
 

Abstract—Quantitative measurement of a person’s 
emotional state can aid performance in a number of areas, 
such as human-machine interactions, and psychological 
research. Electroencephalogram (EEG) data has shown 
potential as a predictor of emotional valence based on 
asymmetric activation patterns between the left and right 
hemispheres of the prefrontal cortex. Multidimensional 
directed information (MDI) is a computational tool that 
allows the measurement of information content transferred 
between different signals in a connected system, and has 
previously seen applications in EEG-based affective 
measurement in order to detect the presence of an 
emotional response [1]. This study aimed to use MDI with 
EEG data from published datasets in order to derive a 
directional bias metric as a predictor for emotional valence 
based on frontal hemisphere asymmetry. Two methods of 
MDI computation were attempted; significant differences 
were observed in results between the two, suggesting 
possible errors in implementation. Neither method yielded 
output correlating with valence. 

I. Introduction 

A number of applications stand to benefit from the ability to 

quantitatively derive a person’s affective state. For example, 

automated evaluation of user affect could improve systems 

involving human-machine interaction [2], [3], and quantitative 

measures of psychophysiological state have recently been 

applied to study the interaction of partners in abusive 

relationships [4]. Multidimensional directed information (MDI) 

analysis is a potentially powerful tool for deriving such 

measures, as it enables analysis of causal temporal relationships 

between related signals, such as the channels of an 

electroencephalogram (EEG). Previously, MDI and EEG have 

been used with the frontal brain asymmetry principle to derive 

a metric for gauging the presence of an emotional response [1].  

Based on the frontal brain asymmetry principle, a strong 

positive or negative emotion correlates respectively with a left- 

or right-hemisphere bias in frontal cortex activity. [1] 

demonstrated that a differential measurement of leftward vs 

rightward directed information in frontal EEG channels could 

aid in assessing the presence or absence of a strong emotion. 

This study attempts to adapt the approach taken by [1] in order 

to approximate a measure of emotional valence from EEG using 

frontal asymmetry and directed information, with testing and 

evaluation performed on two existing multimodal emotion 

recognition datasets: DEAP [5] and DREAMER [6]. 

II. MULTIDIMENSIONAL DIRECTED INFORMATION 

A. Mutual Information 

Directed information is a concept from information theory, 

and can be considered a temporally asymmetric variant of 

mutual information, which is a measure of the shared 

information content between two signals or random variables. 

Mutual information 𝐼(𝑋; 𝑌) can be described as a measure of 

“non-independence” between signals 𝑋 and 𝑌, defined as the 

divergence between their joint distribution and product of their 

marginal distributions as shown below [7]. 

𝐼(𝑋; 𝑌) = 𝐷𝐾𝐿(𝑝(𝑥, 𝑦) ∥ 𝑝(𝑥)𝑝(𝑦)) 

= ∑ ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦𝑥

 (1) 

 

Here, 𝐷𝐾𝐿  is the Kullback-Leibler divergence; 𝑝(𝑥), 𝑝(𝑦), 

and 𝑝(𝑥, 𝑦) are the marginal and joint probability distributions 

of 𝑋 and 𝑌. Mutual information can also be written in terms of 

joint and marginal entropy. 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (2) 

Furthermore, mutual information can be conditioned on one 

or more additional variables, allowing us to determine the 

amount of information shared by 𝑋 and 𝑌 but not shared by 

some third signal 𝑍, as defined in eq. 3 [7]. 

𝐼(𝑋; 𝑌|𝑍) = 𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑍) − 𝐻(𝑋, 𝑌|𝑍) 
= 𝐻(𝑋, 𝑍) + 𝐻(𝑌, 𝑍) − 𝐻(𝑋, 𝑌, 𝑍) − 𝐻(𝑍) (3) 

B. Directed Information 

As conditional mutual information allows us to measure 

information content shared exclusively between two signals in 

the presence of others, we are able to measure information 

temporally propagated from one signal to another in the 

following manner. Let us suppose each of our signals is a time-

series of sample measurements within some epoch, with 𝑥𝑖 

being the 𝑖’th sample of signal 𝑋. Let us also define 𝑘 as some 

time-index of interest, with 𝑃 prior samples and 𝑀 following 

samples within the epoch. Let 𝑋𝑃 represent the pre-𝑘 section of 

signal 𝑋, and let 𝑋𝑀 represent the post-𝑘 segment (extend this 

notation to 𝑌, 𝑍, etc.). We can then define the directed 

information from 𝑋 to 𝑌 at time some time-index 𝑘 as the 

information content shared by 𝑥𝑘 and 𝑌𝑀, but not by any other 
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signal region within the epoch (eq. 4) [8].  

𝐼(𝑥𝑘 → 𝑌𝑀) = 𝐼(𝑥𝑘; 𝑌𝑀|𝑋𝑃 , 𝑌𝑃 , 𝑦𝑘) 

= ∑ 𝐼(𝑥𝑘; 𝑦𝑘+𝑚|𝑋𝑃, 𝑌𝑃 , 𝑦𝑘)

𝑀

𝑚=1

 

(4) 

 

 

Much like eq. 3, this formula can be conditioned on some 

additional signal(s) 𝑍; this allows us to better isolate the causal 

influence of 𝑋 on 𝑌 by excluding information that appears to be 

shared in an 𝑋 → 𝑌 manner, but is actually shared in a 𝑍 →
(𝑋, 𝑌) manner [8]. This conditioned definition is known as 

multidimensional directed information (MDI). 

𝐼(𝑥𝑘 → 𝑌𝑀|𝑍) = ∑ 𝐼(𝑥𝑘; 𝑦𝑘+𝑚|𝑋𝑃 , 𝑌𝑃 , 𝑦𝑘 , 𝑍𝑃 , 𝑧𝑘)

𝑀

𝑚=1

 (5) 

  

Combining equations 3 and 5, we can express this in terms 

of the joint entropy values among 𝑋, 𝑌, and 𝑍 segments. 

𝐼(𝑥𝑘 → 𝑌𝑀|𝑍) = 𝐻(𝑋𝑃 , 𝑥𝑘 , 𝑌𝑃 , 𝑦𝑘 , 𝑍𝑃 , 𝑧𝑘) 
+ 𝐻(𝑋𝑃, 𝑌𝑃 , 𝑦𝑘 , 𝑦𝑘+𝑚, 𝑍𝑃 , 𝑧𝑘) 
− 𝐻(𝑋𝑃, 𝑥𝑘 , 𝑌𝑃 , 𝑦𝑘 , 𝑦𝑘+𝑚, 𝑍𝑃 , 𝑧𝑘) 
− 𝐻(𝑋𝑃, 𝑌𝑃 , 𝑦𝑘 , 𝑍𝑃 , 𝑧𝑘) 

(6) 

The total information shared in this manner, would be 

defined as the sum of this value over all 𝑘. 

𝑆𝑋𝑌|𝑍 = 𝐼(𝑋 → 𝑌|𝑍) = ∑ 𝐼(𝑥𝑘 → 𝑌𝑀|𝑍)

𝑘

 (7)  

III. METHODS 

A. Data and Processing 

Subjective response ratings and EEG data were taken from 

the DEAP (32 subjects, 40 trials) and DREAMER (23 subjects, 

18 trials) datasets, comprising a total of 1694 trials across 55 

participants [5, 6]. In both sets, trials consisted of audiovisual 

stimulus in the form of a music video or film clip, with EEG 

recording at or 128Hz; while the DEAP data was originally 

acquired at 512Hz, this study uses the preprocessed version 

available, downsampled to 128Hz. Subjective responses to each 

trial in terms of valence, arousal, and dominance, were acquired 

via self-assessment on a 9-point (DEAP) or 5-point 

(DREAMER) scale utilizing a Self-Assessment Manikin [9].  

In order to exploit frontal brain asymmetry as per [1], EEG 

signals were selected from prefrontal and frontal regions about 

the midline: channels F3, F4, Fp3, and Fp4, present in both 

datasets. All EEG data was filtered to the α-β range (8-30Hz) 

using a 12th order Butterworth bandpass filter. Outliers were 

detected in filtered signals based on median absolute deviation; 

outliers detected concurrently on multiple channels are 

interpreted as measurement artifacts, and the erroneous samples 

are zeroed on all channels. Valence scores from the DEAP 

dataset were scaled to coincide with the range of the 

DREAMER set’s 5-point scale. Target values for epoch 

duration and step length were defined in temporal units and 

approximated according to the sample rate, as listed in Table 1. 

For the full stimulus period of each trial, the following shared 

information values were computed to represent to total leftward 

and rightward directed information between the prefrontal 

channels, conditioned on differential measurement of the 

frontal channels as in [1], with epoch parameters listed in Table 

I. 

𝑆𝐿 = 𝑆Fp4→Fp3|(F4−F3), 𝑆𝑅 = 𝑆Fp3→Fp4|(F4−F3) (8) 

From this, a normalized relative measure of directional bias 

𝐵 was computed, such that 𝐵 > 0 implies greater rightward 

information flow, and 𝐵 < 0 implies greater leftward flow.  

𝐵 =
𝑆𝑅 − 𝑆𝐿

𝑆𝑅 + 𝑆𝐿
 (9) 

All processing was performed using MATLAB (Mathworks, 

Natick, MA, USA). 

B. MDI Calculation – Covariance 

Two different methods were implemented for computing the 

values defined in eq. 9. The first method, used by [4,8], utilizes 

the following theorem whereby the joint entropy of a collection 

of Gaussian stochastic variables 𝑠1, … , 𝑠𝑛 can be expressed in 

terms of the determinant of their covariance matrix 𝑅. 

𝐻(𝑠1, … , 𝑠𝑛) = 0.5 log(2𝜋𝑒𝑛|𝑅(𝑠1, … 𝑠𝑛|) (10) 

Applying this formula to the right hand side of equation 6 

yields the following… 

𝐼(𝑥𝑘 → 𝑌𝑀|𝑍) =
1

2
log (

|𝑅(𝑆1)||𝑅(𝑆2)|

|𝑅(𝑆3)||𝑅(𝑆4)|
) (11) 

where 𝑆1 through 𝑆4 represent the four collections of terms 

within the entropy functions in equation 6. As these inputs are 

a mix of both scalar (𝑦𝑘, 𝑦𝑘+𝑚, etc.) and vector (𝑋𝑃, 𝑌𝑃, etc.) 

terms, the methodology for computing the covariance matrices 

is detailed below. Beginning from the definition of the 𝑅 as a 

matrix of pairwise covariances between a collection of signals 

𝑅(𝑠1, … , 𝑠𝑛) = [

𝜎1,1 ⋯ 𝜎1,𝑛

⋮ ⋱ ⋮
𝜎𝑛,1 ⋯ 𝜎𝑛,𝑛

] (12) 

with 𝜎𝑖,𝑗 being the covariance of signals 𝑠𝑖 and 𝑠𝑗 

𝜎𝑖,𝑗 = ∑ (𝑠𝑖[𝑛] − 𝜇𝑖)(𝑠𝑗[𝑛] − 𝜇𝑗)𝑛   (13) 

In order to accommodate scalar inputs to equation 13, the 

mean 𝜇 for each signal (𝑋, 𝑌, or 𝑍) was computed over the 

entire the epoch. All inputs derived from a given signal used its 

corresponding epoch-mean in equation 13. For example, the 

value 𝜎 for the pairwise matchup of 𝑋𝑃 and 𝑦𝑘+𝑚 would be 

computed as ∑ (𝑋𝑃[𝑛] − 𝜇𝑋)(𝑦𝑘+𝑚 − 𝜇𝑌)𝑃
𝑛=1 . 

TABLE I 
EPOCH PARAMETERS 

 Desired Samples (Actual) 

𝑃  (epoch memory) 100ms 13 (101.6ms) 

𝑀 (epoch future) 100ms 13 (101.6ms) 

𝑘𝑠𝑡𝑒𝑝 (inter-epoch step) 50ms 7 (54.7ms) 

The desired and actual parameters used for epoch definition as 
constrained by the 128Hz sampling rate. The total duration of each 

epoch can be determined as (𝑃 + 𝑀 + 1) samples, or 258ms.  



C. MDI Calculation – Entropy Estimation 

The second method employed was to directly compute 

entropy values from an approximation of the signals’ joint 

probability distribution, enabling the use of equation 6 for MDI 

calculation. Given a collection of random variables or signals 

𝑆1, … , 𝑆𝑛 described by joint probability function 𝑝(𝑠1, … , 𝑠𝑛), 

their joint entropy is defined as 

𝐻(𝑆1, … , 𝑆𝑛) = − ∑ 𝑝(𝑠1, … , 𝑠𝑛) log(𝑝(𝑠1, … , 𝑠𝑛)) (13) 

over all possible values of 〈𝑠1, … , 𝑠𝑛〉 , with the convention 

that 0 log(0) = 0 [7]. 

For every processed trial 𝑡, a joint distribution 𝑝𝑡(𝑥, 𝑦, 𝑧) was 

approximated for the three signals of interest, based on a three-

dimensional joint histogram function 𝑁𝑡[𝑖, 𝑗, 𝑘] derived from 

that trial.. 

𝑝𝑡(𝑥, 𝑦, 𝑧) ≈ 𝑝𝑡[𝑖𝑥, 𝑗𝑦 , 𝑘𝑧] (14) 

𝑝𝑡[𝑖, 𝑗, 𝑘] =
𝑁𝑡[𝑖, 𝑗, 𝑘]

∑ 𝑁𝑡𝑖,𝑗,𝑘

 (15) 

Here, the indices 𝑖𝑥 , 𝑗𝑦 , 𝑘𝑧 refer to the coordinates of the bin 

corresponding to a value observation 〈𝑥, 𝑦, 𝑧〉; 𝑝𝑡[𝑖, 𝑗, 𝑘] is the 

discretized probability distribution determined from the bin 

counts 𝑁𝑡 throughout the trial. 

The joint distribution for a given combination of epoch 

segments (such as 𝑋𝑃, 𝑌𝑃 , 𝑦𝑘 , etc.) was calculated as follows. 

Let �̂�, �̂�, and �̂� represent any arbitrary subsets of 𝑋, 𝑌, and 𝑍 

respectively. Let 𝑖̂, 𝑗̂, and �̂� be the sets of bin indices along each 

dimension of the histogram, corresponding to the values 

contained in �̂�, �̂�, and �̂�, with duplicates omitted. For example, 

if we defined �̂� ≔ {𝑌𝑃 , 𝑦𝑘 , 𝑦𝑘+𝑚} ≡ {𝑦𝑘−𝑃 , … , 𝑦𝑘 , 𝑦𝑘+𝑚}, then 

𝑗̂ would contain all unique indices from {𝑗𝑦𝑘−𝑃
, … , 𝑗𝑦𝑘

, 𝑗𝑦𝑘+𝑚}. 

The joint distribution �̂�𝑡 of �̂�, �̂�, �̂� would then approximated 

from the subset of the histogram encompassed by 𝑖̂, 𝑗̂, �̂�… 

�̂�𝑡(𝑥, 𝑦, 𝑧) ≈
𝑁𝑡[𝑖, 𝑗, 𝑘]

∑ 𝑁𝑡�̂�,�̂�,�̂�

, for  
𝑥 ∈ �̂�, 𝑦 ∈ �̂�, 𝑧 ∈ �̂�

𝑖 ∈ 𝑖̂, 𝑗 ∈ 𝑗̂, 𝑘 ∈ �̂�
 (15) 

where ∑ 𝑁𝑡�̂�,�̂�,�̂�  is the total number of observations in the 𝑖̂, 𝑗̂, �̂� 

subset of the histogram. Combining this with equation 14, we 

can define the entropy for this subset of the distribution, 

allowing computation of 𝐼 via equation 6. 

𝐻(�̂�, �̂�, �̂�) = − ∑ ∑ ∑
𝑁𝑡[𝑖, 𝑗, 𝑘]

∑ 𝑁𝑡�̂�,�̂�,�̂�

log (
𝑁𝑡[𝑖, 𝑗, 𝑘]

∑ 𝑁𝑡�̂�,�̂�,�̂�

)

𝑘∈�̂�𝑗∈�̂�𝑖∈�̂�

 (16) 

IV. RESULTS 

Although there was a noticeable difference in the behavior of 

the two computation methods, neither method yielded an 

observable relationship between valence score and the 

directional bias 𝐵, as demonstrated in Figure 1. Figure 2 shows 

an overall comparison of normalized 𝑆𝑅 and 𝑆𝐿 values for the 

two methods and datasets, revealing the notable discrepancy 

between methods. Results acquired from the covariance method 

tend to cluster about the origin, accounting for the wide range 

of 𝐵 values exhibited on the left of Figure 1. Results from the 

entropy estimation method tend to cluster along the positive 

diagonal, and consequently exhibit a much narrower range in 

Figure 1, where 𝐵 = 0 would correspond to 𝑆𝑅 = 𝑆𝐿. 

V. DISCUSSION 

It should be noted that this study made use of a single epoch 

window throughout, with a symmetric memory and future 

window of ~100ms. Given the results, it is worthwhile to 

examine the influence of these parameters, and the possible 

side-effects of poor selection.  

The 𝑀 parameter determines the window of the target signal 

over which 𝐼(𝑥𝑘; 𝑦𝑘+𝑚| … ) is summed (eq. 5); if a signal is 

propagated from 𝑋 to 𝑌, its information will be present in the 

summation as long as it arrives at 𝑌 within this window. For 

 
Fig. 1.  Participant valence score compared to information directivity bias 𝐵, using the covariance approach (left) or entropy histogram approach 
(right). Note that valence (y-axis) was measured on a continuous scale in the DEAP dataset, but a discete scale in the DREAMER set. 



this study, selection of 100ms for 𝑀 was based on the 

assumption that signal propagation between the left and right 

hemispheres of the prefrontal cortex (Fp3 ↔ Fp4) would fall 

reliably within that timeframe. A longer 𝑀 parameter may have 

improved results at the cost of computation time. Furthermore, 

an optimal value for 𝑀 could potentially be obtained by 

observing the value of 𝐼(𝑥𝑘; 𝑦𝑘+𝑚| … ) as a function of 𝑚. 

The 𝑃 parameter determines the conditioning of 

𝐼(𝑥𝑘; 𝑦𝑘+𝑚| … ) on the signals’ histories; this serves to ensure 

that the computed value is determined only by information 

content that is newly observed at time 𝑘. Given an insufficient 

𝑃 window, lower-frequency information content originating 

from before the start of the epoch might be reflected in the value 

of 𝐼(𝑥𝑘; 𝑦𝑘+𝑚| … ), which would tend to reduce reliability and 

generally inflate the value of 𝐼(𝑋 → 𝑌). These effects would be 

expected to apply across calculations in a fairly symmetric 

manner, so their influence on any relative measure between 𝑆𝐿 

and 𝑆𝑅 would be minimal. Regardless, a 𝑃 window of ~125ms 

or greater may be ideal, given the passband of 8-30Hz used in 

this study, a 𝑃 window ~125ms or greater may be ideal. 

Another important note is the lack of controlled validation of 

the MDI calculations. Given the discrepancy in results from the 

two computation methods, it can be confidently stated that at 

least one of them is providing invalid results. A method of 

verifying the accuracy of the code, such as the 4-channel signal 

propagation model used in [8], would be vital for informing any 

further development. 
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Fig. 2. Comparison between methods and datasets of the calculated per-epoch mean information transfer. Each data point represents a single 
trial from either the DEAP or DREAMER dataset. The x and y data are defined as the average leftward (y-axis) or rightward (x-axis) information 

transfer within each epoch of the trial, equivalent to 𝑆𝑅 or 𝑆𝐿 divided by the number of epochs in the trial. Note the method-dependent clustering. 


