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ABSTRACT

AQ15 is a program that incrementally learns decision rules from examples and counterexamples
of decisions, and possibly previously learned rules. In learning the rules, the program uses (i)
background knowledge that consists of rules and concepts the program already knows, (ii) the
definition of descriptors and their types, and (iii) a preference criterion that evaluates competing
candidate hypotheses. Each training example characterizes an object (situation, process, etc.) and
specifies the correct decision associated with that object. The generated decision rules are
expressed as symbolic descriptions involving relations among object attributes. The rules are
optimized according to a flexible criterion selected by the user. The criterion measures the
quality of the rules from the viewpoint of the specific problem under consideration. The user
may also specify initial decision hypotheses to be used for incremental learning. In this case, the
program will improve them until they are consistent with all available facts. The AQ15 program
also has the capability of constructive induction. It can use new descriptions as the input data to
simplify previously generated decision rules. Finally, the AQ15 program includes a decision rule

hypothesis testing utility.

Key words:
Machine learning, Concept learning, Inductive inference, Learning from examples, Incremental

learning, Constructive induction.



1. INTRODUCTION

The AQ15 program learns decision rules by performing inductive inference on examples and
optional initial decision rules. Training examples are expressed as conjunctions of attribute
values, and initial or induced decision rules are logical expressions in disjunctive normal form.
The program performs heuristic search through a space of logical expressions, until it finds a
decision rule that is satisfied by all positive examples and by no negative ones and optimized by a
rule preference criterion. The program implements the STAR method of inductive learning
(Michalski & Larson 83). Specifically, it is based on the AQ algorithm for solving the general
covering problem (Michalski 69).

The AQ15 inducti‘ve learning program is the immediate descendant of the GEM program. The
name GEM derives from "Generalization of Examples by Machine”. The GEM program was
originally written in Pascal by Bob Stepp and Mike Stauffer as an improved version of the AQ7- '
AQ11 series of programs on CYBER 175 (Michalski 69; Michalski & Larson 75;
Michalski & Larson 78; Michalski & Larson 83). The GEM program itself was written from
scratch; it is not just a modified version of AQ1l. Later the program was transcribed to
Berkeley Pascal running under the Unix operating system on VAX and SUN machines. Then
Kaihu Chen contributed the structured variable part, and Robert Reinke implemented the
incremental learning facility (Reinke 84).

Our contribution was to add many new features, make changes and remove bugs from the
program, which makes the program more powerful and useful for-many purposes. Specifically, we
improved the data structure for handling extended selectors and implemented constructive
induction by using A-rules and L-rules (background knowledge). Also, we improved and
reimplemented the incremental learning part and incorporated the testing facility into the
program. In addition, we improved the trimming faciltty and implemented a capability of
handling ambiguous ezamples, a capability of inducing most general, most specific and minimal
descriptions, and some other minor features. We also have written the program documentation.

Currently the AQ15 program is implemented in Berkeley Pascal, and runs under Unix on SUN
and VAX machines. [t consists of approximately 13000 lines of Pascal code (including
comments). The program :s still evolving and new features are being added. In general, the
program has enough comm=nts to be self explanatory. A document in the appendix provides a
general overview of the algorithms and data structures used by the program and may serve as
introductory reading. In order to fully understand the structure of AQ15, the program listing
should be read together with this document.

The paper is organized in the following way. First we explain the basic concepts and
terminology used throughout the paper. Then we give an outline of the A@15 algorithm.



Next we give a user’s guide with examples for using the program. Then we show deficiencies of
the current implementation and give some ideas for further work. Finally, in the appendix, we
give a detailed description of the learning algorithm and describe of the most important data

structures and global constants used by the program.

2. BASIC CONCEPTS and TERMINOLOGY

All concepts to be described below are expressed in the VL, (Variable—valued Logic System
1) (Michalski 75) and APC (Annotated Predicate Calculus) (Michalski 83).

Training examples are given to AQ15 in the form of events. Events belong to decision classes.
Given a class, of events belonging to it represent positive ezamples of the class, and all other
events are its negative ezamples. For each class, a decision rule or a cover is produced that must
be satisfied by all positive examples and by no negative ones. The user may supply some decision
rules as a starting point for the program. We will call such rules initial Aypotheses. Intermediate
results during the search for a cover are called hypotheses or partial covers.

Each event and decision rule is described by extended selectors. An eztended selector, or briefly a

selector, is a relational statement and is defined as:
TERM REL REFERENCE

where TERM is a variable an arithmetic expressions of constants and variables, or an internal
conjunction of terms; REL stands for one of the relation symbols: <, <=, =, <>, >=, >;
'REFERENCE is a value (constant) or the internal disjunction of values.

Extended selectors defined above state that the variable or each arithmetic expression in TERM
takes values defined-in REFERENCE. The following are examples of extended selectors:

[color = red V white V blue]

[width & height 5]

[temperature 20..25, 50..60]
[length*width & length*height = 36..40)



A complez is a conjunction of selectors.
The following are complexes:

[color = red V white V blue| [stripes = 3..13] [stars = 1..50]
length & 3*width = 12| [color = yellow]

A cover is a disjunction of complexes. The following cover consists

of two complexes:

[color = red V white V blue] [stripes = 13] [stars = 50] V
[color = red V white V blue] [stripes = 3| [stars = 1]

A cover is satisfied if any of its complexes are satisfied, while a complex is satisfied if all extended
selectors in it are satisfied. An extended selector is satisfied if all variables and expressions in it
actually take one of the specified values. Thus, the example cover above can be interpreted: A
piece of cloth is a flag, if it satisfies one of the following conditions:

1) Its color is red, white, or blue, and it has 13 stripes and 50 stars on it.

2) Its color is red, white, or blue, and it has 3 stripes and one star on it.

Besides events, declarations of variables, and possibly input hypotheses, AQ15 also needs some
parameters that specify how the rules should be constructed. The user may select some
preference criteria according to which the rules are optimized. The criteria measure the quality
of the rules from the viewpoint of the specific problem under consideration. All input data given
to AQ15 and output results are in the form of relational tables. AQ15 has also the capability of
constructive induction by the pre-cover processing. In the pre—cover processing, the arithmetic
formulas (A-rules) or VL1 logical assertions (L-rules) given by the user as background knowledge
are input to AQ15 . AQI5 then uses the rules to generate new variables and selects some of
them (by a filter) to add the corresponding extended selectors to the input events and hypotheses,
which may specialize the descriptions of events and simplify the resulting hypotheses. The reader
should consult the user’s guide for details about format and examples.

3. ALGORITEM

The Fig. 1 is the flowchart of the AQ15 algorithm, Fig. 2 and Fig. 3 depict incremental learning
and star generation components of ‘this algorithm. The algorithm is described in detail in the

APPENDIX.



Input data:

Parameters, Domaintypes,
Variables, Events, Hypotheses,

PBackground knowledgs

Pre-processing:

Using backgound knowledge generate new variables,
use flter to select the most relevant variables

A |
Select a decision class: construct a set of
positive examples and a set of negative ones

no
r---———--- -_-___-_-1
: Incremental learning (see Fig. 2) :
I..----_----T:----_.._-J
— Testing only !
I Seleet a seed from the class J
I, SPSEPISEE L L il
) Generate a stars partial cover of seed against |
| negative examples and hypotheses (see Fig. 3) J
[ Y L e - o - - -
¥
Select the best complex from the star
according to the user—defined criteria
Add the best complex to the current cover
Are there no
egting example
T vyes
[— Test given examples J

no

Fig. 1. AQ15 Algorithm



Add all consistent hypotheses to the cover

no

Specialise:
1. pick of inconsistent complex, Cpx,

and find the set of positive examples P and the
set of negative ones N covered by Cpx,
2. generate a cover S of P against N, starting
with Cpx as initial cover
3. make intersection CS of Cpx and 8

Filter:
1. select those complexes from CS which cover

more than 60% of examples in P,
2. delete rest of complexes from CS

!

. Reconstruct ciasses:
1. delete from the class all pos—examples

covered by the chosen compiexes,
2. similar to 1., replace neg-examples
with correspoding negative Aypotheres

%ir. 2. Incremental Learning



Generate a star

no negative example covered

Generate a partial atar:
1. generate all maximally general complexes that cover

the seed against the negative example,
2. intersect the elementary star with the previous
partial star,
3. trim the partial star

Return

Fig. 3. Star Generation



4. USER’'S GUIDE

4.1. Purpose of the Program
The AQ15 program learns decision rules by performing inductive inference on examples and

optional initial decision rules. The program implements the STAR method of inductive learning.

It is an extension of the AQ algorithm.

4.2. Summary of New Features
AQ15 has a number of new features not present in AQ11 and GEM. Some of these are:

1. Eztended selectors _ an extension of the descriptions used in GEM,

2. Improved incremental learning - using full Memory and membership, successively
adding new learning examples and modifying
rules generated so far or generating new rules,

3. Constructive induction - using A-rules and L-rules to generate
new variables not present in input data and
selecting some of them to produce better rules,

4. Testing . : - using‘truncation of covers and analogical
matching to test which rule best matches a
test example

(Michalski, Mozetic, Hong & Lavrac 86).



4.3. An Introductory Example

The following example is based upon statistics for personal computers existing in the year

1980. Suppose we have 12 examples of personal computers, each described with a set of

attributes. Attributes specify interesting characteristics of a computer, such as its software

("Pascal”, "Fortran”, "Cobol"), type of operating system ("Op_system"), number of floppy disk
drives ("Floppies”), presence of hard disk ("Disk"), type of processor ("Processor”), size of
memory ("Memory”), and whether it has a printer or not ("Printer”). All computers may be

divided into three classes, regarding their cost: under $1000from $1000 to $4000, and over $4000.

In the following table each row represents an example of a computer:

Cost = Under1000 <::
Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer

no no no other 0 no M6502 16 no
no no no other 0 no M6502 2 no
no no no other 0 no M6502 4 "o
no no no other 0 no Z80 32 no

Cost = From1000to4000 <
Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer

no no no other 1 no M6502 16 no
no yes yes cpm 2 no 8085 32 no
yes yes yes cpm 1 no Z80 64 no
no yes yes cpm 2 no Z80 16 no
no yes yes cpm 1 no 18085 48 no

Cost=0ver;000 <
Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer

yes yes yes  other 1 yes Z80 128 no
no no yes  other 2 no [8085 64 yes
yes yes yes cpm 1 yes 780 280 no

From this set of examples we would like to obtain simple classification rules for deciding

costs of computers. For these training events and a criterion requiring the minimum number of

terms, AQ15 produces the the following results:

[Cost = Under1000] <::  |Floppies = 0]
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Paraphrase: A computer costs under $1000 if it does not have any floppy drives.

[Cost = From1000to4000]  <: [Floppies = 1..2] & [Disk&Printer = noj
Paraphrase: A computer costs from $1000 to $4000 if it has 1 to 2 floppy drives and it has

no hard disk and no printer.

[Cost = Over4000) <:: [Disk =yes| v
[Printer = yes|

Paraphrase: A computer costs over $4000 if it has hard disk or if it has a printer.

It is obvious that the rules produced by AQ15 correctly classify all computers in this simple
cxample. However, despite of the simplicity of the example, it is interesting that only three
attributes were used for correct classification. The power of the AQ15 grows when used for
solving considerably larger problems, e.g. there are a few thousands of examples, described with

few tens of attributes.

4.4. General Table Format

Input to AQ15 is in the form of relational tables. Relational tables are a convenient format
for representing events of the type dealt with by AQ15. This also allows the program to be used
as an operator by the QUIN relational database system (Spackman 83). The program reads from

standard input and writes to standard output.

Input to AQ15 consists of a single file containing a series of relational tables. A relational
table is composed of three parts: a table-name, a list of column names, and a set of tuples (rows)
containing the data. In general, columns may be entered in any order. The columns acceptable
for each table type are defined in the section describing the table. There must be at least two
columns and may be at most 40 columns in each table. The length of the tuples and the type of

information in them must correspond to the appropriate column names. The each column
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heading and each tuple in the table must be on a single input line (which may be more than 80

characters long). Individual items on 2 line are separated by any number of spaces or an

exclamation mark ().

Table names are of two types. First, there are tables which have only a single part name
(such as "parameters”). There are also table names which consist of two parts. These are of the
form specific-general, where spectfic and general are each an alphanumeric string. Tables of this
type (e.g. the "_names” tables) must have a specific name associated with them because there
may be several tables of the same general type. In the table definitions that follow, any table
whose name is given with "-" must have a specific name preceding the "_" in program input. For
instance, one could choose to have block-names, hoop-names and pyramid-names in the same
file. Though these would all be manipulated as "_names" tables, each would need to be
distinguished.

Any alphanumeric string (e.g. a specific table name, a variable) entered as input must be a
continuous string (without spaces) of any characters except ?!¥'"*-~ and begin with a letter.
Throughout the paper we refer to such strings to be of the type alpha. Their maximum length is

a program constant, currently set to 20.

S

4.5. Tables Guide and Sample Input

This section gives the format.for tables to be used in the AQ15 input file. For each table,
the purpose of the table, the columns used in the table, and the allowed entries in each column
are given. Each formal description of a table is accompanied with an example from the sample
input relevant to the problem introduced in section 2, i.e., cost of personal computers. The initial
set of examples from that problem is augmented with additional examples, and the classification

rules already produced are used as initial hypotheses for incremental learning. The final rules
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that classify all available examples correctly are given in the last section of the paper.

4.5.1. The title table
The title table is optional as it provides only a header for an input file. It is not used in any

way by the AQ15 program. This table must consist of two columns:

~ #

Mandatory column which contains the row number of the text in the next column. Row
numbers are consecutive integers beginning with "1". sequentially. '

a text

Each entry in this mandatory column consists of a string of characters that are a single line
in the title of the input fle. If there are any blanks or tabs in the row, the string must be
surrounded with quotes. If single quotes appear in the string, double quotes must be used

to surround it, and vice versa.

Example:

title
# text
1 "This is a 'title’ table of the sample input to AQ15."
2 "The sample used throughout the tables guide is an”
3  "example of data, where all types of tables are used.”

4.5.3. The parameters table

The parameters table s mandatory. This table contains values which control the execution

of the program. All of the parameters have default values, as noted below in parentheses. These

columns need not be entered in the table if the default value is acceptable; however, recall that at

least two columns must be entered for each table. Each row of the parameters table represents

one run of the program. This allows the user to specify many different runs on the same data in

a single input file.
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~ rumn (ln)

Optional row number. It is an snteger, the first row must be numbered "1" and rows must

be numbered sequentially.

~ mode (ic)

Optional specification of the way in which AQ15 is to form rules. Legal values for this

column are:

ic — “intersecting covers” mode produces rules that may intersect over areas of
the event space where there are no learning events (empty space).

de — "disjoint covers” mode produces rules that do not intersect at all.

vl — ‘“variable-valued logic" mode produces rules that are order dependent.

That is, the rule for class "n” will assume that the rules for the classes "
through "n—1" are not satisfied.

~ ambig (neg)

Optional parameter that specifies how to handle ambiguous examples (i.e. examples from
more than one class that overlap; two examples overlap if they have at least one common
value for each variable). Legal values are:

neg -- ambiguous examples are always taken as negative examples for the
current class. and are therefore not covered by any classification rule.
pos —— ambiguous examples are always taken as positive examples for the current

class, and are therefore covered by more than one classification rule. If the
number of examples is large this may be computationally expensive.

empty — ambiguous examples are ignored, i.e. treated as that they do not exist
(empty space), and may or may not be covered by some classification
rules. If the number of examples is large this may be computationally
expensive.

~ trim (mini)
Optional parameter that specifies forms of covers to be produced. The legal values are:

gen — induced rules are as general as possible, i.e. they involve minimum
number of extended selectors, each with maximum number of values, as
described above.

mini - rules are as simple as possible, i.e. with the minimum number of extended
selectors and minimum number of values. Redundant values are removed
from extended selectors in a cover, sequentially for each complex, after
complexes are sorted in decreasing order of total events covered. A value
is removed if it does not appear in any event newly covered by current
complex (i.e. not covered by any previous complex).

spec — rules are as specific as possible, i.e., they involve maximum number of
extended selectors, each with minimum number of values. First, the most
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general description is taken and for each complex all missing variables are
added. Each such variable can take the union of values that appear in
events covered by the current complex. Then extended selectors in which
all possible values appear are deleted and redundant values are removed
from the remaining extended selectors, as above.

~ wts (cpx)

Optional parameter that causes AQ15 to associate weights with complexes and extended
selectors it produces. Legal values are:

no — no weights.
cpx — two weights are associated with each complex. The first weight is the total

number of positive events that the complex covers. The second weight
produced is the number of events that this complex, and no other complex
in the rule, covers. Complexes are always sorted in decreasing order of the
first weight.

all — besides weights on complexes there are also two weights associated with
each extended selector. The first weight is the number of positive events
that the extended selector covers, and the second weight is the number of
negative events covered by the extended selector (independently of other
extended selectors). In case of this value only, extended selectors in each
complex are sorted in decreasing order of the first weight.

~ maxstar (10)

Optional parameter that must he an integer and can take any value between 1 and 100.
This parameter controls the wimber of alternative solutions kept during a complex
formation. A higher number may produce better solutions but will require more computer
resources. In general, if a maxstar is approximately equal to the number of variables used,
the results are optimal in terms of quality of classification rules produced and
computational resources required. The maximum value is a program constant, currently

set to 100.
~ evteovd (no)

Optional specification of whether or not the names of events covered by a complex are
stored in the complex, where by names we mean their identification number in the
corresponding classes. When doing incremental learning, the names are used to test if the
complex covers the events by testing the membership of the set of the names stored in the
complex instead of using the covering algorithm which may cost much time.

yes — the names of positive events covered by a complex are stored into the
complex, and used to test if the events are covered by the corresponding
complex when doing incremental learning.

no — no name is stored.

~ increment (0)
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be an tniteger and can take any value between 0 and 100.
number of times incremental learning will be done. n =
100/increment if increment # 0; otherwise, n == 1 which means no incremental learning is
required. If increment # 0, then the sets of examples will be divided into n subsets. For

each subset, an incremental learning run is effected using previous results.

Optional parimeter that must
This parameter controls n, the

~ testonly (no)

Optional specification of whether or not running the program is only for testing events.

yes — running on testing examples without learning task.
no — running on learning examples.

~ testpart (0)

Optional parameter that must be an integer and is the percent of randomly chosen testing
events. Indirectly, it controls the number of times testing will be done since the number of

times == 100/testpart.

~ chosevts (0)

Optional parameter that must be an integer and is the percent of randomly chosen testing
examples when testing or new learning examples when incremental learning.

~ reinconhyps (yes)

Optional specification of whether or not specialized input hypotheses need to be filtered (see
Fig. 3).

yes —— select those specialized hypotheses which covers more than 60% of events
that were covered by original hypotheses, and delete the rest of the
specialized hypotheses. Keep the hypotheses selected as negative examples
later, and those examples which are covered by the deleted hypotheses as
current positive examples.

no - all specialized hypotheses will be kept for the future use.

~ echo (pcv)

Optional specification of which tables are to be echoed to output. Values in this column
consist of a string of characters, each character of which represents a single table to be
echoed. There must be no blanks or tabs in this string. Legal characters for the echo
column, and the tables they represent are:

—  the title table

—  the parameters table
the —criteria tables

—~  the domaintypes table
—  the variables table

< a o g o
|
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—  the -names tables
—  the —structure tables
—  the -inhypo tables
——  the -ghypo tables
_—  the —events tables
. the —events tables with new variables
the —children tables
——  the arules tables
—  the lrules tables
——  the reduction criterion 1 tables
—  the reduction criterion 2 tables
" _—  the expression variable tables
— no echo

OX g.o —P omo T e

~ criteria (default)

Entry in the optional column is the name of the criteria table to be used for this run. The
" name must be of the alpha type, and a _criteria table with that name must appear in the

input file.

A sample parameters table is shown below. Values shown in the first row are the default
values for the parameters, except for the "echo" parameter. Note that the default value for the
criteria column is the only -criteria table specific name for which it is not necessary to actually
define a table. Since the second row contains the string "mincost” for the criteria column, a table

named "mincost—criteria” must be defined. Note also that the columns "run”, "mode” and

"maxstar” described above are omitted here, as their default values are acceptable.

Example:

parameters
ambig trim wts evtcovd echo criteria increment testpart
neg mini c¢px no pcvb  default 0 0
pos gen all  yes pcis mincost 20 33

4.5.3. The —criteria tables
All —criteria tables other than "default” must be defined. This table type is used to define a

lexicographic functional (LEF). The LEF is used by AQ15 to judge the quality of complexes
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formed during learning. A LEF consists of several criterion-tolerance pairs. The ordering of the

criteria in the LEF determines the relative importance of each. The tolerance specifies the

allowable error within each criterion.

A criteria table name consists of two parts — the specific name, which must appear in the

“criteria” column of the parameters table (above we used "mincost”) and the general name,

_criteria. In the example in section 4.2, "mincost” reflects the existence of a table named

*mincost—criteria”.. Any value in the criteria column of the parameters table except "default”

must have a corresponding —criteria table and vice versa.

~ #

The order of this criterion in the LEF. It is an integer, the first row must be numbered "1"
and rows must be numbered sequentially. This column is optional

~ criterion

This mandatory column specifies the functional which is to be used for this row of the LEF
(the rows of the table give the ordering in which the functional will be applied). There are
8 different criteria available, and at most 8 criteria may appear in any —criteria table:

maxnew — maximize the number of newly covered positive events, i.e. events
that are not covered by previous complexes.

maxtot —  maximize the total number of positive events covered.

newvsneg — maximize the ratio between the numbers of newly covered positive
events and all negative events covered. Computationally expensive

: criterion.

totvsneg — maximize the ratio between the total numbers of positive events
covered and negative events covered. Computationally expensive
criterion.

mincost — minimize the total cost of the variables used (see 4.5.4).

minsel _ ninimize the number of extended selectors.

maxsel --  maximize the number of extended selectors.

minref __ minimize the number of references in extended selectors.

~ tolerance

This column is mandatory and must be a real number. The tolerance specifies the relative
fractonal uncertainty in the associated criterion. For example, say the best complex in a
list had a value of 100 for some criterion, and the tolerance for the criterion was 0.2. The
absolute tolerance allowed is computed by multiplying the tolerance by the best value,
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yielding an absolute tolerance of 20. Then any complex with a value between 80 and 100
would be regarded as having the same value as the best complex for this criterion.

The first -criteria table shown below is the default. In majority of experiments performed
with AQ15, it produced the best results. This is the only instance of the —criteria table which
need not be entered explicitly. The second —criteria table must be defined, as its specific name

appears in the "criteria” column of the parameters table. Note that row enumeration may be

omitted.
Example:

default—criteria
# criterion tolerance
1 maxnew 0.00
2  minsel 0.00

mincost—criteria
criterion tolerance

mincost 0.20
maxtot 0.00

4.5.4. The domaintypes table
The domaintypes table is used to define domains for attributes. This table is optional, but
it is convenient if several attributes have the same set of possible values. The table consists of

four columns, of which at least two must be included:

~ name

This is the name of the domain being defined and must be of the alpha type. The column is
mandatory.

~ type (nom)
An optional column with type of the domain being defined. Four domain types are legal:

nom — a 'nominal’ domain consists of discrete, unordered values, which are
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different from their internal values.
(e.g. a Processor name is a typical nominal domain).
a "linear" domain consists of discrete, ordered values, which are same as

their internal values.

(e.g. number of floppy drives).
int — a "interval” domain has discrete values in an interval, which can be

different from their internal values.
(e.g. a special use in event tables).

lin —

cye — a “cyclic” domain has discrete values in a circular order
(e.g. the integers modulo 4).

str — a "structured” domain is in the form of a hierarchical graph
(see 4.7).

The default value for the type is "nominal” domain.

~ levels (58)

This column is also optional and can take any integer value between 1 and 58 specifying the
number of possible values. The maximum number of values is a declared program
constant, currently set to 58. If not specified, the maximum number of levels, 58, is taken.

~ cost.(1.00)

A real number specifying how “expensive” this variable should be to use compared to other
variables. It is used in computing criterion “mincost” in the LEF (see the definition of the
_criteria table) and is optional. If it is omitted it is assumed that all variables have a cost of

1.00.

~ transf (yes)

An optional column. If its value is "yes” then the references in examples and hypotheses are

treated as internal values, and finally they are converted into their real values defined in

the variables table or domaintypes table. If transf = "no" then the values are the same as

those in examples and hypotheses, and no conversion is required.

The domaintypes table is normally used in conjunction with the variables table and the
-names table.

Below are examples of both, the domaintypes and variables table (refer to the next section

for explanation).
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Example:

domaintypes

name type levels
boolean nom 2
Op_system nom 2
Floppies lin 4
Processor nom 3
Memory str 8
variables

# name cost
1 Pascal.boolean 10
92  Fortran.boolean 10
3  Cobol.boolean 10
4 Op._system 10
5 Floppies 100
6 Disk.boolean 0
7  Processor 0
8 Memory 100
9 Printer.boolean 0

4.5.5. The variables table

The variables table is mandatory —— it specifies the names and domains of the variables used

to describe events. It may contain up to five columns, but it must have at least two:

~ # (l.n) )

Optional numbering of variable declarations. It is an integer, the first row must be

numbered "1" and rows must be numbered sequentially.

~ name (x#)

Optional column associating a name with the variable, must be of the alpha type. If this
column is omitted, variables will be given names of the form x#, where # is the number of
the row the variable appears in. If a domaintypes table is being used, then the variable
name may consist of two parts — “name"."domain—name", separated by a period, where
"domain-name”" is a string appearing in the name column of the domaintypes table.
Alternately, the name in the domaintypes table and variables table may be shared if a
domain is unique to a single variable. Maximum number of variables is a program

constant, currently set to 60.
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-~ type (m;m)

Optional column, with the same meaning as the type column in the domaintypes table. It
should be specified if the domaintypes table is not used and the default "nominal” type is

not acceptable.

o levels (58)

Optional column, with the same meaning as the levels column in the domaintypes table. It
should be specified if the domaintypes table is not used and the default number of levels 58

is not acceptable.
~ cost (1.00)

Optional column, with the same meaning as the cost column in the domaintypes table. It
should be specified if the domaintypes table is not used and the default cost 1.00 is not

acceptable.

The variables table may be used in conjunction with the domaintypes and -names table. In
the example above, if the domaintypes table were excluded, then the "type" and "levels” columns
would have to appear in the variables table. In that example, the row enumeration may be

omitted, as the "cost” column is present, thus including the minimum of 2 columns.

4.5.6. The —names tables

This table is optional. The —names table is used to specify names for values in a domain as
they appear in input examples and will appear in classification rules. If no -names table appears
for a variable or domain, then the values for that domain are assumed to be the integers
beginning with "0". The specific name of a —names table must be the name of a domain, s
specified in the name column of the domaintypes table. If the domaintypes table is not specified it

may be a variable name from the variables table. N -pans table consists of two columns, both

of which must be included:

a value



This column is mandatory and must be an integer beginning with "0" and continuing
sequentially up to levels-1 (maximum 57). It is the integer equivalent of the name to be

defined in the next column.

~ name

The column is mandatory and must be of the integer or alpha type. It specifies the input
and output name of the value being defined.

Below is a typical example of use of the —names tables. All variables that are of "boolean”
domain type may take values "yes" or "no". The variable "Processor” may take any of the values
780", "M6502" or “18085". Note that the variable “Floppies” does not need to have its —-names

table, as the default integer values 0,1,2,3 are acceptable.

Example:

boolean—-names Processor—names
value name value name
0 yes 0 780
1 no 1 M6502

2 18085
Op_system—names

value name

0 cpm

1 other
4.5.7. The —structure tables

The —structure table is optional and is used to define a structured domain for any variable

that is of structured type (as specified in the domaintypes or variables table). A structured
domain has the form of h.ecarchical graph, where the lowest level corresponds to the values of
the variable as they appear in the input examples (and are possibly defined in the corresponding

—names table). Higher levels (as defined in the _structure table) specify parent nodes in the

hierarchy of values and are used to simplify classification rules.



name column o

variable n

The specific nime of a —structure table must be the name of a domain, as specified in the
f the domaintypes table. If the domaintypes table is not specified it may be a

ame from the variables table. A -structure table consists of three columns:

~ name

Optional name of the corresponding value, must be of the integer or alpha type. If specified,
it will appear in classification rules instead of the value.

~ value

Mandatory column, specifying a node in the hierarchy which is a parent of the nodes
specified in the "subvalues” column. May be any integer, as its role is only to discriminate
between different nodes in the hierarchy and to be possibly referred to later in the
"subvalues" column of some other node. It must be always greater than any of the following

"subvalues”.
~ subvalues

This column is mandatory and specifies a set of children values for the parent node as
defined in the previous column. It consists of a string of integers separated by commas or by
"." as in extended selectors. These numbers correspond to values as defined in the -names
table of the variable or previous rows of the -structure table.

The hierarchical graph below shows an example of a structured domain for the variable

- "Memory". Note that the same node (e.g. "64") may be a children of different parents ("medium”,

"large”).

» small » large

very_small medium very_Jarge

2 4 16 32 48 64 128 280
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For the variable "Memory" we must first define its —names table, because it may not take

all values between 2 and 280, as this would exceed the maximum number of levels allowed (58).

The -structure table then defines the hierarchy of values. Note that the node "large” must be

defined after the node "very_large" as it is higher in the hierarchy.

Example:

Memory—-names
value name

0 2

1 4

2 16

3 32

4 48

5 64

6 128

7 - 280
Memory-structure

name value subvalues

very_small 8 0,1

small 9 8,2

medium 10 3.5

very_large 11 8,7

large 12 5,11

4.5.8. The arules tables and lrules tables

The arules tables and lrules tables are optional and are used to input A-rules and L-rules to
AQ15 for constructive learning. when applying A-rules or L-rules to the input data, those
variables in the A-rules or L-rules not present in the variables table are introduced as new
variables. The new variables are arithmetic expressions as references in the A-rules or L-rules.
Moreover, AQ15 selects some new variables by a certain criteria and constructs corresponding
new selectors for the events and hypotheses. The constructive learning may specialize the

descriptions of input data and simplify the resulting hypotheses since the new variables selected
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may be better than original ones for the star generation.

- #
Mandatory symbol associating an optional number with each rule. The number is optional and
followed by the body of an A-rule or L-rule.

e aexpr or lexpr

Mandatory column giving an A-rule or a L-rule. The body of an A-rule is an arithmetic
expression, and the body of a L-rule is a VL1 expression, whose consequence is an extended
selector for a new variable and whose condition is a disjunction of complexes (see format for c¢px

in next section).
» if

Mandatory word following the body of a rule and associating an optional number with a
condition of the rule if the rule has one. The condition of a ruleis a disjunction of complexes.

L4

Mandatory symbol linking two adjacent disjunctive conditions.

Below are examples of arules tables and lrules tables.

Examples:

arules
# aexpr
1 Tot_Memory := 512*Floppies + Memory if -
[Disk=no|

lrules
# lexpr
1 [Main_device = no} if
[Disk&Printer=noj

2 [Device_storage = yes| if
(Floppies =1V 2 v
[Disk = yes|

3 [Computer_cost = medium] if
[Main_device = no|[Device_storage = yes|



4.5.9. The ~inhypo tables

The -inhypo tables are optional and are used to input rules to AQ15 for incremental

learning. The specific name of this table must be the name of a decision class. If the name given

for an —inhypo table has not been seen before (i.e. in a —events table, see 4.5.11), the associated

class is assumed to be at the top of a structured rule base (see 4.5.12).

The rules input in -inhypo tables may have two roles. In the first case, when there is at
least one -events table specified, the input rules are used as initial covers for incremental
learning. If incremental learning is not desired, then this table may be excluded. In the second
case, when there is no -events table, the input rules are treated as events. This means that
produced decision rules will cover a whole input rule from the corresponding class. However, each
input rule typically comprises a set of events which may be in different classes, and some rules in

different classes may comprise the same events. In that case, when input rules intersect, their

intersection is treated according to the "ambig" parameter (see 4.2).

~ #

Mandatory column associating a number with each complex in the rule. It is an tnteger, the
first row must be numbered "1" and complexes must be numbered sequentially. Only in
—inhypo tables may a single relational tuple span more than one line. However, there must,
be only one # entry for each complex in the table.

~ epx

Mandatory column giving 2 VL, (variable-valued logic) declaration of the complex. A
complex is presented as a series of extended selectors. Each extended selector is an
expression of the form [variable, & variable, & ... & variablek # values]. The symbol "&"
in a selector means internal conjunction. Tl’lus, the extended selector above is equivalent to
conjunction of extended selectors (complex) ([variable, # values][variable, #
values|...[variable, # values|. Selectors may be separated by any amount of white space or
new lines. A new complex is started only when a new entry for the # column (i.e. a
number) is found. The brackets are mandatory. The variable may be any variable
declared in the variables table, but the same variable may not appear twice in one complex.
The values must be defined values (e.g. in the —names tables) for the variable given on the

right of the "#" relation. The relation # is one of the following relations: <, <=, =,
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<>, >=, and >. Several values , separated by "" or "v", may be specified in one
extended selector in any one or arbitrary mixtures of the following forms:

value

va.luel..valme2

The symbol "," and "v" in an extended selector means "or", and the symbols * ." indicate a

range of acceptable (predefined) values. So, the extended selector [width & height >= 5] is
read "both the width and height are greater than or equal to 5". The extended selector
[temperature <> 20..25, 50..60) is read "the temperature is neither between 20 and 25 nor
between 50 and 60. In other words, if the range of temperature is between 0 and 80, then
the extended selector says that “"temperature is between 0 and 19, 26 and 49, or 61 and 80".

Below is an example of -inhypo tables which use the variables defined in the previous

sections. These rules are results of application of AQ15 to the introductory example. They will be

used as initial hypothe

concatenatio

ses for incremental learning on a new set of examples. Recall that

n of extended selectors is used to express a conjunction, and that different complexes

in a cover represent a disjunction.

Example:

Under1000—-inhypo

# cpx

1 [Floppies=0]
From1000t0o4000—inhypo

# cpx

1 [Floppies=1.: Disk&Printer=no]
Over4000—inhypo

# cpx

1 [Disk=yes|
2 [Printer=yes
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4.5.10. The -inghypo tables

Their roles are the same as —inhypo tables except (see 4.5.9.) for some extension as follows.

~#

Similar to that in section 4.5.8.

~ tepx

Similar to that in section 4.5. 8., except that in a selector, | term ..&term #—values] for
some i, term. may be a variable or an expression involving a varia le that was not specified
in the domaintypes tables or the variables tables. Thus, AQ15 can introduce some new
variables which stand for expressions or specifies variables undefined in the previous

sections.

In the following example, the first and third tables are —inghypo tables which use the new

variables undefined in the previous sections, and the second is an -inhypo table.

Example:

Under1000-inghypo
# tepx
1 [512*Floppies+Memory < =32]
'Events covered: 1..4}

From1000t04000-inhypo

# cpx
1 [Eloppies=1..2] [Disk&Printer=no]

|Events covered: 1. 5!

ver4000—-inghypo
# tepx
1 [Floppies*Memory=128]
'Events covered: 1..3]

4.5.11. The —events tables

These tables are used to input events to AQ15 and are optional. If there is no -events table,

AQ15 will treat the input hypotheses as events. The specific name given to an —events table
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corresponds to a single decision class. In AQI5, if the specific table name has not been seen

previously (in an ~inhypo table), then a new class is created at the top of the rule base structure
(see next section).

The column headers for this table type consist of variable names which were defined in the
variables table (see 4.5). The values in the rows of the table must be legal values for the
appropriate variables. Since many attributes may be needed to describe an event, it is possible
to split an —events table into several tables. This is done by repeating the table name (both
specific and general), and using different column headings in each occurrence. When splitting,

column headings may not overlap, and each table must have the same number of events. The

table must have at least two columns:

-~ #

Optional row number. It is an integer, the first row must be numbered "1" and rows must
be numbered sequentially.

~ variable(s)

Arbitrary number of columns, each for a variable declared in the variables table. Recall
that the maximum number of columns allowed is 40, and the maximum number of
variables is currently set to 60. The entries in the rows of the table must take legal values
of the corresponding variables in the heading. They may consist of single values or strings
of values, separated by commas or " " a9 in extended selectors. The default value for a
variable, if its column is missing or a placeholder $7* is entered, is its entire range, i.e. all

legal values for the variable (0..levels—1).

The -events tables shown below use the attributes defined in the variables and the —-names
tables from examples above. Some new eiamples are added to the initial set from section 2. The
first event in the first table represents three examples from the initial set, as the variable
"Memory" may take values of 2, 4 or 16. In the last event a few placeholders %) appear, which
means that the corresponding variables may take all possible values (in this case "yes” and "no").

Note that in the first —events table for the class "Under1000" there is no row enumeration.
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The events for the class "Over4000" have been split into two —events tables with the same

specific name. This can be helpful when dealing with tables with too many columns.

Example:
Under1000—events
Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer
no no no other 0 no M6502 2..16 no
no no no other 0 no Z80 32 no
yes yes no other 0 no Z80 16,48 no
yes yes yes  other 0 no M6502 16 no
* * * other 2 no M6502 4 no
Over4000—events
# Pascal Fortran Cobol Op_system
1 yes yes yes other
2 no no - yes other
3 yes yes yes cpm
4 no yes yes cpm
5 yes yes yes other
6 no yes yes other
7 yes yes no other
8 no ves yes other
9 no no no other
10 no no yes cpm
11 yes yes yes cpm
12 no yes yes cpm
13 yes yes no cpm
Over4000—events
#  Floppies Disk Processor Memory Printer
1 1 . yes Z80 128 no
2 2 no [8085 64 yes
3 1 yes 280 . 280 no
4 2 no [8085 64 no
5 2 no [8085 64 yes
6 2 no Z80 64 yes
7 2 no Z80 48 yes
8 2 yes Z80 64 no
9 2 no [8085 32 yes
10 O ves 780 64 no
11 2 no 18085 64 yes
12 2 no [8085 64 yes
13 0 yes 780 64 no
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4.5.12. The —children tables
AQ15 accepts optional _children tables in order to define a structuring of a rule base. The

specific name of the table must be the name of a class already defined, i.e., the name must have

appeared as the name of an —events table. The rule base may be structured to arbitrary depth.

The —children table consists of two columns:

~ node

This column is mandatory and must be of the alpha type. It specifies the name of the node
to be defined.

~ events

Mandatory column that specifies which events attached to the parent class also belong to

this child node. It consists of a string of integers separated by commas or by ".", as in

extended selectors. These numbers correspond to events associated with the parent. The
parent’s events are numbered in the order they appear in the —events table. Classes more
than one level deep in the rule base use the event numbers associated with their ancestor at
the top of the structure. This allows the user to specify all events with the same set of

numbers.

The tree below shows how a sample rule base might be structured. In this case classes
"Under1000”, "From1000to4000", and "Over4000" are brothers at the top of the structure. The

class "From1000t04000" has two sub—classes, "FroleOOtoZOOO" and "From2000t04000".

Under1000 From1000t04000 Overd4000

From1000t02000 From2000t04000



The -events table bel

table assigns

last 7 events to the class

classes, and will be treated as specified by the "a

4.2).

ow defines 13 events of the class "From1000to4000". The —children

the first 6 events of these and the 11th event to class "From1000to2000" and the

Example:

From1000t04000—events

comqmm.hwww;’t

10
i1
12
13

Pascal
no
no
yes
no
no
yes
no
yes
no
no
no
no
yes

Fortran Cobol

no
yes
yes
yes
yes
yes
yes
yes
no

yes
yes
no

yes

no
yes
yes
yes
yes
yes
yes
yes
yes
yes
no

yes
yes

From1000t04000—children

node

From1000t02000
From2000t04000

4.5.13. The —tevents tables

Similar to the —events tables except that events are used only for testing.

events
1..6,11
7..13

Op_system
other
cpm
cpm
cpm
cpm
cpm
cpm
cpm
cpm
other
other
other
other

Floppies Disk Processor Memory

OO MO R RO MDD DD M R = N

no
no
no
no
no
no
no
no
no
no
no
no
no

M6502
18085
Z80
780
18085
280
Z80
780
Z80
280
M6502
Z80
280

16
32
64
16
48
32
64
48
64
64
48
64
64

"From2000t04000". Note that the 11th event belongs to both sub-

mbig" parameter in the parameters table (see

Printer
no
no
no
no
no
no
no
yes
no
no
no
no
no
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4.6. How to Run AQ15
This section gives a detailed explanation of the sample output of the A@Q15 program. The
sample input was presented earlier, in the tables guide. If the input is stored in the file

"sample.inp”, then executing:

aql5.run <sample.inp >sample.out

under the UNIX shell would cause AQ15 to run the example and save the result in the file
"sample.out”. This command also assumes that the user has stored the executable version of the

AQ15 program under the name "aql5.run”, or that he has defined an appropriate alias.

4.6.1. Sample Output
In the output file we find a set of relational tables in the same format as required for input.
This allows the AQ15 output to be directly used as an input for some other programs which are

handled as operators by the QUIN relational database system. In the output file we find all tables

that were requested by the "echo” parameter (see 4.5.2) for each run of A@15 plus tables that

contain produced classification rules.

parameters
run mode ambig trim  wts maxstar echo  criteria
1 te neg mini ¢px 10 pcib  default
ic pos gen all 10 pcvs  mincost

The program augments the parameters table from the input with default parameters
that were omitted. It defines the way in which AQ15 is to run on the input data. The
first run of AQ15 uses the intersecting covers mode, treats ambiguous examples as nega-
tive examples, produces the minimal descriptions, associates weights with each complex,
uses a maxstar of 10, default criteria, and echoes the parameters, —criteria, —inhypo, and
_children tables. In most cases, if a maxstar is approximately equal to the number of
variables used, the results are optimal in terms of quality of classification rules produced
and computational resources required.
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default—criteria
# criterion tolerance
1 maxnew 0.00
2  minsel 0.00

The default—criteria table specifies a LEF of two criteria: first maximize the number of
new events covered, and second (in the case of ties) minimize the number of variables
used in each complex. Both criterions have the tolerance of 0%. The costs of variables
are not taken into account when this criteria table is used. In the majority of cases the
default criteria cause AQ15 to produce the most compact classification rules.

Under1000—-inhypo

# cpx
1 [Floppies=0]

This is an initial rule for the class "Under1000". AQ15 modifies it when contradictory
new examples are encountered and may produce additional complexes to cover all posi-
tive events of the class.

From1000t04000-inhypo

# cpx
1 [Floppies=1..2] [Disk&Printer=no]

This initial rule for the class "From1000t04000" is read: "Our initial hypothesis states
that computer costs between 1000 and 4000 if it has 1 to 2 Floppies, and it has no Disk,
and it has no Printer”. Note that conjunction of extended selectors is expressed by their

concatenation.

Over4000-inhypo
# cpx
1  [Disk=yes|
2 [Printer=ves]

This is an initial rule for the class "Over4000". Note that disjunction is expressed with
different lines, where each line is a complex, i.e., a conjunction of extended selectors (in

general).



- 35—

From1000to4000—children
node events
From1000to2000  1,2,3,4,5,8,11
From2000to4000  7,8,9,10,11,12,13

The -children table introduces two new classes, sub—classes of the "From1000t04000"
class. As there are no input hypotheses for these two classes, A @15 starts with an empty
assumption, i.e., that the initial hypothesis for each of these two classes is unconditional-
ly true. The assumption is specialized when negative examples are encountered.

This ends the echo of some of the input tables for the first run. Next, the —outhypo tables

follow, which contain produced classification rules for the input examples.

Under1000-outhypo

# cpx
1 [Floppies=0] [Memory=small,32,48]

(total:4, unique:4)
2 [Memory=2..4]
(total:1, unique:1)

This is the classification rule for the class "Under1000". The first complex was produced
from the initial hypothesis, which was specialized to exclude negative events (e.g. events
10 and 13 from the class "Over4000"). It covers totally 4 events (1,2,3,4) and these
events are not covered by any other complex. The second complex uniquely covers one
remaining event (5). The weights at the end of each complex summarize these results.

From1000to4000-outhypo

# cpx

1 [Floppies=1..2| [Disk&Printer=no) [Processor=280,M6502] [Memory==medium,16|
(total:9, unique:8)

2 [Op_system=cpm| [Memory=32,48|
(total:4, unique:$)

3 [Floppies=3]
(total:1, unique:1)

This is the classification rule for the class "From1000t04000". Again, the first complex is
the specialized initial hypothesis, while the other two complexes cover the remaining po-
sitive events. In this case, the 6th event in the class is covered by the first and the second
complex. Therefore, the number of uniquely covered events is one less than the number

of totally covered events.
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Over4000-outhypo
# cpx
1 [Memory=32,64) (Printer=yes]
(total:6, unique:l)
[Disk=yes|
(total:5, unique:5)
3 [Processor=[8085] [Memory=>64]
(total:5, unique:1)
4 [Cobol=no] [Printer=yes|
(total:2, unsque:l)

[ -]

This is the classification rule for the class "Overd000". The first complex in the initial hy-
pothesis was not modified, but after sorting of complexes it became the second one. All
events that it covers are uniquely covered. The first and last complexes resulted from the
specialization of the second complex in the initial hypothesis, and the third complex is
produced to cover the remaining uncovered positive events.

From1000t02000—outhypo
# cpx .
1 [Memory=16,32|
(total:4, unique:3)
2 [Floppies=1]
(total:$, unique:2)

This is the classification rule for the sub—class "From1000t02000". Note that it does not
cover the 11th event, which also belongs to the sub-class "From2000t04000" and was

treated as a negative example.

From2000to4000-outhypo
# cpx _
1 [Cobol=yes]| [Floppies=2..3| [Memory=48,64]
(total:6, unique:6)

This is the classification rule for the sub-class "From2000t04000". As there were no ini-
tial hypothesis for these two classes, their descriptions are considerably simpler than the
description for their parent class "From1000t0o4000".
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This run used (milliseconds of CPU time):
System time: 200
User time: 10783

Time taken to form the rules for the first run. This does not include input and output

time.

Now the second run starts on the same input data.

parameters
run mode ambig trim  wts  maxstar echo  criteria
1 ic neg mini c¢px 10 pcib  default
2 ic pos gen all 10 pcvs  mincost

This is the echoed parameters table for the second run of AQ15. There are some
differences in parameters that cause AQ15 to produce different covers: the mincost-
criteria is used instead of the default, covers are as general as possible, weights are asso-
ciated with each extended selector in complexes, and ambiguous examples are treated as
positive examples. Besides the parameters table, the mincost—criteria, variables, and

_structure tables are echoed.

mincost-criteria
# criterion tolerance
1 mincost 0.20
2  maxtot 0.00

This criteria table specifies a LEF that first minimizes the total cost of the variables -
used, and then (in case of ties) maximizes the total number of positive events covered.
The first criterion has a tolerance of 20%.
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variables
# type levels cost name
1 nom 2 10.00 Pascal.boolean
2 nom 2 10.00 Fortran.boolean
3 nom 2 10.00 Cobol.boolean
4 nom 2 10.00 Op_system
5 lin 4 100.00  Floppies
6 nom 2 0.00 Disk.boolean
7 nom 3 0.00 Processor
8 str 8 100.00 Memory
9 npom 2 0.00 Printer.boolean

In the output variables table the columns "type” and "levels” are deduced from the input
domaintypes table. The cost associated with each variable is taken into account only
when the criterion "mincost” is used. With these costs we intended to discourage the use
of the variables "Floppies” and “Memory", and to encourage the use of the variables
“Disk”, "Processor” and "Printer” in the classification rules. By changing the costs the
user can influence the terms by which the results are described.

Memory-structure

narme value subvalues
very_small 8 0,1

small 9 0,1,2
medium 10 3,4,5
very_large 1 6,7

large 12 5,6,7

This is the echoed —structure table for the variable "Memory”. Note that in the sub-
values column, all nodes higher in the hierarchy were substituted by their corresponding

leaves.

Under 1000-outhypo
# cpx
1  [Disk=noi(pos:5, neg:21) [Floppies=0|(pos:4, neg:2)
(total:4, unique:4)
2 [Memory=very_small]{pos:l, neg:0)
(total:1, unique:1)

This is the rule for the class "Under1000". Note that in the first complex the expensive
variable "Memory" from the first run was replaced with the cheaper variable "Disk".
This extended selector alone covers 5 events from this class and 21 from the other two
classes. However, all these negative events are eliminated by the sccond extended selec-
tor. In the second complex, the leaves values for the variable "Memory" (2 or 4) were re-
placed by the value as high in the hierarchy as possible (very_small).
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From1000t04000—outhypo
#  cpx
1 [Disk=no|(pos:13, neg:13) [Printer=no|(pos:12, neg:11) [Cobol=yes|(pos:11, neg:11)
[Processor=280](poa:9, neg:9)
(total:8, unique:3)
2  [Disk==no|(pos:19, neg:13) [Printer=no|(pos:12, neg:11) [Floppies=1..2](pos:12, neg:12
[Memory:very_large,2,16,32,48](pos:7, neg:7)
(total:6, unique:4)
3  [Disk=no](pos:18, neg:18) [Processor=280,M6502|(pos:11, neg:12)
[Op_system=cpm|(pos:8, neg:6)
(total:6, unique:l)

This is the rule for the class "From 1000t04000". Note that extended selectors are ordered
within each complex in decreasing order of the number of positive events covered.

Over4000-outhypo

# cpx

1  [Disk=yes|(pos:5, neg:0)
(total:5, unique:5)

2 . [Printer=yes|(pos:7, neg:1) [Op_system=other|(pos:7, neg:10)
(total:5, unique:3)

3 [Memory——:small,large] (pos:11, neg:11) [Processor=[8085](poa:6, neg:2)
(total:5, unique:3)

This is the rule for the class "Over4000”. In all events that are covered by the third com-
plex, the variable "Memory" has value 64 but because the classification rule is to be as
general as possible (due to the setting of the parameter "trim"), the program climbs the
generalization tree as high as it can without covering any negative examples.

From1000t02000-outhypo

# cpx
1  [Printer=no|(pos:7, neg:6) [Memory=small,veryJarge,32,48}(pos:6, neg:2)

(total:6, unique:5)

2 [Printer=no|(pos:7, neg:6) [Op_system=cpm|(pos:5, neg:3)
[Pascal=ves|(pos:2, neg:2)
(total:2, unique:1)

This is the rule for rhe sub—class "From1000t02000". Note that the Llth event is now
covered by the classification rules for both sub-classes, due to the parameter setting of
"ambigll.



- 40 -

From2000t04000—-outhypo

# cpx

1 [Processor:——ZBO,M6502]{poo:7, neg:5) [Memory=very_small,medium,large] (pos:7, neg::
[Pascal=no|(pos:5, neg:5)
(total:5, unique:3)

2 [Processor=280,18085]{poa:ﬁ, neg:5) {Op_system=otherl(poa:4, neg:2)
(total:3, unique:1)

3  [Printer=yes|(pos:1, neg:0)
(total:1, unique:1)

This is the rule for the sub-class "From2000to4000”. The differences of the descriptions
for these two sub—classcs helween the first and the second run are much greater than for
other classes, as there was vo initial hypothesis. The expensive variables "Floppies” and
"Memory" are avoided as much as possible, which results in more complicated descrip-
tions.
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4.8.2. Pre-Processing and Sample Output

AQ15 does constructive learning by applying A-rules or L-rules to the events read or input
hypotheses. The constructive learning is as follows. In the input stage, AQ15 picks up all expres-
sions in the extended selectors read in and the variables that were not specified neither in the
domaintypes tables nor in the variables tables, puts them into the list of variables, counts the
levels for them, and constructs new selectors corresponding to the new variables, AQ15 starts to
apply the A-rules or L-rules to the events and input hypotheses as soon as input processing
finishes. If there is a condition of the current rule, the program tests first if the condition is
satisfied by the event or hypothesis currently treated. If satisfied, it adds the value for a new
variable corresponding to the expression of A-rule or the consequence of L-rule to the event or
hypothesis. If the condition is not satisfied, it adds a default value named "others” to the event or
hypothesis. Wl-mn the processing is done for all rules and all events or hypotheses, a filter is
invoked to select a few best new variables according to a criterion described below,. and add them
to the original variables. The processing is detailed as follows. For each new variable, and for
the corresponding attributes in the positive events, the filter first calculates the average number
of disappearances of the attributes in the negative events. It then sorts the numbers and selects
those variables to be used further that have the largest numbers. This utility can make the new
variables chosen better than original ones in the sense of producing better rules. Now, AQl15
starts generating output hypotheses.

The following two examples show that the pre-processing is a powerful tool for inductive
learning. The first example is for applying an A-rule to the example in section 4.3, viz., intro-
ducing a new variable Tot_Memory into the events. The second example is for applying L-rules,
viz., introducing three new variables, Main_device, Device_storage and Computer_cost. Both

results are better than original ones in section 4.6.1.
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Example: (for A-rules)

Note that in the variables table, variable Tot_Memory is a newly added one.

arules
# aexpr
1 Tot_Memory := 512 * Floppies + Memory if
[Disk=no)
parameters
run mode ambig trim wts  maxstar echo criteria
1 ic pos mini cpx 10 pdvns default
domaintypes
type levels cost name
nom 2 1.00 boolean
lin 4 1.00 Floppies
nom 2 1.00 Op.system
nom 3 1.00 Processor
str 8 1.00 Memory
nom 11 1.00 Tot_Memory
variables
# type levels cost name
1 nom 2 1.00 Pascal.boolean
2 nom 2 1.00 Fortran.boolean
3 nom 2 1.00 Cobol.boolean
4 nom 2 1.00 Op._system
5 lin 4 1.00 Floppies
6 nom 2 1.00 Disk.boolean
7 nom 3 1.00 Processor
8 str 8 1.00 Memory
9 nom 2 1.00 Printer.boolean
10 nom. 1 1.00 Tot_Memory

boolean-names
value name
0 yes
1 no

Op_system-names
value name
0 cpm
1 other

Processor-names
value name



0
1
2
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Z80
M6502
18085

Memory-names
value name

NG AW N - O

2

4
16
32
48
64
128
280

Tot_Memory-names
value name

00 NN e~ O

-
o

2

0

1

3
514
1027
517
1026
516
1029
others

Memory-structure
name value subvalues

2.4 0 0,1

Under1000-events

#* Pascal Fortran Cobol Op_system Floppies Disk
1 no no no other 0 no
2 no no no other 0 no
3 no yes no other 0 no
4 no yes no other 0 no
From1000to4000-events

# Pascal  Fortran Cobol Op.system Floppies Disk
1 no no no . other 1 no
2 no yes yes cpm 2 no
3 yes yes yes cpm 1 no
4 no yes yes cpm 2 no
5 no yes yes cpm 1 no

Processor Memory

M6502 6
M6502 2
M6502 4
780 32

Processor Memory

M6502 18
18085 2

780 64
280 18
18085 48

Printer

no
no
no

no

Printer

no
ne
no
no

no

ot Sfoy o

w o~ O 12

Tot_Memory
514

1027

517

1026

518



Over4000—avents

#* Paseal Fortran Cobol  Op._system Floppies Disk Processor Memory Printer
1 yes yes yes other 1 yes 780 128 no

2 no no yes other 2 no 18085 64 yes

3 yes yes yes cpm 1 yes 780 280 no
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Under1000-outhypo
# cpx
1 [Tot_Memory = 0..3]
(total:4, unique:4)

From1000to4000-outhypo

# cpx
1 [TotMemory = 514 v 518 v 517 v 1028 v 1027]

(total:5, unique:5)

Over4000-outhypo
# cpx
1 [Tot_Memory >= 1029]
(total:3, unique:3)

This run used (milliseconds of CPU time):

System time: 433
User time : 21833

Example: (for L-rules)

Note that in the variables table, variables 10-12 are newly added.

lrules
# lexpr
1 {Computer_cost=medium| if
* [Main_device=no] [Device_storage=yes|

2 {Deﬁce_storage:yes] if

1 [Disk =yes| v

2 [Floppies = 1,2]

3 ‘Main device=no] if

[Disk&Printer=no]
parameters

run mode ambig trim  wts maxstar echo criteria
1 ic pos mini  cpx 10 pdvns default

domaintypes

Tot_Memory
others
1029

others



type levels
nom 2
lin 4
nom 2
nom 3
str 8
nom 2
nom 2
nom 2
variables
# type
1 nom
2 nom
3 nom
4 nom
5 lin
8 nom
7 nom
8 str
9 nom
10 nom
11 nom
12 nom
boolean-names
value name
0 yes
1 no

Op_system-names

value name
0 cpm

1 other

Processor-names

value name
0 280

1 M6502
2 [8085

Memory-names

value name
0 2

1 4

2 16

3 32

4 48

cost
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

—_—
o
<
®
—_
@

DO NN NG W N NN NN
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name
boolean
Floppies
Op.system
Processor
Memory
Main_device
Device_storage
Computer_cost
cost name
1.00 Pascal.boolean
1.00 Fortran.boolean
1.00 Cobol.boolean
1.00 Op_system
1.00  Floppies
1.00 Disk.boolean
1.00 Processor

" 1.00 Memory
1.00 Printer.boolean
1.00 Main_device
1.00 Device_storage
1.00 Computer_cost
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5 64
6 128
7 280

Main_device-names
value names

0 no

1 others
Device_storage

value names

0 yes

1 others

Computer_cost-names
value names
0 medium
1 others

Memory-structure
name value subvalues

2.4 0 0,1
Under1000-events
% Pascal Fortran Cobol Op_system Floppies Disk Processor Memory
1 no no no other 0 no M6502 8
2 no no no other 0 no M65602 2
3 no yes no other 0 no M#6502 4
4 no yes no other 0 no 1780 32
From1000to4000-events )
= Pascal Fortran Cobol Op_system Floppi Disk Pr Memory
1 no no no ~ other 1 wo M6502 16
2 no yes yes cpm 2 no [8085 2
3 yes yes yes cpm 1 - no 180 64
4 no yes yes cpm 2 no 280 16
S no yes yes cpm 1 no 18085 48

Over4000-events
# Pascal Fortran Cobol Op_system Floppies Disk Processor Memory

1 yes yes yes other 1 yes 180 128
2 no no yes other 2 no 8088 64
3 yes yes yes cpm 1 yes 180 280

Printer
no
no
no

no

Printer
no
no
no
no

no

Printer
no
yes

no

Main_device Device_storage Compqter_con

no others
0o others
no others
no others

Main_device Device_storage

no yes
no yes
no yes
no yes
no yes

others
others
others
others

Computer_cost
medium
medium
medium
medium

medium

Main_device Device_storage Computer_cost

others yes
others yes
others yes

others
others

others



Under1000-outhypo

# cpx

1 [Device_storage=others]
(total:4, unique:4)

From1000to4000—-outhypo

# cpx

1 [Computer_cost=medium]
(total:5, unique:5)

Over4000-outhypo

# cpx

1 [Main_device=others]
(total:3, unique:3)

2 [Device_storage=yes] if
[Disk=yes] v
[Floppies = 1..2]

[ I

3 [Main_device=no] if
[Disk&Printer=no]

Recall that "others” is the default value for a variable,
the set of values really read in. For example, [Main_device:others]
—[[Main_device=no, i.e., [Disk=yes| v

in section 4.6.1.
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This run used (milliseconds of CPU time):

System time: 287
User time : 7787

that is, a complement of
is equivalent to
[Printer=yes], which is the same as results
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4.6.3. Incremental Learning and Sample Output

AQ15 also has the capability of incremental learning by using input or previously generated
hypotheses (see procedure formrule in the Appendix). The incremental learning works as follows.

Suppose the classes of the training examples and the input hypotheses, if any, are given.

o Step 1: Partition of Training Examples
AQ15 first partitions each class of input training examples into several subsets according to
a percentage of total partition given by the user. The partitioned examples are stored into tem-

porary nodes, while working nodes initially are left empty.

o Step 2: Specialization of Hypotheses

If all temborary nodes become empty, then the program is terminated, otherwise the subset
of partitioned examples on the top of each temporary node is transferred to the corresponding
working node and will be used as new training examples later.

If a2 new added example is covered by hypotheses, its name is stored into the corresponding
hypotheses. Now, AQ15 specializes the hypotheses in the way that if a hypothesis covers positive
examples and negative examples as well, then AQ15 generates a cover which covers the positive
examples against the negative ones. A filter then chooses those complexes in the cover that cover
more than 50% of the examples for that cover and deletes the rest of the complexes and the
examples covered by the chosen complexes. Now, AQ@15 makes an intersection of the chosen com-
plexes and originai hypothesis and uses the resulting complexes as training examples for the next

run. It is obvious that the speciviization of hypotheses can speed up the inductive learning by

using hypotheses each of which may cover more examples rather than just the current examples

themselves.



- 49 —

« Step 3: Generation of New Partial Covers

AQ15 generates new covers which cover the chosen hypotheses and remaining positive exam-

ples in Step 2 against negative ones.

o Step 4: Generation of Partial Cover
The program uses the output hypotheses generated in this run as the input hypotheses for

the next run, and returns to Step 2.

The following is an example of incremental learning.

Example:

Suppose we are given the same input data as that in section 4.6.2. for A-rules. Suppose we

are also given a parameters table as follows:

parameters
run mode ambig trim  wts  maxstar echo  criteria increment
1 ic pos mini cpx 10 piw default 50

where increment = 50 indicates that AQ15 will randomly partition the input data into sub-

sets with 50% of the input data.

AQ15 uses the following first 5095 of the events as training examples for the first run:
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Under1000—-events

Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer

no no no other 0 no 280 32 no
no yes no other 0 no M6502 4 no
From1000t04000-events

Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer

no yes yes cpm 1 no I8085 48 no
yes yes yes cpm 1 no Z80 64 no
no yes yes cpm 2 no I8085 32 no

Over4000-events

Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer
yes yes yes  cpm 1 yes Z80 280 no

yes yes yes  other 1 yes 280 128 no

AQ15 runs on the data above and generates a partial cover:
NO. 1 (Incremental Learning)

Under1000—outhypo
# cpx
1 [Fortran = no|

|Events covered: 1, 21

(Total:2, Unique:2)

From1000to4000—-outhypo
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# cpx
1 [Floppies = 1 v 2|[Memory = 32 v 48 v 64

'Events covered: 1..3}

(Total:3, Unique:3)

Ove1;4000—outhypo
# cpx
1 [Disk = yes|
|Events covered: 1, 2}
(Total:2, Unique:2)

AQ15 then uses the output hypotheses as the input hypotheses, adds the other 50% training

events to the corresponding classes, runs again, and generates the following result:

NO. 2 (Incremental Learning)

Under1000-outhypo
# cpx
1 [Fortran = no|(Floppies = 0]
{Events covered: 1..4]

(Total:4, Unique:4)

From 1000t04000-outhypo

# cpx
1 [Floppies = 1 v 2|[Disk = no] [Processor = Z80 v M6502]

'Events covered: 2, 4, 5]
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(Total:3, Unique:2)
2 [Fortran = yes| [Floppies = 1 v 2|[Memory = 32 v 48 v 64]
|Events covered: 1..3]

(Total:3, Unique:2)

Over4000-outhypo
# cpx
1 [Disk = yes]

|Events covered: 1, 3} (new)
(Total:2, Unique:2)

2 [Fortran = no|[Floppies = 2]
'Events cévered: 2}

(Total:1, Unique:1)
4.6.4. Testing and Sample Output

A testing facility which recognizes the concept membership of ezamples was incorporated
into AQ15. There are two matching measures, strict matching measure and analogical matching
measure. In the strict matching measure, AQ15 tests if a testing example is covered by output

hypotheses or input hypotheses which depends on the existence of training examples. In the ana-

logical matching measure. 1Q15 determines the degree of similarity or closeness between the

testing example and the hypotheses. If 'w’ occurs in the echo column, i.e., reduction criterion 1

applies, AQ15 uses the measure described in (Michalski, Mozetic, Hong &Lavrac 86). If 'm

occurs in the echo column, i.e., reduction criterion 2 applies, AQ15 uses the measure introduced

in (Michalski &Chilausky 80).
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Example:

Suppose we divide the set of training examples in section 4.6.2 into two subsets. One of

them is the same as the first run of the previous example and will be used as the set of training

examples. The other, as shown below, as the set of testing examples.

Under1000-events

Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer

no no no other 0 no M6502 16 no
no no no other 0 no M6502 2 no
From1000to4000—events

Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer
no yes yes cpm 2 no 280 16 no

no no no other 1 no M6502 16 no

Over4000-events

Pascal Fortran Cobol Op_system Floppies Disk Processor Memory Printer

no no yes  other 2 no [8085 64 yes

AQ15 first runs on the training examples and gives output hypotheses the same as those in
the first run (NO. 1) of the previous example. The program then tests each testing example and
gives its matching degree as shown in the resulting Confusion Matriz. We explain the meaning of
the confusion matrix by examples. In the matrix, testing event 1 in class Under1000 has the
maximum matching degree (0.29) in its own class, so the match is correct; event 1 in class
From1000to 4000 has a correct match although it is covered by none of the output hypotheses

(indicated by member=no ); and the testing event in class Over4000 has incorrect match since it



has the maximum degree

correct match and 2 incorrect,
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so the matching accuracy is 60%.

Confusion Matrix (Reduction 1)

(0.43) in class From1000to4000r. Also, there are 3 events which have

# Event Class mmv-l:_!jr Under1000 From1000to4000 Overd000
1 0.29 0.0 0.00
2 0.29 0.00 0.00
From1000t04000:
1 no 0.14 0.16 0.14
2 Under1000 0.29 0.00 0.00
Over4000:
1 From1000to4000 0.29 0.43 0.00

# Event Correct:

# Total Selector:

3 # Event Incorrect: 2

4  # Total Complex: 3

Accuracy: 60%

Complexity
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5. FURTHER WORK

The current implementation of the AQ15 runs well, but has a few deficiences. The first and
probably the most unpleasant problem from the user’s and the programmer’s point of view are
its input routines. The “setup” procedure, which reads in relational tables, is not capable of
detecting all syntax errors that may occur in the input, and may therefore abruptly terminate
the execution without any error message or even fall into a dead loop.

The second problem is of a more conceptual nature and concerns the data representation.
Like GEM, AQ15 manipulates actual examples and spends majority of the time testing if partic-
ular complexes cover an individual example. In order to avoid redundant computation, AQ15
should first enumerate examples and then manipulate the set of numbers representing the events.
As a result, when testing which negative examples are still covered by a partial cover, a simple

and efficient set intersection operation can be used.

Another very frequent time and space consuming operation is copying sets of examples and com-
plexes. By marking the examples covered and linking the complexes to be copied, the problem

can be solved.
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