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ABSTRACT 

COMPARATIVE TOPOLOGICAL ANALYSIS OF NEURONAL ARBORS VIA 

SEQUENCE REPRESENTATION AND ALIGNMENT 

Todd Aaron Gillette, Ph.D. 

George Mason University, 2015 

Dissertation Director: Dr. Giorgio A. Ascoli 

 

Neuronal morphology is a key mediator of neuronal function, defining the profile of 

connectivity and shaping signal integration and propagation. Reconstructing neurite 

processes is technically challenging and thus data has historically been relatively sparse. 

Data collection and curation along with more efficient and reliable data production 

methods provide opportunities for the application of informatics to find new relationships 

and more effectively explore the field. This dissertation presents a method for aiding the 

development of data production as well as a novel representation and set of analyses for 

extracting morphological patterns. 

 

The DIADEM Challenge was organized for the purposes of determining the state of the 

art in automated neuronal reconstruction and what existing challenges remained. As one 

of the co-organizers of the Challenge, I developed the DIADEM metric, a tool designed 
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to measure the effectiveness of automated reconstruction algorithms by comparing 

resulting reconstructions to expert-produced gold standards and identifying errors of 

various types. It has been used in the DIADEM Challenge and in the testing of several 

algorithms since. 

 

Further, this dissertation describes a topological sequence representation of neuronal trees 

amenable to various forms of sequence analysis, notably motif analysis, global pairwise 

alignment, clustering, and multiple sequence alignment. Motif analysis of neuronal arbors 

shows a large difference in bifurcation type proportions between axons and dendrites, but 

that relatively simple growth mechanisms account for most higher order motifs. Pairwise 

global alignment of topological sequences, modified from traditional sequence alignment 

to preserve tree relationships, enabled cluster analysis which displayed strong 

correspondence with known cell classes by cell type, species, and brain region. Multiple 

alignment of sequences in selected clusters enabled the extraction of conserved features, 

revealing mouse neocortical pyramidal cell axons and rodent neocortical dendritic-

targeting interneurons to be substantially more asymmetric than perisomatic-targeting 

interneurons. With optimization techniques adapted from the field of genomic alignment, 

these methods compose a framework with the potential to be made orders of magnitude 

more efficient. Moreover, the framework is capable of handling expanded sequence 

representations that include additional branch features, enabling analysis of 

correspondence and joint conservation of various morphological characteristics. 
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CHAPTER ONE: INTRODUCTION 

As the field of neuroscience progresses, new questions arise along with new types 

of experiments, data collection methods, formats, and analysis. Neuroinformatics 

approaches can be brought to bear, directly and indirectly advancing each component of 

research. A variety of research questions involve neuronal morphology as it provides 

clues to development and impacts function in terms of both dendritic computation and 

network connectivity. The compilation and curation of morphological data from a wide 

variety of species, cell types, brain regions, and experimental conditions has begun to 

allow reuse of data and exploration of relationships that would previously have required 

extensive effort and collaboration (Teeter and Stevens, 2011; Cuntz et al., 2012; 

Polavaram et al., 2014). Additionally, new imaging and data production methods (Chiang 

et al., 2011; Jenett et al., 2012) promise orders of magnitude more data akin to the era of 

big data experienced in genomics. This dissertation presents efforts towards enhancing 

data production methods along with novel representations and methods capable of taking 

advantage of larger and more diverse datasets to analyze neuronal classes for 

morphological patterns. 

To provide context for the methods and analyses, Chapter Two: contains a 

background on neuronal morphology, focused primarily on dendrites. Morphological 

features, metrics used to capture them, and their relationships with electrophysiology are 
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discussed initially, followed by an exploration of the molecular mechanisms underlying 

development and plasticity. Further, a variety of phenomenologically and statistically 

based models are discussed which have been used for elucidating the various 

relationships between morphology, growth, and function. 

The development of tools for producing data takes up an entire area of research. 

Chapter Three: describes the DIADEM Challenge, an effort to aid in the development of 

automated reconstruction tools. Labeling, imaging, and extracting features of interest in 

neuroanatomy began with the Golgi stain, basic light microscopy, and hard-drawn 

images. Camera lucida was an important advance that simplified the process by allowing 

a scientist to trace over a projection of a microscope image. Computer technologies have 

made storage and computer-assisted reconstruction possible, while the Allen Brain 

Institute brought the processes of tissue preparation and imaging into a high-throughput 

era in producing the Allen Brain Atlas. Similar approaches are being developed for 

imaging Drosophila brains at the single neuron level, and major projects are being 

discussed and developed in order to allow such high-throughput and high-resolution in 

the rodent and possibly human brains. Of the myriad challenges faced in such efforts, the 

reconstruction process is a major bottleneck.  

The DIADEM Challenge, described in Chapter 3.1, was designed to gauge the 

state of the art in automated reconstruction and determine what issues remained to be 

overcome. As an organizer of the Challenge, I provided technical input as well as ideas 

and feedback on both the qualifier and finalist phases, including the competition 

conference. During the competition finals, I co-led a team of volunteers to track human 
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interface time between each team and their algorithms given the goal of high-quality 

automated reconstructions with minimal human intervention. Additionally, I led the 

development of the DIADEM metric (described in Chapter 3.2), one of the primary 

methods used for measuring the quality of automated reconstructions relative to gold 

standards in qualifier and final phases of the Challenge. The DIADEM metric is 

presented and compared to expert judgment. Since its use in the DIADEM Challenge, it 

has been used to aid development of and test the capabilities of new automated 

reconstruction algorithms. 

Chapter Four: approaches the issue of data representation and forms of analysis 

with a novel sequence representation of morphology developed to allow for more 

sensitive analysis of topology and of combinations of morphological features. The 

representation, inspired by genomics, is amenable to various sequence analysis 

techniques. As proof of concept, and to explore the topological relationships between 

arbor and neurite types, a purely topological representation is used in a motif analysis. 

The analysis found substantial differences in node type proportions across arbor types, 

but much smaller differences between axons and dendrites in terms of relative prevalence 

of short sequences. Apical dendrites, on the other hand, are shown to differ substantially 

from both groups at each level of analysis, suggesting a strong topological relationship 

with spatial coverage and synaptic integration. 

The local structural findings of motif analysis are followed by an exploration of 

global topological features achieved with global sequence alignment in Chapter Five:. 

Global alignment enables a detailed level of comparison between two neurites as opposed 
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to choosing a metric and taking its average across the branches. With a matrix of 

alignment scores as a measure of similarity, dominant features emerge upon embedding 

the neurites in an abstract multidimensional space. Clusters in that space indicate neurites 

with some functional relationship that can be investigated by determining the associations 

of those clusters with known metadata and by extracting the conserved features 

responsible for the clustering via multiple sequence alignment. Further details of the 

global and multiple sequence alignment processes are provided in Appendix One:. 

The features of global alignment and local motifs prove to be complementary, 

though a variety of other related analyses are also made possible with a sequence 

representation. Particularly with more expansive encodings, searches for similarity can be 

improved and limited to alignment of local regions rather than only the entire neurite. 

Chapter Four: and Chapter Five: thus provide useful analysis of the relationships between 

topology, growth, and function, while providing new tools for further exploration of 

morphology in the coming era of big neuroscience data. 

Three additional appendices are included, each a paper to which I contributed and 

related to neuronal morphology. The first appendix begins with a review of the field and 

concludes with the presentation of caulescence, a metric related to asymmetry that 

determines a main path and indicates its prominence. Appendix Two is a commentary I 

wrote that discusses the tree edit distance and its uses in neuroscience and beyond. The 

tree edit distance is a measure used in several fields involving tree structures, and one 

related to the global alignment method discussed in Chapter 5. The final appendix is a 

research article to which I contributed that presents an unsupervised cluster analysis of 
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neuronal dendrites based on morphometrics. The cluster and association analysis is 

similar to that used in Chapter Five. The appendices compliment the main text of the 

dissertation, providing greater depth into methods and analyses related to the main 

studies. 
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CHAPTER TWO: MEASURING AND MODELING MORPHOLOGY: HOW 

DENDRITES TAKE SHAPE 

[With kind permission from Springer Science+Business Media: Computational Systems 

Neurobiology, Chapter 13, Measuring and modeling morphology: How dendrites take 

shape, Todd A. Gillette, Giorgio A. Ascoli, ed. Nicolas Le Novère, © Springer 

Science+Business Media Dordrecht 2012] 

 

Abstract 
Neuronal processes grow under a variety of constraints, both immediate and 

evolutionary. Their pattern of growth provides insight into their function. This chapter 

begins by reviewing morphological metrics used in analyses and computational models. 

Molecular mechanisms underlying growth and plasticity are then discussed, followed by 

several types of modeling approaches. Computer simulation of morphology can be used 

to describe and reproduce the statistics of neuronal types or to evaluate growth and 

functional hypotheses. For instance, models in which branching is probabilistically 

determined by diameter produce realistic virtual dendrites of most neuronal types, though 

more complicated statistical models are required for other types. Virtual dendrites grown 

under environmental and/or functional constraints are also discussed, offering a broad 

perspective on dendritic morphology.  
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Introduction 
It is generally understood that for anything that is the result of an evolutionary 

process, form follows function. A streamlined body in both nature and the world of man-

made machines usually indicates an object's function is to move quickly. Even such a 

seemingly mundane object such as a foot can say a great deal about the foot's owner. 

Water fowl feet are webbed for paddling, birds of prey have sharp talons for grabbing and 

killing their prey, many primates have feet with thumbs for traversing trees, and humans 

have particularly large feet to keep a more upright body well balanced. So, in order to 

understand function and the developmental process of dendrites, it is highly worthwhile 

to study their morphological attributes. 

A look through the online neuronal reconstruction database NeuroMorpho.Org 

(Ascoli et al., 2007) will provide one with a clear view of the great variety of dendritic 

and axonal morphologies. We see differences in size and shape from the planar and 

densely bifurcating dendrites of the cerebellar Purkinje cell (Figure 2.1a) to the polarized 

and conical shape of the pyramidal cell's basal and apical dendrites (Figure 2.1b). The 

cortical stellate cell, among many others, exhibits radial growth in all directions (Figure 

2.1c). In the many visually distinctive neuronal classes one can easily see the diversity in 

neuron size, density, proportion, and complexity. Properties such as taper rates and 

asymmetry are harder to discern or compare by eye, but are equally important. 
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Figure 2.1. Diversity in neuronal morphology. a. Cerebellar Purkinje cell viewed with its largest area 

showing (left) and edge-on (right), exhibiting dense arborization and a planar shape (Rapp et al., 1994) b. 

Hippocampal CA1 pyramidal cell with polarized basal (blue) and apical (red) dendrites (Ishizuka et al., 

1995). Growth is primarily within a conical region, particularly for the basal dendrites. c. Cortical stellate 

cell with radial dendritic arborization in all directions (Vetter et al., 2001). Reconstructions retrieved via 

NeuroMorpho.Org (Ascoli et al., 2007). 

 

 The effort to understand the complexities of dendrites may be largely 

attributed to the variety of functions they must perform. Different dendritic classes and 

even individual dendrites are characterized by specific morphological and functional 

properties. Aside from the particulars of how a dendrite must integrate its synaptic inputs, 

it must minimize metabolic costs while reaching existing and potential synaptic targets, 

make appropriate connections to form the network of which it is a part, and be capable of 
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plasticity required for various forms of learning. The morphology of a dendrite has 

evolved to accomplish these goals, but it may be that in the interest of accomplishing one 

goal, the morphology is detrimental towards other goals. In such cases, other properties 

may make up for the counterproductive effects. 

For instance, while bifurcations are known to reduce the probability of the 

continuation of a spike (Sieck and Prakash, 1995; Spruston et al., 1995; Williams and 

Stuart, 2000), it is not as clear whether this is useful or detrimental to signal processing. 

Both channel properties (e.g. density and conductance) and the ratio of parent to daughter 

segment diameter can impact failure probability (Migliore, 1996). If a discovery is made 

that a greater density of sodium channels or local enlargements of daughter branch 

diameter are common at bifurcations, then one could argue that neurons have developed 

mechanisms to reduce the probability of bifurcation spike failure as the increased channel 

density and daughter branch taper decrease the likelihood of failure. An even more 

interesting discovery would be of a mechanism providing control over local channel 

properties or dendritic diameter and therefore propagation failure probability. In 

subsection Size and Geometry the relationship between spike propagation and 

morphology will be further explored. By understanding how particular morphological 

features affect electrophysiology and how connectivity patterns affect morphology, we 

can better understand the function of various neuron types as well as how the overall 

morphology of a neuron and its non-morphological features contribute to function. 

A wide variety of techniques are used to explore the relationships between 

morphology, development, and function. Electrophysiological experiments and models, 
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as well as molecular and other biophysical research, provide functional data. Imaging and 

reconstruction techniques provide a means to produce rich morphological data. Models 

fall into and across multiple categories, each with particular strengths for both testing and 

generating hypotheses of development and function. Morphometrics enable measurement 

of morphological features which in turn provides the capability to compare cell classes 

quantitatively and find correlations between morphology and function. Comparisons 

between cell classes can be extended to morphologies produced by models, providing a 

mechanism for their validation. This chapter will cover the tools and techniques used to 

study dendritic morphology, as well as many of the known and proposed underlying 

mechanisms responsible for growth and the associated functions achieved by dendrites. 

Morphological Data and Computational Capabilities  
Before delving into the deeper complexities of morphological models and 

experiments, it will be useful to understand how the source data is derived and organized. 

Computing power and algorithmic advances have provided phenomenal opportunities 

over the last decade for three dimensional digital reconstruction, complex analysis, and 

simulation of both dendritic morphology and electrophysiology. Applying information 

technology to the field is also having a great impact, with databases of morphology, 

physiology, and simulation models such as NeuroMorpho.Org (Ascoli et al., 2007), 

NeuronDB (Mirsky et al., 1998), and ModelDB (Hines et al., 2004) respectively. 

Three dimensional neuronal reconstructions are digitized representations of the 

morphological structure of neurons. These representations are made up of tapering 

cylinders (technically cylindrical frustums) that are connected in a tree structure to 
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represent a neuron's soma, dendrites, and/or axon. Some reconstructions may also include 

dendritic spine data, histological or anatomical boundaries, or other supplementary 

information. Currently, these reconstructions are created primarily by a human operator 

working either on a computer equipped microscope or on image stacks produced through 

a microscope for “offline” tracing (Figure 2.2). Semi-automated programs are available 

to assist human users, simplifying the process. These include the freely available 

Neuromantic (Neuromantic: the freeware neuronal reconstruction tool) the popular 

commercial Neurolucida (Glaser and Glaser, 1990); (MBF bioscience: neurolucida - 

neuron reconstruction) and Bitplane's FilamentTracer (Bitplane: neuron reconstruction - 

automatic neuron tracing, spine detection and analysis in 3D/4D). Fully automated 

programs exist as well, but are not yet widely employed as they have not been proven 

reliable on a representative variety of cell types, staining techniques, and microscopy. A 

competition, the Digital Reconstruction of Axonal and Dendritic Morphology (DIADEM) 

Challenge, was launched in April 2009 in order to promote development and test the 

capabilities of such programs (Gillette et al., 2011a). Automated reconstruction may yield 

within a few years an explosion of morphological data and connectomic data. Each type 

of data is useful in its own right, but given the relevance of connectivity to morphology, 

both types of data will complement each other in both areas of research.  
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Figure 2.2. Morphological reconstruction. Top. Reconstructing a neuron begins with a three-dimensional 

image stack captured from a microscope. Middle. Compartments are reconstructed one by one along each 

neurite in an image. Bottom. Once completed, the full 3D reconstruction can be viewed and analyzed. 

(Adapted from with permission from [Myatt et al., 2012]). 
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Open access databases, in combination with analytical tools, provide the 

opportunity for both broad canvases of morphologies and physiological data as well as 

more targeted analyses using data already acquired for other research. A variety of 

neuroscience related databases can be found at the Neuroscience Information Framework 

(Gardner et al., 2008, http://neurogateway.org/). By sharing and making the appropriate 

data easy to find, the impact of the original research can be multiplied, both scientifically 

and in terms of citations (Ascoli, 2006). Prior to such databases, sharing data was 

possible but required more time and effort. Now data is available from multiple labs, and 

as the databases become better known and used, it will become more likely for a 

researcher to volunteer their data. In the case of NeuroMorpho.Org, this will create the 

prospect of more up-to-date and complete databases with morphologies across the 

spectrum of species, brain region, cell class, and even experimental conditions such as 

knock out, age, and behavioral experience. Analytical tools that can be coupled to such 

databases can multiply their impact. L-Measure is one such example; a freely available 

cross-platform tool with the ability to calculate and statistically analyze a broad array of 

morphometrics for any selected set of morphologies (Scorcioni et al., 2008, 

http://krasnow1.gmu.edu/cn3/). 

In addition to molecular and biological experimentation, computer simulation has 

been another vital tool for morphology research. Aside from electrophysiological models 

that make use of real dendritic morphologies, growth models in concert with 

morphological analysis techniques have allowed scientists to test developmental and 

functional hypotheses. There are many methods of modeling dendritic morphology, each 
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offering different benefits and each capable of addressing different questions. Some 

models use a particular mechanism of growth, such as bifurcation at terminal tips or 

growth due to external environmental factors. Other models use statistics to characterize 

the relationships between initial and emergent properties during the growth process. For 

example, one such model determines bifurcation and termination probability based on a 

segment's diameter. In such models “growth” does not necessarily imply developmental 

growth, but rather the process the model undergoes to generate a dendrite. These models 

are useful in describing how local morphological properties of a branch predict the 

downstream dendritic structure. Where relationships are found, new hypotheses can be 

generated with regard to both growth mechanisms as well as function. Yet other models 

disregard growth and focus instead of emergent functional properties by using techniques 

such as graph theory or evolutionary algorithms. Models of Growth and Morphology 

will focus on some of the techniques used in these various types of models and on the 

discoveries to which they have led. 

Quantitative Measures and Functional Implications 
Quantitative morphological measures, also called morphometrics, are the 

cornerstone of any morphological analysis. Such measures are numerous and many 

partially overlap each other in their meaning. They can be used to explore the differences 

between neuron classes, seek correlations with measures of function, and test hypotheses 

concerning development. They are also useful for growth models, specifically in 

comparing real neurons to growth models meant to simulate them, or as a basis for 

statistically based growth models. Measures of whole neurons or the separate domains of 
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axons, dendrites, and sometimes apical dendrites, can be broken down into various 

categories. Here we discuss them in terms of geometric, size-related, and topological 

features. Local geometric features, such as taper rate ( 

Figure 2.3a), tortuosity ( 

Figure 2.3b), and angle of bifurcation ( 

Figure 2.3c), are particularly useful for understanding influences on growth. Size 

measures include total length, surface area, and internal volume, as well as height, width, 

and depth (determined by a minimal bounding box [ 

Figure 2.3d] or by principal component analysis). There are also local size 

measures such as segment length and diameter. Topology deals with bifurcations, their 

numbers and the distribution of their resulting segments (i.e. connectivity). Topological 

features, as well as features that are combinations of topology and size, also fall into the 

category of morphological complexity. Descriptions of these measures along with some 

common uses and interpretations follow. 
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Figure 2.3. Size and geometry features. a. Taper rates from low to high (top to bottom). b. Increasing 

tortuosity (top to bottom). Tortuosity is the ratio between the path length of a segment and the Euclidean 

distance between its two ends. c. Top: Increasing angles of bifurcation. Bottom: Such angles can be 

measured locally as the angle of departure (dashed lines) or remotely as the angle between nodes (dotted 

lines). (d) The bounding box of a pyramidal neuron's dendrites (cell from Ishizuka et al., 1995, via 

NeuroMorpho.Org). 

 

Size and Geometry 
A number of size and geometric features affect electrophysiological properties at 

local and global scales. Electrophysiological properties fall into the two categories of 

passive and active. Passive properties refer to basic resistance and capacitance effects on 

signal propagation, generally described by Cable Theory (Rall, 1969). Active properties 

refers to gated channels that change conductance depending on voltage resulting in 

nonlinear effects, usually spikes (i.e. action potentials), and are generally described by 

Hodgkin-Huxley equations (Hodgkin and Huxley, 1952).  In experimentation, current can 

be injected at a constant level in a condition called current clamp (CC), allowing for the 

measurement of voltage. Alternatively, with a voltage clamp (VC) current is injected at a 

variable level in order to hold the voltage at a constant level. In all cases, a current input 
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(I) (via synaptic channels or an experimental patch pipette) will produce a change in 

voltage (V) across the membrane as described by the equation V=IR, where R is the input 

resistance. Capacitance describes the ability of the membrane to carry a charge such that 

a higher capacitance will result in more time for the membrane potential (i.e. voltage) to 

reach equilibrium in response to a change. Resistance and capacitance are both dependant 

on multiple morphological features, resulting in complex electrophysiological behavior 

within and between neurons. 

Surface area is important to propagation and neuron function in that it is a primary 

determinant of a neuron's input resistance, the electrical resistance between the 

intracellular and extracellular space. A greater surface area allows for a greater number of 

channels through which ions/current can leak across, which lowers input resistance. In 

addition to decreased input resistance, increased surface area also results in increased 

capacitance. All else being equal, a cell with greater surface area will take longer to fire 

due to decreased input resistance and increased capacitance, but the capacitance will also 

store charge during a spike enabling a shorter delay before the next spike and therefore a 

higher maximal firing rate (Figure 2.4a). This relationship manifested in simulation as a 

lower burst rate (i.e. greater time between bursts) but higher within burst spike rate for 

larger compared to smaller CA3 pyramidal cell dendrites (Krichmar et al., 2002). Greater 

surface area also allows for a larger number of synapses and therefore more possible 

connections to other presynaptic neurons, which has implications for structural plasticity 

and information storage (Chklovskii et al., 2004; Stepanyants and Chklovskii, 2005). 
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Surface area is a product of a neuron's path length and diameter, each of which has 

additional functional implications. 

 
 

Figure 2.4. Morphological effects on signal propagation and firing rates. (a) A cell with less surface 

area (top) has a lower firing rate than seen within bursts of the larger cell (bottom). The faster within burst 

firing rate and gaps between bursts can both be explained by capacitive effects in concert with channel 

dynamics. (Adapted from [Krichmar et al., 2002] with permission from Elsevier). (b) Voltage signals at 

location of synaptic input (arrowheads at left) and at a point closer to the soma (arrows at right) in two 

dendrites with differing diameters. The smaller diameter dendrite (top) has a greater input resistance and 

thus a larger peak voltage and faster rise time at the input relative to that seen in the larger diameter 

dendrite (bottom). The smaller dendrite also displays greater attenuation along the length due to the higher 

axial resistance. Flattening and delay of signal rise time due to capacitance can be seen between the signals 

in both dendrites. 

 

Dendritic length plays several roles in neuronal function. Greater length tends to 

correspond to greater invaded space. This makes the dendrite available to more incoming 

connections. The tortuosity of a dendritic branch, or the ratio of the path distance between 

two consecutive branch points (or a branch point and a termination) and the Euclidean 

distance, provides information about the dendrite's growth mechanisms and its method of 
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reaching synaptic targets. This and bifurcation angles will be discussed further in Models 

of Growth and Morphology. 

Electrotonically, greater lengths result in greater attenuation of a voltage signal 

given only passive propagation. This means that, all else being equal, synapses farther 

from the soma will have a smaller impact on somatic potential than those closer to the 

soma. In reality, there are a number of mechanisms by which a synapse can have a 

relatively increased effect, including optimized diameter properties, active dendritic 

propagation, and distance dependent synaptic strength. The attenuation based on 

increased length is due to input impedance which is the combined effects of the resistance 

and capacitance along the length of the dendrite. Capacitance is also responsible for 

signal flattening and delay, or the longer time to peak of a signal (Figure 2.4b). Rather 

than representing lengths in microns, particularly path lengths from synapse to soma, 

lengths are often represented in terms of the space constant λ, or the distance a signal 

travels before it is attenuated to 1/e of the initial voltage (Rall, 1969). 

Along with membrane and cytoplasmic resistivity, diameter is the other major 

morphological factor in determining λ. While a larger diameter necessarily produces 

greater surface area and therefore locally decreases input resistance, it decreases axial 

resistance (i.e. resistance along the dendrite) by a greater amount. Axial resistance (per 

unit length of dendrite) is inversely proportional to the cross-sectional area of the 

dendrite, which is in turn proportional to the square of the diameter. Membrane resistance 

is inversely proportional to the circumference (and therefore to the diameter) of the 

dendrite. Capacitance is proportional to the circumference of the dendrite and is 
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responsible for the dendrite's input impedance and low-pass filter properties, though 

length effects are generally larger. In dendritic branches with greater diameter, the lower 

input resistance decreases the voltage achieved by a synaptic input, but the larger axial 

resistance better preserves the signal (Figure 2.4b). 

The mismatch of impedance between the branches at a bifurcation is responsible 

for greater attenuation and increased probability of spike propagation failure (Vetter et 

al., 2001). In order to avoid impedance mismatch at a bifurcation, the parent and daughter 

branch diameters must conform to the 3/2 power law, whereby the sum of each daughter 

branch diameter raised to the 3/2 power is equal to the parent branch diameter raised to 

the 3/2 power (Goldstein and Rall, 1974). The further away the relationship is from the 

rule, the greater the impedance mismatch and attenuation. This rule has been particularly 

useful for those who run computational simulations of electrophysiology. Where the rule 

holds (and assuming measurement of axo-somatic properties), bifurcations need not be 

individually represented and fewer compartments can be used. 

The direct impact of dendritic diameter and length on electrotonic properties is 

seen in synaptic efficacy. One method for accurately measuring and visualizing these 

effects on synaptic efficacy given passive propagation is the morphoelectrotonic 

transform (MET) (Zador et al., 1995). The MET visualizes signal attenuation and delay 

with an “attenogram” and a “delayogram”. Each neuron's visualizations are generated 

given an input site and an input waveform (e.g. a current pulse or a sinusoidal input). The 

calculations involved in the MET are similar to those for calculating electrotonic length. 

However, the MET produces an effective length constant (λeff) that does not assume 
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infinite cylinders as does the classical electrotonic length calculation. With the MET, one 

can view the electrotonic compactness not just from the soma, but from any individual 

potential synapse. 

When considering active properties, length and diameter can have the exact 

opposite effect on synaptic efficacy as in the passive case (Komendantov and Ascoli, 

2009). Simulations showed that higher input resistance at synapses farther from the soma 

lead to a greater probability of generating dendritic spikes therefore producing greater 

synaptic efficacy. Synapses closer to the soma with lower input resistance are relatively 

less likely to contribute to somatic spikes, i.e. they have lower synaptic efficacy. These 

two analyses on basic morphological properties and synaptic efficacy demonstrate the 

complex relationship between morphology, physiology, and function, yet there are still 

many more factors to consider. 

Topology and Complexity 
In addition to the various and important relationships between size and function, 

the distribution of those size attributes (i.e. where topologically and spatially length or 

volume are distributed) also has a vital impact on neuron function. The term 

“complexity” is often used to encompass measures of the distribution of a tree's size 

topologically or in space. Complexity measures do have functional implications, but 

many are more commonly used for classifying neuronal populations and validating 

models. A particularly common measure for complexity is the number of dendritic 

bifurcations, which can affect how signals are integrated in terms of impedance mismatch 
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(previously discussed) as well as how a neuron is integrated into its network in terms of 

space filling and synaptic connections (Wen and Chklovskii, 2008). 

There are several terms used when discussing topology that are important to 

know. Many of the terms come from or have synonyms with graph theory, which is a 

system of describing the ways in which nodes can be connected and how one might find 

optimal paths given a set of nodes and edges (i.e. connections). A tree is a type of graph 

in which connections between nodes are unidirectional (i.e. directed edges) from parent 

to child and in which there are no cycles. In binary trees, nodes are either bifurcations, 

terminations, or the tree root. Degree refers to the number of terminal nodes in a tree, 

which is a useful indicator of tree size as it is directly proportional to the number of 

branches and the number of bifurcations (                                 

        ). A branch is the segment or edge between nodes and a branch's order (i.e. 

depth) refers to the number of branches between itself and the root node (Figure 2.5b). A 

branch's order is equivalent to the order of the bifurcating node that gives rise to it. Child 

and daughter branch are used interchangeably. These definitions will make it easier to 

understand topology and complexity.  
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Figure 2.5. Unlabeled binary tree shapes. (a) All tree shapes of degree 2 through 5. (b) Two trees that 

appear different but are the same. They would be different if the nodes were labeled. The numbers refer to 

branch order. The root node and initial branch are of order 0. 

 

Ignoring size and geometric features, and given a number of bifurcations, there 

are a specific number of unique binary trees called unlabeled (also referred to as 

unordered) binary tree shapes (Harding, 1971) as seen in Figure 2.5. While 

multifurcations do exist it is common to treat trees as binary. Any multifurcation can be 

broken into multiple bifurcations, though there are multiple ways to do so which can 

differentially impact the resulting topology. Methods are available to determine the most 

likely binary configuration for a multifurcation, assuming probabilities of the binary 

subtrees are known (Verwer and Van Pelt, 1990). 

Vertex analysis was an early metric developed to analyze topology in neurons 

(Berry and Flinn, 1984). For binary trees the analysis focuses on the ratio of the number 

of “primary nodal vertices” (i.e. nodes with two terminating children) to the number of 

“secondary nodal vertices” (i.e. nodes with one bifurcating child and one terminating 

child). This method, along with asymmetry which is discussed next, was commonly used 

to determine the probability that a given tree or class of trees was the result of a particular 

growth process (discussed further in Determining the Rules of Growth). 

Asymmetry is another property that is highly dependent on the mechanisms of 

growth. One particular measure of asymmetry, the tree asymmetry index, is measured at 

the tree level and is based on the partition asymmetry, where “partition” refers to the 

balance of size between daughter subtrees measured at a given bifurcation (Van Pelt et 

al., 1992). The values of partition asymmetry are between 0 and 1 (inclusive) based on 
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the relative distribution (i.e. balance) of terminal nodes between a bifurcation's subtrees. 

A partition asymmetry value of 0 represents a symmetric distribution and a value of 1 

represents a single termination in one subtree with the remaining terminations in the other 

subtree (Figure 2.6a). This version of asymmetry can also be referred to as topological 

asymmetry because it deals strictly with the distributions of terminal degree. Asymmetry 

can alternatively be calculated using distributions of length or other size attributes rather 

than degree. These other versions can be defined slightly differently because even in the 

case of a topologically asymmetric bifurcation the lengths of the branches are 

unconstrained. In the case of a node of degree 3 it would be possible for the side with the 

terminal node to have an equal or larger branch length than the combined length of the 

subtree of degree 2 (Figure 2.6b). The tree asymmetry index is defined as the average 

partition asymmetry across all bifurcations in a tree. 

 

 

Figure 2.6. Asymmetry. (a) The partition asymmetry equation accompanied by trees (degree 6) with 

partition asymmetry (Ap) values of the first bifurcation node. The terms l and r refer to the degree of the left 

and right subtrees. (b) The equation for partition asymmetry by length accompanied by a tree that has a 

topological partition asymmetry of 1 but a length partition asymmetry of close to 0 due to the similar total 

length of left and right daughter subtrees. 

 

 Alternative versions of asymmetry can be produced by weighting the partition 

asymmetry values based on criteria depending on the purpose of the measure. Whether 



25 

 

one is interested in electrophysiological effects or differentiation of cell classes, if a 

particular property is suspected to be more greatly impacted by subtrees with greater size, 

one might choose to weight nodes by degree. Several alternative methods are raised in 

(Van Pelt et al., 1992). The first is a scheme in which nodes of degree less than four are 

not considered. Such partitions are trivial with only one shape each. Another scheme 

weights nodes by the number of bifurcations in their subtrees (i.e. weight = degree – 2). 

The third alternative weights nodes by the number of possible distributions of 

bifurcations among the node's two subtrees (i.e. weight = degree –3). Van Pelt and 

colleagues found that all schemes except for the second alternative displayed fairly large 

variances in tree shape samples and thus best served to differentiate different sets of trees 

from each other. 

 The impacts of asymmetry and topology were investigated in an experiment 

specifically focused on topology and its electrotonic effect. Van Ooyen et al. (2002) 

found that virtual dendrites with greater mean path length (of dendritic tips) had higher 

firing rates in response to somatic current injection. The experiment used all possible tree 

shapes with eight terminal nodes (i.e. of degree eight). Since branch lengths were all set 

equal to each other, the greater mean path lengths corresponded to trees with greater 

asymmetry. The tree asymmetry index did correlate with firing frequency, but not as well 

as mean path length did. However, branches closer to the soma have a greater influence 

on input resistance, so a weighted asymmetry would be a more representative metric and 

would be expected to better correlate with firing rate. The relationship between topology 

and firing rate ultimately is based on input resistance which rises (or input conductance 
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which decreases) with the increased mean path length of the more asymmetric trees. 

Another way to look at it is that a more symmetric tree has its branches connected in 

parallel, driving down input resistance, while a more asymmetric tree has its branches 

connected in series, driving up input resistance. A lower input resistance leads to more 

current leaking into the dendrites. However, increasing mean path length by increasing 

branch length has no impact on how the branches interact electrically. Surface area 

increases with the path length, which in turn decreases input resistance and therefore 

somatic firing rate. 

 Another variation on asymmetry, termed “excess asymmetry”, was used to 

determine whether the size of a dendritic branch or subtree is affected by the size of the 

rest of the dendrite. Excess asymmetry measures the extent to which a dendritic tree’s 

branches grow independently from each other (Samsonovich and Ascoli, 2006). One type 

of dependent growth would result in morphological homeostasis, in which a larger 

subtree would necessarily be offset by a smaller sibling. The excess partition asymmetry 

is defined as the difference between the partition asymmetry of a bifurcation and the 

average partition asymmetry of that bifurcation with its grandchild subtrees shuffled. The 

rationale is that, assuming morphological homeostasis, a larger subtree will be offset by a 

smaller sibling subtree and so shuffling the children of those subtrees will result in 

greater symmetry between the subtrees. Just as with the standard partition asymmetry, 

excess partition asymmetry can be calculated with regards to various size metrics. It was 

found that all sets of hippocampal CA1 and CA3 pyramidal cells tested had significantly 

positive excess asymmetry in terms of degree, length, and surface area. This result 
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complemented a result in the same study that showed morphological homeostasis 

between entire basal dendritic trees on the same cell, as well as between the basal 

dendritic arbor (i.e. all basal dendrites) and the apical dendritic arbor. 

 A topological property that is often visually evident is caulescence, or the 

prominence of a main path in a tree structure (Brown et al., 2008). Like asymmetry, 

caulescence can be calculated using only topology or with any size attribute. Determining 

the caulescence of a tree is a two step process, the first being the determination of the 

primary branches (i.e. main path), the second being the determination of the value. In the 

first step, the primary path starts from a node (usually the soma or more generally a tree's 

root) and traverses away from the root choosing the larger daughter branch at each 

bifurcation (Figure 2.7a). The caulescence is the weighted average of the partition 

asymmetry along the primary path. As with the partition asymmetry calculation, any size 

metric can be used to determine which child is larger. It is customary to use the same size 

metric for both determining the path and calculating the partition asymmetry.  
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Figure 2.7. Caulescence. (a) Determination of the primary path in a tree by degree (dotted) and by total 

length (dashed). (b) Pyramidal cell dendrites (from Shepherd and Svoboda, 2005, via NeuroMorpho.Org) 

with the main paths by length (yellow) on apical (red) and basal (blue) dendrites. (c) Blowfly tangential cell 

(from Borst and Haag, 1996), via NeuroMorpho.Org) with visually approximated regions of high 

caulescence highlighted in red. 

 

Axons are generally more caulescent than dendrites, but caulescence is also 

prominent in some classes of pyramidal cell apical dendrites (Figure 2.7b). Other cell 

classes may contain dendrites with multiple main paths or with main paths that appear in 

certain regions but do not start at the soma. Main paths are often found in dendrites in 

which synaptic targets are clustered at a distance from the soma, such as in the case of 

apical dendrites and the cluster of synapses in the apical tuft. A blowfly tangential cell 

dendrite appears fairly symmetric when considered as a whole, but between major 

bifurcations are segments that appear caulescent (Figure 2.7c). 
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Other complexity metrics that integrate topological and size attributes include 

fractal dimensions and Sholl analysis. Fractal dimension (Df) can be measured in several 

ways, each method producing an approximation of a form's true Df by performing some 

measurement at multiple scales (Jelinek and Fernandez, 1998). Fractals are common in 

nature, and while dendrites do not tend to strongly display fractal properties, fractal 

dimension can serve to differentiate different types of dendrites, including hippocampal 

neurons (Cannon et al., 1999) and retinal ganglion cells (Caserta et al., 1995). The latter 

experiment additionally showed correlations between fractal analysis and Sholl analysis. 

Sholl analysis (Figure 2.8) is a popular measure that charts the number of branches at set 

distances from the soma (Sholl, 1953). Originally these measures were done only in two 

dimensions as images of neurons were two-dimensional. With the advent to three-

dimensional neuronal reconstructions, many metrics, including Sholl analysis, can now 

be carried out in three dimensions. Sholl analysis is often used to compare cell types or 

the effects of some experimental effect on a cell. It provides additional detail when size 

differences are found between two sets of dendrites. For instance, an experiment focusing 

on the effects of stress on neurons in the prefrontal cortex exhibited decreases in total 

length and number of pyramidal cell apical dendritic branches. Sholl analysis showed that 

within the 240µm that the dendrites reached, the reduced complexity occurred between 

90 and 120µm of the soma, the region with the highest baseline complexity (most branch 

crossings) (Radley et al., 2004). 
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Figure 2.8. Sholl analysis design and plot. Concentric circles (gray) denote the distances from the center 

at which crossings of the sample dendritic tree (black) are counted. The graph on the right shows a sample 

Sholl plot based on the example tree. While Sholl analyses usually contain more bins to plot crossings, they 

do often have an upward then downward trend as shown. 

 

Another metric that has come into more recent use is the tree-edit-distance. 

Conceptually it is similar in function to the edit distance of strings; however trees contain 

a topology that strings lack. The distance is the number of insertions and deletions of 

nodes or branches required to turn one tree into a second tree. Nodes can additionally be 

labeled with values, perhaps features such as branch length or diameter. If such labels are 

used in an analysis, matched nodes must be modified (i.e. those not inserted or deleted), 

increasing the edit distance. The tree-edit-distance has been used to test whether 

neuromuscular projections are genetically determined (Lu et al., 2009). Right and left 

side projections were matched by size within animals, and then distances were calculated. 

The distances were compared to distances calculated between neurons of different 

animals. If the neurons are genetically determined, one would expect the within animal 

differences to be smaller than the between animal differences, but this was not found. 

Using various node labeling schemes, the metric has also been used to classify several 

hippocampal neuronal types by clustering pair-wise distances (Heumann and Wittum, 

2009). This metric is particularly interesting in that it only produces a difference between 
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two morphologies as opposed to providing a value for a single tree. Its benefit is the 

explicit comparison of topology merged with any particular combination of geometric or 

size attributes at the branch level. 

Real Morphologies and their Properties 
All of the discussed metrics can be used to compare dendritic trees in their 

entirety in order to classify them and understand the diversity within and between classes. 

A study by Cannon et al. (1999) provides a good example of a wide variety of size, 

complexity, and electrophysiological characteristics applied to the differentiation of 

several hippocampal cell classes. Multiple size characteristics sufficiently separated the 

interneurons, dentate gyrus granule cells, CA1, and CA3 pyramidal cells. Complexity 

metrics typically had more subtle differences with substantial overlaps in the distributions 

between classes. 

One particular factor that should be kept in mind when using digital 

reconstructions for modeling or comparing neuronal types is the specific reconstruction 

methods used to develop the data. While standards and common practices are emerging, 

some aspects of the process, such as how the diameter of a dendritic segment should be 

determined, vary from lab to lab and even from person to person. These differences in 

procedure are in some cases due to resolution limits as well as the different scientific 

questions being probed. For instance, diameter could be traced at the inside of an 

irregular edge for the purposes of determining internal dendritic space for organelles to 

inhabit. Alternatively, tracing might follow the outside edge when considering potential 

synaptic connectivity based on distances from the dendrite. Assuming surface area to be a 
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key metric in a study, diameter could be traced in the middle to account for the surface 

area of untraced dendritic spines. As such, one cannot simply assume that all pieces of 

relevant information needed for a different question will be available. A study examined 

systematic differences between labs by comparing hippocampal CA3 and CA1 pyramidal 

cells with a battery of metrics (Scorcioni et al., 2004). The two cell types were 

differentiated by several metrics, including remote bifurcation angle and maximum 

branch order, which did not vary consistently between labs. Total volume and diameter 

were the only two metrics that differentiated both cell types and labs. Local bifurcation 

angle and contraction (i.e. tortuosity) most differentiated labs, suggesting that they may 

be the most variable properties between labs. These results are useful for avoiding 

misinterpretation of certain metrics while designing or interpreting studies. 

Morphometric analysis can also serve to describe and potentially differentiate 

interneurons, the roles of which are generally less clear than those of principal cells. Such 

an analysis, run on both dendrites and axons, successfully segregated a set of 

hippocampal CA3 interneurons into two novel interneuronal classes (Ascoli et al., 2009). 

Initially distinguished by the number of dendritic bifurcations, further analysis found 

differences in a variety of local branch properties including branch length, taper, 

bifurcation angle, and asymmetry. The morphological findings combined with 

physiological data further suggested feed-forward and lateral inhibitory roles. 

Specifically, the interneurons target lateral pyramidal cells in CA3. Signals from 

upstream regions including the dentate gyrus and entorhinal cortex therefore produce 

feed-forward inhibition on the pyramidal cells. Recurrent collateral inputs from local 
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pyramidal cells onto the interneurons produce lateral inhibition on other nearby 

pyramidal cells targets, potentially enabling pattern separation. 

Complete dendritic reconstructions exhibiting the full complexity of 

morphological influences are also used frequently in electrophysiological simulation. 

Simulation studies focusing on channel properties are quite common. With many 

different channel types exhibiting nonlinear responses to physiological state, there is a 

wide range of research on the topic that is beyond the scope of this chapter. However, 

some studies using reconstructions have focused specifically on the effect of morphology 

by keeping channel properties constant. By controlling for ionic channel type and 

distributions within dendrites, Mainen and Sejnowski (1996) found that various real 

morphologies in simulation were able to generate a spectrum of firing patterns which 

included weak adaptation, strong adaptation, and bursting behavior (Figure 2.9). These 

effects were further simulated in two compartment models by varying the coupling 

strength (i.e. the inverse of the resistance between the compartments) and area ratio 

between the dendritic and axo-somatic compartments. Some coupling was necessary to 

achieve bursting, but small changes to either variable had large impacts on cell behavior. 

Decreasing the area ratio or increasing the coupling strength reduced bursting. Changing 

channel properties can also alter firing properties, but these results showed how 

morphological properties alone can have a dramatic impact. 
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Figure 2.9. Morphology and electrophysiology. Simulated firing patterns produced by somatic current 

injection of several types of reconstructed dendrites (A shows only connectivity and branch lengths). 

Channel types and distributions are constant, only morphology is different between simulations. (a) Rat 

somatosensory cortex layer 3 aspiny stellate. (b-d) Cat visual cortex. (b) Layer 4 spiny stellate. (c) Layer 3 

pyramidal. (d) Layer 5 pyramidal. Scale bars: 250 µm (anatomy), 100 ms, 25 mV. (Adapted by permission 

from Macmillan Publishers Ltd: Nature [Mainen and Sejnowski, 1996]). 

 

These studies exemplify the importance of morphology in terms of neuronal 

function as well as morphometrics for producing hypotheses and providing evidence for 

such function. Size, geometry, and complexity each are relevant pieces of information. In 

addition to their roles in correlation with functional attributes and comparison between 

neuronal classes, they can be used as parameters in morphological models (discussed in 

Models of Growth and Morphology). The above section is far from an exhaustive list 

of metrics, but it contains the most fundamental and most widely used metrics along with 

some relatively new and intriguing entries in the field. 
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Molecular Underpinnings of Dendritic Development 
With dendrites, as with all biological systems, genetic makeup and expression 

controls protein and molecular interactions. In conjunction with the external environment, 

these interactions generate a structure whose functional qualities and fitness shape the 

genetic makeup of successive generations through evolutionary pressures. Here we will 

discuss the genes and proteins that underlie dendritic development and therefore dendritic 

morphology. There are of course far too many interactions to cover in this chapter, so we 

will focus on a few examples of each type of interaction. More complete reviews can be 

found of transcriptional factors, molecular mechanisms, and signaling mechanisms 

(Miller and Kaplan, 2003; Gao, 2007; Parrish et al., 2007). As many molecules and their 

interactions are modeled computationally in order to better understand dendritic growth, 

understanding a sample of the underlying interactions will in turn make it easier to 

understand the models and their results. 

Cytoskeleton 
Microtubules form the backbone of both dendrites and axons (Georges et al., 

2008; Conde and Caceres, 2009). In addition to providing structure, microtubules also act 

as tracks for the transport of resources, organelles, and signaling molecules by motor 

proteins in the dynein and kinesin families (Hirokawa, 1998). Initially, dendrites and 

axons both have microtubules with only plus ends distal. During early development, 

dendrites differentiate, carrying microtubules that face in both directions (Lewis et al., 

2009). The microtubules grow at their tail ends in the dendrites, with new tubulin proteins 

(the building blocks of microtubules) assembling distally into dendritic growth cones to 

stabilize them (Figure 2.10). The polarity of microtubules is due to the structure of their 
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alpha and beta tubulin subunits. As molecular motors selectively traverse microtubules in 

a particular direction, the mixed non-uniform polarity of dendritic microtubules allows 

for transport of a different set of proteins than seen in axons (Hirokawa and Takemura, 

2005). 

 

 

Figure 2.10. Developmental molecules and mechanisms of dendritic growth and branching. Tubulin 

and microtubule associated proteins (MAPs) diffuse and are transported from the soma to the growth cones. 

They interact to assemble microtubules and stabilize the dendrites as they elongate. The filopodia sample 

the extracellular environment, elongating the dendrite and causing bifurcations (i.e. branching) in some 

cases. Calcium influx influences microtubule stability and filopodia behavior. 

 

Both microtubules and actin filaments provide stability to dendrites, but actin 

filaments also play important roles in dendrite growth and in the structure of dendritic 

spines. Like axons, dendrites have growth cones and filopodia composed of actin 

filaments that respond to the extracellular environment. Depending on the stability and 

spacing of the microtubules, strong growth signals in different directions can drive the 

filopodia to strain the microtubule bundles and split them into two groups, creating a 
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bifurcation. New branches can also form from existing ones in destabilized regions in a 

process called interstitial branching. 

 The stability of microtubules is determined in part by a family of proteins called 

microtubule associated proteins (MAPs). Some MAPs also associate with actin filaments, 

creating cross-links that further stabilize the entire cytoskeleton (Pedrotti et al., 1994). 

MAP2 is specifically associated with the somatodendritic region in neurons. The protein 

increases assembly of microtubules as well as their stabilization via bundling, and it 

results in increased spacing between microtubules in dendrites relative to axons (Chen et 

al., 1992). Phosphorylation of MAP2 is associated with reduced microtubule assembly 

(Yamamoto et al., 1988) and with greater arborization of dendrites due to decreased 

microtubule stability (Díez-Guerra and Avila, 1993). MAP2 has many phosphorylation 

sites that have varying impact on microtubule interaction (Brugg and Matus, 1991), and 

there are many kinases and phosphatases capable of modulating its phosphorylation state. 

So controls over MAP2 expression as well as phosphorylation state provide mechanisms 

for control over dendritic growth and arborization. Calcium-dependent kinases and 

phosphatases specifically provide mechanisms for activity-dependent modulation of 

arborization, growth, and retraction (Quinlan and Halpain, 1996). While there are many 

other molecules and signaling pathways that influence actin and microtubule stability 

(Nikolić, 2008), the MAP family and their interactions provide a sufficient example of 

how dendrites can be effected to grow, bifurcate, and retract. 
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Regulatory Influences and Signaling Molecules 
There are a great many intracellular features and signaling pathways that act both 

directly and indirectly on MAPs and the dendritic cytoskeleton. For example, in 

hippocampal neurons the Golgi apparatus (a specialized organelle in charge of post-

translational modification and packaging of proteins) has been shown to  orient towards 

the apical dendrite in vivo (Horton et al., 2005). In a culture in which no neurite 

differentiated into an apical dendrite, the Golgi apparatus was oriented toward the largest 

dendrite. Moreover, Golgi elements were often found in proximal segments of larger 

dendrites. Horton and colleagues determined that the Golgi apparatus was responsible for 

the polarization by disrupting the Golgi apparatus organization without functional 

disruption. This resulted in a decrease in dendritic polarity without significant changes in 

total dendritic outgrowth. Another influence is the availability, or unavailability, of 

bifurcation inducing resources, as a function of dendritic volume and distance of travel 

via diffusion or active transport. That influence is a candidate for explaining how in some 

dendrites distal dendritic branches and particularly terminating branches tend to be longer 

than their more proximal counterparts (Graham and van Ooyen, 2004). 

Dendritic growth is also guided and modulated by a number of different 

extracellular molecules and their interactions with receptors. Brain derived neurotrophic 

factor (BDNF), neurotrophin-3 (NT3), neurotrophin-4 (NT4), and nerve growth factor 

(NGF) are four major proteins of the neurotrophin family that impact dendritic growth by 

binding to specific members of the tropomyosin-related kinase (Trk) family of receptors 

and the p75 receptor. These growth factors have different influences depending on cell 

type, brain region, cortical layer, and even activity patterns (McAllister et al., 1995), and 
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can sometimes have effects that counteract each other (McAllister et al., 1997). These 

behaviors are made possible by the highly diverse signaling pathways triggered by the 

various Trk receptors, which include downstream effects on actin and microtubule 

dynamics (including MAP2) as well as transcriptional modulation of genes involved in 

dendritic growth. The term neurotrophin is sometimes used to refer to any protein that 

regulates neuronal growth. For instance, semaphorin3A, traditionally considered an 

axonal guidance molecule, also acts as an attractant for cortical apical dendrites (Polleux 

et al., 2000). More neurotrophins and neurotrophic pathways are described in greater 

detail elsewhere (Donohue and Ascoli, 2005a). 

 Other transcriptional factors and molecules are important in stemming dendritic 

growth. The gene sequoia is at least in part responsible for tiling insect dendritic 

arborization neurons of the same class, preventing overlap of sensory receptive fields 

(Grueber et al., 2002). Dendritic arborization neurons are also guided in part by the gene 

Dscam. Via alternative splicing in different neurons (Hattori et al., 2008) , the gene 

produces thousands of different cell surface proteins which enables dendritic self-

avoidance (Hughes et al., 2007). These and other related genes are vital for ensuring 

proper network connectivity. 

Activity, or lack thereof, can also trigger growth and retraction of both spines and 

branches through numerous pathways, greatly impacting neuronal networks (Wong and 

Ghosh, 2002). In Xenopus laevis tadpoles, in vivo time-lapse imaging showed that optic 

tectal cells exhibited increased dendritic arborization (i.e. greater elongation and number 

of branches) when exposed to a lit environment relative to a dark environment (Figure 
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2.11) (Sin et al., 2002). The effect was dependent upon a decrease in activation of the 

signaling protein RhoA and the activation of Rac and Cdc42. These Rho GTPases are 

involved in a number of activity- and neurotrophin-mediated pathways that influence 

dendritic and axonal growth (Luo, 2000; Miller and Kaplan, 2003). Activity during 

development of hippocampal pyramidal cells also increases dendritic growth, specifically 

close to the stimulated area (Maletic-Savatic et al., 1999). In some systems, competition 

between inputs can drive extension and/or retraction of dendrites and axons. For example, 

activity during development drives multiple olfactory bulb mitral cell dendrites to retract 

leaving just one to interact with the olfactory glomeruli (Malun and Brunjes, 1996). 

While activity-dependent growth is often mediated by neurotransmitter activity, electric 

and magnetic fields can also influence the magnitude and direction of growth (Rajnicek 

et al., 1992; Macias et al., 2000). 
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Figure 2.11. Example of stimulus induced growth. (a) Images of an optic tectal neuron taken with two-

photon imaging, one per hour over 8 hours. The first image (0 h) is taken before light deprivation. 

Environment was dark during the first 4 hours, and a light stimulus was present for the latter 4 hours. Scale 

bar, 50 µm. (b) Average cumulative branch growth in terms of length. (c) Average growth rates during 

dark versus light periods. (d) Average cumulative change in terms of degree. (e) Average change in degree 

during dark versus light periods. (Adapted with permission from Macmillan Publishers Ltd: [Sin et al. 

2002]). 

 

Biologically Based Models 
Clearly there are an enormous number of factors involved in dendritic growth and 

development. While it is the particular set of interactions that determine cell types, many 

factors can often be abstracted or simplified for the purposes of modeling. Aside from the 

difficulty in making sense of a complicated model where not all factors are fully 

understood, modeling all interacting factors would be impractical given current 
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computational power. Simplified models can provide insight into the dominant 

phenomena underlying morphology and help generate hypotheses for the function of 

proteins, pathways, and more complex mechanisms. Additionally, simplification allows 

for the isolation of the phenomenon of interest and can in principle ensure that an effect is 

a direct result of a particular manipulation. 

Various biologically based models capture events such as neurite initiation, path 

finding, and elongation and bifurcation (Kiddie et al., 2005; Graham and van Ooyen, 

2006). One such example is a model of dendritic growth based on MAP2 concentration 

and phosphorylation and calcium concentrations (Hely et al., 2001). The model used a 

constant rate of unbound MAP2 production in the soma, diffusion of MAP2 and calcium, 

and assumed tubulin availability. The MAP2 could become bound (i.e. associated with 

microtubules) based on rate equations, and could be phosphorylated and therefore 

dissociated from microtubules (Figure 2.12a). The phosphorylation and 

dephosphorylation rates were partially determined by calcium concentration. In addition 

to diffusing, the calcium had an influx component determined by each compartment's 

surface-to-volume ratio, resulting in greater influx in compartments of smaller diameter. 

At each time step, a terminal compartment would elongate at a rate proportional to the 

concentrations of bound and phosphorylated MAP2. Additionally, the terminal 

compartment had a probability of bifurcation based on the bound and unbound MAP2 

proportions. In order to generate different morphologies, parameters affecting the 

reaction rates and sigmoid slopes of the phosphorylation and dephosphorylation functions 

were varied. 
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Figure 2.12. Modeling molecular-driven growth. (a) Molecular interactions modeled by Hely et al. 

(2001). (b-d) Dendrites generated with the MAP2 phosphorylation model with different parameters at 

various times during development. (b) Low initial branching probability, increasing over time/length. (c) 

Nearly constant branching probability and elongation rate. (d) High initial branching probability, 

decreasing with time/length. (Adapted from [Hely et al, 2001], with permission from Elsevier). 

 

Hely and colleagues produced three different types of morphologies with different 

parameters. The first type showed increased branching probability and decreased segment 

length towards the distal ends (Figure 2.12b). This was a result of a greater 

dephosphorylation to phosphorylation ratio due to the parameters strongly favoring 

dephosphorylation at low calcium concentrations. Calcium concentrations rose farther 

from the soma resulting in increased phosphorylation and branching. The second model 

had equivalent phosphorylation and dephosphorylation parameters, resulting in a more or 

less constant ratio of bound to phosphorylated MAP2 from soma to the distal ends 

(Figure 2.12c). This model also showed shorter terminal segments, which in both cases 

could be explained by a decrease in available MAP2 farther away from the soma and 

diffused throughout a greater total dendritic volume. The last parameter set was intended 
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to produce dendrites similar to pyramidal cell basal dendrites, with few bifurcations and 

much longer terminal branches than internal branches (Figure 2.12d). In this case the 

parameters were nearly the opposite of the first case, with phosphorylation being more 

dominant at low calcium concentrations. This led to more branching near the soma and 

less in the more distal region. The smaller volume as a result of fewer total branches 

allowed sufficient MAP2 for long distal branches. The resulting dendrites compared well 

to real basal dendrites in terms of distributions of degree, asymmetry, and several length 

properties. 

As mentioned, most of the individual molecules and explicit mechanisms are not 

modeled when generating “virtual” (i.e. computationally derived) dendrites or 

understanding why dendrites take the shapes they do. In the example above, a small set of 

properties were modeled and showed how changes in calcium concentration in the 

context of possibly genetically encoded (de)phosphorylation set points could influence 

morphology. More generally, the emergent patterns of growth the many molecules and 

their interactions produce can be used in models to test the influence and relationships of 

various constraints, functions, and statistical distributions on morphologies of the many 

neuronal classes. 

Models of Growth and Morphology 
The relationships between various morphological and functional properties along 

with underlying mechanisms of growth and development are just a few pieces of the story 

of dendritic morphology. A wide variety of models are vital to elucidating how the 

growth mechanisms interact and how morphological and functional properties are 
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balanced to form different morphologies. Some models mathematically describe and 

simulate mechanisms of growth based on biophysical theories, either with molecular 

models as discussed in the previous section or by more abstract relationships between 

microtubules, dendritic diameter, elongation, and branching (Hillman, 1979; Tamori, 

1993). Other models focus on the results of imposed constraints on growth, such as 

spatial boundaries (Luczak, 2006) or minimization of wiring and synaptic path length 

(Chklovskii, 2000; Cuntz et al., 2007). Still others are statistical in nature, using 

empirical data to describe the relationships within and between fundamental and 

emergent features of various types of dendrites (Burke et al., 1992; Ascoli and Krichmar, 

2000; Samsonovich and Ascoli, 2003; Donohue and Ascoli, 2008). Not surprisingly, the 

boundaries between the different types of models are not always clear and many can be 

considered to fall into multiple categories. After all, it is ultimately the hypothesis to be 

tested that determines the design requirements for a model. 

Determining the Rules of Growth 
In an effort to better determine how dendrites grow in terms of where and when 

bifurcations occur, various models have been developed in which segments are 

stochastically added to a tree based on certain topological rules. It was proposed that such 

models could help determine how real dendrites and axons branch by comparing 

emergent properties of real trees with the emergent properties of trees grown from the 

models (Berry and Bradley, 1976). Since these models work by iteratively adding 

segments, the total size of the resulting tree could be controlled, thus enabling generation 

of virtual trees with the same size as real dendrites. Verwer and van Pelt explored the 
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statistical properties of trees generated by terminal growth (i.e. branches added only to 

terminating branches) or by segmental growth (i.e. branches added to terminating or 

bifurcating branches), seen in Figure 2.13. It was found that trees of much greater 

asymmetry and with a greater number of fully asymmetric nodes (i.e. nodes with one 

terminal child branch) were produced by segmental growth than by terminal growth (van 

Pelt and Verwer, 1983).  

 

Figure 2.13. Terminal and segmental growth. Green lines represent the two new branches generated by 

the growth event (i.e. bifurcation) in the terminal (left) and segmental (right) growth cases. Dotted lines 

show all of the branches from which the new branch could emerge. Segmental growth gives a greater 

opportunity for the new segment to grow on the larger left side of the tree (bold) relative to the smaller 

side, with a 7:3 ratio, while the terminal growth ratio is 2:1. This results in greater asymmetry on average 

for segmental growth. 

 

Subsequently, the Q-model was developed which provided a single parameter (Q) 

for controlling the relative probabilities of segmental and terminal growth. In order to 

integrate the observation that branching probabilities appear to often change with branch 

order, the S-model was developed. This model included order-dependent branching 

probabilities defined by the equation 2
-Sγ

, where γ is branch order. Thus, S values less 

than zero produce increasing branching probability with increasing branch order, while 
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for values greater than zero branching probability decreases with increasing branch order  

(van Pelt and Verwer, 1983). The range of parameters allows for possible influences such 

as the greater space available for growth further from the soma, the greater availability of 

resources closer to the soma, and microtubule associated interactions such as MAP2 

phosphorylation and others described in Statistical Models. The two parameter model 

combining the previous two models is referred to as the Q-S model. 

The various models were used in conjunction with the tree asymmetry index to 

test growth hypotheses for several types of dendrites, including basal and apical dendritic 

trees and multipolar non-pyramidal dendrites (van Pelt et al., 1986). When exploring 

terminal versus segmental growth alone, random terminal growth was insufficient to 

explain the asymmetry measures of half of the sets of dendrites, while purely segmental 

growth could explain none of the sets. Q model optimization resulted in a combination of 

segmental and terminal growth that fit four of the twelve sets of dendrites. However, all 

sets could be fit by optimized S and Q-S models, highlighting the importance of branch 

order dependence on branching probabilities. For instance, the distribution of basal 

dendrites from cortical pyramidal cells was best matched by Q and S values representing 

primarily terminal growth and a decreasing probability of bifurcation at higher branch 

order. 

Another important factor in dendritic development, plasticity, and pathology is 

pruning (i.e. the loss/retraction of terminal branches). Applied to the previous models, 

various forms of pruning had different results (van Pelt, 1997). While uniform random 

pruning on trees grown under random terminal growth had no impact on tree asymmetry 
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index distribution, either uniform random pruning on trees grown with order-dependent 

branching or non-uniform (i.e. order-dependent) random pruning paired with the terminal 

growth model resulted in changes to asymmetry index distributions. A set of rat Purkinje 

cells taken at various ages during periods of growth and retraction was analyzed using 

these models. The cells showed no change in tree asymmetry index at the different time 

periods and sizes. The Q-S model parameters that best matched the cells suggested 

primarily terminal growth with no order dependence. Combined with the results of the 

pruning model, this suggests that the retraction process was a random uniform pruning 

process. 

Other models have been developed to encompass a wide range of properties in 

addition to topology and branching probabilities. Hillman (1979) put forth an early 

version of the concept of generating dendrites entirely from a set of fundamental 

parameters specific to a given class of dendrite. In this case those parameters were 

determined based on observations of microtubules, diameter, and other morphological 

properties. The theory proposed that a dendrite with an initial diameter would elongate to 

some length with a particular taper rate, and branch if the diameter was above a particular 

threshold. The daughter branch diameters would then be determined by Rall's 3/2 power 

law and a daughter branch ratio parameter. From a biophysics perspective, the 

relationships between bifurcation angle, diameter, and branch length can be calculated 

based on the principle of least effective volume, providing fairly accurate predictions of 

measured relationships for cortical pyramidal cell basal dendrites (Tamori, 1993). Both 
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formulations provided a framework for further development and application (discussed in 

Statistical Models). 

Constraints and Functions 
Like all biological systems, dendrites must balance a number of competing 

priorities under environmental constraints in order to contribute successfully to the 

neuron and its network. Their success depends on the interaction of their various features. 

Some priorities are known in principle, such as minimizing metabolic cost and 

integrating signals from synapses to the soma, but how those priorities are met and 

balanced is still an open question. A more diverse set of models have been used to answer 

questions relating to the influence of developmental constraints and emergent function. 

These questions can be answered by generating virtual dendrites in various ways, 

constraining either the growth or the final product based on some hypothesis, and 

comparing the result to real dendrites. 

Environmental boundaries act as one of the major constraints on neurons. One 

particular growth model focused on the effect of generic growth factors within a defined 

space (Luczak, 2006). Luczak hypothesized that the shape of the environment along with 

the density and origin of neurotrophic factors could determine the morphology of various 

types of neuron. At initialization, the model contained an initial seed segment (soma) and 

a set amount of particles (neurotrophic factors) either uniformly distributed or clustered 

in some location (i.e. layer). At each iteration the particles diffused randomly, eventually 

contacting the soma or dendrite and becoming a new segment (Figure 2.14a). 

Physiologically this simulates a neurotrophic factor coming in contact with a dendrite, 
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being absorbed, and triggering new growth at the point of contact. The model included a 

parameter controlling the span of iterations during which new terminal segments had a 

40% chance of being pruned. This turned out to be a necessary component for producing 

realistic dendrites. Initial conditions were created to generate a wide variety of dendrites 

including granule cells, pyramidal cell apical and basal dendrites, interneurons and 

Purkinje cells (Figure 2.14b). The bounding box dimensions generally determined global 

dendritic shape, while particle concentrations determined branching density. 

 

Figure 2.14. Modeling extrinsic factors. (a) Model schematic showing diffusion of particles, growth of 

the “aggregate”, and pruning. The numbers represent the order in which the particles were or will be 

converted into branches. (b) Real and generated dendrites of granule cells, and pyramidal cell basal and 

apical dendrites. (Adapted from [Luczak, 2006], with permission from Elsevier). 
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Multiple trees were grown in one space to observe the results of competition for 

particles and growth. Given sufficiently small spacing between seeds, the trees that 

happen to grow more quickly can then block other trees, resulting in larger trees getting 

larger and smaller trees staying small. Putting limits on growth prevented the problem. 

One downside to this model was the large size of the particles relative to the space. While 

computationally necessary, the large size of the particles can have an impact on where 

they are able to diffuse and prevents realistic generation of cells grown in close 

proximity. Nevertheless, this model does show that a set of fairly simple and primarily 

environmental constraints can produce a variety of morphologically distinct dendrites. 

In an approach focused on intrinsic constraints, (Cuntz et al., 2007) explored the 

extent to which dendritic morphology can be reproduced solely by minimizing wiring and 

optimizing synaptic efficacy by minimizing path distance. In order to generate a dendrite, 

their model took a series of nodes, derived from a blowfly lobula plate tangential cell 

(Figure 2.15a), and connected them based on graph theory concepts. An initial version of 

the model minimized only wiring with the minimum spanning tree algorithm, starting 

with the root node and connecting one node to the dendritic tree one at a time, adding the 

least wiring possible. The nodes were randomly sampled from the entire dendritic 

spanning field of a real tangential cell. The results were fairly unlike real dendrites, 

having some particularly long paths (Figure 2.15b). In order to minimize path distance in 

addition to wiring, the minimum spanning tree algorithm was made to consider the path 

distance of any potential new connection. A balancing factor was used to balance 
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minimization of wiring and path distance. The factor was optimized to produce 

qualitatively realistic tangential cells (Figure 2.15c). 

 

Figure 2.15. Functionally constrained modeling. (a) Original tangential cell dendrite. (b) Virtual dendrite 

generated by minimizing wiring and connecting randomly sampled points within the spanning field of the 

dendrite in (a). (c) Virtual dendrite generated by minimizing wiring and path distance using the same points 

used in (b). (d-f) Trees colored by current transfer to the root. (d) Virtual dendrite generated by minimizing 

wiring and path distance and connecting the bifurcation and termination points of the dendrite in (a). 

Diameter has been set to optimize synaptic efficacy. (e) The same tree as in (d), but all branches have equal 

diameter. (f) Virtual dendrite generated by minimizing wiring, using the same points as in (d) and (e). (g) 

Distributions of normalized current transfer from the real tangential cell and from trees in (d) through (f) 

show that minimizing wiring and path distance and optimizing diameter best reproduces the current transfer 

profile of the real cell (Merged selection of two figures from [Cuntz et al., 2007], with permission from 

BioMed Central). 

 

In addition to manipulating topology to optimize synaptic efficacy, Cuntz and 

colleagues altered dendritic diameter. The input resistance of a synapse increases with 

distance from the soma. Therefore a voltage signal at a synapse will attenuate more at the 

soma with increased distance given passive dendritic properties. Dendritic diameter 

profiles were therefore found which optimized the current transfer from any given 

location to the soma, minimizing attenuation. In order to focus on that particular attribute, 
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the wiring and path length minimization model was run on a set of nodes composed of all 

bifurcations and terminations of the real dendrite. Figure 2.15d-g show that the dendrite 

generated by the model minimizing wiring and path length and with the optimized 

diameters was most successful at optimizing synaptic efficacy and compared well to the 

real dendrite.  

A similar conclusion was reached by Wen and Chklovskii (2008) for Purkinje 

cells by calculating mesh sizes (i.e. the ratio between a sample area and the total dendritic 

length within that area) for various types of branching schemes, minimizing wiring and 

path lengths, and avoiding overlap of potential synapses. Since the role of dendrites is to 

make synaptic connections, a dendrite's branches should be spaced sufficiently such that 

one branch does not invade the space in which another branch might form a synapse. The 

equations developed showed that Purkinje cells' mesh size fit within the theoretical 

calculations. Purkinje cells were used because they are approximately two-dimensional in 

shape and exhibited non-overlapping dendrites. These works suggest that efficiency 

through minimized wiring is a major pressure in determining dendritic morphology. 

Another method that has been developed for relating morphology and function 

produces dendrites through an evolutionary process starting with a particular functional 

constraint (Stiefel and Sejnowski, 2007). With this method generated dendrites can be 

analyzed to determine the ranges and types of properties necessary to achieve the 

electrophysiological function, and then compared to real dendrites. The process 

developed involves parameter sets for creating dendrites, electrophysiological simulation, 
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fitness scoring of the simulation, and selection, mutation, and recombination to produce 

successive generations with increasing fitness. 

The two functions proposed and tested in a proof of concept were linear 

summation of synaptic inputs and spike-order detection (i.e. A before B, but not B before 

A). The linear summation selection resulted in neurons with long, thin, and highly 

polarized dendrites with a large electrotonic separation. Thus, the input current of one 

synapse would have a minimal impact on the driving force of the other. As predicted, the 

dendrites looked very much like those of the crocodile and bird nucleus laminaris 

neurons as well as mammalian medial superior olive neurons, each of which receives 

auditory input from both ears separately onto polarized dendrites. The polarized and 

separated morphology of the dendrites enables reaction to simultaneous activation of two 

different sets of synapses but not to activation of just one set. The spike-order detection 

selection resulted in two sets of dendrites with different diameters. Thus one set of 

dendrites acted as strong low-pass filters while the other dendrites were much weaker 

low-pass filters. This relationship resulted in a greater somatic voltage when the strong 

low-pass filter dendritic input came first. The authors pointed out that this relationship 

exists in pyramidal cells between the apical and basal dendrites. Whether spike-order 

detection is actually used by pyramidal cells is an open question, though the presence of 

active properties makes answering that question more complicated. With parameters for 

active properties, synaptic distribution, and simulations of spiking properties, this type of 

evolutionary model could be useful for generating experimental hypotheses for a wide 

range of functions. 
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Electrophysiological effects and efficiency demands appear to be largely 

responsible for shaping dendritic structure given a spanning field for synaptic locations. 

Be that the case, the question still remains why synapses are located where they are. A 

possible component to the answer comes again from considering wiring efficiency, both 

in terms of total wiring in the brain (Chklovskii et al., 2002) and in the trade-off between 

axonal and dendritic size (Chklovskii, 2000). Consider two sets of neurons with one set 

being an input (i.e. sending) layer and the other set being an output (i.e. receiving) layer. 

Now consider that there are twice as many input neurons as output neurons, 2 input (i.e. 

presynaptic) and 4 output (i.e. postsynaptic) as an example. Moreover, each input neuron 

sends out 2 axons; this is referred to as the “divergence” ($D$). Assuming each layer is 

more or less homogeneous, each output neuron will receive 1 connection. This is referred 

to as the “convergence” ($C$). In this case, where $D>C$, wiring is minimized by the 

axons being larger and growing to meet the dendrites of the input neurons (Figure 2.16). 

The mathematics used to prove this is based on the spatial density of pre and postsynaptic 

neurons in a one-dimensional scheme. In two dimensions and with larger numbers of 

neurons, neurite (i.e. axon or dendrite) “meshes” are used. Chklovskii showed that the 

optimal ratio of dendritic to axonal length is given by the square-root of the ratio of 

convergence to divergence. Factoring in differences in axonal and dendritic diameters, 

the optimal ratio is then adjusted by multiplying the previous ratio by the square root of 

the axonal to dendritic cross-sectional area ratio. Thus a larger axonal cross-sectional area 

would result in greater dendritic length and less axonal length. Anatomical data from a 
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variety of experiments on retinal, cerebellar, olfactory bulb, and neocortical neurons 

support the theory (Chklovskii, 2000). 

 

 

Figure 2.16. Divergence and convergence. With a convergence of 1 and a divergence of 2, the layout in 

(a) with a longer axon is more efficient than the layout in (b) with larger dendrites. (c) Example of 

complete and optimized connectivity with convergence of 3 and divergence of 6. 

 

It was further shown that within gray matter optimization theory requires that 

axonal and dendritic wiring take up 60% (bounded from 50% to 75% depending on 

certain assumptions) of the volume (Chklovskii et al., 2002). The calculations used 

independently minimized axonal conduction delay and dendritic attenuation, maximized 

the number of potential synapses, or minimized wiring length while in each case holding 

the other variables constant. For instance, conduction delays can be reduced by larger 

axonal diameter, but with sufficiently large diameters the total volume of the gray matter 

must increase and thus axons must travel farther. Data from neocortex, piriform cortex, 

and hippocampus show wiring percentages not significantly different from 60%. Thus the 
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evidence suggests that in terms of gross size attributes, axonal and dendritic morphology 

are results of evolutionary processes optimizing signal propagation (in terms of speed and 

fidelity), potential synaptic connectivity, and total wiring. 

Statistical Models 
While statistical models do not provide information on how or why dendrites 

grow into their various shapes, they are very useful for providing compact descriptions of 

various morphological classes. These models generally attempt to capture the statistical 

relationships between known morphological attributes of cell classes, including the 

variance in those attributes. This is often achieved by using a subset of “fundamental” 

properties obtained from neuronal reconstructions, such as diameter or branch order, to 

probabilistically determine other properties, such as length or likelihood of bifurcation or 

termination. While many models have “growth rules”, they do not necessarily simulate 

developmental growth but rather describe the relationship between parameters in 

(usually) adult cells in a branch-by-branch manner. One major goal of such models is to 

expand the store of available morphologies for more physiologically realistic network 

models. Given the intense amount labor that is currently required to reconstruct 

individual cells, an accurate statistical model can generate a larger set of realistic 

morphologies. Thus the need to store large amounts of data is reduced as the 

morphologies can be generated “on the fly” (Ascoli, 2002). 

Burke et al. (1992) developed such a model in which branches iteratively 

bifurcated, terminated, or elongated with probabilities based on observed diameter 

relationships. Elongation length per iteration and taper rate were set as global parameters 
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while bifurcation and termination probabilities were determined by the current diameter 

of a segment. Daughter branch diameters satisfied the 3/2 power ratio by an observed 

margin and were determined by a process that produced the same distribution as seen in 

the real dendrites. The statistical data determining the probabilities came from 

reconstructed cat spinal cord α-motoneuron dendrites. By adjusting the global taper rate, 

the dendritic trees generated from the model had realistic branch order distributions but 

unrealistic path distance distributions. The addition of path distance (from the soma to the 

growing segment) as a parameter (in conjunction with diameter) in determining 

bifurcation and termination probabilities was sufficient to produce realistic path distance 

distributions, though some discrepancies such as total surface area remained. 

In order to enable the further study of various statistical and anatomical models, 

the program L-Neuron was developed (Ascoli and Krichmar, 2000). L-Neuron flexibly 

implements the concepts of Hillman, Tamori, and Burke, allowing an experimenter the 

option of using statistical distributions or biophysically derived calculations to generate 

morphologies from fundamental properties. The program additionally includes 

parameters that allow for path lengths larger than the straight distance between nodes (i.e. 

tortuosity) and global tropisms simulating external guidance or somatorepulsive effects. 

Moreover, the program can be fed statistical data of a given neuronal class or digital 

morphology files in order to generate that data. The models in L-Neuron were evaluated 

using motoneurons and Purkinje cells (Ascoli et al., 2001). Models based on primarily 

local constraints, such as diameter, successfully produced virtual dendrites with several 

emergent parameters, including degree, total length, and asymmetry, which matched both 
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cell types. The global tropic influences improved results in terms of spatial distribution of 

the dendrites. In general however, variability in virtual dendrites was greater than real 

dendrites, and certain emergent parameters were better reproduced by certain models. 

The results suggested that further constraints were necessary and that some combination 

of the models might produce improvements. 

Variations of the Hillman model were explored using L-Neuron for hippocampal 

CA1 pyramidal cells. It was initially found that constraining branching by diameter alone 

resulted in excessively large neurons or neurons that failed to stop growing, which was 

due to selection of taper rates (Donohue et al., 2002). Rather than sampling a taper rate 

for the entire tree from the entire distribution of trees, a further variation on the model 

was developed in which taper rates for each branch were sampled based on the branch's 

diameter (Donohue and Ascoli, 2005b). The updated model successfully reproduced the 

size (i.e. degree) of basal dendrites. Apical dendrites were also less likely to grow out of 

control, but their sizes were still more varied relative to the distribution seen in real CA1 

apical dendrites. In terms of branching patterns, the model actually captured apical 

dendrite asymmetry fairly closely, and better than it captured basal dendrite asymmetry. 

Further work in this direction tested the abilities of branch order and path distance 

as determinants of local branch properties (i.e. taper rate, bifurcation probability, length, 

parent-daughter ratio, and daughter ratio) to generate realistic apical, basal, and non-

pyramidal dendrites (Donohue and Ascoli, 2008). Each determinant produced the best 

results for some combination of dendrite type and emergent parameter (e.g. degree, 

asymmetry, surface area, and surface area asymmetry). Given the results, two models 
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were created that merged the influence of branch order, path distance, and diameter in the 

hopes that a combination of influences would reflect real statistical relationships and 

produce a more accurate model. The percent mix model merged the sampled values of 

the local properties with various weights, while “243 Mix” model assigned each local 

property with one of the determinants. Many weights were run for the percent mix model 

while for the “243 Mix” all determinant/local property assignments were run to determine 

the best combination of influence. After normalizing for the large numbers of weights 

and combinations sampled, the “243 Mix” model performed better than the percent mix 

or the individual determinants in terms of bifurcation asymmetry and surface area. The 

particular associations between local basic properties, their determinants, and the 

emergent properties may provide some idea of how growth mechanisms are determined 

in the different types of dendrites. For instance, diameter may be a better determinant of 

bifurcation asymmetry due to the fact that segmental branching tends to result in smaller 

side branches in terms of diameter and degree. Path distance may serve a role in 

determining the limits of both elongation and branching via resource availability and 

transport. 

Several of the functional and constraints based models guide growth by primarily 

extrinsic factors; however there are several potential intrinsic factors that may also 

determine a dendrite's tropism (i.e. direction of growth). Hippocampal principal cell 

dendrites have a tendency to grow away from their somas and appear mostly contained 

within a conical region. Cytoskeletal rigidity may be expected to constrain changes in 

direction, however when a dendritic branch does turn it seems to usually return to its 
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original direction (Figure 2.17a). This provided the motivation to determine whether the 

dendrites are primarily directed by extrinsic factors promoting growth in a particular 

direction, by intrinsic factors promoting growth away from their soma, or by neither type 

of influence (Samsonovich and Ascoli, 2003). In order to make the determination a 

statistical model using Bayesian analysis was developed which represented the growth of 

non-branching dendritic segments by three vectors of influence with additional random 

deflection from the combined vector's direction (Figure 2.17b). The three vectors 

included a continuation of the direction of the previous segment representing cytoskeletal 

rigidity, a unidirectional influence representing some extrinsic factor(s), and a radial 

vector representing a somatorepulsive influence. Using reconstruction data, the 

magnitudes of the unidirectional and somatorepulsive influences were optimized to 

minimize the amount of random deflection. The Bayesian analysis showed that the radial 

tropism was significantly stronger than the fixed direction influence, and that its strength 

decreased with greater distance from the soma. Moreover, the radial growth was greater 

in the basal relative to apical dendrites. Similar results were seen in α-motoneuron 

dendrites but not γ-motoneuron dendrites when analyzing daughter branch orientations 

relative to parent branch orientation and bifurcation position(Marks and Burke, 2007). 

These results suggest a possible functional benefit of growth away from the soma for 

certain cell types. 
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Figure 2.17. Modeling somatorepulsion (a) Pyramidal cell featuring roughly conical boundaries. Arrow 

points out a clear instance of a turn towards a somatofugal direction. (b) Model schematic. Current node is 

i. The three vectors determining the direction of the next elongation are ni in the direction of the previous 

step, a in the direction of the constant extrinsic influence, and b  
  in the direction away from the soma (ri). 

The angle αi+1 randomly changes the next step, which determined by the three vectors is n’i + 1, to the 

actual next step ni + 1. (Adapted from selected figures in [Samsonovich and Ascoli, 2003], with permission 

from John Wiley and Sons). 

  

Each type of modeling has clear utility as well as limitations. Mechanistic models 

that include molecular concentrations and interactions are usually computationally 

expensive. Though good at showing how changing certain basic parameters can influence 

emergent properties, most details are left out. For instance, in order to be practical they 

restrict growth to one or two dimensions (Kiddie et al., 2005). Luczak's model using 

neutrophin-like particles constrained by boundaries showed that those factors could 

largely explain how many types of dendrites might grow, but due to both computational 

constraints and a lack of additional interacting factors the results were only 
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approximations of real morphologies. Function-driven models rarely grow dendrites in a 

realistic manner as their goal is to relate completed morphologies with functional 

capabilities. Statistical models can serve to bridge the gap between mechanistic and 

function-driven models. They can account for various molecular interactions and activity 

effects as variance in the model, though this also means that any error in the experimental 

data or limitation of the reconstructions will also be captured in the model. Moreover 

they produce quantitative values of the relationships between morphological attributes 

which ultimately represent the range of morphologies that support the particular function 

of the dendrite being modeled. 

Dendritic Morphology into the Future 
There is still room for exploration of the relationship between morphology and 

electrophysiology, but many aspects have been investigated in great depth. Several of the 

models discussed focus on the relationship between network connectivity and 

morphology, of which much more is yet to be discovered. As time passes, molecular 

neuroscientists will continue to discover pathways and relationships between various 

growth factors, signaling molecules, and dendritic growth and plasticity. Some may be 

applicable to all dendrites, but a number will be specific to certain cell classes based on 

genetic expression. More importantly, many of those will be specifically involved in 

setting up connections between various anatomical regions and functional networks. 

Researchers at the Allen Institute for Brain Science (2009), producers of the Allen 

Brain Atlas (a map of gene expression patterns in the mouse brain [http://www.brain-

map.org]), found gene expression differences in sub-regions of the hippocampus 
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(Thompson et al., 2008). Cell adhesion genes made up a large proportion of the genes 

that produced the distinct boundaries, suggesting that the genes are at least in part 

responsible for hippocampal circuitry. Previous tracing studies have provided evidence 

for some of these regional divisions, but these new results provide an opportunity to 

further explore the relationships between genetic expression, molecular growth 

mechanisms, morphology, and network connectivity in very specific subregions. 

It is clear that the region of synaptic targets of a neuron play a role in determining 

the neuron's dendritic morphology. At least one cell class's morphology can be fairly 

accurately reproduced with knowledge of only the spanning field while minimizing both 

wiring and synaptic distance to the soma (Cuntz et al., 2008). In fact the general cell class 

of lobula plate tangential cells is composed of four subclasses that the referenced method 

suggested were solely differentiated by their spanning fields. Whether this model extends 

to all classes of dendrite is unclear. Might the balance between minimizing wiring and 

synaptic difference be shifted in one direction or another in other dendrites? Even if that 

question is answered, the question of what determines the shape and location of the 

dendrites' spanning fields remains. As discussed earlier (Constraints and Functions), 

Chklovskii's models and equations focused on minimizing wiring in the brain suggest one 

likely component to the answer. 

Dendritic morphology is shaped by many forces, both in terms of development as 

well as function. Varieties of intrinsic genetic, molecular, and electrophysiological 

factors interact with extrinsic spatial constraints, neurotrophic factors, and network 

activity to generate the neurons we observe. All of those interactions are influenced by 
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evolutionary pressures to achieve the electrophysiological functionality and network 

connectivity that enables a neuron to take part in the local and global networks that make 

up the brain. With advances in imaging such as the individualized cell labeling of 

Brainbow (Livet et al., 2007) and potential automated reconstruction algorithms, we can 

expect an explosion of morphological and connectomic data. It will then take the 

confluence of database management, morphometric analysis, and the broad array of 

modeling methods to bring us closer to a complete understanding of the many 

relationships dendritic morphology has with brain function. 
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CHAPTER THREE: TOWARDS HIGH-THROUGHPUT DATA PROCESSING 

BY PROMOTING DEVELOPMENT OF AUTOMATED MORPHOLOGICAL 

RECONSTRUCTION 

3.1. DIADEMchallenge.Org: A compendium of resources fostering the 
continuous development of automated neuronal reconstruction 

 

[With kind permission from Springer Science+Business Media: Neuroinformatics, 

volume 9, 2011, Todd A. Gillette, Kerry M. Brown, Karel Svoboda, Yuan Liu, Giorgio 

A. Ascoli, © Springer Science+Business Media, LLC 2011] 

 

 

Concomitant with the publication of this Special Issue of Neuroinformatics, a 

substantially updated version of the DIADEM web site has been released at 

http://diademchallenge.org. This web site was originally designed to host the challenge 

for automating the digital reconstruction of axonal and dendritic morphology (hence the 

DIADEM acronym). This post-competition version features additional content for 

continued use as the access point for DIADEM-related material. From the very 

beginning, one of the spirits of DIADEM has been to share data and resources with the 

neuroscience research community at large. The resources available from or linked to the 

DIADEM website constitute a substantial scientific legacy of the 2009/2010 competition. 

The new content includes finalist algorithms, image stack data, gold standard 

reconstructions, an updated DIADEM metric, and a retrospective on the competition in 

text and images. The website continuing intent is to facilitate development of automated 

reconstruction algorithms. 
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The DIADEM Data Sets include image stacks, manually reconstructed digital 

tracings (the “gold standards”), and metadata. The six extensively curated, diverse data 

sets can be used to train, test and aid in the development or tuning of existing automated 

reconstruction algorithms. The previously posted image stacks (training and qualifier sets 

for the DIADEM competition) are still available, and are augmented with the addition of 

the Final Round image stacks (Brown et al., 2011). The Final Round sets include a 

previously unreleased type of data, a visual cortical pyramidal cell, used as a surprise set 

in the competition. 

The DIADEM metric (including source code) also has a new release with a wider 

set of user options and extended documentation (Gillette et al., 2011b). These options 

provide flexibility for use on data beyond the DIADEM data sets and for alternative 

scoring schemes. Integration of the metric with automated reconstruction development 

has been made easier with more output options and methods to make results accessible to 

an interfacing program. These and other changes make the DIADEM metric viable in 

both algorithm development and evaluation. Since it was designed as a machine-derived 

surrogate to humans for quantifying the differences between two reconstructions of the 

same neuronal structure, the DIADEM metric can be used as a reliable tool to evaluate 

reconstruction quality of either newly developed or expansions of existing automated 

reconstruction algorithms. Most importantly, the DIADEM finalists made their 

algorithms freely available on the website. These include code, executables, and 

documentation, in addition to links to the development web sites and authors’ contact 

information. Several additional resources are also accessible from the DIADEM web site 
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links, including databases of digitally reconstructed neurons and dynamic inventories of 

web-based neuroscience knowledge, data, and materials, as well as 3D morphology 

conversion utilities, freeware software for neuronal reconstruction and editing, open 

source tools for online neuromorphometric analysis, and visualization programs. 

The DIADEM web site and its resources, in conjunction with the DIADEM 

listserv (http://listserv.janelia.org/mailman/listinfo/diadem_challenge), will foster the 

increased collaboration required to speed up development of the next generation of 

automated neuronal reconstruction algorithms. Ultimately the aim is to extend the 

challenge as long as it remains a bottleneck to neuroscience, further enabling scientists to 

ask and answer many questions about the brain and its function that are currently beyond 

our reach. 

 

3.2. The DIADEM Metric: Comparing Multiple Reconstructions of the 
Same Neuron 

[With kind permission from Springer Science+Business Media: Neuroinformatics, 

volume 9, 2011, Todd A. Gillette, Kerry M. Brown, Giorgio A. Ascoli, © Springer 

Science+Business Media, LLC 2011] 

 

Abstract 
Digital reconstructions of neuronal morphology are used to study neuron function, 

development, and responses to various conditions. Although many measures exist to 

analyze differences between neurons, none is particularly suitable to compare the same 

arborizing structure over time (morphological change) or reconstructed by different 

people and/or software (morphological error). The metric introduced for the DIADEM 

(DIgital reconstruction of Axonal and DEndritic Morphology) Challenge quantifies the 
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similarity between two reconstructions of the same neuron by matching the locations of 

bifurcations and terminations as well as their topology between the two reconstructed 

arbors. The DIADEM metric was specifically designed to capture the most critical 

aspects in automating neuronal reconstructions, and can function in feedback loops 

during algorithm development. During the Challenge, the metric scored the automated 

reconstructions of best-performing algorithms against manually traced gold standards 

over a representative data set collection. The metric was compared with direct quality 

assessments by neuronal reconstruction experts and with clocked human tracing time 

saved by automation. The results indicate that relevant morphological features were 

properly quantified in spite of subjectivity in the underlying image data and varying 

research goals. The DIADEM metric is freely released open source 

(http://diademchallenge.org) as a flexible instrument to measure morphological error or 

change in high-throughput reconstruction projects. 

Introduction 
Neuronal morphology impacts network connectivity (Binzegger et al., 2004; Lin 

and Masland, 2005; Stepanyants and Chklovskii, 2005) as well as electrophysiological 

function (Mainen and Sejnowski, 1996; Krichmar et al., 2002; Van Ooyen et al., 2002), 

including signaling propagation and integration (Vetter et al., 2001; Schaefer et al., 

2003). The striking morphological diversity of both axonal and dendritic arbors reflects 

the complex form/function relationship in various neuronal types (Markram et al., 2004; 

Goldberg et al., 2006; Ascoli et al., 2008). Morphological features are also examined to 

study the effects of environment (van Praag et al., 2000), pathologies (Meyer-Luehmann 
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et al., 2008; Baloyannis, 2009), and development (Cline, 2001; Wong and Ghosh, 2002; 

Li et al., 2005). Researchers have been interested in neuronal morphology for many years 

(Senft, 2011). In order to apprehend the factors that influence neuronal function beyond 

inspecting neurons under the microscope, rigorous analysis requires the reconstruction of 

morphology into measurable representations. Early efforts improved microscope 

capabilities and integration with computer control and measurement (Glaser and 

Vanderloos, 1965; Overdijk et al., 1978), followed by attempts at automated two-

dimensional automated neuronal reconstruction (Capowski, 1983; Mize, 1984).  In recent 

history reconstruction has been largely accomplished by manual tracing with camera 

lucida (Sugihara et al., 1996), through computer interfaces such as Neuromantic 

(http://www.rdg.ac.uk/neuromantic), Neurolucida (MBF Bioscience; Glaser and Glaser, 

1990), and ImageJ plugins (Brown et al., 2005) or even more recently using semi-

automated tools like Autoneuron (MBF Bioscience), NeuronStudio 

(http://research.mssm.edu/cnic), V3D (Peng et al., 2010a), and the TREES toolbox 

(Cuntz et al., 2011). 

In order to achieve the production scale necessary to answer the next generation 

of neuroscience questions, fully automated algorithms are needed along with adequate 

analysis methods. The development of a mammalian species connectome (i.e. a complete 

connection diagram of all neurons or neuron types) will require reconstructing millions to 

billions of neurons (Haug, 1987; Kasthuri and Lichtman, 2010). Even local or sparse 

connectivity studies may involve reconstruction of thousands to millions of neurons from 

multiple classes. In some cases, the same neurons will need to be traced at multiple time 
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steps, such as in developmental, plasticity, and genetic or molecular manipulation studies. 

Automatically traced reconstructions must meet appropriate quality levels for research. 

This raises the question of how to measure reconstruction error, and in turn to assess the 

underlying algorithm or process (e.g. a trainee learning to reconstruct). Any measure of 

quality is designed with particular goals in mind, which may differ among both algorithm 

developers and data users. 

Accurate branch connectivity (i.e. topology, see Figure 3.1a) is particularly 

important for dendritic signal propagation and integration. Topology, along with trace 

centerlines (Figure 3.1b), may also be relevant for studying growth or pathology 

processes (Hao and Shreiber, 2007; Meyer-Luehmann et al., 2008) and wiring principles 

(Stepanyants et al., 2004; Marks and Burke, 2007). For connectomics, higher branch 

orders and terminal regions (Figure 3.1c) might hold greater relevance, since the precise 

path taken is less important that the actual synaptic locations in the terminal regions. 

However, for images with multiple overlapping neurites, particularly when there are 

overlapping branches that cross within the Z-resolution limit, the low branch order region 

would retain importance since a mistaken branch choice could lead to incorrect 

connectivity for an entire subtree.  
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Figure 3.1.Effects of morphological features. A. Connecting the same dendritic points in different topologies has a 

large impact on charge transfer from synapse to soma, as shown by the varying responses (arrow size) to a stimulus in 

an identical location (lightning bolt). B. Branch centerlines determine path length and tortuosity, affecting signal 

propagation and providing clues about the underlying developmental processes. In terms of extrinsic determinants of 

branch growth, the left trace suggests a strong unidirectional signal (arrow) while the right trace reveals contributions 

from other directions. C. Precise tracing of dendrites and axons is important for determining potential connectivity. The 

left traces show a dendrite (black) and axon (gray) overlapping (arrowhead), while the right traces have no potential 

synapse due to the failure of the dendrite to extend all the way to the axon. Terminal nodes are all marked with a ‘T’. 

 

Scientists planning large-scale projects are crucially interested in the amount of 

their time an algorithm will save in producing quality reconstructions. While future 

algorithms may be even better and more consistent than humans at reconstructing 

neurons, the current state of the art requires checking and editing automatically produced 

reconstructions (Luisi et al., 2011; Peng et al., 2011). Thus, different scientists might 

disagree as to the most suitable criteria to decide on whether an algorithm suits their 

needs.  

Human subjectivity in the tracing process presents a challenge to measuring 

reconstruction quality, particularly given the challenges associated with staining and 

imaging (Jaeger, 2001). Resolution limits of current imaging methods make it sometimes 

impossible to ascertain correct connectivity. Histological limitations such as tissue 

shrinkage, physical sectioning of trees, and labeling gaps and artifacts provide further 

demands on reconstruction methods (Brown et al., 2011), and are important to consider 



73 

 

when analyzing morphological data (Kaspirzhny et al., 2002). Methodological 

optimization and standardization of procedures, guided by collaboration between 

biologists and computer scientists, might reduce or eliminate such uncertainty by 

producing cleaner data. Until then, the metric design can reduce the effect of subjectivity 

by decreasing the weight of tree nodes (i.e. bifurcations and terminations) in more 

subjective zones, such as thin branches or distal locations, relative to the nodes in less 

subjective zones. 

Many measures are commonly employed to analyze neuronal morphology, and 

new metrics continue to be introduced to capture specific features of dendritic and axonal 

arbors (e.g. Brown et al., 2008). However, most studies tend to compare groups of 

neurons under differing experimental conditions. The typical design tests whether a 

sample of neurons from treated animals significantly differs from a sample (of the same 

cell type) from controls in terms of one or more morphometrics (e.g. number of branches 

or total length). These classical morphological studies are complementary to the problem 

of comparing individual instances of the same neuron. The question of how to measure 

the quality of a reconstruction relative to a gold standard is instead similar to the issue of 

quantifying changes in neuronal morphology over time or in response to some stimulus 

or treatment. In these cases, a metric that registers the tree structures and compares them 

node by node or branch by branch can provide greater detail and analytical power. 

Provided changes in morphological features are not so drastic as to change the neurite 

fundamentally and prevent proper registration, the detected changes could be attributed to 

particular segments of the neurite that appear, disappear, or change in some manner. 
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This paper presents a metric originally designed to measure reconstruction quality 

for the DIADEM Challenge (DIgital reconstruction of Axonal and DEndritic 

Morphology). The Challenge aimed to encourage development of automated algorithms 

with the goal of reducing human interaction time while still generating high quality data. 

The term “metric” is not used here in the strict mathematical sense, as the DIADEM 

metric produces a similarity value (on the scale of 0 to 1) rather than a distance value. 

Moreover, it is asymmetric (i.e. the score may depend on which reconstruction is 

considered the gold standard) and does not satisfy the triangle inequality. Although 

certain features in the original version of the metric were specialized for the competition, 

the current release (http://diademchallenge.org) expands the set of options and includes 

the source code for optimal suitability to a broader range of applications. After briefly 

reviewing prior efforts, we describe the DIADEM metric and examine its relationship 

with other components of the reconstruction quality judging process. 

Previous Relevant Work 
Although no metric exists specifically to measure change or error in neuronal 

morphology, several approaches have been developed to quantify features and 

reconstruction quality of tree-like structures for related purposes. One class of methods 

registers the same regions of interest and embedded trees in multiple medical images to 

each other given changes over time. These methods are commonly applied to human 

airways and vasculature, which are subject to elastic deformation due to effects such as 

breathing, blood flow, and surgery (Metzen et al., 2009). Registration is accomplished by 

matching nodes and/or branches in the arborization (Charnoz et al., 2005; Tschirren et al., 



75 

 

2005; Drechsler et al., 2010) or by aligning path centerlines (Bülow et al., 2006). These 

approaches ignore spatial position since they account for tissue deformation (Figure 3.2). 

While these methods are broadly applicable to the goal of measuring morphological error 

and change, deformation is not an issue when comparing multiple reconstructions of the 

same neuron (see however Canty and De Paola, 2011). For this application, therefore, 

there is little reason not to incorporate relevant positional information in the desired 

metric. 

The tree edit distance (TED) counts the number of nodes (both internal and 

terminal) that must be added or removed from one tree in order to create the second tree 

(Zhang, 1996). This pairwise metric has been applied to neuron classification (Heumann 

and Wittum, 2009) and to investigate stereotypy of neuromuscular fiber connectomes (Lu 

et al., 2009). However, TED is not spatially specific, while node locations are important 

in detecting morphological error or change. For example, when measuring quality, the 

double mistake of an extra branch and a missing branch extending from the same parent 

branch would be ignored by TED (see also Gillette and Grefenstette, 2009). The 

analogous situation for morphological plasticity would be the growth of one branch 

simultaneous with the retraction of another (i.e. within the same time frame, see Figure 

3.2). Using an edit cost function (i.e., counting changes required to create perfect 

similarity between trees) for length differences would only capture part of the difference. 

A registration method accounting for position will avoid such a problem. 
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Figure 3.2. Tree registration and tree edit distance (TED). Methods that register nodes on deformed 

trees will match the dashed branches (nodes e and f with e* and f*), since topologically they are equivalent. 

Methods that include centerline or path matching will not match those branches. TED matches trees by 

their nodes and therefore will produce a distance score of 0 (i.e. a similarity score of 1). If TED 

distinguished the two branches, the distance score would be 4, i.e. one for each node added and removed (e, 

f, e*, f*). 

 

Metrics developed to assess or validate algorithmic reconstructions in earlier 

automation efforts are also clearly of interest. The choice of validation strategy depends 

on the scientific aim or the perceived challenge. Previous selections included branch- and 

tree-level morphometrics (i.e. diameter, length, surface area), centerline accuracy, 

proportion of a gold standard reconstructed, and simulated electrophysiological activity 

(Wearne et al., 2005; Tyrrell et al., 2007; Losavio et al., 2008; Rodriguez et al., 2009; 

Peng et al., 2010b). Simulations may be ideal to explore the impact of reconstruction 

quality on specific neuron functions. However, they are time-consuming and make 

limiting assumptions in terms of biophysical properties and stimulation protocols. 

Standard morphometrics suffer from the same issue described for TED, whereby a 
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parameter such as overall surface area could stay constant while different parts of the tree 

are changing in opposite ways. Distributions of those metrics may be more informative, 

but complete specification of all changes throughout the neuron requires registration and 

analysis of all branches. 

Description of the DIADEM Metric 
In comparing two arbors, the DIADEM metric registers and scores each 

corresponding node and its parent branch individually on the basis of connectivity with 

the local region of the tree. A rigid registration of nodes is used in order to make use of 

positional information, which is intuitively sensible when dealing with two 

reconstructions of the same underlying image data. In the case of comparing the same 

neurite at different times, the amount of change would have to be small enough that an 

identifiable core object is shared between time points. Adjustments for tissue deformation 

due to slice preparation or microscope stage drift would be necessary preprocessing steps. 

Emphasis on topologically relevant features over diameter and centerline geometry is 

justified in part by the influence of branch topology on signal processing and its 

dependence on growth mechanisms (van Pelt et al., 1992; Ascoli, 2002; Koene et al., 

2009). Though vital to understanding neuron function, diameter evaluation is highly 

subjective at resolutions used for full neuronal arbor reconstruction (Jaeger, 2001; 

Scorcioni et al., 2004), and was not considered in the DIADEM competition. Centerlines 

were deemed important in terms of reproducing distances along the neurite path. This 

aspect was incorporated in the metric without the need for continuous scoring of 
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centerline quality. The metric input is specified in SWC format
1
 , which represents trees 

by individual points in space with connections denoted by unique numerical identities. 

Below we explain the computational essence of the DIADEM metric. More extensive 

implementation details are provided in the online documentation and through distribution 

of the source code (http://diademchallenge.org/metric.html).  

Each node in the “gold standard” arborization (e.g. the manual reconstruction) is 

taken as the ground truth and is registered to a node in the “test” arborization (e.g. the 

automated reconstruction). The process begins with the most proximal gold standard 

bifurcation, proceeds to the first bifurcation’s children, then to their children, and so on 

until registration has been attempted for all gold standard nodes. Registration requires the 

test nodes to be located spatially within a cylindrical threshold region around the gold 

standard node, as determined by the chosen data set or by user discretion. This represents 

the region in which one might reasonably create a bifurcation or termination in the trace 

given subjectivity and resolution in the XY plane and Z axis (Figure 3.3a,b). As either 

gold standard or test node could be at an edge of a bifurcation or termination, the radius 

of the threshold region was chosen to be the diameter of one of the larger bifurcations 

within each of the data sets used in the DIADEM competition in order to accommodate 

the more extreme (but still reasonable) cases. Image resolution, staining contrast, and 

depth of focus all influenced threshold choices such that sufficiently low resolution or 

contrast could result in larger thresholds if the neurite edges were less clear in the XY 

plane or Z-axis. Registered nodes are expected to have matching paths to matching 

                                                 
1
 http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html 
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ancestor nodes (i.e. bifurcation nodes between the nodes of interest and the tree roots). 

Ancestor node matches are found by traversing toward the tree root from the gold 

standard node and from the potentially matching test node until the current ancestors of 

either tree are within the Euclidean distance threshold of each other (Figure 3.3c). The 

traversal takes place on one tree at a time, on the tree with the shortest path from the 

current ancestor back to its respective node of interest. Once an ancestor match is found, 

the path test is performed and the potential match is either confirmed or discarded. 

To determine whether the gold standard and test paths match, an acceptable test 

path must have a sufficiently small error along a given component (i.e. on the XY plane 

or the Z axis) relative to the full three-dimensional path length. This “path length error” is 

calculated as the difference between the gold standard and candidate test path length in a 

given component, divided by the full gold standard path length. This method is one 

source of asymmetry in the metric. Another is the method for adjusting the test path 

length to account for differences in position of the ancestor and descendant from their 

respective gold standard matches (described in greater detail on the DIADEM Challenge 

website). Acceptable path length error is given by a second pair of thresholds, which for 

the DIADEM data sets were determined based on the straightest possible path and the 

longest reasonable path that stayed within the bounds of the neurite. Users may set their 

own path length error thresholds. A very large threshold might be chosen if path length is 

anticipated to be unreliable and unimportant in terms of data usage. If multiple test nodes 

are suitable for registration to a given gold standard node based on the criteria above, the 

one with a descendant and path to the descendant that matches a descendant (and path) of 
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the gold standard node is registered. If there are still multiple candidates or no candidates 

exhibit matching descendant connectivity, the test node spatially closest is registered. 

 

 

Figure 3.3. The DIADEM metric. A. The filled central circle intersected by the branches is the bifurcation 

node. The cylinder represents the 3D threshold region, within which potential matches may be located. The 

cylinder is generated from expanding the XY threshold circle to the bounds of the Z threshold. B. A trace 

could validly bifurcate anywhere within the specified region (single white ring). Here the gold standard 

(solid trace) bifurcates at the edge of the region. To account for the lack of information on the location of 

the neurite centerline, the threshold region (double white ring) has a radius twice that of the valid region. 

Thus a test trace (dashed) that bifurcates at the opposite edge will still be matched. C. Establishing branch 

connectivity with an ancestor. The target node of the gold standard reconstruction (double ring) has a 

candidate test node in both test trees to the right. The × symbols are the ancestors of the target node that 

have no match in Test Tree A, and the ancestors of the potential match in Test Tree A that have no match in 

the gold standard. However, the black ring ancestor matches spatially and in terms of path to target, 

resulting in a hit for Test Tree A. Test Tree B has an ancestor in the right location, but the length of its path 

to the target node is incorrect (dashed ring), resulting in a miss for Test Tree B. 
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Once registration has been attempted for all gold standard nodes, those nodes that 

fail to be registered to a test node are each considered a second time to determine whether 

the test tree at least captures the path through the location of the gold standard node. This 

situation can occur when there is a bifurcation in the gold standard but only one of the 

two child branches is traced in the test reconstruction resulting in a single path with no 

bifurcation node to use for registration. Without accounting for these cases, test 

reconstructions would be counted as having missed the path leading up to the gold 

standard bifurcation node even though it was traced (Figure 3.4).  The matching path is 

found by first traversing the gold standard reconstruction toward the root. When an 

ancestor that has been registered to a test node is found, the gold standard tree is then 

traversed from the target gold standard node toward its terminal ends. If no test 

descendent nodes match the path between this matched ancestor and the two gold 

standard descendants, paths to nodes further downstream are checked for matches. The 

number of descendant paths followed depends on the number of downstream 

bifurcations, but the traversal of any given path ends when a descendant is encountered 

that is registered to a test node. The same criteria for node matching described above 

applies here for matching descendants, including having similar path lengths to the 

ancestor of the gold standard node in question. The process is continued until a path 

match is found, or until all potential descendant paths are exhausted. If a matching path is 

found, the test tree is scored as having a match to the gold standard node since the test 

path is deemed to have captured the same path up to the node location on the gold 
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standard node. The absence of the second branch is penalized in the initial registration 

process by the lack of a match of its terminal node (or subtree). 

 

 

Figure 3.4. Matching paths through unregistered nodes. Symbols on the gold standard correspond with 

symbols on Test Tree A, which has a matching path (thick path) for the unregistered gold standard node of 

interest (double ring). Test Tree B results in a miss for the gold standard node and path. The × symbols 

mark an ancestor and two descendants without matches in either test tree. Both test trees do contain a 

matching ancestor (ring above target). Several descendants have potential matches (dashed rings and their 

descendants), but fail to produce matching paths to the ancestor. The position of the second descendant 

(solid single ring below target) and its path to the ancestor do match in Test Tree A. No descendants in Test 

Tree B match by path, and thus Test Tree B does not contain a matching path for the gold standard target 

node. 

 

Several alternative options provide greater flexibility depending on the intended 

use of the metric. Nodes can be weighted differentially, for instance by degree (i.e. 

number of terminal nodes in the sub-tree) in order to capture topologically important 

bifurcations, or uniformly if terminal nodes are as relevant to the user. In the DIADEM 

competition, nodes were weighted by degree primarily due to the larger functional impact 
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of larger sub-trees. In several of the DIADEM gold standards, tracing subjectivity was 

also particularly high in terminal regions, with more frequent branching and neurite 

overlap (Brown et al., 2011). Thus, this weighting scheme also reduced the contribution 

of the more subjective regions to the score. Another choice is whether to tally as misses 

the excess nodes in the test reconstruction that are not in the gold standard. Rules are in 

place to prevent non-matched test nodes that appear to be reasonable attempts (i.e. the 

bifurcation or termination is close to a gold standard node) from counting as excess nodes 

(Figure 3.5). The miss in the gold standard in these cases is considered to be a sufficient 

penalty to the score. If used for measuring changes in neurite morphology, a suitable 

alternative could be to consider all unmatched test nodes as new branches by counting 

them all as excess nodes rather than using any criteria to excuse them. Lastly, terminal 

test nodes that terminate in the wrong location can be scored as matches if their path is 

approximately correct. While not part of the default mode, this option was used in order 

to prevent penalizing automated algorithms that traced rosette structures in the 

neuromuscular projection fiber data set (Figure 3.6). Further potential uses of this option 

are discussed later. In applying the DIADEM metric, the weighting scheme and other 

parameters must be determined based on a combination of goals, including minimizing 

subjectivity and maximizing functionally relevant features. 
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Figure 3.5. Determining excess nodes. A. The terminal node of the gold standard (black) is a miss due to 

its incorrect path. The gray test termination is not an excess node because there is a gold standard node 

within threshold distance. Since the termination does not count as an excess node, the parent bifurcation is 

not counted against the score either. B. The gold standard terminal node is a miss due to the incorrect 

position of the test terminal (gray). However, the test termination is not an excess node since its parent 

bifurcation is matched. C. The gray test termination has no basis in the gold standard reconstruction and so 

it is an excess node. 

 

 

Figure 3.6. Neuromuscular projection axon rosette. The gold standard (solid white trace, which overlaps 

with the dashed gray line) tracks the path of the axon until it ends at the beginning of the rosette structure. 

The test reconstruction (dashed gray) follows the same path yet continues into the rosette, and will still be 

successfully matched. This approach could also be used for measuring the growth of a neurite captured 

across multiple reconstructions in a time series. 

 

Human Expert Qualitative Scores and Interaction Time 
In alternative or addition to an objective metric, the quality of a reconstruction can 

be evaluated directly by a domain expert. After the Qualifier Round of the DIADEM 

Challenge (Brown et al., 2011), several experienced neuroscientists judged the quality of 

the submitted reconstructions. All judges were principal investigators of laboratories that 

had produced several peer-reviewed publications using neuronal reconstructions. 
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Although no strict constraints were mandated as to how to score submissions, guidelines 

were provided in terms of the possible reconstruction errors that should be looked for. 

These included missing a large sub-tree, missing small branches, tracing non-existing or 

unconnected trees, tracing extra small branches, incorrectly positioning bifurcations and 

terminations, incorrectly connecting branches and trees, incorrectly tracing a segment 

path, and tracing a segment in the wrong direction. The judges determined for themselves 

how to weight each type of error. Their scores ranged from 0 to 10, but were rescaled 0 to 

1 for comparison purposes with other metrics. In the analysis these scores are referred to 

as “qualitative scores”. “Average qualitative score” will refer to the average of scores 

from multiple judges for one automated reconstruction. 

Reconstruction algorithms cannot yet consistently produce reconstructions of gold 

standard quality. Nevertheless, their output may be of sufficient quality such that editing 

it could take considerably less time than reconstructing the same neuron from scratch. 

Thus, the effectiveness of an automated reconstruction algorithm can also be measured 

by an expert determination of the amount of time saved compared to a manual process 

(Chklovskii et al., 2010). A person highly experienced in reconstructing a neuron from a 

particular preparation can produce an accurate estimate by clocking the interaction time 

taken to reconstruct a neurite sample from scratch. Then, the same operator clocks the 

time necessary to edit the reconstruction of an equivalent sample produced by the 

automated algorithm until it is of the same quality as that generated manually. The 

resulting score, hereto referred to as the “interaction time score” or simply “interaction 

score”, would be specific to the type of data and may contain some subjectivity reflecting 



86 

 

the individual’s strengths and weaknesses in terms of speed in reconstructing or editing 

specific morphological features. However, the score directly addresses the scientist’s 

main concern by quantifying the time saved by the evaluated algorithm. 

Submissions of the DIADEM Qualifier Round were scored according to this 

criterion in addition to applying the DIADEM metric and the expert qualitative 

assessment. In particular, the owners of the data sets used in the competition scored the 

entries by determining how long it would take to edit them up to gold standard quality 

without simultaneously viewing the gold standard. Experience with a particular image 

stack could lead to a decrease in editing time for a data owner independently of 

reconstruction quality. In order to minimize the relative improvement between 

reconstructions from different teams of the same neuron, the data owners were instructed 

to start by scoring the manual reconstruction. Data set owners also shuffled the order in 

which team reconstructions were edited. While this second factor reduced bias toward 

any team, it would not eliminate the experience effect on scores for the analysis 

comparing the interaction time and the metric. Data set owners only scored 

reconstructions of their own neurons, and in many cases only scored a subset of those. 

For any submission that was edited, the judge either reconstructed the section or 

estimated the amount of time it would take to do so, but in either case was consistent in 

their practice. The corresponding score for a given reconstruction was one minus the ratio 

between the amount of time needed to edit the reconstruction and the total time taken to 

manually reconstruct the same structure. Thus a score of zero would correspond to no 
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time savings, and a score of one would correspond to a perfect automated reconstruction 

requiring no editing time. 

Utility of the DIADEM Metric 
In order to determine whether the DIADEM metric is useful for evaluating 

reconstruction quality, it is important to compare it to expert judgments. Indeed, 

comparison between the various scoring methods showed strong correlations, suggesting 

that the metric may be viable as a machine-derived surrogate to human judging (Figure 

3.7). Specifically, the correlation across reconstructions between the metric and the 

qualitative score averaged from four different judges was R = 0.66 (p < 10
-5

). Correlation 

between the metric and interaction time scores was R = 0.77 (p < 10
-6

) when controlling 

for judge and data set. All correlations with interaction time scores are determined using 

a linear model of interaction time score as the dependent variable, and the correlate (in 

this case the metric score) and data set as the independent variables, without any 

interaction effects. The R value is derived from the resulting adjusted R
2
 of the model. 

This normalization step is necessary because, while each qualitative judge scored every 

data set, each data owner only clocked the interaction time for their own data set. Thus 

interaction times could be affected both by the judge’s methods and data specific 

features, as confirmed by the statistically non-significant correlation of R = 0.09 (p = 0.6) 

in the absence of control. 
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Figure 3.7. Scoring method comparison. The gold standard and automated reconstructions (T1-T3) of a 

hippocampal CA3 interneuron dendrite submitted in the Qualifier Round of the DIADEM Challenge. The 

qualitative score, interaction time, and DIADEM metric for each reconstruction exemplify how various 

errors can impact different scoring methods. On this small tree, T1 received a low DIADEM metric score 

due to unsmoothed paths which inflated path length (zoom box) causing path length error to surpass the 

threshold. A smoothed path or more lenient path length threshold would result in a higher score more 

consistent with human expert judgment which ignores the effect of the jagged path. In T3, too many excess 

nodes resulted in low scores for all measures. 

 

If the data set effect is in fact a judge effect, then the metric can better serve as a 

comparison than interaction time scores produced by different judges (at different labs). 

However, variability in interaction time scores could be due to tree size, which varies 

substantially among data sets (Table 3.1). If tree size explained the score variability, a 

model of metric and interaction time including tree size should show a strong tree size 

effect and a correlation similar to that observed in the model that included data set as a 

parameter. Instead, such a model produced a poorer correlation. Moreover, a model 

including both data set and tree size showed no significant effect of tree size. Therefore, 

while tree size may have some effect on scores, it is clearly not responsible for variation 

in interaction times between data sets. Further evidence in this regard comes from the 
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variability in qualitative judge scores. The four qualitative scores for each of the selected 

reconstruction submissions had an average range of 0.3 and an average standard 

deviation of 0.14. While experts may each be consistent in their judgments, these results 

suggest that an objective measure such as the DIADEM metric will better serve for 

comparing reconstruction qualities across studies. 

 

Table 3.1. Scores across data sets. Values are means ± standard deviations. Tree size refers to the number 

of branches of the gold standard reconstructions. The Climbing Fiber data set had only one gold standard 

reconstruction, thus it has no standard deviation. The “Uniform” column represents values from the 

DIADEM metric with nodes weighted uniformly. 

Data set Tree Size Qualitative Interaction DIADEM Uniform 

Climbing  
Fiber (n=5) 

199 0.46 ± 0.27 0.11 ± 0.18 0.37 ± 0.28 0.22 ± 0.16 

Hippocampal  
CA3 (n=14) 

4 ± 2.2 0.58 ± 0.26 0.66 ± 0.16 0.39 ± 0.32 0.44 ± 0.31 

Neocortical (n=13) 8.2 ± 7.5 0.4 ± 0.17 0.41 ± 0.17 0.28 ± 0.3 0.25 ± 0.27 

Olfactory 
Projection (n=8) 

26 ± 9.6 0.8 ± 0.06 0.3 ± 0.15 0.78 ± 0.1 0.58 ± 0.09 

 

The correlation between the DIADEM metric and either of the other two methods 

(qualitative evaluation and interaction time) is nearly as strong as the correlation between 

the two human scores, indicating that the metric might capture fundamental features 

shared by expert judgment. Again controlling for data set, the correlation between 

qualitative scores and interaction time was R = 0.83 (p < 10
-8

). A linear model controlling 

for data set also confirms the data set effect in the interaction scores. For example, the 

hippocampal CA3 interneuron (p < 10
-7

) and neocortical layer 6 axon (p < 10
-4

) data sets 

had significant effects when the cerebellar climbing fiber data set is taken as the base 
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model (Figure 3.8). This was the same pattern observed in the model of DIADEM metric 

and interaction time scores. While each measure of reconstruction quality (relative to a 

gold standard) is unique, the analysis suggests that the measures all are strongly related to 

each other and that the DIADEM metric can serve as a surrogate for expert qualitative 

and interaction time judgment (see Table 3.2 for summary of correlations). 

 

Table 3.2. Summary of correlations. All correlations are highly significant (p < 0.001). Values mirrored 

over the diagonal for ease of comparison
2
. 

 
DIADEM 

Metric 
Qualitative Interaction 

Time 
TED 

DIADEM Metric  0.66 0.77 0.52 

Qualitative 0.66  0.83 0.54 

Interaction Time 0.77 0.83  0.75 

TED 0.52 0.54 0.75  

 

The effects of specific scoring method differences are more difficult to tease 

apart. Some of the remaining variance could in principle be attributed to the factors that 

are differentially weighted in each scoring system. For instance, while the DIADEM 

metric weights nodes by terminal degree, the interaction time score does not necessarily 

differentiate nodes by sub-tree size. However, a variant of the metric with uniform 

weights produced no better correlation with interaction time scores (R = 0.75) or 

qualitative scores (R = 0.63). As an alternative explanation, judges might not necessarily 

                                                 
2
Values are Pearson correlation coefficients, except for those associated with Interaction Time (gray 

background), which are each calculated as the square root of the adjusted R
2
 of the linear model. The 

models take Interaction Time as a function of data set and a specific scoring method.  
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mark a branch as incorrect just because it terminates too early or too late, thus differing 

from the DIADEM metric (Figure 3.8b). Another source of variance that could not be 

controlled for was the increased experience of interaction time judges over a set of 

reconstructions of the same underlying neurite. Shuffling the order across team 

reconstructions alleviates bias for or against teams, but it is still possible that two 

reconstructions of the same neurite and of equal quality could receive different 

interaction time scores. Despite these sources of variance and other unexplained sources, 

the correlation results suggest that the DIADEM metric can serve as a complementary 

judgment of features that are more difficult to visualize, particularly branch topology 

(Figure 3.9). Different connectivities within two complex trees can have a profound 

effect on signal propagation and/or integration, even if spatially similar and thus easily 

missed by the human eye. 

 

 

Figure 3.8. Relationships between scoring methods. Data sets are identified with different symbols and 

abbreviations (HC: hippocampal CA3 interneuron; OP: olfactory projection fibers; NC: neocortical layer 6 
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axons; CF: cerebellar climbing fibers). All scores were normalized to a scale of 0 (incorrect) to 1 (perfect). 

A. Separation of scores by data set clearly shows the effect of data set on interaction times. B. The lower 

DIADEM metric scores (along the left edge) are responsible for much of the lack of correlation. These 

scores are largely due to terminal branches that track the gold standard well, but terminate in the wrong 

location. The effect is much stronger in the data sets containing trees with fewer branches (HC and NC). 

 

The importance of positional information is demonstrated by comparing the 

DIADEM metric to the tree edit distance (TED) described above (Heumann and Wittum, 

2009). In order to compare the two measures, tree edit distances values were normalized 

by the gold standard tree size and inverted in order to generate comparable similarity 

values. TED correlations with qualitative scores (R = 0.54) and with interaction times (R 

= 0.75) were lower than those of the DIADEM metric. The correlation between TED and 

the DIADEM metric improved from 0.52 to 0.68 when considering only gold standard 

reconstructions with degree greater than 3 (more than 5 branches). This change, and 

much of the lower correlation, could be due to the fact that two trees could have the exact 

same topology yet differ in terms of branch locations. This is a substantial risk 

particularly for small trees with few distinct topologies. The higher DIADEM scores may 

reflect the treatment of continuations as hits, where cost is calculated at the missing 

descendants, as TED tallies continuations as deleted nodes, and each extra branch as two 

added nodes. Recognizing continuations as hits is important as the node also represents 

its parent branch. Thus, the DIADEM metric is more appropriate than TED for the task of 

measuring reconstruction quality or morphological change of a neuron. 
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Figure 3.9. Tracing errors. Selected region of cerebellar climbing fiber single slice with gold standard 

overlay (left) and sample automated reconstruction overlay (right). While some errors in the automated 

reconstruction are more obvious, the mistake in the central region is more difficult to discern without close 

attention. The right side of the gold standard trace runs from a bifurcation near the bottom to the top, but 

the automated reconstruction creates a non-existent bifurcation which leads the trace downward and stops, 

yielding an excess terminal node (arrowhead). While the bottom bifurcation (bifurcating white arrows) is 

seen as a continuation, the error produces another missed bifurcation immediately above it (hollow circle) 

and then an additional two missed terminations. 

 

Discussion 
 

The DIADEM metric was designed to quantify the differences between two 

reconstructions of the same neuron. Its ability to provide useful scores of reconstruction 

quality was confirmed by strong correlations with expert qualitative judgments and 

measures of interaction time required to fix reconstruction errors. Thus, the DIADEM 

metric could greatly aid the development and tuning process of automated reconstruction 

algorithms. The metric also has particular qualities that would make it useful for 
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measuring morphological change of a neuron over time due to development, plasticity, or 

other experimental factors. 

The DIADEM metric is released open source to encourage future implementation 

of further improvements. A more sophisticated path matching module would decrease the 

likelihood of false positives (incorrectly registering nodes) while creating an option to 

score a node based on its parent branch centerline quality. An average distance method 

used on vasculature centerlines (Schaap et al., 2009) could be adapted to the DIADEM 

metric, given the known starting and ending locations of the path. Such an approach 

would match points along both reconstruction paths, then find the average distance 

between paths. Alternatively, a sequence alignment method using position and curvature 

(direction) could also increase path matching accuracy (Cardona et al., 2010). This 

method would be particularly useful in cases of deformation where a larger position 

threshold is required and a simple average distance is insufficient. 

While a direct comparison of the DIADEM metric with the basic TED showed the 

metric to better represent expert judgment, the potential of TED is worth consideration 

for use in a future improved metric. Heumann and Wittum (2009) tested a variety of node 

labels, evaluating matched nodes and assigning some cost to differences in matched node 

properties. A variant TED might be designed that uses node position as part of a node 

label, and using a nonlinear node edit distance function that evaluates to 0 within a 

threshold range, and to infinity beyond that range. This would at least handle the issue of 

node position, one of the primary characteristics of the DIADEM metric. Such a scheme 

would also allow inclusion of other branch features such as path length or surface area. 
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This would be even more useful in measuring morphological change. Enabling non-

binary scoring for each node based on branch features would create options particularly 

suited to measuring differences in a neuron over time, such as terminal retraction or 

elongation. Nevertheless, these variations on the TED alone would still fall short of the 

DIADEM metric functionality. An advanced DIADEM inspired metric might incorporate 

those aspects of the TED into an algorithm that also weights nodes, handles 

continuations, and makes allowances for certain unmatched test nodes (i.e. excess node 

testing). Moreover, in order to capture qualitative judgment of terminal nodes that are too 

long or too short (or to properly measure growth or retraction of terminal nodes), terminal 

node matching would require specialized processing such as that applied in the 

neuromuscular projection fiber rosette case (Figure 3.6). Thus, although appropriate 

TED variations might approach the capabilities of the DIADEM metric, only in merging 

the two approaches would its benefits be fully realized. 

Repeated gold standards are invaluable to account for subjectivity in evaluating 

reconstructions. A method for measuring the quality of algorithms to reconstruct arterial 

centerlines used a reference composed of several manual reconstructions produced by 

different people (Schaap et al., 2009). While averaged centerlines (and their variances) 

can be used to evaluate paths between nodes, the topology of trees cannot be averaged 

since the paths between nodes either do or do not exist. However, if multiple gold 

standard reconstructions are available, a test reconstruction node and its path could be 

considered valid if matches were present in a representative sample of the gold standards. 

Overall, an automated algorithm should be deemed of “gold standard quality” if its 
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product falls within the variability displayed by the manual reconstructions generated by 

several independent experts. A more detailed analysis would be required for any data set 

to determine how many manual reconstructions are needed to capture the full range of 

subjectivity. 

A metric that tests automated reconstructions can also serve in an iterative process 

of improving the algorithm or tuning its parameters. While developers may choose to use 

it as a separate step, the DIADEM metric can also be integrated into a development 

pipeline that automatically searches optimal parameters for a given data type. The metric 

can return missed nodes, nodes marked as continuations, and excess nodes. It could 

further be enabled to output other details such as centerline precision. Such information 

could aid identification of the most challenging features for the reconstruction algorithm, 

as well as tracking of the changes that produce improvements for specific node types. 

In conclusion, assuming a manual reconstruction is available to use as the gold 

standard, the DIADEM metric captures a substantial proportion of expert qualitative 

judgment and editing time, and it can also detect topological errors easily missed by 

humans. Future implementations utilizing the ability of the metric to register topology 

and measure node-specific differences will enhance its potential to also quantify 

neuromorphological change in time. 

 

Information Sharing Statement: The DIADEM metric executable is a cross-platform 

JAR file which can be run by the Java Virtual Machine on any computer or operating 
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system. The executable, code, documentation, and instructions for use are available at 

http://diademchallenge.org. 
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CHAPTER FOUR: TOPOLOGICAL CHARACTERIZATION OF NEURONAL 

ARBOR MORPHOLOGY VIA SEQUENCE REPRESENTATION. I. MOTIF 

ANALYSIS 

 [An edited version of this chapter is in press: Todd A. Gillette, Giorgio A. Ascoli: in 

BMC Bioinformatics (2015)] 

 

Abstract 
Background: The morphology of neurons offers many insights into 

developmental processes and signal processing. Numerous reports have focused on 

metrics at the level of individual branches or whole arbors; however, no studies have 

attempted to quantify repeated morphological patterns within neuronal trees. We 

introduce a novel sequential encoding of neurite branching suitable to explore topological 

patterns.  

Results: Using all possible branching topologies for comparison we show that the 

relative abundance of short patterns of up to three bifurcations, together with overall tree 

size, effectively capture the local branching patterns of neurons. Dendrites and axons 

display broadly similar topological motifs (over-represented patterns) and anti-motifs 

(under-represented patterns), differing most in their proportions of bifurcations with one 

terminal branch and in select sub-sequences of three bifurcations. In addition, pyramidal 

apical dendrites reveal a distinct motif profile. 
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Conclusions: The quantitative characterization of topological motifs in neuronal 

arbors provides a thorough description of local features and detailed boundaries for 

growth mechanisms and hypothesized computational functions. 

Introduction 
Neuronal morphology is determined by a number of factors, including physical 

and biological constraints and requirements of axonal, dendritic, and network function. 

Branching topology is a complex feature of arbor morphology and is generally measured 

via one of several metrics: number of branches, maximum branch order (i.e. number of 

bifurcations between root and tip), partition asymmetry (Van Pelt et al., 1992), and 

caulescence (i.e. prominence of a main path [Brown et al., 2008]). While these metrics 

have proven useful in many studies, they do not necessarily capture the detailed 

branching patterns of neurons. We introduce a method for representing a neuronal tree as 

a sequence of characters, each encoding for select features of a branch. We tested this 

method on a large set of neuronal reconstructions from NeuroMorpho.Org (Ascoli et al., 

2007).  Specifically, we analyzed the branching sequences for motifs to identify patterns 

(subsequences) representative of arbor types (axons, dendrites, and pyramidal apical 

dendrites). 

Branch diameter and neurite length have long been known to impact passive and 

active electrical propagation (Rall, 1969; Zador et al., 1995), and branching patterns can 

influence the order and timing of input signal integration and postsynaptic receipt 

(Jeffress, 1948; Van Ooyen et al., 2002). Ultimately it is the combination of features, 

including non-morphological features such as channel composition and density, which 
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determine electrophysiological function. Moreover, arbor size and branching patterns 

reflect the distribution of synaptic (pre or post) targets of a neuron given metabolic and 

volumetric constraints (Cuntz et al., 2007, 2012; Wen and Chklovskii, 2008). Beyond the 

functional focus, branching features result from particular growth processes and thus can 

be used to validate growth models driven by biophysics (Hillman, 1979; Tamori, 1993), 

molecular and signaling dynamics (Chklovskii, 2000; Hely et al., 2001; Luczak, 2006; 

Torben-Nielsen and De Schutter, 2014), statistical relationships (Burke et al., 1992; 

Donohue and Ascoli, 2005b, 2008; Samsonovich and Ascoli, 2005), or more abstract 

positional and branch-type rules (van Pelt and Verwer, 1983; Van Pelt and Verwer, 

1986). 

Until recently, the challenges of generating relevant biological data have limited 

cell type growth analyses to a single type or a few related cell types at a time. However, 

accelerating data production and curation of datasets from a growing number of 

laboratories by NeuroMorpho.Org have enabled large-scale analysis. Some studies have 

used these data to detect general principles of neuronal organization (Teeter and Stevens, 

2011; Cuntz et al., 2012). New imaging and semi- to fully-automated reconstruction 

processes (Donohue and Ascoli, 2011; Liu, 2011) are contributing to increased 

throughput, with ever larger datasets to be expected in the near future (He and Cline, 

2011). For detecting relationships between cell types, this influx of data calls for new 

methods of analysis (Polavaram et al., 2014). 

Other fields have seen similarly dramatic growth in data, most notably genomics. 

Statisticians and computer scientists responded by creating a wide and still growing array 
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of techniques to sort through the data in a practical timeframe in search of significant 

relationships and findings. These techniques broadly include local and global alignment 

(Altschul et al., 1990, 1997; Brudno et al., 2003); as well as multiple sequence alignment 

(Thompson et al., 1994), each with many specific algorithms designed for targeted 

sensitivity and/or efficiency. We leveraged the underlying bases of these techniques to 

analyze neuronal morphology by representing axonal and dendritic trees as sequences of 

branches encoded by their features. We began by sequentially encoding local topology 

based on a simple binary tree representation of neuronal structure. We then applied motif 

analysis (Milo et al., 2002) to determine the defining topological patterns across arbor 

types from a broad range of species, neuron classes, and brain regions. Highly over- or 

under-expressed patterns constitute motifs and anti-motifs, respectively. 

Methods 
All code is available open source at 

http://krasnow1.gmu.edu/cn3/NeuriteSequence/, including Java implementation, R 

analysis scripts, and related documentation. 

Neurite trees to sequences 
The possible ways to encode a neurite as a sequence are numerous. As the first 

and simplest approach, we used local topology alone for the encoding of bifurcation 

nodes. Specifically, bifurcations are encoded on the basis of whether their child branches 

lead to bifurcations or terminations. Bifurcations in which both child branches themselves 

bifurcate are encoded with the letter ‘A’ (for “arborizing”). Bifurcations with one 

bifurcating child and one terminating child are encoded as ‘C’ as the tree “continues” 
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without adding a new subtree. Bifurcations with two terminating children are encoded as 

‘T’ (Figure 4.1a). These definitions are equivalent to those used in vertex analysis (Berry 

and Flinn, 1984) with the A, C, and T bifurcation types referred to as tertiary, secondary, 

and primary nodes. Note that terminal branches, though not explicitly encoded, are fully 

accounted for in this method. 

To string the character representations into a sequence, neuronal trees must be 

traversed. We use a traversal that encodes the root node of a tree and then recursively 

selects each subtree of that root in succession (i.e. prefix, depth-first traversal). One of the 

child subtrees is fully traversed first, followed by the second child subtree, and the letter 

encoding each encountered node during traversal is appended to the sequence (Figure 

4.1b). This method optimizes the locality of representation, keeping nodes that are 

adjacent in the tree structure as close as possible in the sequence. Example sequences of 

the apical dendrite, basal dendrite, and axon of a pyramidal cell can be seen in Figure 

4.1c,d. The order of subtree traversal is consistently determined by the number of 

bifurcations in each subtree. We investigated topological sequencing produced by always 

traversing the smaller subtree first (Smaller then Larger: StL) as well as those produced 

by always traversing the larger subtree first (Larger then Smaller: LtS). The StL 

representation has a greater locality, with adjacent tree nodes being nearer in the resulting 

sequence, than the LtS representation. All sequences and k-mers shown here are based on 

StL traversal, though the full analysis also includes unique LtS trees, as discussed in 

Section 2.2. In either StL or LtS traversal, when both subtrees of a node have the exact 

same number of bifurcations, the order is determined by the subtree topology, as 
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described by Harding (1971). Specifically, trees with higher partition asymmetry are 

treated as the larger subtree.  

 

 

Figure 4.1. Converting morphologies to sequences. a. Bifurcation nodes are encoded as characters based 

on whether their child branches bifurcate or terminate. Arborization (A) nodes have two bifurcating 

children. Continuation (C) nodes have one bifurcating and one terminating child. Termination (T) nodes 

have two terminating children. b. Nodes are traversed depth-first starting from the smaller side which 
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optimally preserves locality. c. Hippocampal pyramidal cell apical (green) and basal (blue) dendrograms 

and morphologies are shown (NMO_00191 from [Turner et al., 1995]), with enlargement of a portion of 

the apical dendrite (right) and coloring in the sequence. Node types are colored and numbered by their 

order in the sequence starting with the first node in the subtree. d. The entire pyramidal cell morphology is 

shown (top), with dendrogram (bottom) and sequence representations (background) of the axonal arbor 

(magenta) (NMO_07897 from [Ropireddy et al., 2011]). 

 

K-mers 
To determine what patterns neurites exhibit among all tree shapes, a motif 

analysis was carried out for bifurcation subsequences of (increasing) length k, termed k-

mers. Besides the three monomers A, C, and T, there are nine dimers (Figure 4.2a,b), and 

the number of k-mers grows approximately exponentially with k (Figure 4.2c). While 

there are 27 permutations of trimer sequences, some cannot exist due to tree constraints, 

while some LtS trimers are included as they capture different structures than StL trimers. 

The StL trimers CTT and TTT do not occur as the latter T is a complete subtree that is 

smaller than its preceding sibling subtree. Any LtS k-mer with an A or T in the middle (of 

which there are 14 trimers), such as AAT or CCTC, describes a sequence of bifurcations 

not captured by any StL k-mer. In contrast, the AC StL dimer is equivalent to the TC LtS 

dimer as in both cases the C is the smaller-side child of an A, just as with the ACT StL and 

TCT LtS trimers the CT is the smaller-side child of an A. 

The count and the proportion (i.e. count per sequence length) of each dimer are 

dependent upon node type proportions. For instance, a sequence with more C bifurcations 

than another would be expected to also have more CC dimers. The same effect applies to 

measuring trimer proportions with regard to dimer proportions, and so on. In order to 

account for these dependences, we normalize the analysis of k-mers for a given neurite 

sequence by a set of control trees with the same distribution of (k-1)-mers. Specifically, a 
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set of 100 surrogate tree sequences is generated (sampled from the entire set of tree 

topologies) and constrained by (k-1)-mer proportions and tree size (Figure 4.2d). This 

produces an expected distribution of 100 values for each sequence and k-mer, allowing 

the computation of a percentile rank (PR) for the k-mer proportion in the original neurite 

sequence. The PR provides a value comparable across k-mers, arbor types, and individual 

sequences (i.e. axons, dendrites, and pyramidal apical dendrites). A k-mer that occurs 

significantly more often across a group of neurites than in the surrogate set is considered 

a motif; conversely, a k-mer that occurs significantly less often across a group of neurites 

than in the surrogate set is considered an anti-motif. 

Percentile rank is calculated as 

     

 
 

where N is the number of values in the distribution, and R (rank) is the position of the 

value in an ordered list of values in the distribution. In case of multiple instances with the 

given value in the distribution, the rank is given by their central index (or the mean of the 

central indices) of instances with the value. For example, if the first 15 values are ‘3’, 

then the rank of the value ‘3’ will be 8           , and the PR will be 7.5%. If the value 

is smaller than all values in the distribution, the rank will be 1 and the PR will be 

                    or 0.5%. If the value is larger than all values in the distribution, 

the rank will be 100 and the PR will be                       or 99.5%.  

All statistical tests used the Wilcoxon rank sum or signed rank tests. P-values 

determining whether a k-mer was significantly different than the baseline were adjusted 

for multiple testing using Bonferroni correction given the number of k-mers. 
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Figure 4.2. Measuring k-mers. a. Highlighted dimers in a portion of a fly tangential cell (Borst and Haag, 

1996) and its associated sequence. b. Dimer schematics displaying the possible configurations. Triangles 

represent subtrees of unspecified size and shape. Bold segments indicate branches leading to the larger side 

subtree of the parent A node. Given the (Smaller then Larger) traversal method, the TT dimer must be 

preceded by an A. TA and TC schematics are examples, as additional bifurcations could be found between 

the parent A and small-side T nodes. c. Number of k-mers (with examples) by k shows an approximately 

exponential rise. d. Calculating the percentile rank of a k-mer given the distribution of k-mer counts in the 

source sequence’s surrogate population. An example apical dendrite (NMO_02582 from [Nikolenko et al., 

2007]), dendrogram, and sequence are shown along with cumulative distribution of k-mer counts for k-mers 

AT (red) and AC (green). Below: Six out of 100 node-type-constrained surrogates are shown. The example 

k-mers are highlighted and their counts compose the distributions. Colored dots show the respective 

percentile ranks of the apical dendrite k-mer counts, with AT being above nearly the entire surrogate 

distribution (thus constituting a motif) and AC being “captured” inside the middle 95% of its surrogate 

distribution. 

 



107 

 

Constrained tree-sequence generation 
An algorithm for sampling length and node-type constrained surrogates was 

developed based on that used to generate size-constrained trees (Harding, 1971). 

However, no known method was found for rapid random tree generation fitting the 

constraints of k-mers with k ≥ 2 while ensuring that the resulting trees are uniformly 

sampled over the distribution of tree shapes. The enormous number of trees that need to 

be generated before one matching the k-mer constraints is found made the length and 

node-type-constrained algorithm impractical. Therefore, multiple programs, one each for 

dimer, trimer, and tetramer constrained surrogates, were written that built tree shapes 

with k-mer defined components. The resulting distributions were compared with a 

smaller set of those produced by accepting constraint-satisfying trees from among those 

generated using the algorithm for producing uniformly distributed tree shapes 

(specifically the node-type constrained version). Minor modifications in the code were 

made to minimize the small deviations in k+1-mer distributions seen in the “k-mer built” 

surrogates (detailed comments provided within the code). The most extreme deviations 

were a median difference of 0.1% between constructed surrogate and constrained uniform 

surrogate proportions for trimers CTC and TTC. 

Tree growth methods 
Simple growth models were used to generate trees for comparison with available 

data. The models are versions of the general QS-model (Van Pelt and Verwer, 1986). The 

QS-model takes three parameters as constraints to stochastically generate a tree. A size 

parameter determines the number of branches. The parameter Q determines the 

propensity for bifurcation events to occur at terminal branches versus interstitial (non-
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terminal) branches. A value of 0 produces purely terminal growth, a value of 1 produces 

purely interstitial growth, and values of 0.5 produces segmental (uniform) growth. 

The parameter S determines the branch order bias of bifurcation probability. A 

value of 0 means no order bias; positive and negative values produce a bias towards low- 

and high-order branching, respectively. Specifically, the probability of a terminal node 

being selected to branch at a given branch event is given by       , where C is a 

normalization constant and γ is branch order. The terminal growth model referenced in 

Figure 4.4b,d is low-order biased, using Q=0 and S=0.4. The segmental growth model 

used has no order bias, with Q=0.5 and S=0. 

The NeuroMorpho.Org dataset 
All data used in this study were downloaded from the NeuroMorpho.Org database 

(version 5.6), which houses neuronal reconstructions from a wide variety of species, 

brain regions, cell types, labs, and experimental methods (Ascoli et al., 2007). In order to 

minimize confounds, we eliminated neurons cultured in non-organotypic environments 

(N=29) as well as the topologically simple neurons from the OpenWorm archive 

(N=302). Neurons from non-control (e.g. drug-affected) conditions were also eliminated 

(N=1288), and only one of multiple reconstructions found to be traced from the same 

neurons were kept (N=25 removed), bringing the dataset to 8,223 reconstructions. 

Each reconstruction was partitioned into different neurite arbors (indicated by the 

‘type’ column in SWC-formatted reconstruction files).  Given the clear differentiation 

between axons and dendrites, the two arbor types were analyzed separately. Additionally, 

for pyramidal cells, apical dendrites were sequenced as a third distinct arbor type given 
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its well-known morphological differences from the basal trees (Whitford et al., 2002; 

Donohue and Ascoli, 2008). Pyramidal basal dendrites were grouped with non-pyramidal 

dendrites, and pyramidal neurons without differential labeling of apical and basal arbors 

were removed from the dataset (N=20). Apical dendrites of non-pyramidal cells were 

ignored (N=11).  

Many neuron types have multiple dendritic trees, sometimes with fairly few 

bifurcations each. Separate dendritic trees originating from the same soma were 

combined into a single binary dendritic arbor, substituting all initial segments (root 

stems) with connecting bifurcations. The assembly of individual trees into a joined arbor 

depended on the relative distances of their initial segments of each, with the nearest pair 

becoming siblings of a new bifurcation located mid-way between them, and the process 

repeated until only bifurcations remained. Although the same method can similarly 

handle multifurcations (i.e. 3 or more child branches), NeuroMorpho.Org preprocessing 

eliminates such cases by splitting them into multiple bifurcations at successive segments. 

Based on proximity of bifurcations, up to 1.5% of dendrites, 2.8% of axons, and 0.6% of 

apical dendrite branching events were trifurcations. A minority of datasets included 

reconstructions of spines labeled as short dendritic branches. To avoid confusing arbor 

topology with representation of spines, dendrites were further processed by removing any 

terminal dendritic branch shorter than 2 microns (969 dendritic arbors affected; branches 

removed: mean of 7.1, median of 2, maximum of 546). This preprocessing step had little 

impact on the conclusions of this study, but had a notable effect on analysis restricted to 

larger dendrites, as explained in the Results. 
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Given this work’s focus on topological pattern detection and analysis, a 

substantial number of neurites were discarded due to having too few bifurcations and 

therefore insufficient complexity. Trees of a given size have a limited number of shapes 

(Figure 4.3a), that number increasing approximately exponentially with tree size (Figure 

4.3b). We therefore picked a minimum tree size in order to maximize the available data 

while minimizing the chance of two unrelated trees having identical topology. At a size 

of 20 bifurcations, the odds of two trees in the dataset matching by chance (N=276) is 

about 5%; the odds halve at a size of 21 (N=280), with the chances still less than 25% if 

allowing for a single edit (insertion or deletion of a branch) from a tree of size 21. Using 

a minimum tree size of 20 bifurcations (inclusive), 1,056 axons, 2,460 dendrites, and 

1,588 pyramidal apical dendrites were excluded. The final dataset contained 6,798 

neurites in total, with 1,255 axons, 4,686 dendrites, and 857 pyramidal apical dendrites. 

 

 
Figure 4.3. Tree size and complexity. a. Complexity of trees is limited by tree size. Here are shown the 

set of possible tree shapes for trees with 1 to 6 bifurcations. Additionally, the number of T nodes (red dots 

in sample trees) is always 1 more than A nodes (green dots). Thus, size and number or percent of C nodes 

(yellow dots) fully captures node-type statistics. b. Number of tree shapes for tree size (in # bifurcations, or 

sequence length). The relationship is approximately exponential, though the number is smaller than for the 

set of all possible sequences of the same size and alphabet unconstrained by “treeness”. Green lines 

indicate the 11 topologies of trees with 6 bifurcations displayed in (a) and the 680,000 tree shapes with 20 

bifurcations which serves as the minimum complexity cutoff for the analysis. 
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The content of NeuroMorpho.Org is representative of the species, brain regions, 

and cell types that are commonly studied and reconstructed (Halavi et al., 2012). After 

the above described selection, in the dataset used here Human data made up 37% of 

dendrites, Mouse 28%, and Rat 23%. Axons were made up of 50% Rat, 35% Mouse, and 

11% Drosophila. Brain regions were represented primarily by Neocortex in both axons 

and dendrites, followed by Hippocampus and Drosophila Olfactory bulb in axons, and 

Hippocampus and Retina in dendrites. Apical dendrites came primarily from Rat (53%), 

Mouse (35%), and Monkey (10%), with 68% from the Neocortex and 31% from 

Hippocampus with nearly equal proportions between CA1 and CA3. Although the data is 

heterogeneous and further motif distinctions can be made between species and cell types 

of a given arbor type, this dataset reliably captures general research trends in terms of 

arbor type and metadata distribution, and thus serves effectively as a test bed for 

topological sequence analysis. 

Results 

Length and node-type proportions across arbors types 
Many morphological features of neurons, particularly the arbor spatial coverage, 

total wiring length, and typical branch diameter, can be visualized and roughly estimated 

simply by looking at a reconstruction. Some topological features involving similarly 

straightforward calculations, such as the proportion of node types, are often quite difficult 

to discern visually (Figure 4.4a). Since the number of T nodes (#T) is always one more 

than the number of A nodes (#A), node type proportion information is reported compactly 

as the sequence length and proportion of C nodes (%C). 
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Equation 4.2 

   
      

       

 
 

Equation 4.3 

 

Axons and dendrites show significantly different bifurcation type proportion 

distributions, measured by the proportion of C nodes (%C), with some overlap (Figure 

4.4b), reflecting different functional properties and growth mechanisms. Pyramidal cell 

axon and dendrite distributions are broadly similar to the overall trends, but show a 

broader axonal distribution. Apical dendrites have %C values that fall between axons and 

(basal) dendrites.  

The lower %C values of (non-apical) dendrites and the high values of the axons 

are suggestive of two conceptual growth models focusing on the site of bifurcation, 

namely terminal growth and segmental growth (van Pelt and Verwer, 1983). Terminal 

growth consists of a model neurite bifurcating only at terminal segments, reflecting 

growth cone bifurcation, for some predetermined tree size (see schematic in Figure 4.4c). 

A segmental growth model allows bifurcations to occur with equal probability at terminal 

and interstitial branches. The %C distribution of dendrites matches fairly closely to the 
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values of trees generated by a terminal growth model. Specifically, a small bias towards 

bifurcating at low-order branches (see Methods) is sufficient to achieve the precise 

overlap of low %C (Figure 4.4b,d). Conversely, axons more closely fit the segmental 

growth model. 
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Figure 4.4. Neurite size and node type features. a. Example morphologies along with node-type 

proportions (%C) illustrate how difficult it is to estimate topological patterns by visual inspection of full 

morphologies (Gulyás et al., 1999; Ikegaya et al., 2005; Nikolenko et al., 2007). b. Percent C distributions 

of axons (magenta) and dendrites (blue) overlap but are clearly distinct. Inset: Pyramidal cell basal apical 

dendrites (green) fall between basal dendrites and axons, which respectively are similarly distributed to the 

(non-apical) dendrites and axons of all (non-pyramidal) neurons. Biased terminal (dark gray) and segmental 

(light gray) growth bound the neurite populations, with the unbiased distribution of tree shapes (black) 

falling in between. c. Percent C versus sequence length for axons and dendrites compared to the tree shapes 

baseline, segmentally grown trees, and terminally grown trees with low-order bias. Below: Distribution of 

sequence lengths for axons and dendrites. Axons fall in between segmental and terminal growth while the 
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bulk of dendrites display terminal growth followed by a possibly segmental growth-based rise in %C with 

larger sequence lengths. d. Schematics of terminal (top) and interstitial (bottom) growth starting from a 

representative seed tree shape with sequence CCT. Colored dots represent potential bifurcation points given 

the growth mechanism, with their respective resulting branches seen in the trees surrounding the initial tree. 

e. Percent C as a function of relative position within sequences for dendrites of several sequence size 

groups along with segmental and terminal growth. The increase in %C with sequence length is sequence-

wide and not specific to distal portions of trees. The initially low %C and rise to stability is similar to that 

displayed by terminally grown trees. 

 

Most dendritic arbors have relatively few branches (Figure 4.4d - bottom), but 

for  those that are larger than 40 bifurcations, the %C trends upwards until matching the 

%C distribution of axons at approximately 150 bifurcations (Figure 4.4d). This trend was 

systematic across all cell types consisting of a sufficient number of large dendrites 

(without removing likely spines from reconstructions, the trend had an even steeper slope 

and rose well beyond %C of axons). We initially speculated that this effect could be due 

to an increase in C bifurcations farther out in dendrites; however this hypothesis is proven 

false by analyzing the %C as a function of sequence position (Figure 4.4e). The only 

position effect, also observed in trees generated by terminal growth, is seen at the 

beginning and does not change substantially in larger dendrites. This suggests that larger 

dendrites are primarily larger by virtue of a segmental growth process and a greater 

proportion of C bifurcations. 

Axons show only a very small change in %C with sequence length. This change 

could be an artifact of incomplete reconstructions. Axons generally cover far greater 

areas relative to dendrites and thus are commonly only partially reconstructed. The 

relative stability of the %C suggests that branching patterns might be largely unaffected 
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by partial reconstruction; however, as discussed below, dimer and trimer trends in axons 

do show a tree size effect. 

Motifs and Anti-motifs 

When analyzing k-mers of increasing length, it is expected that at some k there 

will be little if any additional information beyond the patterns already identified with 

shorter sub-sequences. In order to determine at what value of k the analysis should 

conclude, we identified the proportion of k-mers that were predicted by the (k-1)mer-

constrained baseline for each k. If the PR fell within the middle 95% (2.5% < PR < 

97.5%) then it was considered “captured” by the baseline. Trimer proportions almost 

fully constrained the representation of neurite tree sequences such that 99.1% of 

tetramers were captured (Figure 4.5a). As the capture rate of an additional set of trimer-

constrained surrogate tetramers (distinct from the set used for normalization) was 99.4%, 

the gap between real neurite tetramers and the additional surrogates was 0.3 ± 0.03% 

(SEM). The additional k-mer constrained surrogate set was necessary due to the discrete 

nature of the k-mer distributions. Note that rather than a surrogate set achieving 95% of k-

mers captured as would be expected with continuous data, the capture rate increases with 

k because more baseline count distributions have either 0 variance or the top or bottom of 

the distribution is composed of only a single value. The results are similar across arbor 

types at k=4, with axons showing the lowest capture rate and largest gap between neurites 

and baseline of 98.1 ± 0.6% and 0.6 ± 0.1%, respectively. Although the difference 

between neurite and baseline was statistically significant due to the large n of over 6,000 

sequences, the negligible effect serves to signal a cutoff for analysis beyond trimers. In 
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other words, describing the neurite distributions of monomers (%C), dimers, and trimers 

is also sufficiently informative of the distribution of longer patterns (capturing e.g. all but 

0.3% of tetramers). 

Except for one (CC), each of the 9 dimers is either a motif or an anti-motif, 

primarily reflecting terminal growth (Figure 4.5b), in stark contrast to the node type 

results (monomer pattern) observed for axons. Percentile rank values differ by a 

significant but small amount between axons and dendrites, with pyramidal apical 

dendrites deviating from baseline in the same direction but by far smaller amounts for 

each k-mer (Figure 4.7). Because k-mers for a given k are not independent of one 

another, a more detailed analysis requires a grouped approach. A k-mer that diverges 

from baseline substantially more than its counterbalanced k-mers, such as CA compared 

to AA and TA, is particularly illuminating. In this case, A nodes tend to descend from 

other A nodes, either on the small (AA) or large side (TA), and are particularly unlikely to 

be children of C nodes. Thus, axons and (non-apical) dendrites have highly arborizing 

regions topologically close to the soma, while the CT motif indicates that C nodes tend to 

occur primarily near neurite subtree terminations. In comparison, apical dendrites have 

much less extreme values for all dimers, better reflecting a segmental growth mechanism 

and a more even distribution of C nodes throughout the tree. 

The strong CT motif and strong TT and AT anti-motifs are at least in part due to 

the greater number of growth pathways that produce trees with CCT or ATCT compared 

to ATT subtrees (Figure 4.5c). Increasingly complex terminal growth examples show 

even larger proportions of CT dimers relative to AT, while segmental growth show a 
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balance of the two while still maintaining low proportions of TT dimers. The CT/TT 

effect is consistently observed in dendrites and axons from a variety of neuron types, and 

particularly Martinotti interneurons (Figure 4.5d-e). 
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Figure 4.5. Dimer analysis reflects terminal growth effects. a. Average proportions of captured k-mers 

(percentile rank between 2.5
th

 and 97.5
th

) at each k for all neurites, with a break between 0 and 80%. Over 

95% of trimers are captured, as are over 98% of tetramers, suggesting that most analyses should focus up to 

dimers, and possibly trimers. Darker descending bars represent the baseline, or chance level based on 

bootstrapping of surrogates. Numbers between or above bars signify the gap in percent captured between 

real neurites and the baseline (i.e. statistical equivalence). b. All axon and dendrite dimers except CC are 

motifs or anti-motifs. Colored lines below dimer schematics show associations between dimers. When one 

dimer proportion increases (and in turn its percentile rank) another must decrease. c. Growth processes 

produce specific topological patterns. Starting with a tree of a single bifurcation, the tree grows one 

bifurcation at a time from terminal nodes. After two bifurcation steps the CT to TT ratio is 2:1 as there are 

twice as many ways a CCT shape can emerge compared to an ATT shape. After a third bifurcation (at 

right), the dimer ratio is 5:1, and still 3:1 controlling for %C. d and e. CT and TT motifs and anti-motifs 

shown in an exemplar interneuron’s dendritic and axonal arbors (NMO_00340 from [Wang et al., 2002]) in 

sequence and dendrogram (d), and full morphology (e). Sequence and dendrogram highlighting indicate CT 

dimers in the axon (pink) and dendrite (blue). In the morphology, the darker color indicates the CT dimers. 

Asterisks (*) indicate the TT dimer in both representations. All error bars are standard error of the mean. 

 

Trimer patterns generally continue several trends revealed by dimers including the 

nearer-to-baseline profile of apical dendrites and the similarity between dendrites and 

axons. Of the 39 trimers, dendrites and axons share 9 anti-motifs and 11 motifs. Trimer 

motifs CAT, CTA, CCT, and ATC, and anti-motifs AAT, ATA, CTC, TCT, CCA, all are 

consistent with primarily terminal growth and trees with C nodes associated with terminal 

T nodes. The AT dimer, a single branching event from a C node, is also seen as 

associating with C nodes in motifs CAT and ATC rather than with arborizing A nodes as 

evidenced by anti-motifs AAT and ATA. 

A particularly distinguishing feature that sets axons and dendrites apart manifests 

in a small collection of trimers (TCT, ACC, ACT, TCA, and TCC) that show a tendency in 

axons for larger-side subtrees to continue rather than terminate (Figure 4.6). Specifically, 

while both axons and dendrites have CCT as a motif, only axons have TCT as strong anti-

motif and ACT as a strong motif. TCT represents complete subtrees ATCT or ACTCT 
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(since the latter subtree must be of equal or larger size) and is counterbalanced by TCA 

and TCC which allow for larger-side subtrees of increased size. The ACC anti-motif is 

most simply explained as a counterweight for the ACT and TCC motifs. This difference 

between axons and dendrites is at least in part due to their different tree sizes, as these 

trimers are among the few that become more extreme with sequence length (consistent 

with terminal growth effects). However, even accounting for number of branches, some 

difference remains between axons and dendrites in these trimers, possibly related to the 

same functional or developmental mechanisms responsible for the different node type 

proportions. 
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Figure 4.6. Distinguishing trimers of axons and dendrites. Axons and dendrites share some motifs 

consistent with dimers and their interpretations, but they differ on a small related set of k-mers. A rat 

hippocampal CA3 interneuron dendrite (left; NMO_00837 from [Chitwood et al., 1999]) displays a relative 

abundance of ACC trimers (asterisks) but only one ACT occurrence (dark blue). A rat cortical basket cell 

axon (right; NMO_07461 from [Kawaguchi et al., 2006]) has 9 occurrences of ACT (magenta) but only 2 of 

ACC (asterisks). Graph Inset: The ACT k-mer is a motif for axons (magenta bars) and a slight anti-motif 

for dendrites (blue ovals), while ACC is an anti-motif for axons and neither motif nor anti-motif for 

dendrites. 

 

 

Figure 4.7. Dimer motifs and anti-motifs by arbor type. All mean dimer percentile ranks (with SEM 

error bars) are shown for each arbor type. Apical dendrites are closer to the baseline (50%) than axons and 

dendrites except for the case of (A)TT where all arbor types are approximately the same. 

 

 

Figure 4.8. Axon and dendrite trimer motifs and anti-motifs. Axons and dendrites exhibit highly similar 

trimer patterns, with a few notable exceptions. Approximately one-third of trimers are motifs and another 

one-third anti-motifs. 
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Discussion 
The novel method of representing neuronal trees as sequences of bifurcations 

introduced in this work facilitates detection and analysis of branching patterns. Using an 

exclusively topological approach we show that sequence length and subsequences up to 

three characters long almost completely capture the local topology of neuronal axons, 

dendrites, and apical dendrites. 

Node type distributions highlight the most substantial differences between axons 

and dendrites, with axons having higher proportions of terminal side-branches (C nodes). 

The vast majority of dendrites exhibit particularly low proportions of C nodes, but the 

proportion increases considerably for dendrites with greater than 40 bifurcations. Dimer 

and trimer motifs show much greater similarity than difference between axons and 

dendrites, highlighting a primarily terminal growth effect with some particular and likely 

complex segmental growth process occurring in axons and larger dendrites. Pyramidal 

neuron apical dendrites (mainly cortical), on the other hand, stand out as having a k-mer 

profile very similar to a basic segmental growth model with relatively small deviation 

from the baseline of tree shapes. 

Dendrites have generally denser spanning fields than axons and the functional 

role in processing inputs from other neurons can further constrain their shape. While 

homogenous targeting can lead to winding and asymmetric trees in models that only 

minimize neurite wiring, efficient signal integration (i.e. current transfer to the soma) 

demands shorter paths, which in turn require more symmetric trees (Cuntz et al., 2007). It 

is tempting to hypothesize that terminal growth processes are simpler or more efficient at 

producing dendrites satisfying such constraints, and thus the dendritic motif profile 
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reflects those dominant features. Pyramidal apical dendrites, particularly those in the 

neocortex, have a more heterogeneous spanning field, with relatively sparse coverage 

along the trunk and denser coverage in the distal tuft (Spratling, 2002; Spruston, 2008). 

Segmental growth may better fit such a target region shape, though biased retraction 

following initial terminal growth, which is known to take place for some differentially 

projecting pyramidal subtypes (Koester and O’Leary, 1992), is an additional factor that 

impacts topology (van Pelt, 1997). The molecular and biophysical specialization of the 

apical dendrite (Whitford et al., 2002; Matsuki et al., 2010) optimizes input integration 

by minimizing the effective path distance of farther synapses (Vetter et al., 2001). 

Axon motifs indicate a more complex growth process with dimers and trimers 

suggesting primarily terminal growth but node-type proportions reflective of segmental 

growth. While axons are not as constrained as dendrites in terms of path distance and 

target region size, they are the neuronal component most responsible for navigating 

through the environment to create connections. Axons are also characterized by a more 

substantial energy footprint and specific energy regulation mechanisms (Yang et al., 

2015). Developmental studies have shown that axons branch interstitially (Kalil and 

Dent, 2014); however, during the interstitial branch outgrowth the growth cones stop 

(Bastmeyer and O’Leary, 1996; Szebenyi et al., 1998). In conjunction with axonal self-

avoidance (Sagasti et al., 2005; Grueber and Sagasti, 2010) and retraction during 

development (Luo and O’Leary, 2005), this complex orchestration might produce 

terminal growth-like features.  
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Axon morphology is also impacted by post-developmental activity and plasticity. 

Axons are motile and plastic, displaying branch growth and retraction in adult animals 

(De Paola et al., 2006; Stettler et al., 2006). While this is also true of dendrites, on 

average axons have much greater inter-branch distance along which to bifurcate or move 

in response to environmental cues. These capabilities have important implications for 

network plasticity and learning, including the possibility of branch outgrowth in response 

to local network activity. Such branching would be segmental in nature since it could 

occur at any location along an axon; such a mechanism would at least partially explain 

the high %C in axons, which otherwise display topological patterns indicative of terminal 

growth. 

The motif results of axons will benefit from confirmation with a larger set of 

complete reconstructions, as many axons in the dataset are likely incomplete (Parekh et 

al., 2015). However, the relationship between k-mer percentile ranks and sequence length 

generally followed the trends seen in a basic terminal growth model. Assuming axon tree 

size as a proxy for completeness, it is likely that the general findings will be confirmed. 

Nonetheless, subsets of the axon data may reflect reconstruction artifacts. 

Data biases 

 Given that our analyses primarily focus on arbor types across cell types and brain 

regions, the results are susceptible to bias in the dataset. Our exploration of potential 

distinctions between cell types in dendrites revealed few clear differences beyond 

sequence length distributions given the sample sizes available. The same appears to hold 

for axons, though the sample size of diversity of neuron types is far more limited. 
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Analysis in the companion study do show substantial global differences between four 

axon subtypes, with only modest motif profile differences between three of them (Gillette 

et al., 2015). This suggests that the results are generally applicable for dendrites and 

axons, and that most differences between classes, while potentially interesting and worth 

further study, are small compared to deviations of the arbor types from the baseline.  

Apical dendrites, on the other hand, show substantial differences between brain 

regions. The results presented here are dominated by the more numerous neocortical 

pyramidal cells. The hippocampal CA1 and CA3 motif profiles differ from the 

neocortical profile and from each other, consistent with known morphological and 

anatomical differences between the 3 regions. 

Alternative encodings and traversals 

Although the current work focused on purely topological encoding, the approach 

to represent arbors as strings of characters can be extended with additional geometric 

characteristics of branches. Several branch-level features might be discretized and 

encoded, such as branch length, tortuosity, or bifurcation angle. With an expanded 

sequence based on a larger alphabet of characters, the number of k-mers would increase 

dramatically. Motif analysis could allow us to determine whether certain branch-level 

features co-occur with each other and with specific topological patterns, providing novel 

observations for forming new growth and functional hypotheses.  

Classification is another potential use of any new representation and measure. In 

the case of topological motifs the variability is too large to be particularly useful in 

classification; however, other analyses using this representation as well as an expanded 
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encoding have the potential to aid in classification. A classification example and 

candidate encodings are discussed further in the companion paper (Gillette et al., 2015). 

Rather than a depth-first traversal, a tree could alternatively be encoded as a 

collection of sequences, each representing a path from root to tip (Basu et al., 2011). The 

utility of the representation likely depends upon the specific investigative aim. One 

potential draw-back is that low-order branches will be represented multiple times, which, 

in addition to imposing a bias for certain types of analysis, multiplies the size of the 

representation. A benefit of such a representation lies in preserving the sequential pattern 

of all paths. 

Model validation and additional applications 

The current topological representation, along with expanded representations, 

could prove valuable as a more sensitive measure of emergent topology relative to 

standard morphometrics for gauging the quality of computational simulations of 

developmental processes. Standard topological metrics are useful for determining 

whether a particular model matches the true distribution, but motifs may provide a clearer 

indication of how the model and true neurite distributions diverge and what modifications 

might be necessary to improve the model. Experiments focusing on functional 

constraints, such as wiring efficiency or distribution of synaptic targets, would have the 

added benefit of more clearly associating motifs with neuronal function. Though not 

detailed here, the distinctive motifs of neurites from different neuron types suggest that 

topological arbor patterns may be impacted by the specific functions and anatomic 

contexts of neuron types. 
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Conclusions 

The proposed sequence representation of binary trees is effective for quantifying 

the topological patterns of neuronal arbors. Motif analysis offers a measure to validate or 

refine models and hypotheses. Motifs analysis reveals that the local topological features 

of both axons and non-apical dendrites are similarly consistent with terminal growth-like 

processes despite substantial different overall size and function. In contrast, pyramidal 

apical dendrites exhibit a motif profile indicative of segmental growth. 

The methods described here and in the following paper can generally be applied 

to any tree structure of sufficient complexity. Research in glia (Matyash and Kettenmann, 

2010; Hartenstein, 2011), brain vasculature (Wright et al., 2013), botany (Segura et al., 

2008), rivers/watersheds, and phylogenetics are all potential targets of a sequence 

analysis approach.  Moreover, while the topological sequence representation is powerful 

as it is, it also can serve as a basis of other morphological features. 
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CHAPTER FIVE: TOPOLOGICAL CHARACTERIZATION OF NEURONAL 

ARBOR MORPHOLOGY VIA SEQUENCE REPRESENTATION. II. GLOBAL 

ALIGNMENT 

[An edited version of this chapter is in press: Todd A. Gillette, Parsa Hosseini, Giorgio 

A. Ascoli: in BMC Bioinformatics (2015)] 

 

Abstract 
Background: The increasing abundance of neuromorphological data provides 

both the opportunity and the challenge to compare massive numbers of neurons from a 

wide diversity of sources efficiently and effectively. We implemented a modified global 

alignment algorithm representing axonal and dendritic bifurcations as strings of 

characters. Sequence alignment quantifies neuronal similarity by identifying branch-level 

correspondences between trees. 

Results: The space generated from pairwise similarities is capable of classifying 

neuronal arbor types as well as, or better than, traditional topological metrics. 

Unsupervised cluster analysis produces groups that significantly correspond with known 

cell classes for axons, dendrites, and pyramidal apical dendrites. Furthermore, the 

distinguishing consensus topology generated by multiple sequence alignment of a group 

of neurons reveals their shared branching blueprint. Interestingly, the axons of dendritic-

targeting interneurons in the rodent cortex associates with pyramidal axons but apart from 

the (more topologically symmetric) axons of perisomatic-targeting interneurons. 
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Conclusions: Global pairwise and multiple sequence alignment of neurite 

topologies enables detailed comparison of neurites and identification of conserved 

topological features in alignment-defined clusters. The methods presented also provide a 

framework for incorporation of additional branch-level morphological features. 

Moreover, comparison of multiple alignment with motif analysis shows that the two 

techniques provide complementary information respectively revealing global and local 

features. 

Introduction 
Neuronal morphology has been an important research topic due to its relevance to 

neuron growth, electrophysiology, classification, connectivity, and pathology. In recent 

years the availability of morphological data has dramatically increased across a broad set 

of species, cell types, and conditions thanks in part to search and curation efforts of 

NeuroMorpho.Org (Ascoli et al., 2007). Meanwhile, new staining, imaging, and 

reconstruction technologies are producing orders of magnitude more data from animal 

models in projects such as FlyCircuit (Chiang et al., 2011) and FlyLight (Jenett et al., 

2012). Ongoing advancements are continuously improving automated reconstruction 

(Donohue and Ascoli, 2011; Parekh and Ascoli, 2013) and groundbreaking large scale 

endeavors such as the BRAIN Initiative are expected to expand the amount of data from 

mammalian organisms by additional fold factors. Importantly, these large datasets 

provide opportunity to validate universal morphological characteristics (Teeter and 

Stevens, 2011; Cuntz et al., 2012) as well as to discover or test features and relationships 

of specific neuron types (Polavaram et al., 2014). Drawing inspiration from the field of 
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genomics, where the Human Genome Project ushered in an analogous flood of data, a 

variety of new methods are being developed to enable search and analysis of the growing 

pool of morphological data. 

Historically, most metrics devised for morphological analysis have focused at the 

whole neuron level or averaged across branches, with some derived methods quantifying 

a feature as a function of distance from the soma (i.e. Sholl analysis [Sholl, 1953; 

Scorcioni et al., 2008]). Pairwise comparisons have greater potential to detect fine 

structural distinctions, making them appropriate for search, curation, classification, and 

exploration of prototypical features. Recently several studies have used pairwise 

comparisons in morphological analysis. Pairwise sequence alignment of neurite path 

directional vectors helped determine the unique neuroblast lineage of larval Drosophila 

neurons (Cardona et al., 2010). The NBLAST algorithm leveraged a form of vector 

comparison, with nearest edges in two neuron images aligned and measured by their 

tangent vectors and spatial distance (Costa et al., 2014). Thus, anatomical position and 

overall shape were applied for search, clustering, and classification to a database of over 

16,000 Drosophila neurons. The Path2Path algorithm compares neurons by assigning 

every path, from root to tip, of one neuron to the other. The distance is given by the 

deformation of the paths, modulated by the difference in topological hierarchy of points 

along the paths (Basu et al., 2011). An extension of the Elastic Shape Analysis 

Framework captures the difference between trees based on path shape and topology, as 

well as bifurcation locations and angles (Mottini et al., 2014). This method can also 

generate a representative “mean shape”, though the examples primarily represent 
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common path features. BlastNeuron, the most recent entry into the field, focuses on 

aligning branches both by topology and path shape via dynamic programming after first 

searching for similar neurons on the basis of morphometrics (Wan et al., 2015). In 

addition to providing an efficient approach for search in large databases, the alignment 

component could prove useful in detecting and pinpointing differences between related 

neurons and between reconstructions of the same neuron produced by multiple 

algorithms, enabling error correction and even synthesis of those algorithms. 

The tree edit distance (TED) compares the topology of two trees by determining 

the minimum sequence of edit operations required to transform one tree into another 

(Zhang, 1996). Specifically, each branch of two trees is aligned to a branch in the other 

tree or labeled as an insertion. Branch features such as length, volume, surface, and 

bifurcation angle can be represented; in this case an edit cost based on their differences is 

applied for each branch assignment. The TED has been used on tree structures in multiple 

fields (Gillette and Grefenstette, 2009; Heumann and Wittum, 2009) and constitutes the 

most related algorithm to what we present here. 

We present an original strategy to evaluate alignment of topology distinctly from 

other branch features across a broad range of neuronal classes. Our method exploits the 

novel encoding of neuron trees as sequences of characters representing bifurcations 

presented in the preceding companion paper (Gillette and Ascoli, 2015). We align the 

resulting strings with a custom-developed Python package introduced here: Pattern 

Analysis via Sequence-based Tree Alignment (PASTA). We used model-based cluster 

analysis on alignment scores to group similar neurites. Furthermore, we generated a 
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consensus representation of clustered neurites by multiple sequence alignment revealing 

the conserved structural features of the corresponding trees. Sufficiently large neuron 

classes, well-defined by available metadata, were compared to the clusters to determine 

whether those classes are topologically distinct and, if so, what their defining global 

features are. Each arbor type of axons, dendrites, and pyramidal cell apical dendrites 

showed clear topology alignment clusters with distinctly conserved features. Moreover, 

we show that multiple alignment consensuses and motif analysis provide complementary 

levels of analysis of neurite topology. As an immediate application, the PASTA tool also 

enabled detection of previously unidentified duplicate reconstructions in the 

NeuroMorpho.Org database; this important curation step will be incorporated in the 

regular data processing pipeline of this repository. At the same time, the approach is 

extensible to more complex representations as required by the research goal. 

Methods 
Sequences are generated from neuronal trees as presented in the companion paper 

(Gillette and Ascoli, 2015): each branch is encoded as an A, C, or T depending on 

whether its child branches both bifurcate, bifurcate and terminate, or both terminate. A 

depth-first traversal keeps child branches relatively near to parent branches in the 

sequence representation, and traversing the smaller subtree (in terms of number of 

branches) before the larger (i.e. StL traversal) further preserves that proximity. This 

choice also allows for a more intuitive description of changes to a tree structure (Figure 

5.1a). 
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Custom sequence alignment algorithms were developed for tree-derived 

sequences given their particular structural features. A global alignment algorithm was 

developed with specialized character types and alignment rules associated with 

bifurcation types. The scores produced by this method were normalized by size and a 

random-tree baseline prior to analysis. A multiple sequence alignment algorithm was also 

custom-adapted for tree-sequences from the genomics global and multiple alignment 

techniques. 
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Figure 5.1. Pairwise global sequence alignment. a. Changes in tree structure are reflected in sequence 

representation. When a side-branch is lost from a non-T node or a T-node with a C parent, a C node is 

removed from the sequence. When a branch is lost from a T node with an A parent, the T is removed and 

the parent A becomes a C. b. Two tree-derived sequences are aligned by matching characters and placing 

gaps when an alignment cannot be made. C nodes or entire subtrees are gapped, from an A to its associated 

T (orange brackets). The A at the front of a gap region can be matched to a C (purple connected bracket). 

Matches (blue |) count as 1 point, gaps (orange X) count as -1 point, and openings of a gap region count as 

-3 points. Alignment scores are normalized and converted into distance values. c. Sample apical dendrite 
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morphologies of hippocampal CA1 and CA3 pyramidal cells (NMO_00588, 07558, 00219, 00213 from 

[Ishizuka et al., 1995; Megías et al., 2001; Michaelsen et al., 2010]) and their topology dendrograms 

illustrate alignments between neurites of the same sub-region along with normalized distances for all 6 

pairs. Inset: Within- and between-group distributions of normalized distances (with mean ± standard 

deviation) indicate that the pyramidal apical dendrites are topologically more similar to apical dendrites of 

their own group than to those in the other group. 

 

Other well-established data manipulation and analysis methods utilized in this 

work are briefly described as well, such as the creation of a metric space from alignments 

for further analysis including classification and model-based clustering. Clusters are then 

statistically analyzed for associations with known cell groups. This Methods section also 

describes the (publicly available) dataset used in this study and related selection criteria. 

All code developed for this study (and associated documentation), including tree and 

sequence generation (Java), sequence alignment (Python), and analysis (R), is available 

open source at http://krasnow1.gmu.edu/cn3/NeuriteSequence/. 

Global tree-sequence alignment  
Powerful bioinformatics approaches exist for comparing gene sequences to each 

other to determine similarity and derive evolutionary relationships. A gene may mutate 

by conversion of one base pair to another (edit), the introduction of a new base 

(insertion), or the elimination of a base (deletion). Analogous operations allow the 

comparison of neuronal trees: the modification of branch properties, outgrowth of new 

branches, and branch retraction. While neuronal trees do not explicitly share an ancestry 

or phylogenetic relationship typical of nucleotide sequences, they do share growth 

programs based on neuron type and associated genetic expression. From a functional 

perspective, neuronal branches have properties that impact charge transfer, signal 
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integration, and space occupancy. The assembly plan of these features may indicate 

growth rules and functional attributes of the neuronal arbor as a whole. 

Given the described encoding scheme (Gillette and Ascoli, 2015), the growth of a 

single neurite branch results in one of two possible sequence edits, with branch retraction 

expectedly producing the opposite edit in either case. Growth prior to a bifurcation, or on 

the child branches of a T bifurcation, yields the insertion of a C (transition between first 

and second trees/sequences in Figure 5.1a). Growth on the terminal branch of a C 

bifurcation, however, will turn the C into an A bifurcation and insert a T (transition from 

the third to the second tree/sequence in Figure 5.1a). Conversely, the retraction of a T’s 

terminal branch deletes the T and turns the parent A into a C. If the T’s parent is a C, then 

the retraction effectively deletes the C (the C bifurcation becomes a T and the original T 

disappears). A sequence traversed by the smaller subtree first ensures that the T 

insertion/deletion occurs adjacent to the A/C conversion. 

The global alignment of tree sequences is modified from the Needleman-Wunsch 

algorithm (Needleman and Wunsch, 1970) to account for the branching structure of 

binary trees (see Appendix One: for complete details), with alignment rules associated 

with bifurcation types (Figure A1.1). Alignment scores are given by the number of 

matching positions minus the number of gaps (Figure 5.1b). An additional penalty of -3 

is applied for each region of consecutive gaps. This cost helps distinguish more closely 

related sequences and reduces the otherwise high probability of a perfect score for a pair 

of sequences of very different lengths. Perfect scores are problematic as they produce 

distance values of 0, making alignment-space embedding impossible. Alternative gap 
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opening costs were tried with no meaningful impact on the results reported here; 

however, tuning this parameter might help optimize future analyses depending on the 

specific questions of interest. Non-unitary gap costs have no impact (given the fixed scale 

of gap open costs) due to all matches adding the same amount to the score.  

In order to focus on topological structure differences and not tree size differences, 

we normalized scores by sequence length. Specifically, a per-character score is computed 

and normalized against a length-pair matched random tree alignment baseline prior to 

analysis (Figure A1.2). The normalized alignment score of a pair of trees is then 

converted to distance by subtracting it from 1, the maximum possible score (see 

Appendix One: for complete details). 

Spatial embedding and classification 
In order to investigate the pairwise relationships among neuronal tree sequences, 

neurites were embedded in a multidimensional space consistent with alignment distances 

using Multidimensional Scaling (MDS) (Härdle and Simar, 2007). While edit distances 

would allow for standard MDS, the triangle inequality does not hold for tree alignment 

scores (Bille, 2005) or our normalized distances, thus a non-metric version was employed 

(Venables and Ripley, 2002). Instead of producing a space that preserves the original 

distance values in the embedded space, non-metric MDS seeks to preserve the relative 

proximity of the data elements. In other words, neurites that are closer to each other than 

to a third item in the space have that same relationship in the original data. 

The embedded data were subjected to cluster analysis to determine whether 

different neuron classes can be distinguished in terms of their topological sequences. A 
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wide variety of clustering methods exist, including agglomerative clustering, k-means 

clustering, and model-based clustering. Agglomerative clustering, including Ward’s 

method (Ward, 1963), can be run directly with distance values, obviating the need for 

MDS, but top level clusters are less stable than in other methods and visualization is 

limited. K-means assumes that the clusters are spherical and approximately of the same 

size (Steinhaus, 1956), but neither of those assumptions is sound with regards to the 

diverse population of neurite shapes. Model-based clustering was chosen due to its ability 

to test a variety of potentially optimal model types based upon the structure of the dataset 

(Fraley and Raftery, 2002; Fraley et al., 2012). We used this approach to fit multivariate 

Gaussians with parameters for size, shape, and correlation between dimensions while 

varying the number of clusters. The simplest model with the greatest likelihood was 

selected using the Bayesian Information Criterion. Associations between clusters and 

known neuron classes were quantified by the relative representation of a given metadata 

group within a cluster and vice versa using the Bonferroni-corrected χ
2
 test (see 

Appendix One:). 

To determine whether the alignment space captured the same or additional 

information relative to that of standard topological metrics, we compared the 

corresponding abilities to correctly identify known neuron types using unsupervised and 

supervised classification. Model-based clustering is unsupervised and was restricted to 

two clusters for the purposes of classification. Linear discriminant analysis (LDA) is a 

supervised approach that produces a trained classifier based on a subset of the data 

(Dempster et al., 1977; Weihs et al., 2005). By applying each method with different 
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numbers of variables, an optimal classifier can be produced with the most informative 

variables identified. Classification accuracy was computed as the proportion of neurites 

in the appropriate class (additional details in Supplementary Material 2.3). Clustering 

performance was further measured by the adjusted Rand Index (aRI) (Rand, 1971; Hubert 

and Arabie, 1985). An aRI score of 1 indicates perfect cluster partitions along known 

classification, while a score of 0 indicates random partitioning of the neurites. The 

metrics tested were number of bifurcations, maximum branch order, average partition 

asymmetry, and caulescence (main path prominence) (Brown et al., 2008). 

Multiple sequence alignment 
The multiple sequence alignment (MSA) process involves several steps: the 

creation of a composite allowing for registration of the multiple alignment, multiple 

alignment of all sequences to the composite, generation of a position-specific scoring 

matrix (PSSM) based on the prior MSA, iteration until the MSA is stable, and finally 

thresholding to extract a consensus sequence (Figure A1.3a). The composite is initially 

formed by aligning one sequence to another and then creating a sequence out of the 

alignment. Positions in which a gap exists are filled with the character on the non-gapped 

side of the alignment. This process is repeated with the growing composite now being 

aligned to each sequence in the set one at a time (Figure A1.3b). 

The multiple alignment is formed by aligning every sequence to the complete 

composite in the same manner as was used in the pairwise global sequence alignment. 

This process identifies the sequence co-alignment positions without requiring an explicit 

score, thus no penalty is needed for initiating a gap region. Since the initial multiple 
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alignment could be suboptimal, a PSSM is generated with the positions defined by the 

composite and the scores defined by the number of sequences aligned at each position 

(Figure A1.3c). The multiple alignment is run again using the PSSM, the process 

iterating until stability is reached or the thresholded consensus fails to increase in size or 

average conservation.  

Final consensuses can be determined for any given minimum conservation 

threshold. Higher thresholds produce shorter consensuses with higher average 

conservation and vice versa. A threshold of 50% was used for all MSA in this paper. 

NeuroMorpho.Org dataset 
The dataset used in this research is the same as in the companion motif analysis 

(Gillette and Ascoli, 2015), drawing from NeuroMorpho.Org (Ascoli et al., 2007) version 

5.6. Briefly, it was composed of all unique neurons of the control, non-cultured condition, 

except for pyramidal neurons without distinct apical/basal trees. Axons, dendrites 

(including pyramidal basal dendrites), and pyramidal apical dendrites were treated 

separately, with dendrites having any terminal branches smaller than 2 microns removed 

to avoid confusing likely spines for dendrites. Neurites with fewer than 20 bifurcations 

were eliminated to ensure sufficient complexity and reduce the probability of unrelated 

neurites achieving high similarity by chance. A total of 6,798 neurites were analyzed, 

including 1,255 axons, 4,686 dendrites, and 857 pyramidal apical dendrites. 

Results 
Using the separated arbors of neurons from the NeuroMorpho.Org database, each 

neurite was encoded as a sequence (Gillette and Ascoli, 2015), aligned with every other 
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sequence in the dataset, and the scores normalized and converted into distances (Figure 

5.1b). Inspection of normalized distances from hippocampal CA1 and CA3 apical 

dendrites, two groups known to have distinct topologies, showed greater distances 

between sequences from different groups than from within the same group (Figure 5.1c). 

This verifies that the tree-sensitive alignment of neurite sequences can distinguish 

different neurite classes. We next undertook an unsupervised cluster analysis to identify 

groups of neurites for inspection of topological features. 

Topology alignment space 
An abstract sequence alignment space of neural trees was generated for the 

purposes of analyzing topological relationships between neurite types. The calculated 

distances were used to embed neurites into a feature space, hereon referred to as 

alignment space, using non-metric multidimensional scaling (MDS). Eight dimensions 

were sufficient for the entire dataset, with the first four showing clear structure in terms 

of density distribution (two-dimensional projection shown in Figure 5.2a). The spaces 

produced for each data subset are highly similar in the dominant first few dimensions 

which capture most of the original distance relationships. While the space is an 

abstraction, roughly speaking the top dimensions are mainly a function of the number of 

bifurcations and asymmetry. The first effect may initially seem counterintuitive since the 

number of bifurcations (sequence length) was explicitly controlled for; however, it is in 

fact consistent with the observation that dendritic branch type composition depends on 

tree size (see Figure 4.4d,e). At any rate, the correspondence between alignment 

dimensions and topological features is far from exact. Within a restricted region of the 
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alignment space, moving in a set direction will result in trees with increasing or 

decreasing richness in some structural elements; over broader spans of the abstract space, 

however, the directional gradient of different elements will typically vary. 

The density distribution of the alignment space suggests groupings of neurites that 

are more related to each other than they are to other groups of neurites. Model-based 

clustering methods were applied to choose the best model and the optimal number of 

clusters, and then to detect the clusters. Clusters take the form of multivariate Gaussians 

with defined size, shape, and orientation, where parameters may be the same for all 

clusters or unique for each. 

Analyzing all neurites in the dataset yielded seven clusters with all parameters 

specified and distinct. Of those, four were solely associated with dendrites, one with 

axons, one with pyramidal apical dendrites, and one principally with axons but also 

significantly with apical dendrites (Figure 5.2b). This is consistent with the greater 

number and diversity of dendrites in the NeuroMorpho.Org dataset. Accuracy (proportion 

of neurites falling into a cluster associated with the corresponding type) was 80% for 

dendrites, 65% for axons, and 54% for apical dendrites due to the significant overlap with 

one of the axon clusters. 

Each arbor type was also analyzed separately to identify potential sub-clusters and 

related associations with known metadata. In the case of apical dendrites, the resulting 

three sub-clusters clearly associated with brain regions, specifically neocortex, 

hippocampal CA1, and hippocampal CA3 (Figure 5.2c). This result highlights the 

importance of clustering subsets, particularly when there is a bias in proportions of 
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available data. In some cases differences may exist but be too small relative to 

topological variability or have too small of a sample size to detect. 

 

 

 
Figure 5.2. Alignment space and clustering. a. The log density plot of all neurite-derived sequences on 

the first two dimensions of alignment space suggests differentiable groups. b. Clustering of the alignment 

space reveals four clusters associated with dendrites (blue), two associated with axons (magenta), and one 

associated with apical dendrites (green); most neurites grouped with the cluster associated to their arbor 

types, but some classified with another cluster (gray). Ellipses reflect the covariance matrices of the cluster 

models. c. Sub-clustering of apical dendrites yields additional spherical clusters that associate with 

neocortex (cyan - top), hippocampal CA1 (green - right), and hippocampal CA3 (yellow - left). Apical 

dendrites improperly classified have lower color intensity. d. Unsupervised model-based clustering of the 

alignment space classifies CA1 and CA3 apical dendrites with an adjusted Rand Index of 0.72. A trained 

linear discriminant analysis achieves 94% accuracy. 

 

Classification and comparison to morphometrics 
In order to determine how well, relative to morphometrics, alignment space can 

distinguish neurites of different types, we used both model-based clustering and linear 
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discriminant analysis (LDA) to classify neurites. In the case of CA1 and CA3 

hippocampal apical dendrites (Figure 5.2d), the optimal set of alignment space 

dimensions performed (slightly) better than the optimal principal components of 

topological metrics using both methods. The clustering approach produced an accuracy of 

92% (aRI of 0.72) using alignment space compared to 91% (aRI of 0.67) using the 

principal components of the topological metrics. Alignment space performed even better 

using LDA, producing an accuracy of 94% compared to 89% with topological metrics.  

In the case of Drosophila olfactory axons and mouse cortical pyramidal axons, 

alignment space (model-based: 87%; LDA: 87%) also produced better classification 

scores than topological morphometrics (model-based: 82%; LDA: 81%) using both 

methods. Of nine other neuronal class pairs that were at least minimally separated, the 

alignment space performed as well as (to within a 1% accuracy difference) or better than 

topological metrics in 7 out of 9 cases. These results show that, while topological metrics 

generally provide a robust characterization of neuronal classes, the additional detail 

captured by the sequence representation and alignment is sufficient to improve 

classification for some known classes. For the explicit purposes of classification, 

supplementary (non-topological) morphometrics are certainly called for; however, 

expanded sequence representation and pairwise alignment incorporating non-topological 

branch features have the potential to be more effective than those features summed or 

averaged across the neuron. 
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Dendrite and axon clusters 

We next looked at how dendrites sub-clustered by topological alignment. 

Dendrites, which make up the largest arbor type subset of the data (N=5,411), fell into 6 

clusters with Gaussians of varying cluster size, shape, and orientation (Figure 5.3a). Four 

alignment dimensions were required to distinguish those clusters. Upon considering 

dendrite classes with sufficient specificity and size, seven classes showed highly 

significant association with one or more clusters (Figure 5.3b). The 6 dendrite clusters 

clearly separated cortical neurons from sensory neurons of several different species. The 

only class that reciprocally associated with only one cluster (and with a very high level of 

significance) consisted of primate neocortical (layer 2/3) pyramidal basal dendrites 

(cluster 1). Rodent neocortical pyramidal basal dendrites alone associated with cluster 2 

and jointly with rodent neocortical interneuron dendrites in cluster 3. Clusters 4-6 

associated with sensory and motor neurons. Motoneurons, primarily from cat, rat, and 

mouse, as well as rodent retinal ganglion cells, associated with cluster 4. The rodent 

retinal ganglion cells associated most significantly with cluster 5 along with adult fly 

tangential cells (visual system) and larval fly sensory cells. The latter two groups also 

associated with cluster 6. Thus, the three types of sensory neurons co-clustered, 

suggesting that topological features are shared by neurons which respond directly to the 

external environment. Tree size clearly distinguishes some of the clusters exemplified in 

some sample dendrites from each group, but differences in the number and distribution of 

major branches are also evident (Figure 5.3c). 
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Figure 5.3. Dendrite clusters. a. Clusters of (non-apical) dendrites are shown in two perspectives of 

alignment space. Each perspective highlights dendrites in three of the six clusters, with dendrites in the 

other three shown in gray. b. The association matrix of the clusters and seven groups defined by metadata 

combination of species, region, cell type, and age range. The number of dendrites in each group and cluster 

are shown in parentheses. Values reflect the natural log of the contingency matrix p-values, with absolute 

values above 3 being significant (p ≤ 0.05). Dark gray cells represent cases in which significantly fewer 

dendrites satisfy the cluster/group association than expected given the marginals. Positive values in colored 

cells represent cases in which more dendrites fall into the cell than expected. Darker colors signify that an 

example morphology and dendrogram is provided in c (NMO_05022, 09439, 00298, 00625, 05409, 06531, 

07043, 06659 from [Cameron et al., 1991; Kong et al., 2005; Coombs et al., 2006; Cuntz et al., 2008; 

Anderson et al., 2009; Groh et al., 2010; Kubota et al., 2011; Sulkowski et al., 2011]). 
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Axons, though with far fewer total reconstructions (N=1,230) and representing 

fewer metadata groups, tend to be larger and so have the potential to separate more 

clearly. Perhaps due to their relatively limited diversity, axons exhibited structure in just 

two dimensions and fell into 4 clusters (Figure 5.4a). Nevertheless, the clusters 

(spherical but varied in size) had strong associations with metadata groups, specifically 

separating insects from mammals, pyramidal cells from different rodent species, and 

distinct interneuron types (Figure 5.4b). The fly olfactory neuron axons most clearly 

associated with cluster 1 and are substantially dissociated from clusters 3 and 4. Rat 

neocortical pyramidal axons associated with cluster 2, while mouse neocortical pyramidal 

axons associated with cluster 3. This result should be interpreted with caution since the 

larger axons of rat neurons may be more prone to slicing artifacts. Since the specific 

histological and imaging procedures can also affect the reconstructions, it is important to 

note that the mouse pyramidal axons primarily come from a single archive while the rat 

data have substantial contributions (> 10% each) from four different laboratories. Rodent 

(mouse and rat) neocortical dendritic targeting interneurons (primarily Martinotti and 

somatostatin-positive cells) also associated with cluster 3, though not as strongly. Rodent 

neocortical perisomatic targeting interneurons (primarily Basket and parvalbumin-

positive cells) associated with cluster 4. Representative morphologies and dendrograms 

(Figure 5.4c) suggest features which are shared within or even define each cluster. 

Derivation of consensus representations and the qualitative and quantitative description 

of those features follow. 
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Figure 5.4. Axon clusters. a. Axons fall into four spherical clusters of varying sizes. Colored dots 

correspond to axons classified with the cluster associated with the matching metadata group. Diamonds 

represent rodent cortical dendritic-targeting interneurons. Circles are defined by the covariance matrix of 

their cluster model with a radius of one standard deviation. b. Association matrix for axon metadata groups 

and clusters. Colored and dark gray cells show significantly positive and negative associations, 

respectively, with the number of axons in each group and cluster in parentheses. c. Representative 

morphologies and dendrograms are shown for each significantly positive association (NMO_02574, 00315, 

01209, 00424, 00424 from [Wang et al., 2002; Jefferis et al., 2007; Nikolenko et al., 2007]). 
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Multiple sequence alignment and consensuses 
Multiple sequence alignment (MSA) provides the means for extracting common 

structural features of a group of neurite sequences and measuring their level of 

conservation. MSA can be visualized as vertical densities illustrating how represented 

various positions are (Figure 5.5a). A consensus structure can be defined by setting a 

threshold for the proportion of member sequences aligned at each position. A low 

threshold will result in a relatively larger consensus with lower average conservation 

(matching bifurcations) across member sequences. This choice tends to reveal common 

local patterns, though in the extreme, motif analysis (Gillette and Ascoli, 2015) could be 

more effective for that purpose. Higher thresholds, in contrast, reveal the common global 

pattern by producing narrower consensuses with higher average conservation. A 50% 

threshold was found to yield consistently clear results across clusters. In general, the 

relative consensus length (number of bifurcations normalized by the median sequence 

length in the group of neurites) and average conservation together provide a measure of 

how inter-related the sequences in a set are in terms of shared topological features. For a 

measure of global representativeness that accounts for the sequence length variability, we 

also employed the normalized pairwise alignment score. 

We take for comparison axon clusters 3 and 4, which are next to each other in 

alignment space but display considerably different consensus features. In order to focus 

on the most representative trees of each cluster, we only considered those sequences 

within one standard deviation of their cluster centers. Furthermore, to avoid any potential 

effect of number of sequences on the MSA, the 120 sequences (the smallest extracted set 

size, from cluster 4) closest to their respective cluster centers were used for MSA and 
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subsequent analysis. The consensus of cluster 3 has an absolute length of 52, a relative 

length of 74.3%, and an average conservation of 75.8% (Figure 5.5b). The consensus of 

cluster 4 has a substantially longer absolute length of 117 but a smaller relative length of 

67.8% due to the larger median sequence length relative to cluster 3 (Figure 5.5d). The 

cluster 4 consensus also has a higher average conservation of 79.6%, meaning that while 

cluster 3 has a higher proportion of well-aligned branches, the well-aligned branches of 

cluster 4 are more densely represented in the cluster sequences. 

These properties are in part explained by the different variability of sequence 

length between the two clusters. If the higher variability of a cluster is due in part to a 

larger number of relatively short sequences, fewer bifurcations overall could align in the 

consensus. Longer sequences may be more likely to contribute to the consensus but will 

also align in many positions that do not pass the consensus threshold. Cluster 3 sequences 

have an average length of 139.7, median of 70.5, and standard deviation of 173.3; in 

contrast, cluster 4 sequences have an average length of 193, a median of 174, and a 

standard deviation of 98.8. The impact of this variability is seen in the branch lengths of 

the consensus dendrogram (Figure 5b,d). However, alignment scores normalized to z-

scores (a score of 0 being equivalent to an average alignment between random 

sequences), show the same relationship with cluster 3 having a score of 1.42 ± 0.06 

compared to the cluster 4 average of 2.77 ± 0.09 (p = 6.7e-8). This is consistent with the 

larger Gaussian model which was fit to cluster 3, indicating the looser relationship 

between its sequences. The consensus dendrogram of cluster 3 shows where a substantial 

portion of the variability falls. The root branch is particularly long, meaning that a 
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relatively large proportion of parts of member sequences exist prior to that bifurcation. 

Sample axons from the cluster illustrate the alignment of the axons and consensus in full 

context (Figure 5.5c). 

Consensus structural details also differ substantially between clusters 3 and 4. 

Consensus 4 has greater symmetry (Figure 5.5d): in fact, consensus 3 has a maximum 

branch order of 13 compared to 12 for cluster 4, even though cluster 4 has 65 more 

bifurcations. The axons of cluster 3 show a greater average asymmetry of 0.611 

compared to cluster 4 axons asymmetry of 0.54 (p < 2.2e-16). Other structural differences 

could relate to differential spatial targeting of these classes. Although the arbors from the 

two clusters showed similar spatial arrangements (measured by the distribution of 

weighted Euclidian distances of branches from the arbor center of mass), their total 

neurite length differed significantly. Cluster 3 had a median length of 10,050 µm (mean 

14,530 µm) and cluster 4 a median of 12,952 µm (mean 19,450 µm; Wilcoxon rank sum 

test; p < e-13). Although many of the larger neurons in the clusters were not from the 

associated cell classes, the trend was consistent. Pyramidal axons, with a median length 

of 3,261 µm, were shorter than dendritic targeting interneurons, with a median length of 

5,440 µm (p < 1.6e-15). Perisomatic targeting interneurons, with a median of 6,671 µm 

were yet longer (p < 2.0e-3). The greater length in spite of similar spatial arrangement 

suggests a greater density or some alternative heterogeneous distribution of branches for 

cluster 4 axons. 
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Figure 5.5. Multiple sequence alignment and consensuses. a. Sequences of axonal cluster 2 (left) are 

aligned (right). A section of the alignment is magnified along with the composite and consensus (bottom). 

A single neurite in the cluster and its sequence in the MSA is highlighted (green). b,d. Consensuses of axon 

clusters 3 (b, blue) and 4(d, red) in sequence and dendrogram form, with relative length and average 

conservation statistics. Dendrogram branch width indicates conservation of the parent bifurcation (from 0.5 

to 1). Branch length indicates variability preceding a bifurcation, calculated as the average proportion of a 

sequence falling between conserved bifurcations. c,e. Example morphologies and dendrograms of cluster 3 

(c) and 4 (e) (NMO_02624, 00427, 07447, 00332 from [Wang et al., 2002; Ikegaya et al., 2005; Kawaguchi 

et al., 2006]). Colored segments indicate an alignment with the consensus at the bifurcation. Black and gray 

segments indicate consensus bifurcations not found in the neurite and vice versa. 
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Consensuses and motifs 
We next considered whether the consensus is representative of local motifs 

patterns (Gillette and Ascoli, 2015), and whether motifs capture the global features of the 

consensus. Trimer-constrained surrogate sets were generated for each axon cluster 

consensus and for each individual axon sequence in order to produce motif profiles for 

comparison with the motif profiles of each cluster’s sequences. Briefly, random trees 

were generated with just size, size and node-type proportions, and size and dimer 

proportions equivalent to each consensus. For a given consensus or axon sequence, node-

type, dimer, and trimer proportions were then normalized to the respective proportions in 

the surrogate sets by determining the percentile rank of a given consensus k-mer 

proportion within the surrogate set’s k-mer proportion distribution (see Chapter Four: 

for further details). The correlation between the motif patterns in the neurite sequences 

and their corresponding consensuses was small across the 4 axonal clusters (Pearson 

coefficient of 0.37), with the consensus values varying substantially more than the cluster 

averages (Figure 5.6a). Moreover, while clusters 1 and 4 had very similar motif profiles, 

with only minor differences in dimers AT, CC, AC, and CT, their consensuses differed 

dramatically (Figure 5.6b). For further comparison, cluster 3’s values are very different 

from clusters 1 and 4, falling much closer to baseline, while the global consensus appears 

intermediate between those of clusters 1 and 4. Thus, while differences in global structure 

can in principle influence motif patterns, local structural features appear to be largely 

independent. 
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Figure 5.6. Global consensus and local motifs. a. Plot of the k-mer percentile ranks (normalized 

frequencies), for each dimer and trimer of each cluster, with the cluster’s consensus values on the y-axis 

and the cluster’s average sequence values on the x-axis. The correlation is small, showing that consensuses 

to not capture well the local motif information about the cluster’s members. b. Dimer profile (top) and 

consensus dendrograms (bottom) for clusters 1, 3, and 4. The dimer profile is similar between clusters 1 

and 4, while the consensuses differ dramatically. c. Consensus dendrograms of cluster 4 neurite sequences, 

trimer-constrained surrogates of the sequences, and length-constrained surrogates of the sequences. 

Average normalized alignment scores are provided given a set of sequences aligned to a single consensus. 

Dendrogram branch widths show parent bifurcation’s conservation. 

 

Motifs were similarly insufficient to consistently capture global features. Trimer-

constrained surrogates of each cluster were aligned and consensuses generated. Some 

trimer-constrained surrogate consensuses were comparable to their real neurite consensus 

counterparts. For instance, global alignment scores of cluster 3 neurite sequences aligned 
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to the neurite consensus were not significantly different than the scores when aligned to 

the surrogate consensus. However, in other cases, most notably cluster 4, the trimer-

constrained surrogates produced a far less representative consensus (Figure 5.6c). For 

comparison, length-constrained surrogates always failed to produce representative 

consensuses with alignment scores systematically below those achieved with trimer-

constrained surrogate consensuses. This means that generally motifs and consensuses 

have only limited impact on each other and they provide complementary information 

relating to local and global patterns, respectively. 

Discussion 

Biological and functional interpretations 
Axons are of particular interest due to their role in connecting neurons to enable 

network function. Given the diversity of cortical inhibitory interneurons in terms of 

axonal morphology (DeFelipe et al., 2013), it is not surprising that these cells would fall 

into different topological clusters. Perisomatic-targeting interneurons are responsible for 

generating synchronous network rhythms (Freund, 2003; Bartos et al., 2007) by densely 

synapsing on a large number of principal neurons. The relative symmetry of perisomatic-

targeting interneurons might then reflect a combination of dense synaptic fields along 

with growth mechanisms to ensure minimal path distance (balanced against wiring 

minimization) (Cuntz et al., 2007). Shorter paths to targets would serve to optimize 

synchrony of the GABAergic signals from the interneuron. 

It is interesting that a complementary subset of (dendritic-targeting) interneurons 

would instead associate with neocortical pyramidal cells based on the topological 



156 

 

sequences of the respective axonal arbors. This does not mean that the two axonal classes 

have the same distribution of topological features, as they do not share the cluster space 

equally; however their co-clustering does suggest a substantial overlap in those features. 

The relatively asymmetric branching of dendritic-targeting interneurons and mouse 

pyramidal cells suggests two possible non-exclusive explanations. The first is that the 

two classes are similar in their spatial targeting, and distinct from that of perisomatic-

targeting interneurons. An alternative is that both classes are not as highly constrained in 

the timing of their efferent signals and thus wiring minimization is preferred over path 

minimization and its limiting effect on signal delay. The spatial targeting explanation is 

consistent with the roles of pyramidal cells and dendritic targeting interneurons in 

network computation requiring a diverse synaptic distribution to generate more powerful 

networks (Sporns et al., 2004; Wang et al., 2006). Specifically, sparser postsynaptic 

targeting would yield greater differences between the connectivity profiles of principal 

neurons and thus increase network complexity, which may aid in computational functions 

such as pattern separation (Knoblauch and Palm, 2001). 

The differentiation between mouse and rat pyramidal cell axons is not as clear 

from a biological perspective. It is important to recognize, however, that most 

morphological data are derived from in vitro slice preparations, most often preventing the 

full reconstruct of axonal trees. Relative to dendrites, axons typically involve more 

expansive arbors and span well beyond the region explored in a given experiment. Given 

the size difference between mouse and rat brains, the impact of slicing on the 

reconstruction would be larger for rat axons. To test this hypothesis, we compared 
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artificially clipped mouse pyramidal axons to their rat counterparts. Our analysis suggests 

that morphological incompleteness due to sectioning artifacts is not the source of the 

difference between mouse and rat. Three pyramidal cell axons of various sizes (155, 495, 

and 1,725 bifurcations), were selected among the few instances of in vivo (putatively 

more complete) reconstructions, one from rat hippocampus and two from cat neocortex. 

To simulate the effect of tissue slicing, these arbors were modified by eliminating all 

branches and sub-trees beyond a given distance in the z-dimension from the soma. 

Cutting at several distances showed a decrease in normalized alignment score, but even 

with a quarter of the z-range and less than 50% of the original sequence length, the scores 

always remained significantly greater (four standard deviations above the mean) than 

length-matched random sequences. Other similarly severe cuts maintained much higher 

normalized scores. This suggests that sequence analysis is relatively robust to 

reconstruction artifacts of this kind. Thus, brain size is not likely to explain the 

differences between rat and mouse axonal trees. Other experimental protocol details, or 

an unknown biased sampling of neocortical pyramidal neurons, may yet be responsible; 

however, it is also possible that mouse and rat pyramidal cell axons indeed slightly differ 

in their branching topology. 

Sequence alignment and expanded representations 

The global sequence alignment modifications were necessary to ensure proper 

accounting of tree topology. Attempts to use standard global alignment (not respecting 

tree structure) and a simpler clustering method revealed no meaningful differences 

among known neuron types. This is because very different trees could have similar 
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sequences if the structural attributes of bifurcations are disregarded. For instance, three 

subsequences with distinct patterns, α, β, and γ, could be arranged in sequence as αβγ and 

matched to another sequence  α’β’γ’ where α’ is a close match to α, β’ to β, and γ’ to γ. 

These two trees, however, could be arranged in very different ways: α as the parent of 

subtrees β and γ, and α’ as the parent of β’ and β’ as the parent of γ’. Thus, αβγ and 

α’β’γ’ would match well despite substantially different tree structures. In contrast, the 

modified global alignment algorithm implemented in PASTA distinguishes the two cases. 

Expanded representations including branch-level morphological features could 

enhance alignment sensitivity, decreasing the likelihood of spurious alignment for shorter 

sequences. For instance, several characters could be used for each topological node type 

to encode the bifurcation angles (i.e. between child branches, between bisector and parent 

branch, or between child plane and parent) relative to the population distribution. The 

increased sequence complexity would alleviate the need for a gap opening cost, allowing 

a greater range for parameter tuning. Additionally, such encodings would enable analyses 

for relating local topological patterns with other morphological features and for better 

integrating morphological features into neuronal classification. Subtree size and 

tortuosity are similarly reliable branch metrics which could be encoded; distance from 

soma and maximum distance to termination are also suitable candidates. Diameter and 

associated metrics (e.g. surface area and volume), while possible in principle, are more 

susceptible to experimental protocols (Scorcioni et al., 2004). Combining several 

morphological attributes in the encoding would multiply the number of characters 

required, but feature vectors could be used rather than characters, increasing sensitivity at 
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the expense of speed. Alternatively, the number of features and their discretization could 

be judiciously selected based on the specific research questions. 

Leveraging pairwise tree alignment, cluster analysis, and multiple sequence 

alignment, an expanded encoding could help discover novel relationships between 

morphological features, including their relative conservation and specificity across 

neuronal classes. For instance, the different tortuosity among interneuron classes 

(Kawaguchi et al., 2006) could reveal regional differences within the arbor, which would 

suggest axonal domains with specific targeting features. The level of conservation would 

provide an indication of the feature’s functional importance as well as provide a 

constraint for modeling growth mechanisms. 

Since morphology ultimately depends on ultrastructural features to produce 

function, lower-scale branch properties such as spines or bouton densities and even local 

molecular expression could create powerful analyses. This would require a richer data 

type and new experimental processes, but with recent technologies the prospect is real 

(Schmitz et al., 2011; O’Rourke et al., 2012; Deisseroth and Schnitzer, 2013). Combining 

biophysical data with pairwise alignment would enable exploration and detection of 

morphological-physiological relationships, such as spike failures near regions of high 

bifurcation density, or receptors of neurotrophic factors in sequences with many C nodes. 

The code available at http://krasnow1.gmu.edu/cn3/NeuriteSequence/ includes sample 

expanded branch feature encoding to facilitate future exploration by the research 

community. 
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Optimizing algorithms and analysis 

The sequence approach depends critically on the constraint that small-side 

subtrees necessarily be matched to other smaller-side subtrees. This condition produces 

near-optimal results (equivalent to the tree edit distance) with moderately to highly 

asymmetric trees, which have low probabilities of improved tree-alignment from a larger-

side subtree aligned to a smaller-side subtree. The scores are near optimal even in the 

case of trees with greater symmetry, so long as the subtrees are topologically similar. 

This assumption is generally true of neurites, which explains its effectiveness in this 

study. However, it is possible to conceive a “worst-case scenario” of a root bifurcating 

into two large subtrees with exactly the same number of branches, but one fully 

symmetric and one fully asymmetric. Aligning the corresponding sequence with an 

almost identical arbor in which a single branch is added to the symmetric side (or a single 

C node removed from the asymmetric side) would yield a dismally low score despite the 

great structural similarity between the two trees.  

To gauge the risk incidence of this effect in neurites, we assessed the asymmetry 

characteristics of bifurcations with similar subtree sizes, specifically, those with a 

difference of no more than 6 bifurcations. Of the 5% of axon, 26% of apical dendrite, and 

36% of dendrite bifurcations satisfying the condition, the median difference in 

asymmetry was 0.14, with 75% having a difference less than 0.25 (95% with a difference 

less than 0.47), though the differences were much smaller for the 5% of subtrees with 

more than 50 bifurcations. This survey suggests that only dendrites might be susceptible 

to this problem, though with reasonably small impacts for each instance. Thus, based on 
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currently available data, the relatively simple topological encoding results in practically 

robust sequence alignments However, the possibility that future larger dataset of 

complete axonal reconstructions will require a more optimal alignment method cannot be 

ruled out. 

In the big-data prospect of orders-of-magnitude increase in neurite dataset size, 

heuristics will become important for efficient processing. Given that MDS does not 

require distances for every neurite pair, not all pairwise combinations are necessary for 

producing an alignment space. Moreover, for search or analysis, topological metrics can 

be used to limit the number of neurite alignments by filtering out those that would likely 

score poorly, as achieved by BlastNeuron with a broader range of morphometrics (Wan et 

al., 2015). The PASTA algorithm itself can be sped up by ignoring the possibilities least 

likely to contribute to an optimal alignment (e.g. those corresponding to the upper right 

and lower left corners in the alignment matrix: see Figure A1.1c). Other heuristic 

approaches could be applied that involve candidate seed locations of short matching 

strings from which the alignment is extended in either direction (Altschul et al., 1997). 

The most efficient modern algorithms index seeds in advance (Buchfink et al., 2014). A 

larger dataset of more complete axons, widely expected from ongoing and discussed 

connectomic projects, would require appropriate heuristics and efficient implementation 

in a compiled language, such as C or C++. In cases where sensitivity is more important 

than speed, sequences of branch feature vectors could take the place of discrete 

characters. 
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The diversity of available gene sequence alignment tools highlights the utility of 

specific parameters and alternative algorithms for different experimental questions or 

computational requirements (Ruffalo et al., 2011; Thompson et al., 2011; Berger et al., 

2013; Buchfink et al., 2014). Methods of neurite pairwise alignment of one sort or 

another, including variations on our method, will likely grow in a similar manner to fill 

various niches, whether in terms of sensitivity or efficiency.  

Conclusion 

The newly developed method for aligning binary tree sequences enabled the 

comparison of large numbers of neurites and revealed their shared topological features. 

Sequence alignment similarity with a purely topological encoding was sufficient to 

distinguish different arbor types (axons, dendrites, and apical dendrites) as well as certain 

neuron types, brain regions, and species. Moreover, the sequence representations could 

differentiate cell classes better than (or at par with) traditional morphometrics and are 

consistently as informative as traditional topological metrics. Cluster analysis produced 

groupings highly associated with known metadata differences, and multiple sequence 

alignment generated a consensus representation of each cluster that revealed the common 

topological features. Comparative analysis between consensus and motif profile 

demonstrated that these analyses captured complementary topological characteristics, 

with consensuses reliably extracting global features and motifs effectively quantifying 

local features. 
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APPENDIX ONE: DETAILS OF GLOBAL AND MULTIPLE ALIGNMENT 

PROCESSES 

Global sequence alignment 
Global alignment of tree-sequences uses a modified Needleman-Wunsch 

algorithm (Needleman and Wunsch, 1970) in which a matrix is created from the character 

positions of the two sequences being aligned. Scores are calculated from the beginning of 

both sequences (top-left) to the end of both sequences (bottom-right) using previously 

calculated position alignments. The best score from the three possible steps to a given 

position is assigned to each position in the matrix (Figure A1.1a). Those steps include a 

match between the characters (diagonal step from above and to the left), a gap over the 

character of the first sequence (a step from above), or a gap over the character of the 

second sequence (a step from the left). The alignment score is given in the final position 

and a back-trace of the optimal route from the final position to the start position produces 

the alignment (Figure A1.1b). 

The tree-based sequence modifications correspond to the A, C, and T bifurcation 

node types, allowing for a representation that includes branch properties in addition to 

local topology. It also assumes each sequence is a single complete tree. Limitations are 

placed both on matching and gapping based on node type in order to ensure the alignment 

is consistent with a valid tree structure (Figure A1.1a). Only pairs of characters of the 

same type are directly matched in the dynamic programming process. A-type characters 
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cannot be explicitly gapped. This can result in inaccessible positions during back-trace, 

however a valid back-trace will exist as long each sequence is a complete tree. C-type 

characters can be gapped normally. T-type characters can be gapped, but the gap must 

extend until the T node’s associated A node. In terms of tree structure, the T node would 

be the last traversed node on the A node’s smaller subtree (assuming StL traversal). This 

within sequence A-T relationship is defined in a recursive manner such that a T node’s 

associated A node is the nearest prior A node that does not have its own nearer subsequent 

T node. While an entire subtree can be eliminated by gapping all characters from A to T, 

it is also possible for all but a single branch to be eliminated, leaving a single C node. 

Thus, when gapping a T node and its associated subtree, if the character in the opposing 

sequence position is a C, the gap region can end such that the A and C are matched. The 

final T node of any sequence will have no matching A and cannot be gapped. This would 

effectively lead all tree-sequences to align on the final T node making certain alignments 

impossible, such as a smaller tree aligning to an inner subtree of a larger tree. Two final 

modifications fix this problem. First, A nodes can be gapped prior to any matches. 

Second, the final T node of either sequence can gap back to another T node that has a 

match. 
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Figure A1.1. Dynamic programming alignment of tree node types. a. The first table shows the generic 

calculation of scores for a given matrix position (x,y) using the scores of cells to the left, top, and top-left. 

The score from the top-left is added to the match score for the characters at (x,y). The score for gapping 

from above equals the score above (x-1,y) minus the gap penalty, while the score for gapping from the left 

is that score (x,y-1) minus the gap penalty. The cell’s score is then the maximum value of the match and 

gap scores. b. Cells with certain node type pairs have restrictions as to whether a match, left-gap, or right-

gap is allowed. c. Each node type pair is shown with arrows pointing to where the scores are coming from. 

Dashed arrows for gapping a T node represent a multiple position gap based on the requirement that the gap 

continue until the start of the node’s subtree. d. Complete alignment matrix for the sequences shown. The 

blue path represents the optimal back-trace. Each cell with a score has a backward arrow leading back to 

the preceding cell that produced the optimal score. Arrows with dashes followed by a diagonal solid line 

represent an alignment of a C node with a larger subtree, such that the gap begins at a T and back-traces to 

an A that matches the C. 
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Score baseline and distance normalization 
Specifically, each alignment score was normalized to a baseline of alignment 

scores given random trees of the same sizes of the neurite sequence pair. For each 

sampled length, 1,000 tree shapes were generated randomly and encoded as sequences. 

Sequence alignment was performed between ordered sequences for each length pair such 

that the nth sequence of length L1 was aligned with the nth sequence of length L2 to avoid 

any dependence between scores, resulting in 1,000 scores for each length pair. Each score 

was then converted to a per-character score (Spc) based on the length of the shorter 

sequence. This was achieved by adding back to the score the length difference of the two 

sequences, as well as the value of one gap opening (G), and dividing by the shorter 

sequence length. An optimal per-character score would be 1 and the lower bound for the 

score is limited only by the size of the sequences and the potential number of gaps and 

gap openings. With no gap open cost the minimum per character score would be -1. 

    
           

          
 

Equation A1.1 

 

The mean and standard deviation of those per-character scores was taken for each 

length pair. Means and standard deviations of length pairs falling between those sampled 

were interpolated. All real neurite per-character scores were converted to z-scores based 

on the per-character score mean and standard deviation of the neurite pair’s lengths 

(Figure A1.2). Each z-score was converted back into a per-character score using a set 

mean and standard deviation, creating a fully normalized score (Snorm). The mean and 

standard deviation were chosen such that the probability of a perfect per-character score 



168 

 

of 1 would be exceptionally low. Finally, the fully normalized scores were converted to 

distances by subtracting each score from the optimal score of 1. In the rare case of a fully 

normalized score above 1, resulting in a distance value less than 0, an exponential 

function was applied making the distance greater than 0. Baseline score normalization 

was calculated in R prior to further analysis. 

 

Figure A1.2. Normalizing the per-character alignment score. A given per-character alignment score has 

a z-score with respect to the distribution of baseline scores for the specific length pair of the aligned 

sequences. The yellow and green points represent scores from alignments with different length pairs. The 

lines represent the baseline distribution of per-character scores. Each point is then normalized (arrows) 

using their respective distribution to the mapped value along an arbitrary length pair distribution (blue 

points). The distance values are then calculated by subtracting the normalized per-character scores from 1, 

the maximum possible score. 

 

Additional methodological details 

Non-metric MDS 
Non-metric MDS is performed by embedding by some process (usually an 

attempted standard MDS algorithm) then iteratively shifting element location until stress 

is minimized. Stress is the measure of how different each neurite pair’s position is in the 

original ordered list of distances and in the ordered list derived from the embedded space. 

Thus, the two neurites with the smallest distance between them in the original data should 

also be the two nearest neurites in the new space, while two neurites that were an average 

distance apart in the original data will be about an average distance apart in the new space 

relative to other neurite pairs.  
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The MASS (Venables and Ripley, 2002) R package was used to perform non-

metric MDS on datasets consisting of all neurites and separate instances of the data 

composed of neurites from each arbor type. In each case a sufficient number of 

dimensions were used such that the stress was at or below 15% and was decreasing by 

less than 1% with each additional dimension. Inspection of the spaces showed no 

effective differences in the primary dimensions used for analysis between spaces 

generated using more dimensions. Moreover, the spaces produced for each arbor type 

were very consistent with the space produced for all arbors. 

Model-based clustering 
We used the mclust (Fraley and Raftery, 2002; Fraley et al., 2012) R package for 

model-based clustering, which performs Expectation Maximization (EM; Dempster et al., 

1977) to generate optimal parameter values to fit the data to a set of multivariate 

Gaussian models. Variable Gaussian features include size, shape (different size in each 

dimension), and orientation. Shape and orientation may be unspecified, resulting in 

spherical clusters (similar to k-means clustering), or ellipsoidal clusters without 

orientation. Each parameter type could be equivalent or variable across clusters. These 

options are not exhaustive, but for the purposes of exploration they are effective and 

provide a useful limit on an otherwise unlimited set of models. Multiple parameter sets 

and number of clusters were tried and a Bayesian Information Criterion (BIC) value 

produced for each. The BIC is the measure of the log likelihood of the model given the 

data minus the complexity of the model (in terms of number of parameters) times the log 

of the dataset size.  
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Equation A1.2 

 

Classification 
In order to maximize classification performance and determine the most 

informative features, clustering was run on all possible permutations of alignment space 

dimensions and all possible permutations of topological metric principal components for 

a specified pair of neurite groups. Models were limited to 2 clusters, and for alignment 

space Gaussians were limited to equal size and no orientation.  

LDA was performed by the R MASS package (Venables and Ripley, 2002), while 

feature selection for LDA was performed using R package klaR (Weihs et al., 2005). 

Variables could be added or removed in the variable selection process and the 

improvement threshold for updating the model was a 1% improvement in accuracy. A 10-

fold cross-validation was used, leaving 10% of the data for testing the accuracy of the 

final model. Since stepclass is stochastic with regards to the division of the data, different 

models were generated with different accuracy values in multiple runs. The process was 

run 10 times for each case and the mean accuracy was taken. The optimal models were 

found most times and always provided the final accuracy value. The order of mean, 

median, and max accuracy scores between variable sets (alignment space and topological 

metric PCs) were consistent. 
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Figure A1.3. Multiple sequence alignment algorithm. a. Flow chart of the multiple alignment process, 

ending in a multiple alignment and a thresholded consensus. b. The process of building a composite begins 

with the matching of two sequences from the set to be aligned. The alignment of those sequences is merged 

into the composite which is then aligned to the next sequence. The process repeats until all N sequences 

have been merged into the composite, forming the final composite. c. All sequences are aligned to the final 

composite, creating a multiple alignment. A position-specific scoring matrix (PSSM) is generated based on 

the conservation of each position (i.e. how many sequences align at the position). The sequences are again 

aligned to the composite, but this time the score of a match is determined by the PSSM. The process repeats 

until the multiple sequence alignment is stable. 
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APPENDIX TWO: QUANTIFYING NEURONAL SIZE: SUMMING UP TREES 

AND SPLITTING THE BRANCH DIFFERENCE 

[Todd A. Gillette*, Kerry M. Brown*, Giorgio A. Ascoli: in Seminars in Cell & 

Developmental Biology (2008) 19:485-493] 

[Used with permission from the publisher; * These authors contributed equally] 

 

Abstract 
Neurons vary greatly in size, shape, and complexity depending on their 

underlying function. Overall size of neuronal trees affects connectivity, area of influence, 

and other biophysical properties. Relative distributions of neuronal extent, such as the 

difference between subtrees at branch points, are also critically related to function and 

activity. This review covers neuromorphological research that analyzes shape and size to 

elucidate their functional role for different neuron types. We also introduce a novel 

morphometric, "caulescence", capturing the extent to which trees exhibit a main path. 

Neuronal tree types differ vastly in caulescence, suggesting potential neurocomputational 

correlates of this property. 

Introduction 
Neurons play vital roles in central and peripheral nervous systems, including 

integration, production, and transmission of electrochemical signals, and establishment of 

plastic network connectivity. From prenatal development through adulthood, these 

functions are determined by many interacting factors, such as gene expression, 

intracellular molecular dynamics, and the type and distribution of ion channels. This 
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review focuses on the most visible, though quite complex traits of neuronal morphology. 

Morphological properties include a variety of general size characteristics such as length 

and volume, as well as attributes associated with complexity such as number of branches 

and asymmetry (Uylings and van Pelt, 2002; Scorcioni et al., 2008). Each feature has 

implications for how neurons grow and adapt (Cline, 2001; Wong and Ghosh, 2002), as 

well as function both locally and in the broader neuronal network (Ascoli, 1999; Jan and 

Jan, 2003). 

Neuromorphology 
Neurons display elongated branching structures stemming from their cell bodies. 

These trees, called axons and dendrites, respectively send and receive signals to and from 

other neurons. Axonal and dendritic arbors differ in size and shape both between and 

within cell classes (Figure A2.1). Given the complexity and variability of neuronal 

morphology, computer-aided methods are typically employed to perform comprehensive 

and quantitative analyses. Many of the previous and current results reviewed here are 

based on 3D digital reconstructions of neuronal arbors (Ascoli, 2006). This process 

begins with histological slices laid out on slides. The neurons of interest are labeled so 

they can be captured using a digital camera mounted on a microscope, allowing focusing 

for acquisition of an entire 3D structure. Specialized software programs, such as 

Neurolucida (MicroBrightField, Inc., Colchester, VT), Neuron_Morpho (Brown et al., 

2005) (http://www.personal.soton.ac.uk/dales/morpho), or Neuromantic 

(http://www.rdg.ac.uk/neuromantic) provide tools for visualizing the captured images 

and/or tracing neuronal branches, outputting 3D coordinates and connectivity of trace 
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points. The end product is a digitized, morphologically realistic neuronal representation 

that can be loaded into software programs specialized in extracting an extensive array of 

morphological metrics, such as L-Measure (Scorcioni et al., 2008) 

(http://krasnow1.gmu.edu/cn3). Digital reconstructions are further imported by software 

that simulate biophysical properties (Bower and Beeman, 2003; Hines et al., 2004), thus 

providing morphological realism for electrophysiological modeling. 

Neuron size and shape 
Overall size encompasses an important subset of morphological characteristics of 

neuronal arbors. Distinct functional aspects of internal neuron size are defined by the 

total number of terminal branches (the “degree” of the tree) or by continuous 

morphometrics including total length, surface area, and internal volume (Ascoli et al., 

2008). The spatial extent of the neuron can also be described in terms of distance reached 

from the soma or by the height, width, and depth of a box containing the whole 

arborization. Greater length often corresponds to greater area of invaded space, and thus 

greater potential connectivity. For axons this may result in increased divergence (one 

signal sent to many cells). Total wiring is minimized by increasing length for axons over 

dendrites (Chklovskii, 2000) when divergence is higher than convergence (more 

presynaptic than postsynaptic neurons). When convergence is greater than divergence, 

dendrites have relatively greater length. These predictions were confirmed in retinal, 

cerebellar, olfactory bulb, and neocortical
 
neurons. 

Membrane surface area correlates with number of synapses in dendrites and axon 

terminals (Pierce and Milner, 2001; Liu, 2004). Signal propagation speed linearly 



175 

 

increases with diameter, however the metabolic cost also escalates due to the squared 

relationship between diameter and cross-sectional area (Wang et al., 2008). Within the 

generally large metabolic costs of the brain, synaptic transmission and spike generation 

are particularly energy intensive due to the high ATP requirements of ionic pumps 

(Laughlin et al., 1998). The total number of branches (defined as the regions between two 

bifurcations or between a bifurcation and a termination) is another measure of absolute 

tree size and varies widely between cell types (Figure A2.1b). Individual branches may 

operate in isolation for the separate processing of specific groups of synaptic inputs 

(Losonczy et al., 2008). Bifurcations also serve as nodes of integration, enhancing 

dendritic computational power (Mel, 1994). 
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Figure A2.1. Diversity in neuronal size. A. Brainstem motoneuron (Núñez-Abades et al., 1994) (left) and 

cerebrocortical stellate dendritic trees (Staiger et al., 2004) (right) have similar shapes and numbers of 

branches (53 and 51, respectively) but different total lengths (6298 to 1966 μm). Boxed Inset: Zoomed-in 

(4x) stellate cell emphasizing morphological similarity to motoneuron besides size. B. Hippocampal CA3 

pyramidal (Henze et al., 1996) (left) and cerebellar Purkinje cell (Vetter et al., 2001) (right) dendritic trees 

have similar lengths (9670 and 9883 μm) but different numbers of branches (121 and 567). Rotation shows 

the prototypical Purkinje cell planar shape. All trees (from NeuroMorpho.Org) are to scale. 

 



177 

 

Each path within a tree, from soma to termination, has its own total number of 

branches, length, surface area, and volume. For any size metric, the maximum extent 

among all paths in a tree is also functionally relevant. Greater distance along the path 

augments passive signal attenuation (i.e. when voltage gated channels are not actively 

propagating the membrane potential), and thus decreases the influence of distal synapses 

(Pyapali et al., 1998). Branch order, defined as the number of bifurcations from the cell 

body (Figure A2.2a), also influences signals. Computational models and 

electrophysiological experiments have shown that branch points are prone to failure in 

active signal propagation (Spruston et al., 1995; Migliore, 1996; Williams and Stuart, 

2000). These failures are due to impedance mismatch between branches, which is in turn 

affected by differential section areas (Migliore et al., 2005). A greater density of 

bifurcations therefore can have a significant impact on passive and active signal 

propagation both towards and away from the soma. With active propagation, the density 

of active channels can modulate the effects of morphology and prevent the failure of 

dendritic spike forward- or back-propagation (Vetter et al., 2001). Thus, branch points 

and length can respectively act as digital filters for active signals and continuous filters 

for passive signals. 

Cell growth in development 
All the aforementioned morphological properties mature through various 

developmental stages. Initially, neurons stem several small, undistinguished branches 

from the cell body. After multiple phases of retraction and elongation, one of the 

branches becomes differentiated by rapidly elongating and adopting axonal 
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characteristics (Dotti et al., 1988). The rest of the sprouts eventually assume dendritic 

properties such as forming spines, small protrusions that synapse with excitatory axons 

(Scott and Luo, 2001). Axons and dendrites also develop distinct biophysical properties 

including channel distributions and cytoskeletal makeup(Fukata et al., 2002). There are 

numerous molecular agents involved in axonal (Yoshimura et al., 2006) and dendritic 

outgrowth (Scott and Luo, 2001), though their details are beyond the scope of this review 

(see also Donohue and Ascoli, 2005). 

Morphological plasticity 
Neurons arborize either from their growth cones located at extending terminal tips 

or from intermediate segments of existing branches (“interstitial” branching) (Dailey and 

Smith, 1996; Szebenyi et al., 1998). Branch elongation and arborization allows synapsing 

with other cell processes, creating a neuronal network. The connectivity of the network 

must be refined through retraction of underused synapses, testing of others, and 

stabilization of functionally meaningful ones (Luo and O’Leary, 2005). This plasticity is 

driven by dynamic factors, particularly afferent activity, that can impact neurons 

throughout development and in different ways depending on age and cell type 

(McAllister, 2000; Cline, 2001; Wong and Ghosh, 2002; Jan and Jan, 2003). Dendritic 

growth mechanisms are sensitive at the population level, producing larger arbors in 

organisms with enriched environments (Fiala et al., 1978; Nilsson et al., 1999) and 

smaller trees and brain regions in response to stressful environments (Magariños et al., 

1996; Bremner et al., 1997; Radley et al., 2004). 
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Afferent activity also plays a role in retraction due to competition between inputs. 

Mitral cells in the olfactory system initially grow dendrites that contact multiple 

glomeruli, only later to retract from all but one (Malun and Brunjes, 1996). Multiple 

cerebellar climbing fiber axons synapse onto individual Purkinje cell dendrites. Upon 

innervation by parallel fibers onto the Purkinje cell, all climbing fibers retract, except a 

single one which then expands its dendritic influence (Scelfo and Strata, 2005).  

 

Extrinsic vs. intrinsic influences 
These steps in dendritic and axonal development temporally overlap and interact 

dynamically. This complex process is mediated by a number of intrinsic (host-cell 

specific) and extrinsic (cues from neighboring cells, target axons, and surrounding 

extracellular milieu) factors. The mutual interactions make it difficult to distinguish 

individual factor roles in dendritic and axonal growth. Models and experiments have each 

reached differing conclusions on the relative extent of intrinsic and extrinsic influence on 

neuronal growth. 

Samsonovich and Ascoli (2003) found that the direction of growth for 

reconstructed hippocampal dendrites was mostly determined by repulsion from their own 

soma. Deviations from the orientation leading directly away from the soma were 

typically followed by corrective deflections based on the segment’s resulting position. 

The repulsion strength decreased with distance from the soma, yielding the 

approximately conical shape of hippocampal principal cells. 
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A stochastic computational growth model could reproduce several 

morphologically diverse cerebral and cerebellar cortical cell types by modifying only two 

external cues (Luczak, 2006). Modifying the spatial distribution of simulated 

‘neurotrophic particles’ changed both orientation and branch density, whereas modifying 

the dimensions of the space available for growth changed the gross size and shape of the 

cell. This study also suggested the requirement of an intrinsic constraint on maximum 

size to keep larger cells from extending at faster rates than neighboring neurons. Without 

such a correction, bulkier arbors would increasingly restrict growth particles from 

reaching smaller trees. The author theorized an alternative extracellular constraint based 

on distance-dependent concentrations of growth-facilitating cues, possibly related to 

cortical layers. 

Qualitative and quantitative neuromorphological features 
 

Tree shape is often the most visually obvious identifier of neuronal arbor and cell 

types. For example, pyramidal cell dendrites are composed of two polarized arbors, 

apical and basal (Figure A2.1b). Both grow away from the cell body in opposite 

directions, receiving input from different sources. Basal dendrites spread out as they 

extend from the soma, taking a conical shape with the apex located at the cell body 

(Henze et al., 1996). Apical dendrites also spread out as they grow away from the soma, 

but they elongate more than basal dendrites, differentiating further as they advance 

through multiple layers. 

Pyramidal cells are the principal neurons in both the cerebral cortex and 

hippocampus. Although all pyramidal cells share a relatively similar appearance, some 
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differences also exist between regions. The overall size of adult male rat pyramidal 

dendritic arbors (labeled in vitro) from the NeuroMorpho.Org (http://NeuroMorpho.Org) 

database (Ascoli, 2006; Ascoli et al., 2007), measured as total number of branches, 

length, surface area or volume, is approximately 4 to 9 times larger for hippocampal than 

for cortical pyramidal apical arbors (detailed results not shown) and approximately 3 

times larger for hippocampal basal arbors (p < 0.001 for all metrics). There is less 

difference between cell types when measuring pyramidal dendrites along their principal 

axis of growth, where cortical pyramidal dendritic arbors (apical and basal combined) are 

~70% the size of hippocampal pyramidal dendritic arbors (p < 0.05). Hippocampal 

neurons are relatively spread out along the other two orthogonal axes compared to 

cortical pyramidal cells, which appear more elongated. Cortical dendrites may be 

confined within a more restricted lamella thus appearing flatter. Differences in tissue 

slice shrinkage leading to greater distortion in one of the cell types may also explain the 

results. 

Cerebellar Purkinje cell dendrites are mostly restricted to growth in two 

dimensions. They fan out significantly in the rostrocaudal direction, but are nearly flat 

mediolaterally (Figure A2.1b, right). Purkinje cells are thus aligned in neat rows 

correlating with the deep folds (folia) throughout the cerebellar cortex. This architecture 

may help minimize the length of shared parallel fiber inputs (Eccles et al., 1967). Some 

dendritic types, such as in retinal ganglion cells, stop growing upon reaching neighbors of 

the same type. The resulting ‘retinal tiling’ spatial layout (Amthor and Oyster, 1995) 

suggests repulsion between neighboring neurons as a shape-constraining mechanism. 
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Other neuronal types such as stellate cells and motoneurons grow away from the soma in 

many directions (i.e. they are multi-polar) (Figure A2.1a). 

Underlying the shape and physical qualities of dendrites and axons is the 

cytoskeleton. The cytoskeleton provides and maintains the structural properties of the 

neuronal trees, mediating intracellular transport (Bhaskar et al., 2007), and branch 

diameter (Hillman, 1979, 1988), elongation, and bifurcation (Dent et al., 2003). Different 

cytoskeletal fibers include actin filaments, microtubules, and other intermediate 

filaments. In dendrites, actin is largely found near the branch surface, where it can give 

rise to high densities of spines, as well as forming filopodia that sample the extracellular 

environment to guide direction and growth patterns determining overall shape (Fischer et 

al., 1998). Microtubules make up much of the branch core and act as a skeletal backbone 

maintaining the neuronal tree shape(Scott and Luo, 2001). Microtubules have polarity 

which determines the direction of resource transport and is an important differentiating 

factor between axons and dendrites. Axon microtubules only transport distally (towards 

the plus-ends), while dendritic microtubules face both directions (Baas et al., 1988). The 

loss of function of a motor protein that drags the microtubules into dendrites minus-end 

first results in elongated dendrites without taper and with an organelle makeup closer to 

an axon (Yu et al., 2000). 

The size metrics discussed so far relate to many neuronal functions. However, 

other functional properties depend on more complex shape and size metrics such as 

branching distributions and patterns (Schaefer et al., 2003). Branching patterns and 

distributions can be measured in numerous ways providing a challenging choice for the 
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best metrics to explore for a given cell type and features of interest. The following section 

reviews some common topological measurements including partition asymmetry and 

modifications thereof. 

Beyond size: complexity and asymmetry 
Considering the shape of neurons beyond their size opens the door to a more 

extensive set of metrics. Early measures of complexity were restricted to 2D images of 

neurons. Sholl analysis is a common metric that counts the number of branches at regular 

distances from the soma (Sholl, 1953). Modified (or Sholl-like) analyses, including 3D 

variations, were natural extensions once digital 3D reconstructions became available 

(Caserta et al., 1995; Ristanović et al., 2006). Sholl-like analyses expand size metrics by 

analyzing their distribution relative to distance measures such as branch order or path 

distance. As an example, dendritic branches tend to thin as they elongate. Accordingly, 

numerous computational modeling studies have used distance-dependent diameters to 

stochastically produce realistic neuron/arbor types (Burke et al., 1992; Ascoli, 1999; 

Donohue and Ascoli, 2005b; Samsonovich and Ascoli, 2005). 

Krichmar et al. (2002), loading CA3 pyramidal cell reconstructions into an 

electrophysiological simulation environment, found that size morphometrics affect firing 

activity but cannot account for all aspects of electrophysiological behavior. How 

dendrites are distributed across branch order significantly correlates with aspects of firing 

patterns. These results suggest that complex morphological properties must be 

characterized not only by overall size, but how size varies within the given tree.  
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Partition asymmetry 
Morphological asymmetry reflects the relative balance of branches or size within 

a tree. Partition asymmetry (Ap) is a relative measure of asymmetry at a bifurcation node 

based on the distribution of degree (number of terminals) between the node's two subtrees 

(Van Pelt et al., 1992). Figure A2.2b presents the formula and calculation for a sample 

tree. The value ranges from 0 (symmetric) to 1 (asymmetric). Since degrees are integers, 

the number of possible values of Ap depends on the node total degree. The denominator 

represents the degrees of freedom (total degree minus two, as both left and right subtrees 

must have at least one terminal). 

The number of possible tree shapes increases exponentially with tree size. Even 

relatively small trees exhibit an exorbitant number of possible branching patterns 

(Harding, 1971; Van Pelt et al., 1992). Given the relatively small number of observations 

enabled by experimental data acquisition, it is impossible to know if there is only a subset 

of tree shapes that fully represents a given cell type (Uemura et al., 1995). It is therefore 

useful to have an informative scalar morphometric about tree shapes. Van Pelt et al. 

(1992) defined the tree asymmetry index as the average partition asymmetry across a tree, 

finding this measure sensitive to different tree shapes. 
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Figure A2.2. Binary tree properties. Branches are the regions between bifurcation or termination nodes. 

A. Branch (centrifugal) order of each node from the root. B. Terminal degree (number of terminations) of 

each subtree at each node. The formula for partition asymmetry (Ap) is provided below with calculation for 

the root of the example tree. C. Lengths of individual segments with length-based partition asymmetry (A
l
p) 

for the root. D. Main paths (gray) by degree (dashed) and by length (solid). At the split of the different 

main paths, the left subtree has a degree of 3 and a length extent of 2.6, while the right subtree has a degree 

of 2 and a length extent of 2.75. 

 

Asymmetry alternatives 
Because partition asymmetry measures the asymmetry of a node given all 

possible degree distributions, nodes that can only have one possible distribution (i.e. 

nodes with degree 2 or 3) technically do not have an asymmetry value. Van Pelt et al. 

(1992) chose to give the two possible partitions with degrees < 4 asymmetry values of 0 
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and 1 for practical purposes, but recognize that these values are arbitrary and mention 

several alternative methods to measure asymmetry in neuronal trees. Because arbitrary 

values change the average partition asymmetry for a given tree, we decided to compare 

asymmetry measures with and without nodes of degree < 4. Measuring partition 

asymmetry for all axonal and dendritic trees from NeuroMorpho.Org with total degree > 

5 (N = 4597), we found that excluding nodes with degrees < 4 resulted in significantly 

greater standard deviation (0.19 > 0.12, F = 0.39, p < 0.0001) suggesting higher 

sensitivity to tree shapes. Van Pelt et al. (1992) performed a similar comparison for both 

asymmetry measures for all possible tree shapes with degree ≤ 7 as well as measuring the 

number of unique values and found analogous results. 

Measuring asymmetry at the tree level as opposed to locally provides a different 

measure that depends on node size. The metric we termed “global asymmetry” 

accomplishes this by weighting partition asymmetry by degree. Thus, nodes that 

contribute to a greater part of the entire tree have proportionally greater influence on the 

measured asymmetry. Since this measure is global in nature, a more absolute partition 

asymmetry is appropriate. This is achieved by not subtracting 2 in the denominator of the 

partition asymmetry equation, such that trees with a greater absolute difference in subtree 

sizes always have greater partition asymmetries.  

Asymmetry can also be measured using continuous size metrics such as length, 

surface area, and volume. Since the branches diverging from a bifurcation have 

continuous size, even a node with two terminals can be asymmetric. There is therefore no 

reason for limiting the nodes to be included in such a measure. Additionally, since it is 
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length (or surface area or volume) and not degree being measured, degrees of freedom 

are not a factor (Figure A2.2C). Donohue and Ascoli (Donohue and Ascoli, 2008) tested 

the accuracy of growth models in computer simulations using different asymmetry 

metrics. Basal and apical tree degree asymmetries were accurately produced by different 

morphometric constraints (diameter and path distance, respectively). Surface area 

asymmetry however was best determined by path distance for both arbor types. These 

results suggest that different asymmetry measures may be determined by distinct factors 

depending on neuron or arbor type. 

A novel implementation of partition asymmetry termed “excess asymmetry” was 

used to measure morphological homeostasis in hippocampal dendritic trees 

(Samsonovich and Ascoli, 2006). This metric is based on the idea that if an arbor grows 

under homeostatic constraints, then larger subtrees will offset smaller subtrees, limiting 

the size range of the entire tree. Specifically, consider a node with subtrees l and r, where 

l has subtrees a and b, and r has subtrees c and d. Switching b with either c or d will 

result in a more symmetric node in case of homeostasis (if a and b are large then c and d 

are small or vice versa). Excess partition asymmetry then compares the actual partition 

asymmetry with the swapped partition asymmetries, producing a positive value if there is 

homeostasis and a value near 0 otherwise. Degree, length, and surface area were all used 

to determine excess asymmetry. Significantly positive excess asymmetry values were 

found in several dendritic types of cortical principal cells, suggesting that subtrees grow 

under homeostatic constraints. 
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Asymmetry’s complex relationships 
Size metrics have been found to classify arbor and cell types better than some 

simple asymmetry scalars (Cannon et al., 1999). However, asymmetry’s relevance may 

require more targeted methods to fully capture cell type variation. Cuntz et al. (2007) 

modeled a dendritic structure by minimizing total wiring to a sample of potential synaptic 

sites from a reconstructed fly tangential cell. The resulting virtual dendrite was very 

different from the corresponding reconstructed cell. It was quite asymmetric and had a 

clear main path. A second model constrained both total wiring and path distance from 

synaptic site to soma. Diameter and taper rate were also constrained to minimize the 

current transfer variability between synapse to soma paths. The result appeared much like 

the source cell, with several levels of fairly symmetric branching followed by more 

asymmetric regions. A single asymmetry measure would not be capable of describing the 

multiple dendritic sub-domains, whereas a set of targeted measures could capture such 

functionally related patterns. 

Neurons abide by many constraints and functions beyond homogeneous synaptic 

efficacy and minimizing metabolic cost. A more generalized recent model to relate 

neuronal function and morphology involved an evolutionary algorithm, with “genes” 

made up of tree growth parameters, and electrophysiological simulations to test virtual 

neuron fitness (Stiefel and Sejnowski, 2007). Based on the chosen functional parameters, 

the model finds optimal dendritic arbors over many generations. Within the resulting set 

of morphological parameters, those vital to the specified neuronal fitness are more highly 

conserved. 
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Asymmetry may correlate with other measurements that more directly reflect the 

function of the corresponding tree shape feature. The next section introduces 

“caulescence”, a novel measure that typically correlates with asymmetry, yet often 

provides a clearer functional consequence. Additionally, we explore analyses suggesting 

that for certain cell types, larger caulescence appears to cause the high asymmetry values. 

Caulescence 
The term “caulescent” was originally used in botany to describe a plant with a 

main trunk or stem (Martyn, 1793). As some neurons present tree structures with 

prominent main paths, including axons and pyramidal cell apical dendrites, we found it 

appropriate to develop a rule for univocally identifying main paths and a measure to 

capture their prominence. 

The main path of a neuronal tree can be defined as the path from the soma to a 

termination which at each bifurcation leads to the greatest extent of a given metric (e.g. 

degree, length, surface area or volume). Degree-based caulescence (CD) follows the path 

that leads to the higher degree at each bifurcation, while length-based caulescence (CL) 

takes the path towards the most length (Figure A2.2d). Caulescence is then defined as 

the weighted partition asymmetry of nodes along the main path. This choice factors out 

the influence of secondary subtrees and weights more heavily the bifurcations with the 

largest extent. Both the partition asymmetry and weighting are based on the same metric 

used to determine the main path itself. The equation for caulescence is: 

C = |l – r| / (l + r) 

Equation A2.1 
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where l and r are the sizes of the two subtrees at each node on the main path. The 

resulting value represents the overall balance of extent, where high caulescence (close to 

1) indicates a very distinct main path and low values reflect a more balanced tree without 

a clear main path. Figure A2.3 shows main paths in example neuron types. 

The significance of caulescence in neuronal arborizations is revealed in the drastic 

differences between the values of various cell and arborization types. Using the length 

metric and NeuroMorpho.Org arbors, pyramidal cell apical dendrites tend to be highly 

caulescent (0.62 ± 0.17, N=889), while their basal counterparts have much less 

caulescence (0.37 ± 0.17; N=1779; p < 0.001). As seen in Figure A2.3a, the main path is 

more obvious in apical compared to basal dendritic trees. High caulescence by volume or 

surface area in dendrites can optimize synaptic integration along the main path, 

analogous to elongating the soma. In fact, surface area (as well as volume, not shown) 

caulescence is significantly higher than length caulescence for both pyramidal basal (0.39 

± 0.17; p < 0.05) and apical dendrites (0.69 ± 0.16; p < 0.001). This fits with secondary 

(e.g. oblique) branches having smaller diameter than main branches and therefore high 

input impedance (Goldstein and Rall, 1974; Vetter et al., 2001; Migliore et al., 2005). 
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Figure A2.3. Main paths in example neurons from NeuroMorpho.Org. A. Hippocampal subicular 

pyramidal dendritic arbor (Golding et al., 2001, 2005). Main path (red) is more caulescent in apical (gray, 

CL = 0.88; CD = 0.88) than basal trees (blue, CL = 0.38±0.14; CD = 0.36±0.07; N = 5). Boxed Inset: 

Zoomed-in (2×) individual basal tree with main path (red) (CL = 0.24; CD = 0.43). B. Hippocampal CA1 

pyramidal cell dendritic (basal: dark blue; apical: gray) and axonal (light blue) arbors (Tamamaki and 

Nojyo, 1990, 1991; Scorcioni and Ascoli, 2005). Axonal main path (red) would not be obvious without 

color, even though this axonal tree is highly caulescent (CL = 0.89; CD = 0.89). Branches are thickened for 

visual clarity. CL = length-based and C D = degree-based caulescence.  
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Two groups of NeuroMorpho.Org axons had sample sizes large enough for 

analysis and varied substantially between types. Cortical basket cell axons had a lower 

mean caulescence (0.54 ± 0.15; N=57) than uniglomerular projection neuron axons (0.73 

± 0.10; N=233; p < 0.001). As would be expected due to the lack of taper in axons, 

neither cell class had axons with a significantly different surface area (CS) or volume-

based (CV) caulescence compared to CL and CD. The main path in both apical dendrites 

and axons is acting in part as an efficient way to get from an origin (i.e. soma) to a 

destination (i.e. apical tuft, axonal terminals), as opposed to sending many branches to 

neighboring targets. 

 The adaptation of partition asymmetry in the caulescence definition results in a 

fairly strong correlation between caulescence and several asymmetry measures, 

particularly global asymmetry. There are, however, noticeable distinctions. For example, 

in apical dendrites of rodent hippocampal pyramidal cells, caulescence values below 0.50 

are generally lower than, and correlate less with, global asymmetry values (both using the 

length metric, Figure A2.4). Caulescence values above 0.50 highly correlate with and fall 

above global asymmetry. Thus, the ratio of global asymmetry to caulescence is higher at 

low than at high values (Figure A2.4 top left inset). This may be due to hippocampal 

apical dendrites with a major bifurcation near the soma, effectively leading to a second 

main path. A tree with more than one true main path has lower caulescence due to a 

highly weighted bifurcation with low partition asymmetry where the second main path 

begins. The tree's global asymmetry would then be higher than its caulescence because 

other highly weighted bifurcations on the second main path would contribute a relatively 
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high partition asymmetry. Rodent cortical apical dendrites show no significant difference 

in correlation above or below caulescence of 0.5 (Figure A2.4). While rodent 

hippocampal (0.66 ± 0.21; N=205) and cortical (0.67 ± 0.13; N=258) apical dendrites 

have similar mean caulescence, primate cortical apical dendrite values (0.57 ± 0.15; 

N=387) are substantially lower. These results signify important differences between both 

brain region and species even within a cell and arbor type. 

Lower global asymmetry may be due to secondary branches. Measuring partition 

asymmetry separately along the main and secondary paths (Figure A2.4 bottom right 

inset) can distinguish the relationship of potentially separate domains. A 2-sample 

Kolmogorov-Smirnov test rejected that the primary and secondary branch partition 

asymmetry values could come from the same population (p < 0.001). These results show 

that main path nodes indeed have significantly higher partition asymmetry than 

secondary nodes. This means that the asymmetry of apical dendrites is due primarily to 

the effect of the main path. 

For simplicity’s sake, only caulescence defined along a single main path was 

analyzed. Future incarnations of the metric may be expanded by taking into account the 

multiple main paths that certain individual trees exhibit, such as some of the low 

caulescence but high global asymmetry apical dendrites in Figure A2.4. Additionally, 

cerebellar climbing fibers and Purkinje cells (Figure A2.1b) appear to have main paths 

that split in multiple directions. Another aspect of separating morphological sub-domains 

is the determination of where a main path ends. Removing acaulescent regions would 

further differentiate sub-domains. For example, the apical tuft of apical dendrites is more 
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symmetric and thus its exclusion from the main path would likely further increase the 

high caulescence values of these trees. 

 

 

Figure A2.4. Global asymmetry versus caulescence. Scatter plot of rodent pyramidal cell apical dendrite 

global asymmetry against caulescence (C), both using the length metric. Green circles represent 

hippocampal neurons, blue crosses cortical neurons. Solid is the diagonal, where global asymmetry equals 

caulescence. At C > 0.5, caulescence is greater than global asymmetry, suggesting a difference between 

bifurcations in the primary and secondary paths. Variability in global asymmetry for hippocampal apical 

dendrites increases at C < 0.5. This could be explained by dendrites with multiple main paths. Top Left 

Inset: Mean ratios of global asymmetry to caulescence below and above 0.5 caulescence is significantly 

different for hippocampal cells (p < 0.0001). Bottom Right Inset: Partition asymmetry analysis of all 

rodent apical dendrite nodes. Primary path bifurcations have significantly higher partition asymmetry than 

secondary path bifurcations (p < 0.0001). 
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Conclusion 
While many biophysical mechanisms determine cell types throughout the body, 

such as chemical messengers and metabolic constraints, neuronal characterization would 

be incomplete without considering morphology. It is both cause and effect of function; a 

dynamic player in signal propagation, integration, and connectivity. Size morphometrics 

summed through the trees can characterize fundamental aspects of different cell types. 

Differential size distributions at branch points serve to quantify less obvious 

morphological aspects such as asymmetry. All these properties are mediated by function, 

environment, and metabolic efficiency. Growth and functional models, in conjunction 

with morphological properties, have the capacity to isolate individual features and 

increase the understanding of their relationships to one another. One such feature, 

caulescence, provides a novel tool for characterizing a relatively unexplored aspect of 

neuromorphology. 
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APPENDIX THREE: ON COMPARING NEURONAL MORPHOLOGIES WITH 

THE CONSTRAINED TREE-EDIT-DISTANCE 

[With kind permission from Springer Science+Business Media: Neuroinformatics, 

volume 7, 2009, Todd A. Gillette, John J. Grefenstette, © Springer Science+Business 

Media, LLC 2011] 

 

Abstract 
The constrained tree-edit-distance provides a computationally practical method 

for comparing morphologies directly without first extracting distributions of other 

metrics. The application of the constrained tree-edit-distance to hippocampal dendrites by 

Heumann and Wittum is reviewed and considered in the context of other applications and 

potential future uses. The method has been used on neuromuscular projection axons for 

comparisons of topology as well as on trees for comparing plant architectures with 

particular parameter sets that may inform future efforts in comparing dendritic 

morphologies. While clearly practical on a small scale, testing and extrapolation of run-

times raise questions as to the practicality of the constrained tree-edit-distance for large-

scale data mining projects. However, other more efficient algorithms may make use of it 

as a gold standard for direct morphological comparison. 
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Body 
Morphological analysis of neurons has a rich history of many measurement 

techniques for a variety of morphological properties. Often these properties are 

themselves the subject of study, such as surface area and its effects on neuronal 

excitability (Krichmar et al., 2002) or the impact of diameter and bifurcations on passive 

and active signal propagation(Vetter et al., 2001). At other times interest is focused on 

the relationship between neuronal classes using a selection of morphometrics (Cannon et 

al., 1999). Some metrics, such as Sholl analysis (Sholl, 1953) and tree asymmetry (Van 

Pelt et al., 1992), can be used to produce distance values between neurons based on 

topology (i.e. the connectivity of a tree, disregarding geometrical properties such as 

length and diameter), but none of them produce an explicit distance value for the 

topologies of two neurons. A metric capable of producing such a value would be useful in 

determining the topological variation within and the differences between neuronal 

classes, particularly if individual geometric data could be factored into the differences at 

the branch level. 

In “The Tree-edit-distance, a Measure for Quantifying Neuronal Morphology”, 

Heumann and Wittum’s use of the constrained tree-edit-distance between unordered trees 

on neuronal dendrites provides a new perspective on comparing neuronal morphologies 

(Heumann and Wittum, 2009). The tree-edit-distance offers a more explicit measure of 

similarity between two neuronal trees that actually represents the topological and 

geometric changes that would need to be applied to one tree in order to create the second 

tree. This could perhaps be considered a developmental distance, akin to the evolutionary 

distance derived from genetic sequence alignments. The constrained tree-edit-distance 
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makes the metric computationally practical. The authors illustrate the effectiveness of the 

method by automatically clustering sets of neurons into groups that reflect cell type. In so 

doing, they present a method and an application that can be used to differentiate cell 

classes and to measure topological differences in a more integrated manner than previous 

methods. 

The constrained tree-edit-distance between unordered trees is a polynomial time 

algorithm (i.e. run time grows by some polynomial of the problem’s size) developed by 

Kaizhong Zhang (Zhang, 1996) to improve on the original tree-edit-distance algorithm 

which is NP-complete (i.e. likely unsolvable in polynomial time). The tree-edit-distance 

is the weighted sum of the costs of a series of operations, including insertions, deletions, 

and geometric alterations of nodes (i.e. bifurcations and terminations), in order to make 

one tree the same as a second tree. This process requires that nodes from each tree be 

mapped to each other. The constrained version of the method imposes certain restrictions 

on how nodes can be mapped, described further in the article, which are responsible for 

the decreased computational complexity (and run-time) of the algorithm. The costs of the 

edit operations and the geometric measures represented at the nodes are parameters of the 

algorithm. They may be chosen to test a particular hypothesis or to optimize the ability of 

the method to differentiate groups of trees. 

Heumann and Wittum investigated whether the tree-edit-distance can capture 

neuronal morphology and the differences between cell types. They compared neurons of 

four cell types: CA1 pyramidal, CA3 pyramidal, dentate gyrus granule, and dentate gyrus 

interneurons, with an array of label schemes. Each label scheme used a different size 
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attribute including length, volume, surface area, bifurcation angle, and no attribute at all 

(i.e. purely topological, no edit cost). Upon calculating edit distances between all pairs of 

neurons under a given label scheme, the authors proceeded to run a cluster analysis on 

each cell type pair. The battery of tests using the various schemes showed the capability 

of each to separate the various cell types from each other. A few label schemes quite 

successfully separated pyramidal cells from non-pyramidal cells, but were only partially 

effective at separating CA1 from CA3 and rather poor at separating granule cells from 

interneurons. Yet several schemes were highly effective in tests run on computer 

generated cell classes including several different pyramidal classes. As a whole, these 

results suggest that the unlabeled constrained tree-edit-distance is a useful tool for 

comparing neuronal morphologies. 

This is not the first time that the constrained tree-edit-distance has been used on 

neurons. In a recent publication in PLoS Biology, a modified version of the constrained 

tree-edit-distance was applied to neuromuscular projections in the mouse (Lu et al., 

2009). The study compared left and right intra-animal connectomes in the interest of 

determining whether they were correlated and in some way genetically determined. 

Pairing axons from the left and right connectomes by motor-unit size, tree-edit-distance 

values were not significantly different from values produced through comparisons across 

animals or with “random” virtual axons generated based on neuromuscular projection 

branching statistics. Heumann and Wittum’s use of the tree-edit-distance is an interesting 

complement to the neuromuscular projection study in that the former aimed to 
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differentiate neuronal classes despite within class variance, while the latter looked for 

correlations within the variance in topology of a particular neuronal class. 

Heumann and Wittum’s effort is a strong first step in the development and 

description of the tree-edit-distance as a tool for morphological analysis and comparison 

of neurons. Certainly a comparison of more cell types would prove interesting. Perhaps 

more useful will be an exploration of node encodings with multiple dimensions, an 

investigation the authors recognized but stated was beyond the scope of their current 

effort. Such a future study could be informed by uses of the tree-edit-distance in other 

domains. In the domain of botany, the method has been used to compare plant 

architectures (Ferraro and Godin, 2000; Segura et al., 2008). In Ferraro and Godin’s 

implementation, each node is represented by multiple labels which are normalized by 

their mean and standard deviation (i.e. z-score) across the node’s tree. Binary or class 

attributes were assigned heuristic cost tables (i.e. scoring matrices). They used the 

Manhattan distance to integrate the differences of the normalized label values. Also 

included was a plant specific attribute, fruit position, which in neurons may be analogous 

to synapse or channel location or density. 

One problem with the constrained tree-edit-distance is that while it is far more 

efficient than the original tree-edit-distance, polynomial time algorithms can still take a 

long time with large data sets. With expanding numbers of neuronal morphologies 

available to be mined (Halavi et al., 2008), the speed of algorithms comparing neurons 

will become increasingly important. Heumann and Wittum found the edit distance of all 

neurons against all other neurons in a set. Running their program using the purely 
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topological labeling scheme on a Pentium 4 CPU (2.80GHz) within Cygwin produced 

run-times represented in Figure A3.1. As theory predicts, time grows by a polynomial of 

the total size, in branches (internal and terminal), of all of the neurons combined. A 

sample of 40 neurons, which with the data set used is approximately 104 branches per 

neuron on average and 4160 branches total, takes 492 seconds (8 minutes 20 seconds) to 

run. 

 

Figure A3.1. Algorithm run-time. Time taken to run the tree-edit-distance algorithm on various subsets of 

the Duke-Southampton archive (Cannon et al., 1999). Curve shows polynomial fit with fitted equation. 

 

It is worthwhile to consider how this program would run on an existing open 

database of morphologies. The NeuroMorpho.Org database currently contains over 5000 

neurons with a total of just under 320,000 branches (approximately 64 branches per 

neuron, though not all neurons’ dendrites are traced). One may be interested in 

comparing a particular neuron (i.e. a query neuron) against those in a database in order to 

classify it or to find the most similar neurons. The time taken naturally depends on both 

the size of the query neuron as well as the total size of the database, as seen in Figure 

A3.2. That suggests that running a single neuron of 64 branches against that database 

would take about 1294 seconds (nearly 22 minutes). A better processor, particularly one 
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capable of running such an algorithm in parallel, would reduce this time considerably, but 

ultimately the practicality of the algorithm will depend on its intended use. For large 

scale database comparisons, it may be of interest to consider some analog of the genomic 

sequence comparison tools such as the Basic Local Alignment Search Tool (BLAST; 

Altschul et al., 1997). However, for research involving smaller sets of neurons or with 

enough time to let the computer process, the constrained tree-edit-distance seems a viable 

option. 

 

 

Figure A3.2. Run-time of queries by size. a. Time taken in seconds to run various query neurons of 

different sizes against sets of neurons from the Duke-Southampton archive. Each symbol represents one 

query neuron. Lines are linear fits, each with R
2
 > 0.99. b. The slope (ms/branch) of fits from (a) plotted 

against query size. This fit produced the equation below used to estimate run-times of a query against all 

neurons within the NeuroMorpho.Org database. Parameters: t is time (ms), Sq is query size (branches), and 

Sd is the size of the database (branches). 

 

While the constrained tree-edit-distance may or may not be immediately useful 

for BLAST-like searches, it can serve as a method of validation for algorithms that aim 

for such a purpose. As the number of morphologies increases, fast algorithms will 

become more important for studies that seek to mine the new wealth of data. As speed 
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tends to come at the cost of completeness, a gold standard will be important for 

determining the strengths and weaknesses of newer, faster algorithms. Moreover, there 

are still labeling schemes to be tested to determine the best representations. Heumann and 

Wittum’s application of the constrained tree-edit-distance shows that it is useful for direct 

morphological comparison between neurons and sets the stage for future morphological 

investigations of neuronal classes. 

 

Editorial Note: The authors of the target article (Heumann and Wittum, 2009) 

acknowledge that the commentary is correct and thank its authors. They also add that 

complexity issues have not been considered in the present paper, since there was no 

problem to run the code on the specified data. Because the algorithms can be parallelized 

easily, they do not see serious complexity problems in using the methods on larger 

datasets. Complexity issues will be the topic of a forthcoming paper. 

 

Information Sharing Statement: The source code for the algorithm, compilation 

and usage instructions, and sample reconstruction files (.hoc) were provided by the 

authors through the Neuroinformatics editors. NeuroMorpho.Org data was retrieved 

through the v.3.2 database with permission and access provided by the database curator. 
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APPENDIX FOUR: STATISTICAL ANALYSIS AND DATA MINING OF 

DIGITAL RECONSTRUCTIONS OF DENDRITIC MORPHOLOGIES 

[Sridevi Polavaram, Todd A. Gillette, Ruchi Parekh, Giorgio A. Ascoli: in Frontiers in 

Neuroanatomy (2014) doi:10.3389/fnana.2014.00138] 

 

Abstract 
Neuronal morphology is diverse among animal species, developmental stages, 

brain regions, and cell types. The geometry of individual neurons also varies substantially 

even within the same cell class. Moreover, specific histological, imaging, and 

reconstruction methodologies can differentially affect morphometric measures. The 

quantitative characterization of neuronal arbors is necessary for in-depth understanding of 

the structure-function relationship in nervous systems. The large collection of 

community-contributed digitally reconstructed neurons available at NeuroMorpho.Org 

constitutes a “big data” research opportunity for neuroscience discovery beyond the 

approaches typically pursued in single laboratories. To illustrate these potential and 

related challenges, we present a database-wide statistical analysis of dendritic arbors 

enabling the quantification of major morphological similarities and differences across 

broadly adopted metadata categories. Furthermore, we adopt a complementary 

unsupervised approach based on clustering and dimensionality reduction to identify the 

main morphological parameters leading to the most statistically informative structural 

classification. We find that specific combinations of measures related to branching 
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density, overall size, tortuosity, bifurcation angles, arbor flatness, and topological 

asymmetry can capture anatomically and functionally relevant features of dendritic trees. 

The reported results only represent a small fraction of the relationships available for data 

exploration and hypothesis testing enabled by sharing of digital morphological 

reconstructions. 

Introduction 
The diversity of neuronal morphologies can have broad and profound functional 

consequences in the nervous system, which have only begun to be understood. Dendritic 

geometry directly impacts (and mediates) computational processes such as signal 

integration, coincidence detection, and logical operations (London and Häusser, 2005). 

The location, orientation, and shape of neural arbors enable (and strongly affect) network 

connectivity, providing the anatomical substrate to investigate structure-function 

relationship at the circuitry level (Shepherd and Svoboda, 2005; Briggman and Denk, 

2006; Kajiwara et al., 2008; Weiler et al., 2008; Burgalossi et al., 2011; Ropireddy et al., 

2011; Brown et al., 2012). These areas of scientific investigation apply to the 

morphological differences observed both within and between neuron types across animal 

species, developmental stages, and brain regions (Figure A4.1). 
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Figure A4.1. Sample of NeuroMorpho.Org reconstructions representing the anatomical diversity of 

dendritic and axonal trees. Each image is labeled (clockwise from its right side) with the somatic brain 

region, neuron types, total arbor length, and arbor width. Somata: red; axons: gray; (basal) dendrites: green; 

apical dendrites: magenta. NeuroMorpho.Org IDs of these neurons from left to right: 06787, 04183, 04457, 

06312, 05713, 04477, 00779, 06216, 00777, 05491, 00888, 06904, 06141, 06295, 07707, 07763, 00690, 

00606. 
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Three-dimensional digital reconstructions of axonal and dendritic arbors, 

combined with neuroinformatics tools and computational approaches, allow considerable 

opportunities for data processing, analysis, and modeling at both cellular- and systems-

level (Parekh and Ascoli, 2013). The open availability of these reconstructions in 

databases such as NeuroMorpho.Org (Figure A4.2) enables re-analysis of shared data 

(Ascoli, 2007). As of version 5.6, the repository contained over 10,000 reconstructions 

contributed by 120 laboratories from 21 species, 85 brain regions and 123 cell types, 

representing more than 240,000 hours of manual tracing. NeuroMorpho.Org users can 

browse the data by animal species, brain region, cell type, and contributing lab. The 

“search by” option can be used to select and combine specific metadata criteria (Figure 

A4.2, left panel top) from a drop-down menu of categories such as developmental stage, 

experimental condition, and reconstruction method. The morphometry search 

functionality (Figure A4.2, left panel bottom) allows users to find neurons matching any 

combination of more than 20 morphometric criteria. From the resulting summary list of 

neurons (Figure A4.2, middle panel), individual pages for each reconstruction can be 

retrieved, thus displaying related metadata, a link to the associated publication, and the 

pre-computed morphometrics (Figure A4.2, right panel). Each reconstruction is 

downloadable as the standardized version along with the original contributed version. 

The log files detailing the changes made during the standardization process are available 

for download as well. From the individual neuron pages, users can also launch an 

animation file and an interactive 3D viewer. 
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Figure A4.2: Search and download features available in NeuroMorpho.Org. Users can query the 

database via a number of functionalities to obtain desired reconstructions. The example provided here 

shows two such options. Reconstructions can be identified by selecting specific metadata across different 

categories such as species, brain region, cell type, staining method, and original file format (left panel, 

top). Alternatively, reconstructions can be selected by a morphometric search (left panel, bottom), wherein 

users can restrict the search to a specific arbor type (for example, apical dendrites) and define quantitative 

criteria to restrict particular measures (such as length or number of bifurcations) to ranges of interest. The 

resulting reconstructions can be displayed (among other options) with a summary of associated 

metadata (middle panel). The complete metadata and morphometric details are included within each 

individual neuron page (right panel). 

 

Quantitative morphometry of neuronal reconstructions is often used for shape 

analysis (Uylings and van Pelt, 2002; Van Ooyen et al., 2002; Rocchi et al., 2007), also 

in conjunction with biologically-inspired computational simulations (Ascoli et al., 2001; 

van Ooyen, 2011). For example, statistical distributions of morphological features are 
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used in stochastic growth algorithms for generating virtual trees (van Pelt et al., 1997; 

Donohue and Ascoli, 2008; Koene et al., 2009; Evans and Polavaram, 2013; Memelli et 

al., 2013). Moreover, statistical analyses of neuronal reconstructions facilitate and 

support theoretical investigations. These studies for instance provided evidence for 

optimal wiring principles of neuronal arbors (Wen and Chklovskii, 2008) and their power 

law distributions, which may relate to synaptic input sampling (Lee and Stevens, 2007; 

Snider et al., 2010; Teeter and Stevens, 2011; Cuntz et al., 2012). 

This study uses the L-Measure software tool (Scorcioni et al., 2008) to extract 

morphometric data from neuronal arbors for large scale statistical analyses of available 

data. L-Measure computes simple statistics of morphometric features as well as their 

frequency distribution and inter-dependence (e.g., how arbor length varies with path 

distance from the soma). This tool has been used in a broad range of applications, 

including multidimensional analysis of neuronal shape (Zawadzki et al., 2012; Costa et 

al., 2014) and comparative studies of sensory neurons in the fly (Ting et al., 2014) and of 

respiratory neurons in the pre-Bötzinger complex (Koizumi et al., 2013). In conjunction 

with L-Neuron (Ascoli and Krichmar, 2000), L-Measure has also been employed to 

generate and validate a large-scale model of the dentate gyrus with half a million neurons 

(Schneider et al., 2012). L-Measure has also enabled analysis of non-neuronal arbors 

such as arterial vasculature (Wright et al., 2013), and was integrated into other digital 

reconstruction and analysis systems, such as the Farsight toolkit (http://farsight-

toolkit.org) and Vaa3D (https://code.google.com/p/vaa3d). 
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With the first successes in high-throughput automatic digital neuronal tracing 

(Chiang et al., 2011) and overall increasing volumes of published and shared 

reconstructions (Halavi et al., 2012), “big data” opportunities for knowledge mining are 

starting to emerge. On the one hand, this increasing availability of shared data may foster 

remarkable discoveries. On the other, the heterogeneous source of data and disparate 

experimental conditions also pose non-trivial challenges to database-wide analyses. As a 

step toward large database analysis, here we utilize exploratory data analysis to quantify 

morphological similarities and differences across broadly diverse dendritic arbors. In the 

process, we recognize several critical limitations when pooling together widely non-

uniform data sets. Consequently, we propose selection criteria and methodological 

choices aimed to maximize the potential biological relevance of the results. With such a 

research design, dimensionality reduction and unsupervised clustering reveal tentative 

morphological relationships between specific neuron types involving branching density, 

topology, size, and tortuosity. At the same time, we identify the most delicate factors in 

both data and metadata that must be considered to optimize the impact of future large-

scale morphological investigations. 

Methods 

Selection of Datasets and Morphometric Features for Analysis 
The entire pool of 10,004 reconstructions downloaded from NeuroMorpho.Org 

v5.6 was screened for a pre-determined set of inclusion criteria to improve 

interpretability of the results. Specifically, in order to be considered for analysis, digital 

neuron reconstructions had to (a) belong to the “control” experimental condition; (b) 
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contain at least four dendritic bifurcations; (c) include branch-path information and not 

just bifurcation connectivity; and (d) have non-zero depth range (eliminating two-

dimensional tracings). The 7,143 reconstructions matching these characteristics were 

analyzed by their NeuroMorpho.Org metadata assignments to specific animal species, 

brain region, and cell type. Subsequently, for the purpose of cluster analysis chi-square 

testing (see below), groups of fewer than 40 neurons in any metadata combination of 

species, brain region, cell type, and lab of origin were excluded to ensure sufficient 

statistical power (Yates et al., 2002). This further selection reduced the number of 

reconstructions to 5,099, divided into 45 unique metadata groups. 

Because of the major differences between axonal and dendritic morphology, and 

the remarkable abundance of reconstructed dendrites relative to axons, only dendritic 

arbors were included in this study. Focusing on a more consistent and comparable dataset 

allows addressing more biologically relevant questions. Moreover, this choice reduces the 

errors due to incomplete reconstructions, which are considerably more severe for 

projection axons than for dendrites. 

L-Measure allows extraction of approximately 100 distinct features from each 

neuron (see http://cng.gmu.edu:8080/Lm for full listing and detailed definitions). Of 

these, all measures related to branch diameter were excluded due to their strong 

dependence on imaging resolution, optical magnification, and other experimental details 

causing excessive inter-laboratory variability (Scorcioni et al., 2004). All other features 

were subjected to cross-correlation analysis, and those with correlation greater than 80% 

were sequentially eliminated one at a time (re-running the cross-correlation at each step) 
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as they were considered highly redundant with the rest of the features. This selection left 

27 features (Table A4.1) that were used for the remainder of the analysis. Dendritic arbor 

size measures consisted of total length, number of tips, height, width, and depth. 

Bifurcation measures included average partition asymmetry as well as amplitude, tilt, and 

torque angles measured locally with the adjacent tracing points or remotely with the 

preceding and following bifurcations or terminations. Branch measures consisted of 

length, tortuosity, and fractal dimension. Lastly, local measures included branch order, 

terminal degree, path distance from soma, and helicity.  
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Table A4.1. Coefficients of variation of all L-Measure derived morphometric features. 

 
 

Principal Component Analysis (PCA) and Cluster Analysis 
In order to reduce the dimensionality of the morphometric space for unsupervised 

clustering, PCA was run on the feature dataset using the “prcomp” routine in R (v. 

2.15.1). This transformation rotates all extracted measures (27 features for 5,099 arbors) 
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such that the first dimensions in the new space capture the most variance (in decreasing 

order). Prior to PCA, all features were normalized by their respective standard deviations, 

and the features with absolute skewness greater than unity (17/27) were log-transformed. 

Negatively skewed distributions were inverted and distributions with negative values 

were shifted prior to log-transformation. These steps ensure an approximately normal 

distribution of the input features, as assumed by PCA and subsequent clustering. The 

resulting first 17 components, accounting for 95% of the variance, were retained for 

cluster analysis. 

Next, the dendritic arbors were clustered based on their principal morphometric 

components to seek a shape-based classification independent of a priori metadata 

grouping. We selected a model-based approach, in which mixtures of Gaussians are 

found that together have maximal likelihood to fit the data. A cluster is the collection of 

arbors that are most likely to come from the same multivariate Gaussian (referred to as a 

cluster model). We used the R “MCLUST” package (Fraley and Raftery, 2006) for 

estimating optimal model parameters and selecting the most likely model type given the 

dataset. The model types include spherical, ellipsoidal (with a diagonal covariance 

matrix), and ellipsoidal with orientation (indicating correlation between dimensions). 

This flexibility makes model-based clustering a more suitable choice than other popular 

methods (e.g., K-means) for analysis of heterogeneous data sets collated from different 

experiments, labs, and conditions. Not only are clusters not limited to fit spherically 

symmetric distributions, but also each cluster is allowed to have its own distinct variance, 

shape, and orientation. 
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MCLUST implements Expectation Maximization (EM) to select models using the 

Bayesian information criterion (BIC). The BIC computes the log likelihood of the cluster 

model, but includes a penalty for the number of parameters weighted by the log of the 

dataset size. Thus, goodness of fit is balanced against model simplicity according to the 

following equation, whereby the largest value determines the best model: 

                    

Equation A4.1 

 

Here,    is the maximized likelihood computed on the marginal likelihood P(y|Mi) 

of the candidate model Mi given the observed data y (y1, … yn); k is the number of free 

parameters to be estimated; and n is the number of data points. 

The specification of MCLUST model types and parameters is coded by three 

letters in each of three positions. The three positions represent the model size, shape, and 

orientation variables, respectively. Letter “E” indicates that the parameters are equivalent 

across all clusters, “V” signifies variable parameter values, and “I” denotes that the 

corresponding parameter is not applicable. For example, “EII” indicates spherical 

Gaussians (no shape or orientation) with equal size among clusters, which corresponds to 

the traditional K-means method. Similarly, the “VVV” model type indicates varying size, 

shape, and orientation parameters. This latter model was determined by EM to be optimal 

for the data analyzed here despite its greater BIC cost implied by the larger number of 

free parameters. Thus, EM provides information theory-derived evidence that the 

performance of simple uniform spherical (K-means-like) clustering is sub-optimal for the 

data used in this study. 
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Cluster distances from the center of coordinates were measured by Z score to 

account for relative variance. Pairwise cluster distances were computed as the distances 

between the corresponding centers normalized by the cluster scatters, which are defined 

as averaged distance of the cluster points from the respective cluster center (Dunn, 1973). 

The associations among clusters and metadata groups were assessed using the chi-square 

test of independence, using the (marginal) frequencies of group and cluster occurrences 

to calculate the expected association matrix, and computing the Bonferroni-corrected p-

values of the observed co-occurrences from the standardized residuals. 

Results 

Variability of Dendritic Morphology and Comparison by Metadata 
To quantify the heterogeneity of the data, we computed the coefficient of 

variation (CV) for each of the 27 measured features over the entire set of 7,143 neurons 

as well as over the subset of 5,099 neurons used in cluster analysis (Table A4.1). 

Tortuosity, fractal dimension, and tilt angle are the least variable features, with a CV of 

less than 10%. In contrast, size measures are the most variable, with a CV close to or 

greater than unity. This apparent distinction between “local” (branch-level) vs. “global” 

(neuron-level) features may reflect both the effect of biological constraints (e.g., varying 

dimensions of different species from insects to human) and experimental conditions (slice 

vs. whole-animal preparations). Most other metrics display intermediate CV values. 

Dendritic morphologies were then compared across species, cell types, and brain 

regions. The corresponding metadata information for each reconstruction in 

NeuroMorpho.Org was organized hierarchically (Figure A4.3), forming groups with a 
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sufficient number of neurons to enable statistical comparison of the results (at least 55 for 

species, 300 for brain regions, and 100 for cell types). Groups with fewer reconstructions 

were combined into “others” together with the reconstructions missing the detailed 

metadata information at the corresponding level of the hierarchy (marked as “not 

reported” in NeuroMorpho.Org). 

 

 

Figure A4.3. NeuroMorpho.Org v5.6 data is categorized along three major metadata dimensions, 

namely species, brain regions, and cell types. Reconstructions are hierarchically organized in each of 

these dimensions. Every node in the hierarchy is labeled by the number of associated reconstructions. The 

line lengths are proportional to the size of the child nodes relative to their parent nodes. (A) In the species 

hierarchy nodes with fewer than 55 reconstructions are grouped together with the “not reported” data under 

“Others.” In the brain regions (B) and cell type (C) hierarchies the grouping thresholds are 300 and 100, 

respectively. 
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 The “leaf” nodes in each of the three metadata hierarchies (12 for species, 14 for 

brain regions, and 10 for cell types) were compared with a selection of representative 

morphometric features (Figure A4.4). In a limited set of cases, individual groups could 

be distinguished from the rest or from each other. For example, blowfly and cat 

reconstructions stood out against the neurons of all other species for their large 

topological asymmetry and Z span, respectively. The dendritic arbors of magnopyramidal 

cells tended to have extensive total length but low fractal dimension, whereas granule 

cells displayed opposite characteristics. At the same time, most groups show extensive 

overlap of their morphometric variance, preventing firm statistical conclusions. Part of 

the reason for such broad distributions is likely due to the non-uniform nature of archive-

wide data sets pooled together across different experiments and laboratories. It is also 

clear that these metadata dimensions are not mutually independent because of 

evolutionary constraints (e.g., bony fishes lack a neocortex) and the finite sample of 

reconstructions (e.g., all monostratified ganglion cells came from the mouse retina). More 

generally, while popular in comparative anatomy, such a pairwise approach lacks the 

ability to reveal multivariate effects that are unavoidable given the non-random 

association between metadata groups and experimental conditions. 
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Figure A4.4. Inter-group differences of representative morphometric features within each main 

metadata dimension. Crosshairs represent medians and quartile ranges of each group corresponding to the 

leaf nodes in the hierarchies shown in Figure A4.3. Dotted lines indicate “other” groups with merged 

data. (A) Differences in arbor depth and topological asymmetry among species. (B) Differences in arbor 

width and average bifurcation angle among brain regions. (C) Differences in fractal dimension and total 

arbor length among cell types. 
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Extracting Primary Morphological Features by PCA and Cluster Models 
In order to overcome the above limitations, we adopted an unsupervised 

clustering approach following dimensionality reduction with PCA. The first step is to 

reduce the initial parameter space to fewer orthogonal dimensions capturing most of the 

data variability. In mathematical terms, PCA identifies the linearly independent 

combinations of variables ordered by the amount of variance they explain. From the (27) 

original morphometric features, the first 17 dimensions of PCA covered 95% of the data 

variance and were used for cluster analysis. 

The first 6 of these principal components were responsible for three quarters of 

the variance and displayed distinctive compositions of their primary morphometric 

features ( 

Table A4.2). Identifying the heaviest contributors in the linear combination of 

morphometric features of each principal component (“loadings”) is useful to aid 

subsequent interpretation of the results. The first component (PC1) is positively loaded 

on bifurcation angles and negatively on branch path length, reflecting high branching 

density. The morphometric features most descriptive of PC2 and PC3 are respectively 

overall size and branch tortuosity. Together, the first three components capture the 

majority of the data variance. The simplest morphological descriptors of PC4, PC5, and 

PC6 are arbor flatness (related to torque angle), fractal dimension (or “space filling”), and 

topological asymmetry (the average normalized sub-tree partition at bifurcation points), 

respectively. 
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Table A4.2. Morphometric loadings. Primary morphometric loading (with absolute values of 0.25 or 

higher) of the first six principal components of the dendritic arbors used in cluster analysis. 

 
 

In order to produce the most informative statistical model, unsupervised 

clustering selects the optimal number of clusters as well as their parameters, by 

maximizing the BIC. These data were best fit to six clusters with varying size, shape, and 

orientation (Figure A4.5). The numerical difference between this model and the variant 

with constant cluster shape, however, was minimal (and is undetectable in Figure 
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A4.5a). The same model type, moreover, performed nearly as well with five or seven 

clusters as indicated by the absence of a clear peak in the BIC plot. We experimented 

with these alternative model variant and numbers of clusters and found no substantial 

differences in findings. At the same time, the data were not adequately described by 

traditional spherical clusters, even if with unequal sizes (Figure A4.5a). 
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Figure A4.5. Unsupervised cluster analysis of dendritic morphology. (A) Maximization of BIC reveals 

marginal performance of spherical clustering with equal (EII) or unequal size (VII) alike relative to the 

models allowing ellipsoidal clusters. Among those, those accounting for unequal orientation (EEV, VEV, 

and VVV) performed better, especially with unequal size (VEV and VVV). The highest BIC value was 

attained at 6 clusters with varying size, shapes and orientation (VVV). (B) Scatter plot of color-coded 

cluster assignments (athrough f) projected on the first two principal components. The ovals represent best 

fitting cluster parameters. (C) Cluster ranking by Z score distance from the origin of 

coordinates. (D) Pairwise inter-cluster distances normalized by the corresponding scatters. Farthest 

distances are in green and nearest are in red. 

 

Since six clusters correspond to the maximum value for both top model types, we 

selected this number as the most suitable for exploratory analysis. Such a choice, 

nevertheless, should not be taken to reflect a ground truth that only six “true” classes 

exist within the data. This selection simply maximizes the inter-similarity of co-clustered 

classes relative to classes in other clusters given the scope, size, quality, and composition 

of the available dataset. To determine if further differences exist between classes that 

associate with the same cluster, it would be appropriate to run the same analysis on a 

subset of the data (sub-clustering). This additional analysis, however, requires larger 

datasets to meet the selection criteria based on a minimum number of reconstructions in 

each dataset. 

The two-dimensional data projection on the first and second components 

illustrates the relative discrimination of clusters by branching density and arbor size 

(Figure A4.5b). Cluster ranking by variance-normalized distance from the center of 

coordinates (Figure A4.5c) allows for focused analysis on clusters farther from the origin 

(a–d), and thus morphologically distinctive, relative to those closer (e and f) to the origin. 

The six clusters contain respectively 585 (a), 1488 (b), 762 (c), 555 (d), 818 (e), and 891 
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(f) reconstructions. Pairwise distances (Figure A4.5D) reveal that one and the same 

cluster (b) is both the farthest from (a) and closest to (e) than to other clusters. 

Statistical Associations between Clusters and Metadata Combinations 
Unsupervised cluster models segregate neuronal reconstructions solely based on 

morphological features. This classification is thus complementary to, and independent of, 

the metadata associated with each reconstruction. The correspondence between the six 

morphological clusters and the 45 unique metadata groups characterized by species, brain 

region, neuron type, and lab of origin can shed light on the most important morphometric 

signatures of each metadata group. The 45-by-6 chi-square contingency matrix (Table 

A4.3) reports the probabilities that the observed over-representation and under-

representations of associations between morphological clusters and metadata groups 

would be due to chance if the observed numerical compositions of each cluster and group 

were independent of each other. For example (first data row in Table A4.3), pyramidal 

neurons from mouse primary somatosensory cortex in Smit–Rigter's archive are 

significantly over-represented in cluster a (p < 0.0002 = 10
−3.73

) and significantly under-

represented in cluster b (p < 0.001 = 10
−3.05

). In contrast, the proportion of these same 

neurons in cluster d is within the range expected from the sizes of this metadata group 

and morphological cluster. 
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Table A4.3. Cluster metadata associations. Matrix of positive (green) and negative (red) associations 

between metadata groups (rows) and morphological clusters (columns). 

 
 

Interestingly, each and every metadata group is over-represented in, and thus 

associated with, one of the six morphological clusters. The majority (38/45) are 
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associated with exactly one cluster, and all of the remaining (7/45) are each split between 

just two clusters. Most possible metadata/cluster pairs deviated significantly from the 

random distribution expected from the “null hypothesis”: 53 out of 270 were significantly 

over-represented and 87 out of 270 significantly under-represented. This overall partition 

of metadata groups in distinct clusters constitutes a remarkable outcome for a fully 

unsupervised classification method. Certain metadata groups are over-represented in one 

morphological cluster and under-represented in all other clusters, such as ganglion cells 

from mouse retina in Masland's archive (cluster a) and pyramidal cells from human 

prefrontal cortex in Jacobs' archive (cluster b). Other metadata groups are over-

represented in one morphological cluster, but otherwise scattered throughout all other 

clusters per the respective numerical abundance, such as pyramidal cells from monkey 

frontal lobe in Luebke's archive (cluster d) and motoneurons from rat brainstem in 

Cameron's archive (cluster e). 

Several observations can be made that transcend individual archive identities. All 

rodent retinal ganglion cell groups are associated with cluster a, whereas fish and 

salamander retinal ganglion cells groups are associated with cluster f. The relative cluster 

positions in the first two principal components and the corresponding morphological 

loadings (Figure A4.5b and Table A4.2) suggest that the retinal ganglion cells are larger 

and with denser branching in rodents than in non-mammals. Neocortex pyramidal cell 

groups are distributed across all clusters, with preference mostly based on species (most 

notably, human in b, rodents in c, and monkey in d). All rodent non-cortical and non-

pyramidal cell groups are found in cluster f (along with salamander and fish retinal 



227 

 

ganglion cells). Such metadata heterogeneity, together with this cluster's minimal 

distance from the morphological center (Figure A4.5c) suggests a putative “catch-all” 

role for cluster f, which makes it broadly representative of the whole dataset. 

In several cases, the split of a metadata group into two morphological clusters 

reflects previously reported relations. For example, three groups of pyramidal neurons 

from the (anterior, middle, and posterior) human insular gyrus in the Jacobs' archive 

divided between clusters b and e according to structural differences related to the 

subject's gender (Anderson et al., 2009). Similarly, mouse primary somatosensory 

pyramidal cells are over-represented in both clusters a and d, consistent with the reported 

differences between young and adult animals (Smit-Rigter et al., 2012). The grouping of 

neurons from younger mice with retinal ganglion cells (in cluster a) and from the older 

mice with pyramidal cells of larger mammals, such as monkey, elephant, and human (in 

cluster d), could be expected since the former groups are characterized by the shortest 

branch path length and the latter groups by the largest. The scattered clustering of 

pyramidal neurons, however, does not necessarily reflect existing biological relations, but 

might rather result from the combination of the choice of analysis algorithms, selection of 

parameters, and experimental differences. 

The other splits of metadata groups between two clusters (Table A4.3) similarly 

revealed differences likely due to experimental procedures, such as staining protocol or 

slicing direction, which were not recognized in the original reports (Anderson et al., 

1995; Soloway et al., 2002; Goldberg et al., 2003; MacLean et al., 2005; Nikolenko et 

al., 2007; Woodruff et al., 2009). For example, the separate clustering of different mouse 
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S1 pyramidal cell datasets can be explained by the differences between intracellular 

biocytin injection (e.g., Yuste's archive) and bulk Golgi staining (e.g., Brumberg's 

archive). While the mechanisms underlying the different visualization by these 

techniques are not yet fully understood (Thomson and Armstrong, 2011), the histological 

labeling information is available as metadata in NeuroMorpho.Org, thus aiding 

interpretation. 

A complementary way to examine the associations between morphological 

clusters and metadata groups is to systematically analyze the composition of each cluster 

in terms of its associated groups, broken down by fraction of group, fraction of cluster, 

and neuron count (Table A4.4). For example (first data row in Table A4.4), 33% of the 

mouse S1 pyramidal cells from the Smit–Rigter archive are in cluster a, accounting for 

only 3% of this cluster (17 out of 560 neurons). The sums of cluster fractions in Table 

A4.4 correspond to the proportion of neurons in each cluster (e.g., 97% for cluster a) 

made up by the cluster's associated metadata groups (green entries in Table A4.3). The 

remaining portions of the clusters are composed of neurons falling outside of their 

associated cluster. Notably, the blowfly tangential cell group is associated with cluster a. 

Moreover, clusters b and c are exclusively associated with human pyramidal cell (in 

which only basal dendrites are reconstructed) and rodent neocortex cell groups 

respectively. 
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Table A4.4. Composition of the six morphological clusters in terms of their over-represented 

metadata groups. 
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Pairwise Morphometric Comparisons of Neuron Groups Identified by Cluster 
Analysis 

Exploratory inspection of neuronal clusters in the 6-dimensional space of 

principal morphometric components together with the association between clusters and 

metadata groups (Table A4.3, Table A4.4) suggested closer inspection of specific 

morphological features in selected pairs of neuronal groups defined by their species, 

brain region, and cell type. The first example pertains to rodent retinal ganglion cells 

(Figure A4.6), which are characterized by high branching density and related 

morphological features (e.g., wide bifurcation angles). These neurons, pooled from mice 

and rats in four different archives, constitute 80% of cluster a, the farthest away from the 

center (Figure A4.5c and Table A4.4). At the opposite end along the first principal 

components is cluster b, entirely made of human pyramidal basal dendrites. Visual 

inspection (Figure A4.6B) reveals the distinctive shapes of rodent ganglion cells and 

human basal dendrites. Statistical analysis of the two main morphological loadings of 

PC1 (bifurcation amplitude and branch path length) confirmed the considerable 

difference between these two neuron groups, even when including those found in clusters 

other than a and b (Figure A4.6c). 
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Figure A4.6. Similarities and differences of rodent retinal ganglion cells with other neurons within 

and across clusters. (A) All rodent retinal ganglion cells together with blowfly tangential cells (cluster a) 

show highest branching density along PC1 compared to others metadata groups. The human basal 

pyramidal cell cluster (b) is highlighted for comparison. PC6 separates the tangential and ganglion cells, 

showing sub-cluster differences. The retinal cells also show a pattern of increasing partition asymmetry 

with increasing branching density. (B) Sample images of retinal ganglion cells (top), blowfly tangential 

cells (middle), and human basal pyramidal cells (bottom). NeuroMorpho.Org IDs of these neurons from left 

to right: 06464, 05352, 05405, 06652, 01895, 06640, 03723, 03724, 03722. (C) Rodent ganglion cells have 

larger amplitude angles compared to human basal pyramidal cells (and most other cell classes). (D)Rodent 

ganglion cells also display shorter branch length, corresponding to higher branching density. (E) The 

blowfly neurons, while sharing similar branch path length and amplitude angles with the retinal cells, have 

higher topological asymmetry. 

 

The second most prominent group in cluster a is constituted by blowfly tangential 

sensory neurons. These neurons share with the rodent ganglion cells not only comparable 

branching density properties captured by PC1 (low branch path length and high 
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bifurcation angle), but also similar distributions on PC2 through PC5 and all 

corresponding morphological features loading on those dimensions. These include 

measures of size (e.g., total dendritic length and spanned volume), of space filling (fractal 

dimension and tortuosity), and of arbor planarity (torque and tilt angles). Such tight 

alignment on the first five principal components along with the morphological co-

clustering suggests a structural basis for the functional commonalities between blowfly 

tangential cells and retinal ganglion cells, both of which process motion-sensitive visual 

information (Kong et al., 2005; Cuntz et al., 2008). 

Nevertheless, rotation on the sixth principal component exposed a surprising and 

nearly perfect separation between retinal ganglion cells and blowfly tangential cell 

(Figure A4.6a). Since the main morphological feature loading on PC6 is topological 

asymmetry (the average partition of terminal degree over all bifurcations), we compared 

the distribution of this measure between the two neuron classes (Figure A4.6d). This 

analysis demonstrated that blowfly tangential neurons have much more asymmetric 

bifurcations than ganglion cells (and most typical neurons). Interestingly, the data 

projection over the first and sixth principal components (Figure A4.6a) also suggested a 

linear relationship between topological asymmetry and branching density in rodent retinal 

ganglion cells but not in other groups. The Pearson correlation coefficients for branching 

density and asymmetry index (R = −0.50) and for bifurcation amplitude remote and 

asymmetry (R = 0.51) are both statistically highly significant (p < 10−10). 

Rotating the data along the first and third principal components (related to 

branching density and tortuosity, respectively) revealed another distinct relationship 
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across pyramidal cells from different species, brain regions, and developmental stages 

(Figure A4.7). Specifically, neocortical pyramidal cells from rodents (clusters c) and 

primates (cluster d) display a trend of increasing branch tortuosity with increasing branch 

density (Figure A4.7a). Visual examination of morphologies selected from the 

corresponding clusters in the PC1-PC3 scatter plot demonstrates a correspondence in the 

increase of branch density and branch tortuosity (Figure A4.7b). The least tortuous trees, 

and many of the primate neurons, are noted to be incomplete reconstructions, in which 

only dendrites proximal to the soma are traced. In contrast, the dendrites of rodent 

neocortical pyramidal neurons tend to be fully reconstructed in both apical and basal 

arbors. 
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Figure A4.7. Rodent and primate cortical pyramidal cells show a distinct linear relationship between 

PC1 and PC3. (A) The majority (71%) of cluster c consists of rodent cortical pyramidal cells, whereas a 

similar proportion of cluster d (72%) corresponds to primate pyramidal cells, which tend to be only 

partially reconstructed. (B) Sample images of incomplete primate pyramidal cells in the top row (1–4) and 

rodent cortical pyramidal cells in the bottom (5–8). The numbers indicate their corresponding position in 

the cluster plot illustrating the progressive increase in branching density and tortuosity in both clusters. The 

NeuroMorpho.Org IDs of these neurons from left to right: 01821, 01526, 01627, 01623, 09630, 09474, 

02569, 00266. 

 

Critical Assessment of Potential Confounds 
In the course of the iterative process of data inspection, hypothesis formulation, 

research design, and quantitative analysis, we encountered numerous challenges 

pertaining to data validation, curation, and standardization across labs. After a 

preliminary exploration of the entire content of NeuroMorpho.org, we decided to include 

in our study only approximately half of the available neurons. Specifically, we chose to 

avoid multi-lab analysis of axons, because of the extreme dependence of axonal 

morphology on experimental conditions. In our early analysis attempt that did not 

segregate axons from dendrites, biological findings became practically impossible to 

disentangle from major artifacts. This selection effectively defines a standard of minimal 

requirements for effectively comparing neural arbors. 

Moreover, we excluded measures related to branch diameter (branch power ratios, 

surface areas, occupied volume, etc.) due to their strong sensitivity on the inter-laboratory 

variety of labeling or staining, imaging resolution or optical magnification, and other 

experimental details affecting tracing conditions (Scorcioni et al., 2004). Furthermore, 

most reconstructed cells originate from preparations in acute brain slices (in vitro). In the 

primary somatosensory region of rat neocortex (S1), this common preparation may result 
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in trimming off more than 50% of the dendritic arbor (Oberlaender et al., 2012). These 

slicing artifacts impact larger brains to a greater extent, as reflected by the fact that 

human cells are only represented by basal dendrites. In addition to species differences, 

trimming effects also depend on animal age, slicing thickness and orientation, and the 

depth of electrode penetration in the tissue. For these reasons, when mining the cluster 

analysis results, we paid particular attention to only report findings as “biological” 

(Figure A4.6,Figure A4.7) that were not based on size or any morphometrics 

significantly affected by trimming artifacts. Instead, we identified correlations based on 

measures such as branching density, tortuosity, and branch angles, all of which have been 

previously found to be consistent between in vitro and in vivo preparations (Pyapali et al., 

1998). 

On the one hand, this judicious design allowed the independent reproduction of 

findings reported in prior publications. These included several cases of “split metadata 

groups” into two morphological clusters, which reflected structural differences related to 

the subject's gender (Anderson and Martin, 2009) or developmental stage (Smit-Rigter et 

al., 2012). On the other hand, experimental artifacts still contributed to clustering, and 

other splits of metadata groups between two clusters (Table A4.3) revealed differences 

likely due to staining protocol or slicing direction, which were not recognized or 

discussed in the original reports (Anderson et al., 1995; Soloway et al., 2002; Goldberg et 

al., 2003; MacLean et al., 2005; Nikolenko et al., 2007; Woodruff et al., 2009). Thus, 

database-wide analyses can reveal potential confounds not easily pinpointed in individual 

studies. 
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One of the most common artifacts of tissue processing is shrinkage, and this 

factor is also highly variable among labs. Shrinkage differentially affects the slice planar 

and perpendicular dimensions (the latter typically producing a larger effect). Thinner 

slices tend to shrink more and so do preparations from younger animals. The duration of 

the experimental procedure may also impact shrinkage, as do the bathing and embedding 

media. Shrinkage can be measured in all dimensions and it can therefore be compensated 

for by multiplying the resulting position coordinates by an appropriate correction factor. 

However, this post-processing operation also exacerbates noise due to light diffraction 

and other experimental errors. These sources of errors tend to be larger in the direction 

corresponding to the depth of the slice (“Z”), which is usually estimated through a piezo-

controller in the motorized stage. Moreover, shrinkage typically varies both within and 

between sections, and an accurate calibration therefore requires multiple repeated 

measurements that add to the already demanding labor intensity of digital reconstruction. 

For these reasons, shrinkage is not always measured, reported or corrected for. This 

variability across published studies further worsens the numerous sources of differences 

due to experimental processing. 

In light of the above consideration, we specifically looked for potential shrinkage-

related confounds in the clustering results. Out of 56 unique combinations of clusters, 

metadata groups, and corresponding published articles, only 14 reported shrinkage 

estimates or mentioned shrinkage altogether. Of those, a mere 5 applied the 

corresponding correction to the data. Unsurprisingly given the limited sample, we found 

no statistically significant association between both corrected or uncorrected values and 
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clustering. Next, we examined slicing thickness, which was reported in 49 (out of 56) 

cases (with median 200 μm). Values varied broadly from 80 to 400 μm, with 85% of 

them falling between 120 and 350 μm. No statistical association was found between 

clustering and these values. The lack of explicit shrinkage information prevents firm 

conclusions and leaves open the possibility that some of the findings we report may be 

ultimately due to slicing artifacts. However, the low coefficient of variation of 

measurements typically sensitive to shrinkage, especially tortuosity and fractal dimension 

(Table A4.1), suggests that the noise related to shrinkage (as opposed to that affecting 

size measures) may affect most of the analyzed data to a similar degree. 

Fully assessing the potential usefulness of the reported results will require 

additional investigation. For example, morphologically detailed electrophysiological 

simulations might be useful to explore how the observed relations between datasets 

(Figure A4.6) or between morphological variables (Figure A4.7) could affect 

input/output relationship of individual neurons (e.g., Scorcioni et al., 2004; Komendantov 

and Ascoli, 2009). Similarly, the effect of these morphological relations on potential 

network connectivity could be studied by embedding the digital reconstructions in an 

appropriate three-dimensional model of the surrounding neural tissue (e.g., Chiang et al., 

2011; Ropireddy and Ascoli, 2011). The continuous expansion of the available pool of 

neuronal reconstructions will also enable the future validation and refinement of these 

results with additional or independent datasets. 



238 

 

Discussion 
This work illustrates how shared morphological data can lead to new observations 

of potential neurobiological interest by enabling statistical quantification of 

commonalities and differences among neuron groups. However, our results also 

demonstrate the challenges of working with large-scale datasets from heterogeneous 

sources, even after extensive effort in metadata curation and management as well as in 

data standardization and selection. Direct analysis of selected morphometric features 

among large neuron groups organized by the main metadata dimensions of species, brain 

region, and cell type failed to reveal meaningful patterns beyond the well-known 

variability of neuronal shape. At the same time, systematic pairwise examination of all 45 

neuronal groups with distinct species, brain region, cell type, and lab of origin for each of 

the 27 main morphological features would produce more than 50,000 comparisons, 

raising questions of scientific interpretation and statistical significance. 

To overcome these issues, we adopted principal component analysis to identify 

the most discriminant morphological features throughout the dataset, and model-based 

cluster analysis to segregate neuron groups solely on the basis of the morphometric 

characteristics. This approach allowed rigorous examination of the statistical associations 

between clusters and metadata and inspection of the most informative morphological 

measurements on the basis of their principal component loadings. The results revealed 

morphological differences between specific cell types and animal species that were 

robust to lab provenance while retaining considerable sensitivity to developmental stages 

and fine regional location as well as to the original experimental conditions. For example, 

neocortical pyramidal cells from rodents and primates alike display a trend of increasing 
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branch tortuosity with increasing branch density (Figure A4.7a). This distinct 

relationship, holding across different species, brain regions, and developmental stages, 

appears robust to slicing artifacts as demonstrated by the co-alignment of both partially 

reconstructed and fully reconstructed neurons (Figure A4.7b). 

The primary features of dendritic morphology corresponded to branching density, 

size, space filling, and bifurcation asymmetry. Of these features, size is likely to be the 

most dramatically impacted by differential trimming artifacts from brains of varying size. 

Nevertheless, the most interesting biological findings were based on branch- or 

bifurcation-level observations. Rodent retinal ganglion cells stood out for their extreme 

branching density, and clustered together with other neuron types involved in primary 

sensory processing as well as with developing pyramidal cells from the somatosensory 

cortex of 6–9 day-old rat. Moreover, the results also highlighted species differences 

within the same cell types by differentiating retinal cells of rodent from those of fish and 

amphibians. Specifically, ganglion cells have denser branching and wider bifurcation 

angles in rodents than in non-mammalian vertebrates (Figure A4.5b, Figure A4.6, Table 

A4.2). This observation is based on pooling of mice and rats data from four different labs 

in one cluster, and of fish and salamander from two different labs in the other, and we 

failed to find any methodological reasons that could explain these morphological 

differences. 

Blowfly tangential sensory neurons are similar to the rodent ganglion cells in 

many morphological features (e.g., low branch path length, comparable fractal 

dimension, tortuosity, and arbor planarity), possibly providing a geometric correlate for 
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their similar function in processing motion-sensitive visual information (Kong et al., 

2005; Cuntz et al., 2008). Nevertheless, retinal ganglion cells and blowfly tangential cells 

can also be neatly distinguished due to the much more asymmetric bifurcations of the 

latter neurons (Figure A4.6A) relative to those of the former (and of most typical 

neurons). Interestingly, cluster analysis also suggested a linear relationship between 

topological asymmetry and branching density in rodent retinal ganglion cells but not in 

other groups, pointing to a previously unrecognized peculiar morphological signature of 

this class only. 

The branching density of mature cortical pyramidal cells, in contrast, was at the 

opposite end relative to ganglion cells (also demonstrating the effect of developmental 

changes) and displayed a distinctive correlation with branch tortuosity. Adult neocortex 

pyramidal cells represent the largest population in NeuroMorpho.Org and come from a 

broad range of animals, anatomical subregions, layers, and experimental conditions, 

enabling certain morphological differentiations (e.g., rodent S1 vs. primate M1). Non-

cortical neurons, including striatal, olfactory, and others, were distinguished for the 

smaller size and larger variability of their dendritic arbors. 

Several recent investigations have adopted similar analysis designs and strategies 

for dimensionality reduction, mainly for the purpose of exploratory neuron type 

classification (e.g., Kong et al., 2005; McGarry et al., 2010; Santana et al., 2013). 

Alternative approaches to develop automated machine-learning classifiers for identifying 

neuron types also promise to be effective for large data sets. The present exploratory 

study used multivariate morphometric analysis to identify the most informative 
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morphological features that distinguish between neuron groups organized by their 

metadata. We predict that statistical morphometric mining will also prove to be useful for 

developing quantitative hypotheses and for designing computational models of dendritic 

growth. At the same time, we discussed the considerable challenge of pooling together 

data from disparate experimental conditions, and the resulting analysis limitations. 

Generation of standardized morphological data across laboratories and research 

designs could yield much more powerful large-scale data mining. In particular, we are 

convinced that better clustering would result from more consistent data collection. 

Systematic reliability assessment of experimental protocols can maximize morphological 

reproducibility and minimize tracing artifacts (e.g., Dercksen et al., 2014). Any such 

improvements would also help refine cluster analysis by reducing variability. 

Unfortunately, the arguably “ideal” experimental choices (in vivo labeling, 

reconstructions at the resolution limit of light, systematic measurement and compensation 

of tissue shrinkage, serial tracing across histological sections, etc.) also correspond to the 

most labor-intensive conditions for manual or semi-manual morphological 

reconstructions. This tension between quality, sample size, and research cost underscores 

the need and desirability of fully automated and broadly applicable tracing technologies 

(Brown et al., 2011; Donohue and Ascoli, 2011). 
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