
SESSION-AWARE RBAC ADMINISTRATION, DELEGATION,
AND ENFORCEMENT WITH XACML

by

Min Xu
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University

In Partial fulfillment of
The Requirements for the Degree

of
Doctor of Philosophy

Information Technology

Committee:

Duminda Wijesekera, Dissertation Director

Ravi S. Sandhu, Committee Member

Daniel A. Menascé, Committee Member

Songqing Chen, Committee Member

Angelos Stavrou, Committee Member

Daniel A. Menascé, Senior Associate Dean

Lloyd J. Griffiths, Dean, The Volgenau School
of Information Technology and Engineering

Date: Spring Semester 2010
George Mason University
Fairfax, VA

Session-aware RBAC administration, delegation, and enforcement with XACML

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Min Xu
Master of Science

University of Nevada, Las Vegas, 2002
Bachelor of Engineering

Huazhong University of Science and Technology, 2000

Director: Duminda Wijesekera, Associate Professor
Department of Computer Science

Spring Semester 2010
George Mason University

Fairfax, VA

Copyright c© 2010 by Min Xu
All Rights Reserved

ii

Dedication

To my parents, who have always inspired and encouraged me to continue my lifelong
dream.

My special dedication goes to my lovely wife, Haiyin Hua, who has been always support-
ing me and sharing all the difficult times with great love and sacrifices.

To my lovely daughter, Jennifer, who is the constant sources of my joy and pride in my life.

iii

Acknowledgments

I would like to express my sincere appreciation and gratitude to my dissertation director,
Professor Duminda Wijesekera, who has enlightened and guided me throughout my doc-
toral studies. Great thanks to Dr. Wijesekera who made this work possible, and encouraged
me during my difficult times.

Special appreciation and thanks to Professor Ravi Sandhu, who has brought me into the In-
formation Security and Assurance field, advised and supported me during my earlier years
of doctoral study and continuing serve on my committee even after leaving George Mason
University.

I am also grateful to my dissertation committee members, Professor Daniel A. Menascé
Professor Songqing Chen, and Professor Angelos Starvrou, for their valuable comments
and suggestions.

I thank the administrative staff at GMU for their support. Special thanks go to Lisa Nolder
who helped me go through some administrative obstacles.

My appreciation also goes to many friends at George Mason University for their help and
to my co-authors for their collaboration. Special thanks go to Dr. Xinwen Zhang who I
have collaborated on three paper. His comments and suggestions are very constructive, and
his English writing is really good.

iv

Table of Contents

Page

List of Tables . vii
List of Figures . viii

Abstract . ix
1 Introduction . 1

1.1 RBAC and XACML . 1
1.2 Problem Statement . 2
1.3 Summary of Contributions . 5

1.4 Organization of the Dissertation . 6

2 Background . 7

2.1 XACML . 7
2.1.1 Syntax . 7

2.1.2 Sun’s Reference Implementation 11

2.2 RBAC and ARBAC . 15
2.3 XACML v3.0 Administration and Delegation Profile 15

2.3.1 An Example . 16

2.4 Role-based Delegation . 20

3 Session Administrative Model . 23
3.1 RBAC Session Administration . 23

3.1.1 Formal Specification of Administrative Operations 28

3.2 Concurrency Control . 31

3.2.1 Entities Affected by Enforcing Administrative Operations 33

3.3 Related Work . 35
3.4 Summary . 38

4 XACML-ARBAC Profile and the Enforcement Architecture 39
4.1 The XACML-RBAC Profile . 39
4.2 The XACML-ARBAC Profile . 40

4.2.1 Administrative Operation . 51

v

4.3 Enforcing The XACML-ARBAC Profile 52

4.3.1 Concurrency Control . 53

4.3.2 The Lock Manager . 56

4.4 The Birth and Death Processes . 58
4.5 Related Work . 60
4.6 Summary . 61

5 XACML-ADRBAC Profile and Its Enforcement Architecture 63
5.1 Introduction . 63
5.2 Administration and Delegation Model . 65

5.3 The XACML-ADRBAC Profile . 68
5.3.1 An Example . 73

5.3.2 Role Reduction . 79
5.4 Enforcement Architecture . 80

5.4.1 Concurrency Control . 81

5.5 Related Work . 83
5.6 Summary . 85

6 Prototype Implementation and Evaluation . 87

6.1 Implementation . 87

6.1.1 Implementing the Birth and Death Process 87

6.1.2 Implementing Condition Functions and Administrative Operations . 88

6.1.3 Implementing the Lock Manager 89

6.2 Performance Evaluation . 91
6.2.1 Simple Administrative Operations 92

6.2.2 Complex Administrative Operations 93

6.3 Related Work . 98
6.4 Summary . 99

7 Conclusion and Future Work . 100
7.1 Conclusion . 100
7.2 Future Work . 101

Bibliography . 104

vi

List of Tables

Table Page

3.1 Administrative operations . 27

4.1 Extended functions applied in <Condition> in XACML-ARBAC profile . . 42

5.1 Delegation operations . 68

5.2 Extended functions applied in <Condition> in XACML-ADRBAC profile . 71

5.3 Contrasting elements in XACML-ARBAC with XACML-ADRBAC 72

5.4 Comparison between XACML-ARBAC, XACML-Admin, and XACML-

ADRBAC services . 80
6.1 Accessor and mutator methods used in the PolicyManager 89

6.2 Execution time for RevokePermission (msecs). 94

vii

List of Figures

Figure Page

2.1 XACML data flow diagram. 14

2.2 PBDM1 model . 21
3.1 An example role hierarchy. 34

3.2 Compute entities affected due to an administrative action. 34

4.1 Extended XACML architecture for XACML-ARBAC enforcement. 53
4.2 PDP evaluation algorithm. 55

4.3 Enforcing administrative operations. 56

5.1 Compute affected entities of a delegation operation. 69

5.2 Extended XACML architecture for XACML-ADRBAC enforcement. . . . 81
5.3 Enforcing delegation operations. 84

6.1 Total time taken to execute AssignUser. 93

6.2 Total time taken to execute RevokePermission. 94
6.3 Effect of # edges on the time to remove a role. 96

6.4 Effect of # users on the time to remove a role. 96
6.5 Effect of # sessions on the time to remove a role. 97

viii

Abstract

SESSION-AWARE RBAC ADMINISTRATION, DELEGATION, AND ENFORCEMENT
WITH XACML

Min Xu, PhD

George Mason University, 2010

Dissertation Director: Duminda Wijesekera

An administrative role-based access control (ARBAC) model specifies administrative

policies over a role-based access control (RBAC) system, where an administrative permis-

sion has the capability to modify an RBAC policy by updating permissions assigned to

roles, or assigning/revoking users to/from roles. Enforcing ARBAC policies over an active

access controller while some users are using protected resources may result in conflicts:

a policy may be in effect in the RBAC system while being modified by an administrative

operation. Towards solving this concurrency problem, this dissertation proposes a session-

aware administrative model for RBAC to manage the interactions and potential conflicts

between access control evaluation and the administrative operations. Based on this model,

this dissertation specifies the concurrency requirements of an ARBAC model: (1) revoke

an activated role or delete an active session immediately, and (2) delay administrative oper-

ations. This dissertation introduces the concept of lock scope for a role. This captures the

affected roles when the permissions granted to this role are modified due to administrative

operations.

Consider that eXtensible Access Control Markup Language (XACML) is the de facto

language to specify access control policies for Web Services; this dissertation proposes the

XACML profile for administrative RBAC (XACML-ARBAC) which is the extension of

the XACML-RBAC profile with the proposed session-aware administrative model. One

of the advantages of doing so is to use XACML policies to administrate XACML-RBAC

policies. The XACML policy evaluation runtime is enhanced by introducing a locking

manager and a special administrative policy enforcement point (A-PEP). The lock manager

handles concurrency control issues that arise when enforcing the XACML-ARBAC profile.

The A-PEP competes read-write locks for RBAC and ARBAC policies in conjunction with

the evaluation engine of the access controller.

Along with the administrative model, the fine-grained and flexible permission del-

egation capability of the RBAC system has obtained considerable adoption in the last

decade. The OASIS technical committee published the XACML v3.0 administration and

delegation profile (XACML-Admin) working draft on April 16, 2009 in order to provide

policy administration and dynamic delegation services to the XACML runtime. To cap-

ture the concurrency control requirements for delegation, this dissertation further proposes

that the XACML-ARBAC profile is augmented with role-based delegation, named role-

based administration and delegation XACML profile (XACML-ADRBAC). The XACML-

ADRBAC profile has two novel properties: scalability–it facilitates delegated permissions

to a large number of users with the same permission assignment, and flexibility–it allows

a delegator to delegate any subsets of permissions assigned to him/her and modify the del-

egated permission whenever required. Correspondingly, the proposed XACML-ARBAC

enforcement mechanism is also enhanced to enforce the XACML-ADRBAC. To the au-

thor’s best knowledge, this proposal is the first method to enforce the XACML-Admin

profile proposed by OASIS.

To demonstrate the feasibility and performance of the framework, a prototype is im-

plemented to enforce the XACML-ARBAC profile by augmenting Sun Microsystems’s

XACML reference implementation. Experimental studies show that the system has recon-

cilable performance characteristics.

xi

Chapter 1: Introduction

Web Services are emerging as a strong candidate for service oriented architecture (SOA)

to build distributed application on the Web as basic building blocks. As Web Services are

loosely coupled applications, the security administration of a single application involves

potentially many distributed policy decision and enforcement points. Although many se-

curity protocols and languages have been proposed and deployed in existing Web Services

infrastructures, efficient and secure policy management is still an open issue.

1.1 RBAC and XACML

Role Based Access Control (RBAC) has received considerable adoption as an applica-

ble access control model during the last decade [34, 64]. RBAC is based on the basic

principle that every role is granted a proper set of permissions necessary and sufficient to

perform the job functions of any individual performing in that role. The RBAC research

community has extended RBAC models to use RBAC itself to administrate the RBAC

systems, commonly referred to as administrative role-based access control (ARBAC) mod-

els [27, 29, 30, 53, 63, 67]. ARBAC models specify the access permissions required to

perform the job function of access control administrators such as updating role hierarchy,

modifying permissions granted to roles, and assigning/revoking users to/from roles. These

permissions are associated with administrative roles in ARBAC models.

Delegation of authority is another important business rule related to access control poli-

cies. Delegation would take places at (1) back up role, (2) decentralization of authority, and

1

(3) collaboration. Along with administrative model, the fine-grained and flexible permis-

sion delegation capability of RBAC system has obtained considerable attention and usage

during the last decade [18, 19, 79, 80]. The delegators are assigned to a delegable role

granted with a set of delegation permissions. The delegation permissions are different from

the permissions to access resources. The delegation permissions are semi-administrative

in nature such as creating/deleting a delegated role (e.g., a role that may be assigned to a

delegatee), granting/revoking permission to/from a delegated role, and assigning/removing

a user to/from a delegated role.

In a parallel, the eXtensible Access Control Markup Language (XACML) [2] is the

de facto standard to specify access control policies for Web Services. Many policies that

conform to traditional access control models such as discretionary [40], mandatory [21],

and role-based (RBAC) have been specified in XACML syntax over the years. Recognizing

that RBAC models are gaining popularity, the XACML technical committee has published

an RBAC profile to the original XACML specification [1], which this dissertation refers to

as the XACML-RBAC profile.

The OASIS technical committee published the XACML v3.0 administration and dele-

gation profile (XACML-Admin) working draft on April 16, 2009 [6] to support two use

cases: (1) policy administration and (2) dynamic delegation. The former controls the types

of policies that individuals can create and modify, whereas the latter permits some users to

create policies of limited duration in order to delegate selected capabilities to others. The

administration and delegation in the XACML-Admin are not role-based.

1.2 Problem Statement

The XACML-RBAC profile 2.0 has been approved as an OASIS standard [1] to specify

core and hierarchical components of RBAC models. However there is no corresponding

2

XACML profile for ARBAC models. ARBAC models use RBAC itself to administrate the

RBAC models. Following this path, a demonstrated need exists to develop an XACML

profile for ARBAC models to manage the XACML-RBAC profile.

RBAC [34] models include the concept of a session, which provides a context for a

user to have multiple simultaneous interactions with resources. Therefore, a user may ac-

tivate different roles within different sessions concurrently. Consequently, every activated

role belongs to one session, and a session could have multiple roles activated, where each

session belongs to a unique user. Some primitive session management functions are spec-

ified in the NIST RBAC model [34]. However, they are not included in existing ARBAC

modes [27, 29, 30, 53, 63, 67]. What is needed is a session administrative model for RBAC

systems to manage the interactions and potential conflicts between the access control eval-

uation and the administrative operations.

ARBAC models grant administrative roles with administrative permissions: such as up-

dating role hierarchy, modifying permissions granted to roles, and assigning/revoking users

to/from roles. One of the main challenges in enforcing these administrative permissions is

that it requires changing access control policies–in case of XACML–those are compliant

with XACML-RBAC profiles. This raises two issues. First, when an administrator exer-

cises any administrative privilege (e.g. those permissions given under administrative roles)

granted under an XACML-ARBAC policy, it could result in altering the permissions of a

user. For example a user may lose an already granted privilege by a XACML-RBAC policy.

Therefore, enforcing an ARBAC policy could entail immediately changing the permissions

granted to a user for a resource while the same user may be accessing the resource. Second,

an administrative operation usually updates an RBAC policy, which results in read-write

conflicts when the access controller attempts to evaluate a user’s access request. The un-

derlying reason for these problems lies in the fact that all existing ARBAC models focus

3

on defining policies to assign different administrative permissions to different administra-

tive roles, while in practice, enforcing these policies affects the runtime state of the RBAC

system which may result in an unexpected change of permissions within ongoing sessions.

The concurrency issues of XACML administration must be addressed.

Another auxiliary issue that has not yet been adequately addressed previously is the

birth and death processes of the access controller itself, known as the XACML policy eval-

uation runtime in this dissertation. When the access controller is initialized, there is no

default role or mechanism to properly activate the stored policies. When the access con-

troller is directed to end, there must be a mechanism to clean up the system in order to

ensure the safety property of the access controller.

The delegation model used in the XACML-Admin profile [6] is a discretionary access

control (DAC) model. This XACML-Admin profile only allows the owner of a permission

to delegate it to a specific user, which is not scalable when permissions are required to be

delegated to a large number of users with the same job function. In cases in which the

delegator is not available, or is unable to perform the delegation, it is more convenient to

have a third party, such as the administrator, initiates the delegation on behalf of the user.

This profile can not keep pace with scalability requirement of a large distributed networks.

This is called the automation principle in [62]. This profile also lacks the support to allow

delegators to delegate any subset of permissions assigned to him/her. This profile does not

have an enforcement mechanism. Enforcing administrative or delegation operations will

update relevant policies which results in read-write conflicts while the access controller

attempts to evaluate a user’s access request. When an administrator or delegator attempts

to revoke a permission granted to a user, the same user could be exercising the permission to

access a resource, which violates system the safety property. A more scalable and flexible

delegation profile is needed along with a corresponding enforcement mechanism.

4

1.3 Summary of Contributions

This dissertation contains the following contributions.

• A session-aware framework is developed to enforce ARBAC policy with XACML.

Within this framework:

– a session-aware administrative model for RBAC is used to manage interactions

and potential conflicts between access control evaluation and administrative op-

erations; and

– two concurrency requirements are specified for the session administrative model

and the ARBAC model for an RBAC system; and

– an XACML-ARBAC profile is developed to specify ARBAC policies; and

– an XACML enforcement architecture is extended by introducing an administra-

tive policy enforcement point (A-PEP) and a Lock Manager, the former com-

petes for read-write locks for RBAC and ARBAC policies along with PDP, and

the latter handles concurrency control issues arising in enforcing the XACML-

ARBAC profile; and

– a formal specification of the birth and death process of the access controller and

a default XACML-ARBAC policy which boots up the access controller.

• A prototype to enforce the extended XACML profile for ARBAC is implemented and

the following performance evaluation results are presented:

– Simple administration operations execute very fast because they do not affect

the activities of the users; and

– The complex operations take more time because they require executing a series

of administrative operations; and

5

– The overall effect to the access controller due to administrative operations is

minimal and acceptable.

These results were initially presented in [76, 77].

• A role-based XACML administration and delegation profile and its enforcement ar-

chitecture are developed:

– By adding role-based delegation to the XACML-ARBAC profile, the scalability

and flexibility of the delegation mechanism is improved;

– The enforcement architecture for XACML-ARBAC is enhanced to enforce the

role-based administration and delegation XACML profile (XACML-ADRBAC).

These results were initially presented in [75].

1.4 Organization of the Dissertation

Chapter 2 first briefly describes XACML essentials, then describes the preliminary infor-

mation about RBAC and ARBAC, and the role-based delegation models. Chapter 3 de-

velops a session-administrative model to manage the interactions and potential conflicts

between access control evaluation and administrative operations, and specifies the concur-

rency control requirements. Chapter4 presents the XACML-ARBAC profile and the archi-

tecture to enforce this profile. Chapter 5 proposes a role-based XACML administration and

delegation profile and its enforcement architecture. Chapter 6 describes the prototype by

extending Sun’s reference implementation and presents some performance characteristics.

Chapter 7 summarizes this dissertation and presents directions for future work.

6

Chapter 2: Background

This chapter presents background knowledge and work relevant to this dissertation. XACML

syntax and data flow diagram are introduced, followed by RBAC and ARBAC essentials.

Delegation models are introduced at the end of this chapter.

2.1 XACML

2.1.1 Syntax

The eXtensible Access Control Markup Language (XACML) is an XML-based language

which specifies access control policies, requests, and responses in distributed computing

environments such as Web Services. A request originates from a <Subject> (e.g., a user or

a process) to perform an <Action> (e.g., read or write) on a <Resource> (e.g., a file or a

disk block) within an environment (e.g., from a secure machine). XACML is designed to be

extendable to define new functions, data types, access control rules, and policy combining

algorithms for applications or systems.

Standard XACML uses three basic elements in constructing access control policies:

<Rule>, <Policy>, and <PolicySet>, and allows hierarchical nesting of them. A XACML

<Rule> has two elements, a <Condition> and a <Target>, and an Effect attribute. The in-

tuitive reading of a XACML rule is that, if the condition of the rule evaluates to be true, then

the access control decision to perform <Actions> by the <Subjects> on the <Resources>

are given by the Effect attribute. A <Policy> can consist of a set of <Rule>s. A <PolicySet>

holds <Policy>s and other <PolicySet>s. The XACML policy evaluation algorithm uses

7

the so called “rule and policy combining algorithms” [2] to recursively compute the de-

cision of a nested rule/policy. The return value of such an evaluation must be one of

{permit, deny, nonApplicable, indeterminate}. The OASIS specification [2] identifies four

standard combining algorithms: deny-override, permit-override, first-applicable, and only-

one-applicable. For a deny-override policy (or policy set), a deny is returned if any rule

(or policy) evaluation returns deny; permit is returned if all rule (or policy) evaluations re-

turn permit. For a permit-override policy (or policy set), permit is returned if any rule (or

policy) evaluation returns permit; deny is returned if all rule (or policy) evaluations return

deny. For a first-applicable policy (or policy set), the decision of the first applicable rule

(or policy) is returned. For an only-one-applicable policy (or policy set), the decision of

the only applicable rule (or policy) is returned; indeterminate indicates an error and is

returned if there are more than one applicable rule (or policy). For all of these combining

algorithms, notApplicable is returned if no rule (or policy) is applicable.

<Target> specifies a set of predicates which are constructed from <Subject>,

<Resource>, and <Action> attributes that must be met for a <PolicySet>, <Policy>,

or <Rule> to apply to an access request. The attribute values in a request are compared

with those included in the <Target>, and if all the attributes match then the request is

applicable. If the request and the <Target> attributes do not match, then the request is

notApplicable, and if the evaluation results in an error, then the request is indeterminate. If

a request satisfies the <Target> of a policy, then the request is further checked against the

rule set of the policy; otherwise, the policy is skipped without further examination.

The <Condition> element further restricts the applicability of the <Rule> already

matching by the <Target> in the rule. <Condition>s can be nested using boolean combi-

nators over other <Condition>s.

Any <PolicySet> can include one or more <PolicyIdReference> or

<PolicySetIdReference> elements which are pointers to the referenced <Policy>s

8

or <PolicySet>s. The intended semantics of including a <PolicySetIdReference>

in a <PolicySet> is that the content of the referenced <PolicySet> replaces the

<PolicySetIdReference> verbatim in the referring <PolicySet>. This feature is used

in the XACML-RBAC profile [1] to specify role-to-permission assignments and role

hierarchies.

1 <Policy PolicyId="add:a:role"

2 RuleCombiningAlgId="permit-overrides">

3 <Target>

4 <Subjects><AnySubject/></Subjects>

5 <Resources> <AnyResource/></Resources>

6 <Actions><AnyAction/></Actions>

7 </Target>

8 <Rule RuleId="Permission:to:add:a:role" Effect="Permit">

9 <Target>

10 <Subjects><AnySubject/></Subjects>

11 <Resources>

12 <Resource>

13 <ResourceMatch MatchId="string-equal">

14 <AttributeValue DataType="string">role

15 </AttributeValue>

16 <ResourceAttributeDesignator

17 AttributeId="resource-id" DataType="string"/>

18 </ResourceMatch>

19 </Resource>

20 </Resources>

21 <Actions>

22 <Action>

9

23 <ActionMatch MatchId="string-equal">

24 <AttributeValue DataType="string">AddRole

25 </AttributeValue>

26 <ActionAttributeDesignator AttributeId="action-id"

27 DataType="string"/>

28 </ActionMatch>

29 </Action>

30 </Actions>

31 </Target>

32 <Condition FunctionId="not">

33 <Apply FunctionId="role-exist">

34 <ResourceAttributeDesignator AttributeId="new-role-id"

35 DataType="role"/>

36 </Apply>

37 </Condition>

38 </Rule>

39 <Rule RuleID="2" Effect="Deny"> </Rule>

40</Policy>

Policy 1: An XACML example policy.

Policy1 is an example XACML policy that specifies a permission to add a role. This

policy has one <Policy> element containing two rules, Rule “Permission:to:add:a:role”

(lines 8-38), and Rule2 (line 39). Line 2 of the policy indicates that the rule combining

algorithm to be used is permit-overrides. Lines 3-7 define the policy’s target, which in-

dicates that this policy is applicable to any subject requesting permission to execute any

action on any resource. The target of Rule “Permission:to:add:a:role” (lines 9-31) nar-

rows the scope of applicable requests to those requesting accesses to the resource role with

10

the action AddRole. The condition of Rule “Permission:to:add:a:role” (lines 32-37) indi-

cates that if the role does not exist (computed using our extended function role-exist (to be

explained shortly)), the request should be permitted. Otherwise, according to Rule2 (line

39) and the “rule combining algorithm” of the policy (line 2), the request should be denied.

2.1.2 Sun’s Reference Implementation

Sun Microsystems’s XACML reference implementation [8], more commonly referred to as

Sun’s reference implementation, is one of the first implementations of the XACML eval-

uation engines and it is by far the most widely used XACML evaluation engine both in

commercial applications and in research projects. Figure 2.1 shows the high-level architec-

ture of Sun’s reference implementation with the following main components:

Policy Administration Point (PAP) is the entity that creates policies and policy sets.

Policy Decision Point (PDP) is the entity that evaluates policies and renders one of per-

mit, deny, indeterminate, notApplicable as the authorization decision.

Policy Enforcement Point (PEP) is the entity that enforces the access control decision.

The Context Handler is the entity that converts native request to one that is in the XACML

canonical format (to be explained shortly) and converts authorization decisions in the

XACML canonical format to native formats.

The canonical form is called the XACML “Context”. The XACML context is defined

in XML schema [11], describing a canonical representation for the inputs and outputs of

the PDP. Policy 2 shows a canonical representation of a request which contains attribute of

Subject(lines 2-6), Resource (lines 7-19), and Action (lines 11-13).

1<Request>

11

2 <Subject SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-

category:access-subject">

3 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:subject:subject-role-id"

4 DataType="role"><AttributeValue>SSO</AttributeValue></

Attribute>

5 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:subject:subject-role-id"

6 DataType="role"><AttributeValue>SeniorManager</AttributeValue

></Attribute>

7 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:subject:subject-id"

8 DataType="http://www.w3.org/2001/XMLSchema#string"><

AttributeValue>Alice</AttributeValue></Attribute>

9 </Subject>

10 <Resource>

11 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:resource:resource-id"

12 DataType="http://www.w3.org/2001/XMLSchema#string"><

AttributeValue>role</AttributeValue></Attribute>

13 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:resource:new-role-id"

14 DataType="role"><AttributeValue>Manager</AttributeValue></

Attribute>

15 </Resource>

16 <Action>

12

17 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:action:action-id"

18 DataType="http://www.w3.org/2001/XMLSchema#string"><

AttributeValue>add</AttributeValue></Attribute>

19 </Action>

20</Request>

Policy 2: Alice, who has been assigned to the SSO role, requests to add a Manager role

Policy 2 is an XACML request context which comprises a <Request>(line 1) element,

which includes <Subject>(lines 2-6), <Resource>(lines 7-10), <Action>(lines 11-13)

and <Environment> (which is optional) element. An XACML response context comprises

a <Response> element, which includes one or more <Result> elements. A <Result>

comprises a <Decision> element, some status information, and (optionally) one or more

<Obligations>. The <Decision> element contains one of the four possible results of

policy evaluation: permit, deny, notApplicable (no policies or rules are applicable to the

access request) or indeterminate (unforseen errors occurred during evaluation). The status

information could be the reasons for the evaluation failure. The <Obligations> element

includes processing directives to be performed by the PEP (in addition to enforcing the

PDP’s decision).

The PAP creates policies at authoring time, e.g., by security administrators using an

acceptable text editor. At an access control request time, a subject sends an access request

to the PEP as shown in flow 2 of Figure 2.1. The PEP then forwards this request to the

context handler (flow 3) and obtains all the values of the attributes passed in the request.

The context handler forms the access control request based on the attributes of the requester,

action, resource, and environment, and forwards the request to the PDP (flows 4, 5, 6, 7, 8).

PDP uses this information to find the access control policy applicable to the request, which

13

Access

Requester
PEP

PDP

PAP

Context

Handler

PIP

Subjects

Obligation

Service

Resource

Environment

2. Access

Request

11 Obligations

1.Policy or Policy Set

 8.Request

 Attributes, Resource

 9. Decision

5a Sub. Attrbs

3.Request

10.Response

7. Resource

5b Re. Attrbs

5c.Env. Attrbs

4.Attrbs Query 6.Attributes

Figure 2.1: XACML data flow diagram.

is defined in terms of the attributes of the requestor, action, and the resource. The policy

can also include functions defined on these attributes. The PDP uses two steps to evaluate

the request: it first attempts to find all the policies applicable to the request by using the

target matching (flow 1) algorithm, and then it evaluates the rules of the applicable policies

and returns its decision back to the PEP via the context handler (flows 9, 10). Finally, the

PEP enforces the authorization decision.

Sun’s reference implementation provides a set of APIs that understand the XACML

syntax, and rules to process requests and manage attributes. This implementation only

provides a PDP for policy evaluation that can read, but not modify, any policies, which

needs to be enhanced in order to enforce the administrative operations specified in ARBAC

policies.

14

2.2 RBAC and ARBAC

This dissertation uses the notation RBAC = (U , O, A, R, P , ≤, U2R, R2P) to model

an RBAC system, where the first four entities are the sets of users, objects, actions, and

roles, respectively. P is a subset of O×A, representing the set of permissions. The partial

ordering≤⊆ R×R is the role hierarchy. U2R : U 7→ 2R and R2P : R 7→ 2P are relations

that are functional in their first coordinate, modeling user-to-role and role-to-permission

assignments. That is, U2R(u,M) and R2P (r,N) are true iff user u is allowed to play the

set of roles M and role r can execute the permission set N respectively. This dissertation

uses function assignPerms(u) = ∪r∈U2R(u),r≥r1R2P (r1) to return the set of all possible

permissions that a given user can obtain by invoking all roles assigned to him or her.

This dissertation bases the work partially on ARBAC97 [63] and SARBAC [29], which

suggest having a set of administrative roles (AR) distinct from user roles, and permit these

administrative roles to create and remove users, roles, assign and revoke users to (user)

roles, and grant and revoke permissions to (user and administrative) roles. ARBAC97 has

three sub-models referred as URA97, PRA97, and RRA97, which represent controls over

user-to-role assignment (U2R), role-to-permission assignment (R2P), and the role hierar-

chy (≤), respectively.

2.3 XACML v3.0 Administration and Delegation Profile

The OASIS technical committee published an XACML v3.0 administration and delegation

profile (XACML-Admin) working draft on April 16, 2009 [6] to provide policy administra-

tion and dynamic delegation. The former controls the types of policies that individuals can

create and modify, and the latter permits some users to create policies to delegate his/her

permissions to another user.

The delegation model proposed in the XACML-Admin profile specifies the permissions

15

to create policies and methods to account for created policies against these permissions by

attributing their lineage to a delegation chain. In order to do so, the proposed XACML-

Admin profile adds a new key word <PolicyIssuer> element that identifies the source of

the policy, where a missing <PolicyIssuer> element implies that the policy is trusted.

A trusted policy is considered valid and its origin is assumed not to require verification

by PDP. Policies that have an issuer must have their authorities accounted for by using

a delegation chain. If the authority of the policy issuer can be traced back to a trusted

policy, the policy is used by the PDP; otherwise, it is discarded. The authority of the issuer

depends on the context of the access request; therefore, a policy can be both valid and

invalid depending on the request context. Two access situations exist: current attributes

mode and historic attributes mode. In current attributes mode, when a delegate attribute is

dynamic, the attribute value used is at the access request time. In the historic attribute mode,

when a delegate attribute is dynamic, the attribute value at the policy creation time must be

used. Steps in the validation process are performed using a special XACML request, called

the administrative request, 1 which contains information about the policy issuers and the

access mode.

2.3.1 An Example

Consider the example where Mary is the manager of a company and approves expense

reports for her department. When she is on vacation, Jack approves expense reports. The

example in Policy 3 is used to express the policy using the XACML-Admin profile. As

shown in Policy 3, this policy set contains two policies. PolicyA is a trusted policy because

it has no issuer. PolicyA allows Mary to create any policy which allows all requests allowed

by PolicyA; that is, Mary can give “approve expense reports” permission to Jack. PolicyB

1The policy administration request in [6] is different from the administrative request in [77] which
requests an administrative operation to change the configuration of an RBAC system.

16

is issued by Mary as indicated by the <PolicyIssuer> element. There are no delegated

categories and thus it is an access policy that grants “approve expense reports” permission

to Jack.

1<PolicySet PolicySetId="PolicySet1"

2 PolicyCombiningAlgId="policy-combining-algorithm:permit-

overrides">

3 <Policy PolicyId="PolicyA"

4 RuleCombiningAlgId="rule-combining-algorithm:permit-overrides">

5 <Target>

6 <Match MatchId="function:string-equal">

7 <AttributeValue

8 DataType="http://www.w3.org/2001/XMLSchema#string">

9 Jack</AttributeValue>

10 <AttributeDesignator Category="attribute-

category:delegated:subject-category:access-subject "

11 DataType="http://www.w3.org/2001/XMLSchema#string"/>

12 </Match>

13 <Match MatchId="function:string-equal">

14 <AttributeValue

15 DataType="http://www.w3.org/2001/XMLSchema#string">

expense reports</AttributeValue>

16 <AttributeDesignator Category="attribute-

category:delegated:attribute-category:resource"

17 AttributeId="resource:resource-id"

18 DataType="http://www.w3.org/2001/XMLSchema#string"/>

19 </Match>

20 <Match MatchId="function:string-equal">

17

21 <AttributeValue

22 DataType="http://www.w3.org/2001/XMLSchema#string">

approve</AttributeValue>

23 <AttributeDesignator Category="attribute-

category:delegated:attribute-category:action"

24 AttributeId="action:action-id"

25 ataType="http://www.w3.org/2001/XMLSchema#string"/>

26 </Match>

27 <Match MatchId="function:string-equal">

28 <AttributeValue

29 DataType="http://www.w3.org/2001/XMLSchema#string">Mary

</AttributeValue>

30 <AttributeDesignator

31 Category="attribute-category:delegate"

32 AttributeId="subject:subject-id"

33 DataType="http://www.w3.org/2001/XMLSchema#string"/>

34 </Match>

35 </Target>

36 <Rule RuleId="Rule1" Effect="Permit">

37 <Target/>

38 </Rule>

39 </Policy>

40 <Policy PolicyId="PolicyB"

41 RuleCombiningAlgId="rule-combining-algorithm:permit-overrides">

42 <PolicyIssuer>

43 <Attribute

44 AttributeId="subject:subject-id"

18

45 DataType="http://www.w3.org/2001/XMLSchema#string">

46 <AttributeValue>Mary</AttributeValue>

47 </Attribute>

48 </PolicyIssuer>

49 <Target>

50 <Match MatchId="function:string-equal">

51 <AttributeValue

52 DataType="http://www.w3.org/2001/XMLSchema#string">Jack<

/AttributeValue>

53 <AttributeDesignator Category="subject-category:access-

subject"

54 AttributeId="subject:subject-id"

55 DataType="http://www.w3.org/2001/XMLSchema#string"/>

56 </Match>

57 <Match MatchId="function:string-equal">

58 <AttributeValue

59 DataType="http://www.w3.org/2001/XMLSchema#string">

expense reports</AttributeValue>

60 <AttributeDesignator Category="attribute-

category:delegated:attribute-category:resource"

61 AttributeId="resource:resource-id"

62 DataType="http://www.w3.org/2001/XMLSchema#string"/>

63 </Match>

64 <Match MatchId="function:string-equal">

65 <AttributeValue

66 DataType="http://www.w3.org/2001/XMLSchema#string">

approve</AttributeValue>

19

67 <AttributeDesignator Category="attribute-

category:delegated:attribute-category:action"

68 AttributeId="action:action-id"

69 DataType="http://www.w3.org/2001/XMLSchema#string"/>

70 </Match>

71 </Target>

72 <Rule RuleId="Rule2" Effect="Permit">

73 <Target/>

74 </Rule>

75 </Policy>

76 </PolicySet>

Policy 3: XACML policy for the delegation use case.

2.4 Role-based Delegation

A number of models address various aspects of delegation, including [17,37,57,58]. There

is a series of role-based delegation models [18,19,79,80]. RBDM0 [19] and RDM2000 [79]

in particular are primarily based on roles. RBDM0 addresses human-to-human delegation,

whereby a user in a role (delegator role) delegates his role membership to another user

in another role (delegatee role). RDM2000 is an extension of RBDM0 by adding role

hierarchies and multi-step delegation.

This dissertation bases the work partially on PBDM [80], which builds on RBAC [64]

to include user-to-user delegations and role-to-role delegations. PBDM summarizes three

scenarios that delegation takes places: (1) back up role, (2) decentralization of authority,

and (3) collaboration. The first and third cases require temporary delegation, while the

second case requires durable delegation.

20

RR

PermissionsUsers

R

.

.

. Constraints

Role
Hierarchy

Sessions

PAD

PARUAR

UAD

DBR

DTR

UAB PAB

Figure 2.2: PBDM1 model

PBDM has three sub-models: PBDM0, PBDM1 and PBDM2. PBDM0 and PBDM1

support user-to-user delegations and PBDM2 supports role-to-role delegations. Fig 2.2

shows the basic components of PBDM1. In PBDM1, there are three different types of

roles: regular role (RR), delegable roles (DBR), and delegation roles (DTR). Permissions

assigned to regular roles cannot be delegated to other roles or users. A delegable role is one

whose permission can be delegated to other roles or users by creating delegation roles. Each

delegable role has exact one base regular role. The users assigned to a delegable role are

the same as those assigned to a regular role it based on. A pair of (regular role, delegable)

role are used as a single role as user-to-role assignment. The security administrator creates

each delegable role and manages the permission-to-delegable role assignment (PAB). RR

and DBR are durable roles while DTRs are temporary at the discretion of the owner .

The permission-to-regular role assignment (PAR), user-to-regular role assignment (UAR),

permission-to-delegable role assignment (PAB), and user-to-delegable role assignment

21

(UAB) are managed by security administrators, while the permission-to-delegation role

assignment (PAD) and the user-to-delegation role assignment (UAD) are managed by

individual users.

PBDM provides for single-step as well as multi-step delegation. PBDM supports revo-

cation by a user(1-3) or by an administrator (4-5) as follows.

1. Revoke the user-delegation role assignment.

2. Remove permissions from the delegation role.

3. Remove the delegation role.

4. Remove permissions from the delegable role.

5. Remove a user from a regular and its delegable role.

22

Chapter 3: Session Administrative Model

This chapter first presents the session administrative model for an RBAC system, then

specifies the concurrency control requirements between the session administrative model

and the system administrative model for an RBAC system.

3.1 RBAC Session Administration

The RBAC96 [64] and NIST RBAC [34] models include the concept of a session, which

provides a context for a user to have multiple simultaneous interactions with resources.

Therefore, a user may activate different roles within different sessions concurrently. Ev-

ery activated role belongs to one session, and a session could have multiple roles activated

where each session belongs to a unique user. Some primitive session management func-

tions are specified in the NIST RBAC model [34]. However, they are not included in

the existing ARBAC modes [27, 29, 30, 53, 63, 67]. These sessions in RBAC are different

from transactions in database management systems [3]. A database transaction must be

atomic, consistent, isolated and durable, e.g., satisfy so called ACID properties. Towards

the deployment of an administrative RBAC model for a running RBAC system, the author

believes that considering session management in ARBAC is mandatory. On one hand, ex-

ecuting an administrative permission may change the configuration of the RBAC system,

such as user-to-role or role-to-permission assignment. This configuration change for the

running system is problematic if its influence on system state is not carefully designed,

e.g., it can result in unexpected usage of permissions for a user who has activated the role

in a session before the permissions granted to the role or the role hierarchy is modified. On

23

the other hand, system or organization requirements may demand that when a user acti-

vates particular roles in a session, the associated permissions should not be revoked by any

administrative operation during the life cycle of the session, e.g., to preserve the integrity

of an object in some applications. By way of example, if the user session is performing

some activity that must be completed, such as waiting for a reply from a remote database

or rolling back a transaction, then this user session should not be revoked. Now suppose

that an administrator wants to revoke the permission granted to the user which requires to

terminate the user session. In this case, the enforcement of administrative operation should

be delayed until the user session ends to avoid inconsistency. To maintain system safety,

different instances of the same role should be granted the same set of permissions at any

given state.

This dissertation assumes that the session management is handled by the PEP, which is

responsible for creating/deleting a session for a user, or activating/deactivating a role within

a session, etc. In order to specify appropriate ARBAC policies for an RBAC system, an

administrative model for session management is first defined as follows.

Definition 1 (Session Administration). Let (U , O, A, R, P , ≤, U2R, R2P) be the model

of an RBAC system. A session administrative model is a tuple SAM = (S, ACTIV E−S,

S − ACTION , U2S, S2R, actRole, actPerms), where

• S is the set of sessions;

• ACTIV E − S is the set of all active sessions at a given system state;

• S − ACTION ={CreateSession(u, s), DeleteSession(u, s),

ActivateRole(u, s, r), DeactivateRole(u, s, r)} is the set of session adminis-

trative actions, where u ∈ U , r ∈ R and s ∈ ACTIV E − S.

• U2S : U 7→ 2ACTIV E−S is a function mapping a user to a set of active sessions at a

system state;

24

• S2R : ACTIV E − S 7→ 2R is a function mapping an active session to a set of

activated roles at a system state;

• U2S ◦ S2R(u) ⊆ U2R(u) is the constraint that at a system state, all activated roles

of a user is a subset of the set of his or her assigned roles, where U2S ◦ S2R(u) =

∪s∈U2S(u)S2R(s);

• activeRoles(u) = ∪s∈U2S(u)S2R(s) is a function mapping a user to a set of acti-

vated roles in all active sessions at a system state;

• activePerms(u) = ∪s∈U2S(u),r∈S2R(s),r≥r1R2P (r1) is a function mapping a user to

a set of activated permissions at a system state.

U2S, S2R, activeRoles(u), activePerms(u) are the “book keeping” functions to view

the states of the system. Invoking any session administrative action changes the system to a

new state, by creating/deleting a session for a user, or activating/deactivating a role within

a session, etc. The formal semantics of these actions are defined as follows.

• CreateSession(u, s), creates a new session s for user u.

– Pre-condition: u is already a member of the user data set and s is not a member

of ACTIVE-S.

Formal Specification: u ∈ U ∧ s 6∈ ACTIV E − S

– Post-condition: U2S is updated.

Formal Specification: U2S ′= U2S \ {u 7→ U2S(u)} ∪ {u 7→ (U2S(u) ∪
{s})} ∧ s ∈ ACTIV E − S

• DeleteSession(u, s), deletes a given session s of user u.

– Pre-condition: (u,s) is an entry of U2S.

Formal Specification: (u, s) ∈ U2S ∧ s ∈ ACTIV E − S

25

– Post-condition: U2S is updated.

Formal Specification: U2S ′=U2S \ {u 7→ U2S(u)} ∪ {u 7→ (U2S(u) \ {s})}

• ActivateRole(u, s, r), activates role r in session s of user u.

– Pre-condition: (u,s) is a member of U2S and (u,r) is a member of U2R.

Formal Specification: (u, s) ∈ U2S ∧ (u, r) ∈ U2R ∧ s ∈ ACTIV E − S

– Post-condition: S2R is updated.

Formal Specification: S2R′= S2R \ {s 7→ S2R(s)}∪{s 7→ (S2R(s)∪{r})}.

• DeactivateRole(u, s, r), deactivates role r from session s of user u.

– Pre-condition: (s,r) is a member of S2R.

Formal Specification: (s, r) ∈ S2R

– Post-condition: S2R is updated.

S2R′=S2R \ {s 7→ S2R(s)}∪ {s 7→ (S2R(s) \ {r})}.

After defining the session administration model, an ARBAC model is defined as fol-

lows.

Definition 2 (ARBAC). Let (U , O, A, R, P , ≤, U2R, R2P) be an RBAC model. An

administrative RBAC model is a tuple ARBAC = (U , AO, AA, AR, AP , ≤A, U2AR,

AR2AP), where

• AO = U ∪R ∪ U2R ∪R2P∪ ≤ is the set of administrative objects;

• AA is the set of administrative actions given in Table 3.1 including “+” and “−”

operations;

• AR is a set of administrative roles;

26

Table 3.1: Administrative operations
Positive (+) Operations Negative (-) Operations
AddUser(u) DeleteUser(u)
AddRole(r) DeleteRole(r)
AssignUser(u,r) DeassignUser(u,r)
GrantPermission(r,P) RevokePermission(r,P)
AddEdge(rc, rp) DeleteEdge(rc, rp)

• AP ⊆ (AO × AA) ∪ (AO × AO × AA) is the set of administrative permissions

which is an application of an administrative action on one or two appropriate ad-

ministrative objects;

• ≤A⊆ AR× AR is the administrative role hierarchy;

• U2AR : U 7→ 2AR is the user-to-administrative role assignment;

• AR2AP : AR 7→ 2AP is the administrative role-to-administrative permission as-

signment.

As defined, the administrative objects (AO) in ARBAC include the set of users (U),

roles (R), user-to-role (U2R), role-to-permission (R2P) mapping, the role inheritance re-

lation (≤) from an RBAC model, and administrative actions defined in Table 3.1. For

example, the AssignUser and DeassignUser operations create and remove entries from

the user-to-role mapping (U2R), respectively. Each execution of an administrative action

changes the RBAC system to a new state. The pre-conditions and post-conditions of these

operations are specified in Section 3.1.1.

All administrative operations can be classified into “+” operations and “-” operations. A

“+” operation adds elements to existing administrative objects from administrative objects,

such as assigning a user or granting a permission to a role, while a “-” operation deletes

elements, such as revoking a user or permission from a role. Different administrative op-

erations invoke different session administrative actions in the session-aware administrative

27

model defined in Definition 1.

3.1.1 Formal Specification of Administrative Operations

This dissertation formally specifies suggested administrative operations in terms of pre-

conditions and post-conditions using the Z-notation [68]. As per Z-notation, a value of

a data item before the execution of a command (so called pre-state of a data structure) is

denoted by a symbol, and its value after the execution of the operation (e.g., the so called

post state) is denoted by the same symbol followed by a prime (’).

• AddUser(u): creates an RBAC user u.

– Pre-condition: u is not already a member of the user data set.

Formal Specification: u 6∈ U

– Post-condition: The user data set is updated. Initially, u is not assigned to any

role.

Formal Specification: U ′ = U ∪ {u} ∧ U2R′ = U2R

• DeleteUser(u): deletes an existing user u from the user data set.

– Pre-condition: u is already a member of the user data set and no roles are

assigned to u.

Formal Specification: u ∈ U ∧ @r ∈ R, M ⊆ R : U2R(u,M) ∧ r ∈ U

– Post-condition: The user data set is updated.

Formal Specification: U ′ = U \ {u}

• AddRole(r): creates a new role r.

– Pre-condition: r is not already a member of roles.

Formal Specification: r 6∈ R

28

– Post-condition: The new role is added to the roles set R. U2R and R2P remain

unchanged.

Formal Specification: R′ = R ∪ {r} ∧ U2R′ = U2R ∧R2P ′ = R2P

• DeleteRole(r): deletes an existing role r from the roles data set.

– Pre-condition: The role r is a member of the set roles, no user is assigned to r

and r is not a part of the role hierarchy.

Formal Specification: r ∈ R∧@u ∈ U , M ⊆ R : U2R(u,M)∧r ∈ M ∧@r1 ∈
R : (r ≤ r ∨ r1 ≤ r)

– Post-condition: r is removed from the roles data set.

Formal Specification: R′ = R \ {r}.

• AssignUser(u,r): assigns a user u to a role r.

– Pre-condition: The user u is a member of the users data set. The role r is a

member of roles data set, and the role r is not assigned to u and is not a child of

another role r′ assigned to u.

Formal Specification: [u ∈ U∧r ∈ R]∧@M ⊆ R[r ∈ M : U2R(u, M)]∧@r1 ∈
R[r1 ≥ r ∧ r1 ∈ M ∧ U2R(u,M)].

– Post-condition: U2R is updated.

Formal Specification: [U2R(u,M) → U2R′ = U2R\(u,M)∪(u,M∪{r})]∧
[@M ⊆ RU2R(u,M) → U2R′(u, {r})].

• DeassignUser(u,r): de-assigns the user u from the role r.

– Pre-condition: The user u is a member of the users data set, the role r is a

member of roles data set and u is assigned to r.

Formal Specification: u ∈ U ∧ r ∈ R, ∃M ⊆ R : r ∈ M ∧ U2R(u,M)

29

– Post-condition: The U2R is updated.

Formal Specification: ∃M ⊆ R, U2R(u,M) → U2R′(u,M \ {r})

• GrantPermssion(r,(a,o)): grants the permission to perform an action a on an object o

to a role r.

– Pre-condition: The role r is a member of the roles data set and (a,o) is a per-

mission

Formal Specification: r ∈ R ∧ (a, o) ∈ P

– Post-condition: The R2P is updated.

Formal Specification: ∃N ⊆ P : R2P (r,N) → R2P (r,N ∪ {(a, o)})

• RevokePermission(r,(a,o)): revokes the permission to perform action a on an object

o from the set of permissions granted to r.

– Pre-condition: The role r is a member of the roles data set and (a,o) is assigned

to r.

Formal Specification: r ∈ R ∧ ∃N ⊆ P : R2P (r,N{(a, o)})

– Post-condition: The R2P is updated.

Formal Specification: ∃N ⊆ P : R2P (r,N) → R2P ′ = [R2P \ (r,N)] ∪
{(r,N \ {(a, o)})}.

• AddEdge(rc, rp): makes the role rc a child role of rp.

– Pre-condition: rc and rp are members of the roles data set, not related yet and

adding does not create cycles in the inheritance hierarchy. SRole is neither a

parent nor a child of any role.

Formal Specification: rc, rp ∈ R ∧ rp 6≤ rc ∧ rc 6≤ rp ∧ rp 6= SRole ∧ rc 6=
SRole ∧ [@r, s ∈ R(rc < r < rP ∧ rp < s < rc)].

30

– Post-condition: rp is the parent of rc.

Formal Specification: <′=< ∪{(rc, rp)}.

• DeleteEdge(rc, rp): deletes an existing child-parent relationship rc < rp.

– Pre-condition: rc and rp are members of the roles data set and rp is a parent of

rc.

Formal Specification: rc, rp ∈ R ∧ [rc < rp].

– Post-condition: The relationship rc < rp is deleted.

Formal Specification:<′=< \{(rc, rP)}.

3.2 Concurrency Control

Similar to an RBAC model, an ARBAC model defines the configuration of the adminis-

trative functions of an RBAC system. However, as stated previously, any configuration

change affects the running system state, and may require session administrative actions.

The interaction between session administrative actions and system administrative opera-

tions (e.g., the ARBAC operations defined in Section 3.1.1) needs to be specified for a safe

and complete ARBAC model. As one of the major contributions of this dissertation, the

author identifies the following two concurrency control requirements between the session

administrative model and the system administrative model for an RBAC system.

Revoke an activated role or delete an active session immediately: Suppose an adminis-

trative action aact ∈ AA changes an RBAC model to RBAC ′, according to the semantics

specified in Section 3.1.1. Then, in order to retain the consistency, the affected session is

either deleted, or the users from the affected role are de-assigned. This is formally stated

as follows:

if ∃u ∈ U, p ∈ P , p ∈ activePerms(u) ∧ p 6∈ assignPerms(u)′,

31

then [∀ s ∈ U2S(u),∃ r ∈ R, p ∈ R2P (r) ∧ r ∈ S2R(r)] 7→ DeleteSession′(u, s) ∨
DeactivateRole′(u, s, r),

where assignPerms(u)′ is the set of permissions that user u can activate under

RBAC ′, and DeleteSession(u, s)′ and DeactivateRole(u, s, r)′ are session administra-

tive actions at system state RBAC ′. This requirement specifies that, when aact removes

one or more activated permissions of a user in a session at a system state, either the ac-

tive session of the user should be terminated, or all corresponding roles with the given

permissions should be revoked within their sessions. Obviously, only “-” administrative

operations cause these changes in a system.

Delay administrative operations: At a given system state of RBAC, when a permission

is activated by a user in an active session, any revocation of this permission from the user

by an administrative operation is delayed until the role corresponding to the permission is

deactivated, or the active session is terminated. Formally, when aact ∈ AA changes an

RBAC model to an RBAC ′,

if ∃u ∈ U, p ∈ P, s ∈ U2S(u), and p ∈ activePerms(u) ∧ p 6∈ assignPerms(u)′,

then aact′ when p 6∈ activePerms(u)′. That is, the administrative operation aact′ is exe-

cuted at a later stage when the permission is not activated anymore.

Note that these two requirements can be individually or jointly specified in a particular

system, e.g., some permissions are required to be immediately deactivated in an active

session when they are revoked by an administrative action, while other permissions may

delay the execution of an administrative operation.

When an administrative operation modifies a role, the access controller not only needs

to manage current active sessions but also any newly created sessions. This is especially

necessary in delayed administrative actions. Specifically, when an administrative operation

is delayed, although the affected permissions or roles are not deactivated immediately, the

access controller needs to prevent users from activating them in new sessions. To do this,

32

the access controller will lock the affected roles to ensure the safety property. The adminis-

trative operation places write locks on the affected roles to prevent the PDP from “reading”

the roles and other administrative operation from “writing” the roles. This dissertation

defines the affected roles in Definition 3.

Definition 3 (Lock Scope). Let (U , O, A, R, P , ≤, U2R, R2P) be the model of a RBAC

system and r ∈ R be a role. I define the read scope and write scope of r respectively as

rScope(r) = {r1 ∈ R|r1 ≤ r} and wScope(r) = {r1 ∈ R|r1 ≥ r}.

As stated in Definition 3, the read scope of a role r includes all its junior roles and

itself, and the write scope of r includes all its senior roles and itself. This is because, a role

r may lose permissions if any junior role r1 loses its permissions because of inheritance,

and therefore needs to ensure that if r1 is to lose permissions, then r needs to be deactivated

to ensure consistency. Therefore, when the PDP is evaluating role r, all the roles junior to

r and r itself (that is, the read scope of r), must not be allowed to be modified. Conversely,

if role r is to lose permissions due to an administrative operation, then all roles senior to r

and r itself, that is the write scope of r must not be allowed to be activated. For example

in Figure 3.1, the read lock scope for R3 is {R6, R5, R3}. The write lock scope for R3

is {R0, R1, R2, R3}. Note that the lock scopes of a role could be changed because of an

administrative operation. For example, the write lock scope for R4 is {R0, R1, R4}. If an

administrative role executes the administrative operation AddEdge(R4, R2), the write lock

scope for R4 becomes {R0, R1, R2, R4}.

3.2.1 Entities Affected by Enforcing Administrative Operations

Each administrative operation could affect many entities. The affected entities can be de-

fined because of invoking an administrative operation using lock scope. Algorithm 1 in

Figure 3.2 shows this information for every administrative operation listed in Table 1.

33

R0

R2
R1

R3 R4

R5

R6

R7

Figure 3.1: An example role hierarchy.

Algorithm 1: Compute affected entities
Input: adminOp
Output: Return affected to A-PEP

1 switch adminOp do
2 case DeleteUser(u)
3 affected:=u;
4 case DeleteRole(r)
5 affected:=wScope(r);
6 case DeassignUser(u,r)
7 affected:=(rScope(r),u);
8 case RevokePermission(r,P)
9 affected:=wScope(r);
10 case DeleteEdge(rc, rp)
11 affected:=wScope(rp);
12 otherwise
13 affected:=NULL;
14 return affected;

Figure 3.2: Compute entities affected due to an administrative action.

DeleteUser(u) deletes user u which affects all the sessions u has activated. Consequently,

the affected entity is u as computed in lines 2-3. DeleteRole(r) deletes role r which affects

all the roles senior to r and r itself, and that is wScope(r) as computed in lines 4-5. Deas-

signUser(u,r) prevents user u from activating role r which affects all the roles subordinate

34

to r, computed as rScope(r) in lines 6-7. RevokePermission(U,P) revokes the permission

set P from the role r which affects all the roles senior to r and r itself. Consequently, the

affected entities are computed as wScope(r) in lines 8-9. DeleteEdge(rc, rp) deletes the re-

lation rc < rp which makes all the roles senior to (rp) and (rp) lose the permissions granted

to (rc). Therefore, the affected entities are wScope(rp) as computed in lines 10-11. For

example, deleting the role R3 from the role hierarchy in Figure 3.1 affects all the sessions

where R0, R1, R2 and/or R3 are activated. The affected entities are those in wScope(R3).

3.3 Related Work

The RBAC research community has extended RBAC models to use RBAC itself to admin-

istrate the RBAC models, commonly referred to as administrative role-based access control

(ARBAC) models [27,29,30,53,60,63,67]. The main focus of these ARBAC models is how

to configure the components of an RBAC system such as user-to-role assignment, role-to-

permission assignment, and the role hierarchy. There is no context of session management

and concurrency control in these existing ARBAC models.

ARBAC97 [63] is the first attempt to specify a comprehensive administrative model

for RBAC. ARBAC97 is based on the RBAC96 models [64]. ARBAC97 assumes that

there is a set of administrative roles, AR, which is disjoint from the set of normal roles.

Only members of these roles can perform administrative operations. ARBAC97 consists

of three sub-models: URA97 for administration of user-to-role assignment, PRA97 for

administration of permission-to-role assignment, and RRA97 for administration of role-to-

role assignment, that is administration of the role hierarchy. All three sub-models rely on

the concept of role ranges, which are used as administrative domains. Creation of users and

permissions are not included in ARBAC97, which ARBAC97 believes that its the respon-

sibility of personal management department and system/application administrators. In this

35

dissertation, the treatment of them is the same as other administrative operation to maintain

simplicity and uniformity.

ARBAC02 [60, 67] introduces the concept of organization structure for defining user

and permission pools independent of roles and role hierarchies, while a user pool in AR-

BAC97 is implemented using a prerequisite role. ARBAC02 retains the main features

of ARBAC97 and adds new components of organization structures as user and permis-

sion pools to overcome some shortcomings in URA97 and PRA97. ARBAC02 presents a

bottom-up approach of permission-to-role administration in contrast to the top-down ap-

proach in ARBAC97.

SARBAC [29, 30] extends RBAC administration by adding the concept of administra-

tion scopes. Administrative scope is defined using the role hierarchy, and is used for defin-

ing administrative domains. The administrative scope of a role (r) consists of all roles that

are descendants of r and are not descendants of any role that is incomparable with r. This

definition of scopes works best when the role hierarchy is a tree with an all-powerful root

role. In this case, each role’s administrative scope is the subtree rooted at that role. When

an operation may affect existing administrative domains, ARBAC97 forbids these opera-

tions, while SARBAC allows them and handles them by changing existing administrative

domains. One feature of SARBAC is that one simple operation may affect administrative

domains of many roles. SARBAC overcomes some shortcomings of RRA97.

The administrative model for role hierarchy in SARBAC is later refined and extended

to RBAT, a template for role-based administrative models [27]. RBAT formalizes the in-

teraction between the role hierarchy operations and the administrative scopes by having

the operations preserve certain aspects of administrative scopes. The role hierarchy admin-

istrative model in both ARBAC97 and SARBAC can be expressed in terms of the RBAT

framework.

UARBAC [53] takes a principled approach in designing and analyzing administrative

36

models for RBAC motivated by scalability, flexibility, psychological acceptability, and

economy of mechanisms. The six principles (or requirements) in UARBAC: (1) support

decentralized administration and scale well to large RBAC systems; (2) are policy neutral in

defining administrative domains; (3) should provide that apparently equivalent sequences

of operations should have the same effect; (4) support reversibility; (5) support predictabil-

ity; and (6) use RBAC to administrate RBAC. UARBAC consists of a basic model and one

extension: UARBACP . The basic model adopts the approach of administrating RBAC

using RBAC. UARBACP adds parameterized objects and constraint-based administrative

domains.

NIST [20, 33, 38] has implemented RBAC with an administrative tool and an RBAC

database to store instances of U2R, R2P, and ≤ relationships. The administrative tool de-

termines if updatea to the three relations stored in the database are permitted by checking

the consistency rules, and, if so, updates the relationships in the database. This implemen-

tation is built for the Intranet, which is not suitable for distributed computing environment

such as Web Services.

There are practical studies in [35, 47, 48, 56, 65] using RBAC in enterprise adminis-

tration and settings, these papers report priceless experiences from deploying large RBAC

systems in practice; even though they do not provide formal models for RBAC adminis-

tration. The session administrative model in this dissertation is largely inspired by these

experiences. RBAC administration is also studied in [71–73]. This dissertation differs from

them in that this dissertation adopts session management and specified concurrency control

requirements in the administrative model.

37

3.4 Summary

In this chapter, I have developed a session administrative model for an RBAC system. A

model is given of a set of system states, a set of session administrative actions, and a set

of “book keeping” functions mapping the attributes at a system state. To keep consistency

of an RBAC system, two concurrency control requirements are identified: (1) revoke an

activated role or delete an active session immediately, (2) delay administrative operations.

These two requirements can be individually or jointly specified in a particular system. The

concept of lock scope for a role is introduced to capture the affected role when the permis-

sions granted to this role are updated due to administrative operations. I have developed an

algorithm to calculate the affected entities because of invoking an administrative operation

using lock scope.

38

Chapter 4: XACML-ARBAC Profile and the Enforcement
Architecture

This chapter presents an XACML profile for ARBAC and the architecture to enforce this

profile. Because ARBAC is an RBAC model with administrative roles having specialized

permissions to administrate an underlying RBAC system, the XACML-ARBAC profile is

also an XACML-RBAC profile.

4.1 The XACML-RBAC Profile

The XACML-RBAC profile 2.0 has been approved as an OASIS standard [1] to specify

core and hierarchical components of RBAC models. In this profile, objects, actions, and

users are expressed as XACML <Resource>s, <Action>s, and <Subject>s. However,

roles are expressed as <Subject> attributes or <Resource> attributes. This profile further

defines three generic XACML policies: a Permission <PolicySet>, a Role <PolicySet>,

and a Role Assignment <Policy> or <PolicySet>. These are used to express the remaining

entities of an RBAC model (e.g., permissions, U2R and R2P mappings, and role hierarchy

≤), which are briefly explained as follows:

A Permission <PolicySet> is a <PolicySet> used to define a set of permissions

associated with a role. It may contain <PolicySetIdReference>s to other Permission

<PolicySet>s. Stated <PolicySetIdReference> can be used to inherit permissions of a

junior role. Currently, this is the only way to specify the role hierarchy in the XACML-

RBAC profile.

39

A Role <PolicySet> binds a set of attributes defining a role in a <Target> to a

<PolicySetIdReference> outside of that <Target>. The latter points to the Permission

<PolicySet> of this role.

A Role Assignment <Policy> or <PolicySet> does not have a standard specification.

The objective of the role assignment <Policy> or <PolicySet> is to specify the user-

to-role (U2R) assignment. This part of an RBAC policy is supposed to be specified by an

entity external to the XACML policy framework, referred to as the Role Enabling Authority

(REA). The XACML-RBAC profile does not specify any more requirements of the REA.

4.2 The XACML-ARBAC Profile

In the OASIS XACML-RBAC profile, roles are defined as attributes of subjects and re-

sources. This dissertation enhances the XACML syntax by introducing a new data type

Role. As the administrative roles needs to be distinguished from user roles, this disserta-

tion introduces a roleType attribute that can take value from {userRole,adminRole}. This

dissertation uses all other primitive entities from the XACML-RBAC profile. In particular,

the role hierarchy and role-to-permission assignments are expressed in the same way as in

the XACML-RBAC profile. This dissertation uses an XML file to maintain all user-to-role

assignments in the policy repository as the follows:

1 <Subjects>

2 <Subject SubjectId="Alice">

3 <Roles> <Role>SSO </Role>

4 <Role>Manager</Role>

5 </Roles>

6 </Subject>

7 <Subject SubjectId="Bob">

40

8 <Roles> <Role>Manager</Role></Roles>

9 </Subject>

10 </Subjects>

The PDP gets all the roles that a user can invoke by querying this XML file. Although

this dissertation could have maintained the user-to-role assignment as a Role Assignment

<PolicySet>, but this dissertation does not do so because the current XACML reference

implementation does not answer a query such as What are the roles assigned to Alice?.

Using this extra XML file, this dissertation specifies administrative policies using the same

machinery as the XACML-RBAC profile, albeit with the following constraints.

Constraining the Permission <PolicySet>: All permissions listed in a <PolicySet> of

an administrative role must be administrative permissions. By enforcing the following

constraints on the syntax used in a permission <PolicySet>, this dissertation ensures that

it is an administrative Permission <PolicySet>.

1. The <Condition>s are created from applying boolean operations to existing XACML

condition functions and an enlarged set of condition functions listed in Table 4.2.

2. The (<Action>, <Resource>) pair listed in <Rule> must be an administrative per-

mission (AP); that is, the actions must be chosen from operations listed in Table 3.1.

Policy 5 gives an example of a Permission <PolicySet> of SSO, which is an adminis-

trative role. For simplify, I only list the permission “AddRole” (line 37) and permission

“AssignUser” (line 65) in Policy 5. Other permissions listed in Table 3.1 can also be spec-

ified similarly.

Constraining the Role <PolicySet>: The Role <PolicySet> of an administrative role must

be an administrative <PolicySet> with the following additional constraints:

41

Table 4.1: Extended functions applied in <Condition> in XACML-ARBAC profile
Function Intuitive Meaning
role-exist(r) check the presence of the role r
inherited-by-assigned-role(r) check if the role r is inherited by a role already assigned to the subject
inherit-assigned-role(r) check if the role r inherits a role already assigned to the subject
role-assigned-exist(s,r) check if the subject s is already assigned to the role r
permission-exist(r,p) check if the role r has been already granted the permission p
role-has-children(r) check if the role r has any children
role-has-parent(r) check if the role r has any parent
role-is-assigned(r) check if the role r is assigned or not
role-is-inherited-by(r1,r2) check if r1 is inherited by r2
role-is-parent-of(r1,r2) check if r1 is parent of r2

1. All role names that appear in the <Target> of the Role <PolicySet> should be

administrative roles; that is, their roleType should be set to “adminRole” as shown in

line 19 of Policy 5.

2. The <PolicySetIdReference> contained in the Role <PolicySet> should point to an

administrative Permission <PolicySet> where all permissions must be chosen from

the administrative permissions listed in Table 3.1.

1<PolicySet PolicySetId="Admin::Role:Policy" PolicyCombiningAlgId=

"urn:oasis:names:tc:xacml:1.0:policy-combining-

algorithm:permit-overrides">

2 <Target>

3 <Subjects>

4 <AnySubject/>

5 </Subjects>

6 <Resources>

7 <AnyResource/>

8 </Resources>

9 <Actions>

42

10 <AnyAction/>

11 </Actions>

12 </Target>

13 <PolicySet PolicySetId="RPS:SSO:role" PolicyCombiningAlgId="

urn:oasis:names:tc:xacml:1.0:policy-combining-

algorithm:permit-overrides">

14 <Target>

15 <Subjects>

16 <Subject>

17 <SubjectMatch MatchId="role-equals">

18 <AttributeValue DataType="role">SSO</AttributeValue>

19 <SubjectAttributeDesignator SubjectCategory="

urn:oasis:names:tc:xacml:1.0:subject-

category:access-subject" AttributeId="

urn:oasis:names:tc:xacml:1.0:subject:subject-role-

id" DataType="adminRole"/>

20 </SubjectMatch>

21 </Subject>

22 </Subjects>

23 <Resources>

24 <AnyResource/>

25 </Resources>

26 <Actions>

27 <AnyAction/>

28 </Actions>

29 </Target>

30 <PolicySetIdReference>PPS:SSO:role</PolicySetIdReference>

43

31 </PolicySet>

Policy 4: Example of a Role <PolicySet> for SSO.

1<PolicySet PolicySetId="Admin:Permission:Policy"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-

combining-algorithm:permit-overrides">

2 <Target>

3 <Subjects>

4 <AnySubject/>

5 </Subjects>

6 <Resources>

7 <AnyResource/>

8 </Resources>

9 <Actions>

10 <AnyAction/>

11 </Actions>

12 </Target>

13 <PolicySet PolicySetId="PPS:SSO:role" PolicyCombiningAlgId="

urn:oasis:names:tc:xacml:1.0:policy-combining-

algorithm:permit-overrides">

14 <Target>

15 <Subjects>

16 <AnySubject/>

17 </Subjects>

18 <Resources>

19 <AnyResource/>

20 </Resources>

44

21 <Actions>

22 <AnyAction/>

23 </Actions>

24 </Target>

25 <Policy PolicyId="Permissions:specifically:for:the:SSO:role"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-

combining-algorithm:permit-overrides">

26 <Target>

27 <Subjects>

28 <AnySubject/>

29 </Subjects>

30 <Resources>

31 <AnyResource/>

32 </Resources>

33 <Actions>

34 <AnyAction/>

35 </Actions>

36 </Target>

37 <Rule RuleId="Permission:to:add:a:role" Effect="Permit">

38 <Target>

39 <Subjects>

40 <AnySubject/>

41 </Subjects>

42 <Resources>

43 <Resource>

44 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1

.0:function:string-equal">

45

45 <AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">role</AttributeValue>

46 <ResourceAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:resource:resource

-id" DataType="http://www.w3.org/2001/

XMLSchema#string"/>

47 </ResourceMatch>

48 </Resource>

49 </Resources>

50 <Actions>

51 <Action>

52 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0

:function:string-equal">

53 <AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">add</AttributeValue>

54 <ActionAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#

string"/>

55 </ActionMatch>

56 </Action>

57 </Actions>

58 </Target>

59 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0

:function:not">

60 <Apply FunctionId="role-exist">

46

61 <ResourceAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:resource:new-role-id"

DataType="role"/>

62 </Apply>

63 </Condition>

64 </Rule>

65 <Rule RuleId="Permission:to:assign:a:user:to:a:role" Effect=

"Permit">

66 <Target>

67 <Subjects>

68 <AnySubject/>

69 </Subjects>

70 <Resources>

71 <Resource>

72 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1

.0:function:string-equal">

73 <AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">user</AttributeValue>

74 <ResourceAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:resource:resource

-id" DataType="http://www.w3.org/2001/

XMLSchema#string"/>

75 </ResourceMatch>

76 </Resource>

77 </Resources>

78 <Actions>

79 <Action>

47

80 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0

:function:string-equal">

81 <AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">assign</AttributeValue>

82 <ActionAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#

string"/>

83 </ActionMatch>

84 </Action>

85 </Actions>

86 </Target>

87 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0

:function:and">

88 <Apply FunctionId="role-exist">

89 <ResourceAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:resource:role-id"

DataType="role"/>

90 </Apply>

91 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:not">

92 <Apply FunctionId="role-assignment-exist">

48

93 <SubjectAttributeDesignator SubjectCategory="

urn:oasis:names:tc:xacml:1.0:subject-

category:access-subject" AttributeId="

urn:oasis:names:tc:xacml:1.0:subject:assignee-

subject-id" DataType="http://www.w3.org/2001/

XMLSchema#string"/>

94 <ResourceAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:resource:role-id"

DataType="role"/>

95 </Apply>

96 </Apply>

97 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:not">

98 <Apply FunctionId="inherits-assigned-role">

99 <ResourceAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:resource:role-id"

DataType="role"/>

100 <SubjectAttributeDesignator SubjectCategory="

urn:oasis:names:tc:xacml:1.0:subject-

category:access-subject" AttributeId="

urn:oasis:names:tc:xacml:1.0:subject:assignee-

subject-id" DataType="http://www.w3.org/2001/

XMLSchema#string"/>

101 </Apply>

102 </Apply>

103 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:not">

49

104 <Apply FunctionId="inherited-by-assigned-role">

105 <ResourceAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:resource:role-id"

DataType="role"/>

106 <SubjectAttributeDesignator SubjectCategory="

urn:oasis:names:tc:xacml:1.0:subject-

category:access-subject" AttributeId="

urn:oasis:names:tc:xacml:1.0:subject:assignee-

subject-id" DataType="http://www.w3.org/2001/

XMLSchema#string"/>

107 </Apply>

108 </Apply>

109 </Condition>

110 </Rule>

111 </Policy>

112 </PolicySet>

Policy 5: Example of the Permission <PolicySet> for SSO.

Sun’s reference implementation [8] uses a set of methods, referred as condition func-

tions, to compare retrieved attributes’ values with expected values in order to make access

decisions. An example condition function provided by the reference implementation is the

form “[type]-one-and-only”, that accepts a bag of values of the specified type and returns

the single value if there is exactly one item in the bag, or an error if there are zero or multi-

ple values in the bag. The condition functions provided by Sun’s reference implementation

are not capable of checking the conditions for most administrative operations. For example,

to add a role r into the system, the access controller needs to check if r is already defined.

To support all possible conditional checks for administrative operations formally specified

50

in Section 3.1.1, this dissertation adds a new set of condition functions listed in Table 4.2.

For example, Function “role-exist” is used in line 59 of Policy 5 to check a role existence

prior to adding it to system. Function “role-assignment-exist” is used in line 93 of Policy

5 to check a user-to-role assignment instance existence prior to assigning a user to the role.

These condition functions are internal auxiliary functions which do not affect the system

state.

4.2.1 Administrative Operation

Each administrative operation, such as AddRole(r), has two steps. First, the administrator

who is assigned to the administrative role needs to get the permission to add a role r,

then add the role r into the RBAC system by updating the corresponding policies. Next the

author specifies how to update the corresponding policies for each administrative operation.

• AddUser(u): adds the new user u entry into the user-to-role assignment XML file

with no roles assigned to it.

• DeleteUser(u): deletes the user u entry with all the roles assigned to it from the

user-to-role assignment XML file.

• AddRole(r): adds role r to the system, by creating a new Role <PolicySet> with r in

the <Target>. It also creates Permission <PolicySet> with empty permissions, and

inserts the <PolicySetIdReference> reference into the Role <PolicySet< pointing

to the Permission <PolicySet>.

• DeleteRole(r): removes role r from the system by deleting the Role <PolicySet>

which has r in the <Target> and the Permission <PolicySet> which the Role

<PolicySet> points to.

51

• AssignUser(u, r): updates the user-to-role assignment XML file by adding role r

under the user u entry.

• DeassignUser(u, r): updates the user-to-role assignment XML file by removing role

r from the user u entry.

• GrantPermission(r, P): adds permission P as a rule into the Permission <PolicySet>

of role r.

• RevokePermission(r, P): removes the rule specified for permission P from Permission

<PolicySet> of role r.

• AddEdge(rc, rp): adds a <PolicySetIdReference> reference into the Permission

<PolicySet> of role rp pointing to the the Permission <PolicySet> of role rc.

• DeleteEdge(rc, rp): deletes a <PolicySetIdReference> reference from the Permis-

sion <PolicySet> of role rp pointing to the Permission <PolicySet> of role rc.

4.3 Enforcing The XACML-ARBAC Profile

In order to enforce this XACML-ARBAC profile, this dissertation enhances the existing

XACML reference implementation with the two entities shown with bold borders in Fig-

ure 4.1 and explained as follows.

The Administrative PEP (A-PEP) receives an administrative access control request,

returns a response to the administrator, and, if needed, updates relevant policies as a conse-

quence of enforcing the requested administrative operation. The A-PEP also functions as

a Role Enabling Authority. When a subject is assigned to a role and revoked from a role,

the A-PEP acts as an enabler/ disabler by invoking the appropriate administrative operation

52

and updates the U2R mapping in an XML file. When needed by the PDP or the context

handler, the A-PEP provides appropriate instances of the U2R mapping.

The Lock Manager provides the concurrency control necessary to maintain the transac-

tional consistency between simultaneous operations that the PDP requires to read policies

in order to evaluate them and the A-PEP needs to modify policies to enforce administrative

operations.

Admin
Requester

Admin PEP
Obligation

Service
2a. Access

Request
11a. Obligations

1.Policy or Policy Set

 8.Request
 Attributes, Resource

3a.R
equest

10a. R
esponse

PDP

PAP

Context
Handler

PIP

Subjects

Resource

Environment

 9. Decision

5a Sub. Attrbs

7. Resource

5b Re. Attrbs

5c.Env. Attrbs

4.Attrbs Query 6.Attributes

Access

Requester

PEP

Lock
Manager

2c. Acquire lock

2b Access

 Request

10b.Response3.
b

 R
e

q
u

es
t

11b O
blig

atio
ns

Figure 4.1: Extended XACML architecture for XACML-ARBAC en-
forcement.

4.3.1 Concurrency Control

When a non-administrative request arrives at the PDP, the PDP requests a read lock on

the policy that is found using the target matching algorithm (described in Section 2.1).

53

In the case of an administrative request, the policy evaluation part is similar to the non-

administrative request, where the PDP acquires a read lock on the policy for evaluation. If

the administrative request is granted, the PDP sends a permit decision to the A-PEP. After

receiving a permit decision from the PDP, the A-PEP acquires a write lock on the policy

(recall that administrative operations update XACML policies) that is to be updated. This

dissertation now describes the details of these steps.

Evaluating Authorization Requests Sun’s reference implementation does not alter any

XACML policies, and it uses the policy evaluation algorithm explained in [2]. As the ad-

ministration operations update policies, this evaluation algorithm needs to be protected by

a semaphore. When a non-administrative request arrives at the PDP, the PDP first requests

a read lock (from the Lock Manager) on the policy that is found using the target matching

algorithm (line 2), evaluates the request using the existing XACML policy evaluation al-

gorithm (line 3), updates the runtime PEPList (the list of active PEPs) (line 4), and finally

releases the read lock on the policy (line 5) and returns the response back tho the requesting

PEP (line 8), which in turn returns the response back to the user and invokes application

dependent activity to enforce the decision. If the PDP fails to acquire the read lock, it re-

turns indeterminate as a response to the requesting PEP. The PDP goes through the steps

outlined in Figure 4.2.

Enforcing Administrative Operations When an administrative request is submitted to

the A-PEP, the A-PEP forwards the request to the PDP for evaluation. The PDP uses the

same evaluation algorithm used to evaluate the non-administrative request (see Figure 4.2)

and returns its decision to the A-PEP. If the returned value received at the A-PEP is not a

permit, the A-PEP conveys the decision to the administrator. Otherwise (the return value

is permit), the A-PEP uses the algorithm shown in Figure 4.3 to enforce that decision. As

the algorithm states, if the decision is not a permit, the A-PEP returns that decision to the

administrator (line 19). Otherwise, it acquires a write lock on the policy to be updated

54

Algorithm 2: PDP evaluating request
Input: Request, PEPID
Data: PEPList
Output: access control decision

/*PDP maintains the PEP-List accessible to A-PEP*/
1 policy:=targetMatching(request);

/*find the policy to be evaluated using target matching*/
2 if AcquireLock(policy,read) then
3 decision:=evaluate(Request,policy);
4 PEPList:=+PEPID;
5 ReleaseLock(policy,read);
6 else
7 decision:=Intermediate;
8 return decision;

Figure 4.2: PDP evaluation algorithm.

(line 3), and calls the method getAffected(adminOp) using the algorithm shown in

Figure 3.2 in Section 3.2 to determine the parameters that are affected by the administrative

operation (line 5). Then, the A-PEP sends a request to all PEPs to terminate user sessions

that may be affected by enforcing the administrative operation (lines 6-8). Because the

access controller cannot wait forever for those PEPs to confirm that the requested sessions

have been terminated, the A-PEP sets up a timer (line 7). If all PEPs returned successful

answers (lines 12-14), then the A-PEP will update the policy to reflect the administrative

operation, release the write lock on the policy (line 16), and finally inform the administrator

that the administrative operation is enforced (the permit decision). Conversely, if any PEP

fails to return a positive answer when the timer expires, the administrative request is denied.

55

Algorithm 3: Enforcing administrative operations
Input: adminOp, PDPdecision

/*PDP returns policy decision to A-PEP*/
Data: PEPList
Output: Return decision to administrator

1 if PDPdecision==permit then
2 decision:=deny;
3 if AcquireLock(policy,write) then
4 if adminOp is a (-) operation then
5 Affected:=getAffected(adminOp);
6 forall PEP ∈ PEPList do
7 set(timer, value);
8 sendRequest(PEP,(Affected,killSession));
9 if expires(timer) then
10 acceptFlag:=ok;
11 forall PEP ∈ PEPList do
12 recv(PEP,(Affected, killsSession, NotOK));
13 acceptFlag:=reject;
14 if acceptFlag=ok then
15 modifyPolicy(policy, adminOp);
16 ReleaseLock(policy,write);
17 decision:=permit;
18 else
19 decision:=PDPdecision;
20 return (admin, decision);

Figure 4.3: Enforcing administrative operations.

4.3.2 The Lock Manager

The PDP and A-PEP competition is similar to the Readers and Writers problems described

in [51]. The Readers and Writers problems have a common basis but differ in matters

of policy governing control invoking Readers versus Writers. Multiple requests from the

PDP to read a policy simultaneously for policy evaluation maybe be allowed but the A-PEP

must have exclusive access to modify a policy. Different scenarios must be considered as

follows:

56

• In situations where one or more PDP instances are active, is it permissible to allow

a newly-arriving PDP instance to join immediately even if there are also A-PEP in-

stances waiting? If so, a continuous stream of entering PDP instances will cause

A-PEP to starve. If not, the throughput of PDP instances decreases.

• If both some PDP instances and some A-PEP instances are waiting for an active A-

PEP instance to finish, should you bias the policy toward allowing PDP instances? a

A-PEP instance? Earliest first? Random? Alternate? Similar choices are available

after termination of PDP instances.

• Is a policy needed to allow an A-PEP instance to downgrade access to become a PDP

instance without having to give up locks?

As there are no generally recognized “right” answers to these policy questions, the

author proposes a standard solution with a set of choices: PDP instances are blocked if there

are waiting A-PEP instances, waiting A-PEP instances are chosen arbitrarily (just relying

on the order in which the underlying Java Virtual Machine (JVM) scheduler happens to

resume unblocked threads), and there are no down-grade mechanisms.

The Lock Manager (see Figure 4.1) maintains read/write locks on policies. Because

these policies are role-based, the locks are placed on the roles. The functionality of the

Lock Manager that provides and maintains locks is summarized below:

• AcquireLock (role, read/write) : used to obtain a lock on a role.

• ReleaseLock (role, read/write): used to relinquish active locks.

• AttemptLock (role, ReadLock, WriteLock): Attempt lock method is used to wait if

there is already lock on a role.

57

Lock acquisition and release are atomic operations. For example, to acquire a write lock on

R3 in Figure 3.1, first the A-PEP need acquire a write lock on R0, if succeed, then acquire

a write lock on R1, R2 finally, acquire a write lock on R3. If failing acquiring any write

lock, acquiring a write lock on R3 is failed. This can prevent dead lock, for example: when

two concurrent requests to acquire write locks on R3 and R7. The lock scope for R3 is R0,

R1, R2, R3 and the lock scope for R7 is R0, R1, R7. If there is no order, R3 might get lock

for R0 first then attempt to get a lock for R2, and the same time, R7 gets lock R2 first then

attempts to get a lock for R0, it will have a dead lock. Because the lock scope is an ordered

list, it is by design and inherently dead lock free in [49].

4.4 The Birth and Death Processes

In this dissertation, when the access controller becomes alive, it follows the initialization

sequence of creating a super user (SU) and a super role (SRole), where the SRole is the

administrative role. This dissertation simplifies the administrative RBAC system with only

a single administrative role. Consequently, the resulting U2R and R2P updates are precisely

specified in the following pre-conditions and post-conditions.

• Pre-condition: U, R, AR, U2R, and R2P is empty.

Formal Specification: U = {} ∧ R = {} ∧ AR = {} ∧ U2R = {} ∧ R2P = {}.

• Post-condition: SU is the only member of the users data set and SRole is the only

member of the administrative role (AR) data set. These and the appropriate permis-

sions are created during the bootstrapping procedure of the access controller from

a file which contains the default administrative policy loaded into the system data

structures.

Formal Specification: U ′ = {SU} ∧ AR′ = {SRole} ∧ U2R′ = {(SU, SRole)} ∧

58

R2P ′ = {(SRole, p)} ∧ p 6= (deleteRole, SRole) ∧ p 6= (deleteUser, SU) ∧ u 6=
SU , where p is any administrative operation described in Table 3.1.

As seen from the post-condition, after the initialization phase finishes, the super user

SU is the only user in the system endowed with SRole’s permissions - the administrative

permissions described in Table 3.1. Also as specified, the SRole does not have permissions

to delete SU , nor de-assign SU from the SRole. Consequently, permissions granted to the

SRole remain un-alterable and the SRole has no relation with other roles through ≤, as

formally specified in the AddEdge administrative operation in the Section 3.1.1.

The access controller does not entertain any user requests during the initialization

phase. After the RBAC system boots up, the SRole may perform other administrative

operations such as creating user roles, creating users and assigning users to roles, etc.

When the access controller is ready to stop services, the SU notifies all the active PEPs

that the access controller is going to stop services and requests the PEPs to terminate any

user sessions authorized by this access controller. After getting the acknowledgement mes-

sages from the PEPs or the timer expires, SU signals the operating system to shutdown the

access controller. Here this dissertation assumes that all PEPs are cooperative. The access

controller does not entertain any user requests after sending messages to all PEPs. Conse-

quently, the resulting ACTIV E − S, U2S, S2R, actRole, and actPerms are specified in

the following post-conditions.

Post-condition: ACTIV E − S, U2S, S2R, actRole, and actPerms are empty.

Formal Specification: ACTIV E − S = {} ∧ U2S = {} ∧ S2R = {} ∧ actRole =

{} ∧ actPerms = {}.

59

4.5 Related Work

There have been many works in the area of access control for Web Services [22,31,74,78].

Most of these focus on how to express access control policies and the architectures to

implement the model. However, these solutions have not addressed the concurrency issues

between policy evaluation and administrating the access control policies.

Crampton and Chen [28] have proposed an approach to implement the RBAC model

using XACML. They attempt to implement the ANSI RBAC standard [34] using a suit

of XACML policies. They use attribute-based role assignment for the U2R assignment,

define an XML-based language for specifying separation of duty constraints and propose

an extension to the XACML reference architecture in order to enforce these constraints. To

the best knowledge of the author, these proposals have not been fully implemented.

Seitz et al. [66] present a system permitting controlled policy administration and del-

egation using the XACML access control system. They use a second access control sys-

tem, Delegent, which has delegation capabilities to supervise modifications of the XML-

encoded XACML policies. Concurrent administration with authorization is not addressed

in Delegent.

Karjoth et al. [46] implement ACL-based policies in XACML by mapping the IBM

Tivoli Access Manager (AM) policy language [45] into XACML. They use novel XACML

features to translated ACL policy, Traverse permission PolicySet, protected object policy,

and authorization PolicySet. They have not completely translate the AM functions into

XACML. Their experiences give hope that legacy access control systems could also be

supported in XACML. Concurrent administration with authorization is not addressed in

their system. As is the case with Delegent, however, concurrent administration with autho-

rization is not addressed here as well.

Dhankhar et al. [32] enhance the XACML syntax for “locks” to support three types

60

of access control use cases: (1) ensuring exclusive access to globally available resources,

(2) preventing access to a resource given a concurrent conflicting use of another resource

(dynamic separation of duty constraints), and (3) preventing access to a resource given a

history of conflicting access (Chinese Wall constraints) which current XACML does not

support. They add a lock manager to the policy enforcement module and require that all

globally accessible resource register with unique lock manager. Policy administration and

session management is not addressed in their paper. Their locks are put in the XACML

syntax while the locks are placed in the policy in this dissertation.

Concurrency control on XML data has been an active research area recently. Haustein

et al. [41–43] introduce a data model called taDOM tree to allow fine-grained locking using

a combination of node locks, navigation locks, and logical locks, which could be further

investigated for future research.

Janicke et al. [39] propose a concurrent enforcement model for usage control (UCON) [61]

policies. They model an enforcement mechanism as a reactive system in form of a Stat-

echart which clearly separates between user, controller and system. While this technique

enforces concurrency control based on static analysis of dependencies between policies,

this dissertation resolves concurrency issues during the runtime of a system.

4.6 Summary

In this chapter I have presented an XACML profile the ARBAC. This XACML-ARBAC

profile extends the OASIS XACML-RBAC profile in: introducing a new data type Role,

using a XML file for use-to-role assignment, adding constraints for the administrative

Role <PolicySet> and Permission <PolicySet>, and expanding the condition functions

to check the pre-conditions of the administrative operations. To enforce the XACML-

ARBAC profile and address concurrency issues, I have enhanced the existing XACML

61

reference implementation with two entities: the Administrative PEP (A-PEP) and the Lock

Manager. The A-PEP competes for read-write locks for RBAC and ARBAC policies along

with PDP of the access controller. The Lock Manager maintains the transactional con-

sistency between simultaneous operations that the PDP requires to read policies and the

A-PEP needs to modify policies. The birth and death processes of the access controller

are formally specified and a default XACML-ARBAC profile is defined which contains a

persistent Super Role (SRole) that may be invoked by a so called Super User (SU). The SU

is assigned to the SRole. The SU then is used to instantiate the stored policies and enforce

the XACML-ARBAC profile.

62

Chapter 5: XACML-ADRBAC Profile and Its
Enforcement Architecture

This chapter first introduces the administration and delegation model for an RBAC system;

then proposes the role-based administration and delegation XACML profile (XACML-

ADRBAC); finally, extends the enforcement architecture for XACML-ARBAC proposed

in Chapter 4 to enforce the XACML-ADRBAC profile.

5.1 Introduction

The OASIS technical committee published the XACML v3.0 administration and delegation

profile (XACML-Admin) working draft on April 16, 2009 [6] to support two use cases:

(1) policy administration, and (2) dynamic delegation. The former controls the types of

policies that individuals can create and modify, whereas the latter permits some users to

create policies of limited duration to delegate selected capabilities to others. The delegation

model used in the XACML-Admin profile is a discretionary access control (DAC) model.

The profile only allows the owner of a permission to delegate it to a specific user, which

is not scalable when permissions need to be delegated to a large number of users with the

same job function. In many cases in which the delegator is not available, or is unable to

perform the delegation, it is more convenient to have a third party, such as the administrator,

initiating the delegation on behalf of the user. This profile also lacks the flexibility to allow

delegators to delegate any subset of permissions assigned to him/her.

Separately, this profile does not have an enforcement mechanism. Enforcing admin-

istrative or delegation operations will update relevant policies that results in read-write

63

conflicts while the access controller attempts to evaluate a user’s access request. Further,

when an administrator or delegator attempts to revoke a permission granted to a user, the

same user might still be exercising the permission to access a resource, which violates the

system safety. In this chapter, I extend the XACML-Admin profile to include the use cases

of: (1) role-based delegation extending the delegation framework of the XACML-admin

profile, and (2) policy administration with or without delegation extending the use cases

proposed in Chapter 4. Furthermore, I show how these extended use cases can be realized

by extending the architecture implemented in Chapter 4 that retains the system safety by

revoking permissions invalidated by policy updates. To provide the extra use cases and

enforce delegation, I divide the access requests into three categories as follows:

1. Regular User Access Request: User requests access permission to a resource. This is

the most common type of request made to an access control system.

2. Administrative Request: Administrator requests to modify a component of the sys-

tem, such as changing privileges granted to a role, etc.

3. Delegation Request: Delegator (user or administrator) requests delegating one user’s

permissions to another.

The first two category requests have been successfully specified and enforced in Chapter 4.

In this chapter, I propose a role-based administration and delegation model, in which the

delegators (user or administrator) are assigned to a delegable role granted with a set of

delegation permissions. Our delegation permissions are different from the permissions to

access resources. The delegation permissions are semi-administrative in nature such as

creating/deleting a delegated role (e.g., a role that can be assigned to a delegatee), grant-

ing/revoking permission to/from a delegated role, and assigning/removing a user to/from

a delegated role. To provide multi-step delegation (e.g., to be able to delegate delegation

64

permission), the delegable role also can create another delegable role. This role-based ap-

proach is scalable because it facilitates permissions to be delegated to a large number of

users that may want to be delegatees of the same permission set. It is flexible because it

allows the delegators to delegate any subset of the permissions assigned to him/her and

modify the delegated permissions in case of needed.

5.2 Administration and Delegation Model

In order to cover the XACML-Admin profile [6], this dissertation adds the PBDM [80]

delegation model to the ARBAC model. This dissertation partitions roles into regular roles

(RR), delegable roles (DBR), delegated roles (DR) (which are called delegation roles in

PBDM), and administrative roles (AR). A delegable role can be delegated to other roles or

users by creating delegated roles or delegable roles (for multi-step delegation purposes). To

support discretionary access control (DAC), users that are assigned to a regular role are also

assigned to the delegable role based on it. Administrators can be assigned to the delegable

roles. The delegated roles are the roles assigned to the delegatees created by the dele-

gable roles. This separation induces a partition of U2R and R2P . U2R is separated into

user-to-regular role assignment (U2RR), user-to-delegable role assignment (U2DBR), user-

to-delegated role assignment (U2DR), and user-to-administrative role assignment (U2AR).

Similarly R2P is separated into regular role-to-permission assignment (RR2P), delegable

role-to-delegation permission assignment (DBR2DP), administrative role-to-administrative

permission assignment (AR2AP) and delegated role-to-permission assignment (DR2P).

Administrative permissions are different from the regular permissions. Delegation per-

missions are also different from regular permissions.

A delegable role cannot have any senior regular role if it is placed into the role hierarchy.

In general, definition of RR, DBR, U2RR, RR2P , U2DBR, DBR2P , ≤, and making

65

changes to the delegable role hierarchy ≤B is the responsibility of security administrators.

Definition of DR, U2DR, DR2P and delegated role hierarchy (≤D) is the responsibility

of users that can add a form of discretionary access control (DAC) to the ARBAC model.

DBR 7→ (DR×DR) is the local delegated role hierarchy created by the DBR.

Definition 4 (ADRBAC). Let (U , O, A, R, P , ≤, U2R, R2P) be an RBAC model. An

administrative and delegation RBAC model is a tuple ADRBAC = (U , RR, DBR, DR,

AR, AO, AA, DP , AP , P , U2RR, U2DBR, U2DR, U2AR, RR2P , DBR2DP , DR2P ,

AR2AP , ≤,≤B, ≤D, ≤A), where

• R=RR ∪ DBR ∪ DR ∪ AR, where RR is a set of regular roles, DBR is a set of

delegable roles, DR is a set of delegated roles, and AR is a set of administrative

roles, with constraints: RR ∩ DR = {}, RR ∩ DBR = {}, RR ∩ AR = {},

DBR ∩DR = {}, and AR ∩DR = {};

• AO = U ∪ RR ∪ DBR ∪ U2RR ∪ U2DBR ∪ RR2P ∪ DBR2DP∪ ≤ ∪ ≤B is

the set of administrative objects;

• AA is the set of administrative actions given in Table 3.1;

• AP ⊆ (AO × AA) ∪ (AO × AO × AA) is the set of administrative permissions;

• DP is the set of delegation permissions give in Table 5.1;

• P ⊆ (O × A)is the set of regular permissions ;

• U2RR : U 7→ 2RR is the user-to-regular role assignment;

• U2DBR : U 7→ 2DBR is the user-to-delegable role assignment;

• U2DR : U 7→ 2DR is the user-to-delegated role assignment;

• U2AR : U 7→ 2AR is the user-to-administrative role assignment;

66

• RR2P : RR 7→ 2P is the regular role-to-permission assignment;

• DBR2DP : DBR 7→ 2DP is the delegable role-to-permission assignment;

• DR2P : AR 7→ 2P is the delegated role-to-permission assignment;

• AR2AP : AR 7→ 2AP is the administrative role-to-administrative permission as-

signment;

• ≤⊆ RR×RR is the regular role hierarchy;

• ≤B⊆ DBR×DBR is the delegable role hierarchy;

• DBR 7→ (DR×DR) is the local delegated role hierarchy created by the DBR;

• ≤A⊆ AR× AR is the administrative role hierarchy;

• senior(r) : R → 2R: a function mapping a role to all its senior roles in role hierar-

chy;

• base(dbr) : DBR → RR: a function mapping each delegable role to a single

regular role on which it is based;

• ∀ dbr ∈ DBR ·senior(dbr)∩RR = {}: no delegable role has a senior regular role;

• ∀ dr ∈ DR · senior(dr)∩RR = {} ∧ senior(dr)∩DBR = {} : no delegated role

has a senior regular role or a delegable role;

Similar to administrative operations, delegation operations change the configuration of

an RBAC system. Any configuration change affects the running system state, which may

demand session administrative actions (see Chapter 3) to be invoked. The interaction be-

tween session administrative actions and the delegation operations (defined in Table 5.1)

67

Table 5.1: Delegation operations
Operations Intuitive Meaning
DelegateRole(u,dr) Delegate dr to u
DeassignUser(u,dr) Deassign u from dr
GrantPermission(dr,p) Grant p to dr
RevokePermission(dr,p) Revoke p from dr
AddRole(dr) Add dr
DeleteRole(dr) Delete dr
AddEdge(drc, drp) Make drc as a child of drp

DeleteEdge(drc, drp) Remove drc as a child of drp

needs to be specified in order to ensure the safety of the ADRBAC model. Because this dis-

sertation treats delegation operations as semi-administrative operations, concurrency con-

trol requirements between the session administrative model and delegation model for an

RBAC system extends the concurrency control requirements stated in Chapter 3: (1) revoke

activated role or delete active session immediately, and (2) delay administrative/delegation

operations. When a delegation operation modifies a role, it might affect other roles. For

example, removing a permission from a delegated roles will affect the users granted to

the delegated role and all roles senior to the delegated role. This dissertation can define

the affected entities because of invoking a delegation operation using lock scope defined in

Chapter 3. Algorithm 1 in Figure 5.1 shows this information for every delegation operation

listed in Table 5.1, although this dissertation does not consider revoking delegations.

5.3 The XACML-ADRBAC Profile

For the XACML-ARDRBAC profile, this dissertation adds the values delegatedRole, dele-

gableRole to the roleType attribute to distinguish delegated roles, delegable roles from user

roles (regular roles) and administrative roles. This XACML-ARDRBAC profile uses all

other primitive entities from the XACML-ARBAC profile. This dissertation specifies the

68

Algorithm 1: Compute affected entities
Input: delegateOp
Output: Return affected to PAP

1 switch delegateOp do
2 case DeleteUser(u)
3 affected:=u;
4 case DeleteRole(dr)
5 affected:=wScope(dr);
6 case DeassignUser(u,dr)
7 affected:=(rScope(dr),u);
8 case RevokePermission(dr,P)
9 affected:=wScope(dr);
10 case DeleteEdge(drc, drp)
11 affected:=wScope(drp);
12 otherwise
13 affected:=NULL;
14 return affected;

Figure 5.1: Compute affected entities of a delegation operation.

administration and delegation profile (XACML-ADRBAC) using the same machinery as

the XACML-ARBAC profile, but with the following added constraints for delegable roles

and delegated roles.

Constraining the Delegable Role <PolicySet>: The Role <PolicySet> of a delegable

role must be a delegable Role <PolicySet> with the following constraints:

1. All role names that appear in the <Target> of the Role <PolicySet> should be

delegable roles, with the roleType set to “delegableRole” as shown in line 8 of Policy

6.

2. The <PolicySetIdReference> contained in the Role <PolicySet> should point to a

delegation Permission <PolicySet>, to be described shortly.

3. There should be exact one regular role matching this delegable role. This dissertation

69

adds a <BaseRole> element to link the delegable role to the regular role as shown

in line 20 of Policy 6.

Constraining the Delegable Permission <PolicySet>: All permissions listed in a

<PolicySet> of a delegable role must be delegation permissions as defined in Table 5.1.

By enforcing the following constraints on the syntax used in a permission <PolicySet>, it

can be ensured as a delegable Permission <PolicySet>.

1. The (<Action>, <Resource>) pair listed in <Rule> must form a delegation per-

mission. That is, the <Action> attribute must be chosen from the operation names

and the <Resource> attribute must be chosen from the operation parameters stated

in Table 5.1.

2. This delegable role does not have any senior regular role.

Constraining the Delegated Role <PolicySet>: The Role <PolicySet> of a delegated

role must be a delegated Role <PolicySet> with the following constraints:

1. All role names that appear in the <Target> of the Role <PolicySet> should be

delegated roles. That is, their roleType should be set to “delegatedRole” as shown

in line 30 of Policy 6 .

2. The <PolicySetIdReference> contained in the Role <PolicySet> should point to a

delegated Permission <PolicySet> to be described shortly.

Constraining the Delegated Permission <PolicySet>: All permissions listed in a

<PolicySet> of a delegated role must be a subset of permissions granted to the base role

of the delegable role which created the delegated role. By enforcing the following con-

straints on the syntax used in a permission <PolicySet>, it can be ensured as a delegated

Permission <PolicySet>.

70

Table 5.2: Extended functions applied in <Condition> in XACML-ADRBAC profile
Function Intuitive Meaning
role-exist(r) check the presence of the role r
inherited-by-assigned-role(r) check if the role r is inherited by a role already assigned to the subject
inherit-assigned-role(r) check if the role r inherits a role already assigned to the subject
role-assigned-exist(s,r) check if the subject s is already assigned to the role r
permission-exist(r,p) check if the role r has been already granted the permission p
role-has-children(r) check if the role r has any children
role-has-parent(r) check if the role r has any parent
role-is-assigned(r) check if the role r is assigned or not
role-is-inherited-by(r1,r2) check if r1 is inherited by r2
role-is-parent-of(r1,r2) check if r1 is parent of r2
permission-in-permissionSet(p,P) check if p is an element of permission set P

1. The permissions are a subset of permissions of the base role of the delegable role

which creates the delegated role. This can be checked by using the extended function

“permission-in-permissionSet(p,P)” stated in Table 5.3.

2. This delegated role has no senior regular or delegable role.

The XML file recoding the user-to-role assignment is changed as follows. For any dele-

gable role, this dissertation adds a <BaseRole> element. For example, Mary is assigned to

the “Manager” role and a delegable “ManagerDelegable” role which has a base “Manager”

role. Alice, the administrator, is also assigned to the “ManagerDelegable” role. Notice that

Alice is not assigned to the “Manager” role, implying that the delegable may not have all

the permissions granted to the base role. Jack is assigned to the “ManagerDelegated” role.

This assignment fragment is as follows:

1 <Subjects>

2 ...

3 <Subject SubjectId="Mary">

4 <Role> Manager</Role>

5 <Role>ManagerDelegable

6 <BaseRole>Manager</BaseRole></Role>

71

Table 5.3: Contrasting elements in XACML-ARBAC with XACML-ADRBAC
XACML-ARBAC XACML-ADRBAC
user-role XML assignment user-role XML assignment
constraints on administrative role PolicySet constraints on administrative role PolicySet
constraints on administrative permission PolicySet constraints on administrative permission PolicySet

constraints on delegable role PolicySet
constraints on delegable permission PolicySet
constraints on delegated role PolicySet
constraints on delegated permission PolicySet

7 </Roles>

8 </Subject>

9 <Subject SubjectId="Alice">

10 <Role>ManagerDelegable

11 <BaseRole>Manager</BaseRole></Role>

12 <Role>SSO</Role>

13 </Roles>

14 </Subject>

15 <Subject SubjectId="Jack">

16 <Roles> <Role>ManagerDelegated</Role>

17 </Roles>

18 </Subject>

19 ...

20 </Subjects>

This dissertation enlarges the set of XACML condition functions (listed in Table 5.3)

in order to check the constraints added in this section. Specifically, I add “permission-

in-permissionSet(p,P)” function to check if p is an element of permission set P. Table 5.3

contrasts the elements of the XACML-ARBAC profile with the XACML-ADRBAC profile.

72

5.3.1 An Example

This dissertation specifies proposed XACML-ADRBAC profiles in Policy 6 and Policy

7 for the example stated in Section 2.3. Policy 6 shows the Role <PolicySet> for “Man-

agerDelegable” and “ManagerDelegated” roles. Policy 7 shows the Permission <PolicySet>

for “ManagerDelegable” and “ManagerDelegated” roles. For simplicity, this dissertation

only lists “add a delegated role” permission in the “ManagerDelegable” <PolicySet>.

Other permissions such as granting permission to the “ManagerDelegated” role can also

be specified similarly. Because Mary is assigned to the “MangerDelegable” role, Mary can

create the “ManagerDelegated” role, grant the “approve expense reports” permission to the

“ManagerDelegated” role, and assign Jack to the “ManagerDelegated” role.

1<PolicySet PolicySetId="RPS:ManagerDelegable:role"

PolicyCombiningAlgId="policy-combining-algorithm:permit-

overrides">

2 <Target>

3 <Subjects>

4 <Subject>

5 <SubjectMatch MatchId="role-equals">

6 <AttributeValue DataType="role">RPS:ManagerDelegable<

/AttributeValue>

7 <SubjectAttributeDesignator SubjectCategory="subject-

category:access-subject"

8 AttributeId="subject:subject-role-id" DataType="

delegableRole"/>

9 </SubjectMatch>

10 </Subject>

11 </Subjects>

73

12 <Resources>

13 <AnyResource/>

14 </Resources>

15 <Actions>

16 <AnyAction/>

17 </Actions>

18 </Target>

19 <PolicySetIdReference>PPS:MangerDelegable:role</

PolicySetIdReference>

20 <BaseRole>Manager</BaseRole>

21 <RoleCreator>SSO</RoleCreator>

22</PolicySet>

23<PolicySet PolicySetId="RPS:ManagerDelegated:role"

PolicyCombiningAlgId="policy-combining-algorithm:permit-

overrides">

24 <Target>

25 <Subjects>

26 <Subject>

27 <SubjectMatch MatchId="role-equals">

28 <AttributeValue DataType="role">RPS:ManagerDelegated</

AttributeValue>

29 <SubjectAttributeDesignator SubjectCategory="subject-

category:access-subject"

30 AttributeId="subject:subject-role-id" DataType="

delegatedRole"/>

31 </SubjectMatch>

32 </Subject>

74

33 </Subjects>

34 <Resources>

35 <AnyResource/>

36 </Resources>

37 <Actions>

38 <AnyAction/>

39 </Actions>

40 </Target>

41 <PolicySetIdReference>PPS:ManagerDelegated:role</

PolicySetIdReference>

42 <RoleCreator>ManagerDelegable</RoleCreator>

43</PolicySet>

Policy 6: An Example Role <PolicySet>.

1<PolicySet PolicySetId="PPS:ManagerDelegable:role"

PolicyCombiningAlgId="policy-combining-algorithm:permit-

overrides">

2 <Target>

3 ...

4 </Target>

5 <Policy PolicyId="Permissions:ManagerDelegable:role"

RuleCombiningAlgId="rule-combining-algorithm:permit-

overrides">

6 <Target>

7 ...

8 </Target>

75

9 <Rule RuleId="Permission:to:add:a:delegatedrole" Effect="

Permit">

10 <Target>

11 <Subjects>

12 <AnySubject/>

13 </Subjects>

14 <Resources>

15 <Resource>

16 <ResourceMatch MatchId="function:string-equal">

17 <AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">delegated role</

AttributeValue>

18 <ResourceAttributeDesignator AttributeId="

resource:resource-id" DataType="http://www.w3.

org/2001/XMLSchema#string"/>

19 </ResourceMatch>

20 </Resource>

21 </Resources>

22 <Actions>

23 <Action>

24 <ActionMatch MatchId="function:string-equal">

25 <AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">add</AttributeValue>

26 <ActionAttributeDesignator AttributeId="

action:action-id" DataType="http://www.w3.org

/2001/XMLSchema#string"/>

27 </ActionMatch>

76

28 </Action>

29 </Actions>

30 </Target>

31 <Condition FunctionId=":function:not">

32 <Apply FunctionId="role-exist">

33 <ResourceAttributeDesignator AttributeId="

resource:new-role-id" DataType="delegatedRole"/>

34 </Apply>

35 </Condition>

36 </Rule>

37 </PolicySet>

38

39<PolicySet PolicySetId="PPS:ManagerDelegated:role"

PolicyCombiningAlgId="policy-combining-algorithm:permit-

overrides">

40 <Target>

41 ...

42 </Target>

43 <Policy PolicyId="Permissions:ManagerDelegated:role"

RuleCombiningAlgId="rule-combining-algorithm:permit-

overrides">

44 <Target>

45 ...

46 </Target>

47 <Rule RuleId="Permission:to:approve:expenseReports" Effect=

"Permit">

48 <Target>

77

49 <Subjects>

50 <AnySubject/>

51 </Subjects>

52 <Resources>

53 <Resource>

54 <ResourceMatch MatchId="function:string-equal">

55 <AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">expense reports</

AttributeValue>

56 <ResourceAttributeDesignator AttributeId="

resource:resource-id" DataType="http://www.w3.

org/2001/XMLSchema#string"/>

57 </ResourceMatch>

58 </Resource>

59 </Resources>

60 <Actions>

61 <Action>

62 <ActionMatch MatchId="function:string-equal">

63 <AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">approve</AttributeValue>

64 <ActionAttributeDesignator AttributeId="

action:action-id" DataType="http://www.w3.org

/2001/XMLSchema#string"/>

65 </ActionMatch>

66 </Action>

67 </Actions>

68 </Target>

78

69 </Rule>

70</PolicySet>

Policy 7: An Example Permission <PolicySet>.

The above example not only allows Mary to delegate the “approve expense reports” per-

mission to Jack, but also allows Mary or other users assigned to the “ManagerDelegable”

role to delegate the “approve expense reports” permission to whomever is assigned to the

“ManagerDelegated” role, thereby improving the scalability of delegating the same set of

permissions to multiple users. Also, the XACML-ADRBAC profile allows users assigned

to delegable roles to modify the permissions granted to a delegable role or a delegated role,

thereby providing them with the flexibility of choosing the delegated permissions. For

example, if Mary want to delegate “approve vacation requests” permission to Jack, Mary

needs to grant the “approve vacation requests” permission to the “ManagerDelegated” role.

The system only needs to update the “ManagerDelegated” permission <PolicySet>.

5.3.2 Role Reduction

Inspired by the OASIS XACML-admin profile, I add a <RoleCreator> element to insure

the policy authority. As shown in Policy 6, the “ManagerDelegable” role is created by

the SSO which is an administrative role, and the “ManagerDelegated” role is created by

the “ManagerDelegable” role. In order to establish the lineage of policies, the role creator

must be traced back to an administrative role. The role reduction only need apply to the

Role <PolicySet>s. To summarize, the features of the XACML-ARBAC profile, OASIS

XACML-Admin profile, and the XACML-ADRBAC profile are listed in Table 5.4.

79

Table 5.4: Comparison between XACML-ARBAC, XACML-Admin, and XACML-
ADRBAC services

XACML-ARBAC XACML-Admin XACML-ADRBAC
role-base administration policy administration role-based administration

discretionary delegation discretionary delegation
policy reduction role based reduction

role-based delegation
flexible permission delegation

5.4 Enforcement Architecture

In order to enforce the proposed XACML-ADRBAC profile, this dissertation extends the

XACML-ARBAC enforcement architecture as shown in Figure 5.2. For simplicity, this

dissertation only draws the added interaction in Figure 4.1. The n.a shows the flow of the

regular user access request, n.b shows the flow of the administrative request, and n.c shows

the flow of the delegation request, where n is an integer that shows the stage of the control

flow inside the enhanced XACML evaluation architecture.

The PDP evaluates the requests against the policies and renders one of {permit, deny,

indeterminate, notApplicable} as the outcome of the authorization decision.

The PEP receives a regular request, and enforces the authorization decision from the

PDP. If needed, terminates the user sessions required due to enforcing an administrative

operation or delegation operation.

The Administrative PEP (A-PEP) receives an administrative request, returns a response

to the administrator, and if needed, updates relevant policies as a consequence of enforcing

the requested administrative operation. When a user is assigned to a role and revoked from

a role, the A-PEP acts as a role enabler/disabler by invoking the appropriate administrative

operation and updates the U2R mapping in an XML file. Details have been provided in

Chapter 4.

80

PEP

A-PEP

PAP

PDP Lock Manager

1.a R
egular

R
equest

1.b Administration
Request

1.c Delegation
Request

Policy
Repository

 2.a Request
3 Acquire readlock

6.b Acquire writelock

4 Policy evaluation
 5. a Response

2.b Request

2.c Request

 5. b Response

 5. c Response

7. b Add/update/Remove

7. c Add/update/Remove

6.c Acquire writelock

Access requestor

Delegator

Administrator

Figure 5.2: Extended XACML architecture for XACML-ADRBAC en-
forcement.

The Policy administration point (PAP) creates policies at authoring time and admin-

istrates (creates, updates, removes) policies during runtime. This dissertation mainly dis-

cusses the runtime enforcement of these operations. When a delegator sends a policy del-

egation request to the PAP, the PAP in turn send a request to the PDP , obtains the result

and forwards the response to the delegator, and, if needed, updates relevant policies as a

consequence of enforcing the requested delegation operation.

The Lock Manager provides the concurrency control necessary to maintain the trans-

actional consistency between simultaneous operations that are generated by (1) the PDP

reading policies in order to evaluate access request, (2) the A-PEP modifying policies to

enforce administrative operations, and (3) the PAP modifying policies to enforce delegation

operations.

5.4.1 Concurrency Control

Regular User Access Request: When an access request arrives at the PEP (flow 1.a), the

PEP forwards the request to the PDP (flow 2.a). The PDP requests a read lock on the policy

81

that is found using the target matching algorithm (flow 3). Then the PDP evaluates

the request (flow 4) and conveys the authorization decision to the PEP (flow 5.a). The

details of evaluating authorization requests are described in Figure 4.2.

Administrative Request: When an administrative request arrives at the A-PEP (flow 1.b),

the A-PEP forwards the request to the PDP (flow 2.b). The PDP requests a read lock

on the policy that is found using the target matching algorithm (flow 3) from the

lock manager. Then the PDP evaluates the request (flow 4) and conveys the authorization

decision to the A-PEP (flow 5.b). The policy evaluation part (flows 3 and 4) is similar to that

of evaluating a regular request. If the A-PEP gets a permit decision from the PDP, the A-

PEP acquires a write lock on the policy (recall that administrative requests update XACML

policies) that is to be updated (flow 6.b). After acquiring the write lock successfully, the

A-PEP updates the policy to enforce the administrative operation (flow 7.b). The details of

enforcement of administrative operations are described in Figure 4.3

Delegation Request: When a delegation request is submitted to the PAP (flow 1.c), the

PAP forwards the request to the PDP for evaluation (flow 2.c). The PDP uses the same

evaluation algorithm used to evaluate the access request (flows 3,4) (see Figure 4.2) and

returns the decision to the PAP (flow 5.c). If the returned value received at the PAP is not

a permit, the PAP conveys the decision to the delegator (user or administrator). Otherwise

(e.g., the return value is permit), the PAP uses the algorithm shown in Figure 5.3 to enforce

that decision.

As the algorithm states, if the decision is not a permit, the PAP returns that decision

to the delegator (line 19). Otherwise, it acquires a write lock on the policy to be updated

(line 3), calls the method getAffected(delegateOp) using the algorithm shown in

Figure 5.1 to determine the parameters that are affected by the delegation operation (line 5).

Then, the PAP sends a request to all PEPs to terminate user sessions that can be affected by

enforcing the delegation operation (lines 6-8), so that updating a policy while these users

82

access permissions granted earlier do not render the access controller unsafe. Because

the access controller cannot wait endlessly for those PEPs to confirm that the requested

sessions have been terminated, the PAP sets up a timer (line 7). If all of these PEPs returned

successful answers (lines 12-14), the PAP updates the policy/user-role assignment XML

file to enforce the delegation, releases the write lock on the policy (line 16), and finally

informs the delegator that the delegation is enforced (the permit decision). Conversely, if

any PEP fails to return a positive answer when the timer expires, the delegation is denied,

the requestor is informed, and the write lock is released.

5.5 Related Work

Recently, OASIS XACML v3.0 administration and delegation profile has been approved

as an OASIS committee working draft [6]. It describes a profile to express administrative

meta-policies which can control different types of policies that individuals can create and

modify, and permits some users to create policies of limited duration to delegate selected

capabilities to others. The delegation model used in this profile is a discretionary access

control (DAC) model. Consequently, the profile constrains the owner of a permission to

delegate it to a specific user, which is not scalable when permissions need to be delegated

to a large number users with the same job function. In many cases in which the delegator

is not available, or is unable to perform the delegation, it is more convenient to have a third

party , such as the administrator, initiating the delegation on behalf of the user. This profile

also lacks the support to allow delegators to delegate any subset of permissions assigned to

him/her. This profile is also lack an enforcement mechanism.

PERMIS [24, 25] develops a role based access control infrastructure using X.509 [4]

attribute certificates (ACs) to store the U2R relation. The PERMIS architecture includes a

privilege allocator GUI tool and a bulk loader tool that allows administrators to construct

83

Algorithm 2: Enforcing Delegation Operations
Input: delegateRequest, PDPdecision
/*PDP returns policy decision to PAP*/

Data: PEPList
Output: Return decision to the delegator

1 if PDPdecision==permit then
2 decision:=deny;
3 if AcquireLock(policy,write) then
4 if delegateOp is a (-) operation then
5 Affected:=getAffected(delegateOp);
6 forall PEP ∈ PEPList do
7 set(timer, value);
8 sendRequest(PEP,(Affected,killSession));
9 if expires(timer) then
10 acceptFlag:=ok;
11 forall PEP ∈ PEPList do
12 recv(PEP,(Affected, killsSession, NotOK));
13 acceptFlag:=reject;
14 if acceptFlag=ok then
15 modifyPolicy(policy, delegateRequest);
16 ReleaseLock(policy,write);
17 decision:=permit;
18 else
19 decision:=PDPdecision;
20 return (delegator, decision);

Figure 5.3: Enforcing delegation operations.

and sign ACs and store them in an LDAP directory to be used by the PERMIS decision

engine. All access control decisions are driven by an authorization policy, which itself is

stored in an X.509 attribute certificate. Authorization policies are written in DTDs. Later

PERMIS uses an XML interface using Sun’s reference implementation [8] and adds dy-

namic delegation of authority [26]. PERMIS assumes that privileges can be formulated as

attributes and given to users. The dynamic delegation of authority is enacted via the issu-

ing of credentials from one user to another. The delegation model used in this dissertation

84

is role-based which is more scalable and flexible. This dissertation uses an XML file for

user-to-role assignment which can be directly updated by the A-PEP while PERMIS stores

the ACs in an LDAP directory which cannot be directed updated by the access controller.

Many theoretical works on the subject of delegation exist. Delegation logic [52] is

used to as a trust management engine with credentials proving that a request complies

with a policy. Delegation logic lacks the explicit subject abstraction which is desired for

attributed-based delegation and roble-based delegation. Li et al. [54] propose a role-based

trust-manage framework (RT). In RT framework, role activation is delegated by issuing

delegation credentials. Tamassia et al. [69] propose a model for delegation of authority in

decentralized trust management systems which combines the RT framework [54] with cas-

cading delegation. Bandmann et al. [17] introduce a constrained delegation model which

controlled the possible shapes of delegation chains using constraints to restrict the capabil-

ity at each step of delegation.

5.6 Summary

In this chapter, I have incorporated a delegation model into the ARBAC model, which adds

a delegable role and a delegated role. The delegable role is granted a set of permissions

to delegate any subset of permissions granted to the regular role which can be delegated in

case of need. Second, I have extended the XACML-ARBAC profile to cover the XACML-

Admin profile, which I refer to as the XACML-ADRBAC profile by adding appropriate

syntax and constraints. Third, I have extended the XACML-ARBAC enforcement archi-

tecture described in Chapter 4 and specified the extra functionality required for the policy

administration point (PAP) to enforce the extended XACML-ADRBAC profile. In order to

achieve all these concurrently, I direct different types of access requests to different entities

of the XACML runtime: the regular request to the policy enforcement point (PEP), the

85

administrative request to the administrative PEP (A-PEP), and the delegation request to the

PAP. The Lock Manager functionalities are enhanced to enforce concurrency control nec-

essary to maintain the transactional consistency between simultaneous operations among

the policy decision point (PDP), the A-PEP and the PAP.

86

Chapter 6: Prototype Implementation and Evaluation

This chapter describes the prototype to enforce the extended XACML profile for ARBAC

and concurrency control, and presents some experimental study of performance character-

istics.

6.1 Implementation

To show the feasibility and performance of the proposed framework for enforcing the ex-

tended XACML profile for ARBAC and concurrency control, the author has implemented

a prototype by augmenting Sun’s reference implementation. In this prototype, the author

choose to revoke all ongoing user sessions that conflict with the administrative operations

immediately prior to enforcing the administrative operations.

6.1.1 Implementing the Birth and Death Process

The prototype boots up the access controller with a default administrative XACML policy,

which permits the creation of SU and SRole, assigns SU to SRole, and grants the adminis-

trative permissions as shown in Table 3.1 to SRole. The access controller does not entertain

any user requests during this initialization phase.

Immediately prior to the access controller’s planned death, the SU sends a message to

all active PEPs from the PEP-List maintained by the PDP (See Chapter 4) to notify that

the access controller will stop services and request the PEPs to terminate all user sessions

authorized by this access controller. After sending the messages, the access controller will

87

not process any more requests on behalf of any PEP including the A-PEP. After receiving

the acknowledgement from all PEPs or the timer expires, the access controller signals the

operating system to stop its services. In this prototype, the PEPs actions to terminate user

sessions are similuated using method calls.

6.1.2 Implementing Condition Functions and Administrative Opera-

tions

As aforementioned, the condition functions in Sun’s reference implementation are not suf-

ficient for enforcing the XACML-ARBAC profile. I have made two enhancements in the

implementation. In order to check for pre-conditions of every administrative operation,

condition functions given in Table 4.2 are implemented by extending the function base

provided by the existing reference implementation. In each function, I implement the

evaluate method which is used to evaluate the condition. The input to the condition

functions is provided using attribute designators that read information from the

request context. In addition, the condition evaluation also requires access to policies, which

is provided by initializing each function with a reference to the policy finder module

of the PDP.

The second is a module used by the A-PEP to modify XACML policies when the

PDP permits an administrative operation. This is achieved by using a PolicyManager

that initializes and calls accessor and mutator methods to update the policies. The

AbstractPolicy class in Sun’s reference implementation has been extended with mu-

tator methods as described in Table 6.1. To obtain and update user-to-role assignment, I use

standard DOM APIs [9] to parse the XML file which contains the user-to-role assignment.

88

Table 6.1: Accessor and mutator methods used in the PolicyManager
Methods Intuitive Meaning
getInstance(XMLNode) create a instance of Policy or PolicySet object based on the DOM node
getChild(childId) return a child of the instance of the Policy or PolicySet
addChild(childId) add a child to the instance of the Policy or PolicySet
deleteChild(childId) delete the child from the instance of the Policy or PolicySet
getChildren(XMLNode) return all children of the Policy or PolicySet
setChildren(XMLNode) set the child policy tree elements for this node
encode(outputStream) encode the state of the Policy object to Policy Type XML reprentation

6.1.3 Implementing the Lock Manager

The Lock Manager implements a waiting queue with a vector, where index i indicates the

ith access request, and serves all requests in the order of submission. The vector of a wait-

ing process hold semaphores. When a process calls AcquireLock(), the semaphore has

“memory” if a previous ReleaseLock() has been completed. The implementation uses

a waiting thread that is awaken when its turn arises in the waiting queue. The semaphore

data structure is as following:

class RClass extends Semaphore

// Semaphore for reader processes

{

protected RClass(int i)

{ // Init a semaphore with i permits

super(i);

}

}

class WClass extends Semaphore

// Semaphore for writer processes

{

89

protected WClass(int i)

{ // Init a semaphore with i permits

super(i);

}

}

The following code gives the general sketches for PDP evaluation and A-PEP updating:

int counter=0;

bool writing=false;

public void pdp() {

if (!writing)

readLock().acquire();

try{

/* PDP evaluates a policy */

counter++;

evaluate();

}

finally {

readlock().release();

counter--;

}

}

public void APEP(){

if(counter==0 && !writing}

writeLock().acquire();

try{

90

/* A-PEP updates a policy */

writing=true;

modify();

}

finally {

writeLock().release();

writing=false;

}

}

Global variable counter records the number of PDP instances which are currently eval-

uating the policies; writing is true if and only if an A-PEP instance is updating the policies.

To get the lock scope of a role, I first build up the role hierarchy tree for all the roles.

The hierarchy is built by traversing all the Permission <PolicySet> of the roles. If there

is a “PolicySetIdReference” to another Role Permission <PolicySet>, then referred role is

the child of the referring role. The lock scope for each role is computed based on the role

hierarchy.

6.2 Performance Evaluation

The concurrency controller’s waiting queue implementation slows down the access con-

troller. If the number of administrative operations are small and the rate of each adminis-

trative request is low, then there is a minimal waiting time for the PDP to request and obtain

read locks. However, when an administrative operation is submitted, the total service time

becomes the sum of request generation time to the PDP, PDP evaluation time, response

building time, lock acquisition time, communication time with affected PEPs, time to ter-

minate sessions (optional), time to update a policy, and the time consumed to release the

91

locks. Thus, when an administrative request is submitted, it delays other user requests that

have been submitted after that request. Hence the objective of this empirical study is to

evaluate the overall effect on the access controller due to administrative requests.

In order to determine the timing overheads, this dissertation builds the role hierarchy

given in Figure 3.1. As seen from Figure 3.1, the role hierarchy has eight (8) roles. Each

role is granted with ten (10) permissions. Each role is assigned with fifty (50) users. After

building this RBAC policy, the sizes of our disk resident Role <PolicySet>, Permission

<PolicySet> and user-to-role assignment XML file became 12k, 122k, and 43k, respec-

tively.

The current implementation does not have an elaborate PEP (although it has an A-

PEP). Therefore, the PEP action is simulated using method calls where the PEPs take an

equal time to terminate a session. The PDP, A-PEP, and all other (user) PEPs are placed

on the same machine - a 3.4GHz Dual Core Windows XP machine with 1.5G memory.

The elapse time of administrative operations is measured by calling the Java method Sys-

tem.nanoTime() [5]. Under the given conditions, I have experimented with executing the

administrative operations. I have executed 8 out of the 10 administrative operations and

measured their execution delays. Each experiment runs 20 times since the values converged

with high confidence (95%) and the student-distribution [7] shows that. One simple oper-

ation is reported in Section 6.2.1. Two complex operations of removing some permissions

from a role and removing a role from the role hierarchy, which requires executing a series

of administrative operations. They are described in Section 6.2.2.

6.2.1 Simple Administrative Operations

I built the role hierarchy shown in Figure 3.1 using the simple “+” administrative opera-

tions. That activity took about 959 msecs to add 8 roles, 844 msecs to add 9 edges, and 711

msecs to grant 10 permissions per each of the 8 roles, and about 3384 msecs to assign 50

92

users to each role on average. The average time taken for each simple operation is between

68 to 120 msecs. Out of all these operations, Figure 6.1 shows the time taken for assigning

different number of users to to a role. The time increases due to the growth of the U2R

mapping. Further analysis shows that this is due to the fact that the time taken to parse the

XML policy is proportional to the file size. This is a limitation because the DOM parser

used by Sun’s reference implementation acquires stack space as the XML file gets larger.

A better parser would improve the performance.

�������������� �������������� ����������	��
 ���
����������
��

�� ��� ��� ��� ��� ��� ��� ���� � ��� ��� �����
��� �������

� !"#$ %& '#$' ('')*+#,
Figure 6.1: Total time taken to execute AssignUser.

6.2.2 Complex Administrative Operations

I further show the performance characteristics of removing some permissions from a role

that has been activated by some users. The performance characteristics of removing a role

from the role hierarchy while some users actively use that role are also studied.

Recall that the definition of RevokePermission(r,(a,o)) removes the permission (a,o)

from the role r, provided that no user actively uses r. Consequently, removing any permis-

sion, say (a,o) must be preceded by terminating all sessions that have activated any role

in wScope(r), locking all roles in wScope(r) so that no other session activates any of them,

93

and then finally revoking the permissions using the administrative operation RevokePermis-

sion(r,(a,o)).

������ ������ ������ ������ ����� ��	���� ���	�� �
�����
���������������������������������

�� ��� �� ��� �� ��� �� �	� �� �	� �	 ��� �
 ��� �� ���� �� ���� ��� �����
�������� !"## "�$

%&'(&)*+,- ./ 0,001.&0 2,-*1&32,4
Figure 6.2: Total time taken to execute RevokePermission.

Table 6.2: Execution time for RevokePermission (msecs).
Role # of sessions terminated mean (mecs) 95% Confidence Interval
R0 10 687 12
R1 20 897 20
R2 20 848 11
R3 40 1130 10
R4 30 989 10
R5 60 1423 9
R6 70 1562 10
R7 30 971 9

In this experiment, I assume that there are ten (10) active sessions for each role. Because

the role hierarchy, the number of sessions need to beterminated for each role are different

(see Table 6.2.2). As Figure 6.2 shows, the time to remove a permission increases with the

number of sessions that need to be terminated in order to lock all roles in wScope(r). For

example, revoking a permission from R1 requires terminating 20 sessions, taking a total of

897 msecs on average. Revoking a permission from R5 requires terminating 60 sessions,

94

taking 1562 msecs on average The observation is that revoking a permission from a role

at the bottom of the hierarchy takes more time than at the top of the hierarchy because the

permission may be used by more users assigned to the senior roles.

Recall the definition of the DeleteRole(r) which requires that for r ∈ R, no user has

activated r in any session and the r is not related to any other roles in the role hierarchy.

Therefore, before removing a role, it needs to ensure that these pre-conditions are satisfied

by (1) terminating all sessions that have activated r, (2) removing all (u, r) ∈ U2R for all

u ∈ U , (3) removing all edges (r, rp) or (rc, r) ∈≤, and then (4) calling the administrative

operation DeleteRole(r). Therefore, the time to remove a role from the role hierarchy is the

sum of time taken to do these individual operation. Accordingly, in order to determine the

effect of the time taken to delete a role on the number of users permitted to use the role,

the number of sessions activating the role and the number of edges connecting the role, I

conducted three experiments.

In the first experiment, the number of users assigned to each role and the number of

active sessions of each role is fixed. Figure 6.3 shows the total time taken to delete a role

with a fixed number (50) of users permitted to use that role and fixed number of sessions

(3) that activated the role given in Figure 3.1, with various number of edges to be deleted.

Starting with Figure 3.1, deleting roles R6 and R7 requires deleting one edge, deleting roles

R0 and R4 requires deleting 2 edges, deleting R1, R2, R3, and R5 requires deleting 3 edges.

Figure 6.3 shows that the time taken to delete edges slightly increases with the number of

edges that need to be deleted.

In the second experiment, the number of sessions activated is fixed by each user at 3,

with various number of users permitted to activate the role. Here I assigned 10, 20, 30, 40,

50, 60, 70, and 80 users to R0, R1, R2, R3, R4, R5, R6, and R7, respectively. Figure 6.4

shows the total amount of time taken to delete each role. Figure 6.4 shows that the total time

taken to delete a role slightly increases with the number of users that need to be de-assigned

95

������� ������� ������� ���	��� 	
����� 	
����� 	
����� 	
	����

�

�

��

�

��

�

��

	

	�

�� �� �� �� �
 �� �	 �� �� �� �� �� �� �� �� ��� �� ���� ��� ����� ���� ��� !" #$!%&!' %!(!)!%
*+ ,+-+./ ,+

Figure 6.3: Effect of # edges on the time to remove a role.

������� ������� ������� ������� �	�	��� ���
��� �������
�����

�����������������
�������

�� ��� �� ��� �� ��� �� ��� �� �
� �
 ��� �� ��� �� �	�� �� ���� ��� �����
�� ������ ��

 !"# !$%&'()* $+'(+ ,'-.++/0!',
Figure 6.4: Effect of # users on the time to remove a role.

from the role.

In the last experiment, the number of users assigned to each role is fixed at 50, with

various number of sessions where the role is activated. I activated 10, 20, 30, 40, 50, 60,

70, and 80 sessions by R0, R1, R2, R3, R4, R5, R6, and R7, respectively. As Figure 6.5

shows, the total time taken to remove a role slightly increases with the number of sessions

96

������� ������� ������� ������	 �	�	��� ������� �
����� ���
���
��

�� ��� �� ��� �� ��� �� ��� �� ��� �� �	� �	 �
� �
 ���� �� ���� ��� �����
����������

 !"# !$%&'()* +'++ ,) !+ -' (%,!.-'/ !"# !$%&'()* +'++ ,) !+ -' (%,!.-'/
Figure 6.5: Effect of # sessions on the time to remove a role.

where the role is activated.

The results of these experiments show that the number of users permitted to use the role

affects DeleteRole operation the most, followed by the number of sessions activating the

role. The number of edges connecting the role has the lest effect on this operation.

The performance study indicates several facts. First, simple administrative operations

execute very fast because they do not affect users’ activities. Second, the complex op-

eration, especially DeleteRole operation, takes more time because it requires executing a

series of administrative operations. For example, in the last experiment, DeleteRole(R3)

requires executing 50 DeassignUser operations, 3 DeleteEdge operations, 1 DeleteRole

operation, and terminating 40 sessions. The amortized time for each operation is about 83

msecs which is reasonable. Fortunately, deleting a role in a system or organization does

not happen often once the system is built.

97

6.3 Related Work

Up to now there has not been substantial research completed regarding performance study

of access control policy evaluation. Bauer et al. [50] evaluate the efficiency of mobile

access control policies deploying them on cell phones and PDAs. Their system specifies

an access control policy as a statement in Intuitionistic predicate logic, and the access

controller attempts to create a proof of the claim using known proof reduction techniques.

They use two metrics to measure the efficiency of the access controller. The first is the

amount of time it takes to either construct a complete proof, or if no complete proof can

be found, to generate a list of choices to give to the user. These are used to refine the

predicate by adding a user’s input, and attempting to search for a proof again. Another

metric they used is the number of subgoals investigated by the prover and the size of the

knowledge base produced by forward chaining and path compression. Both of these metrics

are related to the proof procedures, proof tactics and tacticals available to the prover, and

are not directly related to the policy administration and concurrency control advocated in

this dissertation.

Turkmen et al. [70] have tested three open source XACML implementations with dif-

ferent policy/request settings. The first implementation is Sun’s reference implementation

which is the one used in this dissertation. The second one is the XACMLight [12] which

has been designed as a Web Service with the necessary components (e.g., the PDP and

the PAP) for policy evaluation. It is a Java implementation and uses XMLBeans [14] to

access the XML elements. The third implementation is the XACML Enterprise [10] which

provides a simple API for PAP. It has been implemented in Java and uses Xerces [13] for

XML operations. The cost of evaluation is given by two operations: loading the policy

from disk to memory and then the actual evaluation of the submitted request against the

loaded policies. In their reported results, XACML Enterprise performed best in terms of

98

evaluation time. It was the worst in policy loading. Sun’s reference implementation had

reasonable performance but it does not implement any of the optimizations of the other two

engines. XACMLight had scalability problems with large number of policies.

XEngine [55] is a optimized XACML policy evaluation scheme. XEngine first con-

verts a textual XACML policy to a numerical policy. Second, it normalizes the numerical

policy with complex structures. Third, it converts the normalized numerical policy to tree

data structures. Their experimental results show that XEngine is orders of magnitude more

efficient than Sun’s reference implementation. However, the performance experiments con-

ducted in [55] are limited with the large number of rules case. Because two additional nu-

mericalization and normalization phases, the loading of policies is expected to take longer

than the other engines.

6.4 Summary

In this chapter, I have implemented a prototype to enforce the XACML-ARBAC profile

to show the feasibility and performance of the proposed framework for enforcing ARBAC

policies with XACML. The prototype boots up with a default administrative XACML pol-

icy to initialize the access controller. The access controller does not entertain any requests

during initialization phase. I have made two enhancements in the prototype. First, I have

extended the function base to implement the expanded condition function list in Table 4.2.

Second, I have implemented an administrative module for A-PEP by adding mutator meth-

ods to update the policies. I have conducted experiments to measure the execution delays of

the administrative operations. The performance study shows that the solution has reconcil-

able performance characteristics and can be used for general policy management systems.

99

Chapter 7: Conclusion and Future Work

7.1 Conclusion

A session-aware enforcement framework is proposed in this dissertation to enforce admin-

istration and delegation RBAC policies with XACML in a distributed computing environ-

ment, such as Web Services. To address concurrency issues that arise between enforc-

ing administrative policies and policy evaluation, a session-aware administrative model for

RBAC is used to manage the interaction and potential conflicts between access control

evaluation and administrative operations. Based on this model, this dissertation proposes

using locks to handle concurrency control issues arising in enforcing the XACML-ARBAC

profile. This dissertation defines the concept of a lock scope for a role, which captures the

roles that would be adversely affected due to enforcing an administrative operation. To

control such adverse affects, this dissertation makes some architectural enhancements to

the current design of the XACML runtime. Specifically, an administrative policy enforce-

ment point (A-PEP) is developed to compete for read-write locks for RBAC and ARBAC

policies along with the policy decision point (PDP) of the access controller. A Lock Manger

is developed to ensure the safety and integrity of policy management. This dissertation for-

mally specifies the birth and death process of an access controller, and defines a default

XACML-ARBAC profile that contains a persistent Super Role (SRole) that may be invoked

by a so called Super User (SU). The SU is assigned to the SRole. The SU then is used to

instantiate the stored policies and enforce the XACML-ARBAC profile. For the planned

death of the access controller, this dissertation has a special administrative kill method that

100

will request the active policy enforcement points (PEPs) to terminate all active user ses-

sions authorized by this access controller. After obtaining agreement from the PEPs, the

SU signals the operating system to shutdown the access controller. To demonstrate the

feasibility of the framework, a prototype has been implemented to enforce the extended

XACML-ARBAC profile. The experimental study shows that the solution exhibits only a

small performance overhead and can be used for general policy management systems.

This dissertation further infues a role-based delegation model into the ARBAC model,

which adds a delegable role and a delegated role. The delegable role is granted a set of per-

missions to delegate any subset of permissions granted to the regular role which can be del-

egated if required. The XACML-ARBAC profile is extended to cover the XACML-Admin

profile, which is referenced here as the XACML-ADRBAC profile by adding appropriate

syntax and constraints. This dissertation extends the XACML-ARBAC enforcement ar-

chitecture and specifies the extra functionality required for the policy administration point

(PAP) to enforce the extended XACML-ADRBAC profile. In order to achieve all of these

simultaneously, this dissertation directs different types of access requests to different enti-

ties of the XACML runtime: the regular request to the PEP, the administrative request to

the A-PEP, and the delegation request to the PAP. This dissertation uses a Lock Manager to

enforce concurrency control necessary to maintain the transactional consistency between

simultaneous operations among the PDP, the A-PEP and the PAP.

7.2 Future Work

This dissertation lays the groundwork for considerable future research and development of

of integrating concurrency control and access control at runtime. First, the lock manager

should be further investigated to provide more granular locking. The taDOM tree data

101

model in [41–43] allows fine-grained locking using a combination of node locks, naviga-

tion locks, and logical locks. The locks can be applied not only on the policy (role) level,

but also on the rule level and even on any other components of the policy.

Second, constraints are an important aspect of role-based access control (RBAC) and are of-

ten argued to be one of the principal motivations behind RBAC [15]. The current XACML-

RBAC profile lacks the syntax to specify constraints. The constraints are essential to cap-

ture envisioned security policies such as separation of duty, Chinese Wall [23] etc. Cramp-

ton et al. [28] enforce the separation of duty constraints by maintaining dynamic blacklists

for each user. They propose eXtensible Access Control Constraint Language(XACCL), a

new XML-based language designed to specify separation of duty constraints. Further, they

propose to extend the XACML evaluation architecture (See Figure 2.1) with a constraint

decision point, a constraint specification point and a blacklist repository to enforce the con-

straints. Adding constraints in XACML-RBAC profile and XACML-ARBAC profile is a

candidate for future work.

Safety, liveness and fairness play important roles in system/software specification, de-

velopment, and verification. Safety properties ensure that something undesirable never

occurs. One example is that a PDP process and an A-PEP process should never access

the same policy simultaneously. Liveness properties state that something desirable must

eventually occur. One example is that the PDP process should eventually read the policy.

Fairness properties state that if something is enabled often enough, then it must eventually

occur. Fairness assumptions are often necessary to prove liveness properties. Verification

of these properties in the access control model with concurrency control is a non-trivial

topic. One of the very popular languages in the study of concurrency is Communicating

Sequential Process (CSP) [44]. An option of future work is to use CSP and its model

checker FDR [36] to study the interactions between PDP, A-PEP and PEP.

102

Emerging cloud computing services delivers new computing models for ser-

vice providers and individual consumers. These models include infrastructure-as-a-

service(IaaS), platform-as-a-service (PaaS), and software-as-a-service(SaaS) which en-

able novel IT business models such as resource-on-demand, pay-as-you-go, and utility-

computing [16]. Clouds must leverage a unified identity and security infrastructure to en-

able flexible provisioning, yet enforce security policies through the cloud. The integration

of federated identity management implemented in SAML [59] and federated policy man-

agement carried out in XACML becomes essential to provide necessary controls on the

sensitive information. Federation serves a critical role for IaaS - compute cloud and stor-

age cloud services, in terms of exchanging attributes around privacy, QoS, performance,

resource usage and more, along with the respective policy enforcements. Study the emerg-

ing applications of XACML with these new service models is another option of future

work.

103

Bibliography

104

Bibliography

[1] Core and hierarchical role based access control (RBAC) profile of XACML v2.0,
http://docs.oasisopen.org/xacml/2.0/access control-xacml-2.0-rbac-profile1-spec-
os.pdf.

[2] Core specification: extensible access control markup language (XACML),
http://www.oasis-open.org/committees/tc home php?wg abbrev=xacml.

[3] Database trascation, http://en.wikipedia.org/wiki/database transaction.

[4] ISO 9594-8/ITU-T Rec. X. 509 (2001) The Directory: Public-key and attribute cer-
tificate frameworks.

[5] Java 2 platform standard edition 5.0, http://java.sun.com/j2se/1.5.0/docs/api/.

[6] OASIS XACML v3.0 administration and delegation profile version 1.0,
http://www.oasisopen.org.

[7] Student’s t-distribution, http://en.wikipedia.org/wiki/student’s t-distribution.

[8] Sun’s XACML implementation, http://sunxacml.sourceforge.net/.

[9] W3c recommendations, http://www.w3c.org/.

[10] XACML Enterprise, http://code.google.com/p/enterprise-java-xacml/.

[11] XACML v2.0 context schema, http://docs.oasisopen.org/xacml/2.0/access control-
xacml-2.0-context-schema-os.xsd.

[12] XACMLight, http://sourceforge.net/projects/xacmllight/.

[13] Xerces Java Parser, http://xerces.apache.org/xerces-j/.

[14] XMLBeans, http://xmlbeans.apache.org/.

[15] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization constraints specification.
ACM Transactions on Information and Systems Security, 3(4):207–226, 2000.

105

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A berkeley
view of cloud computing. Technical Report 28, UC Berkeley EECS, 2009.

[17] O. Bandmann, M. Dam, and B. Sadighi. Constrained delegation. In Proceedings of
IEEE Symposium on Security and Privacy, May 2002.

[18] E. Barka and R. Sandhu. Framework for role-based delegation models. In Proceed-
ings of 16th Annual Computer Security Application Conference (ACSAC 2000), De-
cember 2000.

[19] E. Barka and R. Sandhu. A role-based delegation model and some extensions. In Pro-
ceedings of 23rd National Information Systems Security Conference (NISSC 2000),
December 2000.

[20] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn. Role based access
control for the world wide web. In Proceedings of 20th National Information System
Security Conference. NIST/NSA, 1997.

[21] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations
and model. Mitre Corp. Report No.M74-244, Bedford, Mass., 1975.

[22] E. Bertino, A. Squicciarini., I. Paloscia, and L. Martino. Ws-ac: A fine grained access
control system for web services. World Wide Web, 9(2):143–171, 2006.

[23] David F.C. Brewer and Micheal J. Nash. The Chinese wall security policy. In Pro-
ceedings of IEEE Symposium on Security and Privacy, 1989.

[24] D.W. Chadwick and A. Otenko. The PERMIS X.509 Role Based Privilege Manage-
ment Infrastructure. In Proceedings of Seventh ACM Symposium On Access Control
Models And Technologies (SACMAT 2002), June 2002.

[25] D.W. Chadwick, A. Otenko, and E. Ball. Implementing role based access controls
using X.509 attribute certificates. IEEE Internet Computing, pages 62–69, March
2003.

[26] D.W. Chadwick, S. Otenko, and T.A. Nguyen. Adding Support to XACML for Dy-
namic Delegation of Authority in Multiple Domains. In Proceedings of 10th IFIP
TC-6 TC-11 Int Conf, CMS 2006, pages 67–86, October 2006.

[27] J. Crampton. Understanding and developing role-based administrative models. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS), November 2005.

[28] J. Crampton and L. Chen. Implementing RBAC and ABRA using XACML. In sub-
mission.

106

[29] J. Crampton and G. Loizou. Administrative scope and role hierarchy operations. In
Proceedings of Seventh ACM Symposium on Access Control Models and Technologies
(SACMAT 2002), June 2002.

[30] J. Crampton and G. Loizou. Administrative scope: A foundation for role-based
administrative models. ACM Transactions on Information and Systems Security,
6(2):201–231, 2003.

[31] E. Damiania, S. De Capitani di Vimeracti, X. Paraboschi, and P. Samrarti. Fine
grained access control for SOAP e-services. In Proceedings of 10th Internation Con-
ference on World Wide Web (WWW), 2001.

[32] Vijayant Dhankhar, Saket Kaushik, and Duminda Wijesekera. XACML policies for
exclusive resource usage. In Proceedings of 21st Annual IFIP WG 11.3 Working
Conference on Data and Applications Security (DBSec 07), July 2007.

[33] D. F. Ferraiolo, J. Barkley, and D.R. Kuhn. A role based access control model and ref-
erence implementation within a corporate intranet. ACM Transactions on Information
and System Security, 1(2):201–231, February 1999.

[34] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Richard Kuhn, and R. Chandramouli. Pro-
posed NIST standard for role-based access control. ACM Transactions on Information
and System Security, 4(3):224–274, August 2001.

[35] D. F. Ferraioloand, R. Chandramouli, Gail-Joon Ahn, and Serban I. Gavrila. The
role control center: features and case studies. In Proceedings of the Eighth ACM
symposium on Access control models and technologies (SACMAT 2003), June 2003.

[36] Paul Gardiner, Michael Goldsmit, Jason Hulance, David Jackson, A. W. Roscoe, and
Bryan Scattergood. FDR2 User Manual. Formal Systems Ltd., fifth edition, 2000.

[37] M. Gaseer and E. McDermott. An architecture for practical delegation in a distributed
system. In Proceedings of IEEE Symposium on Security and Privacy, May 1990.

[38] S. Gavrila and J. Barkley. Formal specification for role based access control user/role
and role/role relationship management. In Proceeding of Third ACM Workshop on
Role Based Access Control, 1998.

[39] F. Siewe H. Janicke, A. Cau and H. Zedan. Concurrent enforcement of usage control
polices. In Proceedings of IEEE Workshop on Policies for Distributed Systems and
Networks (POLICY), July 2008.

[40] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems.
Communication of ACM, 19(8), 1976.

[41] M. Haustein and T. Härder. tadom: A tailored synchronization concept with tunable
lock granularity for the dom api. In Proceedings of ADBIS, pages 88–102, 2003.

107

[42] M. Haustein and T. Härder. Optimizing lock protocols for native xml processing.
Data and Knowledge Engineering, 65(1), 2008.

[43] M. Haustein, T. Härder, and K. Luttenberger. Contest of xml lock protocols. In VLDB
’06: Proceedings of the 32nd international conference on Very large data bases, pages
1069–1080, 2006.

[44] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science, UK, 1995.

[45] Günter Karjoth. Access control with IBM tivoli access manager. Transactions on
Information and Systems Security, 6(2):232–257, 2003.

[46] Günter Karjoth, Andreas Schade, and Els Van Herreweghen. Implementing acl-based
policies in xacml. In ACSAC ’08: Proceedings of the 2008 Annual Computer Security
Applications Conference, pages 183–192, December 2008.

[47] Alexl Kern. Advanced features for enterprise-wide role-based access control. In Pro-
ceedings of the 18th Annual Computer Security Applications Conference, December
2002.

[48] Axel Kern, Andreas Schaad, and Jonathan Moffett. An administration concept for
the enterprise role-based access control model. In Proceedings of the Eighth ACM
symposium on Access control models and technologies(SACMAT 2003), June 2003.

[49] H. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill, Inc, 1991.

[50] S. Garriss L. Bauer and M. K. Reiter. Efficient proving for practical distributed access-
control systems. In Proceedings of the European Symposium on Research in Com-
puter Security (ESORICS), 2007.

[51] Doug Lea. Concurrent Programming in Java Design Principles and Patterns.
Addiaon-Wesley, 2000.

[52] N. Li, B. Grosof, and J. Feigenbaum. A practiacally implementale and tractable del-
egation logic. In Proceedings of IEEE Symposium on Security and Privacy, 2000.

[53] N. Li and Z. Mao. Administration in role based access control. In Proceedings
of ACM Symposium on InformAtion, Computer and Communications Security (ASI-
ACCS), March 2007.

[54] N. Li, J. Mitchell, and W. Winsborough. Design of a role-based trust-management
framework. In Proceedings of IEEE Symposium on Security and Privacy, May 2002.

[55] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie. Xengine: a fast and scalable
xacml policy evaluation engine. SIGMETRICS Perform. Eval. Rev., 36(1):265–276,
2008.

108

[56] Andrew D. Marshall. A financial institution’s legacy mainframe access control system
in light of the proposed nist rbac standard. In ACSAC ’02: Proceedings of the 18th
Annual Computer Security Applications Conference, pages 382–390, December 2002.

[57] J. D. Moffett. Delegation of Authority Using Domain Based Access Rules. PhD thesis,
Department of Computing, Imperial College, 1990.

[58] N. Nagaratnam and D. Lea. Secure delegation for distributed object environments. In
Proceedings of USENIX Conference on Objected Oriented Technology and Systems,
April 1998.

[59] OASIS. Assertions and Protocols for the OASIS Security Assertion Markup Language
(SAML).

[60] S. OH and R. Sandhu. A model for role admininstration using organization structure.
In Proceedings of Seventh ACM Symposium on Access Control Models and Technolo-
gies (SACMAT 2002), June 2002.

[61] J. Park and R. Sandhu. The UCONabc usage control model. ACM Transactions on
Information and Systems Security, 7(1):128–174, February 2004.

[62] R. Sandhu and V. Bhamidipati. The ASCAA principles for next-generation role-
based access control. In Proceedings of 3rd International Conference on Availability,
Reliability and Security (ARES), June 2008.

[63] R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-based
administration of roles. ACM Transactions on Information and Systems Security,
2(1):105–135, 1999.

[64] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role based access control models.
IEEE Computer, 29(2):38–47, 1996.

[65] Andreas Schaad, Jonathan Moffett, and Jeremy Jacob. The role-based access control
system of a european bank: a case study and discussion. In Proceedings of the Sixth
ACM symposium on Access control models and technologies (SACMAT 2001), pages
3–9, June 2001.

[66] L. Seitz, E. Rissanen, T. Sandholm, B. Sadighi, and O. Mulmo. Policy administration
control and delegation using XACML and delegent. In Proceedings of 6th IEEE/ACM
International Workshop on Grid Computing, November 2005.

[67] S.OH, R. Sandhu, and X. Zhang. An effective role administration model using organi-
zation structure. ACM Transactions on Information and Systems Security, 9(2):113–
137, 2006.

[68] J. M. Spivey. The Z Notation: a reference manual. Prentice Hall International Series
in Computer Science, 2nd edition, 1992.

109

[69] R. Tamassia, D. Yao, and W. Winsborough. Role-based cascaded delegation. In
Proceedings of Ninth ACM Symposium On Access Control Models And Technologies
(SACMAT 2004), June 2004.

[70] Fatih Turkmen and Bruno Crispo. Performance evaluation of xacml pdp implementa-
tions. In SWS ’08: Proceedings of the 2008 ACM workshop on Secure web services,
pages 37–44, Octorber 2008.

[71] Hai Wang and S. L. Osborn. An administrative model for role graphs. In Proceed-
ings of 17th Annual IFIP WG11.3 Working Conference on Database Security, August
2003.

[72] Horst F. Wedde and Mario Lischka. Cooperative role-based administration. In Pro-
ceedings of the eighth ACM symposium on Access control models and technologies
(SACMAT 2003), pages 21–32, June 2003.

[73] Horst F. Wedde and Mario Lischka. Modular authorization and administration. ACM
Transactions on Information and Systems Security, 7(3):363–391, August 2004.

[74] R. Wonohoesodo and Z. Tari. A role base access control for web services. In Pro-
ceedings of IEEE International Conference on Service Computing (SCC’04), 2004.

[75] Min Xu and Duminda Wijesekera. A role-based xacml administration and delegation
profile and its enforcement architecture. In SWS ’09: Proceedings of the 2009 ACM
Workshop on Secure Web Services, November 2009.

[76] Min Xu, Duminda Wijesekera, and Xinwen Zhang. Runtime adminiration of RBAC
profile for XACML. To appear in IEEE Transctions on Sevices Computing, 2010.

[77] Min Xu, Duminda Wijesekera, Xinwen Zhang, and Deshan Cooray. Towards session-
aware RBAC administration and enforcement with XACML. In Proceedings of IEEE
International Symposium on Policies for Distributed Systems and Networks (POL-
ICY), July 2009.

[78] E. Yuan and J. Tong. Attributed based access control (abac) for web services. In ICWS
’05: Proceedings of the IEEE International Conference on Web Services, 2005.

[79] L. Zhang, G. Ahn, and B. Chu. A rule-based framework for role-based delegation. In
Proceedings of Sixth ACM Symposium On Access Control Models And Technologies
(SACMAT 2001), June 2001.

[80] X. Zhang and R. Sandhu. PBDM: A flexible delegation model in RBAC. In Pro-
ceedings of Eighth ACM Symposium On Access Control Models And Technologies
(SACMAT 2003), June 2003.

110

Curriculum Vitae

Min Xu was born on April 14, 1978, in Jiangsu, P. R. China and is a citizen of P. R. China.
He received the Bachelor of Engineering in Computer Science from Huazhong University
of Science and Technology, Wuhan, China in 2000 and Master of Science in Computer
Science from University of Nevada, Las Vegas in 2002. During 2002-2005, he was a
software development engineer. Currently he is a Ph.D. candidate in the Department of
Computer Science at George Mason University, Fairfax, Virginia, USA.

111

