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ABSTRACT 
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RAPID DIAGNOSTICS, DETECTION, AND PROFILING 

Allyson L. Dailey, Ph.D. 

George Mason University, 2017 

Dissertation Director: Dr. Robin Couch 

 

Metabolomics is a science concerned with the isolation and identification of small 

molecules (metabolites) from biological samples. A common goal of metabolomics is to 

investigate these molecules in order to better understand the intricate interactions 

between them and their relationship to human health. Metabolomic profiling has shown 

great potential in detecting and understanding biomarkers of a variety of diseases, of 

infectious or non-infectious origin. The goal of this dissertation research was to develop a 

state-of-the-art metabolomics approach to the investigation of metabolite alterations in 

juxtaposed biological cohorts (eg. healthy vs. disease; infected vs. uninfected). To 

establish a metabolomics pipeline of data acquisition and analysis, a series of research 

projects were pursued within the general context of rapid diagnostics, pathogen detection, 

and/or molecular profiling. From gastrointestinal health to identification of bacterial 

infection, this dissertation research aimed to develop the tools necessary for rapid-

diagnostics of an array of diseases.  
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INTRODUCTION 

Since the advent of medicine, physicians have called upon various tools for rapid 

and accurate disease diagnosis. From Aristotle's idea of the four humors to the 

examination of the color, smell, and consistency of excrement to determine a patient's 

disease state, there has always been this notion of a "biomarker" and its relation to human 

health
1,2

. As medicine and science have evolved, the desire for elucidating a biomarker 

has flooded the journals. Though some of these molecules have been validated and are 

now routinely tested as a true measurement of disease, many act as mere puzzle pieces in 

our understanding of the complexities of disease. By identifying and/or monitoring 

metabolite concentration and presence, conclusions can be drawn about the potential 

phenotypic changes occurring within the patient, which often complements information 

derived from genomics, transcriptomics, and/or proteomics
3,4

. 

The following overview will introduce metabolomics as a tool to understanding 

changes in health and disease, and will discuss the instrumentation often used in a 

metabolomics analysis.  

Metabolomics: An Overview 

The goal of metabolomics is to investigate small molecule metabolites and 

understand the intricate interactions among them. Metabolomic profiling has shown great 

potential in detecting and understanding biomarkers of a variety of diseases, which may 
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or may not have an infectious origin
5,6

. For example, through metabolomic profiling, it is 

possible to screen for various protozoan infections (Nuclear Magnetic Resonance 

(NMR)), the presence of candidiasis (Gas Chromatography-Mass Spectrometry (GC-

MS)), and early stages of breast cancer (NMR) using human urine
7–9

. The elucidation of 

altered metabolites related to atherosclerosis has been studied using plasma or serum 

samples (GC-Flame Ionization Detector (GC-FID), NMR, Liquid Chromatography-Mass 

Spectrometry (LC-MS))
10

. In addition, the identification of changes to the porcine 

intestinal tract upon whipworm (Trichuris suis) infection is possible using collected fecal 

material
11

. Further, metabolomic profiling, whether achieved through a broad spectrum 

NMR study or lipidomics using LC-MS, has also been shown to be promising in the 

detection of schizophrenia. In this case, the profiles obtained can be linked to side effects 

of antipsychotic drugs as well as metabolite changes due to natural disease 

progression
12,13

.  

A metabolomics analysis is typically based on GC-MS, LC-MS, and/or NMR 

platforms, and is often targeted (i.e. focused on a group of specific analytes) or global in 

design (i.e. profiling of all detectable analytes (also known as non-targeted)). Regardless 

of the approach, the metabolites are generally extracted from the biological sample (e.g. 

tissue, feces, breath, bacterial culture, etc) and then analyzed by LC, GC, or NMR. The 

resulting chromatograms/spectra subsequently undergo data processing, chemometrics, 

and statistical analysis to identify key metabolites of interest (Figure 1).  
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Figure 1. A Typical Approach to a Metabolomics Analysis. 

Illustrated here is a flowchart detailing the components of a typical metabolomics investigation. The first stage of 

analysis is the preparation of the sample and metabolite extraction. Depending on the course of the study, there are 

two stages to this analysis: analysis of volatile metabolite or analysis of non-volatile metabolites. To extract the 

volatile metabolites, I employ the use of headspace solid-phase microextraction (hSPME) and subsequently use 

GC coupled to an MS detector or flame ionization detector (FID, not shown). To extract the non-volatile 

metabolites, I use an organic extraction and subsequently run the extractions on our LC-QToF (labeled here as the 

LC-MS). Following data acquisition, molecular features (metabolites) are extracted from the chromatograms and 

spreadsheets are generated for further analysis. The data analysis pipeline will be described in detail later, but 

encompasses multivariate and univariate statistical analysis, the results of which can be used to determine 

alterations to biochemical pathways in juxtaposed biological systems. 

 

 

 

 

A metabolomics investigation typically focuses on both analyte presence and its 

relative abundance, and as such, the resulting data set is multidimensional. Accordingly, 

multivariate statistical techniques (e.g., Principal Component Analysis and Hierarchical 

Clustering Analysis) are employed to analyze the data
14

. These statistical techniques 

make it possible to explore what is occurring within the data and identify trends.  

The final phase of a metabolomics investigation often involves biomarker 

identification or pathway analysis. These can be performed by looking at the area under a 
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Receiver Operating Characteristics (ROC) curve to evaluate a metabolite's potential for 

serving as a biomarker of disease, or through the use of Network Analysis, which allows 

the visualization of relationships and interactions amongst various metabolites to further 

understand the disease
15–19

. 

1. Metabolite Extraction 

In the course of a metabolomics investigation, the metabolites are typically 

extracted from the sample matrix and are then analyzed. Biological molecules of interest 

fall into two broad categories: volatile metabolites (also known as volatile organic 

compounds (VOCs)) and non-volatile metabolites (Figure 1). For the volatile analyses, 

solid-phase microextraction (SPME) is used to extract and concentrate the VOCs present 

in the headspace above the sample. On the other hand, non-volatile metabolites are 

generally extracted using an organic solvent, following cryogenic homogenization of the 

sample via a bead mill. The specific approach to metabolite extraction can however be 

project specific, and will be elaborated on throughout this dissertation.    

2. Metabolite Detection 

Following metabolite extraction, the extracts are separated/resolved using gas 

(volatile metabolites) or liquid (non-volatile metabolites) chromatography
20–23

. The 

chromatographic separation of the analytes within the complex mixtures typically enables 

better detection and identification of the individual analytes.  
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2.1 GC-Based Analysis of Volatile Metabolites 

Following extraction of the volatile metabolites, a Gas Chromatograph (GC) is 

commonly used to separate/resolve the complex mixture. To accomplish this, the VOCs 

are typically captured and concentrated using SPME, the SPME fibers are then inserted 

into the inlet of the GC, the VOCs desorb off of the fiber into the chromatography 

column and are then resolved by gas-liquid partition chromatography (commonly using a 

capillary column (5-100 m in length)). Partitioning of the volatile analytes is achieved via 

their interaction with the stationary phase of the capillary column. For example, a column 

containing (5%Phenyl)-methylpolysiloxane (DB-5) will retain nonpolar analytes. By 

starting the analysis at low temperatures (35°C), the analytes with a higher affinity to the 

stationary phase (low polarity) are retained while the others (high polarity) flow through. 

By gradually increasing the temperature, retained nonpolar analytes begin to elute of the 

stationary phase and through the column, typically in order of their relative volatility. 

Following separation, the analytes travel into the detector. A variety of different detectors 

are available for use in a GC based analysis of VOCs, two of the most common being the 

Flame Ionization Detector and the Mass Spectrometer. 

2.1.1 Flame Ionization Detector (FID)  

 The FID employs a hydrogen fueled flame to burn the hydrocarbons eluting from 

GC column, producing detectable ions (Figure 2). More specifically, the analytes elute 

into a bias potential electrode, undergo pyrolysis, and become ionized
24

. The newly 

formed ions accumulate on a collecting electrode (conventionally the cathode) located 

adjacent to the tip of the flame. The resulting ion current is amplified and converted into 
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a chromatogram. Though it is a highly sensitive detector, an important caveat for the use 

of the FID is that the sample must contain hydrocarbons that are ionizable by the flame
25

. 

This is typically the case for biological samples. 

 Examples of the use of the FID in VOC analyses includes evaluation of the 

human fecal metabolome performed in the Couch lab
26

, detection of coffee flavor 

ageing
27

, and environmental applications including wastewater monitoring
28

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Schematic depicting the components of the flame ionization 

detector. 

The analyte passes through the GC column and into the FID. Inside, the 

hydrogen flame burns the analyte, producing ions which collect on the 

collector electrode. The resulting current is then amplified and digitized by 

the computer. 
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2.1.2 Mass Spectrometer (MS) 

 Another common detector used in GC-based analysis of volatile metabolites is the 

mass spectrometer (MS). For example, GC-MS has been utilized in metabolomic 

profiling of breath composition in lung cancer
5,29

 and cystic fibrosis patients
30,31

, 

examination of the human fecal metabolome
26,32,33

, alterations to intestinal mucosa in 

infected pigs
11

, detection of candidiasis
7
 and bacterial strains

6
, and in the identification of 

VOCs found in wine
34

. The MS generates and separates gas-phase ions by their mass to 

charge (m/z) ratio, facilitating the identification of molecules of interest
35

. As the 

production of ions is the foundation to the analysis, an important caveat of MS analysis is 

that the analytes must be readily ionizable
36–38

. To achieve this, the MS has three main 

components, resulting in a three step process:  

1. Ion Source 

The first step is ionization, which occurs in the ion source. In GC-MS, there are 

two main approaches to ionization: Electron Impact (Electron Ionization, EI) and 

Chemical Ionization (CI). EI, characterized as a hard ionization, occurs when the VOCs 

enter the ion source following separation via the column and are bombarded by high 

energy electrons emitted from a heated filament (typically comprised of tungsten or 

rhenium). The collision of the analyte and electrons results in the expulsion of an 

analyte's electron causing the analyte to become a radical cation (Figure 3). This collision 

of electron and analyte is not really an impact but rather an interaction between a wave 

and chemical bond. Each electron is characterized as a wave with a specific wavelength 

at a particular kinetic energy (e.g., 1.4 Å for 70 eV). If the wavelength of the electron is 
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Figure 3. Chemical equation depicting 

electron impact ionization. 

Analyte (A) collides with the electron (e-) 

to form a radical cation (A+•). 

       
       

        

close to any of the bond lengths within the analyte, the wave is perturbed and an energy 

transfer can occur. If enough energy is transferred, the analyte's electron is expelled, 

resulting in a radical cation. As the energy transferred is between 10-20 eV, any excess 

energy leads to fragmentation of the parent molecule. This fragmentation results in a 

characteristic spectral "fingerprint" that is then used to identify molecules. However, due 

to the nature of the collision, the fragmentation patterns can vary with the energy of the 

electron. To circumvent this variability, the accepted standard of electron energy for 

populating molecular databases is 70 eV
36–38

.  

 

 

 

 

 

 

 

 

 

 

 

 

CI, a soft ionization technique, occurs when a known reagent gas, separate from 

the sample molecules, is introduced into the ion source. The gas (usually methane, iso-

butane, or ammonia) is then bombarded by the electrons emitted by a heated filament and 

ionizes. When the sample analyte is introduced into the ion source, the analyte then reacts 

with the now ionized reagent gas and thus becomes ionized itself (Figure 4). As the 

energy used for ionization is lower than in EI, there is very little subsequent 

fragmentation that results. Rather, the resulting mass spectrum acquired typically 
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Figure 4. Chemical equation depicting 

chemical ionization. 

Ammonia as the reagent gas collides with the 

electron to form an ammonia radical cation. The 

radical cation then reacts with additional 

ammonia gas to form ammonium and an amino 

radical. Ammonium reacts with the analyte (A) 

to form two different species.   

      
      

        

   
           

      
  

   
                 

   
           

  

contains adducts of the intact analyte ion, formed as a result of proton transfer from the 

reagent gas and the analyte
36–38

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Mass Analyzers 

Following ionization, ions traverse the mass analyzer where they are 

separated/filtered according to their masses. While mass is predominately measured and 

subsequently separated or filtered via the m/z ratio of the ions (as seen in the quadrupole), 

mass analyzers such as those based on time of flight use principles such as velocity to 

separate ions (the time of flight mass analyzer is described in the LC-MS section of the 

thesis, below). Therefore, a fundamental difference between mass analyzers is the way in 

which a static and/or oscillating electromagnetic field is used to achieve proper separation 

of the ions.  

Quadrupole mass analyzers are made up of four circular which are held parallel to 

each other but oriented to approximate a hyperbolic path (Figure 5). The mass analyzer 
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Figure 5. Schematic depicting the Quadrupole mass analyzer. 

A. The blue line demonstrates an ion with a stable trajectory. 

B. The orange line demonstrates an ion whose trajectory became unstable and will be filtered out. The 

instability is a byproduct of the acceleration of the ion along the x and y axis. Depending on the ion's mass, this 

rate of acceleration will be either too fast or too slow causing the ion to become dysregulated with respect to 

the rate of the rod's change in potential.  

separates and filters ions according to the ion's m/z ratio by tracking the stability of the 

ion's trajectory as the ion passes through an oscillating electromagnetic field.  

 

 

 

 

 

 

The ions do not travel along a straight line, but rather in a three-dimensional space 

(Figure 5). Following ionization from the source, the ion enters the space between the 

rods (z-axis) at a fixed velocity. As the ion travels through the space, it will be drawn 

towards an oppositely charged rod at either the x or y-axis in a circular fashion. As the 

ion approaches the charged rod, the potential of the rod changes polarity, resulting in the 

ion changing direction. However, if the ion collides with the rod prior to this occurring, 
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the ion will become discharged and therefore filtered out. Thus, along the z-axis, the ions 

maintain their velocity whereas, along the x and y-axis they are subjected to acceleration 

from the alterations of the electric fields
37–39

. As the rate of acceleration is proportional to 

the mass of the ion, only those ions with the stable trajectory pattern will be included in 

the analysis. The trajectory of those ions which are too light or too heavy will become 

destabilized, thus filtering them from the analysis
38

. 

3. Detectors 

After the ions are separated by the mass analyzer, they are detected and the signal 

produced is transformed by an ion detector. As the quadrupole is a scanning instrument, it 

detects the ions of one mass individually. Therefore, the detector that is coupled to this 

mass analyzer must be capable of measuring the signal produced in this approach. 

Continuous-dynode electron multipliers is the ion detector used for our quadrupole 

(Figure 6). Following the separation of the ions, the ions enter the electron multiplier and 

collide into an electrode called the continuous dynode
38

. This electrode is set at a high 

potential with a charge opposite to the ion. As the ions collide into the electrode, 

secondary particles (electrons) are emitted. The secondary particles are then converted 

into electrons by colliding with the inner wall of the detector. As the electrons flow down 

the electron multiplier, they continuously collide with the wall, because there is a 

continuous voltage drop that attracts the secondary electrons to the outlet, thereby 

producing more electrons and amplifying the signal by as much as a factor of 10
8
. 

Finally, at the very end of the electron multiplier tube, a metal anode collects the 
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incoming electrons. The resulting current is then measured and digitized by a computer 

via an analog-to-digital converter (ADC)
37,38

.  

 

 

 

 

 

 

2.2 LC Based Analysis of Non-Volatile Metabolites 

Following the extraction of the non-volatile analytes, a Liquid Chromatograph 

(LC) is often used to separate the complex extract. In the LC, a liquid mobile phase is 

continuously pumped into the system where it mixes and interacts with the liquid sample 

extract as it is injected into the instrument (either manually or via an autosampler)
40

. The 

mobile phase and sample then travel to a packed (stationary phase) column where 

separation occurs. In reversed phase liquid chromatography, the stationary phase is 

comprised of non-polar alkyl hydrocarbons (typically of C-18, C-8 or C-5 in carbon chain 

length) bound to an inert support (typically silica), while the mobile phase is comprised 

 
 

Figure 6. Schematic depicting the components of the continuous dynode electron multiplier. 

The blue line depicts the ion as it travels from the quadrupole (Q) and into the conversion dynode (CD) 

where it is converted into secondary electrons. From here, the electrons enter the electron multiplier (EM) 

where the electron collides into the wall of the electron multiplier, thereby, producing additional electrons. 

This process continues as the electrons travel down to the anode resistor where they are detected. 
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of an aqueous and an organic component. Initially, the instrument begins with a higher 

concentration of the aqueous solvent resulting in a polar mobile phase. As the mixture of 

polar mobile phase and sample flows into the column, those analytes with greater affinity 

for the column (in this case higher hydrophobicity), will interact and bind to the 

stationary phase of the column while the polar (hydrophilic) analytes will remain 

interacting with the mobile phase and flow through. As the concentration the organic 

solvent increases within the mobile phase, the mobile phase decreases in polarity and 

those analytes whose polarity is similar to the mobile phase will elute off the column and 

into the detector. Therefore on a reverse phase chromatogram, the order of analyte elution 

is polar (shortest retention time), mixed polarity, and finally non polar (longest retention 

time).  

The ability to properly separate complex mixtures is related to the resolution 

power of the column used. One way to increase the resolution, thereby increasing 

separation, is by decreasing the particle size of the column
40

. However, as particle size 

decreases, the resistance to flow increases. In conventional liquid chromatography, this 

process occurs at ambient pressure, requiring the force of gravity to separate the complex 

mixture. Therefore, the increase in resolution will decrease the flow rate. In an effort to 

increase resolution without sacrificing the flow rate, techniques such as high performance 

liquid chromatography (HPLC) were developed
40,41

. In HPLC, the instrument is capable 

of pumping the mobile phase through the stationary phase at higher pressures (500 bar), 

allowing the flow rate to remain the same. Further, as HPLC instruments are capable of 

running at much higher pressures, increasing the flow rate also allows an increase in 
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analysis speed. However, the increase in flow rate reduces the efficiency of column 

retention. Thus, in an effort to further decrease the particle size, increase resolution, and 

increase speed, ultra performance liquid chromatography (UPLC) was developed
42

. In 

UPLC, the instrument is capable of performing at even higher pressures (1200 bar) with a 

smaller particle size (1.7µm versus the 3.5µm or 4.6µm seen in HPLC), allowing the flow 

rate to increase without sacrificing the column efficiency. Another feature of UPLC 

instrumentation is the decrease in column size. A column's resolving power is related to 

its length and particle size
40

, therefore by decreasing the length of the column, the 

resolving power can be comparable to HPLC. Overall, this decrease in particle size and 

column length allows the loading capacity to decrease, reducing the amount of sample 

needed for an analysis
42

.  

Following elution from the column, the analytes travel into the detector. Two of 

the most common detectors used in a LC based metabolomics analysis is the UV-Vis 

detector and the Mass Spectrometer.   

2.2.1 UV-Vis Diode Array 

Following elution from the chromatography column, the analytes flow into the 

UV-Vis diode array detector (DAD) which detects the absorption spectrum in the 

ultraviolet (100-400nm) and visible (400-700nm) regions of the electromagnetic 

spectrum. The DAD has two separate lamps emitting light in either the ultraviolet or 

visible regions. First, a tungsten (W) lamp emits light from the visible and near infrared 

range (370-900nm). The emitted light enters a deuterium discharge lamp (D2). Here, the 

D2 lamp couples UV light (180-370nm) to the visible light and the resulting beam passes 
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through the flow cell. In the flow cell, the beam of light can be absorbed by an 

appropriate chromophore and the resulting absorption profile is recorded by a detector
43

. 

As each molecule has a characteristic absorption spectrum, analytes can be identified, 

particularly when the absorption spectrum is compared to a reference library.  

2.2.2 Mass Spectrometer (MS) 

 LC-MS based analyses permit the detection of a wide array of molecules found 

within complex biological samples. The instrumentation itself is an intricate coupling 

between HPLC (or UPLC) and a Mass Spectrometer
23

. However, this coupling presents 

some challenges. First, the elution solvent needs to be eliminated to ensure a proper 

vacuum in the MS. Second, all molecules need to be converted into gas-phase ions. This 

includes any buffers found within the sample/mobile phase, therefore analysts need to be 

aware of the volatility of the buffers or they risk introducing salts into the mass analyzer 

during the ionization process
22

. As in GC-MS, the mass spectrometer can be broken 

down into three main components:  

1. Ion Source 

 Ionization in LC-MS occurs within a condensed or vapor phase under 

atmospheric pressure, a condition referred to as Atmospheric Pressure Ionization (API). 

There are 3 main API techniques used as an ion source within LC-MS; Electrospray 

Ionization (ESI), Atmospheric Pressure Chemical Ionization (APCI), and Atmospheric 

Pressure Photoionization (APPI). As with CI in GC-MS, these three techniques are 
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examples of soft ionization, as molecular fragmentation is not extensive relative to EI
44–

46
.  

ESI works by ionizing the molecules directly from the liquid matrix that elutes 

from the column
37–39,44,47,48

. Depending on the pH of the solvents used, the analytes can 

favor the ionic state in the solution,  travels through the column, and ends at the capillary 

tip. At this point, the charged media containing the analytes is sprayed into a chamber 

containing a strong electrostatic field. The droplet that is formed becomes desolvated 

using a heated drying gas, thereby leaving ionized gas phase analytes. The analytes are 

then ejected into the sampling cone and continue to the mass analyzer. Because of the 

desolvation process, ESI permits an analysis of a wide array of biomolecules including 

larger molecular weight proteins and thermally unstable analytes
44,47,48

. In addition, 

molecules such as proteins which contain multiple ionizable sites produce multiply 

charged ions. While the production of multiply charged species complicates the spectra, it 

allows researchers to examine the intact molecule and is advantageous when using a mass 

analyzer that has a narrow measurable mass range
38,48

. The one major drawback to ESI is 

ion suppression due to a high concentration of non-volatile analytes. Ionization will first 

occur at the surface of the liquid droplets. If any non-volatile analytes are present on the 

surface, they will become ionized, thereby inhibiting the formation of ionized gas phase 

analytes and leading to ion suppression
39,46,48,49

. 

APCI is another technique used to ionize non-volatile analytes of interest. In this 

ionization technique, the analytes elute from the column and into a nebulizer where they 

are converted into droplets
37,38

. Unlike in ESI where the droplets themselves are ionized, 
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the liquid droplets produced by APCI travel into a heated chamber where they vaporize 

resulting in gaseous analyte and mobile phase. The heated mixture then travels along a 

corona discharge electrode where the mobile phase becomes ionized (ionizing gas). The 

analytes and ionizing gas react resulting in the analytes becoming ionized, akin to CI in 

GC-MS (however, the electrons emitted from the corona discharge electrode do not come 

from a heated filament, like they do with CI). This technique in particular works well 

with small and thermally stable molecules which may not be ionized via ESI
38

. However, 

due to the high temperatures, not all analytes will be detected, and unlike ESI, multiple 

charging is not seen.  

The third technique, APPI, ionizes the analytes using a photon of light to excite 

and ionize gas phase molecules
38

. Similar to APCI, the liquid analytes elute from the 

column and are desolvated and vaporized by a heated nebulizer. Once vaporized, the 

gaseous analytes then interact with photons emitted from a UV lamp, resulting in 

ionization. The UV lamp emits photons at a lower energy than the ionization potential of 

the solvent, thereby preventing the solvent from becoming ionized, consequently 

reducing the background noise
38

. Additionally, this technique is able to ionize 

compounds such as non-polar molecules that are not readily ionized by ESI or APCI
38

. 

However, this technique is the most sensitive to suboptimal experimental conditions. 

Hence, proper solvent selection is imperative, as acidic solvents lead to analyte ion 

suppression. As in APCI, this technique will result in only singly-charged 

ions
44,45,49,46,50,39,36

. 



18 

 

 
 

Figure 7. The Couch Lab's Agilent 6530 QToF. 

The QToF is an instrument capable of MS and MS/MS analyses. The QToF has an ESI ionization source, a 

quadrupole as the first mass analyzer, a hexapole collision cell, and an orthogonal acceleration ToF. Indicated 

on the ToF is the flight tube and reflectron. We affectionately refer to the QToF as a tricorder, as it is capable 

of identifying metabolite composition in samples of interest. A photo of a tricorder from Star Trek is seen 

affixed to the QToF. 

2. Mass Analyzer 

After becoming ionized, the ions traverse through a mass analyzer where they are 

separated/filtered according to their masses. Our LC-MS instrument (LC-QToF, Figure 7) 

contains both a quadrupole and a ToF mass analyzer. 
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As stated previously (see the GC-MS section, above), quadrupole mass analyzers 

consist of four circular rods which are held parallel to each other. The ions that elute from 

the ion source are separated and filtered according to their m/z ratio by tracking the 

stability of the trajectory of the ions through an oscillating electromagnetic field
37–39

.  

Time of flight (ToF) mass analyzers separate ions via their velocity through a 

space devoid of an electromagnetic field (i.e. field-free region) known as the flight tube. 

Following ionization, the ions produced travel into an accelerated region where they 

acquire the same kinetic energy (Ek). Therefore, once the accelerated ions travel into the 

field-free region, their m/z ratio can then be related to the time (t) it takes to drift towards 

the detector using the equation m/z = Kt
2
, where K is a fixed constant related to the 

energy applied, the length of the accelerated region, and the length of the flight tube
37

. 

Therefore, the mass of the analyte is defined by the charge (z) multiplied by the squared 

travel time (t) and the fixed constant K. Since all of the ions are produced in a short 

amount of time and are temporally separated, all of the formed ions will reach the 

detector at different times. Early ToF mass analyzers, known as linear ToF perform this 

in one direction. However, due to a kinetic energy spread among ions with the same m/z 

ratio, the mass resolution was poor. This has since been corrected by using either delayed 

pulse extraction or a reflectron
38

. 

In delayed pulse extraction, ions are initially allowed to travel and separate 

through the field-free region. After a specified amount of time, a voltage (extraction 

pulse) is applied which provides additional energy to the ions still lingering by the 
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source. This process then allows the less energetic ions to reach the detector at the same 

time as those more initially energetic ions of the same m/z ratio
38

.  

Another way to improve mass resolution is by using an electrostatic reflector, 

referred to as a reflectron. The reflectron contains an opposing electric field that is of 

greater magnitude than the acceleration region. Ions with higher kinetic energy will 

penetrate the deepest, thereby taking more time to reflect back to the detector and 

correcting the kinetic energy dispersion between ions of the same m/z ratio
38

.  

ToF mass analyzers were developed initially for use with pulsed ionization 

techniques (lasers, plasma) because they provide concise ionization regions at defined 

time intervals. To incorporate the use of continuous ionization techniques such as 

electrospray ionization, orthogonal acceleration (orthogonal injection) was developed
37–

39
. In this technique, the sample is continuously ionized in the source and enters into the 

orthogonal accelerator as a parallel beam using ion optics as a guide. Inside the 

accelerator are a plate and two grids. In the first stage, the field-free space between the 

plate and the first grid become filled with the ions. Once filled, the plate is supplied a 

specified injection pulse voltage and the resulting change in the electric field thrusts the 

ions in an orthogonal direction where they are accelerated past the second grid and into 

the field-free flight tube where mass separation occurs. Once all the ions enter the flight 

tube, the plate's voltage is restored and new ions from the source begin to accumulate the 

space between the plate and the first grid again. The injection pulse will not be applied a 

second time until the ion with the highest m/z ratio currently in the flight tube reaches the 

detector
38

. 
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Mass analyzers can be combined to form a technique known as Tandem Mass 

Spectrometry (MS/MS)
37–39

. In MS/MS, two or more mass analyzers are coupled to 

obtain better sensitivity and selectivity by fragmenting the ions isolated during the first 

MS experiment. The first mass analyzer selects and isolates a precursor ion, the ion then 

undergoes spontaneous or activated fragmentation, and the subsequent mass analyzer(s) 

separates and analyzes the resulting product ions. This technique can be achieved in two 

distinct ways, in time or in space. Instruments conducting this technique in time contain 

an ion storage area which will conduct the steps throughout a sequence of events. Those 

conducted in space contain separate instruments. With the in space instruments, 

fragmentation occurs within a collision cell which lies between the mass analyzers. In the 

collision cell, the ions can undergo fragmentation by colliding into a high pressure gas or 

other fragments in a process known as Collision Induced Dissociation (CID). The amount 

of energy used for the collision can vary resulting in different degrees of fragmentation.  

The instrument I use for the LC-MS analyses is a Quadrupole Time of Flight 

(QToF, Figure 8) and is one example of an MS/MS instrument. In the QToF, the 

quadrupole acts as the first mass analyzer (Q1), a hexapole (q2) acts as the collision cell, 

and the ToF is an orthogonal acceleration-ToF and acts as the second mass analyzer. 

When acting in MS mode, the ToF is the sole mass analyzer as the two quadrupoles act 

purely as ion guides. The collision cell, q2 may contain a collision gas to improve 

resolution and the sensitivity of the ToF. In MS/MS mode, Q1 acts as the precursor ion 

filter. The selected ions are then accelerated into q2 where they undergo fragmentation by 

nitrogen at a specified collision induced dissociation. The resulting daughter ions and 
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parent ions continue to collide and fragment resulting in a decrease in their kinetic 

energy, and increasing the resolution prior to analysis via the orthogonal acceleratation-

ToF
37,38

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Detector 

After the ions travel through the mass analyzer, they proceed to the detector. 

While the quadrupole scans the ions from one m/z value at a time, the ToF detects all of 

the ions of any given mass all at once
37,38

. Therefore, the LC-QToF contains an array 

detector which collects all of the ions of various masses isolated in the instrument. To 

detect the large collection of ions and ensure a precise arrival time, a microchannel plate 

containing an electron multiplier is used (Figure 9). The plate contains microscopic 

 
 

Figure 8. Schematic depicting the various components of the QToF. 

Shown here is a depiction of the QToF currently housed in the Couch lab. The blue line 

depicts the ion's course as it is first generated by the ion source (ESI), guided into the 

first mass analyzer via an octapole (not shown), travels through the quadrupole mass 

analyzer (Q1) and into the hexapole collision cell (q2). The ion is then transferred into 

the ion pulser (IP) where through orthogonal acceleration it travels into the flight tube, 

deflects off the reflectron (R), and strikes the detector (D). 
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parallel cylindrical channels and each channel acts as an electron multiplier
38

. When an 

ion with enough energy collides into the microchannel plate, secondary electrons are 

produced and travel through the channel becoming amplified. Because the signal 

produced is at approximately -6000V, the amplified electrons will then collide with a 

scintillator, emitting photons. The resulting photons are directed in a photomultiplier tube 

where they are further amplified and the current is measured. By incorporating the 

photomultiplier tube, the potential increases from -6000V to 0V (ground potential) 

allowing it to be measured by the anode resistor and subsequently digitized by the 

computer
38,51

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Schematic depicting the components of the microchannel plate and 

photomultiplier detector. 

Shown here is a depiction of our QToF's detector. The blue line depicts the ion as it 

travels from the flight tube (not shown) and into a well in the microchannel plate 

(MCP). The resulting secondary electrons emerge and travel into the scintillator (S) 

where they are converted into photons. The photons enter the photomultiplier tube 

(PMT) where they are converted back into secondary electrons and strike the anode 

resistor at the bottom. 
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3. Metabolomics Data Analysis 

Following metabolite detection, the resulting molecular features are extracted and 

subsequently analyzed using multivariate statistical techniques. The approach to data 

analysis was a central theme in this dissertation and the techniques will be described in 

detail throughout.  

The overarching goal of this research was to develop a state-of-the-art 

metabolomics approach to the investigation of metabolite alterations in juxtaposed 

biological cohorts (eg. healthy vs. disease; infected vs. uninfected). To establish a 

metabolomics pipeline of data acquisition and analysis, a series of research projects 

were pursued within the general contexts of rapid diagnostics, pathogen detection, 

and/or molecular profiling. 
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SPECIFIC AIMS AND PROJECT OVERVIEW 

Project Overview 

The goal of this research project is to develop and employ a metabolomics 

pipeline to visualize and compare the metabolomes of biological systems. To achieve this 

goal, I simultaneously performed 4 research investigations, each of which offering insight 

into metabolomics methods of data acquisition and analysis. Collectively, these projects 

defined the overall metabolomics pipeline that I developed. For clarity in this dissertation 

document however, I present my research as two specific and separate aims, the first 

describing the metabolomics pipeline and the second listing the series of projects that 

were used to develop the metabolomics pipeline (each project organized into a sub-aim of 

Specific Aim 2).  

Specific Aims 

Specific Aim 1: Develop a metabolomics pipeline of data acquisition and 

analysis. Develop a method that utilizes GC and/or LC based platforms to perform a 

global (untargeted) assessment of the metabolic state of biological samples. The pipeline 

developed here will serve as the foundation for future metabolomics analyses. 

Specific Aim 2: Application of the metabolomics pipeline. Develop and refine 

the metabolomics pipeline by exploring alterations to the metabolome as a consequence 

of a change in health. 
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Specific Aim 2.1: Metabolomics as a biosensor; developing an electronic nose. 

Use metabolomics as an electronic nose to determine if global metabolic profiling of 

microbial volatile organic compounds can differentiate select biological warfare agents. 

Specific Aim 2.2: Alterations to the human fecal metabolome due to alcohol 

consumption. Use metabolomics as an electronic nose to explore the odor profile of fecal 

material collected at home or via an endoscopy procedure to potentially identify 

biomarkers of chronic alcohol consumption.  

Specific Aim 2.3: Tissue-Related effects of a high fat diet and probiotic 

supplementation in pigs. Use metabolomics to evaluate if a high fat diet and/or probiotic 

supplementation have an effect on the pig tissue metabolome. 

Specific Aim 2.4: Metabolic changes in pigs due to whipworm (Trichuris suis) 

infection. Use metabolomics to characterize the metabolic changes associated with 

various stages of T. suis infection in pigs and demonstrate how changes in certain 

metabolites relate to mammalian inflammatory pathways. 
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SPECIFIC AIM 1. DEVELOP A METABOLOMICS PIPELINE OF DATA 

ACQUISITION AND ANALYSIS. 

Objective: Develop a method that utilizes GC and/or LC based platforms to perform a 

global (untargeted) assessment of the metabolic state of biological samples. The pipeline 

developed here will serve as the foundation for future metabolomics analyses. 

Introduction 

As a branch of the "-omics" sciences, metabolomics is concerned with the 

complete collection and analysis of small molecule metabolites (generally <600 Da) in a 

biological sample
3,4

. By identifying and/or monitoring the presence and concentration of 

these metabolites, hypotheses can be made regarding the origin and meaning of the 

phenotypic changes that are observed. The conclusions derived from a metabolomics 

investigation often complements information resulting from genomics, transcriptomics, 

and/or proteomics investigations. Due to the nature of the –omics sciences, it is not 

uncommon for these analyses to generate data matrices containing thousands of 

molecular features (i.e. the presence and relative abundance of metabolites, transcripts, or 

proteins from metabolomics, transcriptomics, and proteomics investigations, 

respectively). In order to analyze and interpret such large data sets, the –omics sciences 

rely on multivariate statistical analyses (i.e. statistics involving two or more variable 

quantities). Our goal was to develop a metabolomics investigative pipeline based upon 
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our analytical instrumentation (GC and LC), utilizing relevant univariate and multivariate 

statistical data analysis techniques. From sample processing to data acquisition and 

analysis, I evaluated and implemented techniques/approaches to establish a metabolomics 

pipeline, permitting both global (untargeted) and targeted metabolomics analyses.  

As first mentioned in the Specific Aims section above, the development of this 

metabolomics pipeline was an iterative process developed concomitantly with performing 

the select research projects described in Specific Aim 2. Hence, the pipeline was refined 

and developed over the course of this entire thesis work. While metabolite extraction 

details specific to the biological samples are presented within Specific Aim 2, I present 

here in Specific Aim 1 a description of the core data analysis pipeline pertaining to GC 

and LC based analyses, a pipeline that is used regardless of the biological sample under 

investigation. Within this section I present a discussion of the theory and/or rationale 

behind each informatics step implemented in our current approach to performing a 

metabolomics investigation. 

Metabolomics Data Analysis 

Our current approach to metabolomics data analysis is summarized in Figure 10, 

with detailed Standard Operating Procedures (SOPs) presented in Appendix 1 and 

Appendix 2. This approach was developed specifically for use in a global metabolomics 

investigation, with LC and/or GC derived data, although it may also be readily used as-is 

for targeted metabolomics investigations. The data analysis pipeline employs univariate 

and multivariate statistical analyses, providing a comprehensive examination of the 

metabolomes derived from biological samples. As described in detail below, the data 



29 

 

 
 

Figure 10. Metabolomics Pipeline. 

The metabolomics pipeline allows us to examine the metabolome of biological systems. By examining key 

contributors to variations and their connectivity to other metabolites present in the sample, I can identify 

biomarkers and gain insight into the etiology of disease. See text for further discussion. 

analysis pipeline occurs in four stages: 1. Molecular Feature Identification, 2. Data 

Preparation, 3. Multivariate Statistical Analysis and Data Visualization, and 4. 

Determination and Identification of Metabolites of Interest. The first stage includes 

identification and extraction of the molecular features from the chromatogram/spectra. 

The second stage transforms the data set in preparation for multivariate analysis. The 

third stage employs Principal Component Analysis (PCA), Hierarchical Clustering 

Analysis (HCA), and Correlation Network Analysis to elucidate trends within the data. 

Finally, in the fourth stage, to identify the key metabolites of interest (i.e. those that 

differentiate cohorts from one another), I use a combination of Fold Change, P-value, 

Box and Whisker Plots, and Receiver Operating Characteristics curves (ROC).  
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Stage 1 of the Data Analysis Pipeline: Molecular Feature Identification 

The first stage of the metabolomics pipeline is to identify the molecular features 

extracted from the biological sample. Note that at this stage I refer to the extracted 

metabolites as molecular features, as their identity is either unknown or is only 

speculative. For non-MS derived data (e.g. chromatograms generated using the FID or 

UV-Vis detector), the molecular feature is simply referred to by its chromatographic 

retention time. For MS derived data, while retention time can also suffice for molecular 

feature identification, molecular features are typically identified by deconvoluting the 

chromatogram and matching the m/z value of a molecular feature to a molecular 

database. More specifically, feature identification for GC-MS acquired data is performed 

by using software known as the Automatic Mass Spectral Deconvolution and 

Identification System (AMDIS), whereas features in LC-MS acquired data is identified 

by using Agilent Technologies' MassHunter Qualitative Analysis, each of which is 

described in more detail below. 

GC-MS Molecular Feature Identification 

AMDIS is a computer program that evaluates GC-MS chromatograms and 

identifies molecular features (metabolites) within the chromatographic peaks by 

comparison of extracted mass spectra with a mass spectral database (the National 

Institute of Standards and Technology (NIST) Mass Spectral Library). This process is 

achieved in four successive steps: 1. Noise Analysis, 2. Component Perception, 3. 

Spectrum Deconvolution, and 4. Compound Identification
52

.  
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Step 1. Noise Analysis 

In this stage, AMDIS analyzes the chromatographic background and calculates a 

noise threshold for each data file (Figure 11). This is performed by first calculating the 

noise factor (Nf) which is the average random signal fluctuation divided by the square 

root of the signal
 
intensity

52
. AMDIS generates a unique Nf for every data file by first 

examining regions of constant signal intensities within the ion chromatogram. Next, the 

average of all the signal intensities in this region is calculated. This information is then 

plotted and if less than one-half of the number of scans do not cross the mean, then the 

segment is rejected. For every accepted segment, the median value for the deviation is 

calculated and then divided the square root of the mean intensity to obtain the Nf value 

for that segment. Following the processing of the data file, the median of all the Nf values 

is calculated and presented as the representative Nf for that sample data file. The median 

is used in place of the average to prevent a high Nf resulting from normal 

chromatography.  
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Figure 11. Determination of noise in a chromatogram. 

The portion circled in red is a baseline region which will be used for the noise calculation. The average 

intensities of the scans found in this region is calculated and the information is plotted (see insert). If less than 

one half of the scans do not cross the average line (the black line) then this segment will be rejected. If the 

segment is accepted, the Nf value is calculated for that segment. See text for further discussion. 

 

 

 

The second portion of the noise analysis is to identify the threshold transitions
52

. 

Typically when the instrument is tuned, a baseline abundance value (AT) is established 

and retained. During a sample run, any signal intensity that is above that value is 

collected while those that fall below that threshold are not collected and given a value of 

0. While this transition from a zero to a nonzero value is common in background signals, 

they can be misinterpreted as a chromatographic peak. Therefore, AMDIS establishes a 

threshold for each data file to eliminate such noise. This is calculated by first assuming 

the smallest nonzero abundance is equal to AT. Next, the ion chromatogram is divided 

into equal length segments and for every m/z in the segments, the number of times a 

transition from zero to nonzero occurs is counted. For those m/z ratios which were given 

a value of 0, a new value is provided by multiplying AT by the square root of the number 

of transitions.  
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The third and final portion of noise analysis is to establish m/z peak uniqueness
52

. 

This is performed during the identification of the threshold transition. Here, for every m/z 

value the number of nonzero abundance values is calculated. Then, the signal to noise 

threshold is multiplied by the square root of the number of nonzero m/z values. This 

process ensures that all m/z values are properly elucidated regardless of their signal 

levels.  

Step 2. Component Perception 

In the second step of the molecular feature identification process, AMDIS 

analyzes the chromatogram and tracks the increase and decrease in abundance for any 

given ion and develops a model of the peak. If any other ions are found within that same 

retention time and exhibit the same profile, then those ions are assumed to be a part of 

that component (molecular feature)
52

. As discussed previously, quadrupoles acquire data 

by scanning a m/z range sequentially as the analytes elute from the column
37,38

. 

Therefore, different mass spectral peaks are acquired at various times during the elution 

profile.  

The components (molecular features) are identified when ions for that feature 

increase at the same time
52

. This is established by first constructing a scan window using 

the minimum intensity value on each side of the chromatographic peak and then drawing 

a baseline between the two signal intensity points. Next, a second baseline (least-squares) 

is calculated and drawn through the lower half of the points relative to the baseline. 

Finally, the signal height is calculated between the least squares line and the maximum 

signal intensity value. In order to be considered a peak, the height must exceed four times 
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Figure 12. Mass Spectra of Co-eluting Metabolites. 

As indicated on the chromatogram, metabolites A and B are co-eluting metabolites. The resulting 

mass spectra is then a combination of the mass spectra of these two metabolites. Shown in black is 

the mass spectra of metabolite A while in blue the mass spectra of metabolite B. AMDIS will 

resolve the spectra of these two metabolites.  

the noise factor (Nf) multiplied by the square root of the maximum signal intensity. If the 

component passes, a parabola is fitted through this peak and will proceed onto step 3. 

Step 3. Spectrum Deconvolution 

The co-elution of metabolites during chromatography complicates the mass 

spectra of a molecular feature through the extraneous contributions of ions from the co-

eluted metabolite
52

. The presence of the co-eluted ions may contribute peaks which may 

not be characteristic of the molecular feature (Figure 12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This then provides a challenge when comparing the derived spectra to a database 

of purified molecular standards, devoid of the extraneous ions. Thus, in this 

deconvolution step, AMDIS corrects and resolves the mass spectra for a given molecular 
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Figure 13. Molecular Spectral Library Matching. 

The spectra for metabolite A matches the spectra found in the database while 

the spectra for metabolite B does not match the one found in the database.  

feature by extracting the ions unique to that feature. This is achieved by using the model 

shape developed in step 2 and least squares method. Each ion chromatogram is fit into a 

unique model profile resulting in a linear baseline. The signals from nearby features are 

then subtracted from the first molecular feature thereby resolving the spectra
52,53

. 

Step 4. Compound Identification 

The final step in AMDIS is the identification of the molecular feature via spectral 

comparison with the NIST Mass Spectral library. The resolved spectra are compared to 

the library spectra (containing 242,466 metabolites) and a score is given to those known 

standard spectra which closely resemble the unknown spectra (Figure 13). The higher the 

score value, the more closely related the spectra
52

. 
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LC-MS Molecular Feature Identification 

Molecular feature identification with LC-MS based analysis utilizes the molecular 

feature extraction algorithm located in Agilent Technologies' MassHunter Qualitative 

Analysis software. This proprietary software resolves and locates the mass spectra of a 

molecular feature by elucidating the ions that are covariant (proportionally increase and 

decrease in abundance), similar to the method employed by AMDIS
54,55

. The ions are 

then grouped by their charge state, isotopic distribution, and/or the presence of adducts or 

dimers. Finally, the algorithm assigns these ions to a neutral molecule referred to as a 

molecular feature.  

Stage 2 of the Data Analysis Pipeline: Data Matrix Preparation 

Prior to analysis with statistical tools, the molecular features derived from the 

biological samples are compiled in a spreadsheet and are examined for missing data 

between samples, outliers are identified, and the measured abundance values are all 

scaled for comparative examination via multivariate analyses. It is notable that this initial 

step has a profound effect on the results obtained downstream and the importance of how 

the data is prepared should not be overlooked or understated (Figure 14).  
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Figure 14. Effects of Data Preparation Prior To Principal Component Analysis. 

In the PCA plots shown, each data point represents the metabolome from a biological sample, color coded by their 

associated cohort (5 samples per each of the 4 cohorts). The first plot (A) is the result of an analysis performed 

with metabolites identified in at least 2 of the 20 samples analyzed, without any additional data preparation. 

Contrast this with the second plot (B) resulting from an analysis of metabolites appearing in at least 4 of the 20 

samples analyzed. The third plot (C) depicts the PCA from B but performed following outlier removal from the 

data set. Finally, the fourth plot (D) illustrates the PCA from B performed following median replacement, outlier 

removal, and z-score normalization. The approach to data preparation clearly has an effect on the outcome of the 

analysis, with the latter approach clearly differentiating each of the samples into their associated cohorts (as 

illustrated by the color coded clustering of the points within the plot). The principles of PCA are described in 

detail within the text. 
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As a first step in data matrix preparation, I eliminate what I refer to as “one-off” 

metabolites (that is, molecular features that appear sporadically in only a few number of 

samples in the analysis). To accomplish this, the frequency of appearance of each 

identified molecular feature is calculated across each cohort (cohort frequency), in 

addition to across the entire sample set (total frequency). A histogram is generated by 

plotting the number of metabolites as a function of total frequency of appearance (Figure 

15). By examining the shape of the histogram and slope in the decline in total 

metabolites, I am able to determine a minimum total frequency value. For example, in 

Figure 15, there is significant decline in the number of metabolites present between 10% 

and 11% of samples. Then from 11% to 31% of samples, the number of metabolites 

present continues to decline but at a slower rate. However, from 31% to 100%, the 

number of metabolites present in each 10% interval remains similar. Given this, 31% 

would be set as the value for our minimum total frequency value.  
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Equation 1. Scoring criteria to 

determine low frequency metabolites. 

S: score of metabolite 

A: Frequency of metabolite in Cohort A 

B: Frequency of metabolite in Cohort B 

C: Frequency of metabolite in Cohort C 

n: total number of cohorts 

              

 
Figure 15. Histogram of Metabolite Appearance Among 

Numerous Biological Samples. 

To visualize the distribution of metabolites across all of the biological 

samples, I generate histograms. The histogram shown here highlights 

numerous one-offs in the data matrix (nearly 1400 metabolites appear 

in 10% or fewer biological samples). Once identified, these one-offs 

are typically removed from the metabolite matrix, so as to not impact 

subsequent statistical analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further filter the data, I impose a second frequency cutoff that considers the 

frequency of a molecular feature within each of the cohorts (rather than across all 

samples in the analysis, as described for the first frequency cutoff step). 
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 As indicated in Equation 1, I calculate a score for each metabolite then simply 

use a score value greater than or equal to the one acquired from the minimum total 

frequency value. For example, if the data set has 5 samples in 4 distinct cohorts (i.e. 20 

samples in total) and the minimum total frequency value is set equal to 20%, as 

determined by the histogram (i.e. the metabolite is required to appear in at least 4 of the 

20 samples), but I am specifically interested in a cohort frequency of 80% (i.e. 4 of 5 

samples in any one of the four cohorts must contain the molecular feature), then the 

minimum score value would be 4
4
+0

4
+0

4
+0

4
 which equates to 4

4
 or 256. Therefore, I 

would first restrict our data set to metabolites with a total frequency of 20% or greater, 

then would retain only those metabolites with a score value greater than or equal to 256.     

Once the one-off metabolites have been removed from the data set, missing 

values within the matrix of data are then addressed. Missing values arise for various 

reasons such as the stringency of the peak identification settings (stage 1 molecular 

feature identification), the complexity of the chromatographic peak (masking of a feature 

by co-eluting metabolites), metabolite abundance below the limit of detection, or a 

metabolite simply being absent from a sample. Due to the nature of the downstream 

statistical analysis techniques and their associated calculations, there cannot be any empty 

(valueless) cells within the metabolite matrix (data set). Therefore, either the molecular 

feature with the missing value must be entirely removed from the data set or a value must 

be inserted (imputed) in place of the missing value. Since the former is extreme and can 

needlessly eliminate important metabolites from an analysis, missing values are typically 

imputed.  
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There are a variety of different ways to impute a missing value, some approaches 

include populating the empty cells with a value of 1 or 0, using the average value of that 

metabolite detected across a cohort, or using the median value for that metabolite
56

. Since 

metabolite abundance is a direct reflection of the ion abundance value reported by the 

MS, and ion abundance is typically on the order of 10
4
 counts or greater, imputing a 

value of 0 or 1 for missing data can have a profound and misleading effect on the 

distribution of metabolite abundance in that cohort. Therefore, imputation with the 

statistical mean or median metabolite value is preferred. The median metabolite value is 

used since it is least likely to have a significant effect on the Gaussian-like distribution of 

metabolite abundance across a cohort.  

Following missing data imputation, metabolite abundance outliers are then 

palliated. Outliers may result from unintended variation in the extraction process among 

samples, from sample degradation during storage or processing, from chromatographic 

variations, or may simply reflect the metabolic state of that particular sample. Outliers are 

not uncommon in biological data sets and several mathematical methods of outlier 

identification have been developed
57–60

. Our approach is to determine the relative error 

(outlier value) in the distribution of our data set (Equation 2). Any instance where the 

outlier value is 1.5 or greater, the outlier is identified and replaced with the median value 

for that metabolite.  
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Equation 2. Determination of an outlier 

present in a biological cohort. 

O: outlier value 

mean: average value of metabolite in that cohort 

median: median value of metabolite in that cohort 

  
             

      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final step in data preparation involves the scaling of the relative metabolite 

abundance values across all samples to permit their comparison to one another. Data 

scaling specifically addresses differences in the ionizability of molecules in FID and MS 

and differences in absorbance at various wavelengths in UV-Vis. Some metabolites may 

be in low abundance yet ionize or absorb readily and produce a large peak intensity, 

whereas some metabolites may be in high abundance yet ionize or absorb poorly thereby 

resulting in small peak intensities. In fact, peak intensities in MS, FID, or UV-Vis can 

vary across several orders of magnitude among a data set of metabolites. A comparison 

of raw peak intensity values among these metabolites would then lead to erroneous 

conclusions. 

Molecular feature standardization such as z-score standardization (Equation 3) 

converts all of the metabolite abundance values to a common scale, results in the 

production of a zero-mean, and a produces a standard deviation equal to one
61

. When 

applied, the z-score standardization approach allows the data to then be analyzed on the 

basis of correlation and allows each metabolite to be equally important, regardless of its 

ionizability or absorbance at a specific wavelength
62

.  
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Equation 3. Z-score standardization 

approach for molecular feature 

standardization. 

x: value of metabolite in the sample 

mean: average value of metabolite in all 

samples/cohorts 

standard deviation: standard deviation value 

of metabolite in all samples/cohorts 

         
        

                  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage 3 of the Data Analysis Pipeline: Multivariate Statistical Analysis and Data 

Visualization 

Multivariate statistics is often used in a metabolomic analysis and is a necessity 

during a non-targeted investigation
14

. While univariate statistical analyses only examine 

one variable at a time, multivariate statistics examines the large collection of variables 

(molecular features) found within the data. Here I describe two different techniques 

adopted for use in the multivariate statistical analysis portion our metabolomics analyses; 

dimension reduction and cluster analysis.  
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Dimension Reduction: Principal Component Analysis 

As stated previously, the data set acquired during a metabolomics investigation is 

comprised of a large collection of variables (molecular features and their relative 

abundance) and associated observations (samples that were analyzed). In statistical 

analysis techniques, each variable is supplied its own dimension. Therefore for an 

analysis which identified over 1000 metabolites, there are over 1000 dimensions. 

Because of this, it is challenging to elucidate specific trends between the samples in the 

data set by plotting every possible metabolite combination. Dimension reduction 

addresses this challenge. Dimension reduction is the process of minimizing the number of 

dimensions while still conveying the same information, thereby allowing trends to be 

identified within the data set
63–65

. 

Principal component analysis (PCA, Figure 16) is a form of dimension reduction 

that uses linear transformations to elucidate the covariance structure of the metabolites 

identified in the biological sample, culminating in the description of the total variance 

identified in the data set. By using a covariance approach, not only are the differences 

(eg. abundance levels) between the metabolites examined, the influences those variations 

have on each of the metabolites are examined as well
63–65

.  
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Figure 16. A 3D-PCA Plot demonstrating the variations 

between juxtaposed biological cohorts. 

An illustrative three dimensional PCA plot depicting the 

differences in the metabolome composition of a healthy (blue 

spheres) and diseased (orange spheres) state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The principal components are derived from the direction that illustrates the 

maximal variation within the data set. To illustrate the mathematical steps in principal 

component analysis, Figure 17 depicts a three dimensional diamond characterized by 

three variables: width, length, and height. This description of the three dimensional 

diamond can be simplified by redefining the shape on an alternate (two dimensional) 

coordinate system. 
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Figure 17. Diamond with a known 

width, length, and height depicted 

in a three dimensional graph. 

The diamond depicted here has three 

variables: width, length, and height. 

The values of each variable provides 

the coordinates needed to plot the 

diamond on the graph.  

 

 

 

 

 

 

 

 

 

 

 

 

The alternate coordinate system is developed by first identifying the center of the 

diamond (i.e. the center of the X, Y, Z coordinate values) and then establishing the 

direction of a line that will provide the longest radius encompassing all of the data points 

(Figure 18A). This direction (new variable) is denoted as principal component 1 (PC1). 

Note that PC1 reflects the greatest variance in the data set. After defining PC1, the 

direction with the second longest radius is defined. This direction is defined by first 

drawing a line that is perpendicular to PC1 and then rotating the direction of the line to 

define its longest radius. This second direction (second variable) is labeled as principal 

component 2 (PC2), which reflects the second greatest variance within the data set. The 

three dimensional diamond can now be described using these two directions by re-

plotting the diamond on a new coordinate system, defined by the two variables PC1 and 

PC2 (Figure 18B). Consequently, the dimensions (variables) can be reduced from three to 
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Figure 18. Determining an alternate coordinate system using principal component analysis. 

In Figure A, the center of the diamond is first identified and a straight line is drawn (black line) through the 

center to determine the direction which provides the largest radius. This line is now referred to as PC1. Next, a 

line (red line) is drawn perpendicular to the direction of PC1. The direction of the red line which provides the 

second largest radius is labeled PC2. Using the largest and second largest radius and associate directions as 

new coordinates, the diamond can be re-plotted. Figure B depicts the diamond in a new coordinate system 

using the results obtained in Figure A.  

two while still retaining the same relative information about the diamond coordinate 

values (width, length, and height). Thus, PCA is method of simplifying the data set 

without losing any of the original information.  

 

 

 

 

 

 

A similar approach to dimension reduction can also be applied to metabolomics 

data. Suppose there are ‘n’ number of metabolites for ‘x’ number of samples. If the data 

provided in Figure 19 is plotted, it would appear as shown in Figure 19. Each point in the 

multidimensional plot is derived from an individual sample and its position in 

multidimensional space is a reflection of all of the metabolites pertaining to that sample.  
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Figure 19. Acquired metabolomics data set visualized on a multidimensional 

graph. 

In this figure, the table represents a metabolomics data set with associated abundance 

values acquired from GC or LC based analyses. In this data set, each metabolite is 

designated as a variable and provides its own dimension. Therefore in the graph on the 

right, the diamonds represent the samples and all of the metabolite information obtained 

for that sample. The positioning of the samples on the graph is a reflection of metabolite 

abundance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 To simplify the description of the samples, the data is transformed using the same 

approach as described with the diamond. First the center of all of the data is identified 

and the radius that provides the largest variance is used to define PC1 (Figure 20A). 

Next, the direction perpendicular to the first that describes the second largest variance is 

identified and labeled PC2. This process continues for m number of directions, so long as 

it results in a measurable (nonzero) variance (m < n (the number of metabolites)). After 

determining the direction of each component, the plot is redefined using the principal 

components as the new axes and the resulting variance measured in each component as 

the new coordinates (Figure 20B). As previously stated, each sample still contains the 

same amount of information (x number of samples with the abundance values for n 
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Figure 20. Using principal component analysis to reduce the dimensions in metabolomics data. 

In Figure A, using the data acquired in  

Figure 19, the center of all of the diamonds (samples) is determined first and the direction that provides 

the most variation (the radius of the diamond) between the samples. This direction is referred to as PC1. 

Next, a line is formed perpendicular to PC1, defining the direction that provides the second largest 

variation (PC2). This process continues for m number of directions (a value less than the n number of 

metabolites). The directions of the PC and their corresponding variance becomes the new coordinates 

for the samples. In Figure B, the samples are re-plotted using these new coordinates. By expressing the 

data in this manner, the number of dimensions is reduced while still retaining the original information.  

number of metabolites), but the dimensions are reduced from n number of metabolites to 

m number of components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To illustrate this analysis with actual metabolomics data, a PCA plot is shown in 

Figure 21. This analysis investigated the influence of diet on the pancreatic metabolome 

(fully described in Specific Aim 2.3). In this PCA plot, colored spheres represent the 

pancreatic samples, and their positioning in the plot is a reflection of their metabolite 

composition. The data has been transformed from a form similar to Figure 19 to the new 

PCA axes which describe the variance in the metabolic profile obtained from the 

samples. Therefore, spheres that are closely juxtaposed in the plot reflect similar 
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Figure 21. PCA plot depicting the variation in the metabolic profile 

obtained from the pancreas of pigs consuming different diets. 

Three dimensional PCA plots of metabolome composition derived from 

the pancreas differentiates the four pig dietary cohorts (basal, 

basal+probiotic, high fat, and high fat+probiotic) from each other, 

demonstrating that dietary consumption (including probiotic 

supplementation) can have a significant influence on the metabolite 

composition of the organ tissues. Each sphere in the plot reflects the 

metabolome of the pig tissue sample. Spheres are colored according to 

the diet (orange - basal, blue - basal+probiotic, green - high fat, purple - 

high fat+probiotic). Interestingly, grand variations between high fat and 

high+probiotic supplemented pigs are observed. Conversely, basal and 

basal+probiotic supplemented pigs display smaller variations, as they 

are closely juxtaposed in the plot. 

metabolome composition, whereas spheres which are segregated from one another 

exhibit significant variations in their acquired metabolomic profile. It is important to 

note, the relative positioning of the spheres is a reflection of the samples included in the 

analysis. Therefore, if another analysis was performed focused exclusively on the 

samples that appear closely juxtaposed in Figure 21, those samples will be resolved in a 

PCA plot, providing insight into the degree of variation amongst those particular samples. 
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Cluster Analysis: Hierarchical Clustering Analysis 

Cluster analysis utilizes multidimensional data and categorizes the samples into 

groups known as clusters, based on their similarities
14,66,67

. These clusters, while 

capturing the data's overall structure, is used as an exploratory analysis to provide an 

assessment of the relatedness of the samples in regards to their metabolome composition. 

There are different varieties of hierarchical clustering analyses, but agglomerative 

hierarchical clustering is the only analysis which does not require the samples to 

classified into their respective cohorts. This is important for metabolomics because it 

reduces the amount of bias in your data (by not predefining cohorts, the samples are 

grouped solely on their degree of relatedness in metabolome composition). 

Agglomerative hierarchical clustering results are typically displayed as a dendrogram 

(Figure 22), which resembles a phylogenetic tree, depicting the similarities between each 

sample. In a metabolomics analysis, samples that are highly similar in metabolite 

composition will appear closely juxtaposed in the dendrogram
68

.  
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Figure 22. Dendrogram depicting the similarities in the 

metabolic profile obtained from samples at various stages of 

infection. 

This dendrogram describes the similarities between different 

infection time points which are color coded at the bottom. While the 

plot depicts 4 distinct time points with all samples in those time 

point clustering together, the first major grouping between the time 

points denotes similarities in the metabolic profiles between the 

early (Day 10, orange) and late (Day 53, purple). Opposite to that is 

the clustering of the middle stages of infection (Day 21 and Day 35, 

blue and green respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Agglomerative hierarchical clustering begins by comparing the metabolomes of 

each sample (Figure 23). Next, the samples that have the most similar metabolic profile 

are connected and referred to as a cluster (the mathematical approach to determining 

similarities among the samples is described below). Each cluster is then connected to 

another cluster based on the similarities of their metabolic profile. This process continues 
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Figure 23. Steps involved in Agglomerative Hierarchical Clustering analysis to determine 

the similarities between samples. 

Step 1 calculates the distance between the samples (A, B, C, and D). As in the PCA, each sphere 

represents all of the metabolite information found within the sample. If the metabolite profile 

(appearance and abundance) is similar, a connection will be made. Therefore, since the 

metabolic profile of A and B are similar, they are placed closer together, and a connection is 

made, likewise for C and D. After the first connection is made, the groups of samples are 

described as clusters. Step 2 calculates the distance between the clusters. If the cluster contains a 

similar metabolic profile, a connection will be made. Therefore, the closer the clusters and 

ultimately the samples are to each other, the more related their metabolic composition. 

until all of the samples have been connected. Therefore, the closer the distance between 

the samples, the more similar the metabolic profile
67

.  
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Equation 4. Euclidean Distance calculation to determine the distance between 

two points. 

Distance (d) between two points a and b is calculated by the square root of the sum of 

their squared differences where n is equal to the number of metabolites.  

                                       

There are two steps to calculating the distances in the dendrogram. The first step 

is to calculate the distance between the samples. The second is to calculate the distance 

between the sample clusters.  

Step 1. Calculating the distance between samples 

The most common approach to calculating the distance between two samples is 

the Euclidean method
67,69

. This distance calculation uses the Pythagorean theorem 

applied to multidimensional data. In this procedure, the distance is described as a line 

segment connecting two distinct points (samples). The points exist in a multidimensional 

space and are provided coordinates which equal the number of dimensions. As stated in 

the PCA section of this dissertation, each variable (molecular feature) is supplied its own 

dimension. For example, for an analysis examining 3 metabolites, there will be 3 

dimensions, and the coordinates for samples a and b are described as (a1, a2, a3) and (b1, 

b2, b3), respectively. Thus, for a metabolomics investigation one can assume that the 

coordinates for sample a would equal (a1, a2, ..., an) where n is equal to the number of 

metabolites. The distance between samples a and b would then be described as in 

Equation 4. 
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Step 2.Calculating the distance between sample clusters 

The second step in calculating the hierarchical cluster is to calculate the distance 

between the clusters. The most common method, the Ward's method, aims to minimize 

the variation within clusters
67

. In this approach, the mean value of all the distances 

calculated between the samples in the cluster (the distances calculated in step 1) is used 

as the representative. The distance between clusters is then calculated by determining the 

sum of the squared distance between those clusters. This process continues until the 

distances between all clusters is calculated. The clusters with the shortest distance are 

then connected and the process begins again
70

. 

Correlation Network Analysis 

Correlation Network Analysis (Figure 24) permits the visualization of the positive 

and/or negative relationships and interactions amongst various metabolites (and/or other 

biomolecules) in a sample
15,18,71

. Depending on the nature of the study, the networks can 

include data derived from the metabolome, proteome, and/or genome, bridging a gap 

which often occurs between the various "-omics" sciences, providing a more cohesive 

analysis.  
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Figure 24. Correlation Network depicting the 

connections made within and between metabolites 

and proteins. 

The correlation network presented depicts the 

correlations (r > |0.95|) identified within and between 

the metabolites and proteins acquired from a 

biological sample. The metabolites are shown in the 

top circle and are illustrated using black points. 

Within this circle, there are positive (green lines) and 

negative (red lines) correlations identified between 

the metabolites. The proteins are shown in the bottom 

circle and are illustrated using blue points. As with 

the metabolites, there are positive and negative 

correlations identified between the various proteins 

found within the biological sample. In addition, there 

are connections drawn between various metabolites 

and proteins. These connections illustrate the positive 

and negative interactions/regulations between the 

metabolites and proteins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The networks pictorially represent the correlations between the metabolites, 

where green lines represent a positive correlation and red lines denote a negative 

correlation. When a unique network is prepared for each cohort, the connections made 

within the plots can provide insight into the alterations to metabolite interactions. This in 
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Figure 25. Correlation networks of two juxtaposed biological cohorts. 

The correlation network presented is a reflection of the correlations identified between the metabolites in cohorts 

A and B. The plot depicts 22 different metabolites labeled numerically and are conserved between both plots. That 

is, the metabolite labeled 1in cohort A is the same metabolite labeled 1 in cohort B. While it appears that both 

cohorts exhibit similar correlations between the metabolites, the metabolites highlighted in yellow exhibit positive 

correlations in cohort A and no correlations in cohort B. This indicates an alteration in the relationship of 

metabolites 8, 12, and 20 between the two cohorts. By focusing my attention on those metabolites specifically, I 

can determine their identity, biological relevance, and elucidate other pathway specific information.  

turn may lead to the identification of potential biomarkers or to mechanistic insight 

(Figure 25)
18,19,71

.  

 

 

 

 

 

 

Stage 4 of the Data Analysis Pipeline: Determination and Identification of 

Metabolites of Interest 

The final stages of a metabolomics investigation is to determine and identify key 

metabolites of interest. This can occur by identifying alterations to specific pathways as a 

consequence of disease or determining an appropriate biomarker for disease prediction.  
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Equation 5. Calculation of log2 fold change for 

metabolite abundance in juxtaposed biological 

cohorts. 

medianA: median value of metabolite in Cohort A 

medianB: median value of metabolite in Cohort B 

                        
       
       

  

To determine the top metabolites of interest, I filter the data set by using 

combination of univariate analyses such as fold change, p-value, and frequency values. I 

generally focus my attention on metabolites that exhibit a high level of fold change (|log2 

(fold change) ≥ 1.5|), statistically significant p-value < 0.05, and at least a 50% 

appearance in one of the cohorts under investigation (the process for determining fold 

change and p-value is described in detail below). To identify the key metabolites, I use 

AMDIS in combination with the NIST database for the GC-MS acquired data set, while I 

compare the LC-MS/MS data to the Metlin and Human Metabolome Database (HMDB) 

to identify nonvolatile metabolites. Finally, potential biomarkers are assessed using the 

area under a Receiver Operating Characteristics (ROC) curve, as described below. 

Fold Change 

The relative fold change for a metabolite is calculated by comparing its median 

abundance value in each cohort under investigation (Equation 5).  
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The log2 fold change value is used to determine whether the metabolite is up or 

down regulated with respect to cohort B. While this analysis is straightforward, one 

scenario arises where an additional consideration is required. That is, in the case where a 

metabolite is present in one cohort but completely absent in the other cohort (i.e. there is 

no median value for the latter cohort). In this case I impute a missing value of 1 for the 

cohort lacking the metabolite, to avoid a mathematical error reflecting division by zero 

(see Equation 5).  

 

P-value 

After calculating the fold change value for each metabolite in the data set, I 

calculate the p-value of that metabolite. Here I utilize a two tailed unpaired (two-sample) 

T-test and a statistically significant value of p < 0.05. As the selected T-test is unpaired 

and two tailed, I am able to compare the two independent cohorts and examine the data in 

both directions (the disease group can be either higher or lower than the healthy group)
72

. 

It is important to recognize that a p-value of 0.05 means that there is a 5% chance of 

obtaining the observed feature only if the null hypothesis is true (in this case, the feature's 

inclusion is the result of random sampling and not attributed to alterations in 

metabolites). Therefore, if a feature is retained because the p-value < 0.05, it may actually 

be a false positive (discovery)
73

. To reduce the false discovery rate, adjusted p-values are 

calculated using the Benjamini-Hochberg method. In this method, the p-values are listed 

in ascending order and assigned a rank relative to their position. Next, the critical value is 
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Equation 6. Benjamini-Hochberg Critical Value 

for the reduction of the false discovery rate. 

i: the rank of the individual 

m: total number of tests 

Q: false discovery rate 

                
 

 
   

calculated (Equation 6) where the false discovery rate (Q) is a value chosen by the user. 

The higher the false discovery rate value, the more stringent the results
73

. After 

calculating the critical value, the p-values are compared to the critical value. The largest 

p-value that is still less than the critical value is then established as the new p-value 

cutoff. Once the new cutoff is determined, the new p-value cutoff is transformed to 

reflect a p-value < 0.05. This new adjusted p-value is calculated by multiplying the 

original p-value by the ratio of the total number of tests (m) to the rank of the individual 

(i). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selection of Top Features 

Following the calculation of fold change and adjusted p-values, I generate 

volcano plots (Figure 26) to visualize the number of biologically significant metabolites 

that are within our cut-off value (|log2(Fold Change) ≥ 1.5| and p-valueadj < 0.05). By 

selecting these cutoff values, I am able to focus my attention to only those highly varied 

but statistically significant metabolites.  
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Figure 26. Volcano Plot depicting the fold change versus p-value acquired for differentially-

compared metabolites. 

The volcano plot depicts the log2 fold change values versus the -log10p-value. The metabolites that 

are within our cutoff are colored in red, those are within either p-value or fold change cutoff are in 

grey, and those that are not within either cutoff value are in black. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After determining which molecular features in the MS acquired data set are 

statistically different between the cohorts, they are then identified via a database. For GC-

MS acquired data, the features have already been identified using the NIST database 

(Step 4 in AMDIS). However, for the LC-MS acquired data, there is a list of unknown 

molecular features. To identify the unknown features, I use the acquired MS/MS data 

obtained from each molecular feature and match the acquired molecular spectra to a 

library (Metlin and the Human Metabolome Database) molecular spectra using the CID 

energies of 10eV, 20eV, and 40eV. After metabolite identification, I determine biological 

relevance and if needed, whether the metabolite could serve as a good biomarker of the 

disease (via a ROC curve).  
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Figure 27. ROC Curve illustrating the potential of using dimethyl trisulfide or dimethyl disulfide as a 

biomarker. 

This ROC curve is depicting relationship of the true positive rate (sensitivity) versus the false positive rate (1-

specificity) of the metabolites dimethyl trisulfide and dimethyl disulfide33. The area under the ROC curve provides 

an indicator for the feasibility of a metabolite to be biomarker. An excellent biomarker is described as having an 

area under the curve (AUC) equal to 1, while an AUC of 0.5 means the analyte should not be used as a biomarker 

of disease. For these analytes, the AUCs are 0.77 and 0.80 respectively and are considered good biomarkers. 

ROC Curves 

The determination and identification of a biomarker for a particular disease or 

organism requires the use of many statistical analyses, testing, and reproducibility to 

ensure that marker is adequate for disease prediction. By using the statistical tools 

described above, it is possible to first elucidate the metabolites associated with the 

variations observed between healthy and diseased individuals. By identifying which 

metabolites cause the greater amount of variance, those metabolites can be extracted from 

the data set and a Receiver Operating Characteristics (ROC, Figure 27) curve is generated 

to evaluate the metabolite's ability to serve as a good biomarker
74

.  
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Equation 7. Calculating the area under the curve using the trapezoid rule. 

The area under the curve is calculated using the sum of the width of each trapezoid (Δx), 

multiplied by the sum of the length of the points from the baseline (y), divided by the number 

of points (2). This will continue for n number of points. 

         
     

 
       

     
 

        
       

 
   

While the ROC curve itself serves as a visual tool, the value obtained from the 

area under the ROC curve (AUC, C-statistic), determines the metabolite's ability to be a 

good biomarker. The AUC is calculated using a non-parametric method known as the 

trapezoid rule. In this method, each adjacent point under a curve is depicted as a 

trapezoid. The area is then computed using the equation demonstrated in Equation 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To be denoted as an excellent biomarker for a disease, the metabolite is described 

as having the maximum area under the curve (AUC also known as the C-statistic) 

possible and equates to a value of 1
16,17

. Conversely, those analytes whose curve lies 

along the diagonal line exhibit areas equaling 0.5. This value of 0.5 is attributed to 

random guessing and will exclude them from the analysis.  

Summary 

My goal in specific aim 1 was to develop an approach to a metabolomics based 

analysis (Figure 28).  
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Figure 28. The Metabolomics Pipeline for Data Acquisition and Analysis. 

The flowchart illustrated above is a modified version of the original metabolomics pipeline from  

Figure 10. In this modified version, I added the software used for determining the molecular features in GC-MS 

(AMDIS), and LC-MS (Agilent's MassHunter Qualitative Analysis) acquired data sets. I also illustrated the 

portion of the pipeline that differs between GC-MS and LC-MS data. This divergent step occurs after Step 5 in 

the original pipeline. For LC-MS data, I identify the molecular features using the acquired MS/MS data. For the 

GC-MS acquired data, AMDIS has already determined the identities of the molecular features in step 4 of its 

analysis.  

 

 

 

As mentioned earlier, this pipeline was developed alongside the metabolomics 

analyses described in Specific Aim 2. The pipeline has been tailored primarily to a global 

metabolomics analysis and encompasses both volatile and non-volatile investigation 

routes, although is readily applicable to targeted analyses.  
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Pitfalls and Limitations to the Pipeline 

As illustrated in this specific aim, metabolomic based analyses require a multitude 

of different components. A major limitation to this pipeline is the length of time for the 

analysis. To obtain a comprehensive assessment of the metabolite composition of the 

samples, I utilize multiple chromatography approaches (GC and LC based). While this 

increases the amount of information I obtain from the samples, this also increases the 

data acquisition analysis time. In addition, there is not one sole piece of software that can 

acquire and analyze the data set, therefore I had to incorporate a vast amount of different 

software platforms and algorithms, requiring me to develop technical expertise in each.  

The ability to determine all metabolites of interest is limited for the LC-MS 

acquired data set. Following the acquisition of MS data, MS/MS data is acquired for the 

five most abundant ions using CID energies of 10eV, 20eV, and 40eV. After analyzing 

MS/MS data generated from another lab, I discovered that their technique of pooling all 

samples into one vial for MS/MS analysis resulted in very few of the top features 

acquiring MS/MS data, due to out-competing of metabolites with similar retention times. 

Because of this, I decided to collect MS/MS data on all samples. While I found that this 

new approach significantly increases the number of features with MS/MS acquired data 

(from 20% to at least 90%), this also significantly increases the analysis time as each 

sample will have 4 chromatographic runs (MS, 10eV MS/MS, 20eV MS/MS, and 40eV 

MS/MS).  

Following the acquisition of the LC-MS acquired data, I match the acquired mass 

spectra of the molecular feature obtained during the analysis to a mass spectra of a known 
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compound in the Metlin and Human Metabolome Database (HMDB). While these 

databases are among the most commonly cited, there is a limited number of metabolites 

with MS/MS derived data within these databases. With the added stringency of matching 

the 10eV, 20eV, and 40eV mass spectra to the database, many of the top features remain 

unidentified.  
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SPECIFIC AIM 2.1: METABOLOMICS AS A BIOSENSOR; 

DEVELOPING AN ELECTRONIC NOSE. 

Objective: Use metabolomics as an electronic nose to determine if global 

metabolic profiling of microbial volatile organic compounds can differentiate select 

biological warfare agents. 

Introduction 

Francisella tularensis (the causative agent of tularemia), Burkholderia 

pseudomallei (melioidosis), and Brucella melitensis (brucellosis) are zoonotic 

intracellular parasites considered by the US Centers for Disease Control and Prevention 

(CDC) as high risk biological warfare agents due to their high morbidity/mortality rate, 

ease of dissemination, emergency response procedures, and projected social impact
75

. 

Because these agents can be properly managed with early detection, rapid and accurate 

pathogen identification is essential.  

Though sensitive and selective detection techniques involving Polymerase Chain 

Reaction (PCR), microbial culturing, and/or Enzyme-Linked Immunosorbent Assays 

(ELISA) are well established,
76

 the techniques are typically time consuming, laborious, 

and costly. To circumvent these issues and to enhance the capabilities of the biodefense 

and public health sector, continued exploration of methods and approaches for the 

detection of biological warfare agents is vital. 
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Figure 29. Enhanced analysis of VOCs using hSPME. 

With direct injection, headspace VOCs are too dilute and difficult to detect by GC (left chromatogram). 

However, using hSPME, a sorbent (a polymer coating on a silica fiber) preconcentrates the headspace 

VOCs before analysis (see Figure 30), thereby permitting their detection (right chromatogram). Both 

chromatograms were derived from an identical biological sample and were analyzed using a GC equipped 

with a flame ionization detector (FID). Note the difference in the magnitude of the Y-axis (signal 

strength) and in the number of peaks (detected metabolites) when hSPME is used. A single hSPME fiber 

type was used for the right chromatogram. Also note that with a 20 min hSPME and 25 min GC run, 

VOC fingerprinting is complete in less than 1hr. 
 

Microbial volatile organic compounds (mVOCs) are a large class of structurally 

diverse, microbial-derived organic molecules, generally related by their volatility at room 

temperature. In our lab, we have demonstrated the diagnostic potential of VOCs derived 

from biological samples
77–80

. Similarly, other studies report on the differentiation of 

bacteria using the mVOC metabolome. For example, studies comparing the mVOCs 

produced by sepsis inducing bacteria have identified unique biomarkers indicative of S. 

aureus, P. aeruginosa, and E. coli
81–83

. Differentiation of antibiotic susceptible and 

resistant strains has also been achieved through mVOC profiling
84

.  

To perform our analysis of VOCs emanating from biological samples, we utilize a 

specialized sampling method known as headspace solid phase microextraction (hSPME). 

By using hSPME, we isolate and concentrate the analytes present in the sample, greatly 

facilitating their detection (Figure 29)
6,26,85–87

.  
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Figure 30. Solid-phase microextraction of VOCs in the headspace 

above a biological sample.  

The SPME fiber is exposed to the headspace above the sample to facilitate 

the extraction of VOCs. The volatile analytes emanating from the sample 

enter the headspace where they interact and bind to the polymeric coating 

on the SPME fiber. 

A typical hSPME analysis (Figure 30) involves the extraction of VOCs via 

partitioning into a polymeric coating adhered to a fused silica rod (fiber), subsequent 

desorption of the VOCs by heating the fiber in the injection port of a gas chromatograph, 

separation of the VOCs by gas-liquid partition chromatography, and detection of the 

VOCs via flame ionization or mass spectrometry. Comparison to a reference database 

enables VOC identification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The choice of polymeric coating is an important consideration when performing a 

hSPME analysis, as it dictates the type of analytes that are extracted (“like dissolves 

like”). Several SPME fiber coatings are commercially available, including polyacrylate 

(PA), polydimethylsiloxane (PDMS), carbowax-polyethylene glycol (PEG), and mixed 
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phases of carboxen (CAR)-PDMS, divinylbenzene (DVB)-PDMS, and CAR-DVB-

PDMS. While the polarity of the analyte of interest is typically used to guide the selection 

of a particular SPME fiber, the Couch lab has shown that the multifarious nature of 

biological sample composition dictates the use of multiple SPME fiber types for maximal 

metabolomic coverage of the total VOCs
80

. The greater the number of metabolites 

identified, the greater the probability of uniquely differentiating a biological cohort. Thus, 

we have developed and currently employ a multi-hSPME approach to VOC metabolomic 

investigations.  

While multi-hSPME greatly increases the number of metabolites identified, 

multiple sample extractions are required (at least one per fiber type), thereby slowing the 

throughput of sample analysis. Our initial approach to addressing this issue was the use 

of a combinatorial analysis to identify core three-, four-, and five-fiber groupings that 

afford substantial (89-96%) coverage of the total VOC metabolome
80

. However, maximal 

(i.e. 100%) coverage of the VOC metabolome is preferred, so we developed and patented 

a novel extraction device that permits us to perform simultaneous multifiber extractions 

of a sample (simulti-hSPME; Figure 31) using all of the commercially available fiber 

types simultaneously, thereby ensuring maximal VOC metabolome coverage, while 

dramatically increasing the throughput of a VOC metabolomics investigation. 
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Figure 31. The simulti-hSPME device for multifiber extraction. 

For clarity, the device is shown with only one hSPME syringe in place, but it can 

accommodate up to nine syringes simultaneously. To extract the VOCs, sample 

vials are placed within the device and then the SPME fibers are exposed to the 

VOCs in a headspace chamber located directly above the sample vial. 

Alternatively, the device is assembled with a base piece designed to connect 

directly in-line with a sample, for example to monitor ambient, inhaled, or 

exhaled air. Following the extraction, the fibers are then desorbed into a standard 

GC. We have used the simulti-hSPME device to analyze a diverse array of 

samples including blood, cell cultures, breath, feces, and ocular fluid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extraction duration is another important consideration when performing a simulti-

hSPME analysis, as it can dictate the number of analytes that are extracted. To illustrate 

the effect of extraction duration, the Couch Lab used two different SPME fibers (a CAR-

DVB-PDMS and PA fiber) in conjunction with GC-MS to identify and quantify the 
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Figure 32. Extraction duration and headspace SPME of 

human feces26. 

A plot of the number of identified analytes as a function of 

extraction duration is presented. Nonlinear regression fitting the 

hyperbolic extraction curves yields a Ymax of 114 +/- 3 for the 

CAR-DVB-PDMS fiber (R2= 0.9937) and 94 +/- 4 for the PA 

fiber (R2= 0.9791). 

VOCs extracted from a human fecal sample
26

. To perform the analysis, samples were 

placed in the simulti-hSPME device and then an individual SPME fiber was placed into 

the headspace above the sample for various time intervals (ranging from 1 min to 16 hr; 

the temperature was held constant throughout the extraction). Extracted analytes were 

then immediately desorbed into a GC-MS and spectral comparison with the NIST08 

database facilitated analyte identification (only compounds with a 90% or greater 

probability of match to a molecule in the NIST08 library were scored). Figure 32 

illustrates a plot of the number of analytes identified as a function of extraction duration.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 32, the CAR-DVB-PDMS fiber isolated a greater number of 

identifiable analytes from the sample than did the PA fiber, regardless of the extraction 

duration. This result highlights the influence of fiber choice on VOC metabolomics. For 

both the PA and CAR-DVB-PDMS fibers, total analyte extraction appears hyperbolic, 
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Figure 33. A plot of area under the 

chromatographic curve as a function of time for the 

indicated analytes obtained using the CAR-DVB-

PDMS fiber. 

This plot illustrates the differences in the extraction 

rates for the indicated metabolites. See text for further 

discussion. 

with a near maximum value (Ymax) occurring with a 960 minute (16 hour) extraction 

duration (98% of Ymax). As illustrated with the CAR-DVB-PDMS fiber (Figure 33), 

individual analyte extraction rates are analyte specific, with some metabolites (such as 

indole and methyl indole) rapidly reaching equilibrium and others (such as acetic acid, 

propanoic acid, and caryophyllene) proceeding more slowly. In some cases (such as 

observed with methyl phenol and farnesene), metabolite titers plateau then subsequently 

wane with increased exposure duration, a phenomena attributed to higher affinity 

compounds displacing those with lower affinity for the fiber, thereby lowering the titer of 

the latter. 
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Figure 34. 3D-PCA illustrating the effects of extraction duration and cohort differentiation. 

Extraction duration determines the number of metabolites included in a metabolomics data matrix, and thus effects 

the probability of successfully differentiating biological cohorts using statistical analyses. To illustrate this, we 

performed a comparative fecal VOC analysis of healthy study participants vs. clinically diagnosed alcoholics. 

Three dimensional PCA plots generated from the derived fecal VOC metabolomes are shown. Healthy participants 

are identified as blue spheres, while alcoholic patients are denoted as yellow spheres. While an 18 hr (A) and 20 

min (B) simulti-hSPME analysis of the feces permits the clear differentiation of the healthy and alcoholic patients, 

a 2 min (C) simulti-hSMPE does not. Through optimization of the extraction duration used with simulti-hSPME, a 

rapid diagnostic test can be developed. 

The key to a successful comparative metabolomics analysis is the inclusion of a 

sufficient number of metabolites to permit differentiation of the biological cohorts. To 

reiterate, the greater the number of metabolites identified, the greater the probability of 

uniquely differentiating a biological cohort. As the extraction profile of a biological 

sample is hyperbolic, the extraction duration can be altered/optimized to increase or 

decrease the total number of metabolites included in the derived VOC metabolome (i.e. 

the number of metabolites in the resulting spreadsheet/data set is a reflection of the 

extraction duration). For clinical diagnostics, the goal is to define the shortest extraction 

duration permitting clear differentiation of the cohorts. The Couch Lab has illustrated the 

impact of extraction duration in a fecal VOC analysis, wherein 18 hour and 20 minute 

extractions (via simulti-hSPME) result in VOC metabolomes with a sufficient number of 

metabolites to differentiate alcoholics from healthy study participants, while a 2 minute 

extraction duration does not (Figure 34). 
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Figure 35. Conversion of GC-FID chromatogram to a binary 

plot. 

On the left is a chromatogram obtained from a hSPME extraction 

of an F. tularensis liquid culture. The analytes acquired during 

the extraction were separated via gas-liquid partitioning and the 

resulting chromatographic peaks were converted to the binary 

plot. On the right, is the binary plot. This plot resembles a UPC 

code where the white bars are indicative of a peak at a specified 

retention time (y-axis).  

To address the objective of Specific Aim 2.1, I sought to determine if global 

metabolomic profiling of the mVOC metabolome could generate a microbial fingerprint 

to uniquely identify and differentiate select biological warfare agents (Francisella 

tularensis, Burkholderia cenocepacia, and Brucella neotomae). A multifiber hSPME 

analysis was performed, and to enable rapid visualization of the mVOC metabolomes, I 

converted the chromatograms into binary plots resembling retail Universal Product Codes 

(UPC bar codes). In these binary plots, the presence of a white line indicates the presence 

of a peak in the chromatogram at the specified retention time (Figure 35).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This multifiber hSPME analysis was performed prior to the development of 

simulti-hSPME in the Couch lab, and as such, single hSPME fibers were individually 

used for the mVOC extraction. The corresponding binary plots were generated for each 
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of the fibers employed, then the plots were condensed/compiled into one single plot to 

create a mVOC fingerprint for the bacterium.  

In addition, I also explored the influence of select environmental effectors on the 

mVOC fingerprints generated above, and went on to produce mVOC fingerprints that 

differentiate antibiotic sensitive and antibiotic resistant strains of the biothreat agents. All 

of this work is described in detail below. 

Materials and Methods 

1. Bacterial Strains and Culture Media 

The following reagents were obtained through the NIH Biodefense and Emerging 

Infections Research Resources Repository, NIAID, NIH: Francisella tularensis spp. 

novicida, Strain CG62, NR-580; Burkholderia cenocepacia, Strain LMG 16656, NR-701; 

Brucella neotomae, Strain 5K33, NR-684, Yersinia pestis, Strain A1122, and F. 

tularensis, Strain NIH B38. Bacterial cultures were grown using rich media containing 

Tryptic Soy Broth (TSB) supplemented with 0.1% cysteine (TSBC), TSBC supplemented 

with 50 µg/mL kanamycin, modified Muller-Hinton media (mMH; 0.025% ferric 

pyrophosphate, 1 mM CaCl2, 1 mM MgCl2, 0.1% glucose, and 2% Isovitalex 

supplement), mMH + 10ug/mL of kanamycin, or a defined minimal media (referred to as 

Modified Chamberlin’s Defined Media (MCDM)) containing 0.4 g/L L-Arginine, 0.4 g/L 

L-Aspartic Acid, 0.2 g/L L-Cysteine, 0.2 g/L L-Histidine, 0.4 g/L L-Isoleucine, 0.4 g/L 

L-Leucine, 0.4 g/L L-Lysine, 0.4 g/L L-Methionine, 2.0 g/L L-Proline, 0.4 g/L L-Serine, 

2.0 g/L L-Threonine, 0.4 g/L L-Tyrosine, 0.4 g/L L-Valine, 0.04 g/L Spermine 
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disphosphate, 0.004 g/L Thiamine HCl, 0.002 g/L L-Calcium pantothenate, 4.0 g/L 

Glucose, 10 g/L NaCl, 0.135 g/L MgSO4•7H2O, 1.0 g/L KH2PO4, 1.0 g/L K2HPO4, 1.92 

g/L Sodium Citrate, 0.002 g/L FeSO4•7H2O, and pH adjusted to 6.2. Agar was added at a 

concentration of 20 g/L to prepare solid media for petri plates. All work was conducted 

using aseptic technique in an approved BSL2 laboratory following approved protocols.  

2. Bacterial Cultures 

2.1. Multifiber Differentiation and Environmental Effectors 

Individual bacterial colonies isolated from TSBC agar plates were used to 

inoculate 2 mL of TSBC in a 15mL Falcon conical tube. The tube was capped with a 

foam plug and the liquid cultures were incubated for either 8 or 18 hours at 37 °C, 250 

rpm. A sterile serological pipette was used to dispense 250 μL aliquots of the culture into 

amber autosampler vials (VWR Screw Top Vial Amber Glass 15 x 45mm; 4 mL), and the 

vials were stored at -80 °C until the sample was analyzed.  

Alternatively, cells from an overnight TSBC culture were harvested by 

centrifugation (4 °C, 3800 x g, 15 min), washed three times with 1 mL of MCDM (cells 

were collected by centrifugation after each wash), then resuspended to an OD600 = 1.0 in 

MCDM or MCDM supplemented with 25 mM MgCl2, 12.5 mM NiCl2, or 6.25 mM 

NaCl. Cultures were then incubated in a foam capped 125 mL Erlenmeyer flask at 37 °C, 

250 rpm, for 8 hours, dispensed in 250 μL aliquots into amber autosampler vials, snap 

frozen in liquid nitrogen, and stored at -80 °C until analyzed. 
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2.2. Preparation of competent cells 

Yersinia pestis competent cells were prepared as previously described with few 

modifications
88

. Overnight liquid cultures of Yersinia pestis A1122 were grown at 28°C 

in Tryptic Soy Broth with 0.1% cysteine (TSB-C) at 250 rpm. A healthy overnight 

culture was diluted 1:50 in 50 mL fresh TSB-C and allowed to grow to an OD600 of 0.5 

(approximately 3 hours). Cells were harvested by centrifugation at 4000 x g for 10 min at 

4°C, then washed once with sterile MilliQ water, and once with sterile Yersinia 

transformation buffer (15% glycerol, 272 mM sucrose). Cells were resuspended in 400 

µL of transformation buffer, aliquoted, snap frozen, and stored at -80 °C until used.  

Francisella tularensis competent cells were prepared as previously described with 

some modification
89

. Liquid cultures of Francisella tularensis subsp. tularensis NIH B-

38 were grown in modified Muller-Hinton media (mMH; 0.025% ferric pyrophosphate, 1 

mM CaCl2, 1 mM MgCl2, 0.1% glucose, and 2% Isovitalex supplement) at 200 rpm for 3 

days. A healthy culture was diluted 1:10 in 80 mL fresh mMH and allowed to grow to an 

OD600 of 0.6 (approximately 3 days). Cells were harvested by centrifugation at 4000 x g 

for 10 min at 4°C, then washed twice with sterile Francisella transformation buffer (500 

mM sucrose). Cells were resuspended in 400 µL of transformation buffer, and used fresh 

the same day for transformation.  

2.3. Transformation of microbes 

Transformation of Yersinia pestis was conducted essentially as described 

previously
88

. 40 µL of competent cells were incubated with 5 uL of pHSG298 (~100 

ng/µL) over ice for 1 min then transferred an ice-cold 0.2 cm electroporation cuvette. 
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Cells were electroporated with a single electric pulse (25 µF, 200 Ω) at a field strength of 

12.5 kV/cm. Transformed cells were added to 1 mL of SOC medium and incubated at 

28°C, 250 rpm for 2 hours. Transformants were identified by plating on TSB-C agar 

plates with 50 µg/mL kanamycin; transformant colonies were visible within 24 hours.  

Transformation of Francisella tularensis was conducted as described previously, 

with some modification
89

. 200 µL of competent cells were incubated at room temperature 

for 10 minutes with 2 uL of pFNLTP1 (~100 ng/µL) then transferred to an ice-cold 0.2 

cm electroporation cuvette. Cells were electroporated with a single electric pulse (25 µF, 

600 Ω) at a field strength of 12.5 kV/cm. Transformed cells were added to 1 mL of 

mMH broth and incubated at 37°C, 250 rpm for 6 hours. Transformants were identified 

by plating on mMH agar plates with 10 µg/mL kanamycin; transformant colonies were 

visible within 4 days.  

2.4. Differentiation of Wild type and Kanamycin Resistance 

Individual bacterial colonies isolated from TSBC agar plates for Y. pestis wild 

type or TSBC + 50 µg/mL kanamycin agar plates for Y. pestis kanamycin resistance were 

used to inoculate overnight seed cultures using 10 mL of TSBC (or 10 mL of TSBC + 50 

µg/mL kanamycin) in a 25mL Falcon conical tube. For F. tularensis, individual bacterial 

colonies isolated from MMH agar plates for wild type or MMH + 10 µg/mL kanamycin 

agar plates for kanamycin resistance were used to inoculate overnight seed cultures using 

10 mL of MMH (or 10 mL of MMH + 10 µg/mL kanamycin) in a 25mL Falcon conical 

tube.  The tube was capped with a loose lid and tapped to prevent the lid from falling off. 

The liquid cultures were incubated for 18 hours at 37 °C, 250 rpm. The next morning, 
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OD600 was measured and production flasks were generated using 500 µL of an OD600 = 1 

culture to 25 mL of fresh TSBC (or MMH) media in a 125 mL Erlenmeyer flasks. For the 

resistance strains, 50 µg/mL (or 10 µg/mL) of kanamycin was added to the culture. The 

liquid production flasks were incubated for 24 hours at 24 °C, 200 rpm. For the simulti-

hSPME extraction, the simulti-hSPME device was placed over top the culture. For all 

other extractions, 250 µL aliquots of the production flask and corresponding media were 

dispensed into amber autosampler vials, snap frozen in liquid nitrogen, and stored at -80 

°C until analyzed. 

3. mVOC Profiling 

3.1. Multifiber Differentiation and Environmental Effectors 

All samples were analyzed by hSPME. Sample vials were preheated to 37 °C for 

30 minutes then a SPME fiber assembly was manually positioned into the headspace 

above the culture and the fiber exposed to the volatiles for 60 minutes (the sample vial 

temperature was held at 37 
o
C for the duration of the exposure). The fiber assembly was 

then placed into the GC inlet for thermal desorption of the analytes. The following SPME 

fibers (Supelco, Bellefonte, PA) were used in the investigation: DVB-PDMS 65 μm, PA 

85 μm, CAR-PDMS 75 μm, CAR-PDMS 85 μm with stableflex, PDMS 100 μm, PDMS 

7 μm, PEG 60 μm, and CAR-DVB-PDMS 50/30 μm with stableflex. All fibers were 

preconditioned before use, as per the manufacturer’s instructions (Table 1). After every 

sample analysis, the fiber was reanalyzed (without exposure to a sample) to ensure 

complete desorption of analytes. All analyses were performed in triplicate.  
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Table 1. SPME Fiber Operational Conditions. 

Fiber Inlet Temperature (°C) Precondition Time (min) 

CAR/PDMS 75 μm 300 60 

PDMS/DVB 65 μm 250 30 

PDMS 7 μm 320 60 

DVB/CAR/PDMS 50/30μm Stableflex 270 60 

CAR/PDMS 85 μm Stableflex 300 60 

CW (PEG) 60 μm 240 30 

PDMS 100 μm 250 30 

PA 85 μm 280 60 

 

 

 

3.2. Differentiation of Wild type and Kanamycin Resistance 

All samples were analyzed by hSPME. For the 60 minutes extraction trials, 

sample vials were preheated to 37 °C for 30 minutes then a SPME fiber assembly was 

manually positioned into the headspace above the culture and the fiber exposed to the 

volatiles for 60 minutes (the sample vial temperature was held at 37 
o
C for the duration of 

the exposure). The fiber assembly was then placed into the GC inlet for thermal 

desorption of the analytes. The following SPME fibers (Supelco, Bellefonte, PA) were 

used in the investigation CAR/PDMS 85 µm with stableflex, 100 µm PDMS, 

PDMS/DVB 65 µm, PA 85 µm, DVB/CAR/PDMS 50/30 µm, PEG 60 µm. All fibers 

were preconditioned before use, as per the manufacturer’s instructions but for 15 minutes 

each. Prior to the initial sample analysis, the fiber was analyzed (without exposure to a 

sample) to ensure complete desorption of analytes. The analysis was performed in 

triplicate.  

For the 15 minutes extraction trials, sample vials were preheated to 80 °C for 15 

minutes (to compensate for the shorter incubation and extraction duration) then a SPME 

fiber assembly was manually positioned into the headspace above the culture and the 



82 

 

fiber exposed to the volatiles for 15 minutes (the sample vial temperature was held at 80 

o
C for the duration of the exposure). The fiber assembly was then placed into the GC inlet 

for thermal desorption of the analytes. The following SPME fibers (Supelco, Bellefonte, 

PA) were used in the investigation CAR/PDMS 85 µm with stableflex, 100 µm PDMS, 

PDMS/DVB 65 µm, PA 85 µm, DVB/CAR/PDMS 50/30 µm, PEG 60 µm. All fibers 

were preconditioned before use, as per the manufacturer’s instructions but for 15 minutes 

each. Prior to the initial sample analysis, the fiber was analyzed (without exposure to a 

sample) to ensure complete desorption of analytes.  

For the simulti-hSPME trials, the sample flasks were preheated to 37 °C for 30 

minutes then simulti-hSPME device was manually positioned on top of the flask. The 

SPME fibers were inserted into the device and exposed to the volatiles in the headspace 

above the culture 30 minutes (the sample vial temperature was held at 37 
o
C for the 

duration of the exposure). The fiber assembly was then placed into the GC inlet for 

thermal desorption of the analytes. The following SPME fibers (Supelco, Bellefonte, PA) 

were used in the investigation CAR/PDMS 85 µm with stableflex, 100 µm PDMS, 

PDMS/DVB 65 µm, PA 85 µm, DVB/CAR/PDMS 50/30 µm, PEG 60 µm. All fibers 

were preconditioned before use, as per the manufacturer’s instructions but for 15 minutes 

each. Prior to the initial sample analysis, the fiber was analyzed (without exposure to a 

sample) to ensure complete desorption of analytes. The analysis was performed in 

triplicate. 
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4. Instruments 

4.1. Multifiber Differentiation and Environmental Effectors 

Samples were analyzed using an Agilent 6890 Plus GC-FID equipped with a 

DB5-MS capillary column (Agilent, Palo Alto, CA), 15 m in length, 0.25 mm ID, and 

0.25 μm film thickness, and a 0.75 mm ID SPME injection port liner operated in splitless 

mode at varying inlet temperatures (Table 1). Helium carrier gas was used at a flow rate 

of 1.5 mL/min and the GC oven was held at an initial temperature of 35 °C for 1 min, 

ramped to 80 °C at 3 °C/min, then to 120 °C at 10 °C/min, to 260 °C at 40 °C/min and 

held for 2 min, and finally to 280 °C at 40 °C/min. The final temperature of 280 °C was 

held for 2.5 min. The total run time for each analysis was 30 min.  

4.2. Differentiation of Wild type and Kanamycin Resistance 

For the GC-FID trials using the 60 minutes extraction duration, the samples were 

analyzed using an Agilent 6890 Plus GC-FID equipped with a RXI-5Sil MS capillary 

column (Restek, Bellefonte, PA), 30 m in length, 0.25 mm ID, and 0.5 μm film thickness, 

and a 0.75 mm ID SPME injection port liner operated in splitless mode at varying inlet 

temperatures (Table 1). Helium carrier gas was used at a flow rate of 1.5 mL/min and the 

GC oven was held at an initial temperature of 35°C for 1 min, ramped to 80°C at 

3°C/min, then to 120°C at 10°C/min, to 260 °C at 40°C/min and held for 2 min, and 

finally to 280°C at 40°C/min. The final temperature of 280°C was held for 2.5 min. The 

total run time for each analysis was 30 min.  
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For the GC-FID trials using the 15 minutes extraction duration, samples were 

analyzed using an Agilent 6890 Plus GC-FID equipped with a RXI-5Sil MS capillary 

column (Restek, Bellefonte, PA), 30 m in length, 0.25 mm ID, and 0.5 μm film thickness, 

and a 0.75 mm ID SPME injection port liner operated in splitless mode at varying inlet 

temperatures (Table 1). Helium carrier gas was used at a flow rate of 1.5 mL/min and the 

GC oven was held at an initial temperature of 35°C for 1 min, ramped to 50°C at 

3°C/min, then to 300°C at 27.5°C/min. The total run time for each analysis was 15.09 

min.  

For the GC-MS trials using the 60 minutes extraction duration, the samples were 

analyzed using an Agilent 5977B MSD equipped with a Agilent HP-5ms ultra inert 

column, 30 m in length, 0.25 mm ID, and 0.25 μm film thickness, and a 35 µL ultra inert 

SPME injection port liner operated in splitless mode at varying inlet temperatures (Table 

1). Helium carrier gas was used at a flow rate of 1.5 mL/min and the GC oven was held at 

an initial temperature of 35°C for 1 min, ramped to 80°C at 3°C/min, then to 120°C at 

10°C/min, to 260 °C at 40°C/min and held for 2 min, and finally to 280°C at 40°C/min. 

The final temperature of 280°C was held for 2.5 min. The total run time for each analysis 

was 30 min.  

For the GC-MS trials using the 15 minutes extraction duration, samples were 

analyzed using an Agilent 5977B MSD equipped with a Agilent HP-5ms ultra inert 

column, 30 m in length, 0.25 mm ID, and 0.25 μm film thickness, and a 35 µL ultra inert 

SPME injection port liner operated in splitless mode at varying inlet temperatures (Table 

1). Helium carrier gas was used at a flow rate of 1.5 mL/min and the GC oven was held at 
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an initial temperature of 35°C for 1 min, ramped to 50°C at 3°C/min, then to 300°C at 

27.5°C/min. The total run time for each analysis was 15.09 min.  

For the simulti-hSPME trials, the samples were analyzed using an Agilent 5977B 

MSD equipped with a Agilent HP-5ms ultra inert column, 30 m in length, 0.25 mm ID, 

and 0.25 μm film thickness, and a 35 µL ultra inert SPME injection port liner operated in 

splitless mode at 240 °C. Helium carrier gas was used at a flow rate of 1.5 mL/min and 

the GC oven was held at an initial temperature of 35°C for 1 min, ramped to 80°C at 

3°C/min, then to 120°C at 10°C/min, to 260 °C at 40°C/min and held for 2 min, and 

finally to 280°C at 40°C/min. The final temperature of 280°C was held for 2.5 min. The 

total run time for each analysis was 30 min.  

5. Data processing 

Chromatograms were converted into binary plots via SciLab utilizing a custom 

script (see Appendix 3 for the script) written in the MatLab technical computing 

language. To expedite the throughput of binary plot generation, I wrote a custom Perl 

script to automatically generate the plots once data was provided (see Appendix 4 for the 

script). Following a sample run, the peaks in the chromatogram were integrated using 

Agilent Technologies' ChemStation software. The information was exported into a .csv 

file and converted into a binary matrix (where 1 denotes the presence of a peak and 0 an 

absence at the specific retention time). The resulting matrix was graphed using white and 

black horizontal bars to denote a peak presence or absence, respectively. The binary plots 

only contain analytes attributed to the bacteria and disregard those found in the media 

alone (i.e. blank subtracted). In addition, PCA plots, generated in R statistical software, 
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were used to aid in the differentiation of mVOCs. For a more detailed description of 

PCA, see Specific Aim 1. 

 

Results and Discussion 

1. Single Fiber Differentiation of Biothreat Agents 

Little is reported in the literature concerning the mVOCs produced by the 

microorganisms F. tularensis, B. cenocepacia, and B. neotomae. To expand the current 

knowledge in the field, I sought to ascertain whether the volatiles exuded by these 

microorganisms are different and thus could be used to detect and differentiate the 

bacteria. Liquid cultures of rich media (Tryptic Soy Broth (TSB) + 0.1% cysteine) 

containing Francisella tularensis spp. novicida, Strain CG62, Burkholderia cenocepacia, 

Strain LMG 16656, or Brucella neotomae, Strain 5K33 were incubated overnight. 

Aliquots from each culture were acquired, and the mVOCs were extracted via hSPME 

and subsequently desorbed onto a GC-FID. As depicted in Figure 36, a unique mVOC 

profile was identified and attributed to each of the different bacterial cultures.  

 

 

 

 

 

 

 



87 

 

 
 

Figure 36. The mVOC fingerprints derived from liquid cultures of F. 

tularensis novicida, B. cenocepacia, and B. neotomae. 

A single fiber analysis using the CAR/PDMS 75µm fiber was performed. 

Figure A depicts the resulting GC-FID chromatograms for the three 

bacteria (F. tularensis, B. cenocepacia, and B. neotomae). Figure B depicts 

the corresponding binary plots derived from the chromatograms presented 

in Figure A. The bacteria are identified along the x-axis while on the y-

axis is the retention time in minutes. The white bars represent the peak that 

occurred at that particular retention time. Each fingerprint is blank 

subtracted (media alone). As illustrated in the binary plot, the mVOC 

fingerprint clearly differentiates the three bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To evaluate variability in this analysis, replicate extractions were performed and 

the resulting mVOC fingerprints were compared. As seen in Figure 37, replicate analyses 

performed with F. tularensis novicida liquid cultures generate identical mVOC 

fingerprints. 
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Figure 37. Reproducibility of mVOC analysis. 

The three binary plots reflect three replicate extractions performed using three 

different cultures of F. tularensis novicida. The extractions were performed with a 

CAR/PDMS 85µm fiber. The replicate extractions (1, 2, and 3) are indicated along 

the x axis, while the y-axis indicates the retention time (minutes). The binary plots 

derived from each culture are identical.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Multifiber hSPME 

Although the single CAR/PDMS fiber was successfully used to differentiate F. 

tularensis, B. cenocepacia, and B. neotomae, a multifiber analysis will extract a diverse 

array of mVOC metabolites (like dissolves like), further enabling the resolving power of 

an mVOC analysis. An 8-fiber analysis was next performed for each of the three 

microbes under investigation. Overnight liquid cultures of bacteria were dispensed into 

aliquots, and the aliquots were singly extracted via hSPME, each extraction performed 

using one of the 8 commercially available SPME fibers. The extracted analytes were 

analyzed via GC-FID, and the resulting chromatograms were converted into binary plots 
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Figure 38. An 8 fiber hSPME analysis of the mVOC metabolome emanating from liquid cultures of F. 

tularensis novicida, B. cenocepacia, and B. neotomae. 

An 8 fiber hSPME analysis of mVOCs from F. tularensis novicida (A), B. cenocepacia (B), and B. neotomae (C) 

liquid cultures (TSB + 0.1% cysteine). Binary plots were derived from chromatograms obtained using the 

following SPME fibers: A: CAR/PDMS 75 μm, B: PDMS/DVB 65 μm, C: PDMS 7 μm, D: DVB/CAR/PDMS 

50/30μm Stableflex, E: CAR/PDMS 85 μm Stableflex, F: CW (PEG) 60 μm, G: PDMS 100 μm, H: PA 85 μm. A 

compilation plot is generated by combining all of the plots into a single binary plot. The compilation plot shown in 

A, B, and C are shown juxtaposed in panel D, clearly differentiating the three bacteria from one another. In the 

binary plots, the y-axis is the retention time (min) for the corresponding peaks and the white bars represent the 

chromatographic peaks.  

then compiled into one composite fingerprint (Figure 38). As seen in the Figure, these 

composite mVOC fingerprints clearly differentiate these bacteria. 
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3. Environmental Effectors 

Environmental effectors such as metal salts are well known to influence the 

growth and metabolism of microbes, often through the regulation of gene expression
90,91

. 

Hence, I sought to ascertain if select metal salts might influence the derived mVOC 

fingerprints obtained from the three bacteria under investigation. As shown in Figure 39, 

these metal salts can have an impact on F. tularensis novicida, B. cenocepacia, and/or B. 

neotomae growth in liquid cultures. With F. tularensis novicida, the addition of either 25 

mM MgCl2 or 6.25 mM NaCl has little effect on the overall cell density of an overnight 

culture, compared to MCDM alone, whereas the addition of 12.5 mM NiCl2 has a drastic 

influence, as it significantly inhibits the growth of the bacteria. On the other hand, the 

MgCl2, NaCl, and NiCl2 have little influence on B. cenocepacia overnight growth. For B. 

neotomae, the addition of MgCl2 significantly inhibited growth, but not to the extent 

demonstrated by NiCl2. Somewhat surprisingly, the addition of NaCl to the B. neotomae 

culture slightly increases the cell density of an overnight culture. Collectively, from these 

growth profiles, conditions were selected that permit the growth of the bacteria and will 

enable an evaluation of whether or not the added effector will have an influence on the 

derived mVOC fingerprint.   
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Figure 39. Effectors of Bacterial Growth in Minimal Media. 
The indicated bacteria were cultured in minimal liquid media (MCDM) supplemented with various selected 

effectors (25mM MgCl2, 6.25mM NaCl, and 12.5mM NiCl2). Cultures were monitored for growth (OD600) every 

20 minutes for 16 hours at 37°C. See text for further discussion. 

 

 

 

To evaluate the effects of the salt addition on the metabolic profile, overnight seed 

cultures were used to inoculate the amended minimal media, and the bacteria were then 

incubated in the media with shaking at 37
o
C for 8 hours. The mVOCs were then extracted 

from the cultures via multifiber hSPME and subsequently analyzed by GC-FID. The 

resulting fingerprints are presented in Figure 40.  
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Figure 40. Binary plots exhibiting the mVOC profile obtained for F. tularensis novicida, B. cenocepacia, and 

B. neotomae cultured in MCDM with and without the addition of various salts. 

For each of the three indicated bacteria under investigation, the corresponding mVOC fingerprint derived from 

minimal media (MCDM) is shown in panel A, from minimal media supplemented with 25 mM MgCl2 is shown in 

panel B, from minimal media supplemented with 6.25 mM NaCl is shown in panel C, from minimal media 

supplemented with 12.5 mM NiCl2 is shown in panel D. In all media compositions tested, the mVOC fingerprints 

uniquely differentiate the three bacteria. Panels E, F, and G illustrate how the media composition alters the derived 

mVOC fingerprint for F. tularensis novicida, B. cenocepacia, and B. neotomae, respectively.  
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As seen in Figure 40, regardless of the media composition, the mVOC 

fingerprints generated all uniquely differentiate the three bacteria. Also seen in the Figure 

is the manner in which the mVOC fingerprint changes with media composition. When 

compared to the MCDM binary plot (Figure 40A), the mVOC metabolic profile obtained 

for F. tularensis novicida exhibited different patterns for each of the salt conditions. This 

alteration in the microbial fingerprint was also true for B. cenocepacia, and B. neotomae. 

In addition, while the growth of F. tularensis novicida and B. neotomae was significantly 

inhibited in NiCl2, the bacteria were still alive and exuding volatile metabolites, 

producing a unique mVOC fingerprint. Overall, while the addition of various salts had a 

profound effect on the mVOC metabolome, it is still possible to differentiate the 

microbes in each environmental condition. 

4. Differentiation of Wildtype and Antibiotic Resistant Bacteria 

Following the success of differentiating the three bacteria (F. tularensis novicida, 

B. cenocepacia, and B. neotomae), I next sought to determine if multifiber hSPME can 

differentiate a kanamycin sensitive (wildtype) and engineered kanamycin resistant strain 

of Yersinia pestis. A 500 µL aliquot of a 10 mL overnight liquid seed culture of each 

strain (cultured in TSB + 0.1% Cys media, supplemented with 50 µg/mL kanamycin 

where appropriate) was adjusted with sterile media to an OD600 = 1.0 and used to 

inoculate 25 mL media in a 125 mL shake flask (the Kan
R
 strain was cultured in media 

containing 50 µg/mL kanamycin). The flasks were incubated at 250 rpm, 30 
o
C, for 24 

hours, then 250 µL aliquots from each culture were dispensed into vials, stored at -80 °C, 

then analyzed by multifiber hSPME. Each extraction proceeded for 60 minutes, using one 
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Figure 41. Differentiation of the mVOC metabolome of Y. pestis wild type and kanamycin resistant 

strains.  

For each bacterial strain, a 6 fiber analysis was performed using an extraction duration of 60 minutes. 

Figure A depicts the composite binary plot results from all 6 fibers and demonstrates the differentiation in 

the extracted mVOC metabolome of the two strains. The samples are indicated along the x-axis, while 

retention time (min) is indicated along the y-axis. Figure B is a companion PCA plot illustrating the 

metabolic variations that exist within the mVOC metabolome. Each sphere in the plot reflects the 

metabolome of the bacterial sample, with Y. pestis wild type colored green, and the kanamycin resistant 

strain of Y. pestis colored purple.  

of 6 commercially available SPME fibers (CAR/PDMS 85 µm with stableflex, 100 µm 

PDMS, PDMS/DVB 65 µm, PA 85 µm, DVB/CAR/PDMS 50/30 µm, PEG 60 µm). The 

extracted analytes were analyzed via GC-FID, and the resulting chromatograms were 

converted into binary plots and compiled into a composite fingerprint (Figure 41). As 

seen in the Figure, the composite mVOC fingerprints and the companion PCA plot 

clearly differentiate the bacterial strains.  

 

 

 

 

 

 

To determine if differentiation could still be achieved using a shorter extraction 

duration, I repeated the analysis using an extraction time of 15 minutes (Figure 42). 
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Figure 42. Differentiation of the mVOC metabolome of Y. pestis wild type and kanamycin resistant 

strains using an extraction duration of 15 minutes. 

For each bacterial strain, a 6 fiber analysis was performed using an extraction duration of 15 minutes. Figure 

A depicts the composite binary plot from all 6 fibers and demonstrates the differentiation in the extracted 

mVOC metabolome of the two strains. The samples are indicated along the x-axis, while retention time (min) 

is indicated along the y-axis. Figure B is a companion PCA plot illustrating the metabolic variations that exist 

within the mVOC metabolome. Each sphere in the plot reflects the metabolome of the bacterial sample, with 

Y. pestis wild type colored green and the kanamycin resistant Y. pestis strain colored purple. Clearly an 

extraction duration of 15 minutes is sufficient for differentiating the two bacterial strains. 

Again, the composite mVOC fingerprints and companion PCA plot clearly differentiate 

the Y. pestis wild type and kanamycin resistant strains. While the binary plot for the 

shorter extraction exhibits a greater number of peaks, this is a reflection of the increase in 

the pre-incubation temperature from 37°C to 80°C to ensure enough volatiles were 

present. 

 

 

 

 

 

 

Since the GC-FID based analysis successfully differentiates the two strains of 

bacteria, I elected to determine if the GC-MS could do so as well. To this end, I repeated 
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the procedure using a 60 minute then 15 minute extraction duration. As shown in Figure 

43, with either extraction duration, the composite mVOC fingerprints are able to 

distinguish the two bacterial strains. In addition, the PCA plots demonstrate not only how 

the two bacterial strains are differentiated, but how they relate to the VOCs associated 

with the media alone. Therefore, like the GC-FID, mVOC fingerprints generated via the 

GC-MS can also be used to differentiate these strains of bacteria.  
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Figure 43. Differentiation of the mVOC metabolome of Y. pestis wild type and kanamycin resistant strains 

using a GC-MS and an extraction duration of either 60 minutes or 15 minutes. 

For each bacterial strain, a 6 fiber analysis was performed using an extraction duration of 60 minutes (A and B) or 

15 minutes (C or D). Figure A and C depicts the composite binary plots from all 6 fibers and illustrates the 

differences in the extracted mVOC metabolome of the two strains using extraction durations of either 60 minutes 

(A) or 15 minutes (C). The samples are indicated along the x-axis, while retention time (min) is indicated along 

the y-axis. Figure B and D are corresponding PCA plots illustrating the metabolic variations that exist within the 

mVOC metabolome using an extraction duration of 60 minutes or 15 minutes, respectively. Each sphere in the 

plot reflects the metabolome of the bacteria or blank media sample, with TSB + 0.1% cys colored orange, TSB + 

0.1% cys + 50 µg/mL kanamycin colored blue, Y. pestis wild type colored green, and kanamycin resistant Y. pestis 

colored purple. A multifiber hSPME analysis of mVOCs using the GC-MS and an extraction duration of either 60 

or 15 minutes readily differentiates the two bacterial strains. 

 

 

 

In light of the success with Y. pestis, I next performed the analysis with F. 

tularensis. The wildtype strain (NIH B38) and engineered kanamycin resistant strain 

were each cultured and analyzed as described above for Y. pestis. A multifiber hSPME 
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Figure 44. Differentiation of the mVOC metabolome of F. tularensis wild type and kanamycin 

resistant strains using a GC-FID or GC-MS with an extraction duration of 15 minutes. 

For each bacterial strain, a 6 fiber analysis was performed using an extraction duration of 15 minutes. 

Figures A and B depicts the composite binary plots from all 6 fibers and the companion PCA plot using the 

GC-FID. F. tularensis with and without kanamycin resistance are clearly differentiated in each plot. Figures 

C and D illustrate the composite binary plot from all 6 fibers and the companion PCA plot using the GC-

MS. The GC-MS can also differentiate F. tularensis with and without kanamycin resistance. For Figures A 

and C, the samples are indicated along the x-axis, while retention time (min) is indicated along the y-axis. 

Each sphere in the PCA plot reflects the metabolome of the bacteria or a blank media sample, with mMH 

colored orange, mMH+ 10 µg/mL kanamycin colored blue, F. tularensis wild type colored green, and 

kanamycin resistant F. tularensis colored purple.  

analysis was performed with the 6 commercially available fibers, a 15 minute extraction 

duration, and either the GC-FID or GC-MS for analysis (Figure 44).  
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Figure 45. PCA plot demonstrating the difference in mVOC metabolome derived from liquid cultures of 

wild type and kanamycin resistant strains of Y. pestis. 

For each bacterial strain, a 6 fiber analysis was performed in the simulti-hSPME device using an extraction 

duration of 30 minutes. The segregation of the samples along PC1 reflects the metabolic variation between the 

mVOC metabolomes for the two strains. The analysis was performed with three different aliquots of each bacterial 

culture. Each sphere in the plot reflects the metabolome of the bacterial sample, with Y. pestis wild type colored 

green and kanamycin resistant Y. pestis colored purple. The contribution of PC2 to variation among the samples is 

small (0.18%), yet accounts for the difference among the replicate runs for each strain. 

Concomitant with performing the above multifiber analysis, the Couch lab 

developed the simulti-hSPME device (Figure 31). To determine if the device could be 

used to successfully differentiate the wildtype and kanamycin resistant strains of Y. 

pestis, a 6 fiber simulti-hSPME was performed with the GC-MS, using a 30 min mVOC 

extraction duration. As shown in Figure 45, the resulting PCA illustrates that the two 

strains are well resolved from each other, based upon their mVOC composition.  
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Conclusions and Future Applications 

By utilizing hSPME, a VOC metabolomic fingerprint was developed for liquid 

cultures of the bacteria F. tularensis novicida, B. cenocepacia, and B. neotomae. While I 

was able to successfully differentiate between the three different bacteria, I also 

determined that the environment/media in which the bacteria are cultured has a 

significant impact on the associated mVOC metabolome. In addition, I was able to 

successfully differentiate wild type and kanamycin resistant strains of both Y. pestis and 

F. tularensis. By incorporating the simulti-hSPME device, the overall analysis time was 

reduced (due to the ability to perform 6 extractions simultaneously) while the bacterial 

strains were still readily differentiated. 

One future application of this work is the detection of infectious disease in 

exhaled breath. There are several reports in the literature on performing breath 

analysis
29,30,92–95

. In general, there are two distinct ways to use SPME to preconcentrate 

and extract breath-derived VOCs: namely, active and passive approaches
96

. In an active 

approach, the extraction is performed as the sample is being collected (i.e. in-line); while 

in a passive approach, the sample is collected in a bag or a vial, then the exhaled 

metabolites are extracted (Figure 46). It is noteworthy that the Couch lab has begun 

preliminary trials using both of these approaches.  
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Figure 46. Passive approach to SPME using 

breath collection bags. 

The patient provides a breath sample into the 

bag. Following collection, the bag is sealed and 

extraction via a SPME fiber can be performed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An Active Approach to Breath Analysis 

Along these lines, I took an initial foray into an active approach to breath analysis. 

While not a defined objective of Specific Aim 2.1, I report here my preliminary results. 

To address the feasibility of performing a simulti-hSPME fiber extraction during 

breath collection, I first used a nose-only exposure chamber to extract the breath-derived 

VOCs produced by healthy and influenza H3N2 infected mice (Figure 47).  
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Figure 47. Schematic illustrating the active extraction 

process of breath VOCs. 

In this approach, the mice were restrained in a funnel which 

was connected to the exposure chamber. Air is supplied to 

the mice and the mixture of supplied air and exhaled breath 

travels through the chamber and into the simulti-hSPME 

device for metabolite extraction via the SPME fibers. The 

air then travel out through a HEPA filter and into the 

environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chamber, the mice are restrained in a plastic funnel with their nose exposed 

to the chamber. Air is supplied through the chamber to the mice as they breathe normally. 

The supplied air and breath travel through the chamber and are directed into the simulti-

hSPME extraction device containing the SPME fibers for extraction. Due to the use of 

live animals and the breath collection procedure, I used an extraction duration of 30 

minutes (and no longer). While one trial demonstrated differentiation amongst the two 

cohorts (Figure 48), the second attempt did not. While the purpose of my analysis was to 

provide proof of principle (which it did), further investigation is clearly required to 

elucidate the cause of this variation. 
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Figure 48. Breath Analysis of Mice Infected with the Flu Virus. 

The chromatogram obtained in Figure A demonstrates the differences obtained 

between infected mice, uninfected mice, and the blank device. The binary plot in B 

indicates how the infected mice are differentiated from the healthy mice. 
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SPECIFIC AIM 2.2: ALTERATIONS TO THE HUMAN FECAL METABOLOME 

DUE TO ALCOHOL CONSUMPTION. 

Objective Use metabolomics as an electronic nose to explore the VOC profile of 

fecal material, collected at home or via an endoscopy procedure, to potentially identify 

biomarkers of chronic alcohol consumption.  

This research performed in this specific aim resulted in a co-authorship in PLOS One
32

.  

 

Paper I: Alcohol Induced Alterations to the Human Fecal VOC Metabolome 

Couch RD, Dailey A, Zaidi F, Navarro K, Forsyth CB, et al. PLoS One. 2015; 10 

(3):e0119362. doi: 10.1371/journal.pone.0119362 

Synopsis 

A comparative analysis of healthy versus alcoholic participants demonstrated the 

profound affect alcohol has on the fecal VOC metabolome. Irrespective of the collection 

method (home or endoscopy) we identified numerous metabolic alterations within the 

alcoholic cohort. Some of the most notable alterations include an increase in oxidative 

stress, decrease in short chain fatty acids responsible for maintaining epithelial health, 

and decrease in the attenuation of hepatic steatosis.  

Attributions and Contributions 

Reproduced with permission from the Public Library of Science and per the 

Creative Commons License agreement
97

. I was responsible for performing the 

experiments, analyzing the data, and generating Figures 3 through 10 and Table 2 in the 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119362
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manuscript. The published manuscript and all supplementary information is presented in 

Appendix 5 and 6 (per Mason guidelines, embedded papers must be placed in the 

Appendix of the thesis). 
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SPECIFIC AIM 2.3: TISSUE-RELATED EFFECTS OF A HIGH FAT DIET AND 

PROBIOTIC SUPPLEMENTATION IN PIGS 

Objective: Use metabolomics to evaluate if a high fat diet and/or probiotic 

supplementation have an effect on the pig tissue metabolome.  

Introduction 

Probiotics are live microorganisms which resemble/reflect those found in the 

natural gut flora
98,99

. Probiotics, particularly from the genera Bifidobacterium and 

Lactobacillus, have been associated with a number of health effects including 

competitive exclusion of food pathogens, stimulation of immune function, lowering gas 

distension, aiding in food digestion and adsorption, synthesis of vitamins, lowering of 

cholesterol levels,
100–106

 and may aid in the curing of gastrointestinal diseases and 

autoimmune disorders
98,107–110

. While few studies have yet addressed the potential of 

probiotics for the management of obesity, a high-fat diet is known to induce diabetes and 

endotoxemia in mice, and negatively correlates with the level of Bifidobacterium spp. in 

the mouse intestine
111

. By supplementing these mice with the prebiotic oligofructose, 

enhanced growth of intestinal Bifidobacterium occurs with accompanying normalization 

of the inflammatory state (decreased endotoxemia, decreased plasma and adipose tissue 

pro-inflammatory cytokines), suggesting that Bifidobacterium in the gut microbiota may 

prevent the deleterious effects of high-fat diet-induced metabolic disease. Furthermore, a 
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Figure 49. Ossabaw pigs are the model 

organism used in this probiotic 

supplementation study. 

Ossabaw pigs serve as models of juvenile 

obesity106. 

selected strain of L. rhamnossus has also been reported to protect mice from diet-induced 

obesity, likely due to the production of conjugated linoleic acid by the bacteria
112

. Even 

with the increasing accumulation of clinical data on the benefits of pre- and probiotics, 

the mechanism of modulation still remains largely uncharacterized, especially with 

respect to the host metabolome. Hence, to further explore the effect of a high fat diet and 

the consequences of probiotic supplementation, in collaboration with Drs. Gloria Solano-

Aguilar and Joe Urban at the United States Department of Agriculture (USDA) and Dr. 

Kati Hanhineva at the University of Eastern Finland, Specific Aim 2.3 examines pig 

tissue metabolomes through non-targeted metabolomic profiling.  

Given their anatomical and metabolic similarities to humans, Ossabaw pigs 

(Figure 49) were selected for use as a model organism in this study.  
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In a previous metabolomics investigation, it was shown that a high fat diet alters 

the metabolomic composition of select Ossabaw pig tissues, relative to tissues in pigs fed 

a nutritionally balanced diet
113

. In light of this, my investigation sought to determine if 

dietary supplementation with probiotics also has a measurable effect on the host tissue 

metabolism. To accomplish this, I specifically compared metabolomic profiles from 

select organ tissues obtained from pigs fed either a nutritionally balanced (basal) or 

obesogenic (high fat) diet, with or without probiotic supplementation (Figure 50).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 50. Schematic depicting the four distinct dietary cohorts 

of pigs used in this investigation. 

For this study, twenty pigs were equally distributed among the four 

indicated cohorts (5 pigs in each cohort). The first two cohorts 

contain pigs fed a basal diet, with pigs in cohort 2 also receiving a 

probiotic supplement (the supplement is depicted as an orange and 

white colored capsule in the illustration). The second two cohorts 

(3 & 4) contain pigs fed a high fat diet, with pigs in cohort 4 

receiving a probiotic supplement. 
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Twenty pigs were equally distributed among four cohorts (basal, basal+probiotic, 

high fat, and high fat+probiotic), and after 38 weeks of a cohort-specific diet, the pigs 

were euthanized, tissue samples were collected, snap frozen and stored at -80 
o
C, and a 

non-targeted LC−QToF based metabolite profiling of cortex, heart, kidney, liver, muscle, 

and pancreas tissue was performed on every member of each cohort.  

Tissue Sample Processing 

To extract the metabolites from the frozen tissue samples, the samples are 

homogenized while frozen (cryo-ground using a bead beater) then extracted using a 1:1 

methanol:water solution (Figure 51). The tissue extracts are clarified by centrifugation 

and subsequently filtered to remove any residual particulates. The filtered samples are 

then analyzed by LC-QToF using both ESI positive and ESI negative modes, with a 

reversed phase (C18) or HILIC (Si) column (i.e. 4 MS chromatograms per sample are 

obtained (ESI pos+C18, ESI neg+C18, ESI pos+HILIC, ESI neg+HILIC), for a total of 

480 chromatograms generated for the six tissue types (not including blanks, quality 

control samples, and MS/MS chromatograms)). By using the two ionization modes (ESI 

positive and negative) in conjunction with two types of chromatography columns 

(reversed phase and HILIC), the number of metabolites identified within the extract 

increases (relative to a single ionization mode with a single column). The specific details 

used to perform this investigation are described in the Materials and Methods section, 

below.  
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Figure 51. Tissue Sample Processing for Metabolome Determination 

The frozen tissues are homogenized via a TissueLyser (bead mill). The stainless steel cylinder and ball bearing 

used to grind the samples are housed in liquid nitrogen to prevent thawing of the sample while grinding. Once 

powderized, the sample is dispensed into a microcentrifuge tube (100 mg sample), and extracted with a 1:1 

methanol:water solution. The extract is clarified by centrifugation, filtered, then placed into an autosampler vial at 

4 °C and analyzed by the LC-QToF.  

 

 

 

Materials and Methods 

For Specific Aim 2.3, the pigs were housed and the tissue samples collected at the 

USDA. The tissues were processed through the combined effort of Dr. Robin Couch and 

the laboratory of Dr. Kati Hanhineva (University of Eastern Finland). I assisted with 

performing select MS and MS/MS evaluations using the LC-QToF, and I exclusively 

performed the data analysis as described in Data Processing, Chemometrics and 

Statistical Analysis, below. 

1. Maintenance of Animals and Experimentation 

Ossabaw pigs, born at the Indiana University Ossabaw production Unit, were 

transported in kennels and delivered overnight to the USDA-Beltsville Maryland animal 
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facility according to standardized procedures of quarantine and under the approval of 

Beltsville Area Animal Care and Use Committee (protocol number 12-02). After arrival, 

the pigs were housed in an isolated building with individual pens with free access to 

water and fed a standard mini pig grower diet (5L80 Purina TestDiet, Inc, Richmond, IN) 

specifically designed for miniature swine (18.5% kcal from protein, 71.0% carbohydrates 

and 10.5% from fat)
114

. After acclimatization of pigs, all eight week old pigs were 

randomized by weight and split into four treatment groups. Pigs in cohorts I (n=5) and II 

(n=5) continued eating the mini pig grower diet 5L80 (CONV) with gradual bi-weekly 

step increases from 750 to 3600 kcal/day to adjust for nutrient requirements for growth 

during the 24 weeks of the study. A standard high fat, obesogenic pig diet was given to 

the other two treatment groups (cohort III (n=5) and IV (n=5)). This diet was prepared at 

the Beltsville feed mill by mixing a commercial diet (5KA6 Purina TestDiet, Inc, 

Richmond, IN; composed of ground corn, soybean meal, wheat, and alfalfa) with 17% 

hydrogenated soybean oil containing 56% trans fatty acids (#170, Columbus Foods, 

Chicago, IL), 2.4% corn oil, 1% cholesterol, 0.7% cholic acid, and recommended levels 

of minerals and vitamins for swine. This mixture yields 13.0% of total kcal from protein, 

57% kcal from carbohydrates, and 30% kcal from fat. The pigs on the high fat diet 

received bi-weekly step increases from 2000 to 4500 kcal/day for the duration of the 

study. Daily food rations were pre-weighed and consumption was individually monitored 

and recorded daily. Starting at week 8, all dietary groups were supplemented daily with 

an oral gavage of either the probiotic bacteria (Lactobacillus paracasei (W8); 1 x 10
10

 

cfu/day) (Ch. Hansen, Denmark) (cohorts II and IV) or an equivalent volume of a 
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probiotic-free vehicle (placebo) dissolved in 5ml of phosphate buffered saline (PBS) 

solution (cohorts I and III). Aliquots of lyophilized probiotic provided by the 

manufacturer (Ch. Hansen) were tested weekly to verify dose and viability. At the 

completion of the study, each pig was euthanized using the standard approach (500 mg 

ketamine (Ketaset, Fort Dodge Animal Health, Iowa), 80 mg tiletamine (Telazol, Fort 

Dodge Animal Health, Iowa), 80 mg zolazepam (Telazol) and 333 mg xylazine (Xyla-

Ject, Phoenix Pharmaceutical, St Joseph, MO) per 100 kg body weight) and the tissue 

samples were collected, immediately snap frozen in liquid nitrogen, and stored at -80 
o
C. 

All animal experiments and procedures were conducted in accordance with guidelines 

established and approved by the Beltsville Area Animal Care and Use Committee. 

2. Sample Preparation for Metabolite Profiling 

While using liquid nitrogen to keep the tissue samples frozen, the samples were 

ground into fine powder (TissueLyser II, Qiagen, Germantown, MD) then weighed into 

pre-chilled microcentrifuge tubes (∼100 mg aliquots). The powdered tissues were then 

extracted using a methanol:water solution (1:1), added in a ratio of 3 μL of solvent/mg 

frozen tissue. The sample was vortexed, sonicated at room temperature for 5 min, 

clarified by centrifugation (15 min at 16.1 rcf), and the supernatant was collected and 

stored on ice until analyzed.  

3. LC−QToF Analysis 

Samples were analyzed via an Agilent 1290 Infinity UPLC coupled to an Agilent 

6450 Accurate Mass QToF running in ESI positive and negative modes. Analyte 
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separation was performed using two different chromatographic systems in order to gain 

wide coverage of metabolites (Amide HILIC column (BEH, Waters) and a C18 reversed 

phase column). A quality control (QC) sample was prepared by pooling a small aliquot of 

each sample to represent the total metabolite composition present in the analysis. This 

QC sample was injected after every 12 randomized analytical samples to serve as to 

monitor for potential problems in the chromatography and/or in ion response. 

4. Data Processing, Chemometrics and Statistical Analysis 

Molecular features were identified in the raw chromatograms using Agilent 

Technologies' MassHunter Qualitative Analysis software (ver B.06.00). The molecular 

features and their relative abundance (peak height) were then tabulated using Agilent 

Technologies' Mass Profiler Professional software (ver 12.6), resulting in a metabolomics 

data set containing the molecular features identified by HILIC ESI positive, HILIC ESI 

negative, reverse phase ESI positive, and reverse phase ESI negative modes. Metabolites 

present in ≤19% of the total number of samples processed were treated as one-offs and 

were removed from the matrix. The score value for each metabolite was calculated, and 

the data was filtered to include only those which were present in at least 4 of 5 pigs for 

any 1 cohort (Equation 1). The samples in the metabolite matrix were organized by their 

appropriate cohort (a nutritionally balanced basal cohort, a basal cohort supplemented 

with probiotics, a high fat obesogenic cohort, and a high fat cohort supplemented with 

probiotics) and the outlier peak area values were identified in each cohort using an 

analysis of (mean-median)/median for each analyte and a cutoff value ≥1.5 (Equation 2). 

Outliers were replaced with the median value for that metabolite within the cohort. 
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Metabolite peak height values were then standardized across the two cohorts by 

conversion to Z-scores (Equation 3). A principal component analysis was then performed 

using the standardized metabolite matrices and the R statistical package. XLSTAT was 

used to perform two-sample T tests between cohorts for each metabolite and Benjamini-

Hochberg critical values were calculated (Equation 6) to adjust for the false discovery 

rate. Pearson’s correlation coefficients were calculated using Microsoft Excel and a 

correlation network was created using the R statistical package. Fold change calculations 

were performed using Microsoft Excel. Finally, for the molecular features of interest, 

Extracted Ion Chromatograms (EIC) were generated using Agilent's Mass Hunter 

Qualitative Analysis software. Features were deemed significant when they appear as a 

single symmetrical peak at the expected retention time (see Appendix 7). Only significant 

molecular features were considered in the assessment of the effects of probiotic 

supplementation. 

Results and Discussion 

1. Data Preparation 

A total of 480 chromatograms were generated (via LC-QToF) from the isolated 

pig tissue samples. Molecular features were identified in the chromatograms using 

Agilent Technologies' MassHunter Qualitative Analysis software (see Specific Aim 1: 

Stage 1 of the Metabolomics Pipeline for more information). Following the identification 

of molecular features, an all-inclusive molecular feature data set was then compiled. This 

data set comprises all of the tissue metabolomes from each member of the four cohorts 
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and contains a grand total of 70,957 molecular features. To filter out low frequency one-

off metabolites, I restricted the analysis to include only those features detected in ≥20% 

of the tissue-specific samples profiled (i.e. for each tissue type, metabolites appearing in 

≥4 of 20 pigs were retained in the data set, regardless of their distribution among the four 

dietary cohorts, while metabolites detected in ≤3 of the 20 pigs were removed from the 

data set). Subsequently, I further refined the data set by retaining and analyzing only 

those tissue-specific molecular features that appeared in a minimum of 3 of 5 pigs in any 

one of the four dietary cohorts, as determined by my score value calculation (see 

Equation 1 in Specific Aim 1: Stage 2 of the metabolomics pipeline). As a consequence 

of this data filtration process, the data set was constrained to include between 2600-6000 

molecular features per tissue type, with a combined total of 9788 molecular features.  

2. Multivariate Statistical Analysis and Data Visualization 

Principal component analysis (PCA) of the 9788 molecular features clearly 

differentiates each of the pig organs from one another, underscoring the tissue-specific 

makeup of the metabolome composition (Figure 52).  
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Figure 52. PCA plot of all derived pig tissues metabolomes. 

A total of 20 pigs were distributed equally into 4 distinct dietary cohorts (a nutritionally balanced basal 

cohort, a high fat obesogenic cohort, a basal cohort supplemented with probiotics, and a high fat cohort 

supplemented with probiotics). After maintaining their diet for 38 weeks, the pigs were euthanized and the 

metabolomic makeup of the indicated organ tissues were derived and compared. The 3D PCA plot 

distinguishes the pig tissue metabolomes from each other (that is, the samples distinctly aggregate and 

segregate by tissue type in the plot). Each sphere in the plot reflects the metabolome of the pig tissue 

sample, with liver samples colored purple, kidney samples green, heart muscle samples blue, skeletal 

muscle black, pancreas pink, and cortex orange. For emphasis, the kidney samples obtained from the high 

fat pig cohort are colored dark green and the high fat cortex samples are colored dark orange (they are also 

denoted HF in the plot). This PCA plot demonstrates that a high fat diet particularly alters the composition 

of the kidney and cortex tissue metabolomes such that these samples are distinct from the other kidney and 

cortex dietary cohorts (i.e. for these tissues, the high fat samples are uniquely clustered away from the basal, 

basal+probiotic, and high fat+probiotic cohort samples).  

 

 

 

Not surprisingly, the heart and skeletal muscles appear closely juxtaposed in the 

PCA plot, a reflection of the greater similarity in their overall metabolome composition in 

comparison to the other tissues. This is further apparent in Figure 53, where the heart and 

muscle tissues organize as sister clades in a dendrogram produced from the tissue 

metabolomes.  
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Figure 53. Total Organ Dendrogram. 

The tissue samples are identified in the figure, labeled to reflect the basal (B), high fat (HF), basal+probiotic 

(BP), and high fat+probiotic (HFP) cohorts. Note that without exception, the 5 samples from each dietary cohort 

cluster together by tissue type. While the pancreas uniquely separates into its own clade in the dendrogram, 

differentiating it from the other tissue types, the heart and muscle tissues organize into sister clades, based upon 

the similarities in their metabolomes. It is also noteworthy that the high fat cortex and high fat kidney samples 

cluster together, whereas the remainder of the cortex and kidney samples are within their own corresponding 

clades. 

 

 

 

Interestingly, both the PCA plot and dendrogram suggest that the metabolomic 

composition of the kidney and cortex tissues are particularly sensitive to a high fat diet. 

These tissues obtained from the high fat pig cohort appear distinctly clustered away from 

those same tissues obtained from the cohorts of pigs fed either a basal, basal+probiotic, or 

high fat+probiotic diet. It is also noteworthy that probiotic supplementation to the high 

fat diet appears to alter the high fat kidney and cortex tissue metabolomes. Here, the high 

fat+probiotic samples cluster tightly with the basal and basal+probiotic samples and 

differentiate from high fat in both the dendrogram and PCA plot. 

To gain higher resolution in comparing the metabolomes, focused tissue-specific 

PCAs were performed. The resulting plots illustrate how the metabolomes derived from 
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Figure 54.3D PCA plots demonstrating the diet derived metabolome variations in individual tissues. 

Three dimensional PCA plots of metabolome composition derived from each of the indicated tissue types clearly 

differentiate the four pig dietary cohorts from each other, demonstrating that dietary consumption (including 

probiotic supplementation) can have a significant influence on the metabolite composition of the organ tissues. 

Each sphere in the plot reflects the metabolome of a pig tissue sample. Spheres are colored by cohort, as indicated 

in the figure legend. The analysis was confined to molecular features appearing in ≥20% of the total number of 

pigs and a minimum of 3 of 5 pigs in any one of the four pig cohorts, as per Figure 52. 

each of the four pig dietary cohorts differ from one another, within the context of each 

tissue type (Figure 54).  

 

 

 

 

 

 

 

Regardless of tissue type, the samples distinctly cluster and segregate into basal, 

basal+probiotic, high fat, and high fat+probiotic groups in the PCA plots, a reflection of 

their unique diet-associated metabolome composition. Thus, dietary consumption has a 
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Figure 55. Number of metabolites contributing to the variation among the four tissue cohorts. 

Each graph is restricted to the first three principal components and metabolites are arranged by descending 

contribution to the principal component (squared cosine of the variable value). The plots indicate that for each 

organ analyzed, numerous metabolites collectively contribute to cohort segregation. It is noteworthy that for PC1 

more metabolites contribute to the variation observed in the liver and pancreas, relative to the other organs. 

significant effect on the metabolite composition of the organ tissues. For example, the 

cortex metabolome is altered when pigs are fed an obesogenic high fat diet rather than a 

nutritionally balanced basal diet (i.e. the metabolomes derived from the 5 pigs fed a basal 

diet are clustered in the cortex PCA plot and clearly segregate from the clustered 

metabolomes of the 5 pigs in the high fat cohort; Figure 54). Similarly, high fat diet 

associated alterations in the metabolome are also observed among the other pig tissues 

analyzed, emphasizing the effect of a high fat diet on the organs of the body. In 

agreement with previous findings
113

, metabolites such as phosphatidylcholines and 

lysophosphatidylcholines contribute to the difference between the cohorts.  
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Figure 56. Tissue-specific PCA plots based on the top scoring metabolites. 

The top ten metabolites were determined by the weight loadings (squared cosines of the variable) for each of 

PC1, PC2, and PC3 (derived from  

Figure 54), which represent the three largest contributions to variation among the samples, to identify the top 30 

metabolites differentiating the cohorts within each tissue type. The PCA plot shows that by using these top 30 

metabolites, the four cohorts are still distinguishable. The analysis was confined to molecular features appearing 

in ≥20% of the total number of pigs and a minimum of 3 of 5 pigs in any one of the four pig cohorts, as per 

Figure 52. The top 30 metabolites for each tissue type are listed in Table 2. 

 

Although numerous metabolites collectively contribute to cohort segregation 

(Figure 55), the top 30 contributors are sufficient to isolate the four cohorts in a PCA plot 

of each tissue type (Figure 56).  

 

 

 

 

 

 

The top 30 metabolites are listed in Table 2, organized by principle component 

and tissue type.  
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Table 2. Top 30 metabolites for each tissue type contributing the most to cohort segregation in the PCA plot. 

Top Contributors to PC1 

Cortex 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

N-lactoyl-phenylalanine 0 1 1 3 

6-Succinoaminopurine  1 3 0 1 

3-(4-Hydroxy-3-methoxyphenyl)-2-

methyllactic acid 0 1 3 1 

Malyngamide I 0 0 1 3 

Prostaglandin A1-biotin 0 0 3 1 

(R)-2-Hydroxybutane-1,2,4-

tricarboxylate 2 3 1 1 

Dihydroferuloylglycine 0 0 1 4 

Molecular feature_110.01  3 1 0 1 

Molecular feature_390.30 0 0 3 1 

Tumonoic Acid F 0 0 2 4 

Heart 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Quinapril hydrochloride 1 1 3 0 

Molecular feature_365.14  1 1 3 0 

Molecular feature_584.36 4 3 1 0 

Molecular feature_549.17 1 3 1 0 

Malonyl CoA 5 1 2 0 

(R)-Byakangelicin 2'-glucoside 1 0 0 3 

Molecular feature_158.03 1 3 1 0 

PC(2:0/18:1(9Z)) 2 4 2 0 

PG(19:0/22:2(13Z,16Z)) 3 1 1 4 

Palmitoylglycerone phosphate 4 4 3 0 

Kidney 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Molecular feature_564.33  1 1 4 1 

3,3-Difluoro-5alpha-androstan-

17beta-yl acetate 3 2 0 0 

Molecular feature_564.35 3 3 1 1 

Molecular feature_870.26  3 1 0 0 

Succinic acid 3 2 1 0 

Cyclocommunin 0 0 2 3 

6-Hydroxymelatonin glucuronide 0 0 2 3 

Phenylamil 0 0 2 4 

Molecular feature_1151.66 0 0 4 3 

Molecular feature_432.42  3 2 0 0 

Liver 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 
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8-Epidiosbulbin E acetate 1 3 0 0 

Triglochinin 1 3 0 0 

Indole-3-acetic-acid-O-glucuronide 0 0 3 1 

IPSP 3 1 0 0 

FMNH2 0 0 3 1 

(±)Fenfluramine 0 0 1 3 

Molecular feature_192.93  3 1 0 0 

Molecular feature_702.31 0 0 1 3 

Deserpidine 0 0 5 5 

Molecular feature_1035.67 0 0 1 4 

Muscle 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Molecular feature_2470.57  0 0 2 4 

GDP-glucose 0 0 2 3 

Molecular feature_360.13  0 0 1 3 

Molecular feature_617.15  4 1 0 1 

Molecular feature_315.03  0 0 3 1 

Luteolin 3'-methyl ether 7-

glucuronosyl-(1->2)-glucuronide 0 0 1 3 

Molecular feature_1054.18  0 0 1 3 

(S)-10,16-Dihydroxyhexadecanoic 

acid 0 0 2 4 

Notoginsenoside T2 1 1 3 2 

Cholesterol glucuronide 0 0 3 4 

Pancreas 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Molecular feature_379.97  1 3 0 0 

Molecular feature_642.11 0 0 1 3 

Molecular feature_322.99  1 3 0 0 

3-Hydroxy-2-nitroestra-1,3,5(10)-

trien-17-one 0 0 2 4 

PA(6:0/6:0) 0 0 1 3 

6-(2-Carboxyethyl)-7-hydroxy-2,2-

dimethyl-4-chromanone glucoside 2 3 0 0 

Molecular feature_1317.18 0 0 2 3 

Hydroxychloroquine 3 2 0 0 

7alpha-1(10->19)-Abeo-7-

acetoxyobacun-9(11)-ene 0 0 3 4 

PC(16:0/5:0(COOH)) 3 2 0 0 

Top Contributors to PC2 

Cortex 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Molecular feature_676.93 1 0 0 3 

Umbelliprenin 0 3 2 0 

Afrormosin 7-O-(6''-

malonylglucoside) 1 0 0 3 
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GW 7647 3 1 1 0 

Molecular feature_712.06 0 3 1 0 

3-hexanoyl-NBD Cholesterol 1 1 3 2 

Quinidinone 4 0 0 1 

5,7,3'-Trihydroxy-6,4',5'-

trimethoxyflavanone 3 0 0 1 

O-Acetylserine 1 0 0 3 

Molecular feature_279.14  1 0 0 4 

Heart 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

N1-(2-Methoxy-4-methylbenzyl)-n2-

(2-(pyridin-2-yl) ethyl)oxalamide 1 3 2 2 

4-Hydroxyazobenzene 3 4 0 1 

Malvidin 3-(6-acetylglucoside) 2 1 1 3 

Acepromazine 1 1 0 4 

Ganoderenic acid C 0 1 2 3 

Molecular feature_116.93  1 2 0 3 

Molecular feature_966.01  0 1 1 3 

24-Nor-5β-cholane-3α,12α,23-triol 1 3 0 0 

Spergualin 1 1 1 3 

PS(P-

18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 0 1 4 2 

Kidney 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Molecular feature_778.432  2 4 0 1 

Neorauteen 1 1 0 3 

Ziprasidone 3 1 1 1 

Molecular feature_1713.73  4 3 1 0 

Benzethonium chloride 2 3 1 0 

PC(16:1(9E)/0:0) 4 2 3 3 

Vilazodone 3 1 1 0 

Aminoethoxyacetic acid 4 4 1 0 

Ganoderenic acid E 2 3 1 3 

2,4-Dihydroxyacetophenone 5-

sulfate 1 5 1 0 

Liver 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Isogingerenone B 1 4 0 2 

Arachidonoyl-CoA 3 2 0 1 

Molecular feature_972.67 1 3 0 1 

Cyclic adenosine diphosphate ribose 3 2 0 1 

Bromodiphenhydramine 3 2 1 1 

Norstictic Acid Pentaacetate 3 3 0 2 

PE(13:0/20:5(5Z,8Z,11Z,14Z,17Z)) 1 3 1 0 

2R-hydroxy-stearic acid 3 3 1 0 

Molecular feature_712.28  3 2 1 2 

Molecular feature_590.33  4 4 0 1 
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Muscle 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Glucoliquiritin apioside 2 3 2 0 

Neobifurcose 2 4 1 0 

Molecular feature_1790.69 1 3 1 0 

Molecular feature_176.14  3 1 2 0 

2-Hydroxy-4,7-dimethoxy-2H-1,4-

benzoxazin-3(4H)-one 4 3 0 1 

Hydroxytetrabenazine glucuronide 1 2 3 1 

Molecular feature_326.34 2 3 1 0 

Molecular feature_205.09  4 2 2 1 

Theasapogenol A 2 3 1 0 

Molecular feature_149.02 3 0 0 1 

Pancreas 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Molecular feature_554.22  1 1 3 2 

LysoPC(0:0/18:0) 3 1 0 1 

Malvidin 3-O-(6-O-(4-O-malonyl-

alpha-rhamnopyranosyl)-beta-

glucopyranoside)-5-O-(6-O-

malonyl-beta-glucopyranoside) 1 3 0 2 

Minoxidil-O-glucuronide 4 1 1 0 

Molecular feature_1286.87 4 1 1 0 

PE-Cer(d14:1(4E)/20:0(2OH)) 2 4 0 1 

Molecular feature_749.32  4 2 0 2 

Molecular feature_339.29 3 2 1 0 

PS(16:1(9Z)/22:2(13Z,16Z)) 1 3 1 0 

PPA(18:1(9Z)/18:1(9Z)) 3 1 2 0 

Top Contributors to PC3 

Cortex 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Molecular feature_557.15 1 0 3 0 

Molecular feature_3098.70 0 3 0 4 

UDP-N-acetyl-alpha-D-

galactosamine 0 1 0 3 

Avadharidine 4 0 1 0 

Molecular feature_552.86  3 0 2 0 

S-Seven 2 0 4 0 

PS(14:1(9Z)/16:1(9Z)) 4 0 2 0 

7-Methylinosine 0 4 0 2 

Oleoyl glycine 4 0 2 0 

Molecular feature_164.98 0 3 2 2 

Heart 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  
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(n = 5) 

Molecular feature_3028.44 0 3 0 1 

Molecular feature_499.99 0 3 0 3 

Molecular feature_554.12 3 0 1 0 

Normetanephrine glucuronide 1 0 3 0 

Epinephrine glucuronide 0 2 0 3 

3,4-

Hexahydroxydiphenoylarabinose 0 3 0 2 

Guanosine 3'-phosphate 0 3 0 2 

Molecular feature_697.44 2 0 3 0 

Molecular feature_635.14 2 0 3 0 

Molecular feature_361.03 1 0 3 0 

Kidney 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Molecular feature_887.11 0 1 1 3 

Molecular feature_398.09 3 0 1 2 

Molecular feature_358.18 3 1 2 1 

2-Ethyl-1-hexanethiol 5 0 1 2 

b-D-Xylopyranosyl-(1->4)-a-L-

rhamnopyranosyl-(1->2)-D-fucose 0 1 1 4 

Molecular feature_892.13 0 1 1 3 

Molecular feature_302.93 4 0 2 1 

11'-Carboxy-alpha-tocotrienol 0 1 2 4 

9-oxo-2E-decenoic acid 0 1 2 3 

Molecular feature_922.80 0 1 1 3 

Liver 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

PIP(16:0/22:2(13Z,16Z)) 0 1 1 3 

Molecular feature_560.14 0 1 1 3 

Molecular feature_290.0343 2 1 3 1 

26,27-diethyl-1α,25-dihydroxy-

20,21-methano-23-oxavitamin D3 / 

26,27-diethyl-1α,25-dihydroxy-

20,21-methano-23-

oxacholecalciferol 3 0 2 1 

Molecular feature_365.25 0 1 1 4 

Molecular feature_450.84 1 1 3 1 

Molecular feature_998.29 3 1 1 2 

Molecular feature_464.41 1 0 2 4 

Molecular feature_561.37 0 1 3 4 

Molecular feature_1635.51 0 2 1 4 

Muscle 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

Xanthine 3 0 1 1 

Dolichyl b-D-glucosyl phosphate 1 0 1 3 

Diguanosine triphosphate 1 3 1 1 



126 

 

Moricizine sulfone 4 2 1 1 

Cyanidin 3,5,3'-triglucoside 0 3 1 0 

Oleamide 1 1 1 3 

Mono-N-desisopropyldisopyramide 0 1 2 4 

Butoctamide hydrogen succinate 2 0 3 3 

(5-heptyl-6-

methyloctahydroindolizin-8-

yl)methanol 1 2 1 3 

4-Bromophenol 1 1 2 3 

Pancreas 

Metabolite Name 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+Probiotic  

(n = 5) 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

High 

Fat+Probiotic  

(n = 5) 

PS(22:4(7Z,10Z,13Z,16Z)/0:0) 1 0 1 5 

4'-O-Demethylrebeccamycin 1 0 1 3 

Molecular feature_730.09 2 1 3 2 

PI(22:1(11Z)/22:4(7Z,10Z,13Z,16Z)) 3 0 1 1 

Succinic acid 1 0 3 2 

Molecular feature_690.00 1 3 2 2 

Molecular feature_506.24 0 1 3 2 

Molecular feature_1033.77 1 0 1 4 

Molecular feature_932.55 1 0 3 4 

6-bromo-tetracosa-5E,9Z-dienoic 

acid 1 0 3 4 

n is equal to the number of samples in the cohort 

Features with associated names were putatively identified via MS. Metabolites which are not currently 

included in the Metlin or HMDB databases are provided the name Molecular Feature coupled to their 

respective m/z value. 

 

 

 

When examining all three principal components, the metabolites which contribute 

the most to cohort segregation in all tissues studied include phosphatidylcholines, 

phosphatidylserines, phosphatidylethanolamines, and phosphatidylinositols (all MS 

confirmed) which are all membrane glycerophospholipids, present in either the outer or 

inner sheet of membranes. Interestingly, phosphatidylcholines were among the top 

contributors to variance in principal component 1 and 2, the greatest and second greatest 

contribution of overall variation among the samples. Phosphatidylcholines are located 

primarily in the outermost sheet of membranes, interacting with extracellular 

environment. This is in contrast to phosphatidylserines, phosphatidylethanolamines, and 
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phosphatidylinositols, (contributors to principal components 2 and 3) which are located 

primarily in the inner sheet, interacting with the intracellular environment. Research has 

shown that dietary oils do indeed have an effect on membrane lipid composition, leading 

to metabolic syndrome
115

. Thus, it can be proposed that while a high fat diet has a 

profound effect on the membrane composition, probiotic supplementation, irrespective of 

diet, results in alterations to membrane composition with the greatest amount of variation 

occurring in the outermost sheet. 

3. Metabolites Altered Due to Probiotic Supplementation 

Supplementation of the diet with probiotics leads to detectable alterations in the 

tissue metabolomes, as evidenced in all six of the organs analyzed (Figure 54). That is, 

the basal and basal+probiotic cohorts are clearly segregated and distinct in the PCA plot, 

as are the high fat and high fat+probiotic cohorts, regardless of tissue type. Figure 57 

presents tissue-specific volcano plots comparing the basal vs. basal+probiotic and the 

high fat vs. high fat+probiotic cohorts. Within every tissue examined, irrespective of the 

diet, numerous metabolites were found to be either unaffected, significantly increased in 

abundance, or significantly decreased by probiotic supplementation.  
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Figure 57. Tissue Specific Volcano Plots comparing the Basal versus Basal+Probiotic and High Fat vs High 

Fat+Probiotic Cohorts of Pigs. 

Within each identified tissue type, the fold change in metabolite abundance is calculated as the ratio of the median 

chromatographic peak height in the basal cohort relative to the corresponding median peak height in the 

basal+probiotic cohort, or the median peak height in the high fat cohort relative to the corresponding median peak 

height in the high fat+probiotic cohort, as indicated. In the volcano plots, the –log10 of the Benjamini-Hochberg 

corrected p-value for each metabolite is presented as a function of the log2 of the relative abundance fold change, 

using a Benjamini-Hochberg critical cutoff value of 0.05 to perform the p-value corrections. The horizontal 

dashed line in the plots identifies a corrected p-value of 0.05 (i.e. –log10(p-value)=1.3), while the black vertical 

dashed lines denote a 1.5 log2 fold change in metabolite abundance (increase and decrease). Each metabolite is 

represented as a circle in the plot, with circles colored grey having a statistically insignificant alteration in fold 

change (i.e. a corrected –log10(p-value) <1.3). Metabolites found to be generally unaffected by probiotic 

supplementation are colored brown (corrected –log10(p-value) >1.3 and a log2 fold change value between -1.5 and 

1.5). Metabolites significantly increased by probiotic supplementation are colored blue (corrected –log10(p-value) 

>1.3 and a log2 fold change value between -1.5 and -10). Metabolites significantly decreased by probiotic 

supplementation are colored green (corrected –log10(p-value) >1.3 and a log2 fold change value between 1.5 and 

10). Metabolites drastically reduced with probiotic supplementation are colored orange (corrected –log10(p-value) 

>1.3 and a log2 fold change value >10). Metabolites drastically increased with probiotic supplementation are 

colored red (corrected –log10(p-value) >1.3 and a log2 fold change value <-10). Within each tissue type, this 

analysis was restricted to only the molecular features appearing in a minimum of 3 of 5 pigs (60%) in any one of 

the two pig cohorts. 

 

 

 

To identify the top 10 metabolites that are greatly influenced by probiotic 

supplementation (identified by comparison of basal versus basal+probiotic tissue samples 

along with comparison of high fat versus high fat+probiotic tissue samples), I focused my 

attention on tissue features present in at least 80% of any one cohort (i.e. the affected 
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tissue metabolite was identified in at least 4 of the 5 pigs in any one of the two compared 

cohorts, and thus appeared in at least 4 of the 10 pigs in the two compared cohorts), and 

ranked these metabolites by fold change, p-value, and quality of EIC, resulting in a list of 

10 statistically significant features (Table 3; see Appendix 8 for the associated EICs and 

TICs). Of these 10 metabolites, 3 were subsequently identified via MS/MS fragmentation 

(10 eV, 20 eV, and 40 eV for each metabolite) and corresponding fragment pattern 

matching to fragmentation patterns of known compounds curated in the Metlin and/or 

Human Metabolome Database (HMDB). The MS/MS fragmentation pattern matching for 

these 3 metabolites is shown in Appendix 9. Conversely, the remaining 7 metabolites did 

not match the MS/MS fragmentation pattern of any molecules in Metlin or HMDB, and 

thus are not discussed further (these 7 metabolites are simply identified as a ‘molecular 

feature’ in Table 3, with the corresponding m/z value listed), the 3 identified metabolites 

are discussed in detail below. 

 

 

 
Table 3. Top 10 metabolites exhibiting the greatest degree of change in all tissues when comparing basal versus 

basal+probiotic and high fat versus high fat+probiotic. 

Cortex 
Basal versus Basal+probiotic 

Metabolite Name log2(Fold Change) -log10(p-value) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+probiotic 

( n = 5) 

Molecular Feature_273.12 -17.94 4.67 0 4 

High Fat versus High Fat+probiotic 

Metabolite Name  log2(Fold Change) -log10(p-value) 

Frequency: 

High Fat  

(n = 5) 

Frequency: High 

Fat+probiotic  

(n = 5) 

Molecular Feature_355.26 17.09 4.30 4 0 

Heart 
Basal versus Basal+probiotic 

Metabolite Name log2(Fold Change) -log10(p-value) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+probiotic 

(n = 5) 
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Based on the imposed inclusion criteria, no metabolites were highlighted in this comparison. 

High Fat versus High Fat+probiotic 

Metabolite Name  log2(Fold Change) -log10(p-value) 

Frequency: 

High Fat  

(n = 5) 

Frequency: High 

Fat+probiotic  

(n = 5) 

Molecular Feature_348.15 -19.07 4.67 0 4 

Kidney 
Basal versus Basal+probiotic 

Metabolite Name log2(Fold Change) -log10(p-value) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+probiotic 

(n = 5) 

Uridine diphosphate-N-

acetylglucosamine 22.10 4.62 4 0 

High Fat versus High Fat+probiotic 

Metabolite Name  log2(Fold Change) -log10(p-value) 

Frequency: 

High Fat  

(n = 5) 

Frequency: High 

Fat+probiotic  

(n = 5) 

Molecular Feature_498.19 -17.38 2.34 0 4 

Liver 
Basal versus Basal+probiotic 

Metabolite Name log2(Fold Change) -log10(p-value) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+probiotic 

(n = 5) 

Saccharopine 16.94 5.80 4 0 

High Fat versus High Fat+probiotic 

Metabolite Name  log2(Fold Change) -log10(p-value) 

Frequency: 

High Fat  

(n = 5) 

Frequency: High 

Fat+probiotic  

(n = 5) 

Molecular Feature_279.16 -22.02 6.80 0 4 

Muscle 
Basal versus Basal+probiotic 

Metabolite Name log2(Fold Change) -log10(p-value) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+probiotic 

(n = 5) 

Based on the imposed inclusion criteria, no metabolites were highlighted in this comparison. 

High Fat versus High Fat+probiotic 

Metabolite Name  log2(Fold Change) -log10(p-value) 

Frequency: 

High Fat  

(n = 5) 

Frequency: High 

Fat+probiotic  

(n = 5) 

Molecular Feature_291.07 19.55 2.70 4 0 

Pancreas 
Basal versus Basal+probiotic 

Metabolite Name log2(Fold Change) -log10(p-value) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

Basal+probiotic 

(n = 5) 

Molecular Feature_322.05 8.88 1.37 5 5 

Proline -6.04 2.53 5 5 

High Fat versus High Fat+probiotic 

Metabolite Name  log2(Fold Change) -log10(p-value) 

Frequency: 

High Fat  

(n = 5) 

Frequency: High 

Fat+probiotic  

(n = 5) 

Based on the imposed inclusion criteria, no metabolites were highlighted in this comparison. 

Criteria for Selection: Frequency ≥ 80%; -log10(p-value) ≥ 1.3; |log2(Fold Change) ≥ 1.5|; Median abundance values 

≥ 25000 
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Note: A positive fold change when comparing basal diets versus basal+probiotic indicates an increase in abundance 

for the basal cohort. A positive fold change when comparing high fat versus high fat+probiotic diets indicates an 

increase in abundance for the high fat cohort. n equals the number of total samples in the cohort. Features with 

associated names are putatively identified via MS/MS using the Metlin and HMDB databases Metabolites which 

are not currently included in the Metlin or HMDB databases are provided the name Molecular Feature coupled to 

their respective m/z value. 

 

 

 

1. Uridine Diphosphate-N-Acetylglucosamine 

The tissue metabolomics investigation revealed that probiotic supplementation of 

the basal diet results in significantly decreased levels of Uridine Diphosphate-N-

Acetylglucosamine (commonly referred to as UDP-GlcNAc) within the kidney tissue of 

Ossabaw pigs (Table 3). In fact, UDP-GlcNAc was undetected in all 5 of the kidney 

samples obtained from the basal+probiotic cohort pigs, while it was abundant in 4 of the 

5 kidney samples obtained from the basal diet cohort of pigs. Synthesized de novo from 

fructose 6-phosphate and glucosamine via the hexosamine biosynthetic pathway
116,117

, 

UDP-GlcNAc is utilized by the Golgi apparatus for O-linked protein glycosylation
118–120

. 

Metabolic flux through the hexosamine biosynthetic pathway is a reflection of nutrient 

availability, particularly glucose, glucosamine, UDP, and acetyl-CoA
118

. Since 3-5% of 

glucose is typically destined for UDP-GlcNAc production
116,117

, it may be that probiotic 

supplementation results in alterations in the availability of these nutrients, thereby 

affecting the intracellular UDP-GlcNAc concentration. This probiotics-associated drop in 

UDP-GlcNAc level is unique to the kidney tissue, as it was not observed in any of the 

other tissues we analyzed (the UDP-GlcNAc level was consistent among the cohorts in 

these other tissues). However, the drop in UDP-GlcNAc level was observed in the high 

fat+probiotics cohort relative to the high fat cohort, with probiotic supplementation 
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linked to a complete absence of UDP-GlcNAc in all 5 of the pig kidney tissue samples 

(data not shown). While the cause of the probiotics-associated decrease in kidney UDP-

GlcNAc levels remains uncertain, studies have shown that O-linked glycosylation is 

positively regulated by the intracellular concentration of UDP-GlcNAc
120

, suggesting that 

a consequence of low levels of UDP-GlcNAc would be altered glycoprotein production 

in the basal+probiotic and high fat+probiotic pig cohort kidney cells. Interestingly, 

increased O-linked glycosylation of proteins has been implicated in insulin resistance and 

obesity
121

. It remains unknown if probiotic supplementation might serve to reduce the 

risk of metabolic syndrome by reducing intracellular kidney UDP-GlcNAc levels. 

2. Saccharopine 

The metabolomics investigation also discovered that probiotic supplementation to 

the basal diet leads to significantly decreased saccharopine concentration within the liver. 

While 4 of the 5 liver tissues obtained from the basal diet pig cohort have abundant 

saccharopine within, none of the basal+probiotic pig liver tissues had detectable levels of 

saccharopine. Saccharopine is an intermediate within a lysine catabolic pathway in the 

liver
122–125

. Unlike other amino acids, lysine does not undergo direct transamination. 

Rather, lysine and α-ketoglutarate condense to form saccharopine, which is subsequently 

oxidized to form α-aminoadipic δ-semialdehyde and glutamate via the bifunctional 

enzyme aminoadipic semialdehyde synthase
122,123,126

. Downstream metabolic pathways 

can route α-aminoadipic δ-semialdehyde and glutamate for nitrogenous biomolecule 

biosynthesis and energy production in the liver, so it is tempting to suppose that with the 

basal diet the pigs are utilizing dietary lysine as an energy source, but with probiotic 
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supplementation the added probiotic bacteria utilize the lysine pool in the GI tract, 

thereby lowering the saccharopine concentration within the liver. Notably, the liver 

saccharopine concentration is essentially the same in the high fat and high fat+probiotics 

cohorts, suggesting the caloric abundance of the high fat diet does not necessitate amino 

acid oxidation by the probiotic bacteria (or the liver). While the cause of the reduced liver 

saccharopine concentration in the basal+probiotic pigs remains speculative, perhaps more 

importantly the significance/effect of the reduced saccharopine concentration in the liver 

of the pigs requires further investigation. 

3. Proline 

The third top 10 metabolite identified by MS/MS as significantly influenced by 

probiotic supplementation is the amino acid proline. With a frequency of appearance of 

100% in all 4 pig pancreas cohorts (5 of 5 pigs in the basal, basal+probiotic, high fat, and 

high fat+probiotic cohorts), probiotic supplementation results in a significant increase in 

the abundance of proline in the pancreas of the basal+probiotic cohort, relative to basal 

(~100 fold increase in median abundance). Notably, probiotic supplementation of a high 

fat diet increases pancreas proline levels approximately 2 fold relative to the high fat diet 

alone. More significantly, relative proline levels are approximately 100 fold higher in the 

basal+probiotic, high fat, and high fat+probiotic cohorts compared to the basal diet. A 

high activity of mitochondrial proline oxidase is known to reside in the intestinal 

absorptive cells in pigs, and as a consequence up to 90% of dietary proline becomes 

metabolized to ornithine, citrulline, and arginine, thereby lowering the amount of dietary 

proline available to the extraintestinal tissues
127,128

. Given that probiotic supplementation 
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of the basal diet increases the pancreatic level of proline 100 fold, probiotic 

supplementation of the high fat diet increases the pancreatic level of proline 2 fold, and 

that a high fat diet yields 100 fold more pancreatic proline than does a basal diet, it 

appears that both a high fat diet and probiotic supplementation influence intestinal 

mucosal proline metabolism, resulting in increased dietary uptake of proline.  

4. Probiotic Induced Metabolic Reversions 

While probiotic induced changes to the tissue metabolomes are of interest in this 

investigation, a more important goal was to identify if probiotic supplementation of a 

high fat diet can ‘revert’ metabolomic changes associated with the high fat diet (relative 

to a healthy basal diet) back to metabolite levels on par with the basal diet. Intriguingly, it 

was discovered that for many tissue metabolites, probiotic supplementation of a high fat 

diet does indeed lead to alterations in metabolite abundance such that they assume a level 

associated with the basal diet. That is, probiotic supplementation effectively reverts these 

high fat-associated metabolite levels to a level linked with a nutritionally balanced basal 

diet, even though the pigs continued to consume an obesogenic diet.  
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Figure 58. Tissue-specific metabolite correlation networks for the basal, high fat, and high fat+probiotic 

metabolomes  

For each tissue type, Pearson’s correlation coefficients were calculated for metabolites present in a minimum of 3 

of 5 pigs in any one of the three pig cohorts, and only metabolites common to all three cohorts were included in the 

network. Positive Pearson correlation values, r ≥ 0.90, are depicted as a green line between metabolites, while 

negative correlations, r ≤ -0.90, are depicted as a red line between metabolites. To facilitate comparison of the 

networks, metabolites are represented as a small alpha numerically labeled circle and their placement around the 

circumference of each network is fixed among the plots for each tissue. For all tissues, comparison of the 

metabolite correlation networks indicates that probiotic supplementation of the high fat diet alters the metabolome 

relative to the high fat diet alone, and for the cortex, heart, and kidney tissues in particular, probiotic 

supplementation changes the high fat metabolome in such a manner so as to make it appear more similar to the 

correlation networks associated with the basal diet. 

 

 

 

To demonstrate this reversion on a global metabolomic scale, I generated a series 

of network correlation maps depicting the relationship among metabolites within the 

tissues (Figure 58). Within the cortex tissue, for example, numerous metabolites 

demonstrate positive and/or negative correlations with each other in the basal diet cohort. 

However, for many of these metabolites, the network correlations are significantly altered 

within the high fat cohort, as evidence in the corresponding correlation map (compare the 

appearance of basal vs. high fat in Figure 58). Intriguingly, the supplementation of 

probiotics to the high fat diet results in a reversion of the interrelationship between many 
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of these metabolites to a network correlation pattern more reflective of that which occurs 

with the basal diet (note how high fat+probiotics is similar in appearance to basal in 

Figure 58). This reversion phenomenon is also apparent in the heart and kidney tissue. 

Hence, probiotic supplementation confers measurable changes to the composition of the 

tissue metabolome, and for some of the tissues, reverts a high fat associated metabolome 

to one that is more akin to the basal cohort (Table 4).  

 

 

 
Table 4. Metabolites associated with probiotic induced reversion of the high fat metabolome. 

;Cortex 
Metabolite Name log2(Fold 

Change) High 

Fat vs Basal 

log2(Fold 

Change) High 

Fat+probiotic 

vs Basal 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

High 

Fat+probiotic 

(n = 5) 

S-

Adenosylhomocysteine* 

19.00 0.00 3 0 0 

Heart 

Metabolite Name log2(Fold 

Change) High 

Fat vs Basal 

log2(Fold 

Change) High 

Fat+probiotic 

vs Basal 

Frequency: 

High Fat 

 (n = 5) 

Frequency: 

Basal 

(n = 5) 

Frequency: 

High 

Fat+probiotic 

(n = 5) 

CDP-glycerol 16.77 0.00 3 0 0 

Kidney 
Metabolite Name log2(Fold 

Change) High 

Fat vs Basal 

log2(Fold 

Change) High 

Fat+probiotic 

vs Basal 

Frequency: 

High Fat 

(n = 5) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

High 

Fat+probiotic 

(n = 5) 

Indoxyl sulfate * -17.57 1.61 0 3 3 

Liver 
Metabolite Name log2(Fold 

Change) High 

Fat vs Basal 

log2(Fold 

Change) High 

Fat+probiotic 

vs Basal 

Frequency: 

High Fat  

(n = 5) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

High 

Fat+probiotic 

(n = 5) 

Based on the imposed inclusion criteria, no metabolites were highlighted in this comparison. 

Muscle 
Metabolite Name log2(Fold 

Change) High 

Fat vs Basal 

log2(Fold 

Change) High 

Fat+probiotic 

vs Basal 

Frequency: 

High Fat 

 (n = 5) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

High 

Fat+probiotic 

(n = 5) 

D-Sedoheptulose 7-

phosphate 

19.55 0.00 4 0 0 

Pancreas 
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Metabolite Name log2(Fold 

Change) High 

Fat vs Basal 

log2(Fold 

Change) High 

Fat+probiotic 

vs Basal 

Frequency: 

High Fat 

(n = 5) 

Frequency: 

Basal  

(n = 5) 

Frequency: 

High 

Fat+probiotic 

(n = 5) 

Estradiol disulfate -16.30 0.43 0 5 3 

Criteria for Selection: Frequency ≥ 60% in High Fat or Basal AND High Fat+Probiotic; p value < 0.05; |log2(Fold 

Change) ≥ 10| in High Fat vs Basal AND |log2(Fold Change) ≤ 10| in High Fat+Probiotic vs Basal; Median 

abundance values ≥ 25000. n is equal to the number of samples in the cohort. 

Note: A positive fold change when comparing high fat versus basal diets indicates an increase in abundance for 

high fat pigs. A positive fold change when comparing high fat+probiotic versus basal diets indicates an increase in 

abundance for the high fat+probiotic cohort. 

* Indicates metabolite was putatively identified via MS/MS; all others were putatively identified via MS. 

 

 

 

To identify the top metabolites that are responsible for this reversion, I elected to 

include only those metabolites that are present in at least 80% of any one of the three 

cohorts (high fat, high fat+probiotic, and basal) with the caveat that if the metabolite was 

present in the high fat cohort, it must be undetected in the high fat+probiotic and basal 

cohorts. This resulted in a list which contained only 4 metabolites. Therefore, I lowered 

the frequency to 60% with the same restrictions resulting in a data set which included a 

total of 17 metabolites. Next, I further refined the data using the EIC for each metabolite, 

as described previously (see Appendix 9, for the EICs and companion TICs). Table 4 

presents the top 5 metabolites that undergo reversion. Of these 5 metabolites, 2 could be 

successfully identified via MS/MS by fragmentation pattern matching known compounds 

curated in the Metlin library and HMDB. These two compounds are discussed in further 

detail below. The remaining 3 of the top 5 reversion metabolites could not be identified 

by MS/MS (the compounds are not in the reference database). However, putative 

identification is possible by MS, and a discussion of them is also included below. 
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1. S-adenosylhomocysteine 

Within the cortex, probiotic supplementation of the high fat diet results in a 

suppression of the elevated intracellular concentration of S-adenosylhomocysteine (SAH) 

observed in 3 of the 5 pigs in the high fat cohort, thus reverting the metabolite to a 

phenotype more akin to that found within the healthy basal diet cohort of pigs. SAH is a 

member of the methyl cycle, and is an immediate product derived from S-

adenosylmethionine (SAM), a powerful methylating agent in numerous biosynthetic 

reactions (catalyzed by a variety of methyl transferases)
129–131

. SAH is known to act as a 

negative regulator of several of these methyltransferases, thereby inhibiting the rate of 

methylation using SAM
132

. Studies have shown that increased intracellular concentration 

of SAH is correlated to DNA hypomethylation, leading to an increase in reactive oxygen 

species (ROS) levels related to inhibition of the methylation of tRNAs responsible for 

translating the selenoproteins which reduce H2O2 levels
132

. Additionally, SAH has been 

linked to an increase in cognitive impairment and disease progression in Alzheimer's 

patients
133,134

. Thus, while the mechanism underlying the phenomenon remains unknown, 

the effect of suppressing the intracellular SAH abundance via probiotic supplementation 

is highly desirable. 

2.  Indoxyl sulfate 

Indoxyl sulfate (also referred to as indican) is a product of tryptophan degradation 

and protein putrefaction
135,136

. Within the intestines, tryptophan is converted by bacteria 

into indole, which can be absorbed into the blood stream and then further metabolized in 

the liver. Indole accumulation is toxic (due to its ability to disrupt membrane integrity
137

), 
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so indole is converted by the liver into indoxyl sulfate, which migrates to the kidneys and 

is excreted in the urine
136

. While a basal healthy diet leads to measurable levels of 

indoxyl sulfate in kidney tissue, kidneys obtained from pigs fed a high fat diet were found 

to be devoid of this metabolite. While the reason for this is unclear (perhaps the microbes 

preferentially utilize the abundance of fat for fuel, rather than protein degradation), 

probiotic supplementation of pigs fed the high fat diet reverts the level of indoxyl sulfate 

to that observed with the basal diet (possibly due to the abundance of probiotic bacteria in 

the GI tract consuming the additional fat and reestablishing protein putrefaction).  

3. CDP-Glycerol 

Probiotic supplementation of the high fat diet results in a suppression of the 

intracellular heart concentration of cytidine diphosphate-glycerol (CDP-glycerol; MS 

identified). Not detected in the hearts of pigs in the basal diet cohort, an elevated level of 

CDP-glycerol was found in 3 of 5 pigs in the high fat cohort. CDP-glycerol is an 

intermediate in glycerophospholipid metabolism
138

. As an increase in intermediates 

associated with glycerophospholipid metabolism have been linked to an increase in 

coronary heart disease (CHD)
139

, it is interesting to postulate that probiotic 

supplementation to a high fat diet may result in an alteration to the pathways associated 

with glycerophospholipids, thereby reducing the risk of CHD.  

4. Sedoheptulose 7-phosphate 

Probiotic supplementation of the high fat diet also resulted in an alteration in the 

muscle sedoheptulose 7-phosphate concentration, an intermediate of the reversible 

nonoxidative phase of the pentose phosphate pathway
140–142

. Sedoheptulose 7-phosphate 
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was detected in 4 of the 5 pigs in the high fat cohort, with probiotic supplementation 

reducing the level below the limits of detection in 5 of 5 pigs, akin to that found in the 

basal diet cohort (0 of 5 pigs had detectable amounts of sedoheptulose 7-phosphate in the 

basal cohort). Increased sedoheptulose 7-phosphate levels may reflect enhanced 

degradation of xylulose 5-phosphate (a precursor of sedoheptulose 7-phosphate), an 

intermediate of the pentose phosphate pathway that directly upregulates the process of 

fatty acid biosynthesis (thus the high fat diet associated degradation of xylulose 5-

phosphate to sedoheptulose 7-phosphate would decrease metabolic flux to fatty acid 

biosynthesis). However, since the expression of the fatty acid synthase gene is very low 

or nonexistent in skeletal muscle
143

, the alteration of the sedoheptulose 7-phosphate 

levels detected here may in fact originate within muscle associated adipose cells (ie. 

marbling of the muscle) isolated when the muscle samples were obtained from the pigs. 

This, as well as elucidating the mechanism by which probiotic supplementation reduces 

sedoheptulose 7-phosphate levels, will require further investigation. 

5. Estradiol disulfate 

Within the pancreas, probiotic supplementation of the high fat diet resulted in an 

elevation in the intracellular concentration of the steroid conjugate, estradiol disulfate 

(MS identified; undetected in the high fat cohort, yet found in all of the basal diet pigs 

and 3 of the 5 high fat+probiotic diet pigs). Estradiol is a cholesterol derived steroid 

hormone, synthesized within the ovaries and adipose tissue. As with other steroid 

hormones, estradiol acts as a signaling molecule for a variety of different metabolic 

processes such as the regulation of sodium intake, inhibition of testosterone synthesis, 
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and energy homeostasis
144–146

. To control the intracellular concentration of estradiol, 

processes such as sulfation are used for inactivation, transport, and subsequent excretion 

from the body
144,147

. A reduction in estradiol has been shown to reduce leptin and 

increase appetite, thereby increasing a risk for obesity
146,148

. In addition, when compared 

to a healthy weight, a reduction in the levels of steroid sulfates, such as estradiol 

disulfate, has been shown in overweight and obese girls
147

. Thus, as probiotic 

supplementation of the high fat diet resulted in an increase in estradiol disulfate levels, 

one can propose that probiotic supplementation may alter steroid biosynthesis and 

decrease the risk for obesity. 

Summary 

Based on the tissue metabolomics results presented here, I conclude that a change 

in diet alone has a profound effect on the tissue metabolome, agreeing with the old adage 

that you are what you eat. As depicted in Figures 52 and 54, a high fat diet has an impact 

on all of the tissues examined in this investigation, from heart and skeletal muscle, to 

pancreas, liver, kidney, and cortex, with the greatest amount of variation resulting from 

an alteration in membrane lipid composition. The kidney and cortex appear particularly 

sensitive to intake of a high fat diet (Figures 52 and 53). Further, this study demonstrates 

how probiotic supplementation can also have an effect on the metabolome composition, 

creating metabolic phenotypes that are differentiated from those obtained with a basal 

and high fat diet (Figure 54). Notably, the metabolic differences identified by probiotic 

supplementation include alterations to metabolic flux through the hexosamine 

biosynthetic pathway resulting in a reduction of intracellular UDP-GlcNAc levels within 
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the kidney; suggesting an altered abundance in glycoprotein production and (when 

coupled to an obseogenic diet) a possible prevention of metabolic syndrome. 

Additionally, probiotic supplementation on the nutritionally balanced basal diet resulted 

in an alteration in lysine catabolism within the liver, presumably a reflection of 

preferential lysine utilization by the microbes within the GI tract. Finally, probiotic 

supplementation to the basal diet resulted in an increase in intracellular proline 

concentration within the kidney suggesting an alteration in its utilization comparable to 

what was measured within the high fat cohorts (with and without probiotic 

supplementation).  

Through an in-depth analysis of the basal, high fat, and high fat+probiotic 

cohorts, I discovered that with probiotics supplementation, some potentially aberrant 

metabolites identified in the high fat cohort tissues were reverted to levels associated with 

those found in pigs fed a healthy, nutritionally balanced diet. Some of these metabolites 

include those that are associated with restoring processes associated with DNA 

methylation and the removal of toxic by-products of protein putrefaction. In addition, I 

identified possible alterations to glycerophospholipid metabolism and utilization of 

available fatty acids, a reduction in intermediates of the pentose phosphate pathway, and 

potential restoration of steroid biosynthesis. Coupled together, the reversion of the 

intracellular concentration of these metabolites to a level akin to a healthy diet depicts the 

beneficial nature of probiotic supplementation. 
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SPECIFIC AIM 2.4: METABOLIC CHANGES IN PIGS DUE TO WHIPWORM 

(TRICHURIS SUIS) INFECTION. 

Objective: Use metabolomics to characterize the metabolic changes associated 

with various stages of T. suis infection in pigs and demonstrate how changes in certain 

metabolites relate to mammalian inflammatory pathways. 

Introduction 

The autoimmune disorder Inflammatory Bowel Disease (IBD), characterized by 

chronic inflammation of the intestinal tract, affects over 1.3 million people in the United 

States alone
149

. Two of the most widely discussed and common variants of this disease 

are Crohn's and Ulcerative Colitis (UC)
149–151

. Crohn's disease is characterized by the 

continual inflammation of the gastrointestinal tract (from mouth to rectum), 

predominately occurring throughout the intestinal lining of the ileum, resulting in severe 

abdominal pain and diarrhea during symptomatic periods. Alternatively, Ulcerative 

Colitis is characterized by chronic inflammation and ulcers found exclusively within the 

innermost lining of the colon and rectum. As IBD is a chronic disorder, treatments range 

from drug therapies such as anti-inflammatory drugs, immunosuppressants, and/or 

antibiotics (in the case of UC)
151

, to surgical intervention to excise the afflicted portions. 

As the inflammation in UC often occurs throughout the entire colon or rectum, many UC 

patients have to undergo surgery resulting in partial or complete removal of the affected 
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organ. Conversely, inflammation associated with Crohn’s disease occurs in patches; as a 

temporary solution, approximately 50% of Crohn's patients have the damaged portions of 

their intestines removed. While this may abate symptoms, lack of treatment of the 

underlying causes of inflammation result in possible reoccurrence, resulting in more 

surgery to excise the newly afflicted portions
152,153

. Because current therapies are so 

invasive and do not treat underlying biochemical causes of inflammation, researchers are 

exploring alternative approaches to ease patient pain and address IBD etiology.  

One proposed therapy, helminthic therapy, is a treatment that stems from the 

hygiene hypothesis. The theory states that lack of exposure to parasites can increase the 

chance of development of an autoimmune disorder such as IBD
154,155

. Therefore, by 

administering helminths, in particular Trichuris suis ova which cannot reproduce within 

the human host, those who are afflicted with autoimmune disorders will see their 

symptoms subside. There have been several clinical trials involving the use of T. suis in 

IBD treatment
156–160

; current research has established that a continuous dose of 2500 T. 

suis ova is safe and effective in UC and Crohn's patients
161

. 

The helminth used in these trials, T. suis, is a parasitic nematode infectious to 

pigs. Though the natural host is the pig, T. suis has been shown to have immune 

modulating effects on people with IBD
155

. The ova has a characteristic oval shape with 

two polar plugs while the mature worms are long and “whip-like.” The life cycle of T. 

suis is typical to most nematodes and begins once the embryonated egg (ova) is ingested. 

Once ingested, the first infective stage larvae (L1), hatch in the ileum, cecum, and 

proximal colon mucosa (PCM). The larva buries itself into the mucosal lining where it 
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undergoes four subsequent molts. The first molt (L1 to L2) begins at approximately day 

10 post infection, the second, a transition to L3, occurs between days 16-21. At this point 

the worm's posterior emerges from the mucosa. The third and fourth molts, L4 and L5 

(young adult), occur around days 32 and 37. By day 41, the worms are mature adults and 

begin to produce eggs
162

.  

In collaboration with Dr. Joe Urban at the United States Department of 

Agriculture (USDA), the goal of Specific Aim 2.4 was to characterize the metabolic 

changes associated with various stages of T. suis infection in pigs and determine if these 

metabolic changes are related to any inflammatory pathways implicated in the 

development of IBD. To achieve this, I separated the larval lifecycle into three specific 

stages. The first stage corresponds to the first and second molt (L1 to L2, Days 1-15). 

The second stage corresponds to the transition into the young adults (L3-L4, Days 16-

37). The final stage corresponds to when the adult worm begins to produce and lay eggs 

(L5, Days 38-53). I then tracked the appearance and levels of the non-volatile metabolites 

identified from gastrointestinal tissue (Jejunum, Ileum, and Proximal Colon Mucosa 

(PCM)) and fecal material (Jejunum, Ileum, and PCM) (Figure 59). The data was 

acquired using an Agilent 6530 LC-QToF, and further processed using principal 

component analysis, hierarchical clustering analysis, correlation networks, and fold 

change analysis. 
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Figure 59. Schematic examining the metabolic alterations as a consequence of T. suis infected stage. 

In this investigation, I examined the alterations to the metabolic composition for the various time points during the 

infection. For clarity, I have broken the investigation down into three stages, comprising of four different time 

points, 32 samples in total. For stage 1, I have Day 10 containing intestinal tissue and content from pigs infected 

with L2 larvae. For stage 2, I have two different time points. Day 21 illustrates the early portion of stage 2 with 

intestinal tissue and content from pigs infected with L3 larvae. Day 35, late portion of stage 2, contains intestinal 

tissue and content from pigs infected with L4 larvae. Finally, stage 3, I have Day 53, containing intestinal tissue 

and content from pigs infected with adult worms.  

 

 

 

Materials and Methods 

For Specific Aim 2.4, the pigs were housed and infected using the T. suis 

infection protocol at the USDA. In addition, all intestinal tissue and content samples were 

collected at the USDA. I exclusively processed the samples and performed the data 

analysis as described in methods below. 

1. T. suis Infection Protocol. 

Adult female worms were cultured in fresh complete Dulbecco's Modified Eagle's 

Medium (DMEM (pH 7.2) supplemented with 250 U/mL penicillin, 250 µg/mL 

streptomycin, 0.625 µg/mL amphotericin B, 400 µg/mL chloramphenicol at 
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approximately 20 worms/mL. Plates were stored in a 37 °C incubator with 10% CO2 in 

air and left undisturbed for 24 hours. The adult worms release eggs into the media which 

were then harvested by centrifugation, washed in PBS with antibiotics, and maintained at 

room temperature for 45-60 days to allow development of infected larva inside the egg. 

The pigs were then inoculated with 2,000 - 20,000 eggs/per pig depending on the age of 

the pig and amount of larvae or adult worms that were needed. Following the specified 

infection duration, the pigs were euthanized and their organs were collected. The worms 

were removed from the intestines and their physiology was recorded. The tissue samples 

were stored at -80 °C until they are ready to be analyzed.  

2. Sample Preparation.  

Using liquid nitrogen to keep the tissue samples frozen, the samples were ground 

into fine powder using a TissueLyser II (Qiagen, Germantown, MD) then weighed into 

pre-chilled microcentrifuge tubes (∼100 mg aliquots). The powdered tissues were then 

extracted using a methanol:water solution (1:1), added in a ratio of 3 μL of solvent/mg 

frozen tissue. The sample was vortexed, sonicated at room temperature for 5 min, 

clarified by centrifugation (15 min at 16.1 rcf), and the supernatant collected, filtered 

using Supelco (54145-U) Iso-disc, N-4-2 nylon, 4 mm x 0.2 µm filters (Sigma-Aldrich), 

and transferred to high-recovery amber vials (Agilent Technologies, Inc., Santa Clara, 

CA). 
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3. UPLC-QToF Analysis. 

Samples were analyzed using an Agilent 1290 Infinity UPLC equipped with a 

C18 column (Zorbax Eclipse XDB-C18, 2.1 x 100 mm, 1.8 µm) and coupled to an 

Agilent 6530 QToF and data was acquired in ESI positive and negative modes. The 

mobile phase was dispensed by a binary pump at a flow rate of 0.4 mL/min. In ESI 

positive mode, solvent A was composed of LCMS Grade Water + 0.1% v/v formic acid 

(Proteochem, Loves Park, IL) and solvent B was composed of HPLC Grade Methanol + 

0.1% v/v formic acid (Fisher Scientific). In ESI negative mode, solvent A was composed 

of Milli-Q Water + 0.01% v/v formic acid and solvent B was composed of HPLC Grade 

Methanol + 0.01% v/v formic acid (Fisher Scientific). Regardless of the ESI mode used, 

the solvents were dispensed over a gradient: 0 min 2% solvent B, 10-14.5 min 100% B, 

14.51-16.50 min 2% B. The flush port was set to clean the injection needle for 2 seconds. 

The column was maintained at an isothermal temperature of 50 °C. Mass spectrometric 

analysis was performed by the QToF and the ESI source was set for a detection mass 

range from mass-to-charge ratio (m/z) 100-600 and a scan rate of 1.67 spectra/sec. To 

achieve accurate mass correction, a dedicated isocratic pump continuously introduced 

reference standards of purine (Agilent Technologies, Inc.) and hexakis-H, 1H, 3H-

tetrafluoropropoxy-phosphazine, or HP-921 (Agilent Technologies, Inc.) at a flow rate of 

0.5 mL/min. The nebulizer pressure was set at 45 psi with a sheath gas temperature of 

350 °C and a gas flow rate of 11.0 L/min. The drying gas temperature was set at 325 °C 

with a flow rate of 10.0 L/min. For tandem MS analysis, the collision energy varied 

between 10, 20, and 40 eV. The data was acquired using Agilent Technologies' 



149 

 

MassHunter Acquisition SW Version, 6200 series ToF/6500 series Q-ToF B.05.01 

(B5125.1). 

4. Data Processing, Chemometrics and Statistical Analysis 

Molecular features were identified in the raw chromatograms using Agilent 

Technologies' MassHunter Qualitative Analysis software (ver B.06.00). Molecular 

features and their relative abundance (peak height) were tabulated using Agilent 

Technologies' Mass Profiler Professional software (ver 12.6), resulting in a metabolomics 

data set containing the features identified by reversed phase ESI positive and reversed 

phase ESI negative modes. Metabolites present in ≤9% of the total number of samples 

processed were treated as one-offs and were removed from the matrix
33

. The score values 

(Equation 1) were calculated for each of the metabolites and filtered to include only 

metabolites appearing in at least 3 of 6 samples in any 1 cohort. The samples in the data 

set were organized by their appropriate infection duration, and the outlier peak area 

values were identified in each cohort using an analysis of (mean-median)/median for each 

analyte and a cutoff value ≥1.5. Outliers were replaced with the median value for that 

metabolite within the cohort. Metabolite peak height values were then standardized 

across the two cohorts by conversion to Z-scores (Equation 3). A Pearson (n) principal 

component analysis was then performed using the standardized metabolite matrices and 

the R statistical package. XLSTAT was used to perform two-sample T tests between 

cohorts for each metabolite. Benjamini-Hochberg critical values were calculated. A 

correlation network was created using the R statistical package. Fold change calculations 

were performed using Microsoft Excel.  
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Results and Discussion 

1. Data Preparation 

Following data acquisition by the LC-QToF, molecular features were acquired via 

Agilent Technologies' MassHunter Qualitative Analysis software as illustrated in Specific 

Aim 1: Step 1 of the metabolomics pipeline for every MS acquired data. Following the 

extraction of molecular features, an all-inclusive metabolite data set was then compiled 

for each tissue and content, from each member of the four cohorts, containing a grand 

total of 331,407 molecular features. The data consisted of four infection time points along 

the three stages of infection as illustrated in Figure 60, with a total number of 32 samples 

per tissue and content type. For Stage 1, the time point was Day 10 post infection (6 

samples) and consisted of pigs with L2 larvae. For Stage 2, there are two different time 

points examining the early and late portions: Day 21 post infection (6 samples) 

constituted early stage 2 with pigs infected with L3 larvae while Day 35 post infection (8 

samples) constituted late stage 2 with pigs infected with L4 larvae. Finally, for stage 3, 

the time point was Day 53 (12 samples) which consisted of pigs infected with adult 

worms. 
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Figure 60. Timeline indicating the four infection time points used when examining T. 

suis disease progress.  

The timeline shown above illustrates the four infection time points samples used for this 

analysis. Each time point contains a unique T. suis and belongs to one of the three 

infection stages used for this analysis as previously shown in Figure 59. See text for 

additional information. 

 

 

 

 

 

 

 

 

 

As each time point did not include the same number of samples (minimum 

number of samples: 6; maximum number of samples: 12; total number of samples: 32); I 

restricted the analysis to include only those features detected in 3 of 6 pigs within one 

cohort, 3 of 32 overall. Due to the filtration process, the data set was constrained to 

include between 2520-3507 (grand total of 18036) molecular features within the six 

different intestinal tissue and content types analyzed, a significant reduction from the 

initial total. 

2. Multivariate Statistical Analysis and Data Visualization 

Due to the large number of molecular features acquired, I began my analysis by 

generating high resolution, focused PCAs of the intestinal tissue and content to examine 

the disease progression (Figure 61). The PCA plots depict significant alterations to the 

porcine intestinal tract as the disease progresses. During the initial stage of infection, L1 

larvae hatch from the eggs and adhere to the porcine intestinal mucosa in the ileum, 

cecum, and proximal colon where they undergo their first molt into L2. In the subsequent 
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Figure 61. Disease Progression and the resulting intestinal tissue and content metabolome. 

A total of 32 pigs were distributed among the four distinct time points (Day 10 post infection, Day 21 post 

infection, Day 35 post infection, and Day 53 post infection). The three dimensional PCA plot depicts the 

alterations in the metabolic profile obtained from each of the four time points. Each sphere on the plot reflects 

the metabolome of the pig intestinal tissue or content sample. Spheres are colored as indicated in the figure. The 

analysis was confined to molecular features appearing in a minimum of 3 of 6 pigs in any one of the four pig 

cohorts.  

stages of infection, larvae molt from L2 into L3, at which point the posterior ends of the 

larvae begin to extend out of the mucosa, and into L4, as they transition into adult worms.  

 

 

 

 

 

 

While all individual time points are distinct from the others, the two second stage 

cohorts are more tightly clustered in the PCA plots, demonstrating a greater similarity in 

their overall metabolome composition relative to the other time points (Days 10 and 53). 

The only exception to this trend is found in the ileum content where Day 10 and Day 21 
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are most tightly clustered. This is expected as the L2 larvae in Day 10 will molt into the 

L3 larvae of Day 21 within the intestinal mucosa of the ileum. Notably, within the tissue 

and content of the ileum and proximal colon mucosa, the relative positioning of the 

spheres are in counter-clockwise order as the infection progresses from stage 1 through 

stage 3. Finally, while it appears there is only one sphere for each time point, the PCA 

plot is a collection of all samples, illustrating minute metabolomic variations occurring 

within each time point. 

While the PCA plots focused on the differences elucidated in the metabolic 

profile, dendrograms focusing on the intestinal tissue and content illustrate the 

similarities between the time points (Figure 62). Interestingly (with the exception of the 

jejunum and PCM tissue), the dendrograms cluster in a similar fashion as the PCA 

ordering from the distant to closest relative, Day 53, Day 10, Day 21 and Day 35. The 

dendrograms again illustrate the relative similarities of the metabolic profile obtained 

from Days 21 and 35 and the differentiation from the Day 53 (adult) profile. This 

clustering pattern is present in all sample types except for the PCM tissue where there are 

two distinct clusters, Days 21 and Days 53 versus Days 10 and Days 35.  
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Figure 62. Dendrogram generated by unsupervised hierarchical clustering of the intestinal tissue and 

content samples according to the similarity of the metabolome composition. 

The intestinal tissue and content samples are labeled in the figure and color coded based on their respective time 

points. Note that without exception, the samples from each time point, cluster together with their respective 

cohort. With the exception of the PCM tissue, the Day 21 and Day 35 cohorts organize into sister clades. It is also 

noteworthy that, with the exception of the jejunum and PCM tissue, the time points all follow the same clustering 

pattern: featuring sister clades Day 21 and 35, followed by segregation of Day 10 and higher Day 53. This 

illustrates the similar transition from adult worm to ova and subsequent molts from L1 to L4. 

 

 

 

Due to the vast amount of positive and/or negative interrelationships amongst the 

metabolites, it was difficult to discern any potential trends in the data set using 

correlation networks (r ≥ |0.99|, Figure 63). When I increased the stringency of the 

correlation value to r ≥ |0.999|, I was still unable to elucidate any potential trends in the 

data. A correlation value of r ≥ |1| was deemed too stringent as there were no more than 7 

metabolites that would appear in any of the networks. Based on this assessment, I 
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determined that correlation networks of r ≥ |0.99| indicated that further analysis beyond 

correlation mapping would be required to elucidate potential trends. While distinct trends 

were difficult to elucidate from the correlation mapping itself, it is clear that the 

relationships between metabolite abundance over time is drastically altered as the 

infection progresses, given the distinctly different maps generated at each time point. 
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Figure 63. Intestinal tissue and content specific metabolite correlation networks for the time points: Day 10, 

Day 21, Day 35, and Day 53. 

For each tissue and content type, Pearson’s correlation coefficients were calculated for metabolites. Positive 

Pearson correlation values, r ≥ 0.99, are depicted as a green line between metabolites, while negative correlations, 

r ≤ -0.99, are depicted as a red line between metabolites. To facilitate comparison of the networks, metabolites are 

represented as a small, alpha numerically labeled circle. Their placement around the circumference of each 

network is fixed among the plots for each intestinal tissue and content. Each individual correlation network is 

representative of the following time points: Day 10 (top left), Day 21 (top right), Day 35 (bottom right), and Day 

53 (bottom left). For all intestinal tissue and content, there is an enormous amount of positive and negative 

interrelationships occurring amongst the metabolites in each cohort. Increasing the stringency stepwise to r  ≥ |1| 

significantly reduced the number of correlated metabolites in each cohort, but did not provide further insight. 

Based on the results presented, I can conclude that the metabolome is significantly altered as the disease 

progresses.  

 

 

 

3. Metabolites Associated with Disease Progression 

Worm maturation through the stages of infection leads to detectable alterations in 

the intestinal tissue and content metabolomes, as evidenced in all six of the intestinal 
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tissue and content samples. That is, stages 1, 2, and 3 are all clearly segregated and 

distinct in the PCA plot. Within every intestinal tissue and content examined, irrespective 

of the infection stage, numerous metabolites were found to be either unaffected, 

significantly increased, or significantly decreased by worm maturation. For each 

intestinal tissue and content sample, I compared the metabolome of all four time points 

culminating in 6 different comparisons (36 total comparisons for all four cohorts): Day 

10 versus Day 21, Day 10 versus Day 35, Day 10 versus Day 53, Day 21 versus Day 35, 

Day 21 versus Day 53, and Day 35 versus Day 53. To focus my attention, I used the 

following cutoff values: |log2 (fold change) ≥ 1.5|, p-valueadj < 0.05, and abundance value 

> 2.4x10
4
, ensuring all significant features were above the baseline. This resulted in a 

grand total of 1477 significant metabolites, with the proximal colon mucosa and ileum 

tissue exhibiting the highest (611 molecular features) and second highest (334 molecular 

features) number of significant features, respectively. Following MS/MS identification, I 

identified a list of 7 metabolites (see Appendix 12 for the associated EICs and TICs) 

associated with intestinal motility and/or inflammatory pathways. Interestingly, all 

metabolites tabulated in Table 5 were exclusive to the stage 2 samples. The metabolites 

presented were all putatively identified via MS/MS and were undetected when compared 

to a concurrent analysis using the collected intestinal tissue and content from control 

(uninfected) pigs at the same time points. The top metabolites of interest are categorized 

into two distinct groups, serotonin metabolism and eicosanoid production, and are 

described in detail below. 
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Table 5. Metabolites exhibiting the greatest degree of change in all tissues and content and associated with 

pathways implicated in intestinal motility and/or inflammation.  

Metabolite Frequency: 

Day 10  

(n = 6) 

Frequency: 

Day 21  

(n = 6) 

Frequency: 

Day 35  

(n = 8) 

Frequency: 

Day 53  

(n = 12) 

Associated 

with: 

Tryptophan 0 5 2 0 Serotonin 

Metabolism134 

12-HETE 0 5 2 0 Eicosanoid 

Production163,164 

6-Keto-

prostaglandin 

F1a 

0 5 3 0 Eicosanoid 

Production163,164 

8-Isoprostane 0 5 5 0 Eicosanoid 

Production163,164 

Niacin 0 6 8 0 Serotonin 

Metabolism134 

5-

Hydroxyindole

acetic acid 

0 3 8 0 Serotonin 

Metabolism134 

15-deoxy-d-

12,14-PGJ2 

0 5 7 0 Eicosanoid 

Production163,164 

Criteria for Selection: Frequency ≥ 60%; -log10(p-value) ≥ 8; |log2(Fold Change) ≥ 1.5|; Median abundance values ≥ 

24000. All metabolites were identified via MS/MS (CID = 10 eV, 20 eV, 40 eV) using Metlin and the Human 

Metabolome Database (HMDB). 
n is equal to the number of samples in each cohort. 

 

 

 

1. Serotonin Metabolism 

The analysis identified an increase in metabolites associated with serotonin 

metabolism (tryptophan, niacin, and 5-hydroxyindoleacetic acid). Approximately 95% of 

serotonin is produced in the intestines
165–167

, where it aids in intestinal secretion and 

motility. Dysregulation of serotonin in the intestines can lead to diarrhea or constipation 

depending on its relative concentration in the body. In addition, serotonin can act as a 

pro-inflammatory molecule, where an increase in its bioavailability results in an increase 

in intestinal inflammation
165–167

. In the first step of the biosynthetic pathway, tryptophan, 

is converted into 5-hydroxy-L-tryptophan
134,166

. The results indicate a significant increase 

in the levels of tryptophan in the Day 21 samples (5 of 6 pigs) when compared to Days 

10, 35, and 53. Conversely, the degradation of serotonin results in the production of 5-
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hydroxyindoleacetic acid, a metabolite that is significantly increased in the Day 35 

samples (8 of 8 pigs) when compared to Days 10, 21, and 53. Finally, there was a 

significant increase in niacin in the Day 21 (6 of 6) and Day 35 samples (8 of 8) when 

compared to Days 10 and 53. As niacin is generated via an alternative tryptophan 

degradation pathway, it is interesting to postulate that its appearance may indicate an 

alteration to potential serotonin levels
134,168

. Further investigation would be required to 

substantiate this claim. 

2. Eicosanoid production 

Eicosanoids (such as 12-HETE, 6-Keto-prostaglandin F1a, 8-isoprostane, and 15-

deoxy-d-12,14 - PGJ2), another important class of intestinal health modulators
163,164

, 

were significantly increased in Days 21 and 35 with respect to Days 10 and 53. While 

eicosanoids are commonly implicated in inflammation, they are also important for 

maintaining intestinal health by modulating epithelial cell proliferation/differentiation 

and inducing contractions and/or relaxation of the intestinal muscle
163,164

. Intriguingly, 

one of the metabolites identified, the prostaglandin 15-deoxy-d-12,14-PGJ2 (15dPGJ2), 

has been shown to decrease in individuals with Crohn's disease
169

. 15dPGJ2 has recently 

been described as an important inhibitor of intestinal epithelial cell proliferation and 

promoter of intestinal epithelial cell differentiation
169

. In addition, this prostaglandin has 

demonstrated anti-inflammatory properties by activating peroxisome proliferator-

activated receptors (PPARs), transcription factors responsible for inhibiting activated T 

cell proliferation
170,171

. Given the potential of using T. suis as a treatment for patients 
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afflicted with Crohn's disease, this metabolite should undergo further study to determine 

if the increase of 15-deoxy-d-12,14-PGJ2 can be attributed to symptom suppression.  

Summary and Additional Examination 

Worm maturation and disease progression has a profound effect on the intestinal 

tissue and content metabolome as depicted in Figure 62-64. According to the fold change 

analysis, the proximal colon mucosa and ileum are particularly sensitive to the transitions 

occurring between larval stages. Interestingly, metabolites associated with mammalian 

inflammation, including serotonin metabolism and eicosanoid production, were identified 

solely within the second stage of infection. Of those identified, the most notable was an 

increase in 15dPGJ2, a prostaglandin which is known to be suppressed in individuals with 

Crohn's disease
169

. As this prostaglandin was present solely during the mid-stages of 

infection, its appearance and disappearance may potentially provide insight into the 

efficacy and longevity of this treatment. This metabolite, 15dPGJ2, warrants further study 

as a potential therapeutic.  

Investigation of the resistant versus susceptible phenotypic metabolome. 

During the maturation to adult worms and late stages of infection, there is a 

development of two distinct phenotypes: those pigs who exhibit high worm burden 

(susceptible) and those who exhibit low worm burden (resistant)
172

. A similar occurrence 

was noted while collecting the samples. While many of the pigs experienced a high worm 

burden (approximately 1000 worms) during the late stages of infection, some were either 

devoid of worms or exhibited less than 60 worms. Throughout the course of infection, 
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these low worm burden pigs, however, still experienced symptoms indicating they were 

infected. Thus, it can be concluded that these pigs were able to clear the infection prior 

the worms reaching adulthood. To investigate this phenomenon, I performed a 

nonvolatile LC-QToF based analysis on the proximal colon mucosa and ileum tissue 

acquired from uninfected pigs and pigs exhibiting a high worm burden (susceptible) or a 

low worm burden (resistant).  

Following the acquisition of the LC-QToF data, I extracted the molecular features 

using Agilent Technologies' MassHunter Qualitative Analysis software, complied the 

data set, and generated an all-inclusive spreadsheet for each tissue studied, containing a 

total of 99,873 molecular features. To filter out the low frequency metabolites, I restricted 

the analysis to include only those tissue-specific molecular features that appeared in a 

minimum of 3 of 5 pigs in any one of the three cohorts, significantly reducing the data to 

a total of 4562 molecular features (2496 in the PCM and 2066 in the ileum).  
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Figure 64. Focused intestinal tissue three-dimensional PCA examining the metabolomic alterations 

that occur as a consequence of worm burden.  

A total of 24 pigs were distributed among three distinct cohorts (uninfected control, low worm burden 

(resistant), and high worm burden (susceptible)). The three dimensional PCA plot depicts the alterations in 

the metabolic profile obtained from each of the three different cohorts. Each sphere on the plot reflects the 

metabolome of the pig intestinal tissue sample. Spheres are colored as indicated in the figure legend. The 

analysis was confined to molecular features appearing in ≥25% and a minimum of 3 of 5 pigs in any one of 

the three pig cohorts.  

 

 

 

Tissue-focused PCA plots (Figure 64) clearly differentiates the metabolome 

amongst the susceptible (high worm burden), resistant, and control (uninfected) samples. 

The first degree of separation occurs along principal component 1, separating the control 

from the infected (high and low worm burden) cohorts; explaining approximately 85% 

and 86% of the variance in the ileum and PCM tissues, respectively. Differentiation 

between the two infection phenotypes (high and low worm burden), occurs along 

principal component 2, however, cohort segregation is achieve by a substantially smaller 

degree of variation (approximately 4% and 7% in the ileum and PCM, respectively). 

To further explore the metabolic variation, I then examined the relationships of 

the metabolites associated within each cohort using correlation networks (r ≥ |0.99|, 
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Figure 65. Intestinal tissue specific metabolite correlation networks for the two different worm burden 

phenotypes and uninfected pigs. 

For each tissue and content type, Pearson’s correlation coefficients were calculated for metabolites. Positive 

Pearson correlation values, r ≥ 0.99, are depicted as a green line between metabolites, while negative correlations, 

r ≤ -0.99, are depicted as a red line between metabolites. To facilitate comparison of the networks, metabolites are 

represented as a small alpha numerically labeled circle and their placement around the circumference of each 

network is fixed among the plots for each intestinal tissue. Each individual correlation network is a representative 

of the following phenotypes: uninfected (control, top left), low worm burden (resistant, top right), and high worm 

burden (susceptible, bottom middle). Based on the results presented, I can conclude that the metabolome is 

significantly altered due to worm burden levels.  

Figure 65). The resulting correlation networks demonstrate the drastic alteration to the 

interrelationships between metabolites when comparing uninfected pigs with high worm 

burden (susceptible) and resistant pigs.  

 

 

 

 

 

 

To elucidate the potential metabolites responsible for these variations, fold change 

analysis was employed with the following cutoffs for inclusion: |log2 (fold change) ≥ 1.5|, 

p-value cutoff of p-valueadj < 0.05, and metabolite abundance > 2.4x10
4
. The resulting 

filtration steps generated a list of 108 molecular features for the ileum (41 molecular 

features) and PCM (67 molecular features). However, upon close examination, it appears 

that many of these molecular features were only detected within a sub-population of each 
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worm burden phenotype. Those molecular features which were deemed cohort specific 

are not currently included in the Metlin or HMDB databases and thus, unidentified.  

Based on the results of this tissue specific analysis, I can conclude metabolic 

variations exist between the resistant and susceptible phenotypes as evidenced in Figure 

65 and 66. While the fold change analysis was inconclusive in determining the source of 

these variations, this analysis showed that there is a sub-population of sample within each 

phenotype, a phenomenon not readily observed within the PCA plot. While it appears 

that the alteration in metabolite abundance may not be factor in phenotype development, 

the correlation networks depicted grandiose alterations to the metabolic interactions 

occurring within each cohort. Thus, indicating that metabolomic variations between the 

two phenotypes may be a reflection of altered flux through metabolic pathways. Though 

this is speculative, further research should be performed to determine if any metabolic 

markers exist in other tissues, or if any genomic or proteomic information can be derived 

from the two phenotypes. 
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CONCLUSIONS 

The goal of this research project was to develop and employ a metabolomics 

pipeline to visualize and compare the metabolomes of biological systems. Through the 

use of four different research investigations, I was able to refine the pipeline to 

incorporate the needs presented in each project. In Specific Aim 2.1, I used binary plots 

as an electronic noise to successfully differentiate mVOCs from biothreat agents, 

including those with kanamycin resistance, using hSPME as an extraction method. In 

Specific Aim 2.2, a GC-MS analysis was used to differentiate the VOCs exuded from the 

human fecal metabolome of healthy and alcoholic patients. This investigation revealed 

the analytical power of fecal metabolomics to identify alterations to the gastrointestinal 

tract as a result of chronic alcohol consumption. In Specific Aim 2.3, a LC-MS analysis 

was used to determine the cumulative effects of probiotic supplementation and dietary 

consumption on the Ossabaw pig. The analysis demonstrated the grandiose alterations to 

the global tissue metabolome and demonstrated the need for additional filtrations to 

properly analyze a multi-cohort and multi-tissue investigation. Finally, in Specific Aim 

2.4, a LC-MS analysis was used to characterize the metabolic alterations induced by T. 

suis infection on the intestinal tract of pigs, as a function of the whipworm life cycle and 

the metabolic variations that can lead to a resistant phenotype. This study was the first 

introduction into a predominately targeted metabolomics analysis and demonstrated that 
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this current pipeline can be employed to both global and targeted metabolomics 

investigations. 

Ultimately, this iterative approach to method development provided a 

metabolomics pipeline that incorporates many of the commonly used statistical tools 

while remaining adaptable to the multitude of different investigative techniques 

employed by the field. Although it is critical to state that each statistical analysis has its 

own limitations, a suitable combination of chromatographic and spectral analysis with the 

proper statistical tools can be employed for most metabolomic investigations.  
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APPENDIX 1 - GENERATING AN EXCEL SPREADSHEET 

Generating a spreadsheet from LCMS Data 

1. Raw data is opened in the Qualitative Analysis software. 

2. Under the Method Explorer tab, click on the section called "Find Compounds" 

i. Select Find by Molecular Feature 

ii. Under the extraction tab, the target data type should state "Small molecules 

(chromatographic)" 

iii. Click on the play button (Find Compounds by Molecular Feature) 

3. Highlight all the compounds identified 

4. Return to the Method Explorer tab, click on the section called "Identify Compounds" 

i. Select Generate Formulas 

a. Under the charge state tab, the isotope model should state "Common organic 

molecules" 

b. Click on the play button (Generate Formulas from Compound) 

5. Now you will need to export your file as a cef file. 

i. Click on File -> Export -> as CEF 

6. Start Mass Profiler Professional 

i. i. Select 1 of the 3 choices: Create new project, Open existing project, Open 

recent  project 
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ii. Create a new experiment 

a. Name the experiment 

b. Experiment type: Combined (Identified + Unidentified) 

c. Workflow type: Analysis: Significance Testing and Fold Change 

iii. Select the Data files you would like to import (.cef files you just created) 

iv. You may choose to reorder your samples 

v. Add a parameter 

a. Name the parameter 

b. Parameter type: Non-Numeric 

d. Under Parameter values, double click and type in the name of the cohort for 

that sample -- continue this until all samples are in their respective cohorts 

e. click ok 

vi. Under abundance filtering - select the minimum absolute abundance (default is 

5000 counts) 

vii. Under Normalization Algorithm - select none 

viii. Under Baselining options - select none 

ix. Click finish 

x. Under Experiment Grouping highlight the parameter you created. 

xi. Under Filter by Frequency 

xii. Filtering Conditions - Click on re-run filter. 

a. Retain entities that appear in at least 80.0% of samples in at least 1 condition 

xiii. Select IDBrowser Identification 
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a. Compound Selection -> Identify all compounds 

b. Compound identification methods 

1. Database Search 

2. Molecular formula generator (MFG) for only unidentified compounds 

c. Once completed, click on Save and Return 

xiv. Click on Finish 

7. Under the analysis folder, highlight "filtered by frequency" --> right click and select 

export list 

i. Under interpretation select "All Samples" 

ii. Select Raw Signal Values and Entitylist Data 

iii. Columns to include: Compound Name, Frequency, Ionization Mode, Metlin ID, 

Retention Time, Mass, Alignment Value, Annotations, CAS number, ChEBI ID, 

Composite Spectrum.  

iv. Click on OK and save your file 
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Figure 66. Analyze GC-MS Data screen for AMDIS. 

Generating a spreadsheet from AMDIS using GCMS Data 

1. Open AMDIS 

2. Click “File” and then “Open.” Load appropriate file. 

a. Tip: If the file looks like a folder, it is corrupted and AMDIS will not be able 

to analyze it. 

3. Go under “Analyze” and click “Analyze GC/MS Data.” You will see a window 

popup that looks like the following (Figure 66): 

 

 

 

 

 

 

 

 

 

 

 

 

4. Click “Settings” and check to make sure the settings match the following and click 

save: 

i. Identification Tab 
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a. Minimum Match Factor: 60 

b. Only check off: "Multiple Identifications Per Compound" 

c. Type of analysis: Simple 

ii. Instrument Tab 

a. Check off the Auto boxes for both Low M/Z and High M/Z 

b. Threshold: Off 

c. Scan Detection: High to Low 

d. Instrument Type: Quadrupole 

e. Data File Format: Agilent Files 

iii. Deconvolution Tab 

a. Component width: 12 

b. Uncheck: omit m/z 

c. Adjacent Peak Subtraction: One 

d. Resolution: Medium 

e. Sensitivity: Medium 

f. Shape Requirements: Medium 
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iv. Library Tab 

a. MS libraries/RI data: Target Compounds Library 

v. QA/QC Tab 

a. Uncheck Solvent Tailing 

b. Uncheck: Column Bleed 

vi. Scan Sets Tab 

a. Number of sets: 0 

5. Click “Run” 

6. Go under “Analyze” and click “Search NIST Library.” Check to make sure the 

settings match the following (AMDIS will automatically substitute your file name for 

the one pictured here (Figure 67)): 
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Figure 67. Search NIST Library - Parameters screen on AMDIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Click “Analyze”’ 

8. Go under “File” and click “Generate Report.”  

i. “Append to report file” will need to be unchecked every time you generate a 

report.  

ii. Next to “Report File” there should be a file name. Click the […] next to the name, 

name your file appropriately, and click “Open.” 

9. Click “Generate” 
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APPENDIX 2 - METABOLOMICS ANALYSIS PIPELINE 

What you will need: 

1. Excel with an XLSTAT plug-in 

2. R (can use either R or Rstudio) 

i. Libraries in R 

a. rgl - 3d PCAs 

b. pheatmap - heatmaps (dendrogram), correlation heatmap 

c. qgraph - visualize correlation network 

Key Shortcuts 

1. To select all of the numbers in a given area: 

i. CTRL+Shift +Directional Arrow 

2. Jump back and forth on different sides of the data sheet 

i. CTRL+directional arrow 

3. To keep the value in a cell fixed in an equation, use a dollar sign to keep the value for 

that cell fixed. 

i. =IF(C2<1,C$18,C2) 

Data Preparation 

2. Open the raw data and copy and paste the information into a second sheet.  

i. Label the first sheet as "infile" 



175 

 

ii. Label the second sheet as "frequency" 

2. Create a distribution plot to visualize the metabolite's frequency 

i. Go to the “infile", copy the data and paste it into the "frequency" sheet. 

ii. Calculate the frequency for each cohort and the total frequency 

  Equation: =COUNTIF(____:___,">0") 

  the “___” is the cell values that need to be specified for the range; ex:  

  B2:B32 → tells Excel to refer to cells from B2 to B32 

iii. Calculate the score value for each metabolite (Equation 1) 

iv. Create histogram 

a. Select data 

b. Select “Column” 

c. Right click on any bar in the graph to edit the data set under: “Select Data” 

v. Determine your frequency cutoff and score value cutoff.  

vi. Filter your data to reflect those cutoff values.  

vii. Copy and paste the data into a new sheet called “Frequency Filtered”   

3. Populate any missing values with the median value of that analyte for that cohort 

(Figure 68). 

i. Calculate the median 

ii.  Open a new sheet and rename it "Median Replacement" 

iii. In the sheet, use the equation:  

=IF(ISBLANK(SHEET1cell), SHEET1medianvalue, SHEET1cell) 
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Figure 68. Example Median value. 

iv. Simply drag down to impute the values and drag across to complete the whole 

table  

v.  Repeat for any other cohort 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Remove Outliers 

ii. Calculate Mean for each cohort 
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iii. Calculate Median 

iv. Calculate the outlier equation value (Equation 2) 

a. Highlight the cells that don’t meet this criteria (<1.5) 

v. Replace the outlying value with the median and highlight that cell! 

5. Highlight and Remove Duplicates - common in the AMDIS generated spreadsheets 

i. Select one row of values at a time 

ii. Go to the “Home” tab > “Conditional Formatting” tab in the top panel  

iii. Select “Highlight Cells” > “Duplicate Values” 

iv. Repeat for the next 2 rows 

v. Select the whole cohort (including the metabolite labels) > sort data again, using 

 the top row 

vi. Select all of the data for both cohorts 

vii. Sort the data by clicking on the icon “AZ” > “Custom Sort” 

viii. Click on “Options” button on the bottom of the dialog box 

ix. Select “sort right to left” 

x. Sort according to the first sample’s data (1st row) 

xi. Whenever you find a replicate, cut the whole column of cells, and “insert cut 

cells” into a new sheet entitled: “removed replicates” 

xii. Repeat until all replicates have been removed 

xiii. Copy the completed table, and rename the copy “with replicates removed” 

xiv. Make another copy of this sheet and rename: “Standard Values” 

6. Standardize the data and save it as a .csv (Equation 3)(Figure 69) 
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Figure 69. Z-score standardization. 

 

i. Calculate the mean for that metabolite 

ii. Calculate the standard deviation for that metabolite 

iii. Standardize the value 

iv. Copy all of the newly calculated standard values with their ID and metabolite 

names into a new sheet entitled: “Standard Values”  

 

 

 

 

 

 

XLSTAT Analysis 

 Can use XLSTAT plugin for Excel or R 

PCA 

1. Turn on the XLSTAT plugin 
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2. In the first toolbar select “Analyzing Data” 

3. In the second toolbar select “Principal Component Analysis (PCA)” 

4. Select the “Observation/Variable Tables” 

i. Select all of the Metabolite names and values 

5. Select “Observation Labels” 

i. Select from “Sample” to the last patient ID 

6. Make sure that: 

i. “Sheet” is selected 

ii. PCA type is: “Pearson (n)" 

iii. Under the “Outputs” tab > Significance level is “5” 

iv. Under the “Charts” tab > under the “Biplots” tab > make sure all are selected 

7. The new PCA should appear in the “PCA” tab 

Squared Cosines Table 

*Note: you may want to look at F1, F2, and F3 values separately. 

1. Refer to the newly generated “PCA” sheet and look at the “Squared Cosines of 

 Variables” 

2. Copy the F1-F3 values and paste them into a new sheet entitled: “Squared Cosines” 

3. Next to this new column of data, calculate the sum of the F1-3 values 

Equation: =SUM(____:_____) 

4. Copy the entire data table (metabolite names, F1, F2, F3 values, and the SUM), and 

paste it in the next column 

5. Then select all of the data in this new table, and Sort the data by SUM 
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i. Go to the “Sort” button (AZ) in the top menu bar 

ii. Select “Custom Sort” 

iii. Sort according to the column “Sum”, and set the values from: “Largest to 

Smallest” 

6. Then select the top 5 metabolites found in the table, and simply paste them on the 

side along with their Sum (F1-3) values 

R Analysis 

After opening R, set your working directory. You may do this by the simple command: 

 setwd("directorymap") 

 example:  

 setwd("C://Users/Lab/Rfiles") 

You may also do this by clicking on File -> change dir...  Then click on the file you want 

and hit ok! 

Coding PCA plots in R 

1. Open your file. 

data <- read.csv ("filename.csv", header = T, row.names = 1) 

*note: you will want to put in your file name in the " " (don't forget the .csv), header will 

be the first row of your excel file denoting sample and metabolite names, row.names is 

when the first column of your spreadsheet has sample names 

2. To examine your data: 

head(data) 
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3. Calculate the principal components. 

example: pca <- prcomp (na.omit(data[1:20,], scale = T)) 

*note: you will not be able to set scale to true if you have any metabolite columns all 

labeled as 1. [1:20,] is the row numbers (in this example I have 20 rows). If you want 

column numbers it would be [,1:20] -- note position of the comma. na.omit removes any 

blank cells. Princomp CANNOT be used in this case since there are 20 rows and 3823 

columns. Princomp can ONLY be used if columns are smaller than rows.* 

4. Pull up the PCA output. 

summary(pca) 

5. Plot 2d plot of pc's 1 and 2. 

plot(pca$x, xlab = "PC1 (%)", ylab= "PC2 (%)") 

*note: do not forget to put the actual percentages in the labels 

6. Color the points -- color coding the cohorts. 

points(pca$x[1:5,], col = "red") 

*note: repeat for all rows changing the color for each cohort 

7. f desired, add a legend. 

legend(locator (1), title ="cohorts", c("cohort1","cohort2"), fill = c("red", "blue") 

*note: locator(1) allows you to click on where the legend goes. c("cohort1") refers to the 

variables that are colored, and fill allows you to colors the boxes for those variables 

3D PCA plot 

Make sure to install your package - you will want rgl - this one allows you to rotate your 

plot! 
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1. Open rgl. 

library(rgl)  

2. Input your PC data.  

ttt = textConnection(" 

sample,x,y,z 

 1, value,  value, value  

2,  value, value, value 

3, value,  value,  value  

4,  value, value, value  

5,  value, value, value  

6,  value, value, value  

") 

*note: To get the numbers (here labeled as value) listed below, you will first want to 

calculate the pca values like you would create the 2d plot. Then type head (pca) or what 

you saved your pca values as -- x y z refers to pc1, pc2, and pc3 respectively. Sample 

refers to the sample used - you will need this if you want to label your points later on! 

You will need to actually put a number where it says value - do not leave it saying value! 

3. Set the colors. 

colors = c('orange','orange','orange','blue','blue', 'blue')      

4. Read the table line by line, column by column. 

pca<-read.table(ttt, header = TRUE, sep = ",")  

5. Plot the graph - you will need to put the actual percentages in the labels. 
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p3d<-plot3d(pca$x, pca$y, pca$z, xlab="PC1 (%)", ylab="PC2 (%)", zlab="PC3 

(%)", type="s", size=3, col = colors)  

6. If desired, label the points.  

p3d<-text3d(pca$x,pca$y,pca$z,pca$sample, adj=1.5, font = 2)   

*note: adj relates to the position of the labels where 0.5 is center, font refers to the style. 

font = 1 (standard); font = 2 (bold); font = 3 (italics); font = 4 (bold and italics).  

7. Save your graph.  

rgl.snapshot ('filename.png', fmt = "png", top ="TRUE") 

*note: You can do this multiple times at multiple angles just change the filename. rgl will 

only recognizes png. 

Pairs plot 

1. Color based on samples (assuming the sample names are going down a column). 

cols <-character(nrow(data)) 

*note: Here data represents what you saved your table as it was read into R 

2. Set up colors (you can use whatever colors you want, just keep it consistent) based on 

the row number. 

i. Set up a case where the point(s) do not fall into the described row numbers. 

 cols[] <- "blue" 

ii. Describe the row numbers and setting them to equal a color. 

 cols[2:16] <-"red" 

 cols[17:35]<-"green" 
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 *note: No "," is needed after the row numbers since at the beginning R was told 

that only rows will be used (eg. normally [2:17,] is used to describe a row in the 

matrix) 

3. Plot the pairs plot. 

pairs(pca$x[,1:5], pch = 16, col=cols) 

*note: This assumes that the pca calculation was performed in R and resulting value 

had a scalar variable of pca. In addition, [,1:5] states that pcs 1 -> 5 will be plotted. 

Finally, pch describes the point's shape and cex describes the points size. Please see 

http://www.statmethods.net/advgraphs/parameters.html for more information on 

which number goes with which shape! 

Saving data to a .csv file 

example: correlation matrix 

1. Read in the csv file. 

data <- read.csv("filename.csv", header = TRUE, row.names = 1) 

*note: Make sure you have set your working directory so R knows where to look! 

2. Calculate the correlation.  

q <- cor(data) 

q <- cor(data, method = "pearson") 

*note: This defaults to pearson method but you may choose the method (spearman, 

kendal or pearson). 

3. To see the output in the R command line: 

head(q) 
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4. Write the data out as a csv file. 

write.csv(q, file = "correlated.csv") 

Generating a Dendrogram 

1. Read in the csv file. 

data <- read.csv("filename.csv", header = TRUE, row.names = 1) 

*note: Make sure you have set your working directory so R knows where to look! 

2. Open pheatmap. 

library(pheatmap) 

3. Perform an unsupervised hierarchical clustering analysis. This will create a heatmap 

using the data. 

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000", 

"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE, 

clustering_distance_rows = "correlation", clustering_distance_cols ="correlation", 

clustering_method = "ward", width = "48", height = "48", fontsize_col="2", 

fontsize_row="6") 

*note: There are other clustering methods to use. Different examples of the methods are 

shown below and should be tried. The changes are highlighted. 

 

Clustering Distance Method: Euclidean 

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000", 

"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE, 

clustering_distance_rows = "euclidean", clustering_distance_cols ="euclidean", 
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clustering_method = "ward", width = "48", height = "48", fontsize_col="2", 

fontsize_row="6")  

 

Clustering Distance Method: Maximum 

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000", 

"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE, 

clustering_distance_rows = "maximum", clustering_distance_cols ="maximum", 

clustering_method = "ward", width = "48", height = "48", fontsize_col="2", 

fontsize_row="6")  

 

Clustering Distance Method: Manhattan 

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000", 

"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE, 

clustering_distance_rows = "manhattan", clustering_distance_cols ="manhattan", 

clustering_method = "ward", width = "48", height = "48", fontsize_col="2", 

fontsize_row="6")  

 

Clustering Distance Method: Canberra 

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000", 

"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE, 

clustering_distance_rows = "canberra", clustering_distance_cols ="canberra", 
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clustering_method = "ward", width = "48", height = "48", fontsize_col="2", 

fontsize_row="6")  

 

Clustering Distance Method: Binary 

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000", 

"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE, 

clustering_distance_rows = "binary", clustering_distance_cols ="binary", 

clustering_method = "ward", width = "48", height = "48", fontsize_col="2", 

fontsize_row="6")  

 

Clustering Distance Method: Minkowski 

pheatmap(as.matrix(data), color = colorRampPalette(rev(c("#FF0000", "#000000", 

"#00FF00")))(100), cluster_rows = TRUE, cluster_cols = TRUE, 

clustering_distance_rows = "minkowski", clustering_distance_cols ="minkowski", 

clustering_method = "ward", width = "48", height = "48", fontsize_col="2", 

fontsize_row="6")  

Creating a Correlation Network 

1. Read in the csv file. 

data <- read.csv("filename.csv", header = TRUE, row.names = 1) 

*note: Make sure you have set your working directory so R knows where to look! 

2. Open qgraph to generate the correlation network. 

library(qgraph) 
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3. Plot your correlation network. 

b<-qgraph(cor(data), minimum = 0.9, layout = "spring", label.cex = 0.75, 

label.scale = FALSE, esize = 3, borders = FALSE, label.color = "navy") 

*note: minimum = the min correlation value you want plotted; layout - can be either 

circular which will place the nodes in a circle and link each node with the same distance 

or spring which plots the nodes and the distance between the nodes is determined by the 

weight of the edges, defaults to circular; label.cex - this is the size of your node's label; 

label.scale - determines whether or not your label is scaled to the node's size - defaults to 

true; esize - the size of the edges (lines); borders - whether or not you want borders 

around your nodes - defaults to true; label.color - color of your label. defaults to black 

Fold Change 

1. Copy the data from the table: “with replicates removed”, into a new sheet entitled: 

“Fold Change” 

2.  If a cohort has a metabolite that is completely missing from all the samples of the 

cohort, replace the missing values with a value of 1. 

3. Then calculate: 

i. Median of Cohort 1  

 Equation: =MEDIAN(__:__) 

ii. Median of Cohort 2  

 Equation: =MEDIAN(__:__) 

iii. Fold Change 

 Equation: =(Median Infected values/Median Healthy values) 
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iv. Fold Change of log base 2 

Equation: =LOG(Fold Change value,2) 

P Values 

1. Create a new sheet entitled: “P-Values”. 

2. Copy the data from the file: "with replicates removed" and pass it into the new sheet 

3. Beneath each column enter the following formula: 

 Equation: =XLSTAT_TTest(C3:C13,C14:C28,,0,TRUE,TRUE) 

4. Then, to be sure the values remain the same when XLSTAT is off, copy the values 

generated. 

5. Use the function: "Paste Special" to insert the values into this new line. 

LC-MS Identification 

1. Retrieve the Retention time, and Composite Spectrum data for each of your top 

metabolites. (This data should be found within your original raw spreadsheet that you 

obtained from MPP). 

2. Open the corresponding Raw Chromatogram files for 10 eV, 20 eV, and 40 eV as it 

relates to your samples.  

3. Scan the files for your top metabolites using the retention time and their m/z values.   

i. Once you have located your compound, copy the m/z data which includes the 

mass and their intensities. If you cannot find your compound, denote that on the 

spreadsheet as the sample may need to run again.  

6. Repeat this process for 10, 20, and 40 eVs for each metabolite. 
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7. Once you have your m/z and intensity table set up, go to Metlin 

(https://metlin.scripps.edu/index.php) and hover over Metlin, and click on MS/MS 

spectrum match. You may also want to use the Human Metabolome Database 

(HMDB) (http://www.hmdb.ca/). 

i. In Metlin, where it says peaks, copy and paste your m/z, intensity data there. 

Include all data above 5%. Your precursor ion tolerance = 100ppm, and your m/z 

tolerance = 0.1Da. Set to collision energy to the correct one that corresponds to 

your data and make sure to select the appropriate mode. Under precursor m/z use 

the value that you found while scanning the chromatogram. Finally, select Find 

Metabolites.  

 *note: The Metlin Scoring is an X-Rank Algorithm
173

. This algorithm first sorts the peak 

intensity of the spectrum and then establishes a correlation between the two spectrums. It 

then computes the probability that a rank from an experimental spectrum matches a rank 

from a reference library spectrum.  

Roc curve  

1. Use GraphPad Prism to make the Roc curve.  

2. When you first open graph pad, under New table & graph, click on Column, and pick 

the scatter plot option.  

i. Then click create.  

3. In your data table separate the data of your metabolite of interest into different 

columns: Ex Treatment and Control.  
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 Make sure to label your metabolite on the left hand side of the page.  

4. At the top of the page, under the analysis, click on “= Analyze". An Analyze Data 

page will open up. 

5. Under Column analyses, click on ROC Curve.  

6. On the right, make sure all boxes next to your cohorts are checked.  

7. Click OK.  

8. The next page that comes up is Parameters: ROC Curve. 

i. Make sure to double check that your patient and control values are set right, to 

match your data.  

ii. Set the confidence interval to 95%. 

iii. Report result as: Fraction.  

iv. New graph: check both boxes for line of identity and create a new graph of 

results.  

v. Click OK.  

9. Your graph should have been created now. 

i. On the left, under Results you can look at the area under the curve.  

ii. On the left, under Graphs, you can see the ROC curve of your data.  
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10. To get rid of the data points right click on a data point > format entire data 

set>symbol size>0. 

11. Double click on the “Y title” to change it to “Sensitivity.  

*Instructions to superimpose 2 or more metabolites of interest.  

12. Make a copy of the ROC curve graph one of your top metabolites of interest : Right 

click on the name on the left of the page and click duplicate, make sure to rename it. 

13. At the top of the page, under the “Change” tab click on “Format axes (range, custom 

ticks, gridlines etc). 

i. Click on the “Left Y axis” tab.  

ii. Under “range”, make sure the maximum is 1.0, then click ok.  

14. At the top of the page under “Change” click on “Add or remove data sets, and change 

their front to back or left to right order .” 

i. Go to the “Data Sets on Graph” tab.  

ii. On the right hand side click on “Add”.  

iii. Scroll down to the “Roc of [metabolite] and click on the sensitivity of the 

[metabolite] to add it to the curve. Do this until you have added all the metabolites 

you need.  

iv. Click OK. 
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15. Make a key to your graph: 

i. On the right hand side, replace the “Sensitivity” labels with the names of your 

metabolites. 

ii. To change the color of each one, right click on a data point > format entire data 

set> line/curve color> pick a color.  

iii. To get rid of the shapes on the line right click on a data point> format entire data 

set> shape size> 0.  

16. Make a new column in your Excel Spreadsheet titled "Total Data Analysis" called 

ROC Curve Values and place the values into your spreadsheet. 
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APPENDIX 3 - SCILAB SCRIPT FOR BINARY PLOTS 

M = [ insert your binary matrix here]; 

M=M*(color("white")-color("black"))+color("black"); 

 Matplot(M) 

 

Example: 

M = [0 0 0 0 0; 

0 0 0 0 0; 

1 0 1 0 1; 

1 0 1 0 1; 

0 0 0 0 1; 

1 0 1 0 1; 

0 0 0 0 0; 

0 0 0 0 0; 

1 0 1 0 1; 

1 0 1 0 1; 

1 0 1 0 1; 

0 0 0 0 0; 

0 0 0 0 0; 

0 0 0 0 0; 

0 0 0 0 0; 

1 0 1 0 1; 

0 0 0 0 0; 

0 0 0 0 0; 

0 0 0 0 0; 

1 0 1 0 1; 

0 0 0 0 0; 

0 0 0 0 0; 

0 0 0 0 0; 

1 0 1 0 1; 

];  

 

M=M*(color("white")-color("black"))+color("black"); 

Matplot(M) 
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APPENDIX 4 - PERL SCRIPT FOR AUTOMATED BINARY PLOTS 

The script below will take in binary results for multiple fibers, combine the 

results, compare those results it to a blank subtracting out peaks attributed to a blank, and 

generate an image. The script can be changed to take in any filename, increase or 

decrease the number of fibers, and increase or decrease the retention time windows. 

 
#!/usr/bin/perl 

 

use 5.12.3; 

use strict; 

use warnings; 

use diagnostics; 

 

# Open csv file, compare to blank, set window for retention time,  

# subtract the blank --  

# If the blank peak was there then set = 0 if not then =1.  

# 1 means a bar and # 0 means no bar 

 

# parsing csv 

 

# Fiber 1 

 

# Sample 

my $file1 = 'filename_for_fiber1_sample.csv'; 

my @file1 = (); 

open (my $fh1, '<', $file1) or die "Can't read sample file!: $!\n"; 

while (my $line = <$fh1>) { 

  chomp $line; 

  my @fields = split ",", $line; 

  push @file1, $fields[1]; 

} 

 

#Blank 

my $file2 = 'filename_for_fiber1_blank.csv'; 

my @file2 = (); 

open (my $fh2, '<', $file2) or die "Can't read blank file!: $!\n"; 

while (my $line = <$fh2>) { 

  chomp $line; 

  my @fields = split ",", $line; 
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  push @file2, $fields[1]; 

} 

 

# Fiber 2 

 

# Sample 

my $file3 = 'filename_for_fiber2_sample.csv'; 

my @file3 = (); 

open (my $fh3, '<', $file3) or die "Can't read sample file!: $!\n"; 

while (my $line = <$fh3>) { 

  chomp $line; 

  my @fields = split ",", $line; 

  push @file3, $fields[1]; 

} 

 

# Blank 

my $file4 = 'filename_for_fiber2_blank.csv'; 

my @file4 = (); 

open (my $fh4, '<', $file4) or die "Can't read blank file!: $!\n"; 

while (my $line = <$fh4>) { 

  chomp $line; 

  my @fields = split ",", $line; 

  push @file4, $fields[1]; 

} 

 

# Fiber 3 

 

# Sample 

my $file5 = 'filename_for_fiber3_sample.csv'; 

my @file5 = (); 

open (my $fh5, '<', $file5) or die "Can't read sample file!: $!\n"; 

while (my $line = <$fh5>) { 

  chomp $line; 

  my @fields = split ",", $line; 

  push @file5, $fields[1]; 

} 

 

# Blank 

my $file6 = 'filename_for_fiber3_blank.csv'; 

my @file6 = (); 

open (my $fh6, '<', $file6) or die "Can't read blank file!: $!\n"; 

while (my $line = <$fh6>) { 

  chomp $line; 

  my @fields = split ",", $line; 

  push @file6, $fields[1]; 

} 

 

# Fiber 4 

 

# Sample 

my $file7 = 'filename_for_fiber4_sample.csv'; 

my @file7 = (); 

open (my $fh7, '<', $file7) or die "Can't read sample file!: $!\n"; 

while (my $line = <$fh7>) { 
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  chomp $line; 

  my @fields = split ",", $line; 

  push @file7, $fields[1]; 

} 

 

# Blank 

my $file8 = 'filename_for_fiber4_blank.csv'; 

my @file8 = (); 

open (my $fh8, '<', $file8) or die "Can't read blank file!: $!\n"; 

while (my $line = <$fh8>) { 

  chomp $line; 

  my @fields = split ",", $line; 

  push @file8, $fields[1]; 

} 

 

# Printing results 

print "array size = ", @file1. "\n\n"; 

print "Sample Fiber 1: \n"; 

print "@file1 \n\n"; 

 

print "array size = ", @file2. "\n\n"; 

print "Blank Fiber 1: \n"; 

print "@file2 \n\n"; 

 

print "array size = ", @file3. "\n\n"; 

print "Sample Fiber 2: \n"; 

print "@file3 \n\n"; 

 

print "array size = ", @file4. "\n\n"; 

print "Blank Fiber 2: \n"; 

print "@file4 \n\n"; 

 

print "array size = ", @file5. "\n\n"; 

print "Sample Fiber 3: \n"; 

print "@file5 \n\n"; 

 

print "array size = ", @file6. "\n\n"; 

print "Blank Fiber 3: \n"; 

print "@file6 \n\n"; 

 

print "array size = ", @file7. "\n\n"; 

print "Sample Fiber 4: \n"; 

print "@file7 \n\n"; 

 

print "array size = ", @file8. "\n\n"; 

print "Blank Fiber 4: \n"; 

print "@file8 \n\n"; 

 

# Initialize empty x and y arrays. 

my @x_array = (); 

my @y_array = (); 

my @y_array2 = (); 

my @y_array3 = (); 

my @y_array4 = (); 
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# Go over each time interval 

for (my $x = 0.00001; $x <= 30.1; $x += .1) { 

  my $diff = 0; 

  # Set the diff based on the time interval.  

  # Adjust to what I want as parameters. 

  if ($x < 5) { 

    $diff = 0.1; 

  } elsif ($x < 10) { 

    $diff = 0.1; 

  } elsif ($x < 15) { 

    $diff = 0.1; 

  } elsif ($x < 20) { 

    $diff = 0.1; 

  } elsif ($x < 25) { 

    $diff = 0.1; 

  } else { 

    $diff = 0.1; 

  } 

   

  my $y = 0; 

  # Make sure there are data points to compare between each file. 

  if (scalar(@file1) > 0) { 

    # Find the closest match between the files. 

    # Look only at the first item in file1;  

  # Check to see if the time is within the interval. 

    if ($file1 [0] < $x + 0.1) { 

      # Check for a comparable time 

      # Go over each item in other 2 files 

      my $min = $diff; 

      $y = 1; 

      # For loop for each item in file 2 

      for (my $index_in_file2 = 0; $index_in_file2 <     

   scalar(@file2); $index_in_file2 += 1) { 

        my $dt = abs ($file1 [0] - $file2 [$index_in_file2]); 

        # Want to compare to current min diff 

        if ($dt < $min) { 

          $y = 0; 

          }  

      } 

      # The following lines can be used if your File 3 should be   

 # subtracted of your File 1. These lines can be    

 # included in any fiber data. 

  # Looking through file 3 to find comparable times 

      #for (my $index_in_file3 = 0; $index_in_file3 <    

    scalar(@file3); $index_in_file3 += 1) { 

      #  my $dt = abs ($file3 [0] - $file4 [$index_in_file3]); 

        # Want to compare to current min diff 

      #  if ($dt < $min) { 

      #    $y = 0; 

      #    }  

      #} 

      # If comparable = 0 not comparable = 1 

      #remove time in this interval from file1 
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      shift (@file1); 

    } 

  } 

   

  my $y2 = 0; 

  # Make sure there are data points to compare between each file. 

  if (scalar(@file3) > 0) { 

    # Find the closest match between the files. 

    # Look at only the first item in file3;  

  # Check if the time is within the interval. 

    if ($file3 [0] < $x + 0.1) { 

      # Check for comparable time 

      # Go over each item in other 2 files 

      my $min = $diff; 

      $y2 = 1; 

      # For loop for each item in file 4 

      for (my $index_in_file4 = 0; $index_in_file4 <     

   scalar(@file4); $index_in_file4 += 1) { 

        my $dt = abs ($file3 [0] - $file4 [$index_in_file4]); 

        # Want to compare to current min diff 

        if ($dt < $min) { 

          $y2 = 0; 

        }  

      } 

     

      # If comparable = 0 not comparable = 1 

      # Remove time in this interval from file1 

      shift (@file3); 

    } 

  } 

   

  my $y3 = 0; 

  # Make sure there are data points to compare between each file. 

  if (scalar(@file5) > 0) { 

    # Find the closest match between the files. 

    # Look at only the first item in file5; check if the time is    

# within the interval. 

    if ($file5 [0] < $x + 0.1) { 

      # Check for comparable time 

      # Go over each item in other 2 files 

      my $min = $diff; 

      $y3 = 1; 

      # For loop for each item in file 6 

      for (my $index_in_file6 = 0; $index_in_file6 <     

   scalar(@file6); $index_in_file6 += 1) { 

        my $dt = abs ($file5 [0] - $file6 [$index_in_file6]); 

        # Want to compare to current min diff 

        if ($dt < $min) { 

          $y3 = 0; 

        }  

      } 

     

      # If comparable = 0 not comparable = 1 

      # Remove time in this interval from file1 
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      shift (@file5); 

    } 

  } 

   

  my $y4 = 0; 

  # Make sure there are data points to compare between each file. 

  if (scalar(@file7) > 0) { 

    # Find the closest match between the files. 

    # Look at only the first item in file7; check if the time is    

# within the interval. 

    if ($file7 [0] < $x + 0.1) { 

      # Check for comparable time 

      # Go over each item in other 2 files 

      my $min = $diff; 

      $y4 = 1; 

      # for loop for each item in file 8 

      for (my $index_in_file8 = 0; $index_in_file8 <     

   scalar(@file8); $index_in_file8 += 1) { 

        my $dt = abs ($file7 [0] - $file8 [$index_in_file8]); 

        # Want to compare to current min diff 

        if ($dt < $min) { 

          $y4 = 0; 

        }  

      } 

     

      # If comparable = 0 not comparable = 1 

      # Remove time in this interval from file1 

      shift (@file7); 

    } 

  } 

  push (@x_array, int($x));  

# Placing int in front of $x removes floating points 

  push (@y_array, $y); 

  push (@y_array2, $y2); 

  push (@y_array3, $y3); 

  push (@y_array4, $y4); 

} 

   

my @data = (\@x_array, \@y_array, \@y_array2, \@y_array3, \@y_array4); 

   

use GD::Graph::hbars; 

use GD::Text; 

 

#create new image 

my $graph = GD::Graph::hbars->new(400,800); 

 

#setting parameters of graph 

$graph->set( 

  title => 'Sample's Binary Plot', 

  x_label => 'Retention Time (min)', 

  x_label_position => 1/2, 

  x_label_skip => 10, 

  y_tick_number => 0, 

  dclrs => [ qw (white) ], 
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  boxclr => [qw (black)], 

  labelclr => [qw (black)], 

  axislabelclr => [qw (black)], 

  textclr => [qw (black)], 

) or die $graph->error; 

 

my $font_spec = "./Dustismo_Sans"; 

 

$graph->set_title_font($font_spec, 5); 

 

$graph->set_x_label_font($font_spec, 18); 

 

my $gd = $graph->plot(\@data) or die $graph->error; 

 

# Saving image 

open(IMG, '>sample_binary.png') or die $!; 

binmode IMG; # Tell the computer it is receiving binary data 

print IMG $gd->png; # Generating a png image from the data and  

# printing it to the png file handle 

close IMG; 

 

exit; 
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APPENDIX 5 - PUBLISHED WORK 

Specific Aim 2.1 - Alterations to the human fecal metabolome due to alcohol 

consumption 

Paper I: Alcohol Induced Alterations to the Human Fecal VOC Metabolome Couch RD, 

Dailey A, Zaidi F, Navarro K, Forsyth CB, et al. PLoS One. 2015; 10 (3):e0119362. doi: 

10.1371/journal.pone.0119362 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119362
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Figure 70. Supplementary Figure 1: PCA. 

The resulting three dimensional plot from the endoscopy collected fecal data set is shown in A) and the 

home collected fecal data set is shown in B). 

APPENDIX 6 - SUPPLEMENTARY INFORMATION 

Paper I: Alcohol Induced Alterations to the Human Fecal VOC Metabolome  

The following supplementary figures are reproduced from Paper I
32

. 

 

 

 

 

 

 

 

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119362
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Figure 71. Supplementary Figure 2: Correlation Networks. 

Pearson’s correlation coefficients were calculated for all metabolites present in at least 21% 

of the total fecal samples. A Pearson correlation value greater than 0.95 is depicted as a 

green line between metabolites, while a Pearson correlation value less than-0.95 is depicted 

as a red line. Metabolites are numerically represented in the network and their placement 

around the circumference of the network is fixed among the paired plots. Regardless of the 

approach to fecal collection, the fecal samples from the alcoholic participants have a 

significantly different correlation network than that seen in the fecal samples from non-

alcoholics. 
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Figure 72. EIC of a molecular feature with twin peaks. 

Depicted in the chromatogram is the signal produced by the molecular ion attributed to the molecular feature. 

The peak of interest is indicated on the plot (this peak was statistically identified as significantly different when 

comparing cohorts). However, the EIC shows two distinct peaks of differing height in very close proximity to 

one another, raising concerns that differential comparison may have highlighted the peak of interest by 

erroneously comparing the wrong peaks. Hence, removal of this peak of interest from subsequent analyses 

eliminates this risk. 

APPENDIX 7 - USING THE EXTRACTED ION CHROMATOGRAM, TOTAL 

ION CHROMATOGRAM, AND ION ABUNDANCE RANK TO REFINE THE 

LIST OF STATISTICALLY SIGNIFICANT TOP MOLECULAR FEATURES. 

1. Discard all molecular features eluting within the first 1 min or last min of the run, 

as these regions are most susceptible to chromatographic variation.  

2. Generate an EIC (extracted ion chromatogram) for each molecular feature 

(parameters: symmetrical within 10ppm).  

i. Remove molecular features with a shoulder or a twin peaks (two peaks 

appearing within 0.2 min of each other). See Figure 72 for an example. 
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Figure 73. EIC of a molecular feature with a noisy topology. 

Depicted in the chromatogram is the signal produced by a molecular ion attributed to a peak of interest. The EIC 

shows a peak with a topology reflective of background noise (a jagged appearance). Hence, the molecular feature 

is removed from the data set.  

ii. Remove molecular features with an EIC topology resembling noise. See 

Figure 73 for an example. 

 

 

 

 

 

 

3. Examine the TIC (total ion chromatogram) at the specified retention time. Retain 

molecular features appearing within well-defined chromatographic peaks (rather 

than in the baseline). See Figure 74 for an example.  
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A.  

B.

 
 

Figure 74. TIC indicating the location of the molecular ion associated with the molecular feature of interest. 

Depicted in chromatograms A and B is the TIC (the total ion count; the summation of the intensities of all ions 

acquired at the indicated time point during the sample run). The molecular ion associated with the molecular 

feature of interest is indicated on the plot and labeled as "ion location". Figure A illustrates an example of the 

molecular ion of interest appearing within a well-defined chromatographic peak. This molecular feature will be 

retained in the analysis. Conversely, Figure B demonstrates an example of a molecular ion of interest that does not 

appear within a well-defined chromatographic peak. This molecular feature will be removed from the analysis.  

 

 

 

4. At the apex of the EIC, examine the mass spectra for the indicated retention time 

of the molecular feature. Rank the molecular feature by the ion's abundance 

compared to the other ions present. A rank value of 1 indicates the most abundant 

ion at the specified retention time. Retain the molecular features which are within 

the top 10 most abundant ions.  
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 Note: An easy way to do this in MassHunter Qualitative Analysis is by 

right clicking on the mass spectra and selecting MS Peaks One. This will 

provide you with a table indicating the abundance values for all ions 

within the mass spectra. 
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APPENDIX 8 - SPECIFIC AIM 2.3: EIC AND TIC COMPILATION OF BASAL 

VS BASAL+PROBIOTIC AND HIGH FAT VS HIGH FAT+PROBIOTIC 
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Figure 75. Extracted Ion Chromatograms (EIC) and Total Ion Chromatograms (TIC) of the Top Molecular 

Features associated with probiotic induced alterations on a nutritionally balanced basal diet or a high fat 

diet. 

The provided chromatograms depict the EIC and TIC of each molecular feature deemed statistically significant in 

my analysis. Using the method described in Appendix 7, I used the chromatograms shown to refine my data set to 

include the top 10 molecular features depicted here. 
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Figure 76. MS/MS comparative analysis for Uridine diphosphate-N-acetyl glucosamine using data acquired 

by our LC-QToF against data acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 

eV. 

APPENDIX 9 - SPECIFIC AIM 2.3: MS/MS FRAGMENTATION PATTERN 

MATCHING FOR BASAL VS BASAL+PROBIOTIC AND HIGH FAT VS HIGH 

FAT+PROBIOTIC 

1. Uridine Diphosphate-N-Acetylglucosamine 
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Figure 77. MS/MS comparative analysis for Saccharopine using data acquired by our LC-QToF against 

data acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 eV. 

2. Saccharopine 
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Figure 78. MS/MS comparative analysis for Proline using data acquired by our LC-QToF against data 

acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 eV. 

3. Proline 
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APPENDIX 10 - SPECIFIC AIM 2.3: EIC AND TIC COMPILATION 

PROBIOTIC ASSOCIATED REVERSIONS FROM A HIGH FAT DIET 

PHENOTYPE TO A BASAL DIET PHENOTYPE 
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Figure 79. Extracted Ion Chromatograms (EIC) and Total Ion Chromatograms (TIC) of the Top Molecular 

Features associated with probiotic induced reversions from a metabolome indicative of a pig consuming a 

high fat diet to one comparable to a pig consuming a on a nutritionally balanced basal diet. 

The provided chromatograms depict the EIC and TIC of each molecular feature deemed statistically significant in 

my analysis. Using the method described in Appendix 7, I used the chromatograms shown to refine my data set to 

include the top 5 molecular features depicted here. 
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Figure 80. MS/MS comparative analysis for S-adenosylhomocysteine using data acquired by our LC-QToF 

against data acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 eV. 

APPENDIX 11 - SPECIFIC AIM 2.3: MS/MS FRAGMENTATION PATTERN 

MATCHING FOR PROBIOTIC ASSOCIATED REVERSIONS FROM A HIGH 

FAT PHENOTYPE 

1. S-adenosylhomocysteine 



252 

 

 
Figure 81. MS/MS comparative analysis for indoxyl sulfate using data acquired by our LC-QToF against 

data acquired from the Metlin Database at collision energies 10 eV, 20 eV, and 40 eV. 

2. Indoxyl sulfate 
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APPENDIX 12 - SPECIFIC AIM 2.4: EIC AND TIC COMPILATION OF TOP 

METABOLITES ASSOCIATED WITH INFLAMMATORY PATHWAYS 
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Figure 82. Extracted Ion Chromatograms (EIC) and Total Ion Chromatograms (TIC) of the Top Molecular 

Features associated with inflammatory pathways present in stage 2 of T. suis infection. 

The provided chromatograms depict the EIC and TIC of each molecular feature deemed statistically significant in 

my analysis. Using the method described in Appendix 7, I used the chromatograms shown to refine my data set to 

include the top 7 molecular features depicted here. 
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