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ABSTRACT 

MICROBIOME ANALYSIS: TECHNICAL CONSIDERATIONS AND PRACTICAL 
APPLICATIONS 

Samantha Sevilla Chill, Ph.D. 

George Mason University, 2021 

Dissertation Director: Dr. Iosif Vaisman 

 

Continued advances in high-throughput sequencing have created new 

opportunities to discern microbiome composition from a variety of samples and to 

develop applications in ecological recycling efforts and health and disease exploration. In 

this work, the Tenebrio molitor Linnaeus microbiome elucidated how these mealworms 

adapt to consuming biodegradable-resistant materials, including polystyrene (PS), on a 

varied diet. With 14 million US tons generated yearly, PS is a considerable 

environmental contaminant. Determining the mechanism behind the digestion of PS into 

biodegradable components would have significant ecological implications. Additionally, 

this work seeks to add to the understanding of the gut-brain axis through microbiome 

profile examination, recently implicated in mental health disorders. The dysbiosis 

observed between healthy patients and those afflicted with mental health disorders 

highlights the potential of differential microbial composition and functional predictive 

modeling. However, for either of these applications to be most meaningful, the implicit 

technical bias in microbiome research must be understood. Previous studies have 

attempted to assess these variations with simplistic and unreliable models, failing to 
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reflect a complexity seen in either human or environmental samples. Along with the 

practical ecological and health-related findings, this study highlights that the careful 

designing of microbiome-related comparisons, and matching data processing pipelines, 

are necessary to ensure the reproducibility and reliability of results. 
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1. INTRODUCTION 

When the first microbes were observed between 1665 and 1678 by Robert Hooke 

and Antoni van Leeuwenhoek, it is unlikely that these esteemed scientists could have 

readily imagined how integral these tiny organisms would be to all aspects of life (Gest, 

2004). These microbes were found to have an unusually high level of diversity, not only 

in shape and structure but also in function (Willey et al., 2014). The human body is 

colonized by the diverse collection of archaea, bacteria, and fungi from birth, a complex 

collection that continues to evolve throughout one's life (Aagaard et al., 2014; Wampach 

et al., 2017). This community is now referred to as the microbiome, a combination of 

unique microorganisms and the environment that they occupy that creates a unique 

relationship by simultaneously performing essential functions for the hosts and being 

implicated in both overt infections and slowly developing chronic diseases (Jandhyala et 

al., 2015; Libertucci & Young, 2019; Prescott, 2017). The study of metagenomics, the 

genomic material which reflects this community, is the primary type of microbiome 

research utilized today (Aguiar-Pulido et al., 2016). Understanding the relationships 

within the microbiome, both symbiotic and parasitic, is a primary focus in current 

microbiome studies, requiring the identification of the individual microbes within the 

communities and the function of genes and systems defining the balance of unique 

species within the microbe consortium and looking at just two of many striking examples, 

Ophiocordyceps unilateralis s.l. Affects the host ant Camponotus Leonardi, and causing 

its death just as the ant reaches an optimal location for parasitic development, and 
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Lactobacillus Plantarum, who influences the mating preferences of Drosophila 

melanogaster, by changing the cuticular hydrocarbon sex pheromones, it has become 

apparent that microorganisms are potent in steering their hosts (Hughes et al., 2011; 

Sharon et al., 2010). It is not surprising then that understanding the microbiome in its 

entire complexity is essential to not only human and animal health but also to 

environmental conservation efforts (Ley et al., 2006). 

While early cell-culturing techniques provided small glimpses into the microbial 

communities within sampled hosts, it was the significant technological advancements of 

sequencing methods that led to the most considerable breakthrough of the field. The 

sequencing evolution began with Sanger sequencing in 1977, achieving it with chain-

terminating reactions, through further development of the techniques through an 

invention of pyrosequencing and eventually, next-generation sequencing (NGS) (Sanger 

et al., 1977). With these advancements also came new analytical tools, as the data 

generated were able to answer further questions, stretching much beyond simple maps of 

phylogenetic relationships. This intersection of novel technologies, both in the laboratory 

and in the data analysis field, continues to revolutionize the face of microbiology. 

 

 

1.1 Human and animal microbiome 

The human microbiome consists of an estimated 10-fold value over human 

nucleated cells and a 1.3 value overall human cells, whereas the animal microbiome 

numbers vary greatly depending on species and circumstances (Qin et al., 2010; Sender et 

al., 2016). The typical microbiome consists of an extensive range of species and cell 
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types, of which the microbial genomes account for more genes than are the human 

genome (Gilbert et al., 2018). Even the early, most conservative estimations of nearly 

500-1,000 species found in our mucosal, skin, reproductive, and digestive tracts illustrate 

not only the complexity of this community but also the difficulties of presenting an 

accurate census (Turnbaugh et al., 2007). Early studies of bacterial species relied on cell-

culture techniques, which severely limited the ability to comprehend the complexity of a 

community as our ability to identify the species was directly related to the ability of a 

species to be cultured in vitro (Pace et al., 1986). Later, sequencing-based techniques 

began targeting the small ribosomal RNA subunit gene (16S rRNA) to establish 

relationships between the species, their local distributions, and the evolution of these 

communities (Amann et al., 1995; Woese, 1987). It is this ribosomal gene that served as 

the foundation to the numerous microbiome-related studies and as the target for most 

attempts of community-based microbial identification. 

Within the total human microbiome, the two most profiled communities are the 

microbiome of the gastrointestinal tract (commonly referred to as the "gut microbiome") 

and the microbiome of the oral cavity. Isolating and studying these two microbiomes has 

become essential for researchers for several reasons. First, it's a matter of expediency and 

accessibility. Both the gut microbiome and the oral microbiome lend themselves to 

collections directly at the source – for the gut microbiome, fecal samples may be 

obtained, and for the oral microbiome, oral rinses or swabs may be obtained, both of 

which are representative of their respective sources. Second, each of these locations 

represents a different part of the digestion process and where mutualistic relationships 
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develop and thrive. These relationships, when well-balanced, are believed to be crucial 

for human health. However, as research has shown, dysbiosis is always looming, and 

behind it, the possibility of the disease is lurking. 

In animals, the relationship between bacteria and their host is a bit more complex. 

There are animals in which there is a strong symbiotic relationship, such as in cows, 

those with a weak connection, such as those in red pandas, and those with no apparent 

symbiosis, as seen with the Crematogaster ant (Hammer et al., 2019). It is even more 

critical then, in the study of various animal species, to determine where on the spectra the 

relationships fall, that is, on top of understanding its composition. For example, when 

researchers of the Homarus americanus, the American lobster, examined the microbiome 

of lobsters with epizootic shell disease, they found the bacterium Aquimarian homaria in 

high abundances. Because of the identification of the dysbiosis of this bacterium, as 

compared to healthy lobsters, researchers may have identified a possible contributor to 

(decipher) ESD and can better design solutions to overcome this ailment. We see this also 

true in human-related research, as the identification of microbial species as drivers of 

disease, such as Helicobacter pylori's association with gastric cancer and gastric mucosa-

associated lymphoid tissue (MALT) lymphoma, may be identified in a relatively 

straightforward fashion, with limited bias (Atherton, 2006). Generating accurate 

descriptions of healthy microbiomes is necessary to differentiate between the presence/ 

absence of invading species and to accurately estimate relative abundances in control and 

disease groups has implications both to environmental conservation efforts and to human 

health and disease.  
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1.2 Sequencing 16S rRNA Genes 

The 16S rRNA gene is highly conserved between species of bacteria and archaea, 

approximately 1500 bp in length. It is often referred to as a 'molecular clock,' as it is 

functionally constant, shows mosaic heterogeneity across the entire gene, and occurs in all 

organisms (Tsukuda et al., 2017). Additionally, it is an ideal candidate for phylogenetic 

relationships as horizontal gene transfer rarely affects this gene as it's considered to be part 

of the core of informational genes (Acinas et al., 2004). The 16S rRNA gene has nine 

unique variable regions (V1-V9), each with varying lengths (Table 1) and levels of 

intragenomic heterogeneity (Coenye & Vandamme, 2003; B. Yang et al., 2016). Because 

of this, variable regions may be sequenced in groups or individually, with sequencing 

platform selection depending on the length of the selected region (Table 2) (Omega 

BioTek, n.d.). The combination of stretches of highly conserved sequences and variable 

regions enables the design of PCR primers, which can be exploited as a measure of 

diversity, now used in the field of microbiology. 

 
 
 
Table 1. Nine variable regions of the 16S rRNA gene in Escherichia coli, with a start and end base pair positions 
listed. 

Variable Region Start position (bp) End position (bp) 
V1 8 96 
V2 97 306 
V3 307 487 
V4 488 746 
V5 747 885 
V6 886 1029 
V7 1030 1180 
V8 1181 1372 
V9 1373 1468 
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Table 2. 16s rRNA gene variable regions commonly sequenced, by length and common platform used. 

Region (s) Approximate length (bp) Common Platform (s) Used 
V1-V3 510 Roche 454 
V3-V4 428 Illumina MiSeq 
V3-V5 548 Roche 454 

V4 252 Illumina HiSeq, Illumina MiSeq 
V4-V5 411 Roche 454, Illumina MiSeq 
V6-V9 562 Roche 454 
V1-V9 1500 Pacific Biosciences 

 

 

It became clear early in the that the 16S rRNA gene was helpful for establishing 

relationships between species. Using RNase T1 oligonucleotides, researchers were able to 

move away from FISH staining and begin to create catalogs of phylogeny-based 

relationships (Fox et al., 1980). Using reverse transcriptase and synthesis 

oligodeoxynucleotide primers at three sites, researchers created autoradiograms to view 

nucleotide data, specifically identifying differences between phylogeny (Lane et al., 1985). 

Pyrosequencing, a method of sequencing by synthesis, was the following breakthrough 

method developed in the 1990s, proving 'target amplicon-based sequencing' technology 

was sufficient for accurate microbial community analysis (Liu et al., 2007; Novais & 

Thorstenson, 2011). This sequencing method also was found to be highly correlative to 

DNA microarrays, a key feature for study continuity, while offering broader taxa 

identification and increased sensitivity (Ahn et al., 2011). Amplicon sequencing allowed 

for the comparison of sequencing results to detailed, and curated taxonomic databases, of 

which phylogenetic information regarding community profiles could be obtained. The 

"454" method, performed using a Roche 454 instrument that was first described in 2007, 



7 

used designed primers that flanked the variable regions, thereby classifying each read into 

a taxonomic unit. This method also led to sample barcoding, allowing for multiple samples 

to be sequenced in one run (Christensen et al., 2018). The most impactful advancement, 

not just to microbiology but in all scientific fields, came in the form of next-generation 

sequencing. This technique not only continued short-read sequencing methods but made 

both the human genome and the microbiome alike less elusive and more available to the 

scientific community at large.  

Illumina sequencers are one of the most common sequencing platforms utilized to 

perform this sequencing, with single or paired-end reads of varying lengths. Two primers 

developed by the Earth Microbiome Project are typically used for the most common V4 

region are the 515F (forward) and 806R (reverse), which were initially described in 2011 

(Werner et al., 2011). These primers include a 10-nucleotide primer pad that helps prevent 

hairpin formation, a 2-nucleotide primer that shares no similarity to the 16S rRNA 

sequence, and a locus-specific sequence that binds to evolutionarily conserved regions 

(Earth Microbiome Project, 2011). Additionally, these primers also contain an Illumina 

sequence adaptor that attaches to a corresponding Illumina flow cell, which is then 

typically sequenced on an Illumina MiSeq or an Illumina HiSeq instrument (Caporaso et 

al., 2012). These primers have been updated since their first release, including having 

degeneracy added to both primers, eliminating unwanted bias toward specific taxa (Parada 

et al., 2016). The second change altered the forward primer (515F), adding barcodes, 

enabling the usage of reverse primer constructs, allowing for longer amplicons to be 

obtained. A sample-specific barcode that allows for multiplexing of samples to reduce 
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overall costs (Apprill et al., 2015). Despite amplicon-based sequencing being the most cost-

effective approach to the characterization of the microbiome to date, other methods may 

provide more robust information on the functional and compositional microbiome profiles 

generated.  

These metagenomic sequencing approaches include whole-genome shotgun 

sequencing, in which the genome of all microorganisms in a sample is sequenced. 

Metatranscriptomics, or the sequencing of the complete transcriptome, informs which 

genes are expressed within the population and has advantages over sequencing only the 

single 16S rRNA gene by increasing the detection of diversity and adding functional 

prediction (Ranjan et al., 2016). The cost and time constraints of this sequencing type, 

however, are not always feasible, despite the fine granularity made possible by this method 

(Jovel et al., 2016). Commercial manufacturers have attempted to address the cost and 

multiplexing concerns of whole-genome sequencing by creating custom 16S rRNA gene 

"panels" that include combinations of, or all, the variable regions (Qiagen, 2019f; 

SwiftBiosciences, n.d.). Such panels can sequence the specified variable regions in a single 

sequencing run, as well as primers for the internal transcribed spacer (ITS) gene region, a 

marker gene for fungal identification. Both shotgun sequencing and 16S rRNA gene panels 

offer a better resolution to the taxonomic profiles of the sample and provide a way to obtain 

functional level information of the various encoded microbial genes. It is pertinent then to 

the researcher to determine which method, if any, will be able to answer the biological 

questions being asked. 
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These biological questions have expanded in breadth and scope because of the 

advancements made in the field of microbiology. Being able to determine the microbiota 

of various environments requires that researchers not only determine which sequencing 

methodology to adapt but, due to the complex nature of these communities, have several 

other laboratory considerations to determine. To maintain the most accurate compositional 

profile of the microbiome, intentional decisions are required throughout the laboratory 

process, beginning with collection through the bioinformatic assignment of taxonomic 

units. These parameters, if not chosen correctly, will introduce significant bias to the 

analysis and may lead to spurious results and incorrect conclusions despite a solid study 

design in all other aspects. 

1.3 Pre-Processing 

Sequencing data directly from a sequencer must undergo pre-processing before any 

statistical analysis, often beginning with demultiplexing. During the library preparation, 

unique barcodes are added to each sample via an adaptor that identifies a sample as unique. 

Samples are then pooled together into one larger sample, added to flowcells, and 

sequenced. Splitting pools into their samples via barcode is the first step of most workflows 

and must be done before reads can be assessed for sample-level information. After 

demultiplexing, the depth of sequencing can be reviewed to determine the overall coverage 

of each project, as well as by sample.  

Significant variations in sample depths may lead to an inflation of sample diversity 

(beta diversity) as relative abundances of species counts would be unevenly distributed 

(Weiss et al., 2017). Each biological sample may vary in the depth of sequencing that was 
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achieved, representing either a sequencing processing variation or a biological variation. 

Sequencing processing variation can be mitigated through sequencing controls, used to 

monitor the depth of reads per flow cell. To mitigate natural variation, a process of data 

normalization, or transformation, to make accurate comparisons between samples can be 

performed. Normalization in the microbiome field takes the form of rarefying data, 

correcting sequencing depth differences between samples. The process of rarefaction 

includes reviewing the entire project's species counts and then selecting a number 

representing a sub-selection of species. This number is then chosen randomly without 

replacement, discarding reads beyond this number. This threshold will also eliminate 

samples that do not have this minimum number of reads, eliminating low-read and possibly 

low-quality samples.  

1.4 Operational Taxonomic Units and Amplicon Sequence Variants 

Once sequences have been normalized and filtered, Operational Taxonomic Units 

(OTUs) are generated. Rather than using each sequence, a more computational beneficial 

approach is to cluster similar reads into similar 'bins,' based on an assigned level of 

similarity. This level of similarity can vary, depending on the stringency of the reads within 

bins or on the similarity to a reference database. Closed-reference clustering clusters OTU's 

against a selected reference database at a similarity threshold, discarding reads that do not 

match the database (Edgar, 2017). The fastest of all these approaches is closed-referenced 

and has been shown to improve accuracy over other OTU-clustering approaches, as it is 

classified against a known and curated reference database (Allali et al., 2017). 
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An alternative to the faster OTU-clustering method is amplicon sequence variants 

(ASV). Recent efforts have been made to urge the use of ASV's over OTU's, as they allow 

for a finer resolution of sequence differences and are correlated with their biological 

meaning, independently from any reference database (Callahan et al., 2017). ASV 

processing involves the removal of spurious sequences and chimeras, followed by the 

dereplication of sequences. These exact nucleotide sequences are then binned, creating 

more consistent analysis, as ASV's are not based on a reference database or various percent 

similarities. There are several methods capable of creating ASV's; however, DADA2 has 

been shown to not only improve accuracy over OTU's but better resolution over other 

similar methods (Callahan et al., 2016).  

1.5 Assigning Taxonomy 

Once OTU's or ASV's have been generated, a taxonomic assignment must be 

performed. There are three major taxonomic assignment parameters used in metagenomics 

to be tested for their accuracy and precision: BLAST+, VSEARCH, and scikit-learn 

multinomial naïve Bayes classifier. BLAST+ performs a local alignment between the query 

sequence and reference reads, then assigns consensus taxonomy to each query sequence 

from among top hits, of which share a minimum consensus taxonomic assignment 

(Camacho et al., 2009). With this method, the first N hits greater than the set percent 

identity similarity are included, not the top N matches. VSEARCH is a multithreaded tool 

that performs a global alignment between query and reference reads, then assigns 

consensus taxonomy to each query sequence from among top hits, of which share a 

minimum consensus taxonomic assignment (Rognes et al., 2016). Unlike the BLAST+ 
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method, this method searches the entire reference database before choosing the top N hits 

in rank order; it does not simply select the first of the top N hits. Finally, a naïve Bayes 

classifier that integrates several machine-learning algorithms with training possible on a 

reference database chosen was implemented (Pedregosa et al., 2011). Each method 

presents unique approaches to the taxonomic classifier and will be benchmarked against 

both the complex human samples and artificially created communities.  

Two publicly available 16s rRNA gene databases are commonly used in the field, 

each of which has differences in curation, taxonomic level, and creation, leading to 

differences in taxonomic calls, alpha and beta diversity abundances, and comparative 

statistics gleaned from a dataset. The Silva rRNA database project includes a 

comprehensive library of ribosomal RNA sequence data, including both small (16S and 

18S) subunits, as well as large (23S and 28S) subunits (Quast et al., 2013). This database 

includes the domains Bacteria, Archaea and Eukarya; however, it is not regularly curated 

and has not been updated since 2017 (The SILVA ribosomal RNA database project, 2017). 

It takes taxonomic rank information from several sources, including Bergey's Taxonomic 

Outlines, List of Prokaryotic Names with Standing in Nomenclature (LPSN), and the 

International Society of Protistologists, to generate the taxonomic relationships and 

classifications. Additionally, all taxonomic rank assignments in this database are manually 

curated, based on literature and communications, by the Silva database team.  

The second database often utilized is the GreenGenes database, the oldest (2013) 

but still widely used curated database (DeSantis et al., 2006; GreenGenes, 2019). This 

database only contains 16s rRNA genes, and its classification is based on automatic de 
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novo tree construction and mapping from mainly NCBI taxonomic sources. The 

phylogenetic tree is generated after a quality filtering step and is based on publicly 

available databases. This tree is constructed using FastTree, where inner nodes are assigned 

from NCBI and previous databases. 

1.6 Diversity and Statistical Analyses  

Alpha diversity summarizes a community's richness, or the number of features, 

evenness, or the distribution of these groups, or both. These diversity metrics include 

observed species, Abundance-based Coverage Estimator (ACE), Shannon, and Simpson. 

Observed species metrics represent the number of observed species for each class, whereas 

the ACE metric is an estimate of the richness of the samples, using a correction factor 

(Chao & Lee, 1992). Shannon and Simpson's indexes are diversity indices, where 

Shannon's Index is more sensitive to species richness while Simpson's Index is more 

sensitive to species evenness (Shannon & Weaver, 1949; Simpson, 1949). Shannon's Index 

calculates the predictability of species in a sample, with less diverse species having a higher 

predictability score. Simpson's Diversity Index represents the probability that two 

randomly chosen individuals belong to different species. In both indices, as species 

richness and evenness increase, so diversity increases, as well as their values. 

The counterpart to alpha diversity is beta diversity, which compares how the 

microbiomes of one community compare to another. Two methods are commonly included 

(Bray-Curtis dissimilarity and Jaccard distance), both of which present the differences in 

taxonomic abundance profiles or taxonomic presence/absence profiles between different 

environments. The Bray-Curtis dissimilarity matrix determines the differences between 
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two samples, on a scale between 0 and 1, with 0 being the same species, at the same 

abundances between samples and one being they have completely different species or 

abundances. The Jaccard distance differs in that it includes a comparison of the presence 

or absence of species and does not include abundances, although it does use the same scale 

of 0 to 1. 

Two additional methods can be employed to help reduce the dimensionality of the 

data using ordination techniques. These include the Principal Component Analysis (PCA), 

which finds a set of orthogonal linear combinations that explain all the variation in the data, 

using an input of presence/absence. Principal Coordinate Analysis (PCoA) is another 

ordination method, which utilizes distance matrices (of similarities or dissimilarities) and 

generates plots that can be used to visualize the distance matrix of beta diversity. The 

distance matrix is transformed to an orthogonal axis, reducing the dimensionality of the 

data. This takes a complex distance matrix down to a 2-D or 3-D scatterplot, visualizing 

microbial community compositional differences between samples.  

Clustering algorithms are utilized to organize groups of samples by these distance 

matrices and metadata provided. Hierarchical clustering is used to organize items into 

dendrograms, where more similar objects are closer to one another on the tree. Two items 

start as the roots, which are most closely related, and each object next most closely related 

is added, based on the distance matrix. Two types of discrete clustering algorithms can be 

employed as well, k-means clustering and partitioning around medoids (PAM) clustering. 

K-means clustering is an unsupervised machine learning approach, where K random points 

are selected as a cluster center, and points are assigned to the cluster center, minimizing 
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the distance between clusters. PAM clustering selects K points to be the center of the 

clusters, and points are assigned to the cluster center, again minimizing the distance 

between the clusters. Both approaches are useful to determine if there are clustering 

patterns between metadata groups and to visualize the difference or calculate the 

significance between the centers of each cluster. 

Statistical tests can be employed to determine the significance between the 

quantitative measures (relative abundance and the presence/absence of species) and 

metadata, to determine if there is statistical significance between groups (for example, 

healthy and unhealthy) or methods (for example, extraction methodology). These methods 

will include the Mann-Whitney-Wilcoxon test (Mann-Whitney U test), a one-way analysis 

of variance (ANOVA) test, and the PERMANOVA (Adonis) test. The Mann-Whitney U 

test is a non-parametric statistical method in which data is not required to fit a normal 

distribution and assumes unequal variances between species (Kallner, 2018). This test 

determines if there is significance between the means of two groups and was performed 

with the Bonferroni correction. This correction is applied to account for the multiple-

comparison assessment, as there are multiple statistical tests performed simultaneously. 

Alternatively, an ANOVA test may be employed to analyze the diversity between beta 

diversity levels, as well as relative abundance values, assuming normal distributions (Xia 

& Sun, 2017). Finally, Adonis analysis is a multivariate analysis that draws upon the 

variance between distances matrices of an object. It can be used to interpret differences 

between grouping factors of samples and may be integrated with PCoA to visualize 

significant community-level differences.  
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It is important that the type of variation addressed using these statistical methods 

also be explored. It is known that repeated measurements of most scientific processes may 

not lead to the same measurement, a value represented in standard deviation (Bland & 

Altman, 1996). However, due to the multiple replicates within the project, variation can be 

determined on several levels. First, variations between biological replicates processed 

using the same extraction methods and bioinformatic methods would be expected to be 

small, indicating reproducibility of the workflow. Variations within the same sample types 

processed using the same extraction and bioinformatic methods can help to elucidate the 

reliability of artificial controls and the robustness of the workflow to handle human 

variation. Between methods, variations can help to understand better the bias of extraction 

methods, extraction method manufacturers, and bioinformatic variables. These are all 

important to better understanding, designing, and optimizing a workflow for any 

microbiome study. 

Software packages are widely available to employ these statistical methods. The 

use of R, a programming language and environment, is common to utilize these types of 

statistical analysis and graphical representations (R Core Team, 2014). Python is a second 

programming language that is employed to perform complex statistical analysis and data 

management (van Rossum, G.; Drake, 2009). Both R and python incorporate 'packages' 

that are publicly created and maintained, which expand basic utilizations provided. Specific 

to microbiome analysis, the Statistical Analysis of TaxonoMic and functional Profiles 

(STAMP) can be employed to perform statistical hypothesis testing (ANOVA), determine 

effect size and confidence intervals, and provide filtering features based on p-value or other 
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set values (Parks et al., 2014). Although STAMP is used through a GUI, both R and Python 

programs can be implemented in a reproducible and robust workflow, which is highly 

valuable when processing a significant number of samples. 

1.7 Functional Approaches 

While current trends in microbiome research have seen an expansion of sequencing 

methodology beyond the 16S rRNA gene, this approach is still highly used in research. 

Being able to take this type of data, and glean functional annotation, only increases the 

power and value of these types of studies. Publicly available predictive tools have been 

created to fill this need, including PICRUSt 2.0 (https://github.com/picrust/picrust2) and 

Tax4Fun. These predictive methods provide functional annotations based on 16S OTU 

clustering techniques, employing different statistical models and references (Langille, 

2018). These prediction tools utilize Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, which are manually curated pathway maps that integrate molecular interactions, 

reaction, and relational networks (Kanehisa Laboratories, n.d.).  

PICRUSt 2.0 performs prediction by examining the gene family contribution to a 

metagenome based on the 16srRNA sequencing results (The PICRust Project, 2013). It 

uses a Hidden State Prediction (HSP) method to estimate the gene content through the 

sequences of related species as a reference. It relies on the plasticity theory of the microbial 

genome and that more recently diverged species will be more similar than more distant 

relatives. Gene families can then be predicted based on the microbial OTU's present. This 

prediction tool utilizes either GreenGenes or SILVA references, although the previous 

version (1.0) relied on GreenGenes alone. One primary concern with this prediction tool is 
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that all OTU's are linked within the phylogenetic tree, even if distances between 

relationships are large. Alternatively, Tax4Fun utilizes the nearest neighbor statistical 

approach, based on 16s rRNA sequence similarity (Aßhauer et al., 2015). The SILVA 

database is used as a reference, and the profile generated is transformed by a precomputed 

association matrix, and KEGG abundances are normalized through NCBI annotations. 

These abundances are then used to combine functional profiles of the KEGG organisms 

for the final prediction, functional profile of the community.  

1.8 Technical Considerations 

Technical considerations have been an unsettled topic in the microbiome 

community, as multiple factors in the microbiome study workflow can alter the accuracy 

and reliability of the full microbial community representation. While a single, standardized 

method, appropriate for all sample types and projects, does not seem feasible given the 

emergence of new technologies and the specific considerations of microbiome sample 

types, understanding the effects of each variable is critical to assessing the accuracy of the 

community-generated and potentially limiting the conclusions drawn (Editorial, 2017; 

Sinha et al., 2017). Studies have been completed and consortiums created to begin to 

understand such technical and analytical concerns, illuminating confounding sources of 

error and bias from sample collection, sample storage, DNA extraction, library preparation, 

sequencing, and informatics. One example, the Microbiome Quality Control (MBQC) 

consortium, attempted to create reproducible parameters for microbiome studies, including 

extraction, 16S amplification, and sequencing. Initial assessments from this consortium, 

and other published research, have further illustrated the need for a clear understanding of 
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each step in the workflow from extraction to bioinformatic analysis to understand better 

bias and project to project technical variations at each level of processing (Sinha et al., 

2017). 

From the moment of collection, each choice within a workflow must be carefully 

considered. Collection material, sample storage conditions, and storage medium have all 

been shown to have an impact on detected microbial communities (Choo et al., 2015; Song 

et al., 2016). The very nature of microbe analysis presents complications as extracting 

bacterial, virus, or fungal DNA in any combination requires careful consideration. 

Extraction methodology has shown to have a significant effect on sample diversity, with 

the rise and variance of the commercial protocol only exacerbating this effect (Gerasimidis 

et al., 2016; Salonen et al., 2010). Methods, even from the same manufacturer, may differ 

in several variables, including mechanical and chemical lysis of samples, the removal of 

inhibitors, host depletion, the addition of heat, and the strength and type of clean-up 

methods (Claassen et al., 2013). Mechanical disruption, often by bead beating or acoustics, 

has been reported as being the most efficient way to achieve cell wall lysis; however, it 

may also cause DNA shearing, thus limiting further molecular analyses and so must be 

carefully implemented. Complicated by the release of new or updated extraction methods 

by commercial manufacturers, or the addition of automated instruments for liquid handling 

or clean-up, it is how the bias of commonly used extractions protocols relate. Providing a 

more robust analysis of the impact of each variable on the overall profile, comparing 

complex and known samples, will help drive extraction decisions and may elucidate 

explainable differences between studies that obtain varying phenotypic results.  



20 

Sequencing methodology also plays a role, as library preparation and the primers or 

platform was chosen can preferentially bias samples (Gohl et al., 2016; Jones et al., 2015; 

Thomas et al., 2015). Determining the bias between individual sequencing runs, if any, is 

important to understand the internal variations caused by the technician or robotics. The 

depth of coverage and PCR cycle number are two other parameters that must be examined, 

playing a role in both cost and potential artifacts, such as chimera formation. Determining 

which variable region or regions are used is essential for study design. Many microbiome 

studies rely solely on the V4 region for taxonomic analysis due to cost and sequencing 

constraints (Chakravorty et al., 2007). While all regions should result in the same 

community profile, it has been shown that the entire gene is the best at estimating the 

richness of the microbiota, as variable region selection can alter taxonomic assignment 

(Kim et al., 2011). For example, sequencing regions V2-V3 or V3-V4 often map to higher 

levels of taxa than other varying combinations, although this can vary depending on 

whether Archaea or bacteria are targeted (Bukin et al., 2019; Davidson & Epperson, 2018). 

Additionally, regions V3-V4 and V4-V5 have been shown to produce more reliable results 

over V1-V3 (Teng et al., 2018). These combinations, as well as the method of sequencing 

chosen, must then be carefully considered to reduce the bias and inaccurate profile 

generation. Once the laboratory effects have been fully understood, the analysis parameters 

also must be considered, as there is also no true consensus on how data should be 

appropriately handled. 

Finally, a bioinformatic analysis pipeline must be examined at each significant step: 

filtering, taxonomic assignment, and comparative analysis. Filtering settings are essential 
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for all genomic data, and denoising parameters have all been shown to impact the resulting 

microbiome profile to varying degrees (Bokulich et al., 2018). Filtering can include 

removal of low abundance taxonomic species, rarifying datasets to even sample read 

counts, and identifying and removing chimeras. Determining whether to bin reads by OTU 

or utilize ASV's is an important consideration as well. In addition, the reference database 

used to perform the taxonomic assignment is another consideration, as different databases 

have been created with other methods, have been updated on different schedules, and have 

different standards for distinguishing between species. Finally, determining the function of 

these microbes is often necessary, and a variety of functional tools have been created to 

explore these connections and answer more extensive, more impactful biological 

relationships.  

One way to explore the various parameters discussed is by using artificially created 

or mock communities. An artificial community can vary significantly in the field of 

microbiome, representing a single species or a complex community. They can be designed 

to verify sequencing parameters, by being already extracted, or as an extraction control, as 

unlysed cells. They may be formed as an even community, with similar estimated 

concentrations of each community, or as a logarithmic community, where the most 

common species are much more prevalent. They may also represent a variety of species, 

both expected and unexpected, in the source or organism being investigated. Finally, they 

may be composed of not only bacteria but yeast and fungi, which may prove beneficial to 

the study design. The best use of artificial communities to assess the differences in 

microbiome study should represent the diversity and complexity a human sample provides, 
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as opposed to a single strain community, which many studies have used in the past. In 

addition to these communities, other types of controls, such as extraction blanks, PCR 

blanks, and non-template controls, must be included at each level of analysis to allow 

researchers to parse the impact and necessity of technical, biological, and spatial replicates 

within a study design. 

While there have been attempts to identify how these variables impact the 

microbiome analyzed, there has not been one study to compare the impact of all variables 

using a single dataset. By examining controls at each level of analysis, within each of the 

variables can help to provide a much-needed robust analysis of the specific impacts of 

DNA extraction, sequencing, and bioinformatic approaches. It is the intersection of 

carefully considered technical parameters with the functional annotations, where 

relationships may emerge between the microbiome and disease. 

1.9 Microbiome Applications 

Global pollution has increased at alarming rates, with potential consequences for 

both human health and the environment. The production of plastic has grown over the last 

several decades, reaching nearly 350 million tons per year, earning our current period the 

title as the "Plastics Age" (Bokulich et al., 2018; Heidbreder et al., 2019). This waste is of 

particular concern, with the discovery of microplastics and nano-plastics detected in air, 

rain, tap water, beverages, and food, and with over 6300 million metric tons of plastic 

generated to date (Bojic et al., 2020; Geyer et al., 2017). The largest source of this waste 

is polystyrene (PS), a durable and often considered biodegradation-resistant material 

commonly known as Styrofoam, with nearly 14 US metric tons generated annually (Earth 
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Day Network, 2019). This polymer ([-CH (C6H5) CH2-]n) had a global market value of $32 

billion in 2014, which has since risen to a projected $42 billion this year (Borrelle et al., 

2020; Market Research Store, 2015). Numerous efforts are underway to both curtail plastic 

generation and to aid in its environmentally conscious disposal; however, current 

approaches are not sufficient to meet up with the demand and usage worldwide (Borrelle 

et al., 2020; Sina, 2003). 

Due to the large portion of waste that PS accounts for, efforts have attempted to 

find ways to help with the degradation or disposal of this material with little success due 

to the cost to recycle and the cost of raw material. Then, in 2003, scientists discovered the 

larvae of Tenebrio molitor (mealworms) were able to digest Styrofoam food containers 

into biodegradable components successfully (Gilbert et al., 2014; Sina, 2003). By 

collecting samples from the guts of the T. molitor after consumption, as well as their feces, 

the 16s rRNA gene was analyzed for community profiling. Studies have since shown 

variation in diets contributing to PS consumption rate, including soy protein and bran diets, 

as well as the generational affinity for PS consumption being passed to new generations. 

This focus of research has several practical implications not only for the recycling of PS 

but for other plastics that resemble PS in structure. Limited, however, is information on the 

functional pathways that may be contributing to this digestion, as well as information on 

how other diets may affect the PS consumption. Both approaches may help to elucidate 

additional details on the mechanism of consumption and help better enable environmental 

applications.  



24 

Functional analysis is an essential part of understanding the true impact of 

microbiome community differences. Due to the limitation of 16S rRNA sequencing, 

practical applications must be predicted utilizing commercially available software. These 

include packages such as Tax4Fun, which indicates functional capabilities of microbial 

communities based on 16S rRNA data using the SILVA database as a reference. This 

package links gene sequences with the nearest neighbor approach, based on a minimum of 

16s rRNA gene similarity (Aßhauer et al., 2015). After identifying the top differentiated 

OTU's for each metadata feature, a functional prediction may provide essential insights 

into understanding the mechanisms behind the digestion of polystyrene in the T. molitor.  

Other applications where technical pipelines are necessary for largely expanding 

areas include human health and disease. Beginning from birth through life changes such as 

pregnancy, the microbiome has been shown to fluctuate over time. Source locations are 

also important for evaluation, like the gut, mouth, skin, and reproductive organs such as 

the vagina, all have unique microbiomes in both quantity and composition. 

Due to the variations are seen within individuals, populations, and ecosystems, 

study designs for microbiome research often include a population of healthy groups and 

those who are afflicted with the disease/disorder/issues of interest. These types of 

consortiums have been developed with a focus on environmental or human aims, with 

intersections between the fields of ecological research and human health. One example, the 

Earth Microbiome Project (EMP), was started in 2010 to characterize microbial 

ecosystems, gathering over 30,000 samples. Then, in 2012 a collaboration between the 

EMP and the Human Food Project (HMP) formed the American Gut (AGP), which focused 
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on enhancing our understanding of microbiomes found throughout the world92–94. As of 

May 2017, the AGP had sequenced over 15,000 samples, representing over 11,000 

sequences using the 16S rRNA V4 gene. All information is publicly available, as is a dense 

database of metadata associated with the individual donors. This dataset will be used 

further to examine differences in mental health diagnosis and the microbiome, utilizing 

both alpha and beta diversity differences, species identification, and functional approaches. 

Being able to elucidate potential modifiers related to the diagnosis of mental health 

disorders has considerable implications for both diagnosis and treatment.  

In a clinical context, these large consortiums are highly valuable. The microbiome 

has gained significant focus recently, as studies have shown the influence that specific 

community changes, or even individual species presence, have on a wide range of illnesses. 

Diseases such as fatty liver disease, cirrhosis, cancer, inflammatory bowel disease, bipolar 

disorder, and autism have had associations with the microbiome, with dysbiosis correlating 

with disease (Bajaj, Fagan, Sikaroodi, et al., 2019; Caussy et al., 2019; Evans et al., 2017; 

Greenblum et al., 2012; Gudra et al., 2018; Hsiao et al., 2013). Not only are there developed 

links between the microbiota of an individual and these diseases, but their treatments may 

also be affected, as seen with some antipsychotic treatment outcomes and differences in 

the patient's gut microbiota (Flowers et al., 2017).  

In addition, humans may be even more complex than some environmental work, as 

body sites often act as separate ecosystems with significant microbiome variations seen 

within an individual (Methé et al., 2012). These variations appear to be primarily 

influenced by social (environmental, dietary, etc.) rather than genetic relationships, with 



26 

studies showing spouses having more closely related microbiomes than siblings (Dill-

Mcfarland et al., n.d.; Rothschild et al., 2018). It is no wonder, then, those microbiome-

related studies have been on the rise since the early 2000's (NIH Human Microbiome 

Portfolio Analysis, 2019). To achieve the significant aim of predicting human health based 

on the personal microbiome, in conjunction with genetic information, further research must 

be conducted (Andersen et al., 2019). 
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2. AIMS. 

There are three AIMs for this current study: 

AIM 1: To determine the impact of technical (laboratory, sequencing and 

bioinformatic) variation on 16S rRNA gene microbiome analysis, using artificial 

communities and fresh-frozen human fecal samples. 

AIM 2: To examine 16S rRNA gene differences between Tenebrio molitor 

communities primed on differing diets, to determine likely candidates responsible for the 

digestion of polystyrene. 

AIM 3: To examine 16S rRNA gene differences between humans diagnosed mental 

health disorders and their healthy counterparts, to utilize microbiome-related functional 

prediction tools that may help to elucidate the biological pathways responsible for these 

dysfunctions. 
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3. TECHNICAL VARIATIONS 

3.1 Background 

The advancements made in genomics, with the introduction of amplicon-based 

next-generation sequencing, have made significant impacts in microbiology. These studies 

have far reached applications – from understanding the psychological effects of post-

traumatic stress disorder to the intestines of mealworms that can digest polystyrene – and 

require special considerations. However, unlike most human genomic studies, there is no 

global standard for all microbiome data due to the complexity of source material and 

despite the attempts of consortiums, like the Microbiome Quality Control Project (MBQC). 

In addition, variations in sample types, the complexity of data generated, and the bias 

inherent to laboratory techniques require researchers to be even more intentional when 

designing methodologies. This will ensure that the study results have limited bias and 

enable researchers to understand when, if ever, two studies may be compared. 

Unlike other common genomic source material, such as whole blood, microbiome 

studies often have individual biases that must be addressed in study design. Ensuring a 

sterile environment where samples aren't contaminated with the technician's microbiome 

profile is a critical and unique concern compared to other more robust genomic sample 

types. As the urine microbiome is a new field being explored, it is also essential to ensure 

that fecal microbiomes are not confounded by species originating from the kidney, for 

example (Frimodt-Møller, 2019). Extraction has been shown to significantly vary the alpha 

and beta diversity of studies due to the varying lysis solutions, the addition of inhibition 
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reagents, homogenization methods, and mechanical instrumentations used (Ferrand et al., 

2014; Z. Wang et al., 2018; Yuan et al., 2012). These confounding variables are found 

throughout the extraction process and are only made more challenging to identify the 

proprietary nature of publicly available extraction kits. Each stage of the extraction process, 

from lysis to clean-up to elution, must be considered and measured to determine the final 

impact on the generated community profile.  

Unlike whole human blood, one must consider the target microbial cells, which 

vary in their composition and the thickness of the bacterial cell walls. Balancing the 

community composition of complex to lyse Gram-positive cells and easier to lyse Gram-

negative cells with thin cell walls is crucial to obtain a complete profile (Smith et al., 2011). 

Previous work has shown that bead-beating and freeze-thaw cycles significantly impact the 

amount of DNA obtained from these two cell types (Bahl et al., 2012; Wesolowska-

Andersen et al., 2014). The introduction of heat during lysis may be an additional 

consideration, as this may influence more difficult to lyse cells. Because of this balance, 

microbiome sample lysis often requires a combination of chemical and mechanical 

techniques, with automation considerations regularly integrated with standard protocols for 

the mechanical bead-beating. Mechanical lysis is most performed using robotic 

instrumentation, whether in simple foam vortex adaptors or more robust instruments such 

as the SPEX instrument or Qiagen TissueLyzer (Qiagen, 2019i; SPEX Sample Prep, 2010). 

These methods introduce variation to the sample, as each has different intensity, speed, and 

pattern of bead-beating. In addition, the container used for homogenization and material 

used for the mechanical lysis must be considered. As the surface area difference of a well 
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in a 96-well SBS-formatted plate and an individual tube varies, so too will the ability for a 

single source particle to interact with the container wall. The contents of each of these 

source materials also vary. The beads used in processing bead-beating protocols can vary 

in material (most commonly glass, zirconia, or silica beads, and in size (ranging from .5 to 

over 1 mm). Research has shown that size variations alter the alpha diversity of samples, 

however, is limited information on the overall effect of these homogenization variations 

on sample diversity (Costea et al., 2017).  

Once samples have been lysed, considerations must be made to remove 

contaminants present in the sample. Most commonly, clean-up can be performed with 

either magnetic bead-based chemistry or column-based chemistry. However, there may 

again be inherent bias with the bead selection (both material type and bead size) and the 

matrix of the column selected. Extraction methods may induce a microbiome-specific 

removal reagent designed to combat the difficulties of source samples that not only contain 

bacterial and host cells, but substances derived from food or proteins. While these removal 

reagents are essential to ensure that PCR or sequencing-related artifacts are removed, they 

may also add bias to the sample by eliminating species unequally within the sample. 

Human host-cell reagents may be required for specific sample types, as the host 

composition may constitute a significant portion of the genomic content (Heravi et al., 

2020). Like other inhibitor removal reagents, this may also lead to an unbalanced 

microbiome profile and must be carefully considered when included as a part of the 

extraction workflow.  
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In addition to the protocol chemistry variations, many genomic centers have moved 

to include automation, thereby limiting the cumbersome and time-consuming extraction 

components. Whether implementing a liquid-handling robotic system or a magnetic clean-

up robotic system implementing automated robotic approaches can yield reductions in 

time, improve batch-to-batch variation, and reduce contamination. Two robotic platforms 

are commonly used within the microbiome field, compatible with magnetic bead-based 

methods, produced by Qiagen and ThermoFisher Scientific. These include the Qiagen 

QIAsymphony instrument, which processes samples in a closed-system unit, and the 

ThermoFisher Scientific KingFisher Flex, which processes samples in an open-source 

platform (Qiagen, 2019h; ThermoFisher Scientific, n.d.-b). The QIAsymphony 

instruments have liquid handling capabilities on deck and can therefore complete the clean-

up and elution of samples with minimal human interaction. The KingFisher Flex has no 

liquid handling capabilities and therefore requires user interaction to prepare the necessary 

reagent plates. While all instruments improve the speed of the reaction, it is another 

consideration to extraction study design. 

After considering each of these extraction parameters, sequencing must then be 

assessed. Targeted amplicon sequencing is the most prevalent sequencing method used 

today in the microbiome community. This method targets a conserved DNA region, the 

16s rRNA gene subunit, present in all bacteria and amplifies the region through polymerase 

chain reaction (PCR). This allows each sequence to be read, annotated, and counted with 

relatively low cost and low overall sequencing depth. Researchers can also keep expenses 

for sequencing low by multiplexing or using targeted barcoding to increase the total sample 
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number on each plate. While this eliminates flow cell bias in small projects, most large 

studies require more than one sequencing run to complete and run-to-run consistency is 

paramount. Understanding these variations on the microbiome profile will offer 

researchers another layer of clarity and confidence in their results. 

The final component of the microbiome workflow that must be considered is the 

bioinformatic impact. This analysis begins as sequence data leave the sequencing 

instrument, starting with demultiplexing. Multiple samples are often pooled with labeled 

barcodes before sequencing to help reduce sequencing costs, sorting reads back to their 

source is required. After demultiplexing, the depth of sequencing should be reviewed to 

determine the overall coverage of each project, as well as by sample. Significant variations 

in depth that are not addressed may lead to an inflation of sample diversity (beta diversity) 

as relative abundances of species counts would be unevenly distributed (Weiss et al., 2017). 

In addition, each biological sample may vary in the achieved depth of sequencing, 

representing either a sequencing processing variation or a natural variation. To rule out 

sequencing variation, controls can monitor the depth of reads per flow cell. One way to 

mitigate these challenges, data is normalized or transformed to make accurate comparisons 

between samples. Normalization in the microbiome field can take the form of rarefying or 

drawing randomly without replacement so that all samples have the same total read counts. 

This threshold will also eliminate samples that do not have this minimum number of reads, 

eliminating low-read and possibly low-quality samples.  

Reads are then grouped into similar sequences through two main approaches: 

clustering or denoising. Clustering methods involve grouping individual reads into similar 
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'bins' based on an assigned level of similarity. In closed-reference clustering, OTU's are 

clustered against a selected reference database at a similarity threshold, discarding reads 

that do not match the database will be used to create OTU's at a 97% similarity score 

(Edgar, 2017). These reads will be mapped using two different reference databases: the 

GreenGenes and the Silva databases. Alternative to the OTU-clustering method, denoising 

techniques are often performed, involving the removal of spurious sequences and chimera, 

followed by the dereplication of sequences, with amplicon sequence variants (ASV) as the 

output data (Callahan et al., 2016). Features can then be mapped to these sequences for 

taxonomic classification. Recent efforts have been made to urge the use of ASV's over 

OTU's, as they allow for a more acceptable resolution of sequence differences and are 

correlated with their biological meaning, independently from any reference database 

(Prodan et al., 2020). Both ASV's and OTU's will be explored to determine if sequencing 

controls can assess which method better determines the taxonomic classification of 

sequences. 

Once OTU's or ASV's have been generated, taxonomic assignments must be 

performed. There are three major taxonomic assignment parameters used in metagenomics 

to be tested for their accuracy and precision: BLAST+, VSEARCH, and scikit-learn 

multinomial naïve Bayes classifier. BLAST+ performs a local alignment between the query 

sequence and reference reads, then assigns consensus taxonomy to each query sequence 

from among top hits, which share a minimum consensus taxonomic assignment (Camacho 

et al., 2009). With this method, the first N hits greater than the set percent identity similarity 

to the query are included, not the top N matches. VSEARCH is a multithreaded tool that 
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performs a global alignment between query and reference reads, then assigns consensus 

taxonomy to each query sequence from among top hits, sharing a minimum consensus 

taxonomic assignment (Rognes et al., 2016). Unlike the BLAST+ method, this method 

searches the entire reference database before choosing the top N hits in rank order; it does 

not simply select the first of the top N hits. Finally, the naïve Bayes classifier uses a Python 

module (scikit-learn) that integrates several machine-learning algorithms with training 

possible on a selected reference database (Pedregosa et al., 2011). Each method presents 

unique approaches to the taxonomic classifier and will be benchmarked against the 

complex human samples and artificially created communities.  

The last area of comparison is the reference databases used. Two publicly available 

16s rRNA gene databases are commonly used in the field, of which have differences in 

curation, taxonomic level, and creation, leading to differences in taxonomic calls, alpha, 

and beta diversity abundances comparative statistics gleaned from a dataset. Silva's rRNA 

database project includes a comprehensive library of ribosomal RNA sequence data, 

including both small (16S and 18S) subunits, as well as large (23S and 28S) subunits (Quast 

et al., 2013). These include Bacteria, Archaea and Eukarya; however, it is not regularly 

curated and has not been updated since 2017. It takes taxonomic rank information from 

several sources, including Bergey's Taxonomic Outlines, List of Prokaryotic Names with 

Standing in Nomenclature (LPSN), and the International Society of Protistologists. 

Additionally, all taxonomic rank assignments in this database are manually curated. Two 

versions of the database, one released in 2014 and the second released in 2017, were chosen 

for comparative analysis. Finally, the GreenGenes database is the oldest but widely used 
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curated database (2013) but only contains 16S rRNA genes (DeSantis et al., 2006; 

GreenGenes, 2019). Its classification is based on automatic de novo tree construction and 

rank mapping from mainly NCBI taxonomic sources. This tree is constructed using 

FastTree, where inner nodes are assigned from NCBI and previous databases (Price et al., 

2009). 

While some of this assessment will require the direct implementation of a tool, most 

of the bioinformatic evaluation was performed utilizing the second version of Quantitative 

Insights into Microbial Ecology (QIIME) pipeline, updated, and renamed in 2019 

(QIIME2) (Bolyen et al., 2019; Caporaso et al., 2010). This is an open-source 

bioinformatics resource for 16s rRNA gene analysis that packages many analysis features 

into a multi-stepped workflow for microbial data. This pipeline, however, cannot run 

multiple steps simultaneously, take in a configuration file for systematic tracking, or 

provide speed-related parameters inherently. To improve this, Snakemake, a workflow 

management system that can be used to create reproducible and scalable analyses, was 

utilized to allow for the maintenance of unique parameters, downstream tracking, and 

parallelization of data processing (Chill et al., 2020). In addition, R, an open-source 

statistical computing and graphics software program, was utilized with publicly available 

packages to visualize and run additional statistical measurements (R Core Team, 2014). 
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3.2 Study Design 

3.2.1 Overview 

The study design includes two analyses: extraction method and bioinformatic 

processing. Fourteen types of specimens, totaling 996 samples, were included: fresh-frozen 

human stool (n = 1), human “robogut” samples (N=1), MBQC produced artificial 

chemostat stool-derived samples (n=2), commercially produced unextracted artificial 

samples (n=1), commercially produced extracted artificial samples (n=7) and negative 

reagent controls (n=3) (Table 3). All samples were pooled and randomly aliquoted prior to 

extraction or sequencing. Extraction was performed using seven extraction methods, 

organized into two groups, depending on sample types tested (Figure 1). Although both 

groups included all sample types in extraction, group 1 failed to produce any reads for 

fresh-frozen human samples or negative control samples. For this reason, group 1 analysis 

included extraction methods with data on artificial, robogut-derived, and chemostat-

derived sample types, whereas group 2 included these types plus fresh-frozen human 

samples and negative controls. Twelve different bioinformatic processing methods were 

also included, varying ASV or OTU assignment, reference database, and taxonomic 

classification method (Figure 2). Controls varied in terms of number of species, as well as 

composition of community (Table 4). 
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Table 3. Overview of variables tested within extraction, sequencing, and bioinformatic evaluation. Identifiers will be used as a shorthand throughout analysis. 
Extraction Group ID includes extraction methods grouped by sample types evaluated. 

Variable Category Category defined Sample Description Identifier Group ID 
Artificial community, unextracted Extraction D6300 Z00 1,2 
Chemostat stool derived community Extraction DZ35316 M16 1,2 

Extraction DZ35322 M22 1,2 
Robogut stool derived community Extraction DZ35298 M98 1,2 
Artificial community, extracted Sequencing D6305 Z05  

Sequencing D6306 Z06  
Sequencing D6311 Z11  
Sequencing MSA1000 A00  
Sequencing MSA1001 A01  
Sequencing MSA1002 A02  
Sequencing MSA1003 A03  

Negative reagent controls Extraction Water BW 2 
Sequencing NTC_Blank BN  
Sequencing PCR_Blank BP  

Fresh-frozen human Extraction human_1 H01 2 
Extraction Methods Extraction Qiagen DSP Virus Kit EX-1 1 

Extraction Qiagen MagAttract PowerMicrobiome Kit EX-2 2 
Extraction Qiagen DNeasy PowerSoil Pro kit EX-3 1 
Extraction Qiagen MagAttract PowerSoil DNA Kit EX-4 2 
Extraction Qiagen QIAamp with Modifications EX-5 2 
Extraction ThermoFisher MagMax Microbiome Ultra Kit EX-6 1 
Extraction ZymoBiomics 96 MagBead DNA Extraction 

Kit 
EX-7 2 
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Bioinformatic Methods Bioinformatics blast_gg_dada.qza BINF-01 1 
Bioinformatics blast_silva_dada.qza BINF-02 2 
Bioinformatics scikit_gg_dada.qza BINF-03 1 
Bioinformatics scikit_silva_dada.qza BINF-04 2 
Bioinformatics vsearch_gg_dada.qza BINF-05 1 
Bioinformatics vsearch_silva_dada.qza BINF-06 2 
Bioinformatics blast_gg_closed_gg.qza BINF-07 3 
Bioinformatics blast_silva_closed_silva.qza BINF-08 4 
Bioinformatics scikit_gg_closed_gg.qza BINF-09 3 
Bioinformatics scikit_silva_closed_silva.qza BINF-10 4 
Bioinformatics vsearch_gg_closed_gg.qza BINF-11 3 
Bioinformatics vsearch_silva_closed_silva.qza BINF-12 4 
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Figure 1. Overview of extraction, sequencing, and bioinformatics processes. Extraction methods were grouped based on sample type extracted. All extracted and 
pre-extracted materials were processed with the same sequencing methods and analyzed using various bioinformatic parameters (BINF1…BINF12). 
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Figure 2. Workflow of bioinformatic variables tested. ASV/OTU generation type (D = Dada2, C.= Closed-reference cluster) followed by OTU reference, if 
applicable (Si = Silva v123, G = GreenGenes v13.8); taxonomic classification type (B = BLAST+, V = VSEARCH, S = SciKit) followed by Taxonomic reference 
(Si = Silva v123, G = GreenGenes v13.8). 
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Table 4. Artificial community composition. Controls are listed by abbreviation and sample number included in 
project. They also include taxonomic assignment (Species and Family), positive (P) and negative (N) gram staining, 
and expected relative abundance percentage, based on manufacturer provided information. 

 Species Family Gram 
Staining 

Expected 
Relative 
Abundance (%) 

M22 
(N=20) 

Alistipes shahii Rikenellaceae N 3.7E+00 

 Anaerostipes hadrus Lachnospiraceae P 6.3E+00 

 Bacteroides caccae Bacteroidaceae N 6.3E+00 

 Bifidobacterium angulatum Bifidobacteriaceae P 6.3E+00 

 Bilophila wadsworthia Desulfovibrionaceae N 2.4E+00 

 Clostridium bolteae Lachnospiraceae P 6.3E+00 

 Collinsella aerofaciens Coriobacteriaceae P 6.3E+00 

 Coprobacillus cateniformis Erysipelotrichaceae P 3.7E+00 

 Enterococcus gallinarum Enterococcaceae P 6.3E+00 

 Escherichia coli Enterobacteriaceae N 6.3E+00 

 Fusobacterium 
gonidiaforman 

Fusobacteriaceae N 6.3E+00 

 Fusobacterium varium Fusobacteriaceae N 6.3E+00 

 Lactobacillus iners Lactobacillaceae P 3.7E+00 

 Paenibacillus barengoltzii Paenibacillaceae P 3.7E+00 

 Parabacteroides merdae Porphyromonadaceae N 6.3E+00 

 Pediococcus acidilactici Lactobacillaceae P 4.2E+00 

 Propionibacterium acnes Propionibacteriaceae P 6.3E+00 

 Pyramidobacter piscolens Synergistaceae N 2.1E+00 

 Ralstonia pickettii Burkholderiaceae N 6.3E+00 

 Subdoligranulum variabile Ruminococcaceae N 1.6E+00 

M16 
(N=22) 

Bacillus licheniformis Bacillaceae P 4.2E+00 

 Barnesiella viscericola Porphyromonadaceae N 6.3E+00 

 Bifidobacterium longum Bifidobacteriaceae P 6.3E+00 

 Campylobacter concisus Campylobacteraceae N 3.1E+00 

 Capnocytophaga sputigena Flavobacteriaceae N 5.2E-01 

 Dialister pneumosintes Veillonellaceae N 1.0E-01 

 Eggerthella lenta Coriobacteriaceae P 3.7E+00 

 Eikenella corrodens Neisseriaceae N 4.2E+00 

 Fusobacterium 
periodonticum 

Fusobacteriaceae N 6.3E+00 

 Gemella morbillorum Tenericutes IncertaeSedis 
X 

P 5.2E+00 

 Granulicatella adiacens Streptococcaceae P 6.3E+00 
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 Klebsiella pneumoniae Enterobacteriaceae N 6.3E+00 

 Leptotrichia goodfellowii Leptotrichiaceae N 5.2E+00 

 Mogibacterium timidum Eubacteriaceae P 1.0E-01 

 Neisseria sicca Neisseriaceae N 6.3E+00 

 Parvimonas micra Peptoniphilus P 3.1E+00 

 Prevotella oralis Prevotellaceae N 6.3E+00 

 Slackia exigua Coriobacteriaceae P 3.7E+00 

 Stomatococcusmucilaginos
u 

Brevibacteriaceae P 6.3E+00 

 Streptococcus gordonii Streptococcaceae P 6.3E+00 

 Veillonella parvula Veillonellaceae N 5.2E+00 

 Weissella cibaria Leuconostocaceae P 5.2E+00 

A00 
(N=10) 

Bacillus cereus Bacillaceae P 1.0E+01 

 Bifidobacterium 
adolescentis 

Bifidobacteriaceae P 1.0E+01 

 Clostridium beijerinckii Clostridiaceae P 1.0E+01 

 Deinococcus radiodurans Deinococcaceae P 1.0E+01 

 Enterococcus faecalis Enterococcaceae P 1.0E+01 

 Escherichia coli Enterobacteriaceae N 1.0E+01 

 Lactobacillus gasseri Lactobacillaceae  P 1.0E+01 

 Rhodobacter sphaeroides Rhodobacteraceae N 1.0E+01 

 Staphylococcus epidermidis Staphylococcaceae P 1.0E+01 

 Streptococcus mutans Streptococcaceae P 1.0E+01 

A01 
(N=10) 

Bacillus cereus Bacillaceae P 4.5E+00 

 Bifidobacterium 
adolescentis 

Bifidobacteriaceae P 4.0E-02 

 Clostridium beijerinckii Clostridiaceae P 4.5E-01 

 Deinococcus radiodurans Deinococcaceae P 4.0E-02 

 Enterococcus faecalis Enterococcaceae P 4.0E-02 

 Escherichia coli Enterobacteriaceae N 4.5E+00 

 Lactobacillus gasseri Lactobacillaceae  P 4.5E-01 

 Rhodobacter sphaeroides Rhodobacteraceae N 4.5E+01 

 Staphylococcus epidermidis Staphylococcaceae P 4.5E+01 

 Streptococcus mutans Streptococcaceae P 4.5E-01 

A02 
(N=20) 

Acinetobacter baumannii Moraxellaceae N 5.0E+00 

 Bacillus cereus Bacillaceae P 5.0E+00 

 Bacteroides vulgatus Bacteroidaceae N 5.0E+00 

 Bifidobacterium 
adolescentis 

Bifidobacteriaceae P 5.0E+00 
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 Clostridium beijerinckii Clostridiaceae P 5.0E+00 

 Cutibacterium acnes Propionibacteriaceae P 5.0E+00 

 Deinococcus radiodurans Deinococcaceae P 5.0E+00 

 Enterococcus faecalis Enterococcaceae P 5.0E+00 

 Escherichia coli Enterobacteriaceae N 5.0E+00 

 Helicobacter pylori Helicobacteraceae N 5.0E+00 

 Lactobacillus gasseri Lactobacillaceae  P 5.0E+00 

 Neisseria meningitidis Neisseriaceae N 5.0E+00 

 Porphyromonas gingivalis Porphyromonadaceae N 5.0E+00 

 Pseudomonas aeruginosa Pseudomonadaceae N 5.0E+00 

 Rhodobacter sphaeroides Rhodobacteraceae N 5.0E+00 

 Schaalia odontolytica Actinomycetaceae P 5.0E+00 

 Staphylococcus aureus Staphylococcaceae P 5.0E+00 

 Staphylococcus epidermidis Staphylococcaceae P 5.0E+00 

 Streptococcus agalactiae Streptococcaceae P 5.0E+00 

 Streptococcus mutans Streptococcaceae P 5.0E+00 

A03 
(N=20) 

Acinetobacter baumannii Moraxellaceae N 1.8E-01 

 Bacillus cereus Bacillaceae P 1.8E+00 

 Bacteroides vulgatus Bacteroidaceae N 2.0E-02 

 Bifidobacterium 
adolescentis 

Bifidobacteriaceae P 2.0E-02 

 Clostridium beijerinckii Clostridiaceae P 1.8E+00 

 Cutibacterium acnes Propionibacteriaceae P 1.8E-01 

 Deinococcus radiodurans Deinococcaceae P 2.0E-03 

 Enterococcus faecalis Enterococcaceae P 2.0E-03 

 Escherichia coli Enterobacteriaceae N 1.8E+01 

 Helicobacter pylori Helicobacteraceae N 1.8E-01 

 Lactobacillus gasseri Lactobacillaceae  P 1.8E-01 

 Neisseria meningitidis Neisseriaceae N 1.8E-01 

 Porphyromonas gingivalis Porphyromonadaceae N 1.8E+01 

 Pseudomonas aeruginosa Pseudomonadaceae N 1.8E+00 

 Rhodobacter sphaeroides Rhodobacteraceae N 1.8E+01 

 Schaalia odontolytica Actinomycetaceae P 2.0E-03 

 Staphylococcus aureus Staphylococcaceae P 1.8E+00 

 Staphylococcus epidermidis Staphylococcaceae P 1.8E+01 

 Streptococcus agalactiae Streptococcaceae P 1.8E+00 

 Streptococcus mutans Streptococcaceae P 1.8E+01 

Z00,-
05,-06 
(N=8) 

Bacillus subtilis Bacillaceae P 1.7E+01 
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 Enterococcus faecalis Enterococcaceae P 9.9E+00 

 Escherichia coli Enterobacteriaceae N 1.0E+01 

 Lactobacillus fermentum Lactobacillaceae  P 1.8E+01 

 Listeria monocytogenes Listeriaceae P 1.4E+01 

 Pseudomonas aeruginosa Pseudomonadaceae N 4.2E+00 

 Salmonella enterica Enterobacteriaceae N 1.0E+01 

 Staphylococcus aureus Staphylococcaceae P 1.6E+01 

Z11 
(N=9) 

Bacillus subtilis Bacillaceae P 1.2E+00 

 Enterococcus faecalis Enterococcaceae P 6.7E-04 

 Enterococcus gallinarum Enterococcaceae P 6.7E-04 

 Escherichia coli Enterobacteriaceae N 6.9E-02 

 Lactobacillus fermentum Lactobacillaceae  P 1.2E-02 

 Listeria monocytogenes Listeriaceae P 9.6E+01 

 Pseudomonas aeruginosa Pseudomonadaceae N 2.8E+00 

 Salmonella enterica Enterobacteriaceae N 7.0E-02 
 Staphylococcus aureus Staphylococcaceae P 1.0E-04 

 
 

3.2.2 Commonalities  

Specimens were processed using one of the selected extraction methods provided 

by publicly available manufacturing companies, using manufacturer recommended 

parameters, including homogenization and clean-up parameters (Table 5, Table 6). The 

16S rRNA gene amplicons were generated using an Illumina MiSeq instrument, targeting 

the v4 region. FASTQ files were demultiplexed and analyzed using varied bioinformatic 

variables for ASV or OTU generation (DADA or closed reference), reference database 

(Silva v123 or GreenGenes), and taxonomic classification method (BLAST+, VSEARCH, 

SciKit). Filtered counts and taxonomically classified output were generated for review.  
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Table 5. Extraction and bioinformatic variations summary. Includes methodologies, variables tested within each 
method, and the number of instances that the variable is tested. For example, the extraction manufacturer Qiagen 
is tested in multiple extraction kits (N=5), of which one is the Qiagen DSP Virus kit, which has multiple samples 
tested (N=3). 

 Methodology Variable N Methods 
Extraction Methods Extraction Kit 

Manufacturer 
Qiagen 5 
Thermofisher 1 
ZymoResearch 1 

Extraction Kit Qiagen DSP Virus 3 
Qiagen MagAttract 
PowerMicrobiome 

12 

Qiagen Dneasy 
PowerSoil Pro 

12 

Qiagen MagAttract 
PowerSoil 

12 

Qiagen QIAamp 
(Modified) 

3 

ThermoFisher MagMax 
Microbiome Ultra 

3 

ZymoFisher 96 
MagBead DNA 
Extraction 

12 

Homogenization 
Method 

Plate vortex adaptor 1 
TissueLyzer 3 
Vertical vortex adaptor 3 

Homogenization 
Format 

Plate 4 
Tubes 3 

Cleanup Method Column 2 
Magnetic 5 

Inhibitor Removal 
Method 

None 2 

Solution 4 

Tablet 1 
Bioinformatic Methods ASV or OTU 

generation method 
Dada2 (ASV) 1 
Closed-Reference 
(OTU) 

2 

Taxonomic 
Classifications 

BLAST+ 2 
VSEARCH 2 
SCIKIT 2 
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Table 6. Extraction variable summary, including information on each methods manufacturer, homogenization variables, clean-up variables, and inhibitor 
removal variables. 

Extraction Method Extraction 
Manufacturer 

Homogenization 
Method 

Homogenization 
Format 

Clean-up 
method 

Inhibitor Removal 
Method 

Qiagen DSP Virus Qiagen Vertical vortex adaptor Tubes Magnetic Tablet 
Qiagen MagAttract 
PowerMicrobiome 

Qiagen TissueLyzer Plate Magnetic Solution 

Qiagen Dneasy 
PowerSoil Pro 

Qiagen TissueLyzer Plate Magnetic Solution 

Qiagen MagAttract 
PowerSoil 

Qiagen TissueLyzer Plate Magnetic Solution 

Qiagen QIAamp 
(Modified) 

Qiagen Vertical vortex adaptor Tubes Column Solution 

ThermoFisher MagMax 
Microbiome Ultra 

ThermoFisher Plate vortex adaptor Plate Magnetic None 

ZymoFisher 96 
MagBead DNA 
Extraction 

ZymoBiomics Plate vortex adaptor Tubes Column None 



47 

Fresh-frozen specimen. Fresh stool samples were collected in a plastic commode 

and transferred to a clinical urine collection container from a single volunteer (H01). They 

were stored at 4*C for one night prior to freezing at -80*C. Samples were thawed on ice 

and aliquoted into 200 mg samples, for extraction, using a plastic spatula. Aliquots were 

stored at -20*C until extraction. 

Robogut specimens. Specimens were obtained that had been generated under the 

MBQC study and described previously (Sinha et al., 2017). Briefly, one healthy donor 

(male, 25 years old) provided fresh fecal samples on two separate occasions, 3 months 

apart that were used to inoculate two separate chemostat runs (M98).  

Chemostat specimens. Specimens were obtained from three sources for use. First, 

artificial communities (M16, M22) were obtained from previously described MBQC 

research, which were isolated from human subjects (Sinha et al., 2017). Briefly, each strain 

was separately cultured on Fastidious Anaerobe Agar (FAA) (Acumedia, Lansing, MI) and 

supplemented with 5% defibrinated sheep's blood (Hemostat, Dixon, CA) for 72 h at 37 

°C under anaerobic conditions in a Concept 300 anaerobe chamber, with the exceptions of 

1_1_55 (K. pneumoniae), 30_1 (Ent. saccharolyticus), 1_1_43 (Esch. coli), 5_7_47FAA 

(R. pickettii), GT4ACT1 (N. mucosae) and CC94D (G. adiacens).  

Artificial communities. Artificial communities were purchased from 

ZymoBIOMICs Research in two formats: unextracted, mixtures of ten inactivated 

microorganisms (Z00) and extracted, genomic DNA mixtures of ten microbial strains (Z05, 

Z06, Z11) (ZymoResearch, 2019). Although the composition of both Z05 and Z06 were 

identical, recommended input amounts varied due to the composition of the cell pellets. 
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Finally, artificial communities were purchased from the American Type Culture Collection 

(ATCC) (A00, A01, A02, A03) (extracted genomic DNA mixtures) of varying numbers of 

microbial strains (ATCC, n.d.). 

Negative control blanks. Blank samples were included at various stages of 

processing: diH20 was used during extractions and as a non-template control and diH20 

and PCR reagents were used during amplification.  

3.2.3 Extraction 

Overview. All samples were thawed on ice, from -80*C storage, prior to extraction. 

Seven extraction protocols were used, with chemistries representing three major 

manufacturers (Qiagen, ThermoFisher Scientific, and ZymoBIOMICs Research), 

performed on three automated platforms (QIAsymphony, KingFisher, and QIACube). 

These protocols included: Qiagen’s DSP Virus Kit, Qiagen’s QIAamp kit (with 

modifications based a comparative extraction project), Qiagen’s (formerly MoBIO) 

MagAttract PowerSoil DNA kit, Qiagen’s (formerly MoBIO) MagAttract 

PowerMicrobiome DNA Kit, Zymo Research 96 MagBead DNA/RNA Kit, Qiagen’s 

DNeasy PowerSoil Pro kit and ThermoFisher’ s MagMAX Microbiome Ultra Nucleic Acid 

Isolation Kit (Qiagen, 2019g, 2019e, 2019b, 2019c, 2019a; ThermoFisher Scientific, n.d.-

c).  

Groups. Extraction methods were placed into two groups, determined by the 

number fand types of samples included. Both groups included methods tested with 

extraction artificial communities (Z00), robogut-derived communities (M16, M22), and 

chemostat-derived communities (M98). The first group (EX-G1) also included a negative 
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extraction control (BW) and fresh-frozen human sample (H01). All sample types for this 

first group were done in triplicate and included extractions methods 2, 4, 5, and 7 (Table 

7). Extraction group 2 (EX-G2) only included one replicate for each type, and methods in 

this group included extraction methods 1, 3, and 6 (Table 7).  

 

Table 7. Extraction group and id by method name and manufacturer. 
Extraction Group Extraction ID Extraction Method Extraction 

Manufacturer 
EX-G1 EX-1 Qiagen DSP Virus Qiagen 
EX-G2 EX-2 Qiagen MagAttract PowerMicrobiome Qiagen 
EX-G1 EX-3 Qiagen Dneasy PowerSoil Pro Qiagen 
EX-G2 EX-4 Qiagen MagAttract PowerSoil Qiagen 
EX-G2 EX-5 Qiagen QIAamp (Modified) Qiagen 
EX-G1 EX-6 ThermoFisher MagMax Microbiome 

Ultra 
ThermoFisher 

EX-G2 EX-7 ZymoFisher 96 MagBead DNA 
Extraction 

ZymoBiomics 

 

Qiagen DSP Virus Kit (EX-G2, EX-1). Non-homogenous samples were 

transferred into a Qiagen Pathogen Lysis Tube L, containing proprietary beads (unknown 

material or size) (Qiagen, 2019d). A chemical lysis buffer was added to the sample, and 

homogenization was performed by vortexing on a vertical vortex-adaptor. The supernatant 

was transferred to a new tube containing an InhibitEx tablet (a PCR inhibitor absorption 

matrix), vortexed, incubated, and centrifuged. After lysis was complete, the lysate was 

transferred to the QIAsymphony for the remaining clean-up, and elution, following 

manufacturer protocols. 

Qiagen MagAttract PowerMicrobiome DNA kit (EX-G1, EX-2). Non-

homogenous samples were transferred into a lysis plate, pre-filled with glass beads. A 

chemical lysis buffer was added to the sample, and homogenization was performed using 
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a TissueLyzer II. After lysis was complete, the lysate was transferred to the KingFisher 

Flex instrument for the remaining clean-up, and elution, following manufacturer protocols. 

Qiagen DNeasy PowerSoil Pro Kit (EX-G2, EX-3). Non-homogenous samples 

were transferred to a Qiagen PowerBead Pro Tube, containing proprietary beads (unknown 

size or material). A chemical lysis buffer was added to the sample, loaded to the 

TissueLyzer II for homogenization. After lysis was complete, the lysate was transferred, 

and a manual column-based approach was performed. 

Qiagen MagAttract PowerSoil DNA kit (EX-G1, EX-4). Non-homogenous 

samples were transferred into a lysis plate, pre-filled with garnet beads. A chemical lysis 

buffer was added to the sample, and homogenization was performed using a TissueLyzer 

II. After lysis was complete, the lysate was transferred to the KingFisher Flex instrument 

for the remaining clean-up, and elution, following manufacturer protocols. 

Qiagen QIAamp Kit with modifications (EX-G1, EX-5). This method has been 

compared to other extraction methods in oral samples with more robust results (M. Chen 

et al., 2016). An optimized protocol was published with variations from manufacturer 

recommendations which was followed (Costea et al., 2017). Non-homogenous samples 

were transferred into a Qiagen Pathogen Lysis Tube L, containing proprietary beads 

(unknown material or size) (Qiagen, 2019d). A chemical lysis buffer was added to the 

sample after the samples were cooled on ice, and homogenization was performed by 

vortexing on a vertical vortex-adaptor. Ammonium acetate was added to the solution to 

precipitate proteins, the solution pelleted, and then added to the QIAamp spin column for 

clean-up. Samples are washed and eluted, via manually processing. 



51 

ThermoFisher MagMAX Microbiome Ultra Nucleic Acid Isolation Kit (EX-

G2, EX-6). Non-homogenous samples were added to a lysis plate, pre-filled with glass 

beads. A chemical lysis buffer was added to the sample, and homogenization was 

performed using a TissueLyzer II. After lysis was complete, the lysate was transferred to 

the KingFisher Flex instrument for the remaining clean-up, and elution, following 

manufacturer protocols. 

Zymo Research 96 MagBead kit (EX-G1, EX-7). Non-homogenous samples 

were added to a lysis plate, pre-filled with proprietary ultra-high-density beads A chemical 

lysis buffer was added to the sample, and homogenization was performed using a 

TissueLyzer II. After lysis was complete, the lysate was transferred to the KingFisher Flex 

instrument for the remaining clean-up, and elution, following manufacturer protocols. 

3.2.4 Sequencing 

16S rRNA gene amplification primers. Extraction samples were randomized and 

multiplexed using unique identifying barcodes. V4 forward 515 primer 

(GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT) primer 

were used, as described by the Earth Microbiome project (Gilbert et al., 2014). After 

extraction samples were stored at -20*C before amplification. 5 PRIME Hot Master Mix 

was utilized for PCR (Quantabio).  

Post-PCR Processing. Following PCR amplification, samples were stored at 4*C 

prior to sequencing. An Illumina MiSeq instrument was used, generating paired end reads, 

at a length of 150 base pairs (Illumina, 2019). The V2 Illumina chemistry was used with a 
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PhiX spike-in of 20pM (Caporaso et al., 2012). Four sequencing runs were performed, with 

controls on each run, to examine bias between individual runs. 

Quantification. All samples were quantified using the Quant-iT PicoGreen dsDNA 

reagent and fluorescence measured with a SpectraMax Gemini (Molecular Devices) 

spectrophotometer. DNA yield ranged from 0 ng to > 75 ng/uL (Molecular Devices, n.d.). 

Sequencing Library. Enzymatic fragmentation was performed, to create Illumina 

paired-end library fragments of ∼300–400 base pairs. Following fragmentation, end-

repair, A-tailing, and the ligation of Illumina multiplexing PE adaptors was performed. 

Products were then amplified through Ligation Mediated-PCR (LM-PCR) on a 

ThermoFisher 9700-thermal cycler (ThermoFisher Scientific, n.d.-a). Samples were 

amplified at a total of 20 cycles, and purification performed with Beckman Coulter 

Agencourt AMPure XP beads after enzymatic reactions (Beckman Coulter, n.d.). 

Following the final XP bead purification, quantification and size distribution of the LM-

PCR product was determined using an Agilent Bioanalyzer 7500. Samples were pooled to 

a final concentration of 5 pM, and templates prepared and loaded. 

3.2.5 Bioinformatics 

Clustering and grouping. Raw reads were demultiplex using Illumina software 

post-sequencing, following default parameters. Grouping of sequences was performed next 

with two approaches, clustering OTU’s and denoising’s ASV. Clustering sequences into 

OTU’s was performed using a closed-reference technique which clustered OTU’s against 

a selected reference database at a similarity threshold, discarding reads that do not match. 

Denoising ASV’s, which removes and corrects reads before deduplicating similar 
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sequences, was performed using the second version of the Divisive Amplicon Denoising 

Algorithm (DADA2) (Callahan et al., 2016).  

Reference database. Silva (release SILVA 132) database, and GreenGenes 

(release 13_8) database, were both utilized as a reference for taxonomic identification of 

OTUs and ASV’s (DeSantis et al., 2006; Quast et al., 2013). 

Taxonomic classification. Three taxonomic methods were used: BLAST+, 

VSEARCH, and sci-kit learn. BLAST+ took sequences and performed an alignment 

against a given reference sequence (GreenGenes or Silva), assigning taxonomy at a 

maximum hit (Camacho et al., 2009; Rognes et al., 2016). The default settings (10 

maximum hits, with 80 percent identity) were used. VSEARCH consensus was achieved 

by assigning taxonomy to sequences by performing a global alignment, with the default 

maximum number of hits (10) and percent identity (80%) used. Finally, scikit-learn was 

performed by training reference sequences at 99% similarity, using two different publicly 

available reference databases (Pedregosa et al., 2011).  

3.2.6 Data Integration 

Overview. ASV and OTU tables generated were merged for comparative analysis 

at the Genus level. The databases used (either GreenGenes or Silva) are identified in each 

comparison, as other bioinformatic or extraction variables.  

Diversity measurements. Several metrics were used to determine the influence of 

extraction and bioinformatic variables on microbiome analysis. Alpha diversity was 

examined using the inverse Simpson metrics, and beta diversity was measured using Bray-

Curtis dissimilarity. First, bioinformatic diversity was explored within a bioinformatic 
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method, within (Bray-Curtis and Inv. Simpson) and between (Bray-Curtis) sample types. 

This allows for the exploration of alpha and beta-diversity within and between sample types 

in each bioinformatic method. Beta-diversity was explored across all variables, using 

extraction groups 2 and 4, and a subset (N=3) of human, blanks, and chemostat replicates: 

1. technical replicates come from identical specimens and have the same 

bioinformatic, and extraction method; 

2. bioinformatic replicates come from identical specimens and have the same 

extraction method; 

3. sequencing replicates come from identical specimens and have the same 

bioinformatic and extraction methods; 

4. extraction replicates come from identical specimens and have the same 

bioinformatic and extraction methods; 

Accuracy Assessment. To determine the accuracy of our extraction and 

bioinformatic methods, four measures were used to determine: Taxon Accuracy Rate 

(TAR), Taxon Detection Rate (TDR), F-measure (F1), and Bray-Curtis dissimilarity. Each 

of these measures can be used to assess the presence/absence of the expected artificial 

communities tested, and aid in the objective determination of the best-performing protocol. 

The first three measures rely on a classification of results as one of the following: 

● Taxon is observed, and was expected (true positive, TP) 

● Taxon is observed, but was not expected (false positive, FP) 

● Taxon is not observed, but was expected (false negative, FN) 
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From these classifications, assessments can be made regarding the precision of the 

workflow (TAR) or the recall of the workflow (TDR). The TAR was calculated by 

determining the fraction of observed taxa that were expected (TP) to all taxa that were 

observed (TP + FP) (Equation 1). While the TDR was calculated by determining the 

fraction of observed taxa that were expected (TP) to all taxa that were expected in the 

sample (TP + FN) (Equation 2). Finally, to compare both values, the f-measure (F1), a 

weighted average, was calculated for each control (Equation 3). 

 
Equation 1. Taxonomic Accuracy Rate, a measure of precision, measured as a fraction of observed taxa that were 
expected. 

!"#$%$&'(	*((+,"(-	."/0	(!*.) = 	 !4
!4 + 64	

 

 
 
Equation 2. Taxonomic Detection Rate, a measure of recall, measured as a fraction of expected taxa that were 
observed. 

!"#$%$&'(	70/0(/'$%	."/0	(!7.) = 	 !4
!4 + 68	

 

 
Equation 3.F Measure (F1), a weighted average of TAR (precision) and TDR (recall). 

6 −&0":+,0	(61) = 2	=	 !*.	#	!7.!*. + !7.	
 

3.3 Results 

3.3.1 General Extraction 

Samples were thawed on ice prior to extraction using one of the seven extraction 

protocols. Manufacturer recommendations were followed for all methods, except for EX-

5, which was performed following a published, optimized method12. All protocols, briefly, 

following a mechanical and chemical homogenization, a clean-up method was performed. 
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Purification and collection of DNA varied by method. Following extraction, samples were 

quantified using a SpectraMax Gemini (Molecular Devices) and stored at 4*C for 

sequencing. Extraction concentration varied by extraction method, with standard deviation 

ranges variable (Table 8). 

 

Table 8. Concentration values by extraction kit, with listed standard deviation, standard error of the mean and 
confidence intervals. 

Extraction Kit N samples QDNA 
(ng/uL) 

standard 
deviation 

standard error 
of the mean 

confidence 
interval 

EX-1 3 2.67 4.19 2.42 10.42 
EX-2 15 6.24 13.42 3.47 7.43 
EX-3 3 10.13 16.17 9.33 40.16 
EX-4 15 6.27 11.80 3.05 6.53 
EX-5 15 5.86 14.43 3.73 7.99 
EX-6 3 3.67 1.90 1.10 4.72 
EX-7 15 11.81 18.26 4.71 10.11 

 

 

 

3.3.2 General Sequencing 

Sequencing was performed using an Illumina MiSeq sequencer, following the 

recommendations of the Earth Microbiome Project. This included the updated 515F/806R 

forward and reverse primers specifically adapted for the 16s rRNA gene V4 region. 

Samples were normalized, pooled, and sequenced using custom sequencing primers that 

overlap the amplification primer. A primary amplification was performed with a single pair 

of PCR primers, with adaptor tails to amplify samples. A secondary amplification was 

performed to add flow cell adaptors and indices.  

 A total of 303 samples were sequenced, of which 10 were negative sequencing 

controls, 40 were negative extraction controls and 253 were fresh-frozen, robogut-derived, 

chemo-stat derived, and artificial communities. Of these, 10/10 negative sequencing 
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controls, 11/40 negative extraction controls, 1/32 sequencing artificial communities, 2/41 

extraction artificial communities, 2/77 robogut-derived, chemo-stat derived, and 37/103 

fresh-frozen samples failed to produce reads above threshold. To ensure balance between 

each dataset, extracted samples were randomly subsampled down according to their 

assigned extraction group (Group 1 N=1, Group 2 N=3), for a total of 83 (unextracted 

samples N=69, extracted samples N=14) samples. Samples were subset by extraction 

groups (Group 1 through Group 4) and replicates (N=3) when indicated. A single, healthy, 

female donor, with normal BMI, was used for the fresh-frozen human replicate (H01). The 

average number of reads per sample type varied depending on the complexity of the 

sample, as expected, with a range of ~48,055 (extraction blank) to ~104,209 (robogut-

derived) reads (Table 9, Figure 3).  

 

 
Table 9. Number of reads by sample type, including standard deviation, standard error, and confidence intervals. 

Sample Type N of Samples N of reads Standard 
Deviation 

Standard 
Error 

Confidence 
Intervals 

Artificial-E 31 78,161 39,851 7,157 14,617 

Artificial-U 46 86,522 35,100 5,175 10,423 

Blank 29 48,056 37,265 6,920 14,175 

Chemostat 29 90,631 38,179 7,090 14,523 

Human 66 103,482  27,150  3,342 6,674 

Robogut 46 104,210 28,776 4,243 8,546 
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Figure 3. Raw FASTQ read length by sample type 
 

 

 

Due to the sequencing depth graphs showing multiple peaks, read counts across all 

four flow cells were then reviewed to ensure that sequencing bias had not been introduced. 

A processing deviation was of note and would likely explain at least one of these peaks – 

variation in depth of coverage. To expand the number of samples processed, flowcells 1-3 

had 96 barcoded samples included, and flow cell 4 had 182 samples included. We expect 

no significant differences in per-sample read counts between these first three flow cells, 

and no significant differences in total read counts between all flowcells.  

To test this, blanks were first removed, as their total counts were not consistent 

throughout all flow cells due to the variance in number of samples. Mann-Whitney-
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Wilcoxon test was performed with Bonferroni correction, to determine significance 

between the mean read counts of samples and controls, and as expected, flowcells 1-3 were 

found to be significantly different (p<=1.00 X 10-4) than flow cell 4 (Figure 4). Significance 

(p <=1.00 X 10-2) was also noted between flow cell 1 and 2, with flow cell 2 showing a 

larger range in sequencing variation. In reviewing the sample types by flow cell, 

significance was also noted. However, when viewing samples by the sample type, no 

significance was found. This was also true when viewing the fraction of samples filtered 

for controls, indicating consistency between the filtering parameters (Figure 5). This 

provides further justification for subsampling, as an uneven distribution of reads, would 

lead to an unweighted community, and could lead to spurious correlations.  
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Figure 4. Sequencing read count by flow cell with mean and quartiles identified. Mann-Whitney-Wilcoxon test 
performed with Bonferroni correction, indicating non-significance (ns) and significant values (**** p<=1.00 X 10-
4) against flowcell 4. 
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Figure 5. Fraction of reads filtered for sequencing and extraction controls. Mann-Whitney-Wilcoxon test 
performed with Bonferroni correction indicates no significant difference between datasets. 

 

3.3.3 General Bioinformatics 

Raw reads were demultiplex using Illumina software post-sequencing, following 

default parameters. Grouping of sequences was performed next with two approaches, 

clustering OTU’s and denoising’s ASV. Clustering sequences into OTU’s was performed 

using a closed-reference approach, and denoising ASV’s was performed with the Divisive 

Amplicon Denoising Algorithm (DADA2). The impact of taxonomic classifiers was 

evaluated using three methods: BLAST+, VSEARCH, and sci-kit learn. Both Silva (release 

SILVA 132) database, and GreenGenes (release 13_8) database, were implemented into 
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these methods as references, to determine their impact on the expected assignment of 

genera to controls. 

3.4.4 Taxonomic Analysis 

Each of the 12 bioinformatic protocols had a dataset of 86 samples, totaling 996 

samples across all variables. This equated to 504 human, robogut-derived, chemostat-

derived fecal replicates, 324 extraction artificial community and negative control 

replicates, and 168 sequencing artificial community replicates. Mean OTU count, median 

OTU count, and standard deviations were noted for each bioinformatic protocol (Table 10). 

Reviewing these figures highlighted the impact of the OTU/ASV generation method and 

associated reference database, over taxonomic classification method. Bioinformatic groups 

were assigned due to the non-variance, collapsing the 12 methods to four, identified by 

clustering method and taxonomic reference database.  
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Table 10. Summary of OTU/ASV counts by bioinformatic method. Methods have been grouped by taxonomic 
reference method, as there were no differences at this level of analysis. 

BINF ID Clustering 
Method 

Taxonomic 
Classification 
Method 

mean otu/asv median 
otu/asv 

Standard 
Deviation 

BINF-01,03,05 
BINF-G1 

DADA2 Blast, SciKit, 
VSEARCH 
with 
GreenGenes 
reference  

63,313.41 48,368.00  36,273.10 

BINF-02,04,06 
BINF-G2 

DADA2 Blast, SciKit, 
VSEARCH 
with Silva 
reference  

63,313.41 48,368.00 36,273.10 

BINF-07,09,11 
BINF-G3 

Closed 
reference with 
GreenGenes 
reference 

Blast, SciKit, 
VSEARCH 
with 
GreenGenes 
reference  

70,816.95 48,635.00 42,279.36 

BINF-08,10,12 
BINF-G4 

Closed 
reference with 
SILVA 
reference  

 Blast, SciKit, 
VSEARCH 
with SILVA 
reference 

 71,085.53 48,730.00 42,420.81 

 

 

Prior to filtering, alpha diversity metrics were calculated for each of the 12 

bioinformatic protocols after removing species missing from any sample. Richness 

measures (Inverse Simpson, Chao1, Observed Species) highlighted similarities between 

Group 1 and Group 2 (BINF-G1, BINF-G2), as all their metrics were identical (Table 11). 

Groups 3 and 4 (BINF-G3, BINF-G4) were more similar in values than Groups 1 and 2, 

however there were differences noted.  
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Table 11. Alpha diversity measurements per bioinformatics group, stratified by sample type. Mean values were 
calculated for each measurement with standard deviation indicated in parenthesis. Sequencing artificial 
communities (Artificial-E) and extraction artificial communities (Artificial-U) are separated into two categories 
for review. 

Specimen Type Bioinformatics 
Group 

Inverse Simpson Chao1 Observed Species 

Artificial-E BINF-G1   5.81 (3.05)   13.57 (5.95)   13.57 (5.95)  

Artificial-E BINF-G2   5.81 (3.05)   13.57 (5.95)  13.57 (5.95) 

Artificial-E BINF-G3 7.64 (3.87) 763.66 (257.32) 583.43 (213.25) 

Artificial-E BINF-G4 8.85 (4.55) 1469.75 (478.22) 1053.07 (361.91) 

Artificial-U BINF-G1   6.67 (1.37)   33.4 (18.62)   33.4 (18.62)  

Artificial-U BINF-G2   6.67 (1.37)   33.4 (18.62)  33.4 (18.62) 

Artificial-U BINF-G3 9 (2) 1060.27 (265.05) 834.33 (226.71) 

Artificial-U BINF-G4 11.19 (2.51) 2038.93 (470.55) 1578.2 (461.64) 

Blank BINF-G1   19.11 (11.25)   143.25 (75.39)   143.25 (75.39)  

Blank BINF-G2   19.11 (11.25)   143.25 (75.39)  143.25 (75.39) 

Blank BINF-G3 26.26 (15.69) 2482.5 (1252.97) 1632.83 (1019.02) 

Blank BINF-G4 28.5 (16.93) 3203.71 (1544.87) 2065.67 (1240.67) 

Chemostat BINF-G1   13.67 (3.42)  77 (38.51)  77 (38.51)  

Chemostat BINF-G2   13.67 (3.42)  77 (38.51)  77 (38.51) 

Chemostat BINF-G3 15.76 (3.79) 1484.28 (695.14) 1056.6 (563.96) 

Chemostat BINF-G4 16.9 (4.21) 2192.8 (966.67) 1512.8 (777.27) 

Human BINF-G1   20.12 (4.71)  163.5 (24.45)  163.5 (24.45)  

Human BINF-G2   20.12 (4.71)  163.5 (24.45)  163.5 (24.45) 

Human BINF-G3 29.62 (7.66) 3594.34 (506.38) 2624.58 (604.57) 

Human BINF-G4 32.53 (8.46) 4554.06 (653.48) 3278.17 (787.9) 

Robogut BINF-G1   8.12 (1.84)  114.33 (17.15)  114.33 (17.15)  

Robogut BINF-G2   8.12 (1.84)  114.33 (17.15)  114.33 (17.15) 

Robogut BINF-G3 9.04 (2.16) 1447.53 (266.08) 1050.4 (227.8) 

Robogut BINF-G4 9.91 (2.39) 1886.97 (352.16) 1354 (309.15) 
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A comparison of the impact of diversity between wet and dry procedures 

(extraction method, bioinformatic group) was highlighted in both alpha and beta diversity 

analysis. Alpha diversity varied by extraction method, however, bioinformatic grouping 

had a more distinguishable impact (Figure 6). This was highlighted most significantly in 

the Observed Species metric between bioinformatic protocol Groups 1/2 and Groups 3/4, 

which is not seen to the same degree in the extraction protocols. Beta diversity analysis of 

extraction methods and bioinformatic protocols revealed similar trends - bioinformatic 

Groups 1 and 2 (BINF-G1, BINF-G2) were almost indistinguishable from one another, 

whereas groups 3 and 4 showed slight differences (Figure 7). Extraction methodologies did 

not show significant clustering differences at this level, although clustering groups are 

noted throughout, likely due to a different variable. 
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Figure 6. Alpha diversity measurements (Observed, Chao1, Inverse Simpson, Shannon) stratified by A) extraction method and B) bioinformatic group. Only 
extraction group two data is used in this comparison. 
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Figure 7. Beta-diversity ordination of 720 samples, corresponding to 60 replicated sequencing results of 6 different physical specimens (human-derived, 
chemostat, and oral and gut artificial communities, negative controls), using Bray-Curtis dissimilarities. Figure is stratified by the bioinformatic protocol used 
(color) as well as extraction protocol (shape). Only extraction group two data is used in this comparison.
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After this initial review, filtering was performed to remove low abundance OTU’s 

from all samples. The total number of OTU’s (N=38,360) were filtered for rare OTU’s by 

ensuring that an OTU was present at least once in at least 10% of all samples (N=623). 

Fresh-frozen human fecal samples (H01) averaged 111 +/- 6 ASV’s with BINF-G1/BINF-

G2 parameters, whereas they averaged 177 +/- 24 OTU’s with BINF-G3 parameters and 

185 +/- 29 OTU’s with BINF-G4 parameters (Table 12). Negative extraction control 

samples (BW) had surprising values, with OTU’s averaging 134 +/- 45 to 139 +/-48, 

whereas AVS were 86 +/- 40, nearly as high as the fresh-frozen human sample. Positive 

controls varied, with sequencing positive controls having lower ASV/OTU counts (7 +/- 2 

to 113 +/-7) than extraction positive controls (28 +/14 to 156 +/- 36). Sequencing artificial 

communities (Artificial-E) were stratified by manufacturer and showed fewer observed 

OTU’s/ASV’s between those communities developed by ATCC (A00-A03) than those 

developed by ZymoBiomics (Z00), despite having a higher average number of genera 

(ATCC N=15 to ZymoBiomics N=9.5).  

 

Table 12. Mean ASV (BINF-G1, BINF-G2) and OTU (BINF-G3, BINF-4) values with standard deviation in 
parentheses, stratified by sample type. Sequencing artificial communities (Artificial-E) are stratified by 
manufacturer (ATCC: A00-A03 and ZymoBiomics: Z00) to help assess potential differences. 

 BINF-G1 BINF-G2 BINF-G3 BINF-G4 

Artificial-E (A00-
A03) 

5.5 (1.77) 5.5 (1.77) 98.75 (6.56) 113.88 (6.96) 

Artificial-E (Z00) 28.33 (14.68) 28.33 (14.68) 141.73 (34.01) 156.73 (36.19) 

Artificial-U 
(Z05,Z06,Z11) 

7.67 (1.94) 7.67 (1.94) 71.67 (39.19) 81.83 (46.21) 

Chemostat 
(M16,M22) 

80.47 (9.35) 80.47 (9.35) 124.27 (14.82) 127.53 (14.5) 

Extraction 
Negative Control 
(BW) 

85.58 (40.71) 85.58 (40.71) 134.17 (44.44) 139.17 (47.69) 
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Human (H01) 111.42 (5.93) 111.42 (5.93) 177.75 (23.91) 185.5 (28.89) 

Robogut (M98) 52 (33.83) 52 (33.83) 139.73 (64.14) 149.8 (73.83) 

 

Continuing the comparison between the effects of extraction and bioinformatic 

protocol differences post filtering, within and between sample diversity was evaluated 

stratifying both variables (Figure 8). Alpha diversity showed clear differences between 

bioinformatic groups 1/2 (BINF-01 to BINF-06) and groups 3/4 (BINF-07 to BINF-12). 

Diversity differences were not as significant between bioinformatic processing methods, 

although differences were noted between extraction protocols. Significance testing 

highlighted beta-diversity differences between extraction protocol (both method and 

group), bioinformatic protocol (both method and group) and sample type (Table 13). 

Reviewing individual comparisons with spearman correlation matrices of log10 Inverse 

Shannon values for both bioinformatic and extraction protocols, illustrate the tightness of 

fit between the bioinformatics protocol (values range from 0.73 to 0.75), whereas low index 

values indicate a low level of correlation (or inconsistent bias) between extraction methods 

(values range from 0.3 to 0.47) (Figure 9). 
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Figure 8. Bray-Curtis dissimilarity values and inverse Simpson values stratified by bioinformatic methods and extraction methods
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Table 13. PERMANOVA analysis performed at each stratification level, holding all other variables constant, with 
1000 iterations. 

Stratification p-value 
Sample Type 0.000999 
Extraction Method 0.000999 
Extraction Group 0.000999 
Bioinformatic Method 0.000999 
Bioinformatic Group 0.000999 

 
 

 
Figure 9. Correlations of alpha diversities for samples, stratified by A) bioinformatics protocol and B) extraction 
method. Each tile represents a Spearman rank coefficient between the pairwise comparison of log10 transformed 
Inverse Simpson index estimates at that grouping. 
 
 
 

After reviewing the absolute levels of diversity, quantitative diversity was assessed 

(Figure 10). For each, Bray-Curtis within dissimilarities for bioinformatic methods were 

computed between technical replicates (same source material) extracted with the same 
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extracted protocol, whereas for extraction protocols were computed between technical 

replicates processed with the same bioinformatic method. Bray-Curtis between 

dissimilarities were calculated between non-technical replicates and non-identical 

extraction or bioinformatic methods. These two comparisons offer insight then, into the 

reliability and reproducibility of replicates within any bioinformatic or extraction protocol, 

and the dissimilarity between protocols. Reviewing within, and between beta diversity 

levels at each bioinformatic processing level stratified by sample type illustrated the 

differences between sample type over bioinformatic processing method. In the same figure, 

reviewing the alpha diversity, with the Inverse Simpson metric highlighted differences in 

ASV generation (BINF-01 to BINF 06) representing BINF-G1 and BINF-G2, as compared 

to OTU generation (BINF-07 to BINF-12) representing BINF-G3 and BINF-G4. 

Extraction methods did not follow the same trend, with variation noted between technical 

replicates extracted with different methods, and between sample types within the same 

method.  
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Figure 10. Effects of bioinformatics and extraction protocols on alpha and beta diversity levels. Distributions are stratified by extracted sample material, including 
extraction group 2 only. Sample types included extraction artificial communities (artificial-u N=1), extraction negative controls (blank N=1), chemostat-derived 
samples (chemostat N=1), human-derived samples (human N=1), and robogut-derived samples (robogut N=1). 
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To further explore these differences, Bray-Curtis dissimilarity matrices were 

created to isolate the variability introduced by bioinformatic protocol, extraction protocol, 

subject and sample type (Figure 11). For each of these variables, all other variables were 

held constant; for example, in bioinformatic variability the subject, extraction protocol and 

sample type were held constant, and compared to all other bioinformatic protocols. This 

allowed for the assessment of each individual variable against all others. The effect size of 

this distribution highlighted the variability of every aspect of analysis, particularly on low-

complexity sample types (extraction artificial communities, extraction negative controls) 

over higher-complexity sample types (human-derived, robogut-derived). It also 

highlighted the impact of bioinformatic processing (likely related to OTU and ASV 

generation) over extraction processing.  
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Figure 11. Bray-Curtis dissimilarity comparisons between variations, comparing all bioinformatic methods, all 
extracted material, and only extraction group 2. Bioinformatic variability compares the same subject’s, extracted 
with the same extraction protocol, but analyzed with different bioinformatic protocols. Extraction variability 
compares the same subjects analyzed with the same bioinformatic protocol but extracted with different extraction 
methods. Sample type variability compares different subject’s, extracted with the same extraction protocol, and 
analyzed with the same bioinformatic protocol. Technical replicates compare the same subject, extracted with the 
same extraction protocol, and analyzed with the same bioinformatic method. 

 

Stratifying the data between biological, laboratory and bioinformatic variables all 

appear to contribute to between-sample variations (Figure 12). Human-derived samples 

(H01) clustered the most tightly together, with the negative controls (BW), likely indicating 

the source contamination of these samples. Robogut-derived samples (M98) clustered near 

these samples as well, with sequencing controls from ZymoBiomics (Z05, Z06, Z11) and 

ATCC (A00-A03) clustering a distance away. The tightness of clustering of the human-

derived and robogut-derived samples does point to the importance of these samples, and 

possible use as positive controls in future experiments. Computational protocols (BINF-A 

through BINF-D) were the most distinct of all clustering methods, specifically with the 
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clustering method of ASV’s (BINF-A, BINF-B) or OTU’s (BINF-C, BINF-D) illustrating 

profound differences.  
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Figure 12. Beta-diversity ordination of 5,258 samples, corresponding to 232 replicated sequencing results of 14 different physical specimens (human-derived, 
chemostat, and oral and gut artificial communities, negative controls), using Bray-Curtis dissimilarities. Figures are stratified by bioinformatic protocols (a), 
sample description (b) sample type (c), and extraction method (d). 
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Sample type was differentially affected by extraction method, with extraction 

artificial communities (Z00) minimally affected and extraction negative controls (BW) 

showing large distributions within methods (Figure 13). One way analysis of variance 

(ANOVA) testing was performed on each type, with significance between samples noted 

with sample type M98 (Table 14). A Tukey’s Honest Significant Difference (HSD) test 

was performed to determine the pairwise comparisons of each type’s mean to determine 

which means are different or grouped. Within M98, three groups were identified: extraction 

group 1 and 5, group 2 and 3, and group 4, 6, and 7. Sample specific diversity was also 

noted within bioinformatic methods on sample types of robogut-derived (M98) and 

chemostat-derived communities (M22) (Figure 14).  
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Figure 13. Inverse Simpson diversity estimates for sample type, stratified by extraction method, analyzed under one bioinformatic protocol (BINF-01). 

 
Table 14. One way ANOVA tests performed to determine whether the difference of diversity means is significantly different (*), by sample type within an 
extraction method. 

Sample Type ANOVA p-value 
BW 0.71 
M98 0.01* 
M16 0.08 
H01 0.33 
M22 0.30 
Z00 0.74 
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Figure 14. Inverse Simpson diversity estimates for robogut-derived (M98) sample, stratified by bioinformatic method and extraction method.
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Significant p-values were identified for these derived communities (M22, M98), 

although not all complex communities (H01) were identified as significant (Table 15). This 

highlights the complicated relationship between the handling of bioinformatic and 

extraction methods, compounded by the complexity of community sample type. Reviewing 

the p-values associated with the ANOVA tests, plotted at sample type for each 

bioinformatic method, the distribution can be reviewed (Figure 15). The significant effect 

of handling lab on Inverse Simpson diversity is varied by sample type, as the lowest 

complexity sample (Z00) had the least significance. Underlying the variation of alpha and 

beta diversity seen within extraction methods, is variation in relative abundance. One-way 

ANOVA tests were performed to determine significance differences between Phyla within 

an extraction method or extraction manufacturer, stratified by bioinformatic methods 

(Figure 16). Different Phyla did show varying significance between both stratification 

methods, which was consistent between extraction methods and companies, such as with 

Firmicutes.  

 
Table 15. One way ANOVA tests performed to determine whether the difference of diversity means is significantly 
different (*), by sample type within a bioinformatic method. 

BINF Group M22 p-value M98 p-value 
1 0.30 0.01* 
2 0.30 0.01* 
3 0.30 0.01* 
4 0.30 0.01* 
5 0.30 0.01* 
6 0.30 0.01* 
7 0.07* 0.01* 

8 0.04* 0.01* 
9 0.07* 0.01* 
10 0.04* 0.01* 
11 0.07* 0.01* 
12 0.04* 0.01* 
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Figure 15. Distribution of p-values by bioinformatic method (color), testing for the significance of extraction 
method on inverse Simpson diversity, stratified by sample type. 
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Figure 16. ANOVA significance plots, comparing the relative abundance of Phyla between extraction methods (A) 
or extraction companies (B), within a bioinformatic method. 

 

Controls were assessed, including positive sequencing controls, positive extraction 

controls, and negative extraction controls. Each bioinformatic method included 5 positive 

artificial sequencing communities, 1 negative extraction control, and 1 positive artificial 

extraction community. Extraction method contributed significantly to the negative 

extraction controls, with variation between abundance levels observed within the method, 

and between methods. Common Phyla were observed, such as Firmicutes, although percent 

composition did vary (Figure 17A). The positive extraction and sequencing communities 

contained anywhere between 10 and 20 species (table old), whereas the negative controls 
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were not expected to have any communities produce sequencing results. Bioinformatic 

methods contributed to positive control abundance most significantly in two groups: ASV 

methods (BINF-01 through BINF-06) and OTU’s annotated with Silva reference database 

as compared to OTU’s annotated with GreenGenes reference database (Figure 17B).  

 

 
Figure 17. Relative abundance of negative extraction controls (A) and positive extraction and sequencing controls 
(B) at the Phylum level. 
 
 
 

Bray-Curtis dissimilarity plots expanded these differences, with the variation 

between extraction methods, stratified by sample type and bioinformatic method had some 
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differences between bioinformatic methods BINF-01 to BINF-06 and BINF-07 to BINF-

12 (Figure 18). Evaluation of the reproducibility of these results was performed by 

reviewing the Bray-Curtis dissimilarity differences between positive extraction control 

(Z00) replicates, stratified by extraction method and bioinformatics method (Figure 19). 

Some extraction methods (EX-2) showed little variation between bioinformatic methods, 

whereas other extraction methods (EX-7) showed significant differences between ASV and 

OTU generation. This was also reflected in the variation in rarefaction curves, with low 

depth observed in all extraction methods stratified by sample type, and in all sample, types 

stratified by bioinformatic methods BINF-04 to BINF-09 (Figure 20). 
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Figure 18. Bray-Curtis dissimilarity matrix by bioinformatic method, stratified by control type. 
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Figure 19. Bray-Curtis dissimilarity matrix of replicate extraction positive control (Z00) stratified by extraction method and bioinformatic method. 
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Figure 20. Rarefaction curves for the mean OTU’s by rarefaction depth, stratified by extraction method and bioinformatic method. Both methods include both 
negative and positive controls, however, extractions methods only include extraction controls, whereas bioinformatic methods include both extraction and 
sequencing controls.
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Accuracy of each control was considered next. Each control was assessed to the 

expected genera first, using a present/absence scoring to determine the following values: 

true positives, false positives, false negatives, TAR scores, TDR scores, and F1 scores. 

Differences were noted in each of these values, with A03 having the highest true positive 

and false negative count, however, this must be weighed by the fact that this control also 

had the highest (18) number of expected genera (Figure 21). TAR scores did not show 

significant variation in the mean of values but did show variation in the individual sample 

values. The weighted average of TAR and TDR scores, the F1 score, also showed 

variations, with Z05 (8 expected genera) having the highest mean F1-score regardless of 

the bioinformatic method used measure (Figure 22). Some variation is noted within 

extraction method as well when reviewing the extraction positive control (Z00), with EX-

2 and EX-4 showing lower values than other methods, again illustrating the impact of 

extraction method on extracted material over bioinformatic method. 
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Figure 21. Individual counts of false negative, false positive, and true positive values of genera, as compared to the expected positive controls. Violin plots show 
distribution of controls averaged by all methods, with mean values indicated with a red dot. 
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Figure 22. F-Measure (F1) stratified by bioinformatic method (A) for sequencing artificial communities and by extraction method (B) for extraction artificial 
communities. Violin plots show distribution of controls averaged by method, with mean values indicated with a red dot. 
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Bray-Curtis dissimilarity distances were calculated to determine the effects of 

bioinformatic and extraction method on sample type. Differences were noted by sample 

type, with some sequencing artificial communities (A00-A03, Z05) performing worse than 

others (Z06, Z11) (Figure 23). When stratifying by both extraction and bioinformatic 

method for the artificial extraction control, no difference is noted between the 

bioinformatic method, however, differences are noted within the extraction methods 

(Figure 24). This illustrates the importance of extraction method on extracted samples, 

compounded by bioinformatic method on sequenced-only samples. 
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Figure 23. Bray-Curtis dissimilarity distances averaged by extraction method, stratified by bioinformatic method and sample type, for positive controls. 
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Figure 24. Bray-Curtis dissimilarity distance of extraction artificial community (Z00) stratified by bioinformatic and extraction method. 
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To assess the performance of relative abundance levels for each control, scatter 

plots were generated for each control, and R2 values assessed (Figure 25). A00 was not 

included in these plots, as this community was evenly distributed, and therefore did not 

have a linear correlation. Z11 had the highest performance, however, this was reliant on 

the uneven, logarithmic distribution of abundances. For example, the expected value of 

listeria was 96%, whereas the expected value was 94.3%. While the remaining seven 

genera were inaccurate, because of this uneven distribution, the control still had a high R 

value. Of the remaining five controls, four (A01, A03, Z05, and Z06) had significant 

(<0.05) R values, indicating a high degree of correlation to the expected relative abundance 

values. While A02 outperformed the other controls in terms of presence and absence, it did 

not perform best in terms of the expected observed relative abundance levels. The 

ZymoBiomics controls were also not in agreement with the previous metrics, as the Z06 

control performed better in terms of the correlation to the relative abundance, than did the 

Z05 controls. 
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Figure 25. Scatter plots of the artificial communities, averaged across all bioinformatic and extraction methods. 
 

3.4 Discussion 

There are a considerable number of variables within any microbiome workflow, 

beginning with the extraction methods and ending with the bioinformatic parameters set, 

that must be carefully chosen to provide the most accurate profile. These parameters are 

also important when choosing which controls to include at the extraction and sequencing 

levels, as they have been shown to vary in performance. If controls will be used to assess 

the performance of human samples, for example, complex communities must be included. 

While this study attempted to address most of these questions, there were limitations to the 

study design and a need for future work in both development and as clinical projects are 

being implemented.  



97 

The quality assessment performed illustrated that reducing the depth of coverage 

of samples, while significantly reducing the number of sequencing reads, did not cause 

significant differences between sample types. This is important information as researchers 

look to increase sample size, while working with strict budgetary constraints. It was also 

evident that even with this reduction, rarefaction levels could be set to a high value of 

20,000 reads, while still being inclusive of most samples. As has been previously reported, 

rarefaction levels should be reviewed for each project to determine this exact threshold, 

however, these results are encouraging to maintain a significant number of samples and 

sequence information, even if samples have varying input concentrations.  

It was determined that there was significant influence by both bioinformatic and 

extraction methodology. First reviewing alpha diversity metrics, differences were noted 

between each extraction method. Bioinformatic methods however, appeared to group by 

cluster/OTU method, and by reference database. When exploring beta-diversity between 

these two sets of variables this was only further highlighted, with bioinformatic clustering 

methods being identical, and grouping methods by taxonomic reference being identical. 

When comparing the Pearson correlation values of bioinformatic and extraction methods, 

it was seen that extraction method more significantly impacted the overall profile 

generated. This is an important finding, as it points to the importance of study design, and 

in the cross-comparison compatibility of study’s not extracted utilizing the same extraction 

methodology. 

The bioinformatic assessment highlighted not only the number choices one can 

make when assessing microbiome data, but how these choices impact the resulting profile. 
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Significant differences were not noted between the clustering/grouping methods, 

specifically with clustering methods remaining relatively stable regardless of taxonomic 

method and grouping methods differentiating by the reference database used. The SILVA 

database was shown to outperform the GreenGenes database, in all metrics, as several reads 

were unable to be identified at the phylum level within controls. Due to the biological 

representation of ASV’s, DADA2 was used as the clustering method, and due to the 

improved reproducibility of sci-kit, the highest performing bioinformatic variables were 

the SILVA reference database, with DADA2 as the clustering method, and sci-kit as the 

taxonomic assignment method. 

The sequencing assessment performed had several insights, consistent with the 

bioinformatic assessment. First, utilizing multiple metrics beyond the accuracy and 

precision of controls is critical to drive project control inclusion became clear. Moreover, 

it is also evident that not all commercially available sequencing controls perform equally, 

whether due to their manufacturing, community composition, or the availability of their 

referenced sequences in the databases examined. This assessment highlighted the strength 

of the ZymoBiomics generated controls, although they were low in complexity. It 

highlighted the need to balance complex controls such s though from the ATCC with 

precision and accuracy, particularly those that were evenly distributed. Researchers should 

utilize these controls in groups, when designing pipelines, to have the largest number of 

species, in attempts to replicate the diversity of the target human sample. Once the pipeline 

has been optimized, a smaller subset of these controls should be included on each 

sequencing run, thereby enabling quality control to be monitored throughout a project. This 
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approach balances both the complexity necessary for pipeline verification, and cost of 

including multiple controls in a sequencing run. 

The extraction assessment presented several insights, many in agreement with 

current research. The first, was the variation in extraction performance, as measured by the 

number of samples passing QC thresholds, and the number of extraction blanks failing to 

pass QC thresholds. Both values indicate the intrinsic impact that processing methodology 

has on sample performance, and how some methods are more prone to contamination due 

to the number of transfers, homogenization format, and reagent addition. The community 

profiles generated most resembled an average of the most complex human samples, rather 

than any one individual sample. This likely indicates that the cross-contamination is 

occurring during either extraction or sequencing processing, where high-yield samples are 

mixed with negative samples and then amplified. When researchers are looking to 

implement a method into their pipelines, these are important considerations, particularly 

when considering time-constraints, limited sample material, and low-biomass samples. 

Congruent with sequencing results, the extraction assessment also illustrated 

varying performance of extraction controls, on average, as well as by method. A trade-off 

was also noted in assessing the accuracy and precision of these controls – lower complexity 

was found to have better accuracy and precision. Despite having lower results, the more 

complex samples there were not significant differences noted in Bray-Curtis distances, 

when compared to the expected abundance values. This again illustrates that while the 

controls may not be used as an absolute control, they can be implemented into workflows 

to ensure the reproducibility of pipelines and to identify problems at the extraction level. It 
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was also shown that the commercially prepared communities performed better than the 

alternatively prepared communities, likely due to the precision that is implemented during 

commercial manufacturing. 

In addition to the controls, human samples illustrated significant differences 

between methodologies. Alpha diversity metrics (richness, Simpson, and Shannon), for 

example, showed significant differences between the average values of methods as well as 

the distribution of values by method. Similarly, clustering patterns of controls and fresh-

frozen human samples differed by method, when reviewing beta-diversity PCoA plots. The 

human samples also showed less intra-sample-type variation in the more complex human 

and robogut samples than the artificial colonies, indicating that variation is method is more 

susceptible to perturbations when relatively few, or low-level communities are present. 

These lead to the overall conclusions of this study, and recommendations to be used 

in the second and third aim. Clustering sequencing reads to ASV’s using DADA2 will be 

implemented with the taxonomic method scikit-learn. Reference database Silva will be 

used as the reference database, to ensure a greater assignment of taxonomy at lower levels 

of phylogeny. Extraction methods will not be able to be selected, as samples had been pre-

extracted prior to analysis, however, within aim 3, only samples extracted within the same 

methodology will be compared. The use of statistical methods and predictive modeling 

tools will be added to the analytical workflow to explore functional implications within the 

data, not explored in this technical exploration.  

A significant limitation found in this assessment was the complexity of the controls, 

despite their advantages. Although six sequencing artificial community controls from two 
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manufacturers representing 20 different species, and one extraction artificial community 

controls from one manufacturer representing 8 species, were used, this still is not 

representative of the complexity found in human samples. Currently, this is a tradeoff, for 

the ability to assess the accuracy of a sample with known expected values is an important 

metric for quality control. Improving this limitation would include additional sequencing 

controls that could increase the total number of species and varying the type of species to 

ensure a more representative profile of typical human genera. Commercially available 

controls that are more representative of human samples would strongly increase the 

efficacy of their use, and likely lead to improved bioinformatic pipelines.  

Additional limitations include the use of only one human donor sample. Future 

studies should include multiple donors to determine the impact that extraction might have 

on unique individuals, particularly those with outlying microbiomes. Varying the age, sex, 

and health status of these donors will increase the ability to assess the robustness of any 

method. While not limited to this project, the constant evolution of publicly available 

extraction methodologies is also problematic to microbiome research. As this study 

illustrated, it is imperative that extraction methods be standardized and consistently utilized 

within a single methodology. If these methods are being replaced by newer methods, even 

if improved, previously resulted data may not be comparable. Finally, using 16s rRNA 

sequencing alone, rather than incorporating shotgun sequencing approaches limits the type 

of studies that can be assessed with these methods. A more complete study, with both 

amplicon-based and shotgun sequencing data would provide a more complete picture of 

microbiome processing, consistent with current trends and study designs.   
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4. ENVIRONMENTAL APPLICATIONS 

 4.1 Background 

One of the foremost global environmental concerns of our generation is the usage 

of plastics in everyday life. Having tripled over the last 25 years to nearly 350 million tons 

a year, plastic production is exponentially growing at alarming rates82. Problems with waste 

management, including limited space in landfills, and low recycling rates, have only 

exacerbated these issues (Jeftic et al., 2009). In addition, with the discovery of 

microplastics and nano-plastics detected in air, rain, tap water, beverages, and food, plastics 

are a complex and imminent threat to our planet that must be addressed with innovative 

solutions84.  

The impact of this usage is widespread, as based on published literature, plastics 

are among the most readily found debris in oceanic environments (Eriksen et al., 2014; 

Thompson, 2006). The global sea surface is estimated to be covered by approximately .25 

trillion plastic particles, weighing over 250,000 tons. It has been estimated that nearly 10% 

of plastic debris finds its way to oceanic waters and has drawn international attention as 

early as 2006 in scientific conferences abroad (Bourne et al., 2016; Bräger, 2006). As coral 

microbiome research has expanded to better understand the interactions of microhabitats 

and the overall coral health, these microplastics may be significantly contributing to (Gall 

& Thompson, 2015).  

Whether entering through intentional placement or through sewerage systems, the 

properties that make plastic desirable to human use, namely the durability and buoyancy, 
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are causing significant negative impacts (Kiessling et al., 2015). While the durability of 

plastics is one of their strengths in commercial use, it is also a detrimental feature that 

makes them long-lasting and resistant to degradation (Bräger, 2006; Kiessling et al., 2015). 

The lightweight nature of most plastics is another positive feature of usage; however, the 

characteristic leads to plastics being buoyant. When plastic material enters a water system, 

for example then, it can travel beyond its initial entry point. This movement is dangerous 

for the animals who may interact with the plastics and who may be subject to entanglement, 

suffocation, and debilitation and because it can serve as a transport for invasive species 

that would not otherwise be possible (Brennecke et al., 2016). It is not only dangerous 

transportation, but the absorption of heavy metals was shown possible in plastics, 

presenting an additional concern in consumption (de Stephanis et al., 2013).  

Consumption of plastics by marine life has also been shown to be devastating. A 

large-scale review of the impact on marine life illustrated the urgency to address this threat 

– nearly 690 species encountered marine debris, with 92% explicitly being plastic, and 

10% of these species have ingested some form of microplastics. These effects are seen 

widely between animals, with one study of 24 Caretta post-hatchling loggerhead turtles 

dying after eating anthropogenic debris, 9% of which were plastic. Another study 

reviewing the death of sperm whales indicated the cause of death to be gastric rupture 

following impaction with debris (Murphy et al., 2016; Ryan et al., 2016; Turner, 2016). 

Ingestion of these microplastics also impacts the physical damage they may cause due to 

their chemical absorption. Studies have found that plastics may serve as a transfer vector 

within the host, carrying toxic pollutants from either the manufacturing process or the 
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environment it interacted with (Murphy et al., 2016). The impact that these toxins may 

have on the marine animals that then consume them could be significant for their health 

and the humans that subsequently consume them. 

While wastewater treatment plants attempt to reduce the concentration of 

microplastics, an estimated 65 million microplastics are still found in daily water sources 

(Rochman et al., 2015). This is not only impactful on humans who use this source for 

consumption but also for aquatic habitats where this water is dumped, with estimates of 

approximately 8 trillion microbeads entering these habitats daily. Just as with marine life, 

the negative consequences of the ingestion of microplastics by humans must be addressed. 

Microplastics have been reported in several types of seafood, including mussel and seabass, 

with levels of polyethylene reported up to 48 hours after ingestion (Browne et al., 2008; 

Mazurais et al., 2015). These findings are not limited to sea animals - honey, German beer, 

and even bottled water have been cited with some levels of microplastic (Liebezeit & 

Liebezeit, 2013, 2014; Mason et al., 2018). It is hypothesized that high levels of exposure 

could lead to embolization of small vessels, tissue damage, and fibrosis (Lundqvist et al., 

2008). Nanoparticles maybe even more dangerous, with toxicity potentially affecting the 

central nervous system at high levels (Waring et al., 2018). 

Response to this growing problem has been seen locally and internationally, with 

varying success. National movements to address plastic bags and reduce microbeads in 

cosmetics led to several pieces of legislation within the United States and Canada, 

including the Microbead-Free Waters Act of 2015 (Pallone, 2015; The Nicholas Institute 

for Environmental Policy Solutions, n.d.). The United Nations Environment Assembly 
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(UNEA) has several resolutions published addressing these plastics and marine impacts, 

but with limited oversight, significant impacts have not been achieved (Solutions, n.d.). 

The Group of Seven Summit (including Canada, France, Germany, Italy, Japan, the United 

Kingdom, and the United States) also outlined specific reduction measures and presented 

solutions to improve the current ecological imbalance entitled the G7 Ocean Plastics 

Charter with five members (excluding the United States and Japan) signing (Canada, n.d.; 

Niaounakis, 2017). These measures included making all plastics recyclable by 2030, 

reducing single-use plastics, promoting the use of recycled plastics, and innovating 

sustainable, long-lasting technologies (Niaounakis, 2017). Other focuses vary from 

cleanup programs for the current plastic waste to treatment and recycling programs to 

reduce plastic usage (Krueger et al., 2015). The complexity of this problem makes a single 

solution improbable. Instead, it means that multiple solutions will be required to address 

different facets of the problem if we are to see long-term and sustainable improvements. 

The reduction of Polystyrene has received particular interest due to its increasing 

usage and resistance to biodegradation. The potential for bacteria or fungi to aid in this 

degradation has elicited several studies, some of which indicated that while bacterial 

isolates are capable of degradation, they only do so with low efficacy (Y. Yang et al., 2020). 

The Pseudomonas strain, for example, was shown to involve the degradation of low-

molecular-weight PE through its alkane hydroxylase gene alkB. Despite this promising 

finding, the consumption rate varied considerably (4.9-28.6% of the carbon) after 80 days 

and was only applied to low-molecular-weight polyethylene. Research searching for ways 

to address this plastic-type has been an essential focus of environmental cleanup efforts. 
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Scientists were rightfully hopeful when research showed that the larvae of Tenebrio 

molitor were not only able to digest Polystyrene to CO2 and other compounds of low 

molecular weight but readily did so (Alves et al., 2016; Brandon et al., 2018; Y. Yang et 

al., 2015a, 2015b). Mealworms are omnivorous species, and much has been known 

regarding their standard diet (bran) and related microbiome, with the anterior gut 

dominated by the Bacillaceae family and the poster gut representing a diverse species. 

Reports of this PE degradation ability have been noted in other insect larvae, including the 

Indian meal moths and wax moths, which may indicate broader implications of the insect 

gut microbiome. Follow-up studies illustrated that their ability to digest this material was 

likely to be related to the microbiome found in the digestive tracts of the mealworms, both 

the cleavage of long-chain PS molecules and formation of low molecular weight 

metabolites were formed in the gut of the mealworms (Y. Yang et al., 2015a). In addition, 

when mealworms were given gentamicin, an effective inhibitor of the gut microbiome, the 

mealworms were unable to depolymerize PS (Y. Yang et al., 2015b). While mealworms 

with gut microbiomes intact were able to consume PS with a rate of approximately half 

their gut in 12-15 hours, significantly faster than the bacterial isolates could do alone, 

research into the impact of dietary changes has promising results (Ercolini & Fogliano, 

2018; Y. Wang & Zhang, 2015; Y. Yang et al., 2015a). 

Studies have shown that mealworms fed various diets that ranged in carbohydrate 

to sugar content showed significant variations in lipid, protein, fiber, and starch 

concentration after 30 days. The correlation of dietary changes with microbiome gut 

changes in humans has led to the plausible conclusion that a shift in the diet of mealworms 
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may influence the gut microbiota, and significantly influence the consumption and 

digestion of PE (Y. Wang & Zhang, 2015). When co-fed on a PS and bran diet, research 

showed that the rate of PS degradation almost doubled, with the anterior gut being 

dominated by anaerobes Lactococcus and Pantoea. While different regions of the gut 

exhibited differences, none were explicitly identified as responsible for the overall 

consumption of PS. This leaves several questions to be explored, with significant 

implications for PS and environmental sustainability. 

4.2 Materials & Methods 

Tenebrio molitor Linnaeus mealworms were purchased through a pet supply 

company (Exotic Nutrition, n.d.; Fisher Scientific, n.d.). Mealworms were subjected to an 

initial feeding stage before introduction to Polystyrene (Figure 26). Mealworms (N=14) 

were housed in two cages and were fed a rice bran diet for five days. Mealworms were then 

divided into two groups, where group 1 was continued on rice bran (N=9), and group 2 was 

changed to apple slices (N=5) for ten additional days. After this initial period, polystyrene 

(Styrofoam) cups were introduced to each population (referred to as time point baseline). 

Collections were then taken from the mealworm gut (rice bran N=6, apple slices N=4) at 

four subsequent time points (Day 5, Day 8, Day 12), indicating the length of time 

Styrofoam diet. Additional collections were obtained from feces (rice bran N=3, apple 

slices N=1) at two-time points (baseline and Day 12) for comparison. All collections were 

taken in triplicate, ensuring the reliability of the results. 
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Figure 26. Mealworms were first subjected to an introductory rice bran diet (5 days) before being split into 
continued rice bran, or apple slices, groups (10 days). After this period, all mealworms were given Polystyrene, 
and samples were collected from either the mealworm gut or a fecal sample at four-time points (Baseline, Day 5, 
Day 8, Day 12). 
 
 
 

Mealworm samples and fecal material were collected and frozen at -80*C until all 

collections had been performed. The material was extracted using the FastDNA Spin kit 

from MP Biomedical Inc, per manufacturer instructions. Next-generation sequencing was 

performed, isolating the 16S rRNA gene subunit in the V4 hypervariable region. Samples 

were prepared in duplicate using Multi-tag Sequencing, barcoded with varied forward and 

reverse sequences utilizing universal 16s rRNA gene primers. Barcoding strategies 

followed previously published work to ensure that distortion of community abundance was 

not a factor (Gotelli & Colwell, 2001). Pooling was performed (up to 48 samples), and 16S 
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sequencing was conducted in two trials using an Ion Torrent PGM. Samples were 

sequenced in duplicate or triplicate across the two sequencing runs. 

Raw reads were demultiplexed using QIIME2 (v2019.1) software post-sequencing, 

following default parameters (Bolyen et al., 2019; Chill et al., 2020). A denoising 

technique, which removes and corrects reads before deduplicating similar sequences, was 

utilized next. For this, the second version of the Divisive Amplicon Denoising Algorithm 

(DADA2) was used to generate ASV's. Next, samples were automatically filtered due to 

the quality (Q) score, merging errors, and identification of chimeric reads. The Phred 

quality score measures the quality of identifying nucleotides, which relates logarithmically 

to the base-calling error probabilities (Illumina, 2011). Sequences that cannot be merged 

either because the sequences are too short and do not overlap or because the sequence ends 

do not align were also filtered, as were chimeric sequences identified. Finally, taxonomic 

classification was performed next, with the scikit-learn method (Pedregosa et al., 2011). 

This was achieved by training reference sequences at 99% similarity, using Silva's 

reference databases (release SILVA 132) (Quast et al., 2013). 

Alpha metrics were reviewed to determine the overall distribution of diversity. The 

Simpson indexes are a diversity index, more sensitive to species evenness than other 

methods available (Willis, 2019). Simpson's Diversity Index represents the probability that 

two randomly chosen individuals belong to different species. Because it is the inverse 

measurement, the Simpson value indicates that the diversity index value increases as 

species richness and evenness increase. Beta diversity metrics include the use of Principal 

Coordinates Analysis (PCoA) which includes an eigenanalysis performed on the 
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abundance matrix derived from a given dataset. This matrix can be calculated through 

different measures; either quantitative (weighted UniFrac and Bray-Curtis) or qualitative 

(unweighted UniFrac and Binomial). Bray-Curtis dissimilarity was chosen because a 

matrix can be created to compare the degree of dissimilarity between the abundance of 

each species in a tested variable versus the expected abundance of that species. It can assess 

the distance, then, between these expected abundances and those observed through the 

processing, and all distances are compared to determine whether the distances are 

significant. Values are bound between 0 and 1, where 0 indicates that the two samples share 

the same species, whereas one suggests that they do not share any species. Bray-Curtis may 

also be illustrated with the largest Eigenvalue that accounts for the most significant 

variance lying on one axis. In contrast, the second greatest variance (or other chosen value) 

is placed on the second axis. 

Multiple tests were considered to determine the correlation of each of these 

expected control values to their observed values. First, a permutational multivariate 

analysis of variance (PERMANOVA) test quantifies multivariate community-level 

differences between groups (Anderson, 2005). This PERMOVA test was performed, 

analyzing the variance using distance matrices of relative abundance tables. To determine 

if the distances between groups had any statistical significance after creating the Bray-

Curtis distance matrices, p-values were evaluated. The Bonferroni correction was applied, 

as this was a multiple-comparison assessment.  

Rarefaction usage in microbiome data has been controversial and was used for all 

but the differential analysis to help normalize the presence of rare OTU's or ASV's. Curves 
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are created that graphically represent the number of samples by the number of species or 

the sequencing depth by the number of samples, showing an exponential curve, with an 

asymptote. This asymptote represents the point of saturation, where no further taxa will be 

added, regardless of the increases in the number of reads included. These curves were 

created and assessed to determine the target sequencing depth to normalize the data, 

recognizing that samples with low-read counts would be removed. While this subsetting is 

often performed on alpha and beta diversity analysis, a comparative study illustrated the 

negative impact that rarefying samples had on differential analysis (McMurdie & Holmes, 

2014). As such, all raw OTU counts were in differential analysis. 

Taxonomic, functional prediction analysis is implemented to provide insights into 

the possible functional mechanisms utilized by the microbiome community identified. The 

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database of functions that can be 

mapped to genes, or in the case of microbiome research, taxonomic information generated 

from OTU's (Kanehisa Laboratories, n.d.). Tax4Fun, an open-source R package that 

predicts the functional capabilities of microbial communities using 16S rRNA datasets, 

was used to create KEGG pathways related to specified OTU's (Aßhauer et al., 2015). To 

visualize and run additional statistical measurements, R, an open-source statistical 

computing and graphics software program, was utilized with publicly available packages 

(R Core Team, 2014).  

4.3 Results 

Samples had an average number of 9,088 reads (min. 1,345, max. 41,515), with 

1240 unique OTU's identified. Raw OTU counts were used, without rarefaction, due to 
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previous studies' bias when subsetting datasets before this type of analysis. The number of 

reads was stratified by sample type and showed some variation, with the mealworm 

samples had 1,000 more reads than the fecal samples (Table 16, Figure 27). An average 

number of reads stratified by timepoint showed more significant variation, with baseline 

samples having the lowest (~6215) and Day 8 samples having the highest (12,152) average 

number of reads (Table 16, Figure 27).  

 

  
Table 16. An average number of reads by sample type. 

Sample Type N reads Standard deviation Standard Error Confidence interval 

Feces 12 8,369 9624.216 2778.272 6114.935 

Mealworm 29 9,386 8546.928 1587.125 3251.077 

 

 
Table 17. The average number of reads by timepoint. 

Timepoint N reads Standard deviation Standard Error Confidence interval 

Baseline 15 6,215 3119.371 805.4182 1727.45 

Day05 6 7,592 4844.256 1977.6594 5083.735 

Day08 5 13,152 15874.062 7099.0963 19710.251 

Day12 15 11,205 10435.252 2694.3705 5778.85 

 



113 

 

Figure 27. The average number of reads is stratified by sample type and timepoint. 
 
 
 

All reads were identified as belonging to the bacterial kingdom, and the most 

abundant microorganisms were the Phylum Proteobacteria and Firmicutes, consistent with 

the previous studies (Urbanek et al., 2020). Also consistent with previous findings were 

the top bacterial OTUs identified at the class level: Gammaproteobacteria, Bacilli, and 

Alphaproteobacteria. Relative abundance differences by Phylum show apparent 

differences between diet types, consistent with previous studies (Figure 28). However, 

utilizing the Dirichlet-multinomial distribution for the relative abundance of Phylum 

stratified by diet (control group = rice bran), a non-significant p-value was obtained (p-

value = 1) for the null hypothesis there were no differences between groups (la Rosa et al., 

2012). This was not the case for the Genus level, indicating significant p-values (0.013) 

between the two diets. Absolute abundances were also compared, stratified by diet and 
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timepoint, and differences were noted between the two groups (Figure 29). In addition, 

heatmaps of abundance levels stratified by diet and timepoint also highlighted these 

differences (Figure 30).  

 

 
Figure 28. Relative abundances averaged stratified by diet. 
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Figure 29. Absolute abundances of Phyla stratified by diet and timepoint, sub-sampled for the top 50 most 
abundant OTU's. 
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Figure 30. Heatmap of sample absolute abundance, stratified by diet and timepoint. 
 
 

 

Alpha diversity was measured using the following metrics: Inverse Simpson, 

Chao1, and Observed species. Diversity increased throughout the time series, with a 

baseline for both sample types (Table 18). Each of these metrics had significant differences 

between the diet and timepoint when performing a Wilcox test. Because of the multiple 

tests being performed, an ANOVA analysis was performed, with a Tukey multiple test 

correction. Reviewing Inverse Simpson results after this correction illustrated significance 

between groups of timepoints (baseline/Day05/Day08 vs. Day12) and diet (apple slices vs. 

rice bran) (Figure 31). This was not true of the sample type, which did not have significant 
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Wilcox p-values (p-value = 0.934). To determine if timepoint or sample type influenced 

the samples were stratified further (Figure 32). There was no consistency between the cause 

of increases across each of these variables and their associated values.  

 

Table 18. Alpha diversity measurements are stratified by sample type and timepoint. 
Sample Type Timepoint Inverse Simpson Chao1 Observed Species 
Feces Baseline 3.85 (1.51) 32.67 (24.33) 32.67 (24.33) 
Feces Day5 NA NA NA 
Feces Day8 NA NA NA 
Feces Day12 15.86 (5.87) 79 (88.78) 79 (88.78) 
Mealworm Baseline 6.26 (3.93) 33.56 (25.23) 33.56 (25.23) 
Mealworm Day5 6.34 (3.19) 43.83 (22.01) 43.83 (22.01) 
Mealworm Day8 4.17 (1.46) 73.4 (101.61) 73.4 (101.61) 
Mealworm Day12 19.88 (15.36) 82.11 (118.13) 82.11 (118.13) 
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Figure 31. Inverse Simpson alpha diversity, by timepoint (TOP) and diet (BOTTOM) showing groupings after 
multiple test corrections (ANOVA, Tukey's multiple test correction). 
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Figure 32. Alpha diversity metrics are stratified by metric and diet, colored by sample type, and shaped by 
timepoint. 

 

Beta diversity analysis was performed using principal coordinate analysis (PCoA) 

and NMDS using the Bray-Curtis dissimilarity index. Stratifying by sample type, diet, and 

timepoint and highlighting clustering within the samples. This analysis presents points in 

which the distance along the x and y-axis represents the similarity of communities. Clusters 

revealed similarities between diet and time within the apple slices diet, not seen with the 

rice bran diet group (Figure 33). An ordination plot using the Aitchison Distance was 

generated, and overlapping values were observed between the health statuses, with the 

noted distribution of samples distance from the centroid (Figure 34). A permutational 

multivariate analysis (PERMANOVA) was performed and found to be significant by diet 

(p = 0.07) when comparing between baseline (rice bran) and timepoint Day 12 (apple 
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slices). At the same time, the variance of homogeneity was non-significant (p = 0.952). 

This indicates we would reject the null hypothesis of no difference in the centroid location 

according to diet at these two-time points.  

 

 
Figure 33. NMDS-Bray plots stratified by Diet (A), time point (B), and sample type (C). 
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Figure 34. Ordination using Aitchison Distance (left) and stratified by diet at timepoint baseline (rice bran) and 
day 12 (apple slices). 

 

Differential analysis was performed to determine significant differences in the 

Genera present between two groups within variables. Three approaches were employed: 

the non-parametric Wilcoxon test, the second is ANOVA-like differential expression 

(ALDEx2), and finally, a differential algorithm based on the negative binomial distribution 

(DESeq 2). In addition, because of the multiple comparisons being performed, the 

Benjamini and Hochberg (BH) correction was applied to the p-values, as appropriate. Each 



122 

test has features that are particularly useful when performing differential analysis and were 

used to determine the continuity of results. 

The Wilcoxon method indicated significantly differentiated taxa by diet, regardless 

of timepoint (p-value 0.01), with seven Phylum specifically contributing to significance 

even after BH FDR corrections (Table 19). When comparing the baseline value (rice bran 

diet) to the day 12 value for apple slices, although all phyla did not produce significant 

differences (p-value= 0.8), comparisons between Phylum did produce meaningful results 

(Table 20). ALDEx2 is a Co-Occurrence of Domains Analysis (CoDA) method, developed 

for next-generation sequencing analysis, which employs Monte-Carlo sampling from a 

Dirichlet distribution with a small non-zero-sum. The ALDEx2 is a much more 

conservative approach and did not identify any significant OTU's falling within the first 

and third quartiles after the CLR transformation (Figure 35).  
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Table 19. Significant Phylum between diet, calculated with a Wilcoxon rank-sum test, with continuity correction 
(p-value) and BH FDR correction (BH_FDR). 

Phyla p-value BH_FDR 

Firmicutes 0.003 0.003 

Bacteroidetes 0.004 0.004 

Spirochaetes 0.005 0.005 

Proteobacteria 0.005 0.005 

Gemmatimonadetes 0.015 0.015 

Rokubacteria 0.015 0.015 

Candidatus Latescibacteria 0.015 0.015 

 
 

 
Table 20. Significant Phylum between baseline samples (rice bran diet) and timepoint Day 12 samples (apple slices 
diet), calculated with a Wilcoxon rank-sum test, with continuity correction (p-value) and BH FDR correction 
(BH_FDR). 

Phlya p-value BH_FDR 

Firmicutes 0.002 0.00234719 

Proteobacteria 0.004 0.00435027 

Bacteroidetes 0.013 0.01332045 

Spirochaetes 0.023 0.02333027 
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Figure 35. ALDEx2 log-ratio abundance (left) and dispersion (right) plots for OTU's stratified by diet, indicating 
no significant results. 
 
 
 

Genera were found to be significantly different between diets using the DESeq2 

method (N=3), two associating to the apple slice (positive), and one to rice bran (negative) 

diets, in line with previous results (Figure 36). Stratifying by timepoint and performing a 

crosswise comparison between each of the times highlighted several significant genera. Of 

note, since OTU identified were mapped to their genus as listed in the Silva (version 132) 

database, some OTU's have "Higher Taxonomic Level" listed, as these OTUs were only 

mapped to a higher taxonomic value. Each time point had significant genera differentiated, 
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with the highest being the differences in Day 05 to Day 08 (N=39) (Table 21). In this 

comparison, more genera were significantly differentiated in Day 08 over Day 05, 

indicating the peak of the microbiome transition between the rice bran diet-fed on the 

baseline and the apple slice diet (Figure 37). 

 

 
Figure 36. Differential abundance analysis, between varying diets (apple slices and rice bran). P-values were 
adjusted using the BH correction and filtered (p-value <0.05). The fold change direction (log2) relates to the 
stronger association with apple slices (positive) or rice bran (negative 
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Table 21. Top significant genera differentially expressed by a variable with BH corrected p-value shown.  

Genera Diet Bto5 Bto8 Bto12 5to8 8to12 
Chryseobacterium 0 2.61E-10 0 0 1.32E-11 0 

Delftia 0 0 0 0 8.78E-12 0 

Enterobacillus 1.89E-10 0 7.12E-09 0 1.84E-10 1.39E-10 

Enterococcus 0 0 8.37E-09 0 8.78E-12 1.36E-10 

Enterococcus.1 0 0 6.38E-09 0 2.59E-11 1.36E-10 

Enterococcus.2 0 0 3.05E-09 0 1.39E-10 1.36E-10 

Enterococcus.3 0 0 3.05E-09 0 6.04E-11 1.39E-10 

Enterococcus.4 0 0 3.05E-09 0 3.93E-11 0 

Higher Taxonomic 
Level 

4.29E-10 2.11E-11 3.05E-09 4.33E-10 1.10E-11 1.39E-10 

Higher Taxonomic 
Level.2 

0 2.58E-09 9.83E-09 9.44E-12 2.37E-10 2.92E-10 

Higher Taxonomic 
Level.3 

0 2.61E-10 9.83E-09 0 4.03E-10 3.59E-10 

Sphingobacterium 0 0 0 9.73E-11 3.60E-11 5.86E-06 

Streptococcus 3.68E-22 0 3.05E-09 0.0447837
6 

0 0 

Weissella 0 0 0 1.20E-10 0 1.89E-07 
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Figure 37. Differential abundance analysis, between varying time points (before PS consumption, Day 12 after PS 
consumption). P-values were adjusted using the BH correction and filtered (p-value <0.05). The fold change 
direction (log2) relates to the stronger association to the baseline before PS consumption (positive) or Day 12, after 
PS consumption (negative). 
 
 
 

Prediction modeling was performed in R using two methods – the first is a CODA 

method using an R software package called rms, and the second is a R software package 

Selabl179,180. To begin, the full model was fit, and a grid search was performed to 

determine the optimal value for a penalty (simple penalty = 1, non-linear penalty = 200). 

Plotting the resulting log odds ratio showed the associations were linear; however, a cubic 

spline was used in the full model (Figure 38). PC1 – PC3 were reviewed to determine the 

prediction strength, with PC1 having the highest strength, representing 75% of the 
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diversity. A full bootstrap resampling was then performed to determine the model 

performance, with poor results for the model prediction (Figure 39) 

 

 

Figure 38. RMS prediction values of all samples for apple slices, stratified by PC1, PC2, and PC3. 
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Figure 39. RMS prediction performance probability for all samples to determine diet. 
 
 

Selbal uses a forward-selection method to identify taxa groups whose relative 

abundance is associated with a particular response variable (UVic-omics, n.d.). This 

microbial signature can then be used as a predictor for group identification by performing 

multiple regressions, adding a new taxon with each iteration. Rare taxa were removed 

(N<200) to balance bias. The two Phyla that were the strongest predictors were 
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Bacteroidetes for apple slices and Actinobacteria for rice bran (Figure 40). The 

discrimination value of the area under the curve (AUC) is established when no additional 

variable (taxa) improves the current optimization parameter (Figure 41). In addition, a 

cross-validation procedure is performed to explore the robustness of the balance between 

taxa. The AUC-CV for this prediction is 0.775, with each Phylum being found in 80% of 

the cross-validations performed. 

 

 

Figure 40. Selbal prediction analysis for diet, with all samples, included. 
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Figure 41. AUC (A) for variables and bar plot (B) representing the frequency of variables selected in the CV process, defined by the numerator (rice bran) and 
denominator (apple slices). 
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The functional prediction was performed using an R software package Tax4Fun 

and a QIIME2 plugin for PICRUST2 (Caporaso et al., 2010; Chill et al., 2020; The PICRust 

Project, 2013). An exploration of significant OTU's (p-value <0.01) using Tax4Fun 

analysis revealed several predicted pathways related to metabolism, with the top 10 KO 

pathways and the top 10 Molecular descriptions reviewed (Table 22, Table 23). Utilizing 

a structural topic model (STM), which uses a machine learning approach to estimate 

relationships between text inputs, in this case, KEGG pathways, top pathways can be 

grouped, identified, and visualized (Roberts et al., n.d.). Associations are assigned as 

'topics' and plotted as an estimation towards healthy status (red) or unhealthy status (blue) 

(Figure 42, TOP). Then, these topics can be examined in the heatmap, showing the 

function-topic interaction. Yellow and dark blue is representative of relative abundances 

(high and low, respectively) and were used to explore relevant pathways (Figure 42, 

BOTTOM).  

 

Table 22. Top 10 KEGG KO pathways determined by Tax4Fun. 
Pathway Descriptions 

alcoholism 

carbon metabolism 

oxidative phosphorylation 

longevity regulating pathway – multiple species 

nucleotide excision repair 

porphyrin and chlorophyll metabolism 

RNA degradation 

purine metabolism 

starch and sucrose metabolism 

purine metabolism 

 



133 

Table 23. Top 10 KEGG KO descriptors determined by Tax4Fun. 
Molecular Descriptions 

adenylate cyclase [EC:4.6.1.1]  

ATP-dependent Clp protease ATP-binding subunit ClpB 

calcium/calmodulin-dependent protein kinase 1 [EC:2.7.11.17] 

DNA helicase II / ATP-dependent DNA helicase PcrA [EC:3.6.4.12] 

DNA-directed RNA polymerase subunit beta' [EC:2.7.7.6]        

glycogen phosphorylase [EC:2.4.1.1]                 

magnesium chelatase subunit H [EC:6.6.1.1]         

molecular chaperone DnaK  

NAD (P)H-quinone oxidoreductase subunit 4 [EC:1.6.5.3] 

pyruvate, water dikinase [EC:2.7.9.2] 
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Figure 42. Functional prediction by topic with estimate cause of variance (TOP) and heat map (BOTTOM). 
 
 
 

PICRUST2 and STAMP were employed next to determine additional functional 

significance and differentiation between healthy and afflicted individuals (Figure 43, 

Figure 44). Results from this prediction tool highlighted 51 significant pathways (corrected 

p-value <0.01), of which the top 5 significant pathways are shown (Table 34). Pathway 

PWY-6263 is related to methyl-accepting chemotaxis, a transmembrane receptor that 

mediates chemotactic responses in certain bacteria, specifically in response to toxin 
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chemicals180. The top path highlighted in the heatmap, and differentially regulated in 

several samples, is the PWY-7219, representing the adenosine ribonucleotides de novo 

biosynthesis (Figure 45). In addition, P122-PWY (corrected p-value 7.47E-06) is found to 

be related to heterolactic fermentation, recently shown to be important in improving both 

the digestibility of fiber, but also increasing water-soluble carbohydrates available (Figure 

46) (H. Zahiroddini et al., 2006). 
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Figure 43. Crosswise comparison of PCoA 1 through PCoA3, for diet (color), from PICRUST2 and STAMP analysis. 
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Figure 44. Heatmap for diet (apple slices – orange, rice bran - blue) by columns and significant pathways (rows), from PICRUST2 and STAMP analysis. 
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Table 24. Top 5 significant differentiated pathways generated from PICRUST2. 

OTU ID p-values 
(corrected) 

Effect size Apple Slices: 
mean rel. 
freq. (%) 

Apple Slices: 
std. dev. (%) 

Rice Bran: 
mean rel. 
freq. (%) 

Rice Bran: 
std. dev. (%) 

PWY-7371 2.87E-06 0.433566944 0.035755434 0.025757285 0.0053044 0.008345809 

PWY-6263 3.98E-06 0.424316062 0.080637618 0.055936549 0.01396224 0.020908052 

PWY-7374 6.04E-06 0.412265156 0.032980372 0.024238317 0.005252398 0.008345216 

P122-PWY 7.47E-06 0.406052592 0.298310813 0.098370328 0.115999467 0.107626932 

P124-PWY 1.32E-05 0.388967425 0.314207797 0.101512731 0.127507422 0.115561001 

 
 
 

 
Figure 45. Significantly differentially regulated pathway (PWY-7219) between diet groups, using PICRUST2 and 
STAMP for visualizations. 
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Figure 46. Example of a significant functional pathway, significantly differentiated between the two diet groups 
(P122-PWY), using PICRUST2 and STAMP for visualizations. 
 
 
 
4.4 Discussion 

 
Relative abundance differences were noted between diets, with higher abundance 

levels at later time points in apple slices. This was also the case with variance, both higher 

in apple slice samples and at later time points. Consistent findings with previous work for 

T. molitor who consume Polystyrene indicates some community divergences within the 

larger homeostasis of the gut from baseline. The top phylum in both apple slice and rice 



140 

bran diets groups were Bacteroidetes, consistent with the previous characterization of the 

T. molitor gut microbiome (Brandon et al., 2018). Differences are noted between the diets 

at the second and third highest OTU's; however: Pseudomonas and Enterobacillus, in the 

apple slices diet, Enterobacillus and Escherichia-Shigella in the rice bran diet. This may 

indicate specific differences related to the diets of the T. molitor, as opposed to bacteria 

that are inherent to the mealworms. Follow-up sequencing for differentially abundant 

species is essential to identify the key players within these communities that may be 

responsible for consumption response. 

Rice brain is created from the milling process of rice and stabilized through a 

heating process (Kahlon, 2009). It consists of a higher amount of fiber and is commonly 

used as an animal feed or dietary supplement in some low and middle-income countries 

(Zambrana et al., 2019). This can be compared to that type of whole-grain diet, which 

typically consists of wheat and brown rice. A change to a more sugar-based diet in the T. 

molitor, such as with the apple slices, showed an increase in alpha diversity over the rice 

bran. This is consistent with human studies that showed between whole grain and fruits 

diet; the fruit diet had a significantly higher alpha diversity (Zambrana et al., 2019). In 

addition, as these alpha diversity differences were noted with greater diversity levels noted 

at later time point, this may be an indication that there is not an immediate conversion of 

microbiome. This appears to be confirmed by the alpha diversity groupings of early time 

points (Baseline, Day 05, Day 08) to later time points (Day12) showing significant 

divergence, thereby highlighting a possible transition period of the gut microbiome. These 
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differences lead to implications regarding the complexity of priming diet and community 

and the amount of Polystyrene consumed and are findings to explore in future studies. 

Differences in alpha diversity were supported by the distance measurements 

performed using both PC plots and Aitchison Distance plots. PC1 was found to describe 

15% of the diversity and was responsible for the clustering that was achieved by diet. PC2 

represented 8.9% of the sample diversity and subsequently did not have as much of an 

effect on the clusters formed by diet. By performing a log transformation of the matrix 

counts, the positive skew towards zero, which confounds PCA, can be overcome186. This 

provided a similar representation of clustering as the PC plots, with similarly significant 

results. Differences in NMDS clustering highlight timepoint differences within diets, as 

well as sample types within diets, with the apple slices and rice brans creating two clusters 

with an overlapping center. This center, however, was defined by the timepoint of Day 12, 

further implicating a potential priming event, as described earlier. 

In studying the degradation of PS material, it has been shown that there are two 

distinct phases: the first is the adsorption of enzymes on the polymer surface, and the 

second is the hydroperoxidation and or hydrolysis of C-O bonds (Mohanan et al., 2020). 

These two phases were considered through each step of the differential expression and 

prediction analysis. Starting with the differential analysis of diet, the Wilcoxon rank-sum 

test produced seven differentially expressed phyla, including Firmicutes and 

Proteobacteria, both of which were previously highlighted as likely responsible for the 

second phase of degradation, through depolymerization of PS and degradation of 

intermediates (S. S. Yang et al., 2018). The stricter ALDEx2 method did not produce any 



142 

significant OTU's. However, this is not unexpected given the distribution matrix used and 

as mentioned, the more stringent methodology. Finally, DeSeq2 presented results at the 

genus level. Both Streptococcus and Enterobacillus were positively associated with apple 

slices, whereas OTUs identified at a higher taxonomic level than genus was associated with 

rice bran. Furthermore, the association of Enterobacillus to apple slices strengthens this 

argument as previous work has also hypothesized that the depolymerization and eventual 

degradation of PS are likely due to this gram-negative bacterium. 

The prediction balance approach of Selbal found that the combination of 

Bacteroidetes and Actinobacteria were the strongest predictor for diet source and may 

provide insight into diet-based changes that link consumption-based differences. 

Functional prediction allowed for the analysis of differentially expressed OTU's and 

mapping to their functional counterparts. Tax4Fun analysis utilized KEGG pathways for 

associations and found starch and sucrose metabolism to be significantly differentiated 

between all samples. Of particular interest is starch and sucrose metabolism, which is 

associated with anti-oxidative enzymatic properties (J et al., 2019). Previous research into 

the hypothetical degradation pathway indicates that PS-degrading bacteria are likely 

responsible for secreting oxidative enzymes that can break down PS polymer chains, 

thereby generating C-O bonded intermediates (S. S. Yang et al., 2018). In that case, this 

may be a pathway that can elucidate these differences – the mealworms that were able to 

digest the most Polystyrene likely had a decrease in starch and sucrose metabolism, thereby 

increasing oxidative enzymes and an increase in PS polymer change intermediates.  
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Utilizing PICRUST2 with STAMP, additional pathways were highlighted, found 

methyl-accepting chemotaxis protein-associated (PWY-7219), the most common receptor 

in bacteria and archaea, which may play a role in biodegradation (Salah Ud-Din & 

Roujeinikova, 2017). Other vital pathways related to menaquinone and naphthoate, both of 

which are components of the cytoplasmic membrane (Biocyc, n.d.). Finally, P122-PWY 

was highlighted found to be related to heterolactic fermentation. This was found to be 

important in improving the digestibility of fiber and increasing water-soluble 

carbohydrates available (H. Zahiroddini et al., 2006). This finding is in line with previous 

research, which showed that the degraded PS had higher water-soluble daughter products 

detected, indicating the possible importance of these carbohydrates to the degradation 

process (Y. Yang et al., 2015b). 

Significant limitations were also found within this study design. The low number 

of samples is the first limitation, and future studies would aim to expand the sample count 

for each of the study aims. Additional sampling should also be performed for both fecal 

and mealworm guts, to be better able to ascertain the differences between the two source 

materials. It is also imperative that the timeline of the study be expanded to included 

additional timepoints. Findings in this study implicated a priming event is occurring 

following the introduction of polystyrene into the diet. Additional time points will help to 

determine if there are additional changes that occur within the microbiome following 

subsequent days of consumption.  

Beyond the limitations of the study, future work should include follow-up studies 

on the most significant, and theoretically functionally pathways. Determining the impact 
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of specific species on the rate of consumption is important to accurately identify the species 

that are responsible for consumption rate. Utilizing the functional prediction results as a 

baseline to design in-vitro studies would be beneficial to elucidate some of these questions, 

and to best develop more flexible results, that would have long-lasting impacts in 

environmental clean-up efforts of polystyrene. 
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5. HUMAN APPLICATIONS 

5.1 Background 

Innovation in DNA sequencing technology began with Sanger sequencing in 1977 

with chain-terminating sequencing, becoming more complex and available to researchers 

and physicians alike, with techniques like pyrosequencing and eventually, next generation 

sequencing (NGS) (Klindworth et al., 2013). Over the span of 4 years, research awards at 

the NIH went from 60 awards in 2012 to 140 awards in 2016, representing nearly 728 

million dollars (NIH Human Microbiome Portfolio Analysis, 2019). Most research during 

this period focused on colonization of the host including microbial community impacts on 

physiology, metabolism, and the immune system. Community interactions was the largest 

aim of projects examined (approximately $551 million dollars of budget) over the presence 

of a specific microbe ($112 million dollars of budget). This is an important statistic when 

reviewing research related to the microbiome and human health, as single microbe targets 

for all health-related diseases may not be observable due to the focus of research. When 

reviewing the time of 1977 to 2017, nearly 80% of all publications related to microbiome-

research were published in a four-year period of 2013-2017, thus highlighting the recent 

explosion of both research in this field, and promising future for human health, and disease 

(Cani, 2018).  

5.1.1 Microbiome Consortiums 

Although still in its infancy when compared to other human disease associated 

fields, the intersection between decrease in cost of sequencing and increase in interest in 
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the microbes that live within us, reached new heights in 2007 when the Human Microbiome 

Project (HMP) was created by the National Institutes of Health (NIH) (National Institutes 

of Health, n.d.-b). This 10-year, $215 million dollar initiative was launched to examine 

diversity and the composition of the human microbiome, in hopes to evaluate diversity 

patterns associated with health, and whether features of the microbiome correlated with 

diseases. Several important insights have been made over the decade that followed, 

including adjusting the view that microbes are “bad”, and instead understanding the of the 

mutualism between the human microbiome of the gut, for example, and the host (Bäckhed 

et al., 2005). This understanding has setoff other large consortium-based projects, in 

addition to individual research experiments. The American Gut Project was launched in 

2012, to explore microbes and microbiomes of a “self-selected citizen-scientist cohort” and 

has since sequenced over 15000 samples from over 11,000 human participants (McDonald 

et al., 2018). Individuals volunteer for this project through an online forum, collection kits 

are sent to individuals’ homes, and results are compiled by organizers. These types of open-

source projects offer a unique insight into a wide array of health-related questions, and in 

conjunction with more traditional research, contribute to our understanding of the human 

microbiome. 

5.1.2 Microbiome Variation 

Studies have shown that starting from birth, differences in the delivery method 

(cesarean section vs vaginal delivery) and whether a child was breastfed, key factors in 

microbiome composition (Gomez-Gallego et al., 2016; Moossavi et al., 2019). These 

breastfeeding studies have expanded the impact by having shown the impact that 
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breastmilk, as opposed to formula, has on microbiome formation, and immune health 

demonstrating one example of the interdependence between the microbiome, and its host 

(Morgan & Huttenhower, 2012; Walker & Shuba Iyengar, 2014). Even before the child is 

3 years of age, there are three distinguished microbiome profiles, which include a 

development, transitional and stable phase (Stewart et al., 2018). This early development 

of a mature gut microbiome has even been shown to reduce the risk of disease, such as 

asthma, in early life, although not necessarily being a permanent part of the individual 

(Stokholm et al., 2018). Stability is also achieved in healthy individuals during adulthood, 

with limited variation not contributed to significant dietary changes or disease (Yatsunenko 

et al., 2012). Studies have also found that the elderly (>60) show significant microbiome 

shifts, over their younger counterparts (Martin et al., 2016). This does vary by source site, 

however, and notably must be a considering factor when analyzing data (Chaudhari et al., 

2020). Understanding the pivotal milestones that causes these shifts is the focus of studies 

today and begets the need for age-related cohorts in disease studies as well, to not only 

understand causality, but also what these shifts might mean to our long-term health.  

Gender-related alpha diversity differences have been noted. For example, 

differences in the colonization of specific species, such as the L. ruminis subgroup are often 

found over-represented in women (C. Chen et al., 2017). While it is believed that hormonal 

changes during puberty may be the reason for these differences, animal models have not 

been replicated in humans to date. Pregnancy is a significant event that may also play into 

these changes, as well as whether a mother decides to breastfeed. It has been shown that 

various parts of the female reproductive system, such as the cervical canal and uterus, have 
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distinct microbiomes, that may be affected during childbirth (C. Chen et al., 2017). 

Exacerbating these differences is the consideration of the body mass index (BMI) of an 

individual. Strong relationships between the gut microbiota and obesity have been 

observed, despite limited understanding of the mechanism behind this link (Maruvada et 

al., 2017). Even more specifically, significantly BMI-related differences have been noted 

within the female subgroups, exacerbating these relationships (Gao et al., 2018). These 

relationships may have foundations in gene expression, as shown in one large population-

based twin study in which the human microbiome explained over 67% of the variance of 

the NAT2 gene, a gene responsible for visceral-fat mass (Zierer et al., 2018). This only 

confounds microbiome data, as the interaction of other systems may be impacting the role 

of the community, or this community may be having additional effects on outside systems. 

Each of these factors must be balanced in a study design to ensure the confounding 

variables do not impact the diversity observed. To design the least biased dataset factors 

such as the gender, age, and BMI of study participants must be balanced to limit the 

demographic role that each may play in the microbiome diversity that is observed between 

groups. The demographic location of study participants is also important, as geographical 

location is likely to play a role as well, particularly if the submitting areas are different in 

terms of food and water supplies. 

 
5.1.3 Microbiome and human health 

Our knowledge and understanding of the human microbiota have evolved 

significantly over the past 20 years. Current research has shown that in healthy donors, two 

phyla dominate the gut microbiome (Bacteroidetes and Firmicutes), however, these 
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percentages can vary between 10% to 90% (Allaband et al., 2019). Significant differences 

in microbial diversity between healthy donors and donors diagnosed with rectal and 

sigmoid cancers, for example, have highlighted the potential for microbiome sampling for 

both diagnosis and prognosis (Xi et al., 2019). Similar potential for prognosis has been 

illustrated in lung cancer models, with the enrichment of oral microbes being associated 

with decreased survival (Segal et al., 2016).  

Treatment of disease is a particularly interesting topic of research and of societal 

concern. Academic studies have highlighted how the gut microbiome may play a role in 

treatment outcomes, such as with melanoma patients who responded to immunotherapy, 

showing a significantly higher alpha diversity (P< 0.01) than those who did not respond 

(Gopalakrishnan et al., 2018). Clinical questions also have begun to form around 

microbiome-specific interventions, with the introduction of new medical treatments like 

the fecal transplants, where a donor fecal microbiome is “implanted” in an individual with 

dysbiosis; of which long term side-effects are not completely known (Bajaj, Fagan, Gavis, 

et al., 2019). The increase in antimicrobial resistance genes also raises new clinical 

questions and has led to warnings by US government and health organizations world-wide 

and a call for the need of better annotation, classification, and functional effects as well 

(Ventola, 2015).  

 
5.1.4 Mental illness 

Despite the large number of studies that have been conducted to date, there are still 

gaps in the research, where fields have not yet been fully explored to determine the true 

impact that the microbiome may have on disease physiology. One area where the 
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microbiome may prove to have a significant impact, is on mental health-related disease. 

Mental illness in the United States alone affects nearly 1 in 5 individuals, or approximately 

51.5 million adults aged 18 or older (National Institutes of Health, n.d.-c). This is a 

complicated category of illness, with varying conditions, symptoms, onset, and treatment. 

Some of the most prevalent of these conditions include bipolar disorder, depression, post-

traumatic stress disorder, and schizophrenia. Any understanding of their development, 

selection of treatment, or prevention strategies would bring significant improvements to 

the lives of millions of individuals worldwide. 

Depression is the most common mental disorder in the United States, affecting 

7.1% of adults and 13.3% of adolescents between 12-17 (National Institutes of Health, n.d.-

a). This disease describes a period of at least two weeks, where an individual loses interest 

in daily activities, and is often accompanied by issues with sleeping, eating, and 

concentration. Bipolar disorder is a mental disorder, which can be categorized into three 

types, all which change the mood, energy, or activity levels of the individual (National 

Institutes of Health, 2017b). It can vary between and within an individual, with periods of 

elation, known as manic episodes, to periods of indifference or hopelessness, known as 

depressive episodes. Approximately 2.8% of U.S. adults have this disorder at any given 

point, and approximately 4.4% of U.S. adults are estimated to experience bipolar disorder 

at some point in their life. These numbers are similar in adolescents, with 2.9% of US 

adolescents diagnosed. Research into these diseases, not only seek to understand the 

mechanism between their onset, but to develop new therapeutic techniques to manage the 

symptoms. 
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Other mental disorders are not as transient and have differing mechanisms of onset 

and treatment options. Exposure to a potentially traumatic event may develop into post-

traumatic stress disorder (PTSD), affecting approximately 3.6% of adolescents and 5% of 

U.S. adults (National Institutes of Health, 2017a). Symptoms of this disorder can be 

debilitating, ranging from frightening thoughts, to sleep problems, to being easily startled. 

Schizophrenia is another disorder, with an onset in the late teens to early thirties and 

affecting only 0.25 – 0.64% of U.S. adults today (National Institutes of Health, n.d.-d). 

This disorder consists of psychotic symptoms and can vary in both the frequency of 

episodes (although commonly persistent) and severity. These symptoms can include 

hallucination, unusual ways of thinking, and a reduction in the motivation to accomplish 

goals. Like PTSD, however, there may be events in the individual’s life that reflect a 

significant change in brain development. 

5.1.5 Mental Illness and the microbiome 

Unlike many other areas of microbiome-related research, few intersections with 

bacteria and the brain were noted in history (Bastiaanssen et al., 2018). In the 1920’s 

psychiatric patients had colectomies and their teeth removed under a procedure termed 

‘surgical bacteriology’, under a physician who believed bacteria was poisoning these 

individuals (Wessely, 2009). While these procedures would never be performed today, this 

premise, that bacteria could affect the mental health of an individual, has become more 

supported by today’s research. Through the development of sequencing and 

bioinformatics, several studies have been able to investigate the relationship between 
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microbes of the gut, and the brain focusing on the formation of the gut-brain axis (GBA) 

and its variation over time.  

The central nervous system components of the GBA communicate through a variety 

of pathways, and it is understood that stress may mediate parts of this axis (Cryan et al., 

2017). Research has shown a link between microbial tryptophan metabolism, influencing 

the GBA by producing important neurotransmitters like serotonin in tryptophan-rich media 

(Knecht et al., 2016). Colonization of microbiome in early life may influence the 

development of the serotonergic system, as well as in late life, influencing age-related 

health problems. Variations in the tryptophan metabolism may also be linked to cognitive 

deficit disorders, through a kynurenine pathway, which has been linked to cognitive 

changes that closely resemble Huntington’s disease (Kaur et al., 2019). In addition, the 

vagus nerve represents the main afferent pathway between the abdominal cavity and the 

solitary tract in the brain. It is believed that the gut microbiota may be capable of effecting 

behavioral and physiological effects, which has been shown in lactobacilli (Bravo et al., 

2011; Vécsei et al., 2013). Exploring these pathways, with a stable and well-balanced 

cohort, may yield important discoveries for not only the overall understanding of these 

diseases, but also for diagnosis and intervention. 

Current research has highlighted the importance of inflammation as well, in 

depressive disorders. It is believed that the gastrointestinal (GI) tract’s microbiome may 

trigger the onset of neuroinflammation, thereby triggering microglial action, and the 

depression pathway (Limbana et al., 2020; Sherwin et al., 2016). Microbial dysbiosis has 

been noted in patients with mental disorders, including depression, with variance in 
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Firmicutes, Bacteroides and Actinobacteria (Hemmings et al., 2017; Huang et al., 2018). 

The connection between inflammation and high levels of neurotransmitters has been 

shown, indicating the importance in regulating inflammation to curb depression-related 

symptoms (Jiang et al., 2015; Serafini et al., 2011). While the impact potential on 

diagnosis, prognosis, and treatment has clear impacts for human health, understanding 

microbiome differences between study attributes is key in study design. 

 

5.2 Materials & Methods 

Participants to the AGP were volunteers, who contributed a monetary donation and 

a biological sample. Oral samples were collected using BBL culture swabs and sent using 

domestic shipping to domestic posts located in Australia, the United Kingdom, and the 

United States. Participants also provided metadata through a web portal, which was later 

de-identified and published. Metadata was downloaded through NCI’s portal and FASTQ 

files were downloaded through the European Nucleotide Archive (ENA) (European 

Nucleotide Archive (ENA), n.d.).  

Sample groups were created based on the subject’s responses to the provided AGP 

questionnaire. Subjects who did not answer the selected criterion questions were 

eliminated. Subjects who answered “yes” to the question regarding whether they had a 

mental illness were placed into the “afflicted” group and those that answered “no” were 

placed into the “healthy” group. The group was not heterogeneous for race for subsequent 

factors, and only individuals who identified as Caucasian were included. Groups were then 

stratified by additional features, including age, BMI, and sex. Age groups were identified 
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by decade, and subjects below the age of 20 years and over the age of 70 removed, due to 

low participation counts. Similarly, individuals with a BMI <18.5 were also removed from 

the dataset. Remaining subjects were then categorized into two BMI categories: normal 

(BMI between 18.5 – 30) and overweight/obese (BMI > 30). A total of 386 individuals 

remained. To balance the dataset between the health statuses and each sub-category, 116 

individuals were used, of which 114 had sequencing data sufficient for analysis. 

Raw reads were demultiplexed using QIIME2 (v2019.1) software post-sequencing, 

following default parameters. A denoising technique, which removes and corrects reads, 

before deduplicating similar sequences was utilized next. For this, the second version of 

the Divisive Amplicon Denoising Algorithm (DADA2) was used to generate ASV’s 

(Callahan et al., 2016). Samples were automatically filtered due to the quality (Q) score, 

merging errors, and identification of chimeric reads. The Phred quality score is a measure 

of the quality of the identification of nucleotides, which relates logarithmically to the base-

calling error probabilities (Illumina, 2011). Sequences that cannot be merged either 

because the sequences are too short and do not overlap, or because the sequence ends do 

not align, were also filtered, as were chimeric sequences identified. Finally, taxonomic 

classification was performed next, with the scikit-learn method (Pedregosa et al., 2011). 

This was performed by training reference sequences at 99% similarity, using the reference 

databases Silva (release SILVA 132) (Quast et al., 2013). 

Alpha metrics were reviewed to determine the overall distribution of diversity. The 

Simpson indexes are a diversity index, more sensitive to species evenness than other 

methods available. Simpson’s Diversity Index represents the probability that two randomly 
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chosen individuals belong to different species. Because it is the inverse measurement, the 

Simpson value indicates that as species richness and evenness increase, so does the 

diversity index value. Beta diversity metrics include the use of Principal Coordinates 

Analysis (PCoA), an eigenanalysis performed on the abundance matrix derived from a 

given dataset. This matrix can be calculated through different measures; either quantitative 

(weighted UniFrac and Bray-Curtis) or qualitative (unweighted UniFrac and Binomial). 

Bray-Curtis dissimilarity was chosen because a matrix can be created to compare the 

degree of dissimilarity between the abundance of each species in a tested variable, versus 

the expected abundance of that species. It can assess the distance then, between these 

expected abundances and those observed through the processing, and all distances are 

compared to determine whether there is significance to the distances. Values are bound 

between 0 and 1, where 0 indicates that the two samples share the same species, whereas 

1 indicates that they do not share any species. Bray-Curtis may also be illustrated with the 

largest Eigenvalue that accounts for the greatest variance lying on one axis while the 

second greatest variance (or other chosen value) is placed on the second axis. 

To determine the correlation of each of these expected control values, to their 

observed values, multiple tests were considered. A permutational multivariate analysis of 

variance (PERMANOVA) test, quantifies multivariate community-level differences 

between groups (Anderson, 2005). This PERMOVA test was performed, analyzing the 

variance using distance matrices of relative abundance tables. To determine if the distances 

between groups had any statistical significance, after creation of the Bray-Curtis distance 
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matrices, p-values were evaluated. The Bonferroni correction was applied, as this was a 

multiple-comparison assessment.  

Rarefaction usage in microbiome data has been controversial and was used for all 

but the differential analysis, to help normalize the presence of rare OTU’s or ASV’s. 

Curves are created that graphically represent the number of samples by the number of 

species, or the sequencing depth by number of samples, showing an exponential curve, 

with an asymptote. This asymptote represents the point of saturation, where no further taxa 

will be added, regardless of the increases in number of reads included. These curves were 

created, and assessed, to determine the target sequencing depth to normalize the data, 

recognizing that samples with low-read counts would be removed. While this subsetting is 

often performed on alpha and beta diversity analysis, a comparative study illustrated the 

negative impact that rarefying samples had on the results of differential analysis. As such, 

all raw OTU counts were in differential analysis. 

Taxonomic, functional prediction analysis is implemented to provide insights into 

the possible functional mechanisms utilized by the microbiome community identified. The 

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database of functions that can be 

mapped to genes, or in the case of microbiome research, taxonomic information generated 

from OTU's (Kanehisa Laboratories, n.d.). Tax4Fun, an open-source R package that 

predicts the functional capabilities of microbial communities using 16S rRNA datasets, 

was used to create KEGG pathways related to specified OTU's (Aßhauer et al., 2015). To 

visualize and run additional statistical measurements, R, an open-source statistical 
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computing and graphics software program, was utilized with publicly available packages 

(R Core Team, 2014).  

5.3 Results 

Of the 386 individuals that met the criteria, 116 samples were analyzed, subset to 

ensure a balanced cohort. Two samples (ERR4020670 and ERR4019056) failed to produce 

any sequencing reads and were dropped from subsequent analysis. The remaining cohort 

included the “afflicted” mental disease group (N=57) and the “healthy” mental disease 

group (N=55). Categorization by BMI, age and sex are described, separated by mental 

health status (Table 20). A binomial test was performed for percent female to ensure even 

distribution between the two groups (Table 25). A Welch two-sample t-test was performed 

for age and BMI category to ensure an even distribution between age, health status and sex 

and BMI, health status, and sex (Table 26). Additional stratifying by mental health sub-

type was performed, with many of the subjects identifying with more than one mental 

illness (Table 27). For this reason, most analysis will consist of a comparison between 

mental health status (afflicted versus healthy) and indicate when sub-types are used for 

informational purposes. 
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Table 25. Demographic information of study samples by mental health status (healthy, afflicted), sex (male, 
female), BMI category (18.5-30 and >30) and age category (30,40,50,60). 

 Healthy Afflicted 
male female male Female 

BMI 18.5 - 
30 

30 4 4 4 4 
40 4 4 4 4 
50 4 4 4 4 
60 2 4 2 4 

BMI  
30<  

30 3 3 3 3 
40 4 1 4 1 
50 4 4 4 3 
60 4 4 3 4 

 

Table 26. Demographic information of study samples, including a binomial test (% female) and t-test test for age 
and BMI by sex and health status. 

 Healthy Afflicted p-value 
Total number 57 55  
Number female (%) 27 (47.3%) 28 (50.9%) 0.55 
Mean age category 
(female) 

46.42 46.43 1 

Mean age category 
(male) 

44.14 43.33 0.7881 

Mean BMI category 
(female) 

26.5 24.68 0.42 

Mean BMI category 
(male) 

25.62 26.81 0.607 

 

Table 27. Demographic information of mental health sub-type counts, by gender, post-sequencing filtering. 
Mental Health Sub-type male female 

healthy 29 28 

bipolar, depression, PTSD 0 2 

depression 25 19 

depression, PTSD 0 5 

depression, schizophrenia 1 1 

depression, substance abuse 2 0 

PTSD 1 0 

PTSD, schizophrenia, substance 

abuse 

0 1 
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Samples had an average number of 23,478 reads (min. 4,772, max. 45,514), with 

2716 unique OTU's identified. Raw OTU counts were used, without rarefaction, due to the 

bias previous studies showed when subsetting datasets before this type of analysis 190. The 

number of reads was stratified by mental health status showed little variation, with the 

healthy status (mental illness = “N”) samples having ~21,131 reads and affected status 

(mental illness = “Y”) having ~25,826 reads (Table 28, Table 29). Average number of 

reads stratified by IBD health status showed greater variation (healthy ~23,3212 to afflicted 

~30,810), however, with large variation in data set size (afflicted N=4, health N=110) 

further stratification by IBD will not be used (Table 29, Figure 47).  

 

Table 28. Average number of reads by mental health status. 
Mental Health 
Status 

N reads Standard 
deviation 

se Confidence 
interval 

 afflicted  57.00  25,826.91  9,694.19  1,284.03  2,572.22  
 healthy  57.00  21,131.04  3,440.06  455.65  912.77  

 

Table 29. Average number of reads by IBD health status. 
IBD Health 
Status 

N reads Standard 
deviation 

se Confidence 
interval 

afflicted  4.00  30,810.25  13,647.22  6,823.61  21,715.78  

healthy  110.00  23,212.38  7,277.18  693.85  1,375.19  
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Figure 47. Average number of reads stratified by sample type and timepoint. 
 

Most reads were identified as belonging to the bacterial kingdom (99.7%), and the 

most abundant microorganisms were the phylum Bacteroidetes and Firmicutes, consistent 

with previous studies (Huang et al., 2018). Relative abundances were calculated between 

healthy and unhealthy groups, and differences were noted between the health statuses 

(Figure 48). Utilizing the Dirichlet-multinomial distribution for the relative abundance of 

Phylum stratified by mental health status, a significant p-value was obtained (p-value = 

1.11 e-05) for the null hypothesis that there were no differences between groups. Absolute 

abundances were also compared, stratified by health status and mental illness sub-type, and 

differences noted between the two groups and within groups (Figure 49). In addition, 

heatmaps of abundance levels stratified by these groups also highlighted these differences 

(Figure 50).  
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Figure 48. Relative abundances averaged stratified by diet. 
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Figure 49. Absolute abundances of Phyla stratified by diet and timepoint, sub-sampled for the top 50 most abundant OTU’s. 
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Figure 50. Heatmap of sample absolute abundance, stratified by mental health subtype. 
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Alpha diversity was measured using the following metrics: Inverse Simpson, 

Chao1 and Observed species. Diversity decreased with afflicted mental health sub-types as 

compared to the healthy across all three metrics (Table 30). This decrease in alpha diversity 

is consistent with previous studies who observed similar decreases when examining 

individuals with major depressive disorder223. Each of these metrics had significant 

differences between the diet and timepoint when performing a Wilcox test. Because of the 

multiple tests being performed, an ANOVA analysis was performed, with a Tukey multiple 

test correction. Reviewing Inverse Simpson results after this correction illustrated 

significance between mental health status (p-value 0.00102), but not between sub-type (p-

value 0.128) or IBD health status (p-value 0.756) (Figure 51). As suggested by the non-

significant p-value, there is no obvious trend when reviewing these metrics by health-

subtype (Figure 52). 

 

Table 30. Alpha diversity measurements stratified by mental health sub-type. 
Sample Type Mental Health 

Subtype 
Inverse Simpson Chao1 Observed Species 

healthy  17.17 (13.7) 151.16 (58.13) 151.16 (58.13) 
afflicted  9.84 (9.02) 124.16 (63.75) 124.16 (63.75) 

afflicted bipolar, 
depression, PTSD 

12.54 (10.89) 126.5 (37.48) 126.5 (37.48) 

depression 10.35 (9.67) 129.93 (67.61) 129.93 (67.61) 
depression, 
substance abuse 

6.28 (7) 79 (65.05) 79 (65.05) 

depression, PTSD 7.81 (7.06) 124.4 (47.32) 124.4 (47.32) 
depression, 
schizophrenia 

8.1 (8.38) 87.5 (55.86) 87.5 (55.86) 

PTSD 7.41 (NA) 61 (NA) 61 (NA) 
PTSD, 
schizophrenia, 
substance abuse 

5.49 (NA) 91 (NA) 91 (NA) 
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Figure 51. Inverse Simpson alpha diversity, by mental health status showing significant groupings after multiple 
test corrections (ANOVA, Tukey's multiple test correction). 
 
 

 
Figure 52. Alpha diversity metrics stratified by mental health status and colored by mental health sub-type. 
 
 
 

Beta diversity analysis was performed using both principal coordinate analysis 

(PCoA) and NMDS using the Bray-Curtis dissimilarity index. This analysis presents points 
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in which the distance along the x and y axis represent the similarity of communities. 

Stratifying by mental health status and mental health sub-type and highlighting clustering 

within the samples highlighted trends between and within groups (Figure 53). An 

ordination plot using the Aitchison Distance was generated and overlapping values were 

still observed between the health statuses, with noted distribution of samples distance from 

the centroid (Figure 54). A permutational multivariate analysis (PERMANOVA) was 

performed and found to be significant by mental health status (p = 0.001), while the 

variance of homogeneity was also found to be non-significant (p = 0.2296). This indicates 

we would reject the null hypothesis of no difference in the centroid location according to 

these two statuses. A check of the variance of homogeneity of mental health sub-types was 

found to be significant (p-value 0.04) and therefore unreliable to perform this testing. 
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Figure 53. NMDS-Bray plots stratified by mental health status (A), mental health sub-type (B). 
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Figure 54. Ordination using Aitchison Distance (left) and stratified by diet at timepoint baseline (rice bran) and 
day 12 (apple slices). 

 

Differential analysis was performed to determine significant differences in the 

Genera present between the two mental health statuses. Three approaches were employed, 

the first is the non-parametric Wilcoxon test, and the second is ANOVA-like differential 

expression (ALDEx2), and finally a differential algorithm based on negative binomial 

distribution (DESeq 2). In addition, because of the multiple comparisons being performed, 

the Benjamini and Hochberg (BH) correction was applied to the p-values, as appropriate. 

Each test has features that are particularly useful when performing differential analysis and 

were used to determine the continuity of results. 
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The Wilcoxon method indicated significantly differentiated taxa by diet, regardless 

of timepoint (p-value 6.616e-05), with four Phylum specifically contributing to 

significance even after BH FDR corrections (Table 31). When comparing the healthy 

donors with those afflicted with depression (only, or with another mental health disease), 

significant results were obtained (p-value 0.0001087), with three Phylum contributing 

significantly, which were identified in the comparison between healthy and afflicted mental 

health status (Table 32). Finally, when comparing the healthy donors with those afflicted 

with PTSD (only, or with another mental health disease), significant results were also 

obtained (p-value 0.00425), with two Phylum contributing significantly, which were 

identified in the comparison between healthy and afflicted mental health status (Table 33).  

 

Table 31. Significant Phylum between mental health status, calculated with a Wilcoxon rank sum test, with 
continuity correction (p-value) and BH FDR correction (BH_FDR). 

Phyla p-value BH_FDR 

Proteobacteria 6.62E-05 6.62E-05 

Verrucomicrobia 6.18E-03 6.18E-03 

Firmicutes 1.78E-02 1.78E-02 

Bacteroidetes 4.86E-02 4.86E-02 

 
 

Table 32. Significant Phylum between healthy mental health samples and those afflicted with depression, 
calculated with a Wilcoxon rank sum test, with continuity correction (p-value) and BH FDR correction (BH_FDR). 

Phyla p-value BH_FDR 

Proteobacteria 1.09E-04 1.09E-04 

Verrucomicrobia 5.67E-03 5.67E-03 

Firmicutes 2.58E-02 2.58E-02 
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Table 33. Significant Phylum between healthy mental health samples and those afflicted with PTSD, calculated 
with a Wilcoxon rank sum test, with continuity correction (p-value) and BH FDR correction (BH_FDR). 

Phyla p-value BH_FDR 

Proteobacteria 4.25E-03 4.25E-03 

Verrucomicrobia 1.22E-02 1.22E-02 

 

The second method employed was ALDEx2 is a Co-Occurrence of Domains 

Analysis (CoDA) method, developed for next-generation sequencing analysis, which 

employs Monte-Carlo sampling from a Dirichlet distribution with a small non-zero sum. 

The ALDEx2 is a much more conservative approach, however, did find one significant 

Phylum (Firmicutes) significant between mental health status, falling within the first and 

third quartiles after the CLR transformation (Figure 55). This is consistent with the Wilcox 

method results described above. 
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Figure 55. ALDEx2 log ratio abundance (left) and dispersion (right) plots for OTU's stratified by diet, indicating 
no significant results. 

 

Genera were found to be significantly different between diets using the DESeq2 

method (N=2), both associating with the afflicted mental health status (positive) (Figure 

56, Table 34). Performing a crosswise comparison between healthy donors with those 

afflicted with depression (only, or with another mental health disease), also found 

significant results in the same two Genera (Figure 57). The final comparison between 

healthy donors and those with PTSD (only, or with another mental health disease), showed 

one common genera (Faecalibacterium) and two additional Genera (Bacteroides and 
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Collinsella), although the associations were all to the healthy status over the afflicted PTSD 

status (Figure 58). These results do compare overlap with some results found using the 

Wilcoxon and ALDEx2 methods, as the genera Faecalibacterium belongs to the Phyla 

Firmicutes. 

 

 

Figure 56. Differential abundance analysis, between varying mental health. P-values were adjusted using the BH 
correction and filtered (p-value <0.05). The fold change direction (log2) relates to the stronger association with 
afflicted (positive) over healthy (negative 
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Table 34. Top significant genera differentially expressed by variable with BH corrected p-value shown. 
Phyla Genera Mental health 

status 
HtoD HtoP 

Firmicutes Faecalibacterium 8.58E-08 9.63E-08 5.83E-06 

Firmicutes Faecalibacterium.
1 

5.98E-38 1.15E-37 NA 

Bacteroidaceae Bacteroides NA NA 0.01429763 

Actinobacteria Collinsella NA NA 0.00204975 

 
 

 
 
Figure 57. Differential abundance analysis, between mental health status of healthy and those with depression. P-
values were adjusted using the BH correction and filtered (p-value <0.05). The fold change direction (log2) relates 
to the stronger association with afflicted (positive) over healthy (negative). 
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Figure 58. Differential abundance analysis, between mental health status of healthy and those with depression. P-
values were adjusted using the BH correction and filtered (p-value <0.05). The fold change direction (log2) relates 
to the stronger association with healthy (negative) over afflicted (positive). 
 

 

Prediction modeling was performed, in R using two methods – the first a CODA 

method using an R software package called rms, and the second using a R software package 

Selbal (Lüdecke, n.d.; UVic-omics, n.d.). To begin, the full model was fit, and a grid search 

was performed to determine the optimal value for penalty (simple penalty = 1, non-linear 

penalty = 200). Plotting the resulting log odds ratio showed the associations were linear, 

however, to correct for the degrees of freedom, cubic spline was used in the full model 

(Figure 59). PC1 – PC3 were reviewed to determine the strength of prediction with PC1 

having the highest strength, representing 62% of the diversity. A full bootstrap resampling 

was then performed to determine the model performance, with decent results for the model 
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prediction (Figure 60). The mean absolute error was 0.041, the mean squared error 0.0022, 

and the 90th quantile of absolute error was 0.066. Both the prediction of depression or PTSD 

over healthy mental status was worse using this method, with the 90th quantile of absolute 

error being 0.1 and .068, respectively, however, not significantly. 

 

 

Figure 59. RMS prediction values of all samples, for mental health afflicted status, stratified by PC1, PC2, and 
PC3. 
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Figure 60. RMS prediction performance probability for all samples, to determine mental health afflicted status. 
 
 

Selbal uses a forward-selection method for identification of taxa groups whose 

relative abundance is associated with a particular response variable. This microbial 

signature can then be used as a predictor for group identification by performing multiple 

regressions, adding a new taxon with each iteration. Rare taxa were removed (N<200) to 

balance bias. The Phyla with the strongest predictor for healthy status was Proteobacteria, 
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and three for afflicted: Verrucomicrobia, Synergistetes and Spirochaetes (Figure 61). The 

discrimination value of the area under the curve (AUC) is established when no additional 

variable (taxa) improves the current optimization parameter (Figure 62). In addition, a 

cross-validation procedure is performed to explore the robustness of the balance between 

taxa. The AUC-CV for this prediction is 0.719, the top Phyla for health status prediction 

(Proteobacteria) present in all CV, and the top Phyla for afflicted status prediction 

(Verrucomicrobia) present in 60% of all CV. 
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Figure 61. AUC (A) for variables and bar plot (B) representing the frequency of variables selected in CV process, defined by the numerator (rice bran) and 
denominator (apple slices).
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Figure 62. Selbal prediction analysis for diet, with all samples included. 
 
 

 

Functional prediction was performed, using two methods: an R software package 

Tax4Fun and a QIIME2 plugin for PICRUST2. An exploration of significant OTU’s (p-

value <0.01) using Tax4Fun analysis revealed several predicted pathways related to 

alcoholism, metabolism, and longevity regulating pathway, with the top 10 KO pathways 

reviewed (Table 35). Utilizing a structural topic model (STM), which uses a machine 

learning approach to estimate relationships between text inputs, in this case KEGG 
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pathways, top pathways can be grouped, identified, and visualized
194

. Associations are 

assigned as ‘topics’ and plotted as an estimation towards healthy status (red) or afflicted 

mental health status (blue) (Figure 63). Then, these topics can be examined in the heatmap, 

showing the function-topic interaction. Yellow and dark blue are representative of relative 

abundances (high and low respectively) and were used to explore relevant pathways 

(Figure 63). The top pathways discovered included glycan degradation, galactose 

metabolism and ABC transporters. Of particular interest is the glycan degradation pathway, 

which has been found to be downregulated in individuals with depressed, suicidal thoughts, 

consistent with these findings (Serafini et al., 2011). 

Table 35. Top 10 KEGG KO pathways determined by Tax4Fun. 
Pathway Descriptions 
alcoholism 
carbon metabolism 
oxidative phosphorylation 
longevity regulating pathway - multiple species 
nucleotide excision repair 
porphyrin and chlorophyll metabolism 
rna degradation 
purine metabolism 
starch and sucrose metabolism 
purine metabolism 
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Figure 63. Functional prediction by topic with estimate cause of variance (TOP) and heat map (BOTTOM). 
 

 
 

 

PICRUST2 and STAMP were employed next, to determine additional functional 

significance, and differentiation between the mental health status of healthy and afflicted 

individuals (Figure 64). Results from this prediction tool highlighted 140 significant 

pathways (corrected p-value <0.01), of which the top 5 significant pathways are shown 

(Table 36). The most significant of these being PWY-6628 (corrected p-value 3.5E-05) is 

super pathway of L-phenylalanine biosynthesis, recently shown to be important in the 

selective-decision making process of those with depression (Figure 65) (Roiser et al., 



183 

2005). Although not in the top five, a still significant pathway that correlates to other recent 

research is the Kdo2-lipid A biosynthesis pathway (p-value 1.9E-03) (Figure 66) (Nguyen 

et al., 2021). 

 

Table 36. Top 5 significant differentiated pathways generated from PICRUST2. 
Pathway 
ID 

p-values 
(corrected) 

Effect size afflicted: 
mean rel. 
freq. (%) 

afflicted: 
std. dev. 
(%) 

healthy: 
mean rel. 
freq. (%) 

healthy: 
std. dev. 
(%) 

PWY-6628 3.5E-05 0.14 0.41 0.10 0.31 0.14 
PWY-6630 6.0E-05 0.13 0.40 0.10 0.31 0.14 
GLYCOL
YSIS-E-D 

6.7E-05 0.13 0.37 0.13 0.26 0.15 

PWY-7254 9.8E-05 0.13 0.32 0.18 0.19 0.18 
HEMESY
N2-PWY 

1.6E-04 0.12 0.28 0.15 0.18 0.13 
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Figure 64. Crosswise comparison of PCoA 1 through PCoA3, for mental health status (color), from PICRUST2 and STAMP analysis.
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Figure 65. Most significant functional pathway, significantly differentiated between the mental health statuses 
(P6628-PWY), using PICRUST2 and STAMP for visualizations. 
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Figure 66. Recently highlighted significant functional pathway, significantly differentiated between the mental 
health statuses (KDO-Naglipasyn-PWY), using PICRUST2 and STAMP for visualizations. 
 
 
 
5.4 Discussion 

Exploration of the microbiome diversity between cohorts of individuals with and 

without mental health statuses is of critical importance. Significant relative abundance 
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differences between cohorts elucidate the need for microbiome research related to the onset 

and development of mental health (PTSD, schizophrenia, depression, bipolar disorder). 

Despite having differing manifestations, significant differences between phyla point to 

potential biological similarities between these mental health diseases. Because the sub-

types were not well-balanced between gender and total value, differences could not be 

explored, and further studies are needed. A check on IBD status did not produce significant 

differences in average read length and so was not addressed, however, should be considered 

as a confounding factor in any future work.  

The phyla Firmicutes had the highest number of significant OTU's, followed by 

Bacteroidetes and Actinobacteria in both groups. This supports previous work of two major 

depressive disorder studies, which also found several significant OTU's within the 

Firmicutes phyla. Actinobacteria has been of particular interest, due to the previous work 

hypothesizing that a may be related to an anti-inflammatory response, thereby increase 

vulnerability to PTSD (Jiang et al., 2015; Sherwin et al., 2016). When comparing the 

differences in relative compositions, the levels of both Firmicutes and Actinobacteria 

decrease, whereas Proteobacteria increase, as compared to the healthy mental status 

subject, highlighting potential phyla of interest. When reviewing the levels by sub-type we 

can see that bipolar, depression, and PTSD afflicted subjects have notably more 

Actinobacteria in their composition over any other sub-type, and the healthy controls. The 

combination of mental health diseases may be complicating finding clear correlations in 

microbiome studies. 



188 

A significantly lower alpha diversity within the unhealthy cohort has not been 

consistent between previous research on mental health disorders. In a PTSD cohort recently 

studied no significant differences were noted, however, in individuals with major 

depressive disorder and those with ADHD, significant decreases were note (Limbana et al., 

2020; Prehn-Kristensen et al., 2018; Sherwin et al., 2016). These results are in line with 

this second finding, namely a decrease in the overall diversity of those afflicted with mental 

disease. We see that when averaging all mental diseases that there is a clear decrease in 

diversity metrics, as well as when reviewing the sub-types within those afflicted with 

mental disease, with the PTSD, schizophrenia and substance abuse sub-type having the 

lowest overall diversity with all metrics. Bray-Curtis dissimilarity matrices did not provide 

clear clustering differences when using NMDS1 graphs, although PERMANOVA analysis 

did present significant differences between phyla of the healthy and afflicted groups. Since 

the variance of homogeneity was found to be non-significant, this increases the confidence 

of these findings between these larger classifications, which was not found between each 

individual sub-type. 

Differential analysis provided some insight into those phyla and genera that may 

be consequences of the illnesses presented or causing their manifestation. Four genera were 

found to be significant with the Wilcoxson rank sum test between healthy and afflicted 

individuals, including Proteobacteria, Verrucomicrobia, Firmicutes, and Bacteroidetes. 

Three of these phyla were also significant when comparing the healthy donors to the 

depression sub-type (Proteobacteria, Verrucomicrobia, Firmicutes) and two of these 

(Proteobacteria, Verrucomicrobia) were significant when comparing the healthy donors 
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to the PTSD sub-type. A similar result (Firmicutes) was found when reviewing the output 

of the second differential method, ALDEx2, and the third, DESeq2. DESeq2 highlight two 

additional phyla, however, (Bacteroidaceae and Actinobacteria) in the healthy to PTSD 

sub-type, that was not seen in the other methods. The fact that same phyla (Firmicutes) was 

repeatedly identified as significant increases in all three methods highlights the importance 

of future work attempting to better understand the possible mechanism of relation between 

depression and PTSD, and the dysregulation of these phyla from healthy samples. This is 

particularly convincing, as other research has highlighted the possible association of 

firmicutes in the gut with those who have depressive disorders (Huang et al., 2018). The 

hypothesis is that because Firmicutes can ferment carbohydrates to a variety of short-chain 

fatty acids (SCFA’s), the decrease of SCFA’s in depressed individuals will lead to a 

decreased intestinal barrier, and therefore stimulate an immune response, leading to 

inflammation and other symptoms of the disease. 

The second finding from this differential analysis is the fact that the phyla 

Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria were highlighted using 

different methods. Recent studies have highlighted the importance of the tryptophan 

metabolism, which is believed to produce microbial metabolites, or neuro-active 

metabolites, which have been suggested to alter the function of the gut-brain axis (GBA) 

(Kaur et al., 2019). This pathway has been associated with Actinobacteria, Firmicutes, 

Proteobacteria and Bacteroidetes and Fusobacteria – 4 of 5 phyla that were significantly 

different between our groups. Selbal correlated to several of the phyla already highlighted, 

including Proteobacteria and Verrucomicrobia, while adding two additionally significant 
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phyla, Synergistetes and Spirochaetes. When running the prediction analysis, the strongest 

predictor for healthy status was Proteobacteria, and for afflicted: Verrucomicrobia. Again, 

these two phyla have been highlighted in recent work  

There are several reasons to explain for some of the variation between differential 

analysis approaches. First, may be related to the differences in uses of the CRL basis, of 

which the Wilcoxon method uses the geometric mean, whereas the ALDEx2 method uses 

the IQLR. The Bayesian resampling with a non-zero prior may also be altering the results, 

as employed with the ALDEx2 method. The median log2 fold difference by median log2 

dispersion illustrates the effect size by variability, highlighting the differentially abundant 

taxon where the difference most exceeds the dispersion. 

Several functional pathways were identified as statistically significant between 

cohorts. Functional pathways that were found to be significant also correlated with recent 

studies. One recent schizophrenic study highlighted the Kdo2-lipid A biosynthesis pathway 

(KDO-LIPOSYN-PKWY) as significantly differentiated between groups, which was also 

significant within this analysis (Nguyen et al., 2021). Additionally, the PWY-6628 

(corrected p-value 3.5E-05) is super pathway of L-phenylalanine biosynthesis, recently 

shown to be important in the selective-decision making process of those with depression 

(Roiser et al., 2005). It has been shown that a depletion of phenylalanine and tyrosine 

resulted in changes to the reward, punishment cues of healthy individuals that mirrored 

what was seen in depressed individuals.  

Limitations of the study include the homogeneity of the cohort’s race. Expanding 

the findings to other races is important to corroborating these findings, and to potentially 
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find additional differences between the cohorts. Increasing the overall size of the cohorts 

will also allow for stratification between age and BMI groups within each study status, 

which may indicate additional microbiome differences. Expanding the overall number of 

those represented will also strengthen the power of the study, and perhaps identify other 

stratifying demographic-related information in the cohort. It would also be prudent to 

include other geographical areas with similar diets and water sources, to ensure that the 

study results are not limited to the population explored. 

While the cohort did provide information about the type of mental illness 

diagnosed, the percentage of respondents was low, and so the data could not be stratified 

to a more specific mental illness while still maintaining a balanced cohort for race, age, 

and BMI. Improved studies would include more specificity into the type of mental illness, 

and therefore provide a more direct connection to the true biological mechanisms of the 

disease, and those predicted. Being able to parse differences from these various mental 

disorders is critical, as the onset, symptoms, and severity of each subtype does differ from 

one another. In expanding the number of individuals within the study it may be found that 

similarities exist between subtypes, or groups of sub-types. Finally, it would also be 

important to have clear confounding health-related information on these individuals to 

ensure other conditions like alcoholism or diseases like IBD, are not impacting the findings 

of the study. In relation to the study design, additional limitations include the number of 

samples, per donor. Having no controls within the project, is a severe limitation, as our 

previous work has shown the impact that positive and negative controls can have on the 

reproducibility and reliability of the study.  



192 

The final limitation relates to predictive modeling without follow-up confirmation. 

Future work should not only focus on expanding the study cohort, but also work to better 

understand some of the functional pathways in animal models, to determine their true 

significance. Designing studies that can utilize oral antibiotics or amino-acids can help to 

elucidate the functional components identified within this work. It will be important when 

designing such studies that there is a balance in the demographic information already 

described, as well as limiting studies to singular sub-types. It may also be worthwhile to 

expand the human cohorts to additional sequencing beyond the 16S rRNA sequencing of 

the V4 region, as there may be additional detail that can be ascertained.  
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