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LEARNABLE EVOLUTION:

Combining Symbolic and Evolutionary Learning
Initial Results

Ryszard S. Michalski
George Mason University
Fairfax, VA

and
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Abstract

This paper introduces a new methodology for multistrategy
leaming, calied Learnable Evolution Model (or LEM),
which combines symbolic learning and evolutonary
computation. The method employs a form of Lamarckian
evolution , in which a symbolic learning process is used to
determine “reasons” why certain individuals in a
population are superior to others in performing designated
tasks. These reasons, expressed in the form of symbolic
descriptions, are vsed, in combination with the standard
evolutionary operators, for creating a new generation of
individuals in an evolutionary compufation process. The
method has been compared to two standard genetic
algorithms in solving a range of function optimization
problems. In the experiments, the proposed method has
outperformed two standard genetic algorithms by a wide
margin, frequently achieving a speed-up of two or three
orders of magnitude.

Introduction

Recent years have witnessed a significant progress in the
development of monosirategy symbolic learning methods,
and in scaling them up to cope with large datasets (e.g.,
Clark and Niblett, 1989; Coben, 1995; Diettesich, 1997,
T. Mitchell, 1997: Michalski, 1998). There has also been
a significant progress in the area of evolutionary
computation (e.g., Baeck, Fogel and Michalewicz, 1997,
Koza, 1994). Becanse these two methodologies have
complementary strengths and limitations, a question
arises if their integration could not lead to a new powerful
leaming methodology. This question motivates research
whose first results are presented in this paper.

All standard methods of evolutionary computation draw
inspiration from principles of Darwinian evolution: the
basic operators they employ are mutation, crossover
(recombination), and selechion of the fittest. These
operators are simple and attractive because they can be
applied without knowing a model of the problem domain
(e.g., Holland, 1975; Michalewicz, 1996, M. Mitchell,
1996). Consequently, such ¢volutionary methods are very
general, and bave been applied to a wide range of

i

problems (e.g., complex oplimization problems,
evolutionary prograuuming, pattern recognition,

engineering design, and evolvable hardware). The
Darwinian-type evolution is, however, semi-blind: the
mutation is a random madification of the current solution;
the crossover is a semirandom recombination of two
solutions; and the survival of the fittest is a form of
parallel] hill climbing. In this type of evolution,
individuals cannot pass the lessons leamed from their
experience to the next generation. Consequently,
computational processes based on Darwinian evolution
are not very efficient. Low efficiency has been the major
obstacle in the application of evolationary computation to
very complex problems.

The novel idea presented in tius paper is (o introduce
symbolic learning to evolutionary computation in order to
improve the way new generations of individuals are
created. The proposed general leaming methodology,
called Learnoble Evolution Model (buefly, LEM), is a
form of Lamarckian' learning. LEM combines two
processes —symbolic  learning,  concerned  with
determining and exploiting differences between sets of
individuals (e.g., current solutions, the alternative
descriptions characterizing training examples, etc.), and
the evolutionary learning, concerned with an evolutionary
improvement of the solutons, based on the results of
symbolic lecarning.

In the presented method, the symbolic learning step
employs the AQI15 leaming program for generating
hypotheses characlerizing “best” individuals (solations).
The evolutionary learmng step uses generated
hypotheses, in combination with standard genetic
operators, for creating a mew generation of solutions.
The process stops when the obtained soluuon is

! After Chevalier de Lamarck, the title of jean Baptiste Pierre
Antoine de Monet, French naturalist (1744-1829), who is the
author of the theory that adaptive responses to eavironment
cause structural changes capable of being inherited.



-atistactory, or the allocated computational resources are
cahausted.  The next section describes Lamarckian
leatiung in more detail.

Learnable Evolution Model

Ihe proposed evolutionary process, called Learnable
{ vellution Model (or LEM), is fundamentally different
lsomy the Darwinian type evolution, which underlies
«landard genetic algorithms. It is a form of a L.amarckian
hx of evolution, in which the creation of new
penerations of individuals is guided by lessons learned
trom an analysis of the previous generation of individuals.
specifically, at selected steps of evolution, a symbolic
leaming system searches for “reasons” why some
muhviduals in a population are superior to others in
performing the given class of tasks. These reasons,
vapressed in the form of symbolic descriptions (e.g.,
iulesets), or other forms (e.g., neural nets), are then nsed
Io create a new generation of individuals that hopefully
opresent better solutions.

Husic steps of the LEM algorithm are as follows;

(1) Randomly, or according to certain prior rules
reflecting domain knowledge, generate the starting
population of solutions {in the case of symbolic
leamning, solutions would be concept descriptions).

Execute the genetic algorithm mode (using
standard selection, crossover and mutation
operators), as lomg as the best soludon n a
sequence of gen-length iterations is better by the
gen-threshold than the best solution found in
previous generations.

Execute the symbolic learning mode:

s Determine HIGH (high-performance) and LOW
(ow perdormance) solations in the curent
population, on the basis of the value of the fitness
function for a given task or problem.

(3)

* Apply a machine leamning method for
characterizing differences between HIGH and
LOW solutions.

» (Generate 2 new population of solutions by
replacing not-HIGH individuals by those satisfying
the leamed descripton of HIGH solutions; the
selection of new solutions among those satisfying
the description is random or according to the
predefined selection rules.

» Continue the process as tong as the best solution
in a sequence of learn-length iterations is better by
the learn-threshold than the previously found best
solution.

Lh

(4) Switch to (2), and repeat the process. Continue
switching between (2) and (3) unul the termination
condition is met (the generated solution is
satisfactory, or the allocated computational
resources are exhausted).

In the above, gen-length, gen-threshold, learn-length,
learn-threshold, and parameters for determining the
HIGH and LOW solutions are determined by analytical
considerations, or experimentally, according to the given
problem domain.

The LEM methodology cap, in principle, employ any of
the existing genetic/evolutionary algorithms in step (2),
and any learning method in step {3), which is able to
generate  discriminant descriptions of the solutions

(Michalsk:, 1983).
Initial Experiments

iIn the experiments presented below, we used the LEM1
system, which 1s the first, rudimentary implementation of
the LEM algorithm. In LEM]I, the symbolic learning step
employs the AQ-15 mle learning system, which has the
ability to generate discriminant descriptions, and uses the
VL1 concept representation language (Wnek et al., 1995).
These experiments concerned problems of function
optimization. The two problems used here have been
selected from a problem set developed by De Jong (1975)
for testing genetic algorithms. To compare LEM against
standard genetic algorithms we used algorithms GA1 and
GA? described m De Jong (1998).

Problem A: Fnd the maximum of a non-
differentable funciion (Figure 1):

5
f3(x;) = ¥ integen(x;), -512s %5512
i

Maximum: 25, Mimmmum: -30



Figure l. Inverted two-dimensional graph of the function
used in Problem A (Reprimed with the permission of K. De Jong).

Results are presented in Figure 2. As shown in the figure,
LEM]I has significantly outperformed GAl and GA2. It
found the global maximum after about 60 generations,
while GAl’'s and GAZ2’s solutions were far from the,
maximum even after 300 generations.

———-GA1
------ GAZ
LEM
A
SNTRS8E3p3885:58%88%8 9
Number of Generations
Figure 2. The evolution process within 500 generatons {10000 births) for [unction.
Relative-Distance-to-Target Best-So-Far Fitness Value
GAl 47.2% 13.2
GA2 30.4% 17.4
LEM 1 0.0% 25.0 (global max)
Table 1. The Relative-Distance-to-Target after 500 generations (L0000 births) for Problem A.

o 0.0% 1.0% 20% 3.0% 4.0% 5.0% 6.0% T0% 8.0%
GAl UNS UNS UNS UNS UNS UNS UNS UNS UNS
A2 UNS UNS UNS UNS UNS UNS UNS NS UNS
LEM 1 58 58 45 45 45 44 44 44 42

“UNS™ means unsuccessful when reaching 10,000 generation (200000 births)
Table 2. The d-close numbers for different 8 values and different algorithms.

In order to characterize the relative performance of the
tested algorithms, we introduced a measure, called
“Relative-Distance-to-Target,” defined as the ratio of the
difference between the target (here, the function
maximumy} and the result obtained by an algonthm, to the

target value, expressed in percentage, after a given

number of generations (here, 500).

Table 1 presents the Relative-Distance-to-Target for all
three algorithms. To evaluate the performance of the

(&



alporithms in another way, we also determined the d-close
aumber, defined as the number of generations in the
¢ solutionary process after which the Relative-Distance-
o Larget of the solution produced by an algorithm
wches a given value, 8.

Table 2 presents 8-close numbers for different values of &
and different algorithms. To achieve 6=0.08, LEM
needed 58 generations, while GA1 and GA2 were not §-
close at 10,000th generation even for 6= 8.0%. By
dividing the d-close nnmber for GA1 and GA2 by the 8-
close number for LEMI, we estimated the LEM1’s

LEM Speed-up for Different &
" 00% | 1.0% 2.0% 3.0% 4.0% 5.0% 60% | 70% 8.0%
GAI/LEM1 | >»172 | >>172 >>222 »222 222 >>227 >»227 >=227 >>238
GAZLEMI | 55172 | =172 | >>222 | =222 | =222 | o277 | oo227 | 52227 | =538

* GAl and GAZ solutions have not become b-¢lose to the maximum within 10,000 generations
“>> N” means that if the solution was §-close at 10 000th generation, the speedup would be N,

Table 3. LEM1’s speed-up over GA1 and GA2 for different & values.

vwolution “speed-up” over GA1 and GA2, respectively.
\ specd-up of 10 means that LEMI reaches the given &-
ose fimess function value using 10 times fewer

Fhe word “speed-up” may be a little misleading here,
twcause each generation in LEM involves more complex
nperations than in GAs, as it requires a symbolic learning
. On the other hand, such a step could be made very
f.as1 by implementing it in a specialized hardware.

[able 3 presents LEM 1’s speed-ups over GAl and GA2
tor different values of &. One can see, for example, that
ten O cqual 1%, the LEM1’s speed-up over GAI and GA2
was at least 172, For & equal 5%, the speed-up was at
least 227 (since GAl and GA2 have not reached

imaximum at 10,000™ generation).

Problem B: Find maximum of a function of a large
nomber of continuous variables (30) and with added
tussian noise (Figure 3).

Ii(x) = Yix!+ Gans0,), -1.28s=x;= 128
<

Maximum: approximately 1248.225. Minimum: 0.

I'lms function was chosen in our tests because finding its
opimnm  is not easy by standarnd methods. The
aptimization results (finding the maximum) using GAI,
tiAl and LEM1 are presented in Figure 4.

evolution generations than the algorithm with which it is
being compared.

Figure 3. Inverted two-dimensional graph of the function
used in Problem B. (Reprinted with permission of K. De Jong).

As one can sece, in this case LEM! dramatically
outperformed GAl and GA2. Tt found a near-maximum
solution atready after 150th generation, while GA1 and
GAZ were still over 44% away from the maximum after
500th generation. Table 4 presents the number of
generations after which the fitness value becomes d-close
to the maximum. Table 5 shows the speed-up of LEMI
ovet GAl and GA2 for different values of d.
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Figure 4. The evolution process within 500 generations (10000 births) for Problem B.
b 1.0% 20% 3.0% 4.0% 5.0% 6.0% 7.0% 3.0
GAl UNS UNS UNS LINS UUNS UNS NS UNS
GA2Z UNS UNS UNS UNS UNS UNS LINS UNS
LEM 1 491 151 132 120 116 110 98 o7
UNS means unsuccessful when reaching the 10000th generation (200000 births).
Table 4. The number of generations after whach the fitness value becomes d-close to the maximum.
LEM Speed-up Ratio for Different
& 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 3.0%
GAIALEM »>>2037 | >>6623 | >>»7576 | >>83.33 | >>86.21 >=0(.91 >>»102.0 | >>103.1
GAZLEM >>20.37 | >>6623 | >>75.76 | >»>8333 | >>86.21 >>9091 | >>102.0 | >>103.1

* GAl and GA2 solutions have not become &-close to the maximum within 10 000 generations;
“»> N" means that if they were 8-close at 10 (00th generation, the speedup would be N.

Table 5. LEMU’s speed-up over GA1 and GA2 for differem values of 8.

Discussion of the Experiments

The results presented here concerm only two problems
from among five that constitute the testing set described
in (De Jong, 1975). Actually, we applied the LEMI
program to all five problems in the De Jong’s set, and
experimented not only with finding the function
maxirmum, but also with {inding the function minimum.
In all these experiments LEM1 outperformed GA1l and
GAZ2, sometimes by a very wide margin (Michalsk: and
Zhang, 1998),

In the case of problem A (concerned with maximizing a
non-differentiable function; function £ in D¢ Jong's set) ,
and problem B (concerned with maximizing a function of
30 variables with noise; the function f, in De Jong’s set),
LEM 1 found the solution in the number of generations at
least two orders of magnitude smaller than the number of

generations needed by GA1 and GA2. The GAl and-

GA2 algorithms could not find the solution even after
10,000 generations, while L. EM1 found it in about 50
generations for problem A, and in about 200 generations
for problem B.

Relation to Other Work

The proposed methodology for Lamarckian learning is an
original development, and, to the author's knowledge, has
not been proposed elsewhere. The work by Grefenstette
(1991}, which also uses the term “Lamarckian leaming,”
describes a very different approach. It presents a genetic
learning system SAMUEL, designed for sequential
decision problems. SAMUEL’s “Lamarckian feature” is
a localized operation which makes modifications of an
mdividual in a population. The leaming methodology,
proposed here, uses a symbolic leaming system to
determine general patierns characterizing a set of well-
performing individuals, and then employs these patterns
to improve the new generation. Thus, the proposed
Lamarckian leaming is a global process utilizing lessons
from the “experience” of a group of individuals.

Another work related to combining genetic algorithms
and symbolic learning was done by Vafaie and De Jong
(1991), who used a standard genetic algorithm for



nnproving rules produced by an inductive leaming system
i \LD).

Conclusions

| e preliminary experiments with the LEM1 system have
Jemonstrated a significant promise of the proposed LEM
methodology as a basis for developing a new type of
vsoluionary learning systems.

Ihere are many unanswered questions and desirable
research directions regarding the proposed [.amarckian
jcamming methodology. These include a systematic
iheorctical and  practical  investigation of  this
methodology, and a determination of the type of tasks for
which it will likely be successful. The iminal system,
[ 1:AM], could be improved by employing a more
sivanced symbolic leaming method (e.g., AQ18 rather
ihan AQ15; Michalski, 1998, Bloedom et al. 1998
Hlocdorn and Michalski, 1998), and/or applying & more
advanced method for generating populations individuals
usimy the learned rules.

(e of the major characieristics of the proposed LEM
methodology is that it requires a symbolic learning system
able to leam discriminant descriptions of groups of
individuals in a population. If individuals are represented
hy attribute value veclors or Hom clavses, then standard
tributional Jearning or inductive logic programming
mcthods can be applied. If descriptions are more complex,
¢ p., are hierarchies of operators representing a computer
pogram, as in evolutionary programming (Koza, 1954),
ihen one needs to develop a learning program able to
work with such representations. The AQ methodology
can cope with such problems in principle, but a new
iepresentation of the input data, generated descriptions,
and appropriate generalization operators would have to be

developed.

Summanziag, the proposed methodology represents a
novel and little understood way of integrating symbolic
lcaming with evolutionary computation. The prelimmary
esults provide a strong justification for conducting
(urther research in this direction.
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