proliferation/differentiation
and inducing contractions and/or relaxation of the intestinal muscle'®**®, Intriguingly,
one of the metabolites identified, the prostaglandin 15-deoxy-d-12,14-PGJ, (15dPGJ,),
has been shown to decrease in individuals with Crohn's disease™®. 15dPGJ; has recently
been described as an important inhibitor of intestinal epithelial cell proliferation and
promoter of intestinal epithelial cell differentiation'®®. In addition, this prostaglandin has
demonstrated anti-inflammatory properties by activating peroxisome proliferator-
activated receptors (PPARS), transcription factors responsible for inhibiting activated T

cell proliferation”®'"*, Given the potential of using T. suis as a treatment for patients
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afflicted with Crohn's disease, this metabolite should undergo further study to determine

if the increase of 15-deoxy-d-12,14-PGJ;, can be attributed to symptom suppression.

Summary and Additional Examination

Worm maturation and disease progression has a profound effect on the intestinal
tissue and content metabolome as depicted in Figure 62-64. According to the fold change
analysis, the proximal colon mucosa and ileum are particularly sensitive to the transitions
occurring between larval stages. Interestingly, metabolites associated with mammalian
inflammation, including serotonin metabolism and eicosanoid production, were identified
solely within the second stage of infection. Of those identified, the most notable was an
increase in 15dPGJ,, a prostaglandin which is known to be suppressed in individuals with
Crohn's disease'®®. As this prostaglandin was present solely during the mid-stages of
infection, its appearance and disappearance may potentially provide insight into the
efficacy and longevity of this treatment. This metabolite, 15dPGJ,, warrants further study

as a potential therapeutic.

Investigation of the resistant versus susceptible phenotypic metabolome.
During the maturation to adult worms and late stages of infection, there is a
development of two distinct phenotypes: those pigs who exhibit high worm burden

172 A similar occurrence

(susceptible) and those who exhibit low worm burden (resistant)
was noted while collecting the samples. While many of the pigs experienced a high worm
burden (approximately 1000 worms) during the late stages of infection, some were either

devoid of worms or exhibited less than 60 worms. Throughout the course of infection,
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these low worm burden pigs, however, still experienced symptoms indicating they were
infected. Thus, it can be concluded that these pigs were able to clear the infection prior
the worms reaching adulthood. To investigate this phenomenon, | performed a
nonvolatile LC-QToF based analysis on the proximal colon mucosa and ileum tissue
acquired from uninfected pigs and pigs exhibiting a high worm burden (susceptible) or a
low worm burden (resistant).

Following the acquisition of the LC-QToF data, | extracted the molecular features
using Agilent Technologies' MassHunter Qualitative Analysis software, complied the
data set, and generated an all-inclusive spreadsheet for each tissue studied, containing a
total of 99,873 molecular features. To filter out the low frequency metabolites, | restricted
the analysis to include only those tissue-specific molecular features that appeared in a
minimum of 3 of 5 pigs in any one of the three cohorts, significantly reducing the data to

a total of 4562 molecular features (2496 in the PCM and 2066 in the ileum).
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Figure 64. Focused intestinal tissue three-dimensional PCA examining the metabolomic alterations
that occur as a consequence of worm burden.

A total of 24 pigs were distributed among three distinct cohorts (uninfected control, low worm burden
(resistant), and high worm burden (susceptible)). The three dimensional PCA plot depicts the alterations in
the metabolic profile obtained from each of the three different cohorts. Each sphere on the plot reflects the
metabolome of the pig intestinal tissue sample. Spheres are colored as indicated in the figure legend. The
analysis was confined to molecular features appearing in >25% and a minimum of 3 of 5 pigs in any one of
the three pig cohorts.

Tissue-focused PCA plots (Figure 64) clearly differentiates the metabolome
amongst the susceptible (high worm burden), resistant, and control (uninfected) samples.
The first degree of separation occurs along principal component 1, separating the control
from the infected (high and low worm burden) cohorts; explaining approximately 85%
and 86% of the variance in the ileum and PCM tissues, respectively. Differentiation
between the two infection phenotypes (high and low worm burden), occurs along
principal component 2, however, cohort segregation is achieve by a substantially smaller
degree of variation (approximately 4% and 7% in the ileum and PCM, respectively).

To further explore the metabolic variation, I then examined the relationships of

the metabolites associated within each cohort using correlation networks (r > [0.99|,
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Figure 65). The resulting correlation networks demonstrate the drastic alteration to the
interrelationships between metabolites when comparing uninfected pigs with high worm

burden (susceptible) and resistant pigs.

Control Control

Susceptible
Figure 65. Intestinal tissue specific metabolite correlation networks for the two different worm burden
phenotypes and uninfected pigs.

For each tissue and content type, Pearson’s correlation coefficients were calculated for metabolites. Positive
Pearson correlation values, r > 0.99, are depicted as a green line between metabolites, while negative correlations,
r <-0.99, are depicted as a red line between metabolites. To facilitate comparison of the networks, metabolites are
represented as a small alpha numerically labeled circle and their placement around the circumference of each
network is fixed among the plots for each intestinal tissue. Each individual correlation network is a representative
of the following phenotypes: uninfected (control, top left), low worm burden (resistant, top right), and high worm
burden (susceptible, bottom middle). Based on the results presented, | can conclude that the metabolome is
significantly altered due to worm burden levels.

Susceptible

To elucidate the potential metabolites responsible for these variations, fold change
analysis was employed with the following cutoffs for inclusion: |log, (fold change) > 1.5|,
p-value cutoff of p-value,; < 0.05, and metabolite abundance > 2.4x10%. The resulting
filtration steps generated a list of 108 molecular features for the ileum (41 molecular
features) and PCM (67 molecular features). However, upon close examination, it appears

that many of these molecular features were only detected within a sub-population of each
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worm burden phenotype. Those molecular features which were deemed cohort specific
are not currently included in the Metlin or HMDB databases and thus, unidentified.

Based on the results of this tissue specific analysis, |1 can conclude metabolic
variations exist between the resistant and susceptible phenotypes as evidenced in Figure
65 and 66. While the fold change analysis was inconclusive in determining the source of
these variations, this analysis showed that there is a sub-population of sample within each
phenotype, a phenomenon not readily observed within the PCA plot. While it appears
that the alteration in metabolite abundance may not be factor in phenotype development,
the correlation networks depicted grandiose alterations to the metabolic interactions
occurring within each cohort. Thus, indicating that metabolomic variations between the
two phenotypes may be a reflection of altered flux through metabolic pathways. Though
this is speculative, further research should be performed to determine if any metabolic
markers exist in other tissues, or if any genomic or proteomic information can be derived

from the two phenotypes.

164



CONCLUSIONS

The goal of this research project was to develop and employ a metabolomics
pipeline to visualize and compare the metabolomes of biological systems. Through the
use of four different research investigations, | was able to refine the pipeline to
incorporate the needs presented in each project. In Specific Aim 2.1, | used binary plots
as an electronic noise to successfully differentiate mVVOCs from biothreat agents,
including those with kanamycin resistance, using hSPME as an extraction method. In
Specific Aim 2.2, a GC-MS analysis was used to differentiate the VOCs exuded from the
human fecal metabolome of healthy and alcoholic patients. This investigation revealed
the analytical power of fecal metabolomics to identify alterations to the gastrointestinal
tract as a result of chronic alcohol consumption. In Specific Aim 2.3, a LC-MS analysis
was used to determine the cumulative effects of probiotic supplementation and dietary
consumption on the Ossabaw pig. The analysis demonstrated the grandiose alterations to
the global tissue metabolome and demonstrated the need for additional filtrations to
properly analyze a multi-cohort and multi-tissue investigation. Finally, in Specific Aim
2.4, a LC-MS analysis was used to characterize the metabolic alterations induced by T.
suis infection on the intestinal tract of pigs, as a function of the whipworm life cycle and
the metabolic variations that can lead to a resistant phenotype. This study was the first

introduction into a predominately targeted metabolomics analysis and demonstrated that

165



this current pipeline can be employed to both global and targeted metabolomics
investigations.

Ultimately, this iterative approach to method development provided a
metabolomics pipeline that incorporates many of the commonly used statistical tools
while remaining adaptable to the multitude of different investigative techniques
employed by the field. Although it is critical to state that each statistical analysis has its
own limitations, a suitable combination of chromatographic and spectral analysis with the

proper statistical tools can be employed for most metabolomic investigations.

166



APPENDIX 1 - GENERATING AN EXCEL SPREADSHEET

Generating a spreadsheet from LCMS Data
1. Raw data is opened in the Qualitative Analysis software.
2. Under the Method Explorer tab, click on the section called "Find Compounds™
i.  Select Find by Molecular Feature
ii.  Under the extraction tab, the target data type should state "Small molecules
(chromatographic)"
iii.  Click on the play button (Find Compounds by Molecular Feature)
3. Highlight all the compounds identified
4. Return to the Method Explorer tab, click on the section called "Identify Compounds"
i.  Select Generate Formulas
a. Under the charge state tab, the isotope model should state "Common organic
molecules™
b. Click on the play button (Generate Formulas from Compound)
5. Now you will need to export your file as a cef file.
i.  Click on File -> Export -> as CEF
6. Start Mass Profiler Professional
i. 1. Select 1 of the 3 choices: Create new project, Open existing project, Open

recent project

167



Vi.

Vii.

viil.

Xi.

Xii.

Xiil.

Create a new experiment

a. Name the experiment

b. Experiment type: Combined (Identified + Unidentified)

c. Workflow type: Analysis: Significance Testing and Fold Change

Select the Data files you would like to import (.cef files you just created)

You may choose to reorder your samples

Add a parameter

a. Name the parameter

b. Parameter type: Non-Numeric

d. Under Parameter values, double click and type in the name of the cohort for
that sample -- continue this until all samples are in their respective cohorts

e. click ok

Under abundance filtering - select the minimum absolute abundance (default is

5000 counts)

Under Normalization Algorithm - select none

Under Baselining options - select none

Click finish

Under Experiment Grouping highlight the parameter you created.

Under Filter by Frequency

Filtering Conditions - Click on re-run filter.

a. Retain entities that appear in at least 80.0% of samples in at least 1 condition

Select IDBrowser Identification
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a. Compound Selection -> Identify all compounds
b. Compound identification methods
1. Database Search
2. Molecular formula generator (MFG) for only unidentified compounds
c. Once completed, click on Save and Return
xiv.  Click on Finish
7. Under the analysis folder, highlight "filtered by frequency" --> right click and select
export list
i. Under interpretation select "All Samples”
ii. Select Raw Signal Values and Entitylist Data
iii. Columns to include: Compound Name, Frequency, lonization Mode, Metlin 1D,
Retention Time, Mass, Alignment Value, Annotations, CAS number, ChEBI ID,
Composite Spectrum.

iv. Click on OK and save your file
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Generating a spreadsheet from AMDIS using GCMS Data

1. Open AMDIS

2. Click “File” and then “Open.” Load appropriate file.

a. Tip: If the file looks like a folder, it is corrupted and AMDIS will not be able

to analyze it.

3. Go under “Analyze” and click “Analyze GC/MS Data.” You will see a window

popup that looks like the following (Figure 66):

Analyze GC/MS Data

GCAMS Data ... | |C:\_..ME\SAMF’LE 002B-3 RED 8-5-2010.0 |

Tupe of analysis: |Simple j

Target Library ... | |E:\...m Files\MISTSAMDISIZNVONSITE. MSL |

| |
i Lt | |

Run Cancel | Settings ... Help |

Figure 66. Analyze GC-MS Data screen for AMDIS.

4. Click “Settings” and check to make sure the settings match the following and click

Save:

i. Identification Tab
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a. Minimum Match Factor: 60

b. Only check off: "Multiple Identifications Per Compound"

c. Type of analysis: Simple

Instrument Tab

a. Check off the Auto boxes for both Low M/Z and High M/Z

b. Threshold: Off

c. Scan Detection: High to Low

d. Instrument Type: Quadrupole

e. Data File Format: Agilent Files

Deconvolution Tab

a. Component width: 12

b. Uncheck: omit m/z

c. Adjacent Peak Subtraction: One

d. Resolution: Medium

e. Sensitivity: Medium

f. Shape Requirements: Medium
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Library Tab

a. MS libraries/RI data: Target Compounds Library

QA/QC Tab

a. Uncheck Solvent Tailing

b. Uncheck: Column Bleed

Scan Sets Tab

a. Number of sets: 0

. Click “Run”

. Go under “Analyze” and click “Search NIST Library.” Check to make sure the
settings match the following (AMDIS will automatically substitute your file name for

the one pictured here (Figure 67)):
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Search MIST Library - Parameters
GCAMS data:
|C:\.-’-'«LD\.-'-\LD 20 MIM SPMENSAMPLE O02B-3 RED 8-5-2010
Hitz reported per search Select fraom
™ haw # of hits: f+ Al components [135]
" Only uridentified components (193]
i+ Min. match factor an V¥ Corsider all models
£ Min. probability % " Only identified components [£]
Mumber of components zearched
v Usze instrument méz limits (" Largest components: |10
% Build e " o All above threshold
e o * of total signal
) ; There are 195 components bebween
AT elizstey: 0.0% and 7.630% of total signal.
|E:\NI5TDB\MSSEAHEH\ J
Libranies: Search mode
|mainlib j% fo" Marmal identity " Quick identity
Analyze | Cancel Help

Fiaure 67. Search NIST Librarv - Parameters screen on AMDIS.

7. Click “Analyze™

8. Go under “File” and click “Generate Report.”

i.  “Append to report file” will need to be unchecked every time you generate a

report.

ii.  Nextto “Report File” there should be a file name. Click the [...] next to the name,

name your file appropriately, and click “Open.”

9. Click “Generate”
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APPENDIX 2 - METABOLOMICS ANALYSIS PIPELINE

What you will need:
1. Excel with an XLSTAT plug-in
2. R (can use either R or Rstudio)
i. LibrariesinR
a. rgl-3dPCAs
b. pheatmap - heatmaps (dendrogram), correlation heatmap
c. qgraph - visualize correlation network
Key Shortcuts
1. To select all of the numbers in a given area:
i.  CTRL+Shift +Directional Arrow
2. Jump back and forth on different sides of the data sheet
i. CTRL+directional arrow
3. To keep the value in a cell fixed in an equation, use a dollar sign to keep the value for
that cell fixed.

i. =IF(C2<1,C$18,C2)

Data Preparation

2. Open the raw data and copy and paste the information into a second sheet.

i. Label the first sheet as "infile"
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Label the second sheet as "frequency”

2. Create a distribution plot to visualize the metabolite's frequency

V.

Vi.

Vii.

Go to the “infile", copy the data and paste it into the "frequency" sheet.
Calculate the frequency for each cohort and the total frequency
Equation: =COUNTIF(___ : [">0")
the “  ”1is the cell values that need to be specified for the range; ex:
B2:B32 — tells Excel to refer to cells from B2 to B32
Calculate the score value for each metabolite (Equation 1)
Create histogram
a. Select data
b. Select “Column”
c. Right click on any bar in the graph to edit the data set under: “Select Data”
Determine your frequency cutoff and score value cutoff.
Filter your data to reflect those cutoff values.

Copy and paste the data into a new sheet called “Frequency Filtered”

3. Populate any missing values with the median value of that analyte for that cohort

(Figure 68).

Calculate the median

Open a new sheet and rename it "Median Replacement™

iii. In the sheet, use the equation:

=IF(ISBLANK(SHEET1cell), SHEET1medianvalue, SHEET1cell)
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iv. Simply drag down to impute the values and drag across to complete the whole
table

v. Repeat for any other cohort

SHEET1 | A B
1 Samplel | 52701
2 Sample2 | 39045
3 Sample3
4 Sampled | 43600
5 Samples
6 Sample6
8 Median 43600
Insert
Equation
SHEET2 | A B
1 Samplel | =IF(ISBLANK('SHEET!''B1),/SHEET!'IB$8,'SHEETI1'IB1)
Sample2 | =IF(ISBLANK('SHEET1''B2),SHEET1'!B$8,'SHEET1'/B2)
3 Sample3 | =IF(ISBLANK('SHEET!''B3),SHEET!'|B$8,'SHEET1'IB3)
4 Sampled | =IF(ISBLANK('SHEET!''B4),/SHEET1'!B$8,'SHEET1''B4)
5 SampleS | =IF(ISBLANK('SHEET!''B5),SHEET!'|B$8,'SHEET1'IBS)
6 Sample6 | =IF(ISBLANK('SHEET1''B6),SHEET1'!B$8,'SHEET1'!B6)
8 median =MEDIAN(B1:B6)
Finished
Product
SHEET2 [ A B
1 Samplel | 52701
2 Sample2 | 39045
3 Sample3 | 43600
4 Sampled | 43600
5 SampleS | 43600
6 Sample6 | 43600
8 Median 43600

Figure 68. Example Median value.

4. Remove Outliers

ii. Calculate Mean for each cohort
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iii.  Calculate Median
Iv.  Calculate the outlier equation value (Equation 2)
a. Highlight the cells that don’t meet this criteria (<1.5)
V.  Replace the outlying value with the median and highlight that cell!
5. Highlight and Remove Duplicates - common in the AMDIS generated spreadsheets
I.  Select one row of values at a time
ii.  Go to the “Home” tab > “Conditional Formatting” tab in the top panel
iii.  Select “Highlight Cells” > “Duplicate Values”
Iv.  Repeat for the next 2 rows
v.  Select the whole cohort (including the metabolite labels) > sort data again, using
the top row
vi.  Select all of the data for both cohorts
vii.  Sort the data by clicking on the icon “AZ” > “Custom Sort”
viii.  Click on “Options” button on the bottom of the dialog box
iX.  Select “sort right to left”
X.  Sort according to the first sample’s data (1st row)
xi.  Whenever you find a replicate, cut the whole column of cells, and “insert cut
cells” into a new sheet entitled: “removed replicates”
xii.  Repeat until all replicates have been removed
xiii.  Copy the completed table, and rename the copy “with replicates removed”
Xiv.  Make another copy of this sheet and rename: “Standard Values”

6. Standardize the data and save it as a .csv (Equation 3)(Figure 69)
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Calculate the mean for that metabolite

Calculate the standard deviation for that metabolite

iii.  Standardize the value
iv.  Copy all of the newly calculated standard values with their ID and metabolite
names into a new sheet entitled: “Standard Values”
A B C D E
1 Sample Label Metabolite name 1 Metabolite name 2 Metabolite name 3
2 A Cohortl | 3418090 1805186 406468
3 B Cohort 1 2006374 8247383 576579
4 C C'ohort 1 §67217 3245076 746690
5 D C'ohort2 928189 2159001 990743
6 E Cohort 2 17199488 2798675 144010
7 F C'ohort2 | 769733 3438348 1837476
8
9 | Average —AVERAGE(C2:C7) | =AVERAGE(D2'D7) | =ZAVERAGE(E2'E7)
10 | Standard Deviation =STDEV(C2:C7) =STDEV(D2:D7) =STDEV(E2.E7)
11
12 | Standard Values Metabolite name 1 Metabolite name 2 Metabolite name 3
13 | A C'ohort 1 1.838218437 -0.76932049 -0.637739
14 [B Cohort1 | 0.494883712 1.968255287 -0.350124
15 |C Cohortl [ -0.589094336 -0.15746624 -0.062509
16 | D Cohort 2 -0.531075723 -0.61897344 0.3501238
17 |E C'ohort2 |-0.531075723 -0.34715619 -1.08149
18 |F Cohort2 | -0.681856367 -0.07533893 1.7817374

Figure 69. Z-score standardization.

XLSTAT Analysis

PCA

1.

Can use XLSTAT plugin for Excel or R

Turn on the XLSTAT plugin
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2. In the first toolbar select “Analyzing Data”
3. Inthe second toolbar select “Principal Component Analysis (PCA)”
4.  Select the “Observation/Variable Tables”
I.  Select all of the Metabolite names and values
5. Select “Observation Labels”
I.  Select from “Sample” to the last patient ID
6. Make sure that:

i. “Sheet” is selected

I.  PCA type is: “Pearson (n)"

iii.  Under the “Outputs” tab > Significance level is “5”
iv.  Under the “Charts” tab > under the “Biplots” tab > make sure all are selected

7. The new PCA should appear in the “PCA” tab

Squared Cosines Table
*Note: you may want to look at F1, F2, and F3 values separately.
1. Refer to the newly generated “PCA” sheet and look at the “Squared Cosines of
Variables”
2. Copy the F1-F3 values and paste them into a new sheet entitled: “Squared Cosines”
3. Next to this new column of data, calculate the sum of the F1-3 values
Equation: =SUM(__ : )
4. Copy the entire data table (metabolite names, F1, F2, F3 values, and the SUM), and
paste it in the next column

5. Then select all of the data in this new table, and Sort the data by SUM
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I.  Go to the “Sort” button (AZ) in the top menu bar
ii.  Select “Custom Sort”
iii.  Sort according to the column “Sum”, and set the values from: “Largest to
Smallest”
6. Then select the top 5 metabolites found in the table, and simply paste them on the

side along with their Sum (F1-3) values

R Analysis

After opening R, set your working directory. You may do this by the simple command:
setwd("directorymap")
example:
setwd("'C://Users/Lab/Rfiles™)

You may also do this by clicking on File -> change dir... Then click on the file you want

and hit ok!

Coding PCA plots in R
1. Open your file.
data <- read.csv ("'filename.csv', header = T, row.names = 1)

*note: you will want to put in your file name in the " " (don't forget the .csv), header will
be the first row of your excel file denoting sample and metabolite names, row.names is
when the first column of your spreadsheet has sample names

2. To examine your data:

head(data)
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3. Calculate the principal components.

example: pca <- prcomp (na.omit(data[1:20,], scale = T))

*note: you will not be able to set scale to true if you have any metabolite columns all
labeled as 1. [1:20,] is the row numbers (in this example | have 20 rows). If you want
column numbers it would be [,1:20] -- note position of the comma. na.omit removes any
blank cells. Princomp CANNOT be used in this case since there are 20 rows and 3823
columns. Princomp can ONLY be used if columns are smaller than rows.*

4. Pull up the PCA output.

summary(pca)

5. Plot 2d plot of pc's 1 and 2.

plot(pca$x, xlab = ""PC1 (%)", ylab=""PC2 (%)"")

*note: do not forget to put the actual percentages in the labels

6. Color the points -- color coding the cohorts.

points(pca$x[1:5,], col = ""red")

*note: repeat for all rows changing the color for each cohort

7. fdesired, add a legend.

legend(locator (1), title =""cohorts™, c(**cohortl™,""cohort2™), fill = c(*'red"", ""blue™)
*note: locator(1) allows you to click on where the legend goes. c(""cohort1") refers to the

variables that are colored, and fill allows you to colors the boxes for those variables

3D PCA plot
Make sure to install your package - you will want rgl - this one allows you to rotate your

plot!
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1. Open rgl.

library(rgl)

2. Input your PC data.

ttt = textConnection(*'

sample,x,y,z

1, value, value, value

2, value, value, value

3, value, value, value

4, value, value, value

5, value, value, value

6, value, value, value

")

*note: To get the numbers (here labeled as value) listed below, you will first want to
calculate the pca values like you would create the 2d plot. Then type head (pca) or what
you saved your pca values as -- X y z refers to pcl, pc2, and pc3 respectively. Sample
refers to the sample used - you will need this if you want to label your points later on!
You will need to actually put a number where it says value - do not leave it saying value!
3. Set the colors.

colors = ¢(‘orange’,’orange’,’orange’,'blue’,’blue’, *blue®)

4. Read the table line by line, column by column.

pca<-read.table(ttt, header = TRUE, sep =",")

5. Plot the graph - you will need to put the actual percentages in the labels.
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p3d<-plot3d(pca$x, pcasy, pca$z, xlab=""PC1 (%)", ylab=""PC2 (%)"", zlab=""PC3
(%), type=""s"", size=3, col = colors)

6. If desired, label the points.

p3d<-text3d(pca$x,pcady,pca$z,pcassample, adj=1.5, font = 2)

*note: adj relates to the position of the labels where 0.5 is center, font refers to the style.
font = 1 (standard); font = 2 (bold); font = 3 (italics); font = 4 (bold and italics).

7. Save your graph.

rgl.snapshot (‘filename.png’, fmt = "'png"’, top =" TRUE"")

*note: You can do this multiple times at multiple angles just change the filename. rgl will

only recognizes png.

Pairs plot
1. Color based on samples (assuming the sample names are going down a column).
cols <-character(nrow(data))
*note: Here data represents what you saved your table as it was read into R
2. Set up colors (you can use whatever colors you want, just keep it consistent) based on
the row number.
I.  Set up a case where the point(s) do not fall into the described row numbers.
cols[] <- "blue™
ii.  Describe the row numbers and setting them to equal a color.
cols[2:16] <-"red"

cols[17:35]<-""green""
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*note: No "," is needed after the row numbers since at the beginning R was told
that only rows will be used (eg. normally [2:17,] is used to describe a row in the
matrix)
3. Plot the pairs plot.
pairs(pca$x[,1:5], pch = 16, col=cols)
*note: This assumes that the pca calculation was performed in R and resulting value
had a scalar variable of pca. In addition, [,1:5] states that pcs 1 -> 5 will be plotted.
Finally, pch describes the point's shape and cex describes the points size. Please see
http://www.statmethods.net/advgraphs/parameters.html for more information on

which number goes with which shape!

Saving data to a .csv file
example: correlation matrix
1. Read in the csv file.
data <- read.csv(**filename.csv"’, header = TRUE, row.names = 1)
*note: Make sure you have set your working directory so R knows where to look!
2. Calculate the correlation.
g <- cor(data)
g <- cor(data, method = ""pearson"")
*note: This defaults to pearson method but you may choose the method (spearman,
kendal or pearson).
3. To see the output in the R command line:

head(q)
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4. \Write the data out as a csv file.

write.csv(q, file = ""correlated.csv')

Generating a Dendrogram

1. Read in the csv file.

data <- read.csv("'filename.csv'', header = TRUE, row.names = 1)

*note: Make sure you have set your working directory so R knows where to look!

2. Open pheatmap.

library(pheatmap)

3. Perform an unsupervised hierarchical clustering analysis. This will create a heatmap
using the data.

pheatmap(as.matrix(data), color = colorRampPalette(rev(c(**#FF0000™, *#000000",

"#00FF00™)))(100), cluster_rows = TRUE, cluster_cols = TRUE,

clustering_distance_rows = *"correlation™, clustering_distance_cols =""correlation™,

clustering_method = ""ward", width = ""48", height = "'48", fontsize_col=""2",

fontsize_row="6"")

*note: There are other clustering methods to use. Different examples of the methods are

shown below and should be tried. The changes are highlighted.

Clustering Distance Method: Euclidean
pheatmap(as.matrix(data), color = colorRampPalette(rev(c(*"#FF0000", "#000000",
"#00FF00™)))(100), cluster_rows = TRUE, cluster_cols = TRUE,

clustering_distance_rows = "euclidean", clustering_distance_cols ="euclidean",
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clustering_method = "ward", width = "48", height = "48", fontsize_col="2",

fontsize_row="6")

Clustering Distance Method: Maximum

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000",
"#00FF00™)))(100), cluster_rows = TRUE, cluster_cols = TRUE,
clustering_distance_rows = "maximum", clustering_distance_cols ="maximum",
clustering_method = "ward", width = "48", height = "48", fontsize_col="2",

fontsize_row="6")

Clustering Distance Method: Manhattan

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000",
"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE,
clustering_distance_rows = "manhattan”, clustering_distance_cols ="manhattan”,
clustering_method = "ward", width = "48", height = 48", fontsize_col="2",

fontsize_row="6")

Clustering Distance Method: Canberra
pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000",
"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE,

clustering_distance_rows = "canberra”, clustering_distance_cols ="canberra”,
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clustering_method = "ward", width = "48", height = "48", fontsize_col="2",

fontsize_row="6")

Clustering Distance Method: Binary

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000",
"#00FF00™)))(100), cluster_rows = TRUE, cluster_cols = TRUE,
clustering_distance_rows = "binary", clustering_distance_cols ="binary",
clustering_method = "ward", width = "48", height = "48", fontsize_col="2",

fontsize_row="6")

Clustering Distance Method: Minkowski

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000",
"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE,
clustering_distance_rows = "minkowski", clustering_distance_cols ="minkowski*",
clustering_method = "ward", width = "48", height = 48", fontsize_col="2",

fontsize_row="6")

Creating a Correlation Network

1. Read in the csv file.

data <- read.csv(*'filename.csv", header = TRUE, row.names = 1)

*note: Make sure you have set your working directory so R knows where to look!
2. Open ggraph to generate the correlation network.

library(qgraph)
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3. Plot your correlation network.
b<-qgraph(cor(data), minimum = 0.9, layout = "'spring", label.cex = 0.75,
label.scale = FALSE, esize = 3, borders = FALSE, label.color = ""navy"’)
*note: minimum = the min correlation value you want plotted; layout - can be either
circular which will place the nodes in a circle and link each node with the same distance
or spring which plots the nodes and the distance between the nodes is determined by the
weight of the edges, defaults to circular; label.cex - this is the size of your node's label,;
label.scale - determines whether or not your label is scaled to the node's size - defaults to
true; esize - the size of the edges (lines); borders - whether or not you want borders

around your nodes - defaults to true; label.color - color of your label. defaults to black

Fold Change
1. Copy the data from the table: “with replicates removed”, into a new sheet entitled:
“Fold Change”
2. If acohort has a metabolite that is completely missing from all the samples of the
cohort, replace the missing values with a value of 1.
3. Then calculate:
i. Median of Cohort 1
Equation: =MEDIAN(__: )
ii.  Median of Cohort 2
Equation: =MEDIAN(__: )
iii.  Fold Change

Equation: =(Median Infected values/Median Healthy values)
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iv.  Fold Change of log base 2

Equation: =LOG(Fold Change value,2)

P Values
1. Create a new sheet entitled: “P-Values”.
2. Copy the data from the file: "with replicates removed" and pass it into the new sheet
3. Beneath each column enter the following formula:
Equation: =XLSTAT _TTest(C3:C13,C14:C28,,0,TRUE, TRUE)
4. Then, to be sure the values remain the same when XLSTAT is off, copy the values
generated.

5. Use the function: "Paste Special" to insert the values into this new line.

LC-MS ldentification
1. Retrieve the Retention time, and Composite Spectrum data for each of your top
metabolites. (This data should be found within your original raw spreadsheet that you
obtained from MPP).
2. Open the corresponding Raw Chromatogram files for 10 eV, 20 eV, and 40 eV as it
relates to your samples.
3. Scan the files for your top metabolites using the retention time and their m/z values.
i. Once you have located your compound, copy the m/z data which includes the
mass and their intensities. If you cannot find your compound, denote that on the
spreadsheet as the sample may need to run again.

6. Repeat this process for 10, 20, and 40 eVs for each metabolite.
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7. Once you have your m/z and intensity table set up, go to Metlin
(https://metlin.scripps.edu/index.php) and hover over Metlin, and click on MS/MS
spectrum match. You may also want to use the Human Metabolome Database
(HMDB) (http://www.hmdb.ca/).

I.  In Metlin, where it says peaks, copy and paste your m/z, intensity data there.
Include all data above 5%. Your precursor ion tolerance = 100ppm, and your m/z
tolerance = 0.1Da. Set to collision energy to the correct one that corresponds to
your data and make sure to select the appropriate mode. Under precursor m/z use
the value that you found while scanning the chromatogram. Finally, select Find
Metabolites.

*note: The Metlin Scoring is an X-Rank Algorithm'”®. This algorithm first sorts the peak

intensity of the spectrum and then establishes a correlation between the two spectrums. It

then computes the probability that a rank from an experimental spectrum matches a rank

from a reference library spectrum.

Roc curve

1. Use GraphPad Prism to make the Roc curve.

2. When you first open graph pad, under New table & graph, click on Column, and pick

the scatter plot option.
i. Then click create.

3. In your data table separate the data of your metabolite of interest into different

columns: Ex Treatment and Control.
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Make sure to label your metabolite on the left hand side of the page.

4. At the top of the page, under the analysis, click on “= Analyze". An Analyze Data

page will open up.

5. Under Column analyses, click on ROC Curve.

6. On the right, make sure all boxes next to your cohorts are checked.

7. Click OK.

8. The next page that comes up is Parameters: ROC Curve.

I.  Make sure to double check that your patient and control values are set right, to

match your data.

ii. Setthe confidence interval to 95%.

iii.  Report result as: Fraction.

iv.  New graph: check both boxes for line of identity and create a new graph of

results.

v.  Click OK.

9. Your graph should have been created now.

I.  On the left, under Results you can look at the area under the curve.

ii.  On the left, under Graphs, you can see the ROC curve of your data.
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10. To get rid of the data points right click on a data point > format entire data

set>symbol size>0.

11. Double click on the “Y title” to change it to “Sensitivity.

*Instructions to superimpose 2 or more metabolites of interest.
12. Make a copy of the ROC curve graph one of your top metabolites of interest : Right

click on the name on the left of the page and click duplicate, make sure to rename it.

13. At the top of the page, under the “Change” tab click on “Format axes (range, custom

ticks, gridlines etc).

i. Click on the “Left Y axis” tab.

ii.  Under “range”, make sure the maximum is 1.0, then click ok.

14. At the top of the page under “Change” click on “Add or remove data sets, and change

their front to back or left to right order .”

i.  Go to the “Data Sets on Graph” tab.

ii.  On the right hand side click on “Add”.

iii.  Scroll down to the “Roc of [metabolite] and click on the sensitivity of the
[metabolite] to add it to the curve. Do this until you have added all the metabolites

you need.

iv.  Click OK.
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15. Make a key to your graph:

i.  On the right hand side, replace the “Sensitivity” labels with the names of your

metabolites.

ii.  To change the color of each one, right click on a data point > format entire data

set> line/curve color> pick a color.

iii.  Toget rid of the shapes on the line right click on a data point> format entire data

set> shape size> 0.

16. Make a new column in your Excel Spreadsheet titled "Total Data Analysis™ called

ROC Curve Values and place the values into your spreadsheet.
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APPENDIX 3 - SCILAB SCRIPT FOR BINARY PLOTS

M = [ insert your binary matrix here];
M=M*(color("white")-color("black™))+color("black™);
Matplot(M)

Example:
M=1[00
0

o

[cNeNoNeNoleNolcloNeloNoloNoloNoloNoleNoleNo e Ro)
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[ S—

M=M*(color("white")-color("black™))+color("black™);
Matplot(M)
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APPENDIX 4 - PERL SCRIPT FOR AUTOMATED BINARY PLOTS

The script below will take in binary results for multiple fibers, combine the
results, compare those results it to a blank subtracting out peaks attributed to a blank, and
generate an image. The script can be changed to take in any filename, increase or

decrease the number of fibers, and increase or decrease the retention time windows.

#!/usr/bin/perl

use 5.12.3;

use strict;

use warnings;
use diagnostics;

Open csv file, compare to blank, set window for retention time,
subtract the blank --

If the blank peak was there then set = 0 if not then =1.

1 means a bar and # 0 means no bar

H o o

# parsing csv

# Fiber 1
# Sample
my = 'filename for fiberl sample.csv';
my (@filel = ();
open (my , '<', ) or die "Can't read sample file!: S$!\n";
while (my = <$fhl>) {
chomp ;
my @fields = split ", ", ;
push (filel, [11;
}
#Blank
my = 'filename for fiberl blank.csv';
my Gfile2 = ();
open (my , <, ) or die "Can't read blank file!: $!\n";
while (my = <$fh2>) {
chomp ;
my @fields = split ", ", ;
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push (@file2, Sfields[1];
}

# Fiber 2

# Sample
my $file3 = 'filename for fiber2 sample.csv';
my @file3 = ();
open (my 5fh3, '<', $file3) or die "Can't read sample file!l: S!\n";
while (my Sline = <$fh3>) {
chomp Sline;
my @fields = split ",", Sline;
push (@file3, Sfields[1];

}
# Blank
my Sfiled4d = 'filename for fiber2 blank.csv';

my @filed = ();
open (my $fh4, '<', $Sfile4) or die "Can't read blank filel!: $I\n";
while (my Sline = <$fh4d>) {
chomp Sline;
my (@fields = split ",", Sline;
push (@filed, Sfields[1];
}

# Fiber 3

# Sample
my Sfileb 'filename for fiber3 sample.csv';
my (@fileb5 = (),
open (my 5fh5, '<', $fileb) or die "Can't read sample filel: S!\n";
while (my Sline = <$fh5>) {
chomp Sline;

my @fields = split ",", Sline;
push (@fileb, Sfields[1];

}

# Blank

my Sfile6 = 'filename for fiber3 blank.csv';
my @file6 = ();
open (my 5fh6, '<', $file6) or die "Can't read blank filel: $I\n";
while (my Sline = <$fh6>) {
chomp Sline;
my @fields = split ",", Sline;
push (@file6, Sfields[1];
}

# Fiber 4

# Sample

my Sfile7 = 'filename for fiber4 sample.csv';

my @file7 = ();

open (my Sfh7, '<', $file7) or die "Can't read sample filel: S!\n";
while (my Sline = <$fh7>) {
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chomp Sline;
my @fields = split ",", Sline;
push (@file7, Sfields[1];

}
# Blank
my Sfile8 = 'filename_for_fiber4_blank.csv';

my @file8 = ();

open (my 5fhg8, '<', $Sfile8) or die "Can't read blank filel:

while (my S1line = <$fh8>) {
chomp Sline;
my @fields = split ",", Sline;
push (@file8, Sfields[1];

}

# Printing results

print "array size = ", @filel. "\n\n";
print "Sample Fiber 1: \n";

print "@filel \n\n";

print "array size = ", @file2. "\n\n'";
print "Blank Fiber 1: \n";
print "@file2 \n\n";

print "array size = ", @file3. "\n\n'";
print "Sample Fiber 2: \n";
print "@file3 \n\n";

print "array size = ", @filed. "\n\n";
print "Blank Fiber 2: \n";
print "@file4 \n\n";

print "array size = ", @file5. "\n\n";
print "Sample Fiber 3: \n'";
print "@file5 \n\n";

print "array size = ", @file6. "\n\n'";
print "Blank Fiber 3: \n";
print "@file6 \n\n";

print "array size = ", @file7. "\n\n'";
print "Sample Fiber 4: \n";
print "@file7 \n\n";

print "array size = ", @file8. "\n\n'";
print "Blank Fiber 4: \n";
print "@file8 \n\n";

# Initialize empty x and y arrays.
my @x array = ();

my Cy array = ();

my Cy array2 = ();

my @y array3 ()

my @y arrayd = ();
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# Go over each time interval
for (my Sx = 0.00001; $x <= 30.1; Sx += .1) {
my Sdiff = 0;
# Set the diff based on the time interval.
# Adjust to what I want as parameters.
if (5x < 5) {
Sdiff = 0.1;
} elsif (5x < 10) {
Sdiff = 0.1;
} elsif (5x < 15) {
Sdiff = 0.1;
} elsif (5x < 20) {
Sdiff = 0.1;
} elsif (5x < 25) {
Sdiff = 0.1;
} else {
Sdiff = 0.1;
}

my Sy = 0;
# Make sure there are data points to compare between each file.
if (scalar(C@filel) > 0) {
# Find the closest match between the files.
# Look only at the first item in filel;
# Check to see if the time is within the interval.
if (sfilel [0] < Sx + 0.1) {
# Check for a comparable time
# Go over each item in other 2 files
my Smin = Sdiff;
Sy = 1;
# For loop for each item in file 2
for (my Sindex in file2 = 0; Sindex in file2 <
scalar(@file2); Sindex in file2 4= 1) {
my Sdt = abs (Sfilel [0] - Sfile? [Sindex in file2]l);
# Want to compare to current min diff
if (5dt < Smin) {
Sy = 0;
}

The following lines can be used if your File 3 should be
subtracted of your File 1. These lines can be
included in any fiber data.

# Looking through file 3 to find comparable times
#for (my $index in file3 = 0; $index in file3 <

scalar(@file3); Sindex in file3 += 1) {

# my S$dt = abs ($file3 [0] - $filed4 [$index in file3]);
# Want to compare to current min diff

S H e

# 1if (Sdt < S$min) {

# Sy = 0;

# }

#}

# If comparable = 0 not comparable = 1

#remove time in this interval from filel
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shift (@filel);
}
}

my Sy2 = 0;
# Make sure there are data points to compare between each file.
if (scalar(@file3) > 0) {
# Find the closest match between the files.
# Look at only the first item in file3;
# Check if the time is within the interval.
if (Sfile3 [0] < Sx + 0.1) {
# Check for comparable time
# Go over each item in other 2 files
my Smin = Sdiff;
Sy2 = 1;
# For loop for each item in file 4
for (my Sindex in file4d = 0; Sindex in filed <
scalar(Gfiled); Sindex in filed 4= 1) {
my Sdt = abs (5file3 [0] - Sfiled [Sindex in file4dl);
# Want to compare to current min diff
if (sdt < smin) {
Sy2 = 0;
}
}

# If comparable = 0 not comparable =1
# Remove time in this interval from filel
shift (€file3);

}

my Sy3 = 0;
# Make sure there are data points to compare between each file.
if (scalar(C@fileb) > 0) {
# Find the closest match between the files.
# Look at only the first item in file5; check if the time is
# within the interval.
if (sfile5 [0] < $x + 0.1) {
# Check for comparable time
# Go over each item in other 2 files
my Smin = Sdiff;
Sy3 =15
# For loop for each item in file 6
for (my Sindex in file6t = 0; Sindex in file6t <
scalar(¢file6); Sindex in file6t += 1) {
my Sdt = abs (Sfileb [0] - Sfile6 [Sindex in file6l);
# Want to compare to current min diff
if (sdt < smin) {
Sy3 = 0;
}
}

# If comparable = 0 not comparable = 1
# Remove time in this interval from filel
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shift ((€fileb);
}
}

my Sy4 = 0;
# Make sure there are data points to compare between each file.
if (scalar(@file7) > 0) {
# Find the closest match between the files.
# Look at only the first item in file7; check if the time is
# within the interval.
if (sfile7 [0] < Sx + 0.1) {
# Check for comparable time
# Go over each item in other 2 files
my Smin = Sdiff;
Sy4 = 1;
# for loop for each item in file 8
for (my Sindex in file8 = 0; Sindex in file8 <
scalar(@€file8); Sindex in file8 += 1) {
my Sdt = abs (5file’ [0] - $file8 [Sindex in file8]1);

# Want to compare to current min diff
if (sdt < smin) {

Syd = 0;
}

}

# If comparable = 0 not comparable = 1
# Remove time in this interval from filel
shift (@file7);
}
}
push (Cx array, int(5x));
# Placing int in front of $x removes floating points
push (Cy array, Svy);
push (Cy array2, Sy2);
push (Cy array3, Sy3);
push (Cy array4d, Sy4);
}

my @data = (\@x array, \@y array, \@y array2, \@y array3, \@y array4);

use GD::Graph::hbars;
use GD::Text;

#create new image
my Sgraph = GD::Graph::hbars->new(400,800) ;

#setting parameters of graph
Sgraph=>set (

title => 'Sample's Binary Plot',

x label => 'Retention Time (min)"',

x label position => 1/2,

x label skip => 10,

y_tick number => 0,

dclrs => [ gqw (white) 1,
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boxclr => [gw (black)],
labelclr => [gw (black)],
axislabelclr => [gw (black)],
textclr => [gw (black)],

) or die Sgraph->error;

my Sfont spec = "./Dustismo_Sans";
Sgraph->set title font(Sfont spec, 5);
Sgraph->set x label font(Sfont spec, 18);

my Sgd = Sgraph->plot(\ldata) or die Sgraph->error;

# Saving image

open (IMG, '>sample binary.png') or die S!;

binmode IMG; # Tell the computer it is receiving binary data
print IMG $gd->png; # Generating a png image from the data and
# printing it to the png file handle

close IMG;

exit;
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APPENDIX 5 - PUBLISHED WORK

Specific Aim 2.1 - Alterations to the human fecal metabolome due to alcohol

consumption

Paper I: Alcohol Induced Alterations to the Human Fecal VOC Metabolome Couch RD,

Dailey A, Zaidi F, Navarro K, Forsyth CB, et al. PLoS One. 2015; 10 (3):e0119362. doi:
10.1371/journal.pone.0119362
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Abstract

Studies have shown that excessive alcohol consumption impacts the intestinal microbiota
composition, causing disruption of homeostasis (dysbiosis). However, this observed
change is notindicative of the dysbiotic intestinal microbiota function that could result in the
production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the
intestinal microbiota function and their metabolites is warranted, in order to better under-
stand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report
the results of a differential metabolomic analysis comparing volatile organic compounds
(VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed
the analysis with fecal samples collected after passage as well as with samples collected di-
rectly from the sigmoid lumen. Regardiess of the approach to fecal collection, we found a
stool VOC metabolomic signature in alcoholics that is different from healthy controls. The
most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the
oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant
property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important
in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol
consumption natural suppressant caryophyllene; (5) a decrease in natural product and he-
patic steatosis attenuator camphene; and (6) decreased dimethy! disulfide and dimethyl tri-
sulfide, microbial products of decompesition. Our results showed that intestinal microbiota
function is altered in alcoholics which might promete alcohol associated pathologies.

Introduction

Clinical and experimental data have demonstrated that the intestinal microbiota plays a major
role in maintaining a healthy state, while an abnormal bacterial community can contribute to
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the development/progression of various pathological diseases [1]. It is also well established that
diet impacts the intestinal microbiota composition and diversity [2]. Alcohol is a major compo-
nent of diet in Western sodeties, which could potentially impact the intestinal microbiota com-
munity. Several studies, including our own, have shown that excessive alcohol consumption
impacts the intestinal microbiota compaosition in both rodent models and humans, causing dis-
ruption of intestinal microbiota homeostasis (dysbiosis) [3-6]. The changes in the intestinal
microbiota community may be a potential co-factor for the development of tissue injury and
organ pathologies associated with excessive alcohol consumption, such as alcoholic steatohepa-
titis and cirrhosis (alcohalic liver disease (ALD)). Several epidemiologic and observational
studies show that only a subset of alcoholics develop organ damage such as ALD, indicating
that while chronic alcohol consumption is necessary, it is not sufficient to cause organ dysfunc-
tion [7,8]. Additional experimental studies indicate that proinflammatory, gut derived bacterial
products like endotoxins (lipopolysaccharide; LPS) are required co-factors for alcohol-induced
organ pathologies like ALD [9-11]. Further, human and experimental studies show that gut
leakiness to LPS is one of the primary mechanisms of endotoxemia [12] and abnormal intesti-
nal bacterial community composition (dysbiosis) that has been shown to occur in the subset of
alcoholics and alcohol fed rodents [3,5] that can play a major role in oxidative stress, gut leaki-
ness and endotoxemia and thus could potentially cause the development of alcohol-induced
pathologies like ALD [12-17].

However, the observed change in the microbiota compaosition in alcoholics is not indicative
of the dysbiotic intestinal microbiota function that could result in the production of injurious
and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota func-
tion and their metabolites is warranted to complement the results of alcohol-induced changes
to the intestinal microbiota compaosition, in order to better understand the role of the intestinal
microbiota in alcohol associated organ pathologies. This knowledge is essential for identifying
the potential intestinal microbiota directed therapeutic target(s) to prevent and treat alcoholic
organ damage like ALD. However, to the best of our knowledge, there has not been a compre-
hensive report of the impact of alcohol consumption on the intestinal microbial metabolites.

Recent advancements in the field of metabolomics provide the opportunity to interrogate
the impact of alcohol consum ption on bacterial metabolites such as volatile organic com-
pounds (VOC) in the stool of alcoholics. Related by their volatility at ambient temperatures,
the VOCs comprise a large and structurally diverse family of carbon-based molecules, of both
natural and man-made origin. Spedialized sampling methods, such as headspace solid-phase
microextraction (hSPME), greatly enable the isolation of VOCs from a wide array of biological
samples [18-21], including feces [22-27]. hSPME typically involves the partitioning of the
VOCs from the headspace above a sample into a polymeric sorbent adhered to a fused silica
rod (fiber), subsequent desorption of the VOCs into the heated inlet of a gas chromatograph,
separation of the VOC mixture by gas-liquid partition chromatography, and detection by mass
spectrometry. Spectral comparison to a reference database enables VOC identification.

One of the challenges to interrogating microbiota metabolites is the selection of the appro-
priate samples and the method of sample collection in order to avoid potential confounding
factors, such as the continual bacterial metabolic events ex-vivo after samples, like stool, are
voided and exposed to ambient environment before freezing. Indeed, we recently reported that
the VOC metabolome derived from stool collected at home was different than that obtained
from stool collected during endoscopy and immediately frozen avoiding any ex-vive metabolic
events [28].

Here, we report the results of a differential metabolomic analysis comparing VOC metabo-
lomes derived from the stool of alcoholics and non-alcoholic healthy controls, We performed
the analysis with fecal samples collected after passage (patient’s home) and then frozen after a
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period of time, as well as with fecal samples collected directly from the sigmoid lumen (via un-
prep sigmoidoscopy) then immediately frozen to prevent metabolic events from occurring
after stool collection. Regardless of the approach to fecal collection, we found a stool VOC
metabolomic signature in alcoholics that is different from healthy controls.

Materials and Methods

Fecal samples

The Institutional Review Boards at George Mason University and Rush University Medical
Center approved this investigation. An informed written research consent was signed by all
study participants. Fecal samples were endoscopically collected from 18 healthy and 16 alco-
holic subjects (the ‘endoscopy collected samples’) or were collected ex vivo after passage from
25 healthy and 22 alcoholic subjects (the "home collected samples’), in the manner described
below. (Table 1) depicts the demographic characteristics of the study subjects. Each subject
completed a detailed health questionnaire that showed that healthy participants did not have
any chronic GI or systemic disease or symptoms, none were taking any regular medication ex-
cept for blood pressure and cholesterol, and none used supplements including probiotics or
prebiotics. No subject took antibiotics, for at least three months, and none of the healthy partic-
ipants were excessive drinkers of alcohol (women consumed less than 2 drinks per sitting per
day or no more than 7 drinks per week and men consumed no more than 4 drinks per sitting
per day or no more than 14 drinks per week). Women were considered alcoholics if they con-
sumed 4 or more drinks per day or 8 or more drinks per week, while men were considered alco-
holics if they consumed 5 or more drinks per day or 15 or more drinks per week. All study
participants were instructed not to change their usual dietary consumption and, as verified by a
dietary questionnaire, all participants demonstrated no change in their typical diet or health
status during and 7 days prior to stool collection. We compared the dietary consumption of the
healthy and alcoholic cohorts and found no substantial differences between cohorts.

Study participants in the endoscopy collected group had their stool collected in vive via un-
sedated sigmoidoscopy, after providing an informed, written consent. There was no colon
preparation prior to sigmoidoscopy. The stodl in the lumen of the distal sigmoid was obtained
using a Roth Net (US Endoscopy, Mentor, OH), removed with the sigmoidoscope, and then
placed in a cryovial and immediately snap frozen in liquid nitrogen. Upon removal from the
liquid nitrogen, the cryovial was immediately stored in a -80°C freezer until analysis. For the
home collected group, study participants were instructed on how to place their stool into a BD
Gaspak EZ Anaerobe Gas Generating Pouch System with Indicator (Becton, Dickinson and
Company, Sparks, MD), to minimize the exposure of stool to high oxygen ambient atmo-
sphere. Study subjects were asked to keep the sealed anaerobic stool bag in a cold environment
until bringing the anaerobic stool bag to the hospital. Upon receipt, the stool was immediately
stored ina -80°C freezer. The interval between passage of stodl and storage at -80°C was within
12 to 24 hours.

hSPME procedure

The frozen fecal samples were dispensed in 0.2 g aliquots into 4 mL WISP style screw thread
amber glass vials, sealed with Black Top Hat PTFE/Silicone caps (J.G. Finneran, Vineland, NT),
and stored at -80°C until analyzed. Three different SPME fibers (Supelco, Bellefonte, PA) were
used in our investigation; 75 pm carboxen-polydimethylsiloxane (CAR-PDMS), 85 um polya-
crylate (PA), and 50/30 pm divinylbenzene (DVB)-CAR-PDMS. Each study subject’s fecal
sample was extracted with each of the three SPME fibers, using a new fecal aliquot for each
hSPME. All fibers were preconditioned before use, following the manufacturer’s instructions.
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Table 1. Characteristics of the study participants.

Alcoholics Healthy Controls Alcoholics Healthy Controls
Endo Collection Endo Collection Home Collection Home Collection
(N =16) (N=18) N =22) (N =25)
Gender: male, M; female, F 15M; 1 F BM10F 1BM; 4 F 11 M, 14F
Race: Caucasian, C; African American, AA;Asian, A 8C; 8 AA 9CBAATA 10C; 12 AA 12 C 12 A8 1A
Age Range 30-64 20-63 30-64 20-63
Age Mean 49.9 a9 48.4 377
BMI Range 15.9-43.9 159.6-45.4 15.8-43.9 19.6-45.4
EMI Mean 253 316 276 297
Alcohol Consumption History (Years) Mean 289 129 274 12
Smoking During Time of Study (1-2 packs per day) 8 out of 16 5 out of 18 11 out of 22 & out of 25
NSAID Usage During Time of Study (Daily) 3 out of 16 0 out of 18 4 out of 22 0 out of 25

All analyses were performed in duplicate. The sample vials were heated to 60°C for 30 minutes
prior to positioning the hSPME fiber into the headspace above the feces. The extraction was
performed until equilibrium (18 hours; [26,28]), with the sample vial temperature held at 60°C
for the duration of the extraction. The fiber assembly was then placed into the GC inlet for
thermal desorption of the analytes.

GC-MS Instrument

Samples were analyzed using an Agilent 7890 A GC equipped with a DB5-MS capillary column
(Agilent, Palo Alta, CA; 30 m length, 0.25 mm ID, and 0.25 pm film thickness), a 0.75 mm ID
SPME injection port liner, and a 5975 inert XL mass selective detector (MSD) with triple axis
detector. The GC injection port was operated in splitless mode at select inlet temperatures, de-
pendent upon the SPME fiber used (300°C, CAR-PDMS; 280°C PA; 270°C DVB-CAR-PDMS).
Helium carrier gas was set to a flow rate of 1.17 mL/min. The GC oven was held at an initial
temperature of 35°C for 1 min, ramped at 3°C/min to 80°C, then 10°C/min to 120°C, and final-
ly 40°C/min to 260°C, where the temperature was held for 1.5 min. The total run time for the
analysis was 25.0 min. The MSD was scanned from 30 to 550 amu at a rate of 2,81 scans/sec.

Data processing and analysis

The VOCs were identified in the GC-MS chromatograms using the National Institute of Stan-
dards and Technology (NIST, Washington, DC) Automated Mass Spectral Deconvolution and
Identification System (AMDIS, ver. 2.69) software and mass spectral library (NIST08). Com-
pounds with 85% or greater probability of match to a molecule in the NISTOS library were only
considered. Each AMDIS outfile, containing a list of identified metabolites and their corre-
sponding peak height values, was filtered using custom Perl scripts designed to remove back-
ground analytes (e.g. siloxanes) and eliminate metabolite redundancies (retaining the replicate
with the highest peak value). Duplicate sample data sets were combined using Perl scripts cre-
ated to merge AMDIS outfiles and average the corresponding peak height values. A compre-
hensive, three-fiber metabolite dataset was prepared for each sample by pooling the
metabolites obtained using the CAR-PDMS, PA, and DVB-CAR-PDMS fibers and summing
the corresponding peak height values (a peak height of zero was imputed for missing metabo-
lites). A Perl script was then used to assemble two complete metabolite matrices; one contain-
ing all of the endoscopy collected healthy and alcoholic patient samples and their
accompanying metabolites, and another containing all of the home collected healthy and
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alcoholic patient samples and their accompanying metabolites. Metabolites present in <20% of
the samples were treated as one-offs and were removed [28]. Each metabolite matrix was ar-
ranged into two cohorts (healthy and alcoholic) and the outlier peak height values were identi-
fied in each cohort using a plot of (mean-median)/median for each analyte and a cutoff value
=1.5. Outliers were replaced with the median value for that metabolite within the cohort. Me-
tabolite peak height values were then standardized across the two cohorts by conversion to
Z-scores (peak height-mean /standard deviation). A Pearson (n) principal component analysis
was then performed using the standardized metabolite matrices and the statistical package
XLSTAT 2012.6.02. XLSTAT was also used to perform two sample T tests between cohorts for
each metabolite. Benjamini-Hochberg critical values were calculated as (i/m)(, where i is the
rank in an ascending list of p values, m is the total number of tests, and () is a false discovery
rate of 0.15. Pearson’s correlation coefficients were calculated using Microsoft Excel. A correla-
tion network was created using the R statistical package. Unsupervised hierarchical dustering
and heatmap generation was accomplished using R, with the Manhattan method and Pearson
correlation for the distance measure. Fold change calculations were performed using Microsoft
Excel. Custom Perl scripts were used to combine and compare the cohort metabolites to identi-
fy the common and unique metabolites and to group the metabolites and their relative abun-
dance into defined chemical classes. Bar graphs and ROC curves were prepared using
GraphPad Prism ver. 4.0.

Results and Discussion

To determine if the fecal VOC metabolome composition is altered by excessive alcohol con-
sumption, we obtained a combined total of 81 stool samples from healthy and alcoholic volun-
teers. As we illustrated previously [28], the approach to collecting a fecal sample has an impact
on the derived VOU metabolome, so we elected to acquire the fecal samples in each of two
ways; in vivo by endoscopy and ex vivo by home collection after passage, as detailed in
Materials and Methods. The VOCs from the collected samples were extracted by hSPME and
identified by GC-MS. To ensure greater metabolome coverage while still accommodating rea-
sonable sample throughput, three different hSPME fiber chemistries were used (CAR-PDMS,
PA,and DVB-CAR-PDMS). All of the extractions were performed in duplicate (using different
fecal aliquots) and the replicates combined by averaging the chromatographic peak height val-
ues. Hence, a total of 486 chromatograms were generated from the 81 participant fecal samples,
resulting in both endoscopy collected (containing 16 alcoholic samples and 18 healthy samples)
and home collected (containing 22 alcoholic and 25 healthy samples) VOC

metabolome datasets.

‘When constraining metabolite identification to a minimum 85% molecular library match, a
grand total of 2,659 different VOCs are identified in the endoscopy collected fecal samples. In
contrast, the home collected samples collectively contain 2,883 total analytes, an additional 224
analytes relative to the endoscopy group. Fig. 1 presents a comparison of the alcoholic and
healthy cohort composition in terms of the number of identified analytes and the relative abun-
dance in each of the indicated chemical dasses. Of greatest significance, in both the endoscopy
collected and home collected VOC metabolomes, the overall chemical distribution appears
similar among the healthy and alcoholic cohorts (Figs. 1A and 1 B), with a slight bias towards
alcohals, alkanes, and alkenes in the home collected healthy group. Further, regardless of the
means by which the feces was isolated, very little difference in each of the chemical classes is
apparent when comparing relative analyte abundance between the healthy and alcoholic co-
horts (Figs. 1C and 1D). Additionally, while the metabolome composition as a whole is asym-
metrically distributed across the various chemical dasses, the relative distribution remains
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Fig 1. Metabolite position and The pooled Iytes present in the alccholic and healthy cohorts were distributed among the listed
chemical classes and then tallied. A and B) The bar graphs indicate the total number of analytes in each chemical class for the endoscopy (A) or home
collected (B) fecal VOC metabolomes. C and O) The relative abundance (peak height) of the metabolites present in each cohort were distributed among the
indicated chemical classes and then summed. The bar graphs indicate the relative abundance of each class for the endoscopy (C) or the home collected (D)
fecal VOC metabolomes.
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consistent regardless of the cohort or means by which the feces were collected (e.g. the acids/es-
ters group always has the greatest number of metabolites, followed by the alcohols and alkanes,
and so on). While this latter observation may simply bea reflection of the three fiber hSPME
technique (fiber chemistry dictates the nature of the isolated analytes and while a three fiber
analysis expedites sample processing, it results in an incomplete metabolome relative to a study
using five or more different fibers [26]), this distribution is also suggestive of a global homeo-
static relationship among the chemical classes within the feces. Additional work is required to
further explore this possibility.

Although Fig. 1 suggests that the overall chemical composition is very similar between the
healthy and alcoholic cohorts, noteworthy differences become apparent when performing a
higher resolution comparison of the specific analytes identified within each of the chemical
classes. 2A presents the similarities and differences within the endoscopy collected VOC
metabolomes. Whilea significant number of metabolites are common to both of the cohorts,
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in most of the chemical classes a substantial number are uniquely associated with either the
healthy or alcoholic samples (equivalent results are also obtained when com paring the home
collected metabolomes (data not shown)). However, all of these unique analytes appear in only
a small proportion (20% or fewer) of the total number of stool samples analyzed (Fig. 2B).
Hence, these *cohort-unique’ metabolites are most likely attributed to variations in dietary in-
take [28], and when these low frequency metabolites are excdluded, the combined metabolome
compaosition appears identical among the cohorts (Fig. 2C). Alternatively, since only a subset
of alcohdlics develop organ dam.age such as ALD [7,8], it is also possible that these low fre-
quency metabolites comprise a unique VOC signature associated with eventual organ dysfunc-
tion. However, since our investigation is cross sectional by design, we cannot determine if the
subset of alcoholics with the unique VOC metabolites will go on to develop organ damage. An
additional longitudinal study is required to address this possibility.

We have indicated previously how the colonic microbiome is altered in alcoholism [5]. To
ascertain how the metabolite composition and abundance relates among the healthy and alco-
holic cohorts, a principal component analysis (PCA) was performed (restricted to analytes ap-
pearing in =20% of the samples). As seen in Figs. 3A through 3D, the PCA clearly segregates
the healthy and alcohalic samples based upon their VOC metabolome composition, regardless
of the approach to fecal sample acquisition. With the endoscopy collected sam ples (Figs. 3A
and 3C), the first principal component clearly discriminates between the two cohorts (as evi-
denced by the samples segregating into separate groups along the PC1 axis of the PCA plots),
whereas the second and third components reveal variation within each of the two segregated
cohorts (particularly evident with the alcoholic samples 0104, 029A, 049A and healthy samples
023A,027A, 030A, 0424, 043A, and 046A (Fig. 3C)). Cohort differentiation is also apparent in
the home collected fecal VOC dataset, with heall:hy and alcoholic segregation readily apparent
along the PC1, PC2, and PC3 axis (Figs. 3B and 3D). Numerous metabolites collectively con-
tribute to the segregation of the healthy and alcoholic cohorts (as ranked by the squared cosine
of the variable, Figs. 3E and 3F), the top ten of which alone cause segregation of the healthy
and alcoholic samples in a PCA (51 Fig.). A dendrogram and accompanying heat map further
depict the clear differentiation of the healthy and alcoholic fecal VOC metabolomes (Fig. 4).
Additionally, metabolite correlation networks derived from the healthy and alcoholic fecal
VOC metabolomes also illustrate extensive alcohol related changes to the relationships among
the metabolites (Fig. 5 and 52 Fig.). Further, a fold change analysis of the endoscopy and home
collected fecal VOC metabolomes highlights several metabolites that undergo a significant
abundance change associated with the excessive consumption of alcohol (Fig. 6).

Aslisted in Table 2, when restricting the comparison to only those metabolites found in
Z80% of the total samples present in either the alcoholic or healthy fecal cohort, of a total of
152 metabolites, 18 demonstrate a statistically significant difference in abundance between the
healthy and alcoholic cohorts (p value <005 and fold change greater than 2), 9 of which are as-
sociated with the endoscopy collected samples and 9 are associated with the home collected
samples. A PCA with these analytes alone dearly differentiates the healthy and alcoholic co-
horts from one another, with either of the fecal collection techniques (not shown). Fig. 7 pres-
ents box plots comparing the abundance of these metabolites in the alcoholic and healthy
control fecal samples. Of significance, tetradecane demonstrates a fourfold increase in its medi-
an abundance level in the endoscopy collected alcohaolic fecal VOC metabolome, relative to the
healthy controls (see Fig. 7A and Table 2). On the other hand, tetradecane has only a 1.1 fold
increase in median abundance in the home collected alcoholic fecal VOC metabolome (data
not shown). This discrepancy between the endoscopy and home collected samples corroborates
our previous report that the approach to fecal sample acquisition can have a significant impact
on the resulting derived VOC metabolome [28]. As the endoscopy collected samples are
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Fig 4. Heat map showing the unsupervised hierarchical clustering of the fecal samples according to
the similarity bol position. The y collected fecal metabolomes are compared in
(A) while the home collected fecal metabolomes are comparedin (B). The samples are arranged in rows, the
metabolites in columns, and shades of red represent elevation of a metabolite while shades of green
represent decrease of a metabolite, relative to the median metabolite levels (see color scale). In the
dendrograms, the clustering clearly differentiates the alcoholic and healthy fecalsamples.

doi:10.137 1/journal pone 0119362.9004
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Fig 5. Metabolite correlation network of the endk llected (A) and ho llected (B) fecal

voc by Pearson’s correlation coefficients were for ites pi tin 80% or
greater of the total fecal samples. A Pearson correlation value greater than 0.95 is depicted as a green line
bolites (negative cor ions are not shown, as correlation values less than-0.95 were not

d). Tofacilitate ison of the networks, lites are ically rep ted and their

l t around i feach is fixed among the paired plots. Regardless of the fecal
collection method used, the fecal ples from the alcoholk ici have a notably different correlation
network than that seen in the fecal samples from non-alcoholics. This difference is even more apparent in
correlation derived using ites p tin >21% of allfecal samples (S2 Fig.).

doi:10.1371/joumnal pone 0119362.9005

immediately snap frozen in liquid nitrogen after their in vivo isolation, these samples best re-
flect the in situ fecal VOC metabolome and avoid possible ex vivo fermentation/evaporation ef-
fects that may influence/alter the composition of the home collected fecal samples. Hence, the
endoscopy collected samples are preferred. However, in light of the significantly increased cost
associated with the endoscopy collection, the relative ease by which the home collected samples
are obtained, and the fact that the home collected healthy and alcoholic cohorts are clearly seg-
regated by principal component analysis of their corresponding VOC metabolomes (Fig. 3), we
elected to continue our examination of the home collected samples, as they still offer insight
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into alcohol induced changes to the fecal VOC metabolome, and implicate biomarkers indica-
tive of alcoholism.

As mentioned, tetradecane is increased in abundance in the endoscopy collected alcoholic
fecal samples, relative to the healthy contrals. Additionally, the major contribution of tetrade-
cane to cohort segregation is within the first principal component of the PCA plot (Fig. 3C), as
indicated by the squared cosine of the variable (Fig. 3E). A member of the acyclic alkane family
of molecules, tetradecane has been identified as a breath biomarker of oxidative stress [29].
Hence, in the context of fecal VOCs, the increased abundance of tetradecane in the alcoholic
cohort might be indicative of a state of oxidative stress within the gut. Accordingly, alcohol-
induced oxidative stress is associated with the development of gut hyperpermeability, endotox-
emia, and subsequent alcoholic steatohepatitis [30].
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Table 2. Metabolites with a statistically significant difference in abundance between the healthy and alechelic cohorts (p<0.05; p <the
Benjamini-Hochberg critical value at a false discovery rate of 0.15).

Endoscopy Collected Fecal

Samples
%m;sod in alcoholics 4] fold frequency in Healthy (of frequency in Alcoholic (of area under ROC
value change 18) 16) curve

Tetradecane 0.013 4.07 15 13 0.68

decreased in alcoholics

2-Tetradecen-1-ol 0.000 2.52 17 14 0.83

1-Undecancl 0.025 214 15 12 0.67

Propanoic acid 0.029 232 18 16 0.67

Cyclopropane, nonyl- 0.012 234 14 12 0.70

6-Pentadecen-1-ol 0.002 B.48 14 11 0.85

B-Tetradecen-1-yl acetate 0.008 2.33 14 7 0.77

1,15-Pentadecanediol 0.016 3.09 16 9 0.72

Eicosen-1-0l 0.035 3.98 14 10 0.74

Home Collected Fecal Samples

increased in alcoholics ] fold frequency in Healthy (of frequency in Alcoholic (of area under ROC

value change 25) 22) curve

none

decreased in alcoholics

caryophyllene 0044 212 24 20 0.68

1-Maphthal enol 0.023 212 25 19 0.64

FPhellandrene 0.022 312 21 17 0.70

Dimathwl disuffide 0.016 463 24 22 0.80

Dimethyl trisufide 0.002 427 25 22 0.77

Camphene 0.012 5.56 20 16 0.80

2,5-Pymolidinediona, 1- 0.040 223 20 12 0.7

(benzoyloxy)-

5-Hepten-2-one, G-methyl- 0.033 3.86 21 14 0.75

(2-Aziridinylethyl)amine 0.030 255 21 16 0.66

doi:10. 1371/joumnal pone 0119362 1002

On the contrary, the observed change in relative abundance of tetradecane in the home col-
lected alcoholic cohort samples is only minimal (with a 1.1 fold increase in alcoholics). In fact,
no metabolites appearing in >80% of the home collected samples demonstrate a 2 fold or larger
increase in abundance in the alcoholic samples (rather, the metabolites in the home collected
samples demonstrating greater than 2 fold change in abundance were all decreased in alcohol -
ics, as described below). As a point of interest, ascorbic acid 2,6-dihexadecanoate, a known
phytochemical [31-33], was detected in 20 of the 25 healthy and 18 of the 22 alcoholic home
collected fecal samples and demonstrates a 1.72 fold increase in the alcoholic cohort (p value =
0.02; data not shown). Ascorbic acid 2,6-dihexadecanoate is a known constituent of wine [34].
Of the eight metabolites identified as decreased in the endoscopy collected alcoholic fecal

samples (Table 2), five are members of the fatty alcohol family of molecules (2-Tetradecen-
1-ol, 1-undecanol, 6-pentadecen-1-ol, 1,15-pentadecanediol, and eicosen-1-ol). The first four
of these fatty alcohols contribute maximally to segregation of the healthy and alcoholic cohorts
along prindpal component 1 in the PCA (Fig. 3C), while eicosen-1 -0l maximally contributes
to principal component 3. As depicted in Fig 7, of these five fatty alcohols, the abund ance of 6-
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Fig 7. Metabolites with a statistically significant difference in median abundance levels. The
metabolites listedin Table 2 were compared among the healthy and alcoholic cohorts. Box plots are shown,
depicting the interquartile range of Z-score normalized abundance values, with whiskers extending from
minimum to maximum. The median value is identified by a horizontal line within the box. Metabolites from the
endoscopy collected samples are shownin A), and are numerically coded as follows; 1) tetradecane, 2) 2-
1-0l, 3) 1-und I, 4) propanoic acid, 5) cyclopropane, nonyl-, 6) 6-pentad 1-0l,7) 8-
Tetradecen-1-yl acetate, 8) 1,15-Pentadecanediol, and 9) Eicosen-1-ol. Metabolites from the home collected
samples are shown in B), and are numerically coded as follows; 1) caryophyliene, 2) 1-naphthalenol, 3)
phellandrene, 4) dimethyl disulfide, 5) dimethy! trisulfide, 6) ph 7) 2,5-pyrrolidi 1-
(benzoyloxy)-, 8) 5-hepten-2-one, 6-methyl-, and 9) (2-aziridinylethyl)amine. See text for further di

doi:10.1371/journal pone 0119362.9007
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pentadecen-1-ol, 1,15-pentadecanediol, and eicosen-1-ol are dramal:ically suppressed in the al-
coholic fecal samples. In fact, these three metabolites are below their detection limits in several
of the alcoholic fecal sam ples (ranging from five samples for 6-pentadecen-1-ol to seven for
1,15-pentadecanediol; see Table 2). I vive, fatty alcohols are obtained from the diet or may be
derived from fatty acids and fatty aldehydes via the fatty alcohol cycle [35]. Fatty alcohols are
precursors for the biosynthesis of wax esters and ether glycerolipids such as the plasmalogens
[35,36]. Of particular relevance, the plasmalogens play an important role in cell-cell interac-
tions and gap junctions, and are known to protect against reactive oxygen species [37]. Further,
rodents fed a diet rich in fatty alcohols show elevated plasmalogens in the liver [38]. Hence, it
is interesting to speculate that the decreased abundance of these fatty alcohols in the alcoholic
cohort might be a response to the alcohol-induced oxidative stress, causing an increase in the
biasynthesis of plasmalogens (thereby a decrease in these particular fecal fatty alcohols). On
the other hand, low levels of these fatty alcohols in alcoholics might represent low capacity of
alcoholics to synthesize plasmalogens and thus render the intestine and liver more susceptible
to alcohol-induced oxidative stress. While these fatty alcohols appear to be potential biomark-
ers of excessive alcohol consumption (particularly 6-pentadecen-1-ol), further investigation is
needed to elucidate the details underlying the relationship between alcohol consumption, fecal
fatty alcohol abundance, and the plasmalogens.

The level of 8-tetradecen-1-yl acetate in the endoscopy collected samples also appears tobe
significantly depleted due to excessive alcohol consumption (p value = 0.008; Table 2), al-
though the biological meaning remains unclear. Common to most of the healthy samples, its
median abundance is decreased 2.33 fold in the alcoholic fecal cohort, even falling below detec-
tion limits in over half of the cohort samples (Table 2 and Fig. 7). Nonylcyclopropane, a known
phytochemical [39] and WOC associated with meat [40], is also significantly suppressed in the
endoscopy collected alcoholic fecal cohort (p value = 0.012; 2.34 fold decrease in abundance in
the alcoholic cohort relative to healthy). However, as with 8-tetradecen- 1 -yl acetate, the biolog-
ical relevance of this decline in abundance is not readily apparent and requires
further investigation.

Asindicated in Table 2 and Fig, 7A, the median abundance of propanoic acid is significantly
lower in the endascupy collected alcoholic cohort, relative to the heall:hy controls (P value =
0.029; fold change = 2.32). Short chain fatty acids (SCFAs) such as acetate, propionate, buty-
rate, isobutyrate, pentanoate, and isopentanoate are products of microbial fermentation and
are often considered to be essential to maintain and promote normal colonic epithelial cell bar-
rier integrity [41,42]. Fig. & llustrates box plots depicting the abundance of these SCFAs, in
both the healthy and alcoholic cohorts. With the endoscopy collected fecal samples (Fig. 84),
among all these SCFAs, only propanoic acid shows a statistically significant reduction in medi-
an abundance in the alcoholic cohort relative to the healthy cohort (acetate follows with a 1.49
fold reduction in median abundance and a p value of 0.34). In contrast, propanoic acid levels in
the home collected alcoholic fecal samples are only reduced by 1.2 fold (p = 0.40; Fig. 8B).
‘While the median abundance of isobutyrate appears comparable in the endoscopically collect-
ed healthy and alcoholic cohorts, it’s notable that this SCFA was only detected in & of the 16.al-
coholic fecal samples (whereas it was present in ~80% of the healthy samples), illustrating the
alcohol related loss of this analyte. A decrease in isobutyrate was also observed in the home col-
lected alcoholic fecal samples (p = 0.006; fold change = 1.72). Overall, the alcohol related de-
crease of propionate and isobutyrate may be a reflection of the alcohol induced changes to the
microbiome composition and could provide a mechanism through which alcohal-induced
changes to the microbiota composition contribute to alcohol-induced gut leakiness. However,
it is not clear why the other SCFAs remain relatively unaffected.
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In contrast to the SCFAs, protein putrefaction products such as indole, methyl indole, phe-
nol, and methyl phenol have been shown to be injurious to intestinal epithelial cells and could
disrupt intestinal barrier integrity [43]. Fig, 9 illustrates box plots depicting the abundance of
these metabolites, in both the endoscopy and home collected healthy and alcoholic cohorts.
While there is a 1.7 fold decrease in the median abundance of methyl indole in the endoscopy
collected alcoholic cohort, relative to the healthy cohort, the difference is not statistically signif-
icant (p = 0.519). Hence, excessive alcohol consumption appears to have little influence on the
abundance of these indicators of protein putrefaction.

As listed in Table 2, nine metabolites were found to be significantly decreased in the home
collected alcoholic fecal samples, Of these, caryophyllene, a widely dispersed phytochemical
[44-46], is a well characterized agonist of the cannabinoid receptor 2. Interestingly, the assoda-
tion of caryophyllene with the cannabinoid receptor 2 has been shown to reduce voluntary al-
cohol intake in mice and as such the receptor has been suggested as a target for the
pharmaceutical intervention of alcoholism [47]. Within this context, it is noteworthy that the
median level of caryophyllene abundance in the alcoholic cohort was found to be twofold
lower than that found in the healthy cohort (p = 0.044; see Fig, 7B and Table 2).

The relative abundance of phellandrene and 1 -naphthalenol are also decreased in the home
collected alcoholic fecal cohort, relative to the healthy group (Table 2 and Fig, 7B). A monoter-
penoid, phellandrene is a constituent of many plant extracts [48-50], whereas the naphthalene
derivative 1-naphthalenol is implicated as a biomarker for exposure to polycyclic aromatic hy-
drocarbons [51-53]. While the median abundance of both phellandrene and 1 -naphthalenol
are significantly decreased in the alcoholic samples relative to healthy (p < 0.05, fold change
2, the biological significance and implications of this abundance change remain elusive.

In the home collected fecal samples, the most significant decrease in relative metabolite
abundance in the alcoholic cohort is observed with dimethyl disulfide, dimethyl trisulfide, and
camphene (all with a fold change >4; Table 2 and Fig, 7B). Microbial products of decomposi-
tion [54], dimethyl disulfide and dimethyl trisulfide were detected in all 22 of the tested alco-
holic and 24 of the 25 healthy cohort fecal samples. With over a fourfold decrease in median
abundance level relative to healthy controls (p < 0.016; Table 2), dimethyl disulfide and di-
methyl trisulfide are potential biomarkers of chronic alcohol consumption in the home collect-
ed fecal samples. It is noteworthy though, these two analytes do not demonstrate a statistically
significant change in the endoscopy collected fecal samples (dimethyl disulfide—p = 0.93, fold
change = 1.1, dimethyl trisulfide—p = 0.28, fold change = 1.3). This may reflect the means by
which they are formed (via the oxidation of methanethiol [55,56]), more likely to occur in pas-
saged fecal samples exposed to air. In fact, in the home collected samples, a threefold reduction
in median abundance of methanethiol is also apparent in the alcoholic cohort relative to the
healthy cohort, whereas in the endoscopy collected samples this fold change is only 1.1, Also of
note, there is a 3.5 fold greater median abundance of methanethiol in the home collected
healthy samples as there is in the endoscopy collected healthy fecal cohort.

The phytochemical camphene, a bicydic monoterpene shown to attenuate hepatic steatosis
in mice [57], demonstrates a 5.5 fold reduction in median abundance in the alcoholic fecal
samples relative to healthy (Table 2 and Fig. 7B). As hepatic steatosis occurs in the early stages
of alcohol liver disease, it is interesting to reflect on the significant decrease in camphene levels
in the alcoholic samples. There is no statistically significant change in camphene in the endos-
copy collected samples.

The metabolite 1-benzoyloxy-2,5-pyrrolidinedione also demonstrates a significant reduc-
tion in median abundance in the home collected alcoholic fecal samples (Table 2 and Fig. 7B).
Indeed, while 1-benzoyloxy-2,5-pyrrolidinedione was detected in 20 of the 25 healthy fecal
samples, the analyte could only be detected in 55% of the alcoholic fecal samples, and with a
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2.2 fold reduction in median abundance in the alcoholic cohort (p = 0.04). Similarly, (2-azridi-
nylethyl)amine, detected in 84% of the healthy samples and 73% of the alcoholic samples, is de-
creased in the alcoholic cohort 2.5 fold relative to the median abundance in the healthy cohort
(p=10.03; Table 2 and Fig, 7B). The biological relevance of 1-benzoyloxy-2,5-pyrrolidinedione
and (2-aziridinylethyl)Jamine remains unclear. 6-Methyl-5-hepten-2-one, on the other hand, is
a well-known mammalian VOC detected in skin, breath, and fecal samples [58-62]. Identified
in 21 of 25 home collected healthy fecal samples, but only 14 of 22 alcoholic samples, 6-meth-
yl-5-hepten-2-one is decreased 3.86 fold in median abundance in the alcoholic cohort (p =
0.033; Table 2 and Fig, 7B). However, 6—me|:hy1—5—hepl:en—2—une levels have been linked to the
estrus cycle in several female mammals [61,63,64]. It's noteworthy, as indicated in Table 1, the
home collected healthy fecal cohort contains samples obtained from 14 female participants,
whereas the alcoholic cohort has samples obtained from 4.

Biomarkers of Alcoholism

As we have demonstrated previously [28], the approach to fecal sample collection has a pro-
found impact on the derived VOC metabolome. Hence, a strong argument can be made in
favor of the endoscopy collected samples, as they are immediately snap frozen upon collection
and thus best reflect the colonic metabolism occurring in vivo. Indeed, in studies seeking to un-
derstand the pathology of disease, the value of the endoscopy collected samples is clear. How-
ever, our comparative analysis of home collected fecal samples also demonstrates dear
differentiation of healthy and alcoholic VOC metabolomes (Fig. 3). Thus, as the home collected
samples are drastically cheaper to obtain, they appear well suited to investigations seeking po-
tential biomarkers of disease.

Ideally, a biomarker of chronic alcohol consumption will appear in all of the healthy andfor
alcoholic cohort samples and demonstrate a significant change in abundance between the two
cohorts. Accordingly, dimethyl disulfide and dimethyl trisulfide are nearly ubiquitous among all
of the home collected fecal samples, yet their relative abundance in the alcoholic feces is signifi-
cantly suppressed (Table 2). Indeed, their area under the ROC curveis 0.80 and 0.77 respectively,
indicative of a marker affording a reasonable balance between sensitivity and specificity (Fig. 10).
Additionally, despite its absence in some of the home collected healthy and alcoholic fecal sam-
ples, cam phene also has an area under the ROC curve indicative of a good biomarker (Table 2.
On the other hand, with the endoscopy collected samples, although propancic acid is ubiquitous
among all of the tested samples, the area under the ROC curve is only 0.67, which affords poor
accuracy in the determination of alcoholism. Instead, the metabolites 2-tetradecen-1-ol and
6-pentadecen-1-ol are much better biomarkers of alcoholism in the endoscopy collected samples
(Table 2). Further studies are now needed to qualify/validate these potential biomarkers.

It is important to consider the impact of diet on the stool VOC profile as dietary products are
substrates for bacterial metabolism and thus the type of diet can impact bacterial metabolism. We
used a food frequency questionnaire to assess the global dietary habit of our subjects and there
was no significant difference between alcoholic and control cohorts in regards to their dietary
habit. Thus, the differences in stool VOC profile between alcoholic and control groups cannot be
explained by a difference in dietary habit. However, we acknowled ge that a recall dietary question-
naire has its limitation and a future longitudinal study with prospective collection of detailed in-
formation on diet is required to fully assess the impact of diet on fecal VOCs in alcoholics.

Summary

In summary, regardless of whether the samples were collected in vivo or ex vivo after passage, it
is dlear that excessive alcohol consumption has a significant effect on the composition of the
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VOC metabolome, as evidenced by the clear cohort separation in the PCA plots, the distinct
healthy and alcoholic clades for med with unsupervised hierarchal clustering analysis, and the
drastically distinct metabolite correlation networks within the healthy and alcoholic VOC
metabolomes. Numerous metabolites undergo a significant fold change in abundance with ex-
cessive alcohol consumption, with many found to increase while others decrease in abundance
in the alcoholic feces, relative to healthy controls. The most notable metabolite alterations in
the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane;
(2) a decrease in five fatty alcohols with anti-oxidant property and a relationship to the abun-
dance of plasmalogens, known to be linked to cell-cell interactions and gap junctions; (3) a de-
crease in the short chain fatty acids propionate and isobutyrate, important in maintaining
intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption nat-
ural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenua-
tor camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products
of decomposition. With this initial insight into alcohol associated VOC metabolomic change,
the stage is set for additional studies associating these metabolites with the progression of alco-
hol associated pathologies and interventional studies directed to correct these abnormalities to
determine whether alcohol assodated pathologies such as ALD can be prevented.

Supporting Information

S$1 Fig. PCA based only on the ten top scoring metabolites, determined by the weight load-
ings (squared cosines of the variable) in Fig. 3. The resulting three dimensional plot from the
endoscopy collected fecal dataset is shown in A) and the home collected fecal dataset is shown

in B).

(TIF)

S$2 Fig. Correlation networks of the endoscopy collected (A) and home collected (B) fecal
VOC metabolomes. Pearson’s correlation coefficients were calculated for all metabolites pres-
ent inat least 21% of the total fecal samples. A Pearson correlation value greater than 0.95is de-
picted as a green line between metabolites, while a Pearson correlation value less than-0.95 is
depicted as a red line. Metabolites are numerically represented in the network and their place-
ment around the circumference of the network is fixed among the paired plots. Regardless of
the approach to fecal collection, the fecal samples from the alcohdlic particdpants have a
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significantly different correlation network than that seen in the fecal samples from non-alco-
holics.
(TIF)
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APPENDIX 6 - SUPPLEMENTARY INFORMATION

Paper I: Alcohol Induced Alterations to the Human Fecal VOC Metabolome

The following supplementary figures are reproduced from Paper I*2.
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Figure 70. Supplementary Figure 1: PCA.
The resulting three dimensional plot from the endoscopy collected fecal data set is shown in A) and the
home collected fecal data set is shown in B).
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Figure 71. Supplementary Figure 2: Correlation Networks.
Pearson’s correlation coefficients were calculated for all metabolites present in at least 21%

of the total fecal samples. A Pearson correlation value greater than 0.95 is depicted as a
green line between metabolites, while a Pearson correlation value less than-0.95 is depicted
as a red line. Metabolites are numerically represented in the network and their placement
around the circumference of the network is fixed among the paired plots. Regardless of the
approach to fecal collection, the fecal samples from the alcoholic participants have a
significantly different correlation network than that seen in the fecal samples from non-

alcoholics.
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APPENDIX 7 - USING THE EXTRACTED ION CHROMATOGRAM, TOTAL
ION CHROMATOGRAM, AND ION ABUNDANCE RANK TO REFINE THE
LIST OF STATISTICALLY SIGNIFICANT TOP MOLECULAR FEATURES.

1. Discard all molecular features eluting within the first 1 min or last min of the run,
as these regions are most susceptible to chromatographic variation.
2. Generate an EIC (extracted ion chromatogram) for each molecular feature
(parameters: symmetrical within 10ppm).
i.  Remove molecular features with a shoulder or a twin peaks (two peaks

appearing within 0.2 min of each other). See Figure 72 for an example.
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Figure 72. EIC of a molecular feature with twin peaks.

Depicted in the chromatogram is the signal produced by the molecular ion attributed to the molecular feature.
The peak of interest is indicated on the plot (this peak was statistically identified as significantly different when
comparing cohorts). However, the EIC shows two distinct peaks of differing height in very close proximity to
one another, raising concerns that differential comparison may have highlighted the peak of interest by
erroneously comparing the wrong peaks. Hence, removal of this peak of interest from subsequent analyses
eliminates this risk.
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ii.  Remove molecular features with an EIC topology resembling noise. See

Figure 73 for an example.
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Figure 73. EIC of a molecular feature with a noisy topology.

Depicted in the chromatogram is the signal produced by a molecular ion attributed to a peak of interest. The EIC
shows a peak with a topology reflective of background noise (a jagged appearance). Hence, the molecular feature
is removed from the data set.

3. Examine the TIC (total ion chromatogram) at the specified retention time. Retain
molecular features appearing within well-defined chromatographic peaks (rather

than in the baseline). See Figure 74 for an example.
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Figure 74. TIC indicating the location of the molecular ion associated with the molecular feature of interest.
Depicted in chromatograms A and B is the TIC (the total ion count; the summation of the intensities of all ions
acquired at the indicated time point during the sample run). The molecular ion associated with the molecular
feature of interest is indicated on the plot and labeled as "ion location". Figure A illustrates an example of the
molecular ion of interest appearing within a well-defined chromatographic peak. This molecular feature will be
retained in the analysis. Conversely, Figure B demonstrates an example of a molecular ion of interest that does not
appear within a well-defined chromatographic peak. This molecular feature will be removed from the analysis.

4. At the apex of the EIC, examine the mass spectra for the indicated retention time
of the molecular feature. Rank the molecular feature by the ion's abundance
compared to the other ions present. A rank value of 1 indicates the most abundant
ion at the specified retention time. Retain the molecular features which are within

the top 10 most abundant ions.
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e Note: An easy way to do this in MassHunter Qualitative Analysis is by
right clicking on the mass spectra and selecting MS Peaks One. This will
provide you with a table indicating the abundance values for all ions

within the mass spectra.
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APPENDIX 8 - SPECIFIC AIM 2.3: EIC AND TIC COMPILATION OF BASAL
VS BASAL+PROBIOTIC AND HIGH FAT VS HIGH FAT+PROBIOTIC

Cortex Basal vs Basal+Probiotic
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Cortex High Fat vs High Fat+Probiotic
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Heart High Fat vs High Fat+Probiotic
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Kidney Basal vs Basal+Probiotic
Metabolite Name: Uridine diphosphate-N-acetylglucosamine
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Kidney High Fat vs High Fat+Probiotic
Metabolite Name: lon Mass_498.19
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Liver Basal vs Basal+Probiotic
Metabolite Name: Saccharopine
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Liver High Fat vs High Fat+Probiotic
Metabolite Name: lon Mass_279.16
RP Pos — lon Rank: #1
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Muscle High Fat vs High Fat+Probiotic
Metabolite Name: lon Mass_291.07
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Pancreas Basal vs Basal+Probiotic
Metabolite Name: lon Mass_322.05
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Pancreas Basal vs Basal+Probiotic
Metabolite Name: Proline
HILIC Pos — lon Rank: #1
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Figure 75. Extracted lon Chromatograms (EIC) and Total lon Chromatograms (TIC) of the Top Molecular
Features associated with probiotic induced alterations on a nutritionally balanced basal diet or a high fat
diet.

The provided chromatograms depict the EIC and TIC of each molecular feature deemed statistically significant in
my analysis. Using the method described in Appendix 7, | used the chromatograms shown to refine my data set to
include the top 10 molecular features depicted here.
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APPENDIX 9 - SPECIFIC AIM 2.3: MS/MS FRAGMENTATION PATTERN
MATCHING FOR BASAL VS BASAL+PROBIOTIC AND HIGH FAT VS HIGH
FAT+PROBIOTIC

1. Uridine Diphosphate-N-Acetylglucosamine
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Figure 76. MS/MS comparative analysis for Uridine diphosphate-N-acetyl glucosamine using data acquired
by our LC-QToF against data acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40
ev.
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2. Saccharopine
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Figure 77. MS/MS comparative analysis for Saccharopine using data acquired by our LC-QToF against
data acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 eV.
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3. Proline
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Figure 78. MS/MS comparative analysis for Proline using data acquired by our LC-QToF against data
acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 eV.
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APPENDIX 10 - SPECIFIC AIM 2.3: EIC AND TIC COMPILATION
PROBIOTIC ASSOCIATED REVERSIONS FROM A HIGH FAT DIET
PHENOTYPE TO A BASAL DIET PHENOTYPE
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Heart

Metabolite Name: CDP-glycerol
HILIC Neg — lon Rank: # 6
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Figure 79. Extracted lon Chromatograms (EIC) and Total lon Chromatograms (TIC) of the Top Molecular
Features associated with probiotic induced reversions from a metabolome indicative of a pig consuming a
high fat diet to one comparable to a pig consuming a on a nutritionally balanced basal diet.

The provided chromatograms depict the EIC and TIC of each molecular feature deemed statistically significant in
my analysis. Using the method described in Appendix 7, | used the chromatograms shown to refine my data set to
include the top 5 molecular features depicted here.
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APPENDIX 11 - SPECIFIC AIM 2.3: MS/MS FRAGMENTATION PATTERN
MATCHING FOR PROBIOTIC ASSOCIATED REVERSIONS FROM A HIGH
FAT PHENOTYPE
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Figure 80. MS/MS comparative analysis for S-adenosylhomocysteine using data acquired by our LC-QToF
against data acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 eV.
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2. Indoxyl sulfate
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Figure 81. MS/MS comparative analysis for indoxyl sulfate using data acquired by our LC-QToF against
data acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 eV.
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APPENDIX 12 - SPECIFIC AIM 2.4: EIC AND TIC COMPILATION OF TOP
METABOLITES ASSOCIATED WITH INFLAMMATORY PATHWAYS
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Metabolite Name: Niacin
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Figure 82. Extracted lon Chromatograms (EIC) and Total lon Chromatograms (TIC) of the Top Molecular
Features associated with inflammatory pathways present in stage 2 of T. suis infection.

The provided chromatograms depict the EIC and TIC of each molecular feature deemed statistically significant in

my analysis. Using the method described in Appendix 7, | used the chromatograms shown to refine my data set to

include the top 7 molecular features depicted here.
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