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AN EXAMINATION OF THE IMPACT OF ACTIVATION ON OUTCOME 
BEHAVIOR OF APPLIED AGENT-BASED MODELS 
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George Mason University, 2014 
 
Thesis Director: Dr. Andrew G. Loerch 
 
 

 
In the design process of an agent-based model the pattern chosen for the activation of the 

agents is an important choice. Every model design must include – either explicitly or 

implicitly – the conditions under which each agent will call its methods and update its 

state. Often, however, this is not described in literature and some model designers do not 

even make this design decision explicitly. Three agent-based models described in the 

literature in three separate domains were replicated and the impact of various activation 

schemes on the emergent population patterns and dynamics was analyzed. It was 

demonstrated that the choice of activation type is important for the outcome behavior of 

the model and should be stipulated in any published description of an agent-based model. 

In some experiments the differences noted, while significant, were only statistical. In 

others they led to substantial differences in either outcomes or model behavior. Further 

investigation showed that sophisticated activation schemes can become powerful tools to 



x 

produce unexpected or unpredicted behavior of multi-agent systems. Thus, activation 

becomes more than an inconvenient detail to be dealt with during design, and is shown to 

be a source of exploratory variation as modelers of self-organizing social systems seek to 

match the behavior of natural systems. 
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Background and Introduction 

Complexity – the science of complex adaptive systems – has emerged as a dynamic 

new approach to managing systems and making rational, theory-based decisions in the 

face of natural, grown-in-place systems. Complexity theory has, over the past two 

decades, developed a theoretical understanding and mathematical deconstruction of 

emergent behavior in a broad range of sciences, including biology, neurology, 

anthropology, epidemiology, sociology, and physics (Mitchell, 2009). In addition, 

complexity theory has helped develop an understanding of the weaknesses of traditional, 

equation-based approaches and has begun to fill a role as a complementary decision aid 

in a wide range of business and government applications such as marketing, finance, 

economics, organizational design, social policy (Joshua M. Epstein & Axtell, 1996; 

Gilbert & Troitzsch, 2005; Johnson, 2009; Miller & Page, 2007), and military operations 

(Henscheid, Koehler, Mulutzie, Tivnan, & Turnley, 2010; Ilachinski, 2004; North & 

Macal, 2005).  

To date, however, complexity theory has focused on observational science, mostly 

cataloguing relationships between individual-scale rules, patterns, and behavior and 

large-scale emergent patterns, structures, and entities. To become useful, to establish the 

type of value that operations research has provided to decision-makers, for example, 
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complexity needs to be able to move from the theoretical and descriptive to the practical 

and actionable, generating statements about entities in the real world. As complexity has 

been most effective at bridging the conceptual gap between small and large scale, the 

logical place for complexity science would be recommendations for interventions at the 

individual scale that have the best likelihood for generating favorable outcomes at larger 

scales. 

Simulation is the primary tool of understanding complex adaptive systems – to explore 

their behavior, to observe correlations and cause-and-effect relationships (or show they 

do not exist!), to test hypotheses and assumptions. Complex systems – economies, 

societies, wars – normally exist on such a large scale that repeated experimentation on 

real-world systems is rarely possible. When more traditional methods of describing 

system behavior such as system dynamics (based on differential equations) fail, then 

complexity theory can help understand the impact of neighborhoods and underlying 

connections (social networks, for example) on overall system evolution. And, agent-

based simulation is the tool used to conduct this exploration. In the words of one pioneer 

in the field, “If you didn’t grow it, you didn’t explain it.” (J. M. Epstein, 2006, p. xii). 

With the advent of object-oriented programming in the 1990s, it has become easier to 

create simulations that treat the individual agents as objects, and to infuse them with this 

adaptivity. Such simulations have been called “agent-based models” (ABMs). Just as the 

definition of complex systems is difficult to establish, so is it difficult to determine the 

boundaries that distinguish an agent-based model from other object-oriented programs 
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and simulations. A clear trend in the literature and the practice, however, is to closely 

connect agent-based models and complexity. That is, when the behavior of the system, as 

expressed in its macro-level parameters, depends strongly on the interactions among and 

local environment of the individual components, then the science under study is 

‘complexity’ and the tool is called ‘agent-based’.  

As a young field, complexity science has not clearly established its definitions, and 

many of the terms used above are not part of a widely accepted taxonomy. It is important 

to examine the implications of proceeding without established definitions. The ‘essence’ 

issue has been the topic of philosophers for centuries.  John Locke’s An Essay 

Concerning Human Understanding elaborates on the question of whether one must 

define things to understand them. Locke even delved into the question of complex ideas, 

wandering notably close to the questions addressed in modern complexity theory (Locke, 

2007). Here, however, I pass over all the elegant philosophy to simply state that human 

history is filled with examples where engineering preceded science. We have worked 

substantial improvements and scored stunning advances before we could understand the 

underlying science or even define the phenomena. The Romans built beautiful archways 

long before the science of structural mechanics was developed. Edison and Westinghouse 

electrified entire cities in the late 19th century, decades before the discovery of the 

electron. Biologists have created libraries of textbooks and a titanic multi-branched field 

of science without an accepted working definition of life itself.  
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Similarly, much of the exploration of complex adaptive systems management is 

empirical. Relationships, boundaries, and scope of various phenomena are under 

exploration. A recent article in the Journal of Artificial Societies bemoans the fact that 

researchers rarely attempt to replicate one another’s models and simulations (Wilensky & 

Rand, 2007). They note that such practices are critical to the advancement of science and 

represent core practices of any field.  

Agent-based models have successfully modeled the behavior and structure of a wide 

range of systems. An early example was the successful simulating of the spread of 

disease – particularly AIDs. A wide range of successful applications followed during the 

1990s, including anthropology, stock market behavior, crowd dynamics, traffic patterns, 

technology adaptation, tax evasion, crime proliferation, revolt and insurgency, 

management of ecosystems, public policy, and economics. A search of Amazon reveals 

over 2,000 books that have been published that refer to “agent-based models”, and over 

1,000 articles can be found in Google Scholar published since 2009 with “agent-based 

model” in the title.   

Agent-based models have become compelling tools for decision sciences because they 

(alone, in many instances) have been able to replicate the qualitative behavior of real-

world complex systems (S. E. Page, 2005), and at times they can match quantitative 

outcomes as well (R. L. Axtell, 2001). That is, the patterns and relationships that are 

observed in the real world can be replicated in the agent-based system. In some cases, 

this similarity can be shown to pass traditional statistical tests, such as rejecting the 
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hypothesis that the ABM data were the product of random fluctuations. Additionally, this 

is often a result that cannot be achieved using traditional models where, for example, 

populations are treated parametrically and not as populations.  

Despite their verisimilitude, it is difficult to prove that agent-based models are valid 

(Gilbert & Troitzsch, 2005, p. 22).  That is, the similarity between the model behavior 

and the real world could be artificial. The model might not respond to stimuli, to change, 

or to intentional intervention in the same way that the real world would. Thus, an 

extensive discussion has taken place in the literature of artificial societies on the question 

of epistemology. That is, how do we know we have found the truth? (Raubal, 2001; 

Bankes, Lempert, & Popper, 2002; Guzy, Smith, Bolte, Hulse, & Gregory, 2008) 

Agent-based models are not the only simulations that must deal with difficult 

validation issues. This has happened to computational approaches for a wide range of 

reasons. Many models, however, encompass a domain so large that running experiments 

to collect data is not a feasible solution. Other models envision systems that defy 

experimentation, such as combat or crime. Still other modeling efforts address issues in 

the domain of observational science, such as astronomy. 

Even though the validation process is unclear and undeveloped for agent-based 

models, there are still some facets of that process that are certain to emerge as 

constituents of an overall validation formalism. One of these is the concept of a taxonomy 

of agent-based models. This would be more than just a classification scheme: A working 

taxonomy would have to accommodate the broad scope of agent-based models across the 
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wide range of domains. Moreover, it 

would have to include a rule set for 

such classifications. On the whole, such 

a system would require an extensive 

and detailed review of the entire model 

life cycle, from conceptualization to 

validation.  

One of the first decisions that agent-

based model builders must make, and a 

key component of such a taxonomy, is 

the process by which agents are 

activated. This means, in the 

implementing computer code, at what 

point in the algorithm (and at what step 

in the program) will the agents’ internal 

methods be called? All builders of agent-based models must make a decision about this 

process. In many instances, this decision is not made explicitly. Some environments – 

NetLogo, for example – establish an activation pattern within a single high-level 

command (“ask”) (Wilensky, 2013). Alternative activation patterns can be programmed 

manually, but the model developer must make a conscious effort to do so.  

NetLogo 

NetLogo is an agent-based modeling 
environment developed by Northwestern 
University’s Center for Connected Learning 
and Computer-based Modeling. It 
incorporates weak-typed variables in a 
high-level language that operates on the 
Java virtual machine. NetLogo features a 
robust body of documentation and tutorials, 
and includes a large library of agent-based 
models across a broad spectrum of domains 
(biology, chemistry, earth science, social 
science, etc.). A large user community has 
grown up over the past decade in both 
academia and industry. NetLogo is often the 
entry-point for those interested in modeling 
complexity.  

While many researchers conduct all of 
their investigations in NetLogo, it is rarely 
cited in the literature. Opinions differ as to 
the reason for this; it may simply be a 
matter of perception – some refer to 
NetLogo models as “toy models”. The 
NetLogo architecture does result in slow 
execution when the number of agents gets 
large.   
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It is important to focus on early design decisions in the modeling process. It has been 

long recognized in the operations research community that the greatest learning and 

discovery takes place during this phase of model-building (Simon, 1996, p. 13). 

Unfortunately, in the long journey from design concept to published research these early 

decisions are often long forgotten. Thus, even if the researcher did tradeoff studies about 

different activation patterns; such information is lost -- possibly existing only in the 

researcher’s research notes, documentation, or early code.  

There are several activation schemes. Initially, only synchronous or asynchronous 

activation schemes (defined below) were considered. For programming applications 

before the advent of object-oriented languages, synchronous activation was the easiest to 

develop and the most straightforward algorithm to code. To achieve it, an array of entities 

would be interrogated one at a time in a loop, where the loop index is the array element 

number. Once the decisions have been recorded, the entire population would undergo a 

simultaneous state-change. 

Many early models, and, in fact, some that are broadly accepted today, use an unstated 

and simplistic activation process. NetLogo, as noted above, uses a turn-based activation 

in which the order of agent activation is shuffled in each turn. This can be changed in 

NetLogo, but it requires intentional modification of the code. Moreover, the default 

activation process has changed as NetLogo has been modified and updated since it was 

first deployed in 1999. Most important, however, is that the documentation of the 

NetLogo model library – those models submitted to the NetLogo sponsor by researchers 
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across the domains – shows that most model builders do not explore different activation 

schemes. In fact, it is most likely that a NetLogo builder is unaware that he or she has 

chosen a specific activation scheme by using the command structure of the NetLogo 

program. 

Activation, sometimes referred to as ‘updating’, was identified as early as 1993 as an 

important determinant of model behavior and emergent patterns. A 1992 article on 

“Evolutionary Games and Spatial Chaos” showed that elaborate patterns emerged in an 

agent-based model where the agents played the Prisoner’s Dilemma (PD) game with one 

another on a two-dimensional grid (Nowak & May, 1992). The agent’s score was 

calculated based on the results of play with each of the other agents in their Von 

Neumann (eight-cell) neighborhood. The agents would choose the strategy of the 

neighbor with the highest score. This last feature led to an “evolutionary” process in 

strategy selection. Depending on the payoff table, the authors were able to either create 

stable patterns of interlaced networks or a constantly-changing kaleidoscope that was not 

quite chaos but never reached equilibrium.  
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Figure 1. NetLogo Replication of Prisoners' Dilemma Models 

 

But, a year later, researchers Huberman and Glance noticed that this elaborate pattern 

depended on exactly how the agents were programmed. Nowak and May had established 

a turn-based algorithm (Huberman & Glance, 1993). All the agents in figure 1 chose their 

strategies at the same time, based on the strategies and resulting scores of their neighbors 

on the previous turn. This is deemed ‘synchronous’ activation. If the agents were 

assigned to select and execute their strategies one-at-a-time and at random 

(‘asynchronous’ activation), the elaborate patterns disappeared. Of note, in synchronous 

activation, the ‘landscape’ is not adjusted until all of the agents have rendered their PD 

decision (cooperate or defect). Their selections therefore are set aside or placed in a 

‘buffer’ until the end of the turn. For that reason, synchronous is sometimes called 

‘buffered’.  

Left, the results from a payoff table that favors ‘cooperators’ (blue). These results are 
stable. On the right is a snapshot of a constantly evolving landscape of agent strategies when 

‘defect’ (red) becomes slightly more favorable. 
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In 2001, Axtell identified a robust classification scheme for the different activation 

processes (R. Axtell, 2001). He began with a subtle redefinition of asynchronous 

activation processes. Axtell notes that very few natural systems exhibit synchronous 

processes. But, even in asynchronous activation, where agents update completely one at a 

time, the question of order must still be delineated. Thus, Axtell goes on to define 

uniform and random types of asynchronous processes. In uniform processes, agents are 

activated exactly once per turn, but their order is randomized (shuffled). In random 

activation, agents have equal probabilities of being activated in a turn and they can be 

activated more than once per turn. A further complication is mentioned in the Axtell 

paper (but not given a specific name), whereby agents can be activated with different 

probabilities.  

The Axtell paper did not explore, however, the boundary where the patterned behavior 

observed by Nowak and May gives way to the pattern breakdown observed by Huberman 

and Glance. In Axtell’s scheme, there are three different conditions for homogeneous 

activation rules. This would mean there are two ‘boundaries’ among the three rules. 

These are the boundaries between synchronous (simultaneous) and asynchronous-

uniform (turn-based, shuffled), and between asynchronous-uniform (turn-based, shuffled) 

and asynchronous-random (no turns, agents sampled with replacement). Huberman and 

Glance note that the behavior difference occurs across the second boundary, the 

asynchronous uniform-random boundary. Of note, in my replications of the Prisoners’ 

Dilemma model described below, I was able to validate that this is exactly where the 

departure occurs. 
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An additional option is available from the design of simulation systems. The above 

activation schemes are all part of a discrete event simulation design method known as 

‘event-driven’. An alternative design would be ‘time-driven’ system in which activation 

times are established (using one of a variety of methods), and added to an event table. 

The most straightforward method would be a Poisson activation process in which agents 

have activation times taken as arrival times from an exponential distribution with the 

arrival rate parameter, λ. In simulation design the exponential interarrival times for 

agents’ activation are generated by the equation 
log( )

i

U
t


  where U is a uniformly 

distributed random variable in the interval (0, 1).  It is deemed Poisson because the 

number of activations in a given period (or ‘turn’) is a discrete Poisson random variable. 

Homogeneous activation methods would have all agents share the same value of λ. Of 

note, however, is the fact that homogeneous Poisson activation (all agents have the same 

λ) will deliver an activation sequence that is just as random as Axtell’s random activation 

pattern. Turn length, however, would be defined in terms of the clock in a Poisson 

activation process and would not be uniform. This asymmetry can be minimized by 

renormalizing the lambdas for all the agents in such a way that the average lambda was 

1.0. In that way, a Poisson activation scheme would deliver about one population’s worth 

of activations per turn. (In the event-driven activation schemes, a turn is typically defined 

as N activations, where N is the total number of agents.)  I will use this renormalization 

process throughout this research as it allows side-by-side comparisons of Poisson 

activation with the other activation schemes.  
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The primary motivation for introducing the increased model complexity for Poisson 

activation (that is, moving from an event-driven to a clock-driven model), is the ability to 

vary the agents rate of activation. At least one researcher (Fernández-Gracia, Eguíluz, & 

San Miguel, 2011) has noted that varying activation rates based on the current state of the 

agent, a style of activation called endogenous activation, can provide different model 

behavior where all the other schemes do not.  Poisson activation will allow the 

introduction of agent heterogeneity, which has deep motivation in observations in the real 

world.  

Structure	of	the	Paper	

This dissertation will answer the question of the impact of various activation schemes 

on the outcome of a number of important models. First, a literature review will present 

the twenty-year evolution of various expectations and beliefs – far too disparate to be 

called a body of theory – about activation. The literature research will show that  

 Many believe activation to be unimportant and ignore it. 

 Those who explore activation have done so on abstract models. 

 Those who call for more standardization of agent-based models ignore 

activation in their standard-building. 

 Generally the more policy-centric or consequential models do not explore 

activation, and many make no mention of it. 

 The recent discovery of endogenous activation opens new possibilities in 

model design 
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After this, the methodology will be discussed. In short, three models in three different 

domains were selected, and the methodology will discuss the motivation for this 

selection. The three models were examined as “cases”, and several activation schemes 

were explored. Conclusions for each individual case are presented and the overall 

conclusions follow the final case. The contributions are documented in the overall 

conclusions. Finally, a section describes the numerous future research paths that may 

flow from these findings.  
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Literature Review 

There are three relevant threads of research and discussion that followed the early 

developments discussed above. First, along with the Axtell articles cited, there is a 

growing body of literature calling for, discussing, and –at times – proposing a systematic 

taxonomy of the agent-based modeling field. This literature review will present several of 

these articles, but it appears as if none of them propose to make activation part of the 

classification scheme. Second, there is a large and growing literature on agent-based 

models that are purposeful. That is, many such simulations are proposed to model real-

world system for some purpose beyond studying the model itself. Many models cited in 

this literature search are intended to support decisions. As such, they are proposed to 

occupy the same niche as models and simulations in engineering and operations research. 

Others are used to support research in traditional sciences such as medicine, 

epidemiology, or economics. This section will show the rich diversity of applied agent-

based modeling research. Finally, there is a substantial literature that analyzes activation 

(or ‘updating’). Much research simply takes the Huberman and Glance result, and 

assumes that random asynchronous activation is the most realistic and appropriate. Thus, 

no side-by-side comparison is explored. A handful of articles, however, appear to focus 

directly on the differences in population behavior that result from different activation 

schemes. This analysis, however, is conducted only for the most abstract computer 



15 

simulations: cellular automata (CA) or, as in the 1990s, grids of agents playing prisoners’ 

dilemma.  

The net result of this literature survey will show that there is a great need for analytic 

work at the intersection of these three research threads:  

 Agent-based models must be systematized, but those who propose schemes for 

systematizing ABMs appear not to have considered activation as one of the 

classification boundaries 

 Applied ABMs normally choose one activation scheme, and do not explore the 

impact of varying that treatment 

 Those who explore variations in activation schemes do so only with abstract 

models. This exploration needs to be migrated into ABMs that would be used 

by non-modelers, and perhaps even non-academics. 

Calls	for	Standardization	

For more than a decade, researchers in several fields have been calling for standard 

protocols in agent-based models with the intention of making them more transparent and 

easier to replicate. The obvious motive for this is the need to show that the findings in a 

single study are universal – at least within a given domain. In addition, standardization 

will make the sharing of knowledge and insights more efficient. Researchers can also rely 

on a standard modeling paradigm to ensure their research is sufficiently broad in scope, 

and that key issues (such as a dependency on activation scheme) are not overlooked.  

A 2000 paper entitled “Towards a Standardization of Multi-Agent Systems 

Framework” is one of the earliest discussions on this topic (Flores-Mendez, 1999). It 
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came after agent-based models had been in use broadly for about a decade (three of the 

39 references came from before 1990, and the oldest is 1987). The author proposes 

specific definitions of ‘agent’ and works to differentiate terms such as ‘architectures’, 

‘frameworks’, and ‘infrastructures’. Discussion draws heavily from the artificial 

intelligence and distributed computing research communities, and summarizes the earlier 

standardization work of four computer science groups. But, despite the breadth of issues 

the author attempts to define and formalize, there is no real mention of activation or 

updating sequences. In fact, the author does not reference the literature on the subject 

(e.g. Nowak and May; Huberman and Glance). Subsequent research that emerged from 

this paper focused primarily on the computer science and artificial intelligence aspects of 

modeling, and, in general, did not link back to the main body of agent-based computing. 

Thus, despite the promising title, this paper appears to have had very little impact on the 

issue of ABM standardization.  

In a 2003 paper,  Suematshu, et. al. claimed to propose the “first attempt” to 

systematize the design of agent-based models (Suematshu, Takadama, Nawa, Shimohara, 

& Katai, 2003).  One of their most important conceptual breakthroughs is to divide the 

ABM design decisions into those that apply at the agent scale and those that would be 

considered at the global or environmental scale. Their discussion and research evaluates 

both design areas equally, and they conclude with experimentally-justified 

recommendations for designers of agent-based models. Except for a mention of activation 

as an issue when models are scaled up, however, they do not include activation among 
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those things that should be standardized or systematized. Their experimental 

investigations do not vary or even mention the activation scheme.  

In 2006, a group of 28 biologists and other life scientists proposed a “standard 

protocol for describing” agent-based models (Grimm et al., 2006). Their framework was 

more comprehensive than the 2003 paper, and undoubtedly benefitted from the larger 

number of models. They first break down model design issues into three descriptive 

areas: overview, design concepts, and details – the ‘ODD’ framework. These are further 

subdivided into concept areas. In the overview of each ABM, the authors propose a 

segment on “process overview and scheduling” in which activation should be treated. 

They do not use the term ‘activation’. In fact, the idea is further deconstructed into the 

scheduling of model processes and updating agents’ state variables. The scheduling, they 

note, can be in continuous time or discrete, and the updating, which is a function of the 

scheduling, can be synchronous or asynchronous. They make no recommendations about 

examining these design choices for validity.  

Grimm, et. al. are strong advocates, however, of explicit descriptions of activation 

schemes (scheduling and updating) as ABM research is presented. And, they elaborate on 

the most effective ways to present the scheduling of agents. In this, they mention 

(briefly), the use of flow charts and pseudo-code. Each has its advantages, but they 

expect individual researchers to choose the most appropriate. They claim that flow charts 

have a weakness in which they must ‘correspond literally to the flow processes of the 

model’ – with the potential of reducing clarity rather than improving it. More elaboration 
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of this problem would help if the aim is to get all researchers on the same page. It is 

noteworthy, however, that these authors seem to encourage more close examination of 

the different ways to present activation than of the different ways to implement 

activation. Still, of all the standardization protocol proposals, this has the most explicit 

and detailed discussion of the concept of activation.  

The most important aspect of the Grimm, et. al. article is its goal of facilitating 

replication in model-building. At the outset, the 28 authors state the purpose of 

developing protocols and a standard framework for model description is to enable 

subsequent researchers to extend investigations on different programming platforms 

(operating systems and modeling languages). The need for replication is so great that, in 

2010, the European Social Simulation Association announced (in conjunction with 

Volterra Consulting) an annual prize of 500 Euros for the best example of rebuilding a 

published model with different technology. Very little has been written about this since 

2010, however, and subsequent winners have not been announced on the Volterra 

Consulting website. 

No proposal for ABM standardization has been widely accepted, even within a single 

discipline. The ODD framework discussed above probably has the largest following. In 

Google Scholar, 622 citations refer to the original paper and mention ODD. It is a small 

number, however, when compared with the over 40,000 articles in Google scholar since 

2008 that mention the phrase “agent-based model”.  
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This review of the standardization literature, while certainly not exhaustive, 

demonstrates that it treats the activation question very lightly. And, where it does discuss 

updating or activation, it does not recommend a robust subdivision of the set, nor does it 

create well-defined terms and common practices. Thus, while standardization and 

replication are recognized by numerous researchers as valuable elements in building a 

community of practice, a literature review shows that activation – a key factor in model 

building – is not treated explicitly.  

The	Growth	in	Applied	Agent‐Based	Modeling	

Since the early efforts, the applications of agent-based models have exploded. In part 

this has been due to the close connection between agent-based computing concepts and 

modern object-oriented programming languages. The OOP concepts of inheritance and 

encapsulation are excellent tools in designing agent-based models. In fact, the two are so 

intertwined that it is likely that the programming design patterns form the basis for the 

other. 

For whatever reason, agent-based modeling research literature spans a wide range of 

disciplines. There are three international professional societies dedicated to the 

computational social sciences. In Europe, the European Social Science Association holds 

an annual conference and publishes the online Journal of Artificial Societies. Its North 

American counterpart is the North American Association for Computational, Social, and 

Organizational Sciences. NAACSOS began as a series of workshops offered by the 

Institute for Operations Research and the Management Sciences. NAASCOS publishes a 
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journal, Computational and Mathematical Organization Theory, is published four times a 

year. The Asian counterpart is the Pacific-Asian Association for Agent-based Approach 

in Social System Sciences. All three organizations convened at the Second World 

Congress at George Mason University in July, 2008.  

One of the most prominent applications has been in the field of epidemiology. A 2005 

article in Scientific American (Barrett, Eubank, & Smith, 2005) described an agent-based 

model approach to generating inoculation policy during a hypothetical smallpox 

epidemic. What’s more, this article demonstrates several of the key reasons why agent-

based models provide analytic capabilities that are not available in traditional 

simulations. Traditional simulations of epidemics have been based on differential 

equation models which have as an assumption (normally unstated) that each individual 

has an equal likelihood of infecting every other individual. This allows for an elegant 

mathematical model of disease spread, which has been well established and accepted in 

the field. In fact, epidemiologists capture the virulence of a disease with the 

“reproductive number”, the average number of individuals infected by a single 

contagious person or site.  

But such an approach misses many real-world issues. Individuals are not equally 

susceptible to being infected, and infectious individuals do not spread the disease at equal 

rates. The heterogeneity of the environment, the connectedness of individuals, the 

incubation period and the period of infectiousness all differ from individual to individual. 

There had been a growing desire to evaluate the impact of these and other parameters on 
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the spread of disease. More importantly, models of disease spread are used to determine 

appropriate government policy. But, the policy recommendations from a differential-

equation approach to epidemic modeling may differ from those of agent-based modeling.  

In the Scientific American article, the authors used the computing power resident at 

Los Alamos National Laboratory to substantially increase the scale of an agent-based 

simulation. They worked with an existing transportation model, TRANSIMS, to create a 

simulation of movement and interaction of a simulated city, Portland, OR. Prior to this, 

agent-based models of disease spread were only able to deal with problems of smaller 

scale such as office buildings or schools. EPISIMS, the epidemic modeling of 

TRANSIMS, also created a social network that imitated the connectedness of individuals 

in a population.  

Axtell has used an agent-based model to help develop a “theory of the firm”, which 

explains, among other things, why salaries increase by 10% with every tenfold increase 

in firm size (R. Axtell, 1999). Traditional economic theory dictates that larger firms 

should pay less because employment there is less risky. This phenomenon is known as 

‘local increasing returns.’ Axtell’s model consisted of agents interacting in a non-spatial 

economy. They may join firms or leave firms. Each agent has a certain productivity 

factor (small values indicate ‘lazy’ agents). And, each firm produces based on the overall 

productivity of the agents in the firm. Agents will leave a firm when they assess that their 

reward is insufficient in relation to what they might expect elsewhere.  
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There are other important results that cannot be obtained by traditional models. These 

include the distribution of firm sizes in an economy. In a real economy, firm size is 

power law distributed, with a scaling constant of approximately two (Acs & Audretsch, 

1990; R. L. Axtell, 2001). Thus, firms of size 500 are about four times as common as 

firms of size 1000. Axtell’s data, when analyzed on a log-log scale, fits an ordinary least 

squares estimate of the power law at k = 2.28. (R2 = 0.99). No macroeconomic model has 

been able to achieve results that are power-law distributed, much less that match the 

actual shaping constant.  

Another key example has been in the analysis and even prediction of crime behavior 

and interventions. A recent compilation of this research, Artificial Crime Analysis 

Systems: Using Computer Simulations and Geographic Information Systems, describes 

the generation of crime patterns that match real-world patterns using agent-based models 

(Liu, 2008). The objective is to identify hidden processes that cause specific types of 

criminal behavior. These models have been used to develop patrol patterns to optimize 

the deterrence of crime. Some researchers have even adopted the lessons learned from 

crime pattern analysis (but not the simulations that helped develop them) to understand 

patterns of insurgent activity in Iraq (Townsley, Johnson, & Ratcliffe, 2008).  

Agent-based models have been used to analyze the adoption of new ideas and 

products. This has been extensively used by marketing analysts. Researchers, for 

example, have used agent-based models to simulate the efficiency of different 

promotional strategies that support the launch of a new product (Delre, Jager, Bijmolt, & 
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Janssen, 2007). The authors use diffusion theory, analyzed using agent-based models, to 

help identify the optimal target groups and optimal timing for different types of products. 

They conclude with recommendations about the proper timing for the employment of a 

mass market campaign, and discuss the trade space for targeting large group clusters 

versus a broad seeding of the overall population (strategies they refer to as “throwing 

rocks” and “throwing gravel”.) This article is typical of many in the literature. Not only is 

there no citation as to the type of activation used in the model, there is no indication of 

what language or environment it was coded in. Thus, it would be impossible to replicate 

these results based on the model (without further information from the authors).  

Changes to the rules of trading systems have been evaluated by agent-based models, 

including auctions and even the stock market. The most prominent example of this was 

the analysis undertaken by NASDAQ on the advent of decimalization. In 1998, 

NASDAQ partnered with an agent-based modeling consulting firm, Bios Group, to 

explore the impact of changes to market rules (especially changing the price tick from 

sixteenths to hundredths) (Darley & Outkin, 2007). The extensive preparatory research, 

working with data that is normally closely held – mostly because of its value to day 

traders – Bios Group was able to develop and validate an agent-based model of 

NASDAQ pricing. This model allowed them to predict a number of post-decimalization 

behaviors. They examined “parasitic” trading, or trading that takes place within the 

spread of the bid and asked price for a market-traded security. One of the questions was 

whether decimalization would reduce or increase overall investors’ wealth. Bios Group 

found that without parasites investors’ overall wealth would increase, but with parasites 
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the effect would be the opposite: the overall wealth of investors would go down.  Agent-

based model analysis allowed them to examine the explanations for these results, and to 

suggest ways to mitigate these and other problems.  

Despite the widely accepted success of the NASDAQ model, and the subsequent use 

of agent-based models in many investment planning processes, the question of agent 

activation was left unspecified in published model descriptions. In Darley and Outkin’s 

appendix, “A.6 Basic Description of Object Simulation Framework”, there is an 

abbreviated discussion of the object classes involved in the model. Activation would be 

defined in the actual methods and design patterns in the model, details that were not 

published. It might be suggested that providing too many model details would expose 

proprietary design details. Merely knowing the activation pattern, however, does not 

allow an imitator to replicate the code of a model. Conversely, without published details 

of agent activation, the research model is more like a “black box”. Subsequent 

researchers would be prevented from attempting to replicate the published results or to 

explore the reasons for different results.  

In anthropology, agent-based models have been combined with climatological data to 

help explain the rise and fall of small civilizations – in particular, the Anasazi tribes of 

the US Four Corners region (J. M. Epstein, 2006, pp. 88–89). A working group of Santa 

Fe Institute researchers, originally tasked with guiding modern development toward more 

sustainable processes, observed similarities with their Sugarscape ‘artificial society’ 

models and the growth and disappearance of the Anasazi culture in the period AD 800 to 
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AD 1350.  They deemed their project the ‘1050 project’, a play on words that referred to 

their original sustainable development project, the ‘2050 project’.  

The 1050 researchers discovered that there was significant data on the Anasazi, 

especially on the yearly changes in population. In addition, they discovered substantial 

data on climate, much of it from dendrochronology (the science of studying tree rings). 

After an extended process of model design and redesign, the 1050 team was able to 

generate results that mimicked the historical Anasazi demographics. They published 

these results in three papers (others were to follow) that have received substantial 

acclaim. To date the 1050 project forms one of the most prominent and compelling cases 

for the use of agent-based models of any application.  

But, even in this, the seminal achievement of the early decades of generative social 

science, the details of the models in the published works are obscure. It would be nearly 

impossible to replicate the models from the published literature (certainly not from the 

updated research Epstein presents in his 2006 book). And, of course, the authors did not 

state for future researchers what form of activation they used in the successful model, nor 

did they say whether they experimented with different activation schemes.  

Modeling and simulation have been long accepted tools of military modelers. At the 

campaign level, however, much of the simulation activity has been focused on modeling 

traditional military combat – the analysis of force-on-force combat (Loerch & Rainey, 

2007; Maxwell, 2000; Steeb, 2004). There is a rich literature on such modeling, 

sometimes called ‘attrition modeling’ or ‘Lanchesterian’ because it is derived from an 
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early treatment of this process by F. W. Lanchester in 1914. Lanchester treated the 

change in two opposing military forces as a set of differential equations. These equations 

can be solved to determine the winner and loser, the relative casualty rates, the amount of 

time before the battle is determined and other parameters. This research formed the basis 

for extensive work in military operations research.  

Such combat models, however, have limited applicability in many elements of 

military. The Global War on Terror is just such a conflict that defies analysis by 

Lanchestrian models. Terrorists in Iraq, for example, are not an organized force that can 

be defeated through attrition. They are often analyzed as a loosely-connected set of self-

organizing networks that share resources, expertise, and personnel. There are no 

command centers and there is no hierarchy. Models that depend on these features are 

inadequate for analysis. This problem becomes even more acute because the military 

depends heavily on such modeling as a tool for evaluating potential acquisitions, new 

courses of action, or proposed restructuring and reorganizing of forces.  

There is another motivation to move beyond attrition modeling: the influence of 

civilians on military outcomes. In an inspiring dissertation, Yuna Wong has examined a 

wide range of US-involved military conflicts in the post-Cold War era to determine the 

impact of civilians on the course of military operations (Wong, 2006). Dr. Wong clearly 

demonstrates that the civil population, while disorganized, heterogeneous, and 

purposeless, can influence events in ways that are far beyond the vision of military 
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models. Moreover, to ignore the impact of civilian actions and attitudes is to invite 

mission failure or other high-impact undesirable outcomes.  

As noted in the introduction, instances of analytic inadequacy and failure can become 

fertile ground for complexity theory and agent-based models. Dr. Wong, in fact, 

examines several such models in her dissertation. The two current conflicts, Operation 

Iraqi Freedom and Operation Enduring Freedom (Afghanistan), are laden with all the 

challenges of a complex adaptive system: 

At least one strategist has observed that the insurgency we face is a self-organizing 

network that does not always have a clear mission or strategic plan (Kilcullen, 2005). 

This means that, to defeat the insurgency we must be careful not to mistake it for 

something it is not – an admonition that Kilcullen draws directly from Clausewitz in his 

first paragraph. Thus, the insurgency that we face in the Global War on Terror is unlike 

the unitary and localized (at least within one country) adversaries in past conflicts. While 

classical counterinsurgency analysis uses systems theory, this is probably not a good tool 

for understanding the new jihadi threat.  

Kilcullen argues aggressively that complexity and complex adaptive systems theory 

should be used to understand insurgency. In fact, he insists that the ‘organic’ theory of 

insurgency is not merely a metaphor, but that insurgencies operate as organic systems. In 

his development of the analytical construct, Kilcullen notes that in modeling insurgent 

networks, understanding, characterizing, and interdicting links is more important than 

analyzing nodes.  
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Kilcullen stops short of recommending the use of agent-based models to implement 

this analytic process, but the link between complex adaptive systems and agent-based 

models was sufficiently strong that the US Department of Defense commissioned such a 

model to implement his ideas. It was sponsored by the Joint IED Defeat Organization 

(JIEDDO) and conducted by the MITRE Corporation. Version 1.0 of the model was 

developed to analyze the conflict in Iraq, and version 2.0 for Afghanistan (Henscheid et 

al., 2010). 

Agent-based model developers from academia have also attempted to model 

insurgencies or civil unrest. An early and often-quoted example was developed by 

Epstein (J. M. Epstein, 2002). Epstein’s model examined the impact of government 

policy – in particular the deployment of police and the length of detention – on different 

kinds of civil violence. The model observed a number of different emergent behaviors, 

including the existence of deceptive behavior for insurgents in the vicinity of police. The 

Epstein article also provides enough information to attempt a replication of his results 

(although it requires some unpublished knowledge of which of his many cases were 

chosen to produce his graphical results).  

Epstein’s model demonstrates many of the contributions to this field can be examined 

in a generative model. For example, the US military’s counterinsurgency guidebook 

(United States Department of Defense, 2007) provides planning guidelines for the force 

levels necessary to ensure victory in a counterinsurgency. The manual first notes that, 

rather than measuring troop ratios to the number of insurgents, it is more appropriate to 
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measure the ratio to inhabitants. Moreover, the manual declares that 20 counterinsurgents 

per 1000 residents is the minimum necessary to suppress an insurgency. The Epstein 

model is uniquely well-designed to test these guidelines, determine their sensitivity to 

other factors, and evaluate the parameters (government legitimacy and length of jail term, 

for example) under which these guidelines are valid.  

A slightly different approach was suggested by Carley (2006). Envisioning an 

insurgency as a self-organizing network, Carley proposed the creation of a multi-agent 

modeling tool that would help understand the network’s dynamism and test methods of 

inhibiting its adaptation. After discussing the difficulties imposed by the covert nature of 

insurgent networks, Carley suggests that a network simulator – a synthetic ‘red team’ – 

might help to understand the impact of different government interventions. Moreover, her 

research team has created a modeling tool that can be used in this endeavor. It is, of 

course, agent-based. 

Networks can also be analyzed by agent-based models as part of a counterinsurgency 

campaign. First, however, an accurate understanding of the underlying target network 

must be developed. One tool that has been used to achieve information about covert 

networks is the wiretap. Tsvetovat and Carley (2007) examined the types of errors that 

would be generated when a wiretap-based sampling procedure (a so-called ‘snowball 

sampling’ procedure) is used to map a network. To synthesize the actual network – the 

‘ground truth’ – against which this sampling procedure would be measured, Tsvetovat 

and Carley used an agent-based model, NetWatch.  
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A more aggressive approach to countering terrorist networks was developed by 

Argonne National Laboratory. Deemed NetBreaker, the model simulates the formation of 

covert networks and allows for experimentation with methods that might prevent or slow 

the genesis of the insurgent networks (North & Macal, 2005). The model allows the 

analyst to determine the capacity of the (synthetic) networks to learn, earn and spend 

money, and develop and emplace weapons. It further allows the exploration of the impact 

of key individuals on these performance parameters, identifying which types of networks 

are vulnerable to ‘reshaping’ activities and which are not.  

Agent-based models have been used to evaluate the impact of extraneous factors on 

the formation and evolution of extremist groups. For example, Butler and Bryson built an 

agent-based model to observe the impact of local opinion exchange and the polarizing 

effect of mass media on small extremist groups (Butler & Bryson, 2007). They also 

examined the impact of policing, and of high turnover in societal membership, as would 

be observed near a university.  

Economists have been long troubled with an emergent pattern called the “tragedy of 

the commons”. This arises under systems of self-government where individuals will over-

use a resource that is a common good. Developing effective policies to interdict this 

emergent behavior, and testing these policies, has been the subject of a number of agent-

based modeling efforts (Schuster, 2005). The actions of individual agents who behave 

with ‘bounded rationality’ can replicate the problem. Moreover, this problem has a much 

wider application than just sharing of common land in a village. The tragedy of the 
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commons appears often as challenge for economic policy and has been described as a 

problem for which there is no technical solution (Hardin, 1968).  

Agent-based modeling was recently helpful in evaluating policies to interdict global 

warming. An agent-based model helped to formulate more effective interventions in 

Indonesia to limit deforestation. Numerous actors with a broad spectrum of motivations 

were modeled to determine the expected outcomes of an array of policy choices. 

(Purnomo, Suyamto, Akiefnawati, Abdullah, & Harini, 2011).  

Another ‘niche’ that traditional models have a hard time simulating is stock market 

behavior. In particular, rational actor models do not replicate the behavior of stock 

markets. Stock markets often experience ‘bubbles’ and ‘crashes’ that are caused more by 

the emotion of traders than by rational choices. In one example, an agent based model of 

a stock market imitated the different stock-trading strategies (Lux, 1998). These would 

include ‘chartist’ strategies (where traders make decision solely on the price activity of a 

stock) and ‘fundamentalist’ strategies (where traders examine the non-market parameters 

represented by the actual corporation). Lux’s agent-based model was able to replicate 

much of the real-world behavior. He reported that his agents experienced waves of 

pessimism and optimism, his ‘chartist’ agents would chase trends, all agents would 

switch strategies (resulting in high volatility), returns showed a power-law (fat-tailed or 

leptokurtotic) distribution.  

Agent-based models have been used to examine a closely-related phenomenon in 

markets, clustered volatility.  Clustered volatility is a widely-observed trend in market 
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prices across a broad range of markets (Kuhlmann, 2006). It does not appear to matter 

which type of market (Moss reports results for alcoholic beverages, tea, biscuits, and 

shampoo), the phenomenon is apparent (Moss, 2002). A number of agent-based models 

have been built that replicate this process, including models using the NetLogo 

environment. 

In every one of the cases of ABM application proposed above – many of them in use 

by decision-makers – the activation scheme is not clearly described in the published 

description of the model. Some models such as Axtell’s firm-size model provide 

pseudocode to present an elaboration of some design patterns. Epstein’s model of civil 

unrest clearly defines the agent’s characteristics.  

Moreover, there appears to be no evidence that ABM designers explore different 

activation schemes as they make the critical early design choices. Page (1997) noted that 

economic models’ activation processes can be redesigned to change the model results. 

This is what Page deems the irony of robustness in that agent based models can be 

adjusted to ‘dock’ with any reality. Page cites agent activation as a key design pattern that 

would allow for this ‘robustness’, but notes that researchers rarely discuss the activation 

scheme they have chosen. At the same time, Page suggests that sequential activation 

schemes, which appear (in context) to include both synchronous and asynchronous, may 

not be adequate to describe many economic situations.  

Page (1997) is also one of the few researchers who have explored activation processes 

that depend on the actual state of the agents.  He created two different cellular automata 
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(CA) models – the ‘game of life’ and a game involving agent conformity. He also 

examined three different activation schemes: synchronous, random asynchronous and 

incentive-based asynchronous. He observed that there were a number of differences 

among the outcomes. In both his CA models, Page found that incentive-based 

asynchronous updating create outcomes that were more sensitive to initial conditions than 

synchronous or random asynchronous schemes. In one of his models, the conformity 

model, incentive-based asynchronous updated led to global steady states more often than 

other activation schemes. This difference was not observed in the case of the ‘game of 

life’ CA model.  

Page concluded in 1997 that activation schemes are both important and overlooked by 

researchers. He suggested that other results, such as Schelling’s segregation model, be 

revisited using the incentive-based activation schemes. The differences he observed after 

making subtle changes in the model algorithm suggests to him that researchers should be 

careful drawing inferences about social phenomena from these models. Moreover, he 

suggests that some of the effects induced by incentive-based activation might be 

misinterpreted as neighborhood economic effects (Scott E. Page, 1997, p. 85). 

To what extent did the agent-based model development community act on the 

recommendations inherent in Page’s research? According to this literature review, there 

is very little to indicate Dr. Page’s challenge was accepted. Moreover, personal 

conversation by this author with analysts both in the US and Europe has shown that there 
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does not appear to be an active community examining the different design patterns for 

agent-based models.  

The explorations have continued since the beginning of this research project. Recently 

published articles that received multiple (greater than five) citations in their first year of 

publication include studies on UK demographics(Wu & Birkin, 2012); cancer spread 

(Wang, Bordas, Sagotsky, & Deisboeck, 2012); the US housing market loan crisis 

(Geanakoplos et al., 2012); and the reliability of the scientific peer-review process 

(Squazzoni & Gandelli, 2012). None of these papers include an investigation of 

activation, nor do the authors indicate how they activate their agents.  

 

Explorations	of	Activation	

In order to demonstrate that this research and dissertation will explore unexamined 

questions in complexity research and the body of literature on agent-based models, I 

reviewed the literature that referenced the original articles on the importance of 

activation. According to the search tool, Web of Science ®, 201 articles cited the 

Huberman and Glance article. I have reviewed the body of this research. I have also 

reviewed the 138 articles written since 2008 that Google Scholar links to Huberman and 

Glance. In addition, I have examined the abstracts of the 27 articles written since 2008 

that have referenced the 2000 Axtell article on Google Scholar. Together, these articles 

(many of which are included multiple times) form the body of activation literature. It is 

assumed that, if a researcher has not cited Huberman and Glance or Axtell, the chances 
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are that this researcher has chosen to investigate issues outside the topic of this 

dissertation. 

This review showed important insights from a small number of articles, revealing 

several research ‘threads’ on activation. Most of the literature, however, makes only 

passing reference to the activation question. Among the researchers that provide a more 

robust treatment of the subject, most have conducted no comparison studies. Many 

researchers select one activation scheme and report that choice. The most common 

activation scheme is what was earlier deemed asynchronous – random. In fact, one 

researcher coins the acronym RAU for ‘random, asynchronous updating’ (Fernández-

Gracia et al., 2011). It is noteworthy, however, that no common lexicon has emerged 

across the domains of agent-based modelers.  

Curiously, a small subset of authors in the activation literature, upon reviewing the 

same studies that are cited here, have concluded that – at least for their purposes – 

activation does not make a difference. In 2009, Roca, et. al. (Roca, Cuesta, & Sánchez, 

2009) claimed to have conducted “a systematic and exhaustive simulation” of the space 

of  2 X 2 games, networks, and update rules. They claim that the Huberman and Glance 

result represented an anomaly, and that, for the vast majority of cases the choice of 

synchronous vs. asynchronous made no difference.  At about the same time, Lozano et. 

al. claimed that asynchronous activation was too difficult to implement in evolutionary 

games, and varied based on the diverse choices of the individual researcher (Lozano, 

Arenas, & Sánchez, 2008). They use this to rationalize their decision to evaluate only 
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synchronous activation in their research. Follow-on researchers have used these findings 

as justification to ignore the activation question as well. A 2011 study of evolutionary 

games on networks (Buesser, Peña, Pestelacci, & Tomassini, 2011), for example, claim 

that the literature shows activation “does not change the main qualitative aspects of the 

dynamics of games on networks.” They chose, therefore, to use synchronous activation 

because of its simplicity in coding.  

These articles, however, represent a minor strain in an otherwise rich ecosystem of 

ABM research that examines activation in a wide range of contexts across many domains 

– including 2 X 2 PD games – and finds that activation choices drive important 

differences in model results. Researchers working with PD games at the same time as 

Roca, et. al. examined not just synchronous vs. asynchronous activation, but the full 

spectrum of asynchronous updating schemes described by Axtell (uniform, random, and 

Poisson) (Newth & Cornforth, 2009). They found substantial differences that have 

important implications for modeling efforts across the domains. Wardil and DiSilva  also 

showed differences in a structured PD game model when activation was varied (Wardil & 

da Silva, 2010). Yamauchi, et. al. conducted a full factorial analysis of synchronous vs. 

asynchronous update dynamics across a wide range of other ABM design parameters 

(number of agents, average degree, update rules, and network type) for a PD grid 

(Yamauchi, Tanimoto, & Hagishima, 2010). They showed that activation ("update 

dynamics") to be one of the most influential factors in overall results. They recommended 

researchers choose asynchronous random updating. 
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Researchers working in similar domains (game theory) also report that activation 

makes a difference. Mosetti, et. al. showed important differences when they varied 

synchronicity in the Minority Game (Mosetti, Challet, & Solomon, 2009).  

And, in domains beyond game theory researchers have also demonstrated the 

importance of varying activation schemes. Shrimali et al. (2007) examined models of 

threshold-activated coupling on a lattice of chaotic elements. (As a motivation, they cite a 

wide range of physical systems.) They demonstrate the intriguing result that 

asynchronous activation (either uniform or random) produces more order in the emergent 

patterns than synchronous activation.  A study by Caron-Lormier et al. (2008) compares 

synchronous and asynchronous-random activation in the context of a wide range of 

parameters in an abstract biological agent-based model. They show that the differences in 

results from varying activation become more pronounced as the population density 

increases or as the interactions become more complex.  

Probably the most rigorous examination of the influence of activation on outcomes in 

recent literature has come from those working with cellular automata (CA). CA models 

were originally conceived as discrete spatial grids with synchronous updating. But, if the 

latter condition is relaxed, a rich texture of results is made available to researchers. In 

2010 Baetens et al. (2012) studied varying activation in CA and evaluating the Lyupanov 

exponent in the output to quantify the different results. They explored much more than 

the synchronous-asynchronous differences. They examined four different asynchronous 

update methods, which they term random-independent, random-order, cyclic-order, and 
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exponential clock. (These appear to be analogous to the three Axtell asynchronous 

methods: uniform, random, and Poisson.) Using the Lyupanov exponent as an output 

metric, they show that there is substantial difference between synchronous and 

asynchronous, but little differences among the asynchronous methods.  

The most important insight from the literature research came from a recent paper that 

varied the update rules in an agent-based model of voters (Fernández-Gracia et al., 2011). 

They showed that an important difference in outcome is generated when the activation 

rate is varied based on the state of the agent. They distinguish between update rules that 

are imposed by the system (or the model, or the clock), i.e. exogenous update rules, and 

those that are generated by the agent itself (endogenous). For a specific endogenous rule, 

they established that the update probability becomes a function of the time spent since the 

last change of state of the agent. They examine these two methods in the model of voters’ 

opinions across a wide range of network topologies and model dynamics. They conclude 

that endogenous vs. exogenous activation makes a difference in some cases, and does not 

in others. But, the differences are significant enough to motivate further exploration of 

this additional activation scheme. 

The common thread for the in-depth activation research in this body of literature is its 

focus on abstract models (e.g. Cellular Automata, Prisoners Dilemma, and other stylized 

games). The previous section demonstrated that there is a broad spectrum of applied 

agent-based models in which there is little or no examination of the impact of activation. 
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This demonstrates that there is an important gap to be filled. This dissertation will make a 

contribution to the advancement of modeling science to fill this gap. 

Exploring	Agent	Activation	Processes	in	Policy‐relevant	Models	

The Axtell paper called for expansion of agent activation research into more natural 

(i.e. random) patterns of activation. What’s more, this research needs to help develop a 

better taxonomy of activation schemes. And that taxonomy needs to be based on a 

rational classification scheme. Plato implores us to ‘carve nature at its joints’(Plato, n.d., 

sec. 265e). Here, it means that a series of explorations must be conducted on applied 

ABMs to determine where the boundaries are. These boundaries should form the basis for 

a set of definitions of activation schemes. The explorations should include those that have 

proven fruitful in the literature, and possibly some others. Once a clear set of definitions 

for agent activation can be identified, further research can show the impact of activation 

design decisions on model behavior under other circumstances, such as increases in scale.  

This boundary will probably be different depending on the class of agent-based model. 

Classes are not clearly defined, but models fall in a number of broad categories. They 

may use networks, or not, for example. Or, they may be geospatial (a specialized type of 

network.) Axtell analyzed only a single class of models, and did not attempt to generalize 

the results.  

The research in the third thread, which investigated the impact of varying activation 

methods on abstract models, provides a useful catalog of metrics that could be tried in 

these explorations. Some of the metrics might have to be modified, and not all may be 
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useful. It appears likely, however that this thread of the literature will be very fruitful in 

ideas as to measuring and validating differences that might appear. Moreover, if the 

metrics applied to the abstract models show no difference between activation methods, 

then we can be reasonably certain we have exhausted the set of tests that could be 

applied. This would strengthen the negative conclusion, which would likewise be 

valuable to the builders of applied ABMs.   
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Methodology 

After a more extensive survey of the spectrum of applied agent-based models 

(beginning with the candidates above), I selected a number of representative models for 

further examination. I worked on a broad spectrum of model designs, and thus examined 

the impact of activation across a diverse design space. Many models have small-scale 

counterparts in the NetLogo library, and I considered examining the impact of changing 

activation schemes in NetLogo as an important indicator that there may be promising 

results at larger scales. This was useful in Case I, but proved ineffective when I worked 

on financial models as the NetLogo library in that domain is sparse.  

I identified three ABMs that have impact—one on military affairs, one on finance, and 

one in physics (but with broad application to social system dynamics). And all three have 

implications for government policy. I examined a much larger set of potential models, 

discerned from the mature literature (such as Scientific American) or by personal contacts 

with decision-makers, scientists, and policy-makers – the user community for the ABM 

tool. Many of these may form the basis for further research. The three models selected 

here were chosen specifically because they form the basis for significant follow-on 

research or they have broad applicability:  

 The Epstein model was useful as a template for irregular warfare analysis.  
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 The Zero Intelligence Traders (ZIT) model was a replication of a 1993 study 

that had over 1100 references from follow-on researchers 

 The interacting particle system (IPS) "averaging" model is proposed to 

influence at least five social system dynamics research domains.  

Once a subset of existing models was selected, I attempted to analyze and classify the 

activation scheme the designers chose. In two cases -- the civil revolt model and the 

interacting particle IPS swap model -- this scheme was be described in the model 

documentation. In the case of the ZIT model, the activation scheme had to be deduced 

from the narrative.  The ability to replicate a model from the actual published literature – 

a common characteristic of mature branches of science such as chemistry or physics – 

was a factor in this selection process. At any rate, the taxonomy of activation schemes 

described above appeared adequate, but the code necessary to implement them in 

NetLogo or Python had to be written for this project. While it would be preferable to 

keep the software constant across the investigations, this was not possible. 

The replication process is a critical part of this research. To examine if results in 

published articles are dependent on activation schemes I must to work with the published 

research and not off-line or informal contact with the authors. Once I created replications 

as described above, I sought to investigate the impact of alternative activation schemes. 

Most models in the literature are complex, and there are a wide number of different 

modeling languages in use. Additionally, two cases were based on articles published 

some two decades ago. Thankfully, software has evolved to become much more efficient 
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and easier to code. My simulation languages, NetLogo and Python, were not available 

when these articles were published.    

NetLogo also presented some disadvantages in creating alternate activation schemes. 

Literature research indicated that.  

Once alternative schemes were created and coded, I ran models side by side to 

determine if the different activations schemes created any differences that could be 

measured with commonly acceptable statistical techniques. That answered the question of 

whether there was any difference. If a distinction in behavior exists, it was judged 

whether this would lead to different policy recommendations. This demonstrates the 

importance of selecting models that are used for more than just academic research. By 

choosing only those ABMs that influence an actual decision, it will be much easier to 

distinguish important differences from minor output anomalies. In examining the 

parameter space of these side-by-side models, I will use a design of experiments that will 

provide the most contrasts across the widest range of input variables and variable types. 

In at least two or three such models, I will conduct an analysis of the impact of different 

activation schemes in the presence of multiple nuisance and decision variables. An 

example of such an experiment on Epstein’s Revolt Model is described in the Preliminary 
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Results section. 

 

Figure 2. Civil Revolt Model Replication (in NetLogo) 

 

Design	of	Experiments	

For each of the models, I conduct a full factorial experiment to determine the 

robustness of the activation conclusion. For example, in examining convergence in the 

Case III ‘averaging’ model, I ran 100 trials at each of the activation schemes. And, the 

Case II market model experiments collected thousands of points at the published 

parameters using the full range of activation treatments.  

On a broader scale, this effort conducted observations across a range of agent-based 

models and application domains. It has focused on the question of whether different 
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policy recommendations appear in the face of different activation schemes. Even the 

mixed results (it makes a difference, but only sometimes) show that researchers need to 

discuss and evaluate activation as a key element of design. It is apparent that this sample 

is broad enough to refute the null hypothesis that activation never makes a difference.  

In the process of conducting the background research the concept of activation was 

expanded beyond the early literature concepts that included synchronous, uniform, and 

random. It was originally conceived that this project would examine only those few 

activation schemes across a larger number of domains. In reviewing the most recent 

research, however, the addition of endogenous activation increased the complexity of 

each agent-based model. At the same time, however, endogenous activation appeared to 

more reliably generate differential results. Thus, while it was originally conceived that 

the research would have to explore much more of the context of activation, such as 

determining if activation is only important in models that involve agent movement, the 

exploration of activation types themselves proved a highly fertile area for this and further 

research.   

While there were several important new discoveries, the methodology proved to be 

more than sufficient to answer the initial question: As users further develop ABMs, is 

important that they report what activation scheme they chose? Even better, however, this 

research provided ABM designers with a much broader range of activation schemes that 

could be used during the design process.  
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Verification	and	Validation	of	Results	

This project produces three versions of executable models. These purport to duplicate 

results of published models in prominent literature articles. As many of these published 

results are only exemplary, it is difficult to establish that the replication is exact in 

accordance with accepted statistical principles. But, if the qualitative behavior observed 

in the published model is replicated in the research model, this can be sufficient to claim 

the results as verified. For example, the literature may refer to an outcome as a pattern of 

pulses. All that would be necessary to verify the research code, for example, would be to 

show an output time series had a similar trend. In instances where the literature models 

show degenerate behavior – where all the agents adopt the same state, for example – it 

would be sufficient to establish that the model arrives at the same end-state.  

Results of any model of a self-organizing system could demonstrate emergent 

behavior. This would give a wide range of outcome patterns, and possibly additional 

contradictions or paradoxes. It is still necessary to ensure that these results are valid – that 

they reflect real model output and not an artifact of the random number sequence. To 

ensure this additional runs with a different random seed were used to ensure the stability 

of each significant result. A factorial design examined some of the models’ other input 

parameters was also completed. Results that did not prove useful or probative were not 

subject to a large number of runs.  

It is important to note, however, that the underlying purpose of agent-based models is 

not to drive toward a verified replication of reality. Real world complex adaptive systems 
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are normally beyond the reach of simulation methods. A real world insurgency for 

example, can only be partly represented in a model. By contrast, a real world naval battle 

can be replicated with much closer to a one-for-one concordance. To Epstein (2006, pp. i 

– ii), the actual contribution of agent-based models is the ability to explain the 

relationship between inputs and outputs in complex adaptive systems. He repeats an 

earlier claim that, in order to explain a thing, you must be able to grow it. Only when you 

have discovered the most important relationships, characteristics, and system parameters 

can you build a model that imitates the behavior of the real world. Validation, in this 

context, has little meaning and less utility. At any rate, the crucial research question for 

this dissertation is to determine if it makes a difference what path Epstein and his 

colleagues take as they grow social structures in silico. 
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Results 

Before beginning with new cases, it is important to demonstrate that the original 

discovery and exploration of activation can be replicated. NetLogo 4.0 was used to 

recreate the Nowak and May synchronous activation model, replicating all the patterns 

that were reported in the original model. 

 

Figure 3. Literature Results vs. Replication Results in Prisoners' Dilemma Model 
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First, the interlaced pattern of defection networks on a backdrop of cooperators was 

recreated (Figure 3). Nowak and May did not report what value of b (the payoff for 

defecting when your partner cooperates) that they used to create the fine-grain pattern. It 

was discovered that a rather precise value of b (1.799) generates this exact pattern, and 

small changes to b cause somewhat different results. Next, the chaos that occurs for 

values of 1.8 < b < 2.0 was replicated in the same model (not shown because of its 

dynamic character). The patterns above were initiated with an initial random distribution 

of 10% defectors.  

Nowak and May experimented with the patterns that evolved when a single defector 

‘seed’ began in the center of a field of cooperators. In starting with a central “seed”, 

Nowak and May demonstrated that the model was actually deterministic. Absent the 

random placement of agents, the evolution of strategy had no stochastic character at all. 

As Figure 4 shows, the NetLogo model can precisely replicate the Nowak and May 

central-seed pattern. 
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Figure 4. Replication of Deterministic Patterns 

 

This replication of the Nowak and May result (for which the researchers in the 1990s 

did not use any modern agent-based modeling language) demonstrates the ability of the 

modern NetLogo language to create reproducible results (an important validation result).  
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Once it was possible to replicate the 1992 demonstration of the evolution of 

cooperation, NetLogo was used to explore asynchronous activation. Huberman and 

Glance reported that they used an activation pattern they referred to as asynchronous. 

But, it is not certain whether they used an asynchronous – uniform (agents take turns, but 

the order is shuffled) or asynchronous – random (agents are selected at random from the 

population and activated). Thus, the question becomes: where is the boundary where the 

synchronous patterns break down?  

NetLogo is a scripting language that creates Java code from the higher-level NetLogo 

command set. The command that creates the agent activations in NetLogo is ‘ask’. If the 

algorithm is proceeding iteratively, each time the ‘ask’ command is reached, the agents 

are activated in random order. This is the asynchronous – uniform method referred to 

above. In order activate an agent at random, the NetLogo code is ‘ask one-of’. This will 

create an asynchronous – random activation process.  

The patterns above, where NetLogo matched the synchronous (Nowak and May) 

result, were achieved with the ‘ask’ command. Thus, they were achieved using 

asynchronous – uniform activation. The breakdown in this pattern (and devolution of all 

agent strategies to ‘defect’) was only replicated when the ‘ask one-of’ command was 

used. This shows that, contrary to the Huberman and Glance claim, it is not sufficient to 

use just any asynchronous activation scheme to get the degenerate result. If the scheme is 

uniform – if all agents take a turn – results similar to the synchronous pattern appear. In 

order to achieve a more ‘realistic’ result (the Nash equilibrium for the Prisoners’ 
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Dilemma game is ‘always defect’), it appears necessary to use the more natural 

asynchronous – random activation pattern. This is an important result, which 

demonstrates NetLogo can not only replicate a simple and well-understood model, but it 

can explore various activation methods. 

Follow-on experiments further explored the insights that could be achieved from 

NetLogo. Several different values of b for asynchronous and synchronous activation were 

evaluated. In the following depictions, the left hand pattern represents the asynchronous - 

uniform pattern (the same algorithms depicted above) and the right hand pattern is the 

asynchronous – random outcome.  

Figure 5. Synchronous and Asynchronous Patterns with b = 1.2 
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The first such exploration involved the parametric region where most of the agents 

would be expected to adopt a cooperation strategy. This is the region where b lies 

between 1.0 and 1.8. The patterns generated by the agents typically did not degenerate for 

smaller values of b. That is, at least some agents continued to exhibit each of the two 

strategies indefinitely.  

But, as b is increased, the two methods begin to diverge significantly. By the time b 

reached 1.5, the two activation methods resulted in completely different macro-scale 

patterns. The uniform activation scheme at b = 1.5 continued to display end-state 

behavior that included agents with both strategies. The interlaced networks were a finer 

grain than in the b = 1.2 case, and the progression toward the fine-grain structure that 

emerges with b = 1.799 is evident. As the figure above shows, with b = 1.2, the 

synchronous and asynchronous patterns look mostly alike.  

With b = 1.5, the synchronous result resembles a network of defectors on a 

background of cooperators. This (l) is the end-state. If asynchronous activation (r) is 

used, cooperators devolve into pockets, and eventually disappear. The result shown 

(Figure 6) is in turn 100. The end state is an all-red field of defectors. 
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The random activation scheme, however, caused a complete collapse of all 

cooperating agent patterns. The agents would evolve into smaller and smaller pockets of 

cooperators (blue), and eventually these pockets would disappear completely. This is 

much closer to the degenerate result reported by Huberman and Glance.  

These additional results confirm that Huberman and Glance used a random activation 

scheme and not a uniform scheme. Many researchers since have related the Huberman 

and Glance discovery to the asynchronicity of their activation scheme. In reality, it is not 

sufficient that agents activate asynchronously to achieve these results. In order to 

establish a different outcome scheme it is apparently necessary to eliminate the turn-

based activation process. It also argues for a precise statement of the activation process, 

 
Figure 6. Synchronous and Asynchronous Patterns with b = 1.5 
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as it was not apparent from the Huberman and Glance narrative what asynchronous 

scheme they used. 

These initial results demonstrated that NetLogo can be used to explore the impact of 

activation on qualitative behavior. This may be sufficient to motivate researchers to 

publish full details of activation. Often, agent-based models are used to prevent or induce 

macro-scale system behavior such as extinction, epidemics, or market crashes. The case 

research below will evaluate whether and when a quantitative (or statistically significant 

and scientifically testable) difference can be demonstrated in outcome behavior as 

activation is varied. The first case study, for example, shows what can be done with a 

replicated model in NetLogo.  

In examining this model with uniform (shuffled) vs. random activation, the results in 

Figure 7 were achieved. 
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Figure 7. Revolt Model Time Series - Shuffled vs. Random Activation 

 

Behavior for the two patterns appear slightly different (for the same input parameters), 

but the differences are subtle. The average number in jail is clearly lower for the random 

activation scheme (note the difference in scales). A full examination of this model will 

take an exploration across the parameters using properly designed experiments, and a 

careful choice of output statistics to determine if there are testable differences between 

the activation schemes. Further, this examination will force me to apply rigorous systems 

analysis methods to deal with start-up or run-in issues in accordance with common 

practice – another important contribution to this field.  

As part of developing a model of the labor market, three activation schemes were 

examined. The same model was evaluated with uniform activation, asynchronous – turn-

based (shuffled), and asynchronous – random (non-turn-based, sampled-with-

Shuffled Activation Random (SWR) Activation
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replacement). In preliminary results at a small scale, a wide range of results 

(unemployment rate, firm size, job-change rate, Philips Curve, etc.) are insensitive to the 

activation pattern. The results are not included in the final dissertation as the model itself 

has not become the basis for published research. While the explorations were abandoned 

and subsequent evaluations might show some differences, the early explorations of the 

labor market model show that activation may not make a significant difference in every 

model.   

Case	I:		Activation	in	a	Model	of	Civil	Revolt	

As noted earlier, the field of unconventional or irregular warfare appears to have great 

potential for agent-based models. They are especially promising tools for analysis of 

insurgencies and terrorism because of the self-organizing nature of terrorist organizations 

(Sageman, 2008). The primary research model used by JIEDDO to analyze insurgent 

emplacement networks is the COIN model, which was based on an earlier model 

published by Epstein (J. M. Epstein, 2002; Henscheid et al., 2010). It would make sense, 

therefore, in attempting to demonstrate that activation is a key element in the process of 

model replication to begin with the Epstein model. This is particularly attractive because 

Epstein had so explicitly described not only the activation process, but provided 

extensive details about all the agent parameters, the agent rule set, and the model 

behavior.  
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On	the	Choice	of	Epstein’s	Model	

Epstein (2002) proposed a model of civil unrest based on a relatively simple set of 

rules and behaviors. His model is one of the most cited in this domain, referred to by over 

290 other published articles. Many of these subsequent efforts created more complicated 

agent populations or rule sets. It is telling that these subsequent efforts are nearly all 

terminal research threads, with no complex model creating a critical mass of research 

explorations and replications. For example, one model (RebeLand), proposed eight years 

later had only a handful of references in the literature (Cioffi-Revilla & Rouleau, 2010). 

RebeLand was written in MASON, an agent-based modeling environment that depends 

heavily on Java. Thus, it has a much less forgiving learning curve (than NetLogo or 

Python), and cannot provide the programming efficiency that drives a broad user 

community.  

So it appears that the Epstein model is a form of ‘root’ model and exploring the 

Epstein model would have implications for subsequent (and future) research into civil 

violence. Not only does it spawn a US Government model (Henscheid et al., 2010), but it 

also forms the basis of numerous excursions in related domains.  

Simple	Rules	Create	Realistic	Outcomes	

Epstein begins with a theory that each individual is ‘born’ with two characteristics. 

These do not change for each individual. During the course of model runs (agent 

movement and state-changing) these inherent characteristics form the basis for 
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modification of derivative parameters based on the environment and the experience of the 

agent.  

The first characteristic is the level of hardship for the individual. As Epstein develops 

the idea, this does not appear to actually mean hardship, but more the perception of 

hardship. Agents are assigned their hardship ‘endowment’ over a random, uniform 

interval U (0, 1). Note that this is not a realistic reflection of actual hardship of 

individuals in an economy. The distribution of wealth normally follows a Pareto 

distribution, with a small percentage of individuals holding most of the wealth. Thus, in 

natural populations, far more than a half of all individuals would have below average 

wealth. If hardship were a measure of perception and not reality, however, this might be 

closer to reality. In many societies people who are satisfied with their circumstances can 

be found at all income levels.  

The second constant, intrinsic characteristic in the Epstein model is the belief in the 

legitimacy of government. In his discussion of the model, Epstein notes that this can be a 

surrogate for the level of government corruption (or perceived corruption), support of the 

people, or possibly just effectiveness. Legitimacy is similarly distributed among 

individuals as a uniform random variable, U (0, 1). Legitimacy’s random selection is 

made independently of hardship’s random selection. It may seem a bit unnatural that this 

parameter would remain fixed for an individual agent regardless of circumstances or 

history, but this is one of the simplifications that all model designers much choose.   
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Each agent would derive a value for their grievance (G) dependent on their hardship 

(H) and their sense of the government’s legitimacy (L). Epstein chose the formula: 

ܩ ൌ 1	ሺ	ܪ െ  ሻ	ܮ

This will create a distribution of grievance that grows with hardship and shrinks with 

perceived legitimacy of the regime. Epstein uses the example of the British population in 

World War II, which endured extreme privation, but remained non-rebellious because the 

belief in the legitimacy of the government was high. Corrupt governments often fail to 

survive much less amount of popular hardship.  

In addition to the citizen-agents the model included cop-agents. (Hereafter they are 

referred to as agents and cops for clarity.) Cops normally appear with much less density 

than agents, with cop population of only about five percent of agent population. Both 

cops and agents have a ‘vision’ and they are placed randomly on a 40 by 40 grid. Agents’ 

and cops’ positions are exclusive and no two can occupy the same grid location. Agents 

and cops move by selecting another grid square within their vision (including their 

current square) in which there are no other agents or cops. Agents can have two states, 

passive or active. These represent normal, peaceful behavior or violent rock-throwing 

type behavior. 

The cops’ algorithm is quite simple. They will arrest one active agent, if there is one 

within their vision, per turn and send that agent to jail.  
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Upon activation, an agent will decide to change its state based on a risk-analysis 

algorithm. Each agent is endowed with a sense of risk aversion, R, which is uniformly 

distributed by choosing an independent random variate from the interval (0, 1). Upon 

activation, the agent observes the number of cops, C, within its vision and the number of 

active agents, A. It then calculates the probability that it will be arrested as a function of 

the ratio of cops to agents: 

ܲ ൌ ݂ሺܥ ⁄ܣ ሻ 

This fraction will always be finite because an agent always counts itself as active in 

making this calculation. In order to create a realistic decay in probability as C/A drops, 

the function: 

 1 exp( )CP k A     (1) 

was chosen, where k was set such that P = 0.9 when C =1 and A = 1. This was viewed as 

a “realistic” assessment. If I’m the only rebellious agent and there’s at least one cop in 

the vicinity, it’s pretty likely that he will arrest me. (It’s not certain, because there may be 

other rebellious agents within the cop’s vision but outside of mine.) 

One anomaly has been discovered since the Epstein paper was published. In 

evaluating equation(1), Epstein inadvertently introduced a conversion of the factor C/A to 

an integer, truncating the fraction. Thus, he uses the modulus of C/A instead of the real 

number C/A. Oddly, this programming anomaly appears to be necessary to develop the 

realistic emergent behavior, the ‘punctuated equilibrium’ observed below. That is, 
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without this truncation, bursts of agent revolt do not appear. Apparently, this has not been 

documented in the original literature but it is common knowledge in the agent-based 

modeling community. It has been described to me several times, and the NetLogo design 

team has documented it in their instantiation of the civil violence model. This 

documentation is included in the NetLogo model library (Wilenski, 2004). I have, in my 

implementation of this model, included this modification as well.  

Next the agent calculates a net risk based on the probability of arrest and the risk 

aversion. This was set to be a simple product of the two variables, so that net risk, N, is 

defined as: 

ܰ ൌ ܴܲ 

With these parameters set (many of which are determined by the local environment 

and the state of other agents), an agent calculates the difference between grievance and 

net risk, or G – N. If this value exceeds some threshold T, then the agent changes to an 

active agent. If not, the agent becomes passive (or quiescent in the terminology of the 

published article). The threshold T is a system-wide variable that is constant for all 

agents. G and N are heterogeneous and dynamic. 

Jail terms are determined as part of the arrest routine. There is a global maximum jail 

term, J-Max. When an agent is sent to jail, the term is sent as a random variable in the 

interval (0, J-Max). Once the end of jail term is reached, the agent is returned to its 

original position as a passive agent. It then executes the activation algorithm above just 

like any other agent.  
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Epstein addressed the question of the validity of these input distributions (and, in fact, 

all the rules). He “makes no pretense” of basing these rules and parameters on real-world 

values, and he does not reference any actual published research on the measurements. 

Epstein’s stated goal is to determine if the emergent outcome represents “recognizable 

macroscopic revolutionary dynamics of fundamental interest.”  

Epstein's simulation, despite its simple rule set, demonstrated exactly the complex 

emergent behavior he was seeking. His model showed ‘bursts’ of violence that appear as 

localized outbreaks. In addition, the model showed that these bursts were heavily 

dependent on the jail term once arrested and the density of police officers.  

I recoded the model described by the Epstein paper in NetLogo, and observed that the 

general behavior was as described in the original article. That is, emergent behavior 

curves were demonstrated that were similar to the published curves in the Epstein model. 

Revolts appear as localized bursts of activity that occur when a large concentration of 

potential extremists (those with high grievance and who believe the government is 

illegitimate) appear in a location where there are (momentarily) few cops.  
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Figure 8. Model Visualization During a Revolt Outburst 

 

 
Figure 8 shows the NetLogo instantiation of Epstein’s model. On the left hand side the 

global parameters are shown, and they can be varied across a wide range. On the right the 

population is shown, with the color scheme as follows: passive agents are blue, active 

agents are red, jailed agents are grey, and recently released agents are yellow. Cops are 

depicted as black stars. (These mimic the color scheme shown in the referenced article 

itself.) At the moment of the snapshot, at turn 405, a revolt has burst in the northwest 

quadrant.   
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This figure also better shows the global parameters. The value of k = 2.3 in the 

probability of arrest equation is the same for all agents and was chosen in all of Epstein’s 

published runs. While it can be explored, it was not. The selection box for activation, of 

course, is unique to this instantiation of the model. Epstein used only one activation 

scheme: asynchronous “once per period, random order” (i.e. uniform).  

It is important to note that the Epstein model was chosen carefully. It is a rare instance 

in which the activation scheme is described explicitly, as well as a wide number of other 

model features and parameters. Thus, while I was successful in replicating Epstein’s 

results, replicating a model in which these parameters were not published would be much 

more challenging. Just testing all combinations of known activation schemes described 

above could potentially overwhelm the research time available. And, it is possible that 

model builders could create, unwittingly, a novel activation method unlike any other tried 

earlier. If this were undocumented, replication would be nearly impossible.  

Alternative	Activation	Schema	for	the	Civil	Revolt	Model	

According to the original article, the only activation scheme examined was uniform. 

Agents would update asynchronously, activating once per turn in random order. In the 

repeat instantiation described here, uniform activation was first examined. NetLogo 

creates straightforward commands such that agents are given a turn to move and choose 

revolt once per ‘tick’, but the order in which these agents execute these actions is 

shuffled. For this model, the details of activation are likely to be important because 
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movement and, especially, the decision to change state depend on the movement and 

states of all the agents in the vicinity.  

After the results were obtained with uniform activation, the model was re-evaluated 

using a synchronous and a random activation scheme. In the synchronous case, agents 

would move first and then sense their environment. They would count the cops and the 

active agents in their vision radius. At that point, they would make the active-passive 

decision and store it in a buffer. Once all the agents have made their decisions, the 

buffered decisions were applied. In random activation, agents chosen at random were 

moved and then they would decide whether to activate based on their new neighborhood. 

A ‘tick’ or turn was defined as complete when a full population-worth of agents had 

activated.  
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Outcome	Behavior	Metrics	

There are numerous ways to describe the outcome qualitatively, but in the original 

article (J. M. Epstein, 2002, p. 7275), Epstein has chosen a few quantitative measures: 

“waiting time” or the time between the arrivals of peaks and the height of individual 

peaks. Epstein defined a peak as an episode in which the number of ‘active’ citizens 

exceeds 50. That is, a peak begins on the turn when the active count exceeds 50 and ends 

 

Figure 9. Linear Pattern of Log Frequency Wait Times 
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when the active count falls below 50. (Note how valuable this precise description of his 

methods is in defining the quantitative outcome of his model.) 

In replicating Epstein’s behavior, I have chosen to redefine a peak threshold slightly to 

be three standard deviations above the mean value of the active population. This, of 

course, necessitates collecting the data for a complete run before the peak threshold can 

be calculated. I chose this redefinition to allow for a more general analysis of models at a 

wide range of scales. This allows us to examine, for example, model behavior if total 

agent population were twice or ten times the size of the published experiments.  

Epstein reported that the frequency distribution of wait times was exponential. He 

showed this by conducting a linear regression of the logarithm of the frequency of wait 

times in each bin of a histogram versus the wait times. He reported an r2 for this 

regression of 0.98. In our analysis of 106 runs, I achieved nearly-identical results, with an 

r2 of 0.97. The difference in the slope and y-intercept can be explained by the fact that I 

adopted a different threshold (3 σ) for the definition of a peak. That is, with a different 

threshold, there will be a slightly different number of ‘peaks’ and a different time 

between these peaks. The figure shows, however, that the statistical behavior is identical 

to the Epstein model.   

In addition to providing confidence that I have effectively replicated the original 

model, the two measures – wait time and peak height – provide valuable quantitative 

measures of model behavior. Our goal to demonstrate whether activation changed model 

behavior could be put to a statistical test with these measures.  
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Experimental	Method:	Examine	Two	Additional	Activation	Schema	

Epstein examined only uniform activation. In such a scheme all citizens and cops are 

activated once per turn, and the order in which they are activated is shuffled before they 

are activated. Activation consists of movement, arrest (in the case of cop-agents), and for 

non-cop, non-jailed citizens, deciding what state they will change to (active or non-

active). In order to make the latter decision, citizens must sense their environment, which 

consists of counting the currently active citizens and the cops within their vision.  

Needless to say, if these actions were performed in a different order, the results might 

be different. To examine this prospect, I re-arranged the model to evaluate two different 

activations schema, synchronous and random.  

In synchronous activation, all agents undergo a movement phase at the beginning of 

the turn. Citizens and cops move in this model by selecting a vacant position within their 

vision and moving to it. Once they move, citizens sense the environment (count active 

citizens and cops) and make a decision whether they will activate in the next turn. This 

decision is placed in a ‘buffer’. Of note, however, their count of active citizens only 

includes those that were active at the end of the last turn. Cops will arrest an active 

citizen once they move, but only a citizen whose state is already active.  

Random activation is conducted similar to uniform activation (agents move, decide, 

and change state once they are activated, and they are inert at all other times), but there is 

no enforcement of the once-per-turn rule. Thus, activation consists of selecting an agent 

(cop or citizen) at random and executing all the activation functions (move, then sense, 
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then act – arrest or chose new state). The random activation process eliminates the 

concept of a ‘turn’, which opens a question of how to do side-by-side comparisons with 

the two other schema. To support these comparisons, a ‘turn’ is defined as the number of 

random activations equal to one complete population of agents. This will maintain the 

same ‘scale’ when model output is compared.  

At least one researcher has used this definition of a turn in random activation 

(Fernández-Gracia et al., 2011), deeming a full turn as a “Monte Carlo update”.  The 

motivation is straightforward: on average each agent will be activated once per turn. 

About half of the agents will not be activated at all, and it will be extremely rare that an 

agent will be activated more than five times. (This is based on simple rules of Bernoulli 

trials.) As I noted in other matters, the definition of a turn in models that use random 

activation is a key specification required for replication of results and comparison of 

output. 

Behavior	Space	Explorations	

Phase	1	–	Validating	the	Activation	Impact	

The behavior of the model was explored for the three activation schema at the initial, 

“run 2” parameters from the Epstein article. These are:   

Table 1. Revolt Model Baseline Parameters 

Parameter Value Parameter Value 

Landscape 40 X 40 Torus Citizen Density 0.7 

Maximum Jail Term 30 Cop Density 0.04 

Legitimacy 0.82 Citizen Vision 7 

Arrest Probability Constant, k 2.3 Cop Vision 7 
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As the behavior was explored, some differences appeared between the activation 

schemes as observed in the waiting times and the peak heights. It was discovered that, as 

the citizen vision increases, the differences become more pronounced. As the purpose of 

this experiment was to determine if there were any differences as a result of activation, 

the slightly larger citizen vision of 8.2 was chosen for further exploration. The value 8.2 

was chosen because at this level differences in impact from changing activation became 

the most pronounced. All of the subsequent synchronous activation trials were conducted 

at the value of 8.2.  

In evaluating these sample average wait times, it became apparent that the model was 

not producing behavior consistent with the Central Limit Theorem. That is, as the sample 

size (the number of peaks) was increased, the variance of the sample average did not go 

down. This suggests that a non-parametric test is appropriate, as the population average 

and variance may be undefined.  

The appropriate non-parametric test to determine if multiple samples are generated 

from the same population is the Kurskal-Wallis test. Using a K-W test of both waiting 

times and peak heights, I can reject the null hypothesis that all three were drawn from the 

same population with a p-value of 2.8 X 10-6 and 7.6 X 10-5 respectively. This allows us 

to reject the null hypothesis that all three were drawn from the same population, but as 

there are only three samples (for each of the two output variables), I can do a pair-wise 

test, the Fisher Exact Test. The results are shown in Table 2.  
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Thus, for five out of the six pairwise comparisons, I can reject the null hypothesis that 

the samples were drawn from the same population and activation made no difference. 

Only in the uniform-synchronous comparison for revolt peak heights results are data so 

intermingled that no significance can be attached to a hypothesis.   

 

Table 2. Phase 1 Civil Revolt Model Results: p-values for Fisher Exact Test - Cop 
Density 0.04, Agent Vision 7.0 

Waiting Times Peak Heights

Comparison p-value (Fisher exact 
test) 

Comparison p-value (Fisher exact 
test) 

Random-Uniform 0.00021** Random-Uniform 4.1 x 10-5** 

Random-Synchronous 0.00011** Random-Synchronous 0.00011** 

Uniform-Synchronous 0.00011** Uniform-Synchronous 0.315 

Figure 10. Results for Civil Revolt Model Varying Agent-vision and Activation 
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Phase	2	–	Cop	Density	Explorations	

While Phase 1 demonstrated that activation would have an impact, only one variable 

was explored (agent vision). In fact, that variation was only explored in order to show 

that the differences seen at the baseline vision of seven grid squares was robust. That 

determination is critical for all potential explorations of this type of model, and represents 

a key consideration in creating replicable models.  

One of the principles I used in choosing this model, however, was its impact on policy 

recommendations. Nothing that was varied in Phase 1 would be under the control of the 

decision-makers on the government side of the equation. (These would be the ostensible 

customers for such a simulation, even though the author did not say so explicitly.) Of the 

left-hand side parameters, the ‘sliders’ that could be varied at the beginning of the 

situation, the only one that would be under the control of the on-scene commander would 

be cop density.  

The density of counter-insurgency or security forces during stability operations is a 

subject of active policy debate, and may represent one of the most important quantitative 

planning parameters for a future conflict. The Counterinsurgency Manual, Field Manual 

3-24 (United States et al., 2007, sec. 1–67) has an extended discussion of this question. In 

traditional force planning guidelines, the adequacy of forces for a particular situation has 

been historically based on force-on-force ratios. Further, the ratios necessary to maintain 

stability have long been recognized to be different than those required for combat. 

Historically it was believed that a force ratio of 15:1 for security forces to insurgents 
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would be necessarily to ensure victory. FM 3-24, however, notes that this does not appear 

to be an adequate guideline. In the revolt model, it’s easy to see why this rule of thumb 

breaks down. At any given time, the number of active insurgents can vary widely. If the 

measurement is done during a quiet period the force size recommendation would be 

much lower than if it were made during a rebellious outbreak.  

The manual goes on to suggest that a more appropriate ratio – one that is much more 

stable in its computation – is the ratio of counterinsurgency forces to the resident 

population. It suggests that security forces (which would include police) should be 

established to be about 20 to 25 per 1000 civil residents. If population were to fall below 

20 per 1000, this would be inadequate. This is backed by a rich literature of studies of a 

wide range of insurgencies (Goode, 2010). Thus, it is appropriate to observe the 

sensitivity of the two key outcome metrics – TDOA and height for the peaks of violence 

– to different values of cop density. It is also important, as in phase 1, to explore this 

sensitivity to the troop-to-populace ratio by conducting a parametric analysis of cop 

density around the published value of 0.040.  

An initial series of experiments were run with the original parameters (agent vision set 

back to 7.0). The first chart, Figure 11, shows the time difference of arrival (TDOA) for 

various densities of security forces. And, Figure 12 shows the average peak heights for 

the same input parameters. A polynomial trend line is inserted into both graphs, more for 

comparison purposes than as a proposed output model. Still, the fit of these polynomials 

is quite good for the Average Peak Height plot, with all three having an R2 of 0.98.  
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The regression model for Figure 11 has data that are far less easily explained by 

polynomial equations than that, and there are no models that can be said to explain the 

TDOA data. It appears that the model behavior begins to become random across a broad 

range as cop density moves too far from 0.04. Either revolts become near-constant at low 

cop density or they become rare and very small events as cop density moves above 0.05. 

The left-hand side is a region in which there is a great deal of revolt activity is far from 

desirable. The revolt peaks appear far away only because there are so many that the 

chances of one reaching three standard deviations is highly unlikely. Figure 13 shows the 

actual time series of the number of active insurgents in the model at the extremes of cop 

density 0.028 and 0.052.  

This provides a valuable caution to military planners and other decision-makers. If the 

decision variable is set to be the frequency of ‘violent incidents’, the guidance can fail to 

capture a real failure situation. In the data, there is a high frequency of violent events in 

this model somewhere around 0.04. For all activations and all runs, the arrival rate for 

peaks of violence is greatest (and the inter-arrival time is smallest) around 0.04. But, this 

is an anomaly of the definition of a peak, which is three standard deviations above the 

mean number of active agents. Thus, in the model runs with smaller cop density, the 

populace is in revolt most of the time – certainly a less desirable situation.  

For the second metric – the average height of each revolt – there appears to be a 

simple relationship: the more security forces, the smaller the outbursts of violence. Thus, 

given that large TDOA and small revolts are the desired outcome, the model appears to 
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show that the left hand side of the cop density region is to be avoided. Interestingly, the 

FM 3-24 manual recommends 20 to 25 counterinsurgency forces per thousand. In this 

model, the agent density is 0.7 throughout, so a cop density of 0.04 would give a value of 

about 57 per thousand. The model, therefore, ‘recommends’ a far greater density than has 

been established in US doctrine and provided in the literature. Of course, this model is 

quite abstract and, as many models before it, useful only for sensitivity analysis.  

The insight that the rate of arrival of ‘three-sigma’ violent events is a poor measure of 

counterinsurgency performance is one of the myriad benefits that accrue to the model 

designer and executor. It demonstrates the need for close cooperation between the 

‘decision consumer’ and the modeling team.  
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Figure 11. TDOA for Peaks vs. Cop Density - Agent Vision = 7.0 
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But, are there any differences in the activations schemes? As in the phase 1 

explorations, the different activation methods display significantly different results at 

nearly every level of cop density. If minimum TDOA are to be avoided, the synchronous 

scheme shows a minimum at 0.04, while the two asynchronous schemes – random and 

uniform – show a somewhat higher “danger minimum” at 0.044.  

Figure 12. Violence Peak Heights vs. Cop Density - Agent Vision 7.0 
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Figure 13. Revolt Time Series at Extremes of Cop Density 

 

The earlier explorations have shown that an agent vision of 8.2 patches (vice the 

published level of 7.0) provides a more stark contrast among the agent activation 

schemes. It was for that reason that these cop density explorations were extended to that 

part of the parameter space in order to conduct some statistical tests. The results for the 

agent vision of 8.2 are shown in Figure 14 and Figure 15. 

Again, the TDOA outcomes appear to have a minimum in the vicinity of 0.04 (Figure 

14). On first glance, this would represent a region to avoid, as it means violent events 

happen most frequently here. As in the case above, however, this is an artifact of the 

definition of a peak and not a real consideration for force planning. The curve minima all 

appear to happen at a slightly lower value of cop density, but this is probably the result of 

the many interactions in the model and does not seem to have significance. Note also, 

that it is equally difficult to find a regression model that explains this data. The second-
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order polynomials provided the best, and their R2 values (shown on the figure) were quite 

low.  

 

Figure 14. TDOA for Peaks vs. Cop Density - Agent Vision 8.2 

 

Figure 15 gives a much more stable picture of the cause-and-effect relationship 

between cop density and civil violence. For one thing, the regression R2 values are much 

better, suggesting the second order polynomials do explain much of the variance in the 

data. Additionally, the data depict the generally direct relationship between higher 

density security forces and a better overall security situation.  
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Figure 15. Violence Peak Heights vs. Cop Density - Agent Vision of 8.2 

 

Finally, a statistical test was performed on these second data sets (those with agent 

vision of 8.2) to determine if there is a statistically significant difference among the 

activation patterns. The cop density setting of 0.032 was chosen for extended 

investigation, and one can see in Figure 15 the larger number of runs at this value.  

I again used the Fisher Exact Test as the three runs are manageable. The statistical 

significance for the first set of data, the inter-arrival times, shows significant results in 
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comparing the synchronous with the two asynchronous activation types. But, between the 

random and the uniform activation types, the p-value was 0.044. This suggests we would 

reject the null hypothesis that the data were chosen from identical populations and that 

their sequential order (smallest to largest) would be this extreme (or more) based only on 

randomness at the 95% level, but not at the 99% level.  

 

Table 3. Phase 2 Civil Revolt Model Results: p-values for Fisher Exact Test - Cop Density 0.032, Agent 
Vision 8.2 

Waiting Times Peak Heights

Comparison p-value (Fisher exact 
test) 

Comparison p-value (Fisher exact 
test) 

Random-Uniform 0.044* Random-Uniform 1.6 x 10-7** 

Random-Synchronous 1.7 x 10-6** Random-Synchronous 4.2 x 10-5** 

Uniform-Synchronous 2.9 x 10-9** Uniform-Synchronous 0.016* 

 

 

For the second set of data, the peak height data, the pair-wise comparison showed that 

there was also significant difference between the random and synchronous activation 

types, and between the random and uniform. But, between the uniform and synchronous 

activation types the separation was much weaker.  

Case	I	Conclusions		

The data above establish that activation makes a clear difference in at least one policy-

centric model. This suggests that, at the very least, ABM researchers should fully 

describe their activation scheme if they are to guide other researchers in proper 
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replication of their models. This means that the sequence of events in the code 

(movement, environment-sensing, and state-change) should be explained explicitly in 

order that subsequent researchers can replicate the experiment. The Epstein model (2002) 

was chosen specifically because it is an excellent example of such specification. It can 

serve as a template for models in other domains.  

A second goal was the determination if varying activation changed the outcome in this 

specific model so much that it would affect a policy decision. For this question, the 

evidence is much less clear. The level of violence at various counterinsurgency force 

densities is statistically different between at least two of the activation schemes. But, the 

difference would not appear to be enough that it would force a different policy decision. 

FM 3-24 gives a range of viable security force densities for planning purposes (between 2 

and 2.5%). The model shows that violence can vary significantly within a range about 

that large, but this sensitivity is present in all activation schemes.  

As this model was programmed in NetLogo, it was difficult to include activation 

schemes that depend on the state of the individual agent – so-called Poisson or 

endogenous activation schemes. In Case II these will be examined using the more flexible 

Python programming language. On the question of policy-feeding counterinsurgency 

models, however, it is sufficient to note that without proper documented activation design 

it would be difficult and potentially impossible to replicate the model. Given that 

questions of national security are often emergent, concern matters of life and death, and 

can effect global events for years and potentially decades, the need for model replications 
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across different computer languages and with different input parameter sets would be 

critical.  

Case	II:		Activation	in	a	Zero	Intelligence	Trader	Double	Auction	

Market	

Finance is an area of high activity for complexity science and agent-based models. It 

was one of the primary motivations behind the founding of the Santa Fe institute 

(Waldrop, 1992). Agent-based models, with their many independent decision-makers, 

seem to be excellent surrogates for traders in a securities market. Agents can be infused 

with a number of different strategies, and global information can be made available either 

market-wide or differentially to only select traders.  

One of the simplest market models is called a "zero-intelligence trader" or ZIT model. 

In such a model, a large body of traders is chosen in pairs. They are unaware of market-

wide parameters such as the last trade price or the trade price history or even the details 

of their counterparty’s financial position. In the most straightforward ZIT models, traders 

trade a single commodity. In order to make some sense, the traders are not completely 

devoid of knowledge: the sellers know their own cost of acquisition, and the buyers know 

the future price at which they can expect to liquidate the asset. (The latter might seem a 

bit artificial, but becomes somewhat more realistic if one considers book value of assets 

or the surrender value of a bond.) Thus, its simplicity makes the ZIT model an excellent 

baseline case for studying the impact of activation on financial market models.  
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On	the	Choice	of	the	Gode	and	Sunder	Model	

The most referenced ZIT model was introduced by Gode and Sunder (Gode & Sunder, 

1993) in an article entitled “Allocative Efficiency of Markets with Zero-Intelligence 

Traders: Market as a Partial Substitute for Individual Rationality.” According to Google 

Scholar, nearly 1200 scholarly articles have referenced Gode and Sunder over the past 

two decades. They were initially researching whether a rule-based double auction market 

simulation would show the same market success as an experimental market of actual 

individuals. They used graduate students incentivized by academic grade credits to 

simulate profit-motivated traders. They then simulated two double auction markets to 

compare with the real-world experiment. 

Bounded	ZIT	Model	Description	

Both simulations began with a small number of traders: six buyers and six sellers. 

These would trade one ‘share’ at a time. One simulation was unbounded, with the buyers 

and sellers making offers randomly selected between 0 and 200. The more rational 

simulation was termed a ‘bounded’ simulation. In this, the buyers would have a ‘supply’ 

curve in which their cost for their next share to be sold is determined by an escalating 

price curve. The sellers would likewise have a redemption price, at which they may 

liquidate any item they buy. This redemption price was a decreasing curve that depended 

upon how many shares they possess at the end of the trading day. For each trade, buyers 

and sellers calculate their profit. Buyers would subtract the cost from the trade price, and 

sellers would subtract the trade price from the redemption price. Buyers and sellers were 

bounded in that they were not allowed to make an offer that would lose money.  
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Gode and Sunder made three simplifications to a double auction model: 

 Only one unit was traded at a time.  

 Once a trade took place, all outstanding offers were canceled. 

 If bid and ask offers crossed (seller asked more than the buyer bid or vice 

versa), the price was set by that of the earliest offer. 

Buyers are informed ‘privately’ of the redemption value of each share. This value, vi, 

depends on the number of shares the individual buyer has already bought. The buyer 

knows his own demand curve, but the market demand curve is not available to any trader. 

Similarly, sellers are endowed with a supply curve that represents the cost, ci, of the ith 

unit sold. This supply curve applies to each individual seller and the market supply curve 

is also not known to any trader. Each trade, therefore, created a profit. For the seller the 

profit is the net of the price and the cost, ip c . Similarly, the buyer’s profit is the net of 

the redemption value and the price, iv p . Buyers and sellers form offers at a rate and in 

a sequence determined by the activation scheme. All buyers have the same individual 

demand curve, and all sellers have the same individual supply curve. The offer for buyers 

is a random value between 0 and their current redemption value, vi. The offer for sellers 

is a random value between their cost, ci, and 200. This is what was meant by the bounded 

market. The unbounded market was also examined, but that is not considered here. (Nor 

is the experiment using graduate students.)  

Gode and Sunder conducted six runs of the bounded market, with all values reset at 

the beginning of each run. The runs were terminated after 30 seconds. Beyond this 

specification, they did not state the rate at which offers were formed. They also did not 
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state what computer language or hardware was used. Undoubtedly, more efficient code in 

a faster language on a faster processor would form more offers in the 30 seconds than 

others.  

Gode and Sunder examined five markets, or five sets of supply and demand curves. 

The only description of these curves was in the market-by-market graphs in which they 

are shown without annotation and with no labels. For the first four markets it was 

possible to estimate these values by inspection, but the fifth market had supply and 

demand curves with a structure with too fine a grain to reliably estimate. Only markets 

one through four were replicated here.   

Model	Replication	

Working in Python, I was able to create a double-auction model in which the traders 

behave in the manner described in the source article. In order to perform diagnostics, it 

was necessary to impose some metrics on the dynamic processes of the model. I 

 

Figure 16. Market 1 Random Trade Price vs. Trades and vs. Turns 
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introduced the concept of a turn, which I define lasting as long as one full population of 

traders have generated offers. A turn, therefore, is driven by events and not by time. This 

deviates somewhat from the source article, but allows side-by-side comparison of a 

variety of activation schemes (see below).  

Once the turn in which trades take place is measured, a price series of trades can be observed in market time 
instead of trade time. The Gode and Sunder paper plotted trade price per trade number. Thus, they did not 
observe the fact that later trades occurred much later in a run, after many, many offers had been made. See  

Figure 16 for a depiction of this dynamic behavior for Market 1. 

 

Figure 16 also shows a number of other aspects of my market model. Instead of 

stopping after 30 seconds of execution, I have chosen to stop after a constant number of 

turns. For this graphic, I chose 600 turns, but in the full experiments I ran the market out 

to 5000. Even with these extended runs there are still trades taking place. That is, even 

after many turns and many offers are generated there is still one buyer or seller who has 

redemption or cost set just above or below the market-clearing price.  
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Another model behavior apparent in  

Figure 16 is the direction of convergence. Market 1 is a market in which the sellers 

approach the market clearing price from farther away (i.e. below) that value. That is, 

seller’s costs are much further from the equilibrium value than the buyers’ redemption 

values. As a result, for any given point in the inventory, a seller will be willing to sell for 

a price further from the market clearing price than an equivalent buyer would.   

Figure 17 shows a market with the asymmetry in the opposite direction – a steeper 

demand curve and a shallower supply curve. In both cases the trades approach the market 

clearing price from the direction of the steepest curve. In Market 1, they approach from 

below because the supply curve is steeper. In Market 2, trades arrive at the market 

clearing price from above because the demand curve is steeper.  

Gode and Sunder indicate that the main question addressed in their study was how 

much of the rationality associated with human traders (vice purely random, unbounded 

Figure 17. Market 2 Random Trade Price vs. Trades and vs. Turns 
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traders) was attributable to human decision-making motivated by profit and intelligence 

and how much is due to simple market discipline – the requirement that a seller can’t sell 

below cost and a buyer can’t buy above redemption value. While the bounded market’s 

appears to be in between the random and the human market (by inspection), and the 

bounded market appears to converge to the same equilibrium price as the human market 

(determined by a regression of the bounded market curves, averaged over five runs), 

Gode and Sunder used two rigorous measures to answer the question: efficiency and 

wealth distribution. These will be discussed in the Model Behavior Results section. 
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Markets 3 and 4 were intended to explore supply and demand curves of different 

shapes. It was possible that these might stress markets more, and make convergence 

slower or, perhaps, eliminate it entirely. As seen in Figure 18 and Figure 19, the trading 

model behaved appropriately, converging on the market clearing price from the direction 

favored by the furthest of the supply or demand curves.  

Figure 18. Market 3 Uniform Trade Price vs. Trade and vs. Turn 
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It is important to note that in the above figures the supply and demand curves for each 

market were determined from the reference paper, but the price time series results were 

from my own replication of this double-auction model coded in Python.  

Alternative	Activation	Schemes	

Given the context of this model, it was possible to postulate a broad spectrum of 

different activation schemes, but not all.  

Synchronous	Activation	

Synchronous activation was not instituted. In the 1990s literature on Prisoners’ 

Dilemma models, synchronous activation separates and buffers the agents’ decision 

(choice of ‘defect’ or ‘cooperate’) from the agents’ actual change of state. Thus, agents 

made an internal selection, and did not manifest that selection until all agents had chosen. 

Then state change occurred across the landscape simultaneously.  

Figure 19. Market 4 Uniform Trade Price vs. Trade and vs. Turn 
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There does not appear to be an analogous process among the traders in a ZIT model. 

Traders already keep their inventories ‘private’, and thus their demand or supply signal is 

not observable by other agents. The model might make use of the turn structure, storing 

offers in a buffer and adjudicating them at the end of a turn. But, it is likely that several 

offers will cross – the sellers offering to sell for more than the buyers are offering to buy. 

Adjudicating these to determine who trades with whom at the end of the turn would 

increase complexity and do serious violence to the concept of ‘zero intelligence’ trading.  

It might be possible to mimic the behavior of a ‘closed’ market in which trades arrive 

before trading hours, but the simple structure of this model would mean a trivial result. In 

real world markets, traders are always allowed to bid and to see others bids before trading 

begins. As no trades take place, cross-orders are common. In fact, NASDAQ has an 

elaborate opening procedure to deal with this, called the “opening cross”. The market 

authority seeks to avoid heavy volatility at the opening by promulgating the “would trade 

for” price to a large population of traders.  This is a weighted average of the volume and 

price of all outstanding offers, and it’s declared about two minutes before a market open. 

This initiates a flurry of modified offers ending with the market opening.  

To simulate this procedure, the ‘market maker’ in the ZIT model would observe the 

buffered bids and calculate an average bid. Procedures would have to be written to 

adjudicate all initial trades at this price. As above, this moves somewhat beyond the 

scope of ‘zero intelligence’ traders. It is clear why Gode and Sunder did not include this 

complication in their model (if they even considered it).  
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Random	Activation	

There are several suggestions in the original paper that the authors chose 

asynchronous random activation. The initial papers on activation were published in the 

same year (1992), so it is not unexpected that Gode and Sunder would not consider 

elaborating on the issue.  

In my instantiation, random activation merely means that traders are chosen at random 

from the set of all traders. These traders form an offer. A turn is defined as complete 

when a number of traders equal to the total number of traders have made an offer. No 

data points are collected at the end of one turn, and no values are reset. All offers to sell 

or buy that are in the auction at the end of a turn continue in force at the beginning of the 

next turn. In fact, these offers are frequently canceled. The original model design had all 

offers canceled once a trade was complete.  

Initialization	and	reinitialization:  On the first activation, and every time the offers 

have been canceled, the first trader’s offer will establish the new “best offer” of that type. 

Thus, if a seller is chosen first, he will choose a proposed sell price that is a uniform 

random variable between zero and his cost (for this item in his inventory sequence). A 

buyer will, likewise, establish the new “best buy” offer. Trading can commence as early 

as the second offer.  

Uniform	Activation	

Asynchronous uniform activation is executed in a manner similar to random 

activation. At the beginning of each turn, the array of traders is shuffled. In one turn of 
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uniform activation, all traders will be activated. Otherwise, the trade rules are the same: 

offers are carried over from turn to turn, but are canceled once a trade is complete. 

Initialization and reinitialization are conducted in the same manner.  

The trade timing plots for markets 3 and 4 above are shown for the uniform activation 

scheme. There does not appear to be any significant difference in trade timing behavior 

between random and uniform.  

Poisson	Activation	

Poisson activation is a process in which agents are activated according to an 

exponential distribution with an arrival rate, λA. This will mean that activations for any 

given agent are a Poisson process. In its simplest form, a Poisson activation scheme 

would have all agents activated with the same λ. This, however, would merely replicate 

the random selection method so I explore only the case of heterogeneous values for λA.  

Poisson activation differs from other asynchronous methods in that this variation 

among the agents can be based on the state of each agent or some internal parameter 

value. For my explorations, I chose agent wealth, which was calculated at the beginning 

of each turn. Thus, agent activation rates are made proportional to agent wealth values. In 

order to investigate the ‘leveling’ nature of these computer-based trading markets – a key 

question for the original researchers – I chose to make activation rates proportional to the 

absolute distance between the agent’s wealth and the average wealth of the population of 

agents. In that way, agents that are at the extremes (rich or poor) will likely trade more 

often. 
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In order to make appropriate comparisons between Poisson activation and other 

activation methods, it is necessary to re-normalize all of the values of λA so that, on 

average, each turn there will be one full population of traders’ activations. I accomplish 

this by building activation time for each agent and adding it to an ‘event list’. Trader-

agent activation times are drawn sequentially from an exponential distribution and each 

added to the previous until the times exceed 1.0. These times are then all sorted and the 

trader agent sequence that results from that is passed to the program as a list of 

activations. Offer-making proceeds in accordance with this list for a given turn. At the 

beginning of the next turn the values of λA are again calculated and another sequence is 

generated. The order of each turn’s sequence is dependent on the current values of trader 

wealth and on a random draw.  

This process works well once the model is established, but at the beginning of the 

model no trades have taken place and, thus, traders have no wealth. In these cases the 

values of λA are merely assigned randomly (and normalized as above). Once one trader 

has acquired some wealth the process can proceed as designed.  
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The Poisson process takes advantage of the ‘memoryless’ feature of the underlying 

exponential distribution. Thus, for every trader at the beginning of each turn can treat the 

‘wait time’ as starting anew. It does not matter, given the waiting time is exponentially 

distributed, how long each trader has been waiting since the last activation.  

Inverse	Poisson	Activation	

The process of activating agents faster if they are further from the average has an 

interesting counterpart: activation rates that favor proximity to the average. Thus, it is 

interesting to examine a λ–setting process that slows down agent activations when the 

trader wealth is farther from the mean wealth. This inverse Poisson activation rate is the 

fourth activation scheme to be examined in the four markets.  

It is important to note that the two Poisson schemes represent a conceptual departure 

from the other two asynchronous schemes. In varying the activation rate based on the 

agent state, I am examining endogenous activation. At least one article (Fernández-

Figure 20. Market 4 Inverse Poisson Trade Price vs. Trades and vs. Turns 
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Gracia et al., 2011) has found that this can show differences in outcome behavior when 

compared with the more normal exogenous activation.  

Outcome	Behavior	Metrics	

Gode and Sunder do not rely heavily on precise quantification of the market results. 

This is consistent with their goal of measuring the performance of an automated market 

against that of a human market. They are trying to determine how much market 

efficiency (in profit creation and distribution) is due to the constraints of profit and loss 

rules and how much is due to human trading. Thus, they take the unconstrained 

automated market and the human market as two extremes and see where the bounded ZIT 

market falls. In most cases they judge that it falls much closer to the human market, but 

this is generally a qualitative judgment.  

I chose to measure three aspects of the constrained ZIT market: its efficiency in 

generating wealth (or profits), its effectiveness in evenly allocating wealth among the 

traders, and the time it takes to reach equilibrium. Gode and Sunder used the first two 

measures in their paper, but the third left unexamined.  

Wealth	Generation	

It is a straightforward matter to measure total wealth at the end of a run. One of the 

key (and unstated) influences on this total is the length of a run. Gode and Sunder ran a 

trading ‘day’ for 30 seconds. In my runs, I made use of the turn structure to better 

standardize the runs, choosing 5000 turns as a standard run.  
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The total wealth in the market is compared with the total theoretical wealth. Smith’s 

definition of market efficiency was used (Smith, 1962). Thus, the allocative efficiency of 

a market is expressed as the total profits earned in one run (added across all traders at the 

end of the run) divided by the maximum profits available. Actual human markets quickly 

converge to 99% efficiency. Markets only vary from this, the authors noted in 1992, 

when typographic errors in market orders create a distortion in the price time series. 

(Considering the events of the past two decades, the Gode and Sunder paper should have 

been seen as an important early warning of such market ‘errors’.) 

Profit	Allocation		

The second metric chosen by Gode and Sunder was the profit allocation among the 

traders. To determine this, they calculated the cross-sectional root mean squared 

difference between the actual and the equilibrium profits across the traders. They defined 

the value ai as the profits (or total wealth) acquired by trader i. They also calculated the 

theoretical profits for this trader as πi .Thus, the dispersion across all traders becomes  

 21 ( )i ii
D an     (2) 

They left unstated how they calculated the equilibrium values. I divided equilibrium 

profits into those for buyers and those for sellers. I assumed buyers’ equilibrium profits 

as the profits they could earn if they traded all the shares they could at the market 

clearing price. This, of course, would only include those shares with a redemption value 

above the market clearing price. Similarly, the sellers values of πi was determined as the 

profits a seller would earn if all those shares held with costs below the market clearing 
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price were sold at the market clearing price. Thus, to calculate D, it is necessary to 

separate the calculation of the sum into two parts. More correctly, it should be: 

    2 21
s s b bs b

D a an           (3) 

Where s = seller s ∈ S and b = buyer b ∈ B . Also, n = the total number of traders. This 

separation is necessary because the supply and demand curves are not symmetrical. 

Sellers’ equilibrium profits differ from those of buyers in essentially all markets.  

Time	to	Last	Trade	

Gode and Sunder did not examine the model behavior over the long term for a variety 

of reasons. They were comparing simulated markets with actual human experiments. The 

human experiments had a finite duration because they were limited by many factors that 

are not present in simulations. Thus, the simulated markets were truncated and the long-

term data are missing (or, in the terminology of statistics, the data were ‘censored’).  

In my examination of the markets, I expected to run the markets to exhaustion. That is, 

I experimented with a number of lengths of runs in the random and uniform activation 

types to find a reasonable point at which trading ended. I chose what I believed was a 

conservative length of 5000 turns, believing this would encompass all trades for all 

markets and all activations. As noted in the result section, there was still censored data 

even at these extended runs. In fact, this represents a major difference among the 

activation schemes. Thus, while I didn’t collect a comprehensive set of data, analysis of 
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the turn at which the ‘last trade’ took place certainly achieved one of the key goals of this 

project – differentiating among activation schemes.  

Model	Results	

A full spectrum of experiments was run: four activation schemes across four markets. 

Each experiment consisted of 2000 runs of the market and activation, with each run 

including 5000 turns. At the end of each run, total wealth, wealth dispersion, and the turn 

of the last trade were collected.  

Histograms of the first two measures (total wealth and wealth dispersion) for the 2000 

runs are shown in the following figures for Market 1. Similar histograms are available for 

the other three markets, and are included in the appendix. 
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Figure 21. Market 1 Random Results (Wealth) 

 

Figure 22. Market 1 Uniform Results (Wealth) 
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Figure 23. Market 1 Poisson Results (Wealth) 

 

Figure 24. Market 1 Inverse Poisson Results (Wealth) 
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It should first be noted that the scales of all four histograms are not equal. Unequal 

scales were chosen for display so that the shapes of the histograms could be fully 

examined and compared. The histograms associated with random and uniform activation 

schemes are far less spread out than those with Poisson activations. As will be observed 

in the last-trade analysis below, this is because the random and uniform markets normally 

run to completion. For Market 1, this means a total wealth of 900. After the traders have 

achieved that there are no more profitable trades remaining. In a few runs of the random 

and uniform markets there are still trades left to be made, and each of these falls a set 

distance from the maximum profit. This means that these markets end in one of a small 

number of configurations. 

The endogenous markets, however, have total wealth outcomes that are spread much 

lower from the maximum. This is mostly due to the fact that there are remaining trades 

available to these markets, even after 5000 turns. Thus, the average total wealth among 

the four activation schemes varies significantly.  

Table 4. Average Total Wealth - All Markets, All Activations 

Average Total Wealth Market

Activation 1 2 3 4 

Random 899.0 1016.6 791.6 1497.7 

Uniform 899.2 1017.2 791.7 1498.2 

Poisson 892.2 1003.2 785.4 1480.5 

Inverse Poisson 881.3 999.6 785.1 1488.8 

Max Wealth 900 1020 792 1500 
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Market 4 is an interesting case in which the average total wealth for inverse Poisson 

over the 2000 runs is larger than the average total wealth for the Poisson. Figure 25 

shows the four histograms of total wealth for Market 4. The inverse Poisson activation 

does have an extreme value of an outlier below 400, but it actually bunches much of the 

wealth closer to the maximum value (1500) than its Poisson companion.  

Figure 25. Market 4 Total Wealth Histograms 
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With 2000 runs, it is possible to test the hypothesis that these means are drawn from 

different populations against the null hypothesis that the variation is simply due to 

random errors (and that the random errors are normally distributed).  

Table 5. p-values for Average Total Wealth 

p-values Market

Comparison 1 2 3 4

Random  - Uniform 0.021 1.3 X 10-05 0.035 4.09 X 10-05 

Random - Poisson 7 x 10-200 0 8.9 X 10-214 0 

Random – Inverse 
Poisson 

2.3 X 10-242 1.5 X 10-124 7.1 X 10-42 1.2 X 10-31 

Poisson - Inverse 
Poisson 

9.8 X 10-103 1.47 X 10-07 0.525422 3.2 X 10-28 

With four activation schemes there would be sixteen pairwise comparisons. It is not 

necessary to examine these exhaustively to see differences among the activation types. 

As Table 5 shows, most of these comparisons are highly significant. Even the random-

uniform comparisons – the closest averages for all the markets – allow the rejection of 

the null hypothesis for markets 2 and 4.  (While the averages are close, the power of the 

test is derived from the n = 4000 combined data points for the pair.) Figure 26 depicts the 

four total wealth histograms (and the output data used to calculate the p-values) for 

Market 3. Again, note that the histograms are on a different scale, which I denote with a 

grey background.  
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Gode and Sunder compared the total wealth in the simulated markets to the maximum 

total wealth possible. This is shown on the final row of the wealth table for each of the 

four markets. Their objective was to compare how close the simulation came to 

maximum wealth with the proximity of the human markets. They deemed that their 

simulations across the four markets achieved essentially the same results as the human 

market, with efficiency percentages between 96 and 98%. These results were replicated 

Figure 26. Market 3 Total Wealth Histogram 
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in all markets by all activation types. The lowest percentage was 97.9% in the case of the 

inverse Poisson in Market 1.  

Similar analysis can be conducted on the much more bell-shaped wealth dispersion. 

They are shown (for Market 1) in the right-hand histograms in Figure 21 through Figure 

24. The original researchers, in discussing the results of market dispersion, noted only 

that profits are dispersed among individual traders with a slightly larger spread (larger 

root mean square value) than for flesh and bone traders. Also, while human traders 

showed signs of learning, memory and adaptation were not part of the ZIT simulation. 

Each run was independent.   

Table 6. Mean Wealth Dispersion, All Markets, All Models 

Average Wealth Dispersion Market

Activation 1 2 3 4 

Random 29.2 51.2 54.9 110.3 

Uniform 28.8 50.5 53.2 111.0 

Poisson 31.6 51.9 57.0 102.9 

Inverse Poisson 28.7 51.8 56.8 110.9 

 

While the wealth dispersion appeared to vary little across the runs, the large number of 

runs allowed me to determine that many of these differences were statistically significant. 

Using similar calculations to the averages of the wealth, we can develop another table of 

p-values. In this case, somewhat fewer of the pairings show differences that are 

significant. Market 3 shows some interesting behavior in that even the random – uniform 

comparison results in a difference that is significant at the 99% confidence level. For that 

reason, Market 3 is chosen for more in-depth analysis. Still, I reject the null hypothesis 
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that the differences between these sample means is a product of random fluctuations in 

seven of the 16 cases examined. Activation type makes a difference, at least statistically.  

Table 7. p-values for Average Profit Dispersal 

p-values Market

Comparison 1 2 3 4

Random  - Uniform 0.23 0.20 0.002 0.36 

Random - Poisson 1.7 X 10-12 0.278 0.002 4.6 X 10-27 

Random – Inverse 
Poisson 

0.14 0.28 4.0 X 10-4 0.457 

Poisson - Inverse 
Poisson 

1.2 X 10-25 0.59 0.67 1.3 X 10-49 

 

 

First, I examine the histograms for Market 3 (Figure 27). These have all been adjusted 

so that they appear on the same x- and y-axis scales, which I designate with a white 

background. With the scales adjusted, it’s clear that the histograms appear significantly 

different. The Poisson activation histogram shows a significantly larger tail than the 

others. This may not be apparent from the small size of the bars on the far right hand side 

of that plot, but the automatic adjustment of the graphing program clearly adjusts for 

larger bins for the Poisson case to accommodate the larger range of data.  
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In addition to the odd shape of the Poisson activation histogram, it’s also clear that the 

inverse Poisson activation type has a much tighter bunch of averages. The means between 

the two are quite similar (57 and 56.8), but the standard deviation is substantially larger 

for the Poisson activation scheme. In fact, the inverse Poisson standard deviation is 

nearly equal to that of the exogenous activation types (random and uniform). 

Figure 28 shows the QQ-plots for the same four activation schemes in the same 

market (3). The heavy right tail of the Poisson activation scheme is readily apparent. 

Also, the unusual shape of the inverse Poisson – especially its light right tail – stands out. 

And, it is clear that the log-normal distribution is a good representation for the random 

Figure 27. Histograms of Market 3 Average Profit Dispersal 
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and the uniform activation types. Even so, at the extremes the random exhibits light tailed 

behavior and the uniform exhibits heavy tailed.  

 

 

Figure 28. Market 3 QQ-Plots for Wealth Dispersion Averages
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The third and final result that I analyzed was an evaluation of these markets and 

activation schemes over the long term. Gode and Sunder did not consider the dynamics of 

their simulation during extended runs because they were comparing them with human 

traders in finite-time markets. I chose to record the turn at which the last trade took place 

before the end of run and use this as a metric for market closure. My initial expectation 

was that 5000 turns was more than adequate to capture all the trading that might be done 

for any activation scheme. In evaluating the results, it appears that 5000 turns was more 

Figure 29. Last Trade Behavior Market 2 - All Activations 
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than adequate for the random and uniform activation methods, but that Poisson and 

inverse Poisson were still exhibiting trading behavior late during a 5000-turn run (!). 

Figure 29 shows the behavior of all four last trades for the four activation schemes for 

Market 2, and Figure 30 shows the same for Market 4. Clearly the extent of the trading 

varies substantially as the activation type is changed. Not only are the histograms of 

somewhat different shape, the Poisson and inverse Poisson clearly have censored trading 

activity, especially in Market 2.  
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In Market 4, it still appears that trading activity would continue beyond the 5000th turn 

for Poisson and inverse Poisson, but the trend is somewhat less pronounced. It is 

important to note that this phenomenon would somewhat affect the analysis of such ZIT 

models, especially if trading were cut off after a few hundred turns. It is uncertain where 

Gode and Sunder stopped trading. They set their cutoff at thirty seconds of computer 

time, which itself might be a different measure for endogenous than for exogenous 

activation. In executing my simulations, the random and uniform experiments would take 

about half the time as the two Poisson activation experiments.  

Figure 30. Last Trade Behavior Market 4 - All Activations 
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Table 8. Mean Turn of Last Trade Over 2000 Runs 

Mean Turn of Last Trade
5000- Turn Experiment 

Market

Activation 1 2 3 4 

Random 1377.2 503.5 415.1 270.0 

Uniform 1273.4 438.3 357.6 234.2 

Poisson 1919.3 1718.9 947.4 1300.1 

Inverse Poisson 2124.9 1927.7 2240.6 1695.1 

 

 

Table 8 shows a full factorial analysis of the actual values of the mean (over the 2000 

runs for each condition) . The sizeable difference can be observed by inspection, but a 

complete analysis of the p-values confirms the statistical significance of the result. There 

is no pairing that has a p-value larger than 5	 ൈ 10ିଵଵ. Thus, it can be concluded that 

activation makes a potent difference in the later stages of the ZIT model. 

Case	II	Conclusions	

There are several motivations behind the basic research question – does activation 

change the outcome of agent-based models. The Case II excursions of the bounded ZIT 

model appear to answer different questions in different ways. 

For the simple issue of analyzing statistical results, the analysis shows that for all three 

metrics (total wealth, wealth dispersion, and the last-trade parameter), there are 

statistically significant differences between at least some of the activation schemes, and 

for one metric there are significant differences among all of them.  
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The purpose of choosing a ‘real world’ model – one that moves beyond simple 

abstract agents engaged in mathematical game theory – is to observe the impact of 

differences on policy recommendations. The underlying purpose of the Gode and Sunder 

paper was to determine to what extent markets are made efficient by structural features 

(such as the requirement to make profitable trades) as opposed to the rational decisions of 

human traders. They determined, using qualitative (but quite reasonable) analysis, that 

the constrained ZIT simulation essentially replicated the efficiency of the human traders 

in achieving the total theoretical wealth. They also concluded that the simulated traders 

distributed the wealth close to but a little more than the human traders, at least in the 

early stages of trading. After a time, the human traders dispersed their profits more 

evenly, but this was undoubtedly due to the memory effect.   

Would Gode and Sunder’s conclusions have been different if they used different 

activation schemes? Probably not: 

 All activation schemes and all markets ended with a total wealth that was 

between 97.92 and 99.96% of maximum wealth.  

 Profit dispersion has a somewhat higher variance for the endogenous activation 

patterns, so it is possible that, given that they only did six runs, the authors 

might have generated outlier results. If they increased the number of runs, 

however, they would have returned to their original conclusion (simulated ZIT 

traders produce slightly larger dispersion, but far closer to human traders than 

unconstrained trading).  
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Gode and Sunder did not examine the question of model convergence or trade 

evolution. Thus, they would not have noticed the significant differences that appear in the 

last-trade statistics among the different activation schemes. 

A third motivation for evaluating the importance of activations schemes is in 

establishing a proper standard for research in which the agent-based models of one 

scientific team are replicated by subsequent researchers. The Gode and Sunder article 

was chosen because it appeared as a reference in 1171 subsequent articles. Clearly, many 

other researchers are at least working with the concept of simulating markets, and many 

are actually building agent-based models using the zero-intelligence trading paradigm. 

(None of those 1171 use the words “Updating” or “Activation” – or their derivatives – in 

the title, so activation is not a major research focus in this domain.)  In the research 

reported above, the differential results from last trade analysis alone (if not all the results) 

show that if a replication of ZIT model is expanded beyond the work of Gode and 

Sunder, the results must be shown to be robust over different activation schemes. Thus, if 

agent-based researchers are to meet the standard of other sciences and work on 

replicating one another’s experimental results, then reports of their results must include 

the activation scheme used in the model.  

Case	III:		Activation	in	an	Interacting	Particle	System	Swap	Model		

The earlier cases evaluated the activation question either as a nuisance, hindering the 

accurate construction of replications of published models, or as a potential tool to 

replicate real-world behavior. It was also shown (in the ZIT model replication) that 
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activation may change the dynamics of a model so much that the design of the 

experiment needs to be reconsidered.  

The	Theory	–	Simulation	Partnership	

Varying activation can have another impact on modeling and system analysis: 

simulations with different activation schemes can allow researchers to examine system 

behavior that is more complex, variable, or heterogeneous than that postulated in a 

theoretical construct. In other words, activation can be one of the research variables that 

can be changed as we harness the power of simulation and move beyond equation-based 

descriptions of system behavior.  

In this context, I examine theoretical models of system behavior that have their root in 

the domain of physics. Physics is a branch of science substantially different from that of 

civil revolt or financial markets considered above. At first glance it might appear to have 

little in common with these social systems. Complex adaptive systems researchers, 

however, have strongly benefitted from the theoretical approaches that are common in 

modern physics. The Santa Fe Institute, for example, was partly founded by physicists. 

Nobel Prize-winning physicist Murray Gell-Mann was the co-founder of SFI, and 

remains a distinguished fellow.   

There is actually a rich collaboration between physics research and the analysis of 

complex adaptive systems. A number of summaries, perspectives, and histories of the 

field of econophysics have established the origins in the mid-1990s (Carbone, 

Kaniadakis, & Scarfone, 2007; Gingras & Schinckus, 2012; Roehner, 2010). In general, 
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econophysics looks to overcome the flaws of traditional macroeconomics by relaxing 

many of the assumptions that fuel mainstream economic analysis. In particular, 

econophysics moves beyond the assumptions of normal distributions in nature and 

identical or ‘representative’ individuals whose average can be determined and, through 

aggregation, determine the system-wide behavior (Cho, 2009). Some important examples 

of the application of physics to economics include  

 The observation that non-equilibrium price time series (such as seen in most 

markets) can be replicated by a simple Ising model of a one-dimensional array 

of particles (Sznajd-Weron & Weron, 2002). 

 Percolation theory has been broadly applied to help understand consumer 

adoption behavior and social influence on economic trends (Kiesling, Günther, 

Stummer, & Wakolbinger, 2012). They have also been important in depicting 

the influence of herd behavior on market fluctuations (bubbles and crashes in 

particular) (Cont & Bouchaud, 2000). 

 In analyzing price time series in markets, Benoit Mandelbrot noted that there 

exist extremely long memory effects. To measure these, he drew from the 

geophysical field of hydrology, which measures long memory in time series 

using the Hurst exponent (Hurst was a civil engineer working on flood control 

in the Nile River valley) (Mandelbrot & Hudson, 2004).   
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Interacting	Particle	Systems	as	Social	Models	

In this chapter I will focus on interacting particle systems and their analogs within the 

social science world. This relationship has stirred considerable interest among advanced 

researchers who seek to combine the mathematics with complexity theory. One team, for 

example, claims to demonstrate that the field of ‘out-of-equilibrium’ statistical physics is 

uniquely appropriate for understanding complex system dynamics. Such a fusion of the 

fields can help to explain the ubiquitous appearance of non-stationary and non-ergodic 

statistical processes and inverse power-law statistical distributions (West, Geneston, & 

Grigolini, 2008). Markov processes have proven useful in understanding and modeling 

the negotiation process (Weingart, Prietula, Hyder, & Genovese, 1999). More afield (and, 

perhaps less directly related), the broad field of Markov Chain Monte Carlo methods, and 

its combination with evolutionary algorithms, has also been applied to the information 

exchange process. While the models bear little resemblance to agent-based models, the 

extensive application of ideas first developed for physics and chemistry to search 

algorithms (among other problems) (Laskey & Myers, 2003) show that this is a fecund 

combination of disciplines. Another large field that uses concepts of particle physics and 

recently employs the insights of Markov chains is the question in signal processing of 

finding the best filter (Lee & West, 2013).   

The fusion of stochastic particle physics and social systems analysis is also taking 

place in the opposite direction: social scientists are finding new applications that bring 

the rigor and mature theory to their emergent problems. For example, Cai and Ishii have 

started with straightforward social science questions – the formation of a consensus and 
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the distribution of wealth – and solved the question of convergence using defined and 

quantized Markov chains (Cai & Ishii, 2012). In their conclusions, however, the authors 

point to a major issue in applying this extensive mathematical treatment to real world 

situations. In their final remark (Remark 16), Cai and Ishii note that extending their 

results becomes difficult if the topologies of agent interactions are less well defined. They 

don’t mention this, but if the agent interaction topologies are inconstant in time, 

extension of this mathematical approach may be unachievable.  

Theoretical	Baseline:	Assumptions,	Derivations,	Predictions	

Interacting Particle Systems have been well-defined mathematically. An elegant 

theory based on the statistics of continuous time Markov chains provides mathematical 

solutions (once the system parameters are known) for convergence rates, steady-state 

distributions, mean arrival times (for a given state), and other outcome behaviors of 

interest.   

Aldous, in exploring this theory, blends interacting particle systems with social 

systems analysis, and draws an analogy from game theory (Aldous & Lanoue, 2012). 

Game theory has its origins among physicists, but is now broadly applied to social 

science issues. Moreover, the field is characterized by a small number of simple games 

which have an abiding importance across a broad range of domains: Prisoner’s Dilemma, 

Tragedy of the Commons, Battle of the Sexes, etc.  
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Aldous has noted that the extension of interacting particle systems is also based on the 

application of a small number of straightforward models. IPS are characterized by a 

common structure: 

 A large population of agents – normally taken to represent individuals. 

 A network or graph that defines the connections among these individuals. 

Commonly, the edges of this graph are weighted. 

 A meeting model that interprets the weights of the edges as the frequency of 

meeting 

 A meeting algorithm in which the agents exchange information, possibly 

changing their state in the process. 

The last point has motivated Aldous to coin the name Finite Markov Information 

Exchanges to describe the specialized application of IPS to social science. He notes that 

the lack of a common name has probably limited the impact of such research, and 

hindered the formation of a community of practice similar to those who work in the area 

of game theory.  

Aldous (2013) defines interaction rates as the symmetric matrix ࣨ, which has zeroes 

in the diagonal (agents don’t have meetings with themselves). The non-diagonal elements 

are defined in terms of their meeting rates, νij ≥ 0. In order to use the same techniques 

used to characterize Markov chains, ࣨ is assumed to be a stochastic matrix, with 

normalized rates of interaction, so that: 
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 : 1i ij
j

    for all i.  

Note that, while Aldous defines the diagonal elements equal to zero as part of the 

structure of his problem, this is not part of the definition of a stochastic matrix. 

ࣨ also defines a geometric substructure for the interactions. It can take on any form, 

but Aldous limits his analysis to the most common form. Here I consider only his first 

topology, which he terms the complete graph or mean field model. In this case, every 

node or agent has an equal likelihood of interacting with every other. Thus, ࣨ is defined 

by: 

 1 / ( 1),ij n j i       

Aldous also considers other, more complicated topologies including small worlds or 

random graphs, but my analysis is limited to this straightforward case.  

First consider an explicit description of how continuous time Markov chains are 

expressed mathematically.  The objective is to define a method for stating the Markov 

chain transition probability matrix for a continuous-time Markov chain. Starting with an 

analogy that the eigenvalues of an invertible square matrix A are those values of λi that 

solve the equation: i i iA v   where vi = the associated eigenvector. Now, consider a 

Markov transition process (and associated probability matrix) in which the system 

operates in continuous time (but still with a finite, countable state space). Thus, the 

transition matrix would not be a matrix of discrete probabilities – the probabilities of 
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moving from one state to another in one time step. It would, rather, be a continuous 

function of time, P(t) such that the probability the system is in state j after time t, given 

that it is in state i at time 0, is pij(t).  

In order to analyze P(t), a matrix Q is defined such that ( ) tQP t e  . This notation, 

raising a matrix to a power, is a shorthand for an infinite series on the exponential of Q 

that is analogous to Euler’s formula: 
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We also know the following: 

 ( )nQ Q n ne e P    

and  

 ( ) ( )
d

P t P t Q
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   (4) 

So, the Q-matrix for a complete graph pattern, in which an agent has equal probability 

of interacting with each of its partners, is given by: 
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  Solving for the eigenvalues of this matrix are 0 and  1n
n

  . It is important to 

note that the non-zero eigenvalues approach unity as n becomes large.  

This exposition is important for follow-on analysis. The Markov chain generating 

matrix, Q, can be interpreted as a rate-flow matrix in a continuous time Markov chain. It 

is also the matrix that generates the Markov chain transition matrix, P. Note that, while P 

is a stochastic matrix, Q is not. (Norris, 1998, p. 64) 

The	“Leveler	Model”	–	Theoretical	Development	

Aldous used the structure of continuous-time Markov chains to complete his 

understanding of convergence in a social problem he deemed the “averaging process” 

(Aldous & Lanoue, 2012) or the “Leveller” problem (Aldous, 2013). 

In Leveler, each member the population is endowed with an account of ‘wealth’, 

which normally begins as differentiated. At each meeting, the two interacting agents reset 

their individual wealth to the average of their two accounts. Clearly, over time, the 

population will converge to the point where every agent has the same wealth, especially 

if all vij > 0 if i ≠ j. In fact, the population will converge to the average wealth in any case 

where all states communicate in the Markov Chain transition matrix. Additionally, with 

this rule all wealth in the system will remain constant, as will the mean wealth.  

This leads to a theoretical result in which, given an unchanging meeting matrix, ࣨ, 

the population’s convergence – measured as the decay of the standard deviation of wealth 

to zero – is defined by the Markov chain processes. To begin, Aldous rewrites the 
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definition of ࣨ such that it is a matrix of transformation rates in which the rows sum to 

zero. Thus, he revises the definition, defining the transition rate from i to j as ν(i,j). From 

this, he establishes the matrix as: 

 ( , ) , ;ij i j ii ij
j i

i j   


        (5) 

This is, of course, no longer a stochastic matrix. In fact, from the theoretical 

development of Markov chain analysis, this is equivalent to the generating matrix, Q 

(Norris, 1998). Aldous goes on to develop a theory of convergence rates that depend 

upon this new ࣨ, which will be here denoted as Q. Aldous shows that the convergence 

rate (under all the previously stated conditions of stationary transition probabilities and 

finite, countable states), that, if the convergence is measured in terms of the standard 

deviation of wealth, it is bounded in its convergence to zero.  

The notation used in Aldous is a bit different from that used in normal statistical 

treatments. In his initial conditions, Aldous assumes that the average wealth is zero. This 

will mean, of course, that the average wealth at all times is zero as the Leveler process 

does not change the mean wealth. This simplifies Aldous’s mathematical notation to the 

more familiar statistical notation. Given a vector in which the mean value is 0, that is: 
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Aldous defines the “norm”, which is equivalent to the standard deviation. 
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 x   (7) 

 Thus, where σw is the standard deviation of the wealth at time t and σ0 is the standard 

deviation of the wealth at time t = 0, Aldous shows that the convergence is determined 

by:  

  

 
/4

0[ ( )] t
wE t e      (8) 

  

where λ = the spectral gap of Q. Finally, as noted above, as n becomes large, the non-zero 

eigenvalues of Q approach unity. Thus, the exponential decay rate in Equation 8 will be 

approximately -1/4.  

It is important to consider whether this convergence rate, dependent on λ is a function 

of the number of agents. This depends on how Q is defined, and, thus depends on the 

definition of the meeting rates. Moreover, the meeting rates are determined by the 

definition of the unit of time. If the rates are set as above, a unit of time is defined as that 

amount of time such that, on average, one interaction will take place among the all the 

agents in a single unit time. If time were defined in such a way that each agent would 

initiate a meeting once per unit time, Q would be a matrix with all non-diagonal elements 

equal to one, and the diagonal elements equal to n – 1. The non-zero eigenvalues of such 

a matrix would equal –n, and the spectral gap and the convergence rate would certainly 
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vary with the scale of the system. Thus, the definition of time units becomes a key 

constituent in moving from the mathematical definition of the system to its simulation.  

Extending	Theory	Through	Simulation	

A commonly-used technique in operations research and systems engineering is to start 

with a well-developed mathematically-defined system and build a simulation. The 

simulation will allow the researcher to relax the assumptions of the model, through the 

design of the code, and examine system behavior. In the general case this allows the 

operations research analyst to leverage mathematical prediction and extend the range of 

quantitative analysis. (Simulation is also used to extend the insights gained from physical 

experimentation, further adding to the utility to decision-makers and the broad confidence 

non-academic professionals place on simulation.) 

Agent-based models also have been used extensively to evaluate the diffusion of 

information in a population. Herrmann, et. al., have recently modeled the diffusion of 

urgent information (weather warnings or high-profile news events) on a network using an 

agent-based model (Herrmann, Rand, Schein, & Vodopivec, 2013). Hui, et. al. simulated 

the diffusion of evacuation warnings to a population of agents connected via a network. 

A simulation approach was necessary because, as agents evacuated, the network topology 

would change (Hui, Goldberg, Magdon-Ismail, & Wallace, 2010). Rosval and Sneppen 

explored the exchange of information in an agent-based model of a dynamic network 

(Rosvall & Sneppen, 2003). And, Cui and Potok, using an agent-based swarm-type model 

of insurgency showed that information exchange among disparate, self-organized groups 
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can be just as efficient as in a hierarchical insurgency with unified leadership and 

strategic planning (Cui & Potok, 2007). 

Agent‐based	Model	and	Varying	Activation	

The Leveler theoretical model assumes that the meeting matrix or transition matrix ࣨ 

(or its generating matrix Q) remains unchanged during the course of the model. It has no 

concept of ‘turn’ in which a full population of agents are activated. The model evolves in 

‘secular’ time, and all n agents activate in accordance with their own Poisson process. 

Most of these assumptions are made in order to make this elegant derivation of the 

convergence rate as a closed-form inequality possible.  

Do these conditions exist in the real world? Aldous cautions researchers who 

extrapolate these abstract models to real-world movement of knowledge in a population. 

Information does not take on well-defined scalar values (such as wealth in the Leveler 

model), and individuals find many ways to move information beyond a simple meeting 

protocol (Aldous & Lanoue, 2012).  

To capture some of the non-abstract real-world behavior, a Leveler model was created 

in Python. The convergence of wealth – as measured by σw -- was examined using 

different activation schemes:  

 Uniform activation creates a sequence of pairs from the population through 

sampling without replacement. The pairs leveled their wealth when they were 

activated. One turn is defined as activating the entire population (in pairs) 
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exactly once. (Odd-numbered populations will have one inactive agent in each 

turn, randomly assigned.) 

 Random activation involves selecting pairs of agents from the population with 

replacement. A turn is defined as complete when a full population has been 

activated, or after n/2 pairs have been selected. 

 Poisson required the determination of the activation rate, λi, for each individual 

agent. These rates were normalized at the beginning of a turn so that, on 

average, one population’s worth of agents would be activated on each turn. 

Thus, the mean λ would be 1/n.  Also at the beginning of a turn, a Poisson 

process was populated for each agent in accordance with the individual arrival 

rate, λi. These arrival times were placed in sequence on an ‘activation table’. 

By design, the average number of agents on each turn’s activation table was 

one population’s worth of agents. The leveling process took place by selecting 

the agents from the table two at a time. At the beginning of the next turn, 

agents’ values of λi were recomputed. Several rules are possible to determine 

this λi. I chose to make λi proportional to the distance between the individual 

agent’s wealth and the mean wealth. Those furthest from the mean wealth 

would activate more frequently, those closest to the mean would activate at a 

slower value of λ.  

 Inverse Poisson activation merely reversed the above rule. Those agents closest 

to the mean would activate fastest while those furthest from the mean (the 

richest and the poorest agents) would be the least likely to ‘share the wealth’.  
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It should be noted that there are many other options for establishing the values of λi. In 

order to create a distribution of wealth, each agent was endowed with a wealth ‘account’ 

equal to his index value. Thus, the first agent started with a wealth of 1 and the 1000th 

agent began with a wealth of 1000. Thus, the average wealth was 500.5, and the initial 

standard deviation was 288.675. Five runs were conducted for each activation scheme.  

Results	

 

Figure 31. Convergence in the Leveler Model 

 

As shown in Figure 31 the four activation schemes resulted in markedly different 

convergence rates. As the exponent of decay was the most important for these time series, 

shows the average coefficient of the time variable. Note that, for this simulation, time is 

defined in turns. In the theoretical construct, turns do not exist and time is defined in 

terms of the individual agents Poisson process.  
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Table 9. Decay Rates for Leveler Model by Activation Type 

Decay Rate Experimental Run 

Activation 1 2 3 4 5 

Random -0.2511 -0.2550 -0.2506 -0.2535 -0.2534 

Uniform -0.3455 -0.3520 -0.3399 -0.3467 -0.3472 

Poisson -0.4566 -0.4597 -0.4597 -0.4543 -0.4566 

Inverse Poisson -0.0190 -0.0196 -0.0168 -0.0195 -0.0203 

 

Thus, it is clear that these average decay rates differ consistently, and that they are 

quite stable once activation has been set. Further, the decay rate from the random 

activation process closely tracks the theoretical rate of -1/4. The obvious conclusion that 

the runs are different can be confirmed by a Fisher Exact test of any of the five runs 

compared with any other of the five runs would give a p-value of 0.004. (This could have 

easily been driven smaller with more runs, but the outcome is rather obvious from Table 

9 and Figure 31.) 

Conclusions	

The most important result was the replication – through simulation – of the theoretical 

result. The alignment of the random activation scheme decay rate with the theoretically-

predicted value of -1/4 implies that random activation most closely represents the natural 

process described in the theoretical model. Agents interact in accordance with their own, 

internal “clocks”, unaware of the actions of other agents. It also validates the 

conventional definition of a ‘turn’ as a population’s worth of agent activations. While that 

definition might have seemed contrived, it does appear to align with the system behavior 

predicted by the MC model.  
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This result is important because it allows the use of the theory-simulation analytic 

paradigm. The theoretical development led to the conclusion that, given the appropriate 

definitions of time and standard deviation, the mean convergence rate for a wealth-

averaging system should be ‘no greater than’ -1/4. Thus, as the assumptions about 

homogeneous, constant activation are relaxed, the impact on convergence can be 

observed through simulation. Simulation, therefore, can be used to extend the analytic 

reach of theory in such models. And, it has been shown, changing activation does impact 

the outcome patterns of this simple model. It is reasonable to assume that more complex 

models might see similar differences and experiments should be conducted to investigate 

such differences.  

While it is important merely to show that there are differences, it is also interesting to 

note that the differences are not of uniform magnitude. Clearly the inverse Poisson 

convergence rate is very much less (in absolute value) than the other convergence rates. 

Inverse Poisson activation was based on the assumption that the agents with the most 

extreme wealth would enter the wealth-swapping process the slowest.  

These results suggest that the choice of activation pattern can become an important 

tool for researchers attempting to simulate real-world self-organizing systems. That is, 

rather than treating activation as an arbitrary and confounding choice, it can become a 

treatment parameter for exploring various emergence phenomena. Often agent-based 

models are built in an attempt to mimic real-world behavior. It would not be unusual for 

the model-builder to grow acquire data or insights into the real-world activation patterns 
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of individuals. This might come from theory or there may actually be empirical data. If, 

in the real world this data is not stationary, then the researcher would have a tool to adjust 

the model structure to match behavior. This is especially true in the case of endogenous 

or state-based activation. In fact, most intuitive expectations for real-world systems 

would assume that activation would be based on state: diseased individuals will interact 

more rarely than healthy people; wealthier people normally trade stock with greater 

frequency, etc. If these differences can be parameterized, the activations schemes denoted 

here can help create a better model. 

The clustering of the convergence rates within the activation types is somewhat of a 

surprise, varying much less among runs with the same activation than between runs with 

different activation. Clearly activation has a dominant effect on this model’s variation. 

Thus, if one were to choose to create a model based on this construct (Leveler has been 

proposed as a real-world scenario for the movement of gossip across a population), then 

various activation schemes should be explored and reported. 

The original authors did not propose the leveler model as a potential input to policy of 

any sort. Thus, unlike the two earlier cases, there is no straightforward connection 

between these differences and policy recommendations. Even in this abstract case, 

however, there are hints toward a real-world impact on decisions and policies. Often tax 

or other financial policies have the goal – stated or unstated – to redistribute wealth 

among the population. In fact, the leveler model can be seen as a simple – and perhaps 

the simplest – redistribution model. It converges at the theoretical rate if the individuals 
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in the society are simply mechanical agents, each obeying the swap rules without 

adaptation, taking their place in line to swap their wealth at the appropriate but externally 

determined time. A more natural behavior, however would be to allow wealthier agents 

to reduce their rate or probability of doing a swap. This would cause the redistribution to 

take place at a different and possibly slower rate. In fact, this is shown on Figure 32. The 

curve marked “Natural” is the convergence rate if the activation rate were inversely 

proportional to the agent’s wealth. Thus, the wealthiest would resist the most and the 

poorest would enter the swap process the fastest. In fact, this result falls half way 

between the original Poisson scheme (agents furthest from mean wealth activate faster) 

and the inverse Poisson scheme (agents nearest to the mean wealth activate faster).  
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The conclusion for policy, therefore would be that in real world situations where 

individuals can avoid redistribution efforts, the redistribution rate would fall somewhat 

short of what one would expect based on mathematical equations alone.  

Figure 32. Leveler with Natural Behavior Included 
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Conclusions 

Replication	

In all three cases simulations that were described in earlier research were replicated. In 

Cases I and II these earlier models were explicitly described, while in Case III they were 

implied by the theoretical structure of the problem. This research, therefore, had to 

confront the issue of how to implement and replicate influential research. Failure to 

adequately replicate the published model would likely make research that extends the 

published model at the least unconvincing and probably impossible. As noted in the 

earlier chapter on methodology, many agent-based models were considered before these 

cases were selected. The Case I and Case II models were among the few that provided 

enough information on the algorithms used and the parameters and starting conditions 

that an adequate model can be examined. And, activation was clearly one of the critical 

specifications. 

The detail on how the original model’s agents were activated in the reference models 

ranged from highly specified (in Case I, the civil revolt model) to strongly implied (in 

Case II, the ZIT model), and finally to unspecified and left to the simulation designer 

(Case III). Simulations in which there are extensive reported results but with little 

information on how the agents were updated are among the most challenging to replicate. 

This places severe restrictions on the process of extending and exploring existing models, 
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and imbues the whole body of complex systems research with a disconnected, ‘stovepipe’ 

character. Many model results are reported, but very few are verified through replication. 

But, as one professor at George Mason has noted, “modelers are more likely to use your 

toothbrush than they are to use your model” (Kennedy, 2013). 

Generalized	Results	–	Activation	Makes	a	Difference	

All three cases have demonstrated that changing activation causes statistically 

significant differences in the quantified output parameters. This creates a replicable 

‘prediction’ ability in that, if the input parameters and the output data point were 

available for a given model (without knowing the activation), one could reliably 

distinguish which activation scheme was used. In some cases this distinction could be 

drawn with certainty, and in others it would be with high probability. While this is surely 

not sufficient to prove the general case that activation always makes a difference, it does 

eliminate the ‘null hypothesis’ that activation makes no difference and can be safely 

ignored. Thus, this research goes a long way to establishing that the potential importance 

of activation is a universal, necessary and certain fact of nature: an extension of 

knowledge.   

Sometimes activation only appears to makes a statistical difference. In Case I the 

policy difference would be to generate a different recommendation for ‘cop density’ or, 

by implication, troop strength necessary to sustain a ‘stability’ mission. This is listed as a 

key parameter in US military counterinsurgency doctrine and a subject of active research. 

The three activation schemes did not appear to substantially alter the recommendations of 
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the model, at least in the range of the parameters examined here. But, there are many 

instabilities and ‘tipping points’ in the behavior of complex systems and if the model 

were explored across a wider parameter space it’s possible that the statistical differences 

would grow to become policy differences.  

In Case II the policy question at hand centered on the efficiency and performance of a 

double-auction market. The original researchers measured whether the double-auction 

market delivered returns that were closest to the theoretical maximum and that wealth 

was not distributed disproportionately at the end of trading. Gode and Sunder, however, 

did not contemplate another important policy question, which was the rate of 

convergence or the length of time necessary to achieve this success. If activation is 

varied, it was shown, it was possible to envision a market in which there were many 

trades left to execute and many returns ‘on the table’. It is not difficult to envision how 

this can be extended to become an important policy question.  

Case III contemplated a simple model, but demonstrated the most distinct difference 

among activation schemes. The difference appeared across all activation schemes, and 

created a much greater variation than the variation observed through execution of 

different runs of the model. The Leveler model, however, was quite abstract, and no 

policy implications flow from this finding. As the brief literature survey showed and 

Aldous stated specifically (Aldous, 2013), the body of work that applies the physics of 

interacting particle systems to social systems is as rich and diversified as the corpus of 

research that falls under the umbrella term “game theory”. Aldous postulates that only a 
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lack of a common name has prevented the recognition of the large impact of IPS models 

on social theory and, by implication, on policy. Thus, the demonstration that activation 

choice has a strong influence on whether an IPS model follows the theoretical predictions 

has policy implication, albeit much more indirect than in Cases I and II.  

Activation can also be important to the effective operation of the simulation. Among 

the many decisions that must be made as simulations are executed is: when do we stop 

the model? In several of these cases, particularly in Case II and III endogenous activation, 

the models were far from running to completion when they were stopped. As these 

models were executed, moreover, it was noticed that some activation schemes took a long 

time to execute while others executed very quickly. And, the differences were not 

intuitive. For the Leveler model, it took 17 minutes to do 100 runs of uniform activation, 

but only 2 minutes to complete 100 runs of all the other activation types combined, 

including the much more complex inverse Poisson.  

Another important result is the confirmation that state-based or endogenous activation 

has the most reliable and substantial effect of all. It also allows a wide variety of 

activation schemes, even though only two were tried in Case II and III. This confirms 

earlier (but still recent) research (Fernández-Gracia et al., 2011), and applies it to the 

more policy-centric models. It takes a bit more coding to incorporate endogenous 

activation into a model, and perhaps a bit more experimentation to determine its impact, 

but the results above show that the benefits in diversity of model outcome are potentially 

worth it. 
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Activation	is	Also	a	Tool	

Case III emphasizes a more general outcome of this research: activation is more than a 

nuisance variable that must be determined, encoded, explained and reported. It also can 

be an important tool for examining natural systems, and extending theoretical models 

through simulation. In designing a simulation to implement a theory, activation should be 

matched to nature. It is not beyond reason that the activation process can be observed in 

the real-world system, and that data can be collected about this process. In such cases, 

matching activation to the known process can help build confidence that the model is 

effectively mimicking its real-world counterpart.  

It is not uncommon that a simulation, when first built, would deviate substantially 

from the natural system it seeks to model. Simulation designers often make adjustments 

to the model to determine if they have ‘left out’ some critical real-world parameter or 

behavior. In fact, this adjustment to experiment may represent the restatement of the 

hypothesis about what parts of the object system are important. Alternative activation 

schemes can and should be examined in this process.  

Contribution	

There are four main contributions associated with this work: 

 In the replication of models in three different domains, it was established that 

when the activation scheme was varied, there was variation of the outcome. 

This did not occur in all instances and in all models, but it certainly occurred 

enough to reject the null hypothesis that activation is always insignificant. 
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Because of this finding, published research in agent-based models must 

adequately describe the activation scheme if they are to be thorough and if they 

lay claim to be ‘replicable science’.  

 It was established that the replication process itself, if conducted on well-

documented models, reveals important details that may have been missed by 

the original researchers. For example, while Huberman and Glance claim to 

show that asynchronous activation causes the elimination of patterns of 

cooperation in a Prisoners’ Dilemma landscape model, it was determined that 

this loss only occurs in asynchronous random activation. Asynchronous 

uniform activation delivers the same patterns as synchronous activation. 

 The new, recently proposed endogenous (or state-based) activation scheme 

was shown to be a significant source of variation in outcome across two model 

cases. And, a new algorithm for creating and exploring endogenous activation 

(in Python) was proposed and implemented.  

 It was demonstrated that variation in the design of agent activation can extend 

the theoretical and equation-based models of interacting agents to real-world 

situations in which the assumptions of theory are violated. Thus, activation can 

be an instrument for extending the partnership between mathematical theory 

and computational science.  
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Future Research 

This project provided important insights into various models, as well as illuminating a 

number of issues important to all scientists who seek to apply agent-based modeling 

technology. Possibly more importantly, it opened up a fertile research field of replicating 

published models and extending peer-reviewed research.  

As a general rule, once a model code has been developed and the output aligned to 

natural systems or to published, widely accepted models of natural systems, a tool is 

available to examine the boundaries and the idiosyncrasies of the original results. For 

example, in each of the model replications discussed below, the question of scalability 

can be examined. Do the published results (not only the activation results, but the general 

outcomes of the model) obtain if the number of agents is increased tenfold? What about 

other orders of magnitude?   

Extending	Analysis	of	Civil	Revolt	

They key purpose of modeling self-organizing civil violence is to help with the 

decisions that security and military planners must make. Chief among these are the 

commitment of troops, which is represented by the ‘cop density’ parameter. The 

activation research reported here was limited to determining the impact of activation on 

an exact replication of the published model. Model explorations at different cop densities, 
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however, revealed important variation in emergent violent ‘outbreaks’. Further insights 

can surely be developed as other parameters are varied along with activation.  

Epstein examined civil violence on a relatively small scale. Personal conversations 

with the authors of Henscheid, et al. (2010) show that many emergent patterns disappear 

at larger scale. The civil violence model would be a particularly important case for 

examination of scalability. Of course, the time involved in running this model at larger 

scales would be substantial, and NetLogo does not create the most efficient code.   

Epstein extended his analysis of civil unrest to other situations in his paper (2002). In 

particular, he changed the conditions of the agents and the rules to replicate systems of 

ethnic cleansing, similar to events in former Yugoslavia. Follow-on work can examine if 

these results are independent of activation.  

The civil revolt model is the only one in which endogenous activation was not 

explored. Implementing state-based activation schemes in NetLogo is awkward, and may 

well slow down the model even further. But, the Case I results fall in the category of 

statistical differences that do not appear to affect policy considerations. If the more 

influential changes apparent in other models when endogenous activation is used apply to 

the civil revolt ABM, it may be that activation would impact cop density (and, through 

that, policy recommendations).  

Finally, the NetLogo library also has a replication of the Epstein model. It produces 

similar results to the model built for this project, but there appear to be subtle differences. 

The model uses the ‘out of the box’ activation scheme available in NetLogo, uniform 
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activation. (Every ‘turtle’ gets activated once per turn, and the order is shuffled between 

turns.) This creates an interesting case in which two models were written in the same 

language. Further research could implement other activation schemes in that model and 

compare the results side-by-side with the model reported here. Does it give the same 

results? Do all these results scale? And, if patterns disappear, do those patterns disappear 

at the same point when the scale increases? 

Further	Investigations	with	the	Zero‐Intelligence	Traders	

(Constrained)	Double	Auction	Market	Model	

The ZIT market simulation discussed here was tied very closely to the original 

research article (Gode & Sunder, 1993). The mere fact that this model was referred to by 

over 1100 other peer-reviewed reports demonstrates that this is a productive field for 

research into the design of markets. Extensions can be worked in two directions: the four 

activation schemes can be examined in more complicated market models, or the 

activation schemes themselves can be made more complicated.  

A good example of the latter expansion would be an exploration of different Poisson 

probabilities. What if the richest activated fastest? Or the poorest? What if those with the 

history of the most trades traded more often (simulating individuals ‘addicted’ to 

trading). What about those with the fewest trades (Simulating a diminishing motivation to 

trade.)?  
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Scalability is the simplest expansion, and could be quite interesting. What happens to 

this model if it is expanded from twelve traders to 1200? (The execution penalty is 

probably much less than Case I because this model was created in Python.) 

With a large trading population, an examine the wealth distribution with different 

activation schemes might create interesting patterns. A common measure of the 

distribution of wealth is the “Genie’ coefficient. It was not calculated in the original 

research because the numbers of agents were small and their individual wealth accounts 

did not appear to vary much. But what would happen in a larger population? 

The Gode and Sunder paper was a straightforward representation of a single market 

structure, the double auction market. They were trying to determine what kind of 

efficiencies market, in its simplest form, would provide. Other researchers have 

compared the double auction market with other market structures. They generated 

findings on the relative strengths and weaknesses of different markets. Thus, a valuable 

extension of this research would be to determine if the choice of activation scheme 

changed that description of strengths and weaknesses. This would move the ZIT model 

further in the direction of policy recommendations, especially as financial regulation 

policy is in flux and may require the support of simulations to validate proposed new 

regulations. 

Even working within the framework of the zero-intelligence trader model,, there are 

many ways to make the market more complex: traders might be allowed to trade in 

multiple shares, the same trader might allowed to both buy and sell, etc. All these 
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refinements, however, would come at the cost of simplicity. Model simplicity probably is 

what intrigued the many follow-on researchers, and deviating from that would likely 

reduce the apparent generality of the ZIT simulation.  

Going	where	No	Markov	Chain	Model	Has	Gone	Before	

I found that computational analysis can reach areas of the behavior space that are not 

accessible to equation models. If there are real world systems that fit this description, 

computational approaches – specifically ABMs – might expand the toolkit for those who 

would optimize, forecast, and determine risk. 

General	Expansion	of	Activation	Analysis	

This has been an examination of three of the many agent-based models described in 

the literature. As noted above, hundreds of new ABMs are created and used in research 

every year. Many of these could be productively re-engineered to examine the impact of 

activation. In the process of preparing this dissertation, for example, two published 

results were investigated to the point of actually writing the model: an Ising model of 

stock price formation that replicates the real-world statistics of a price time series 

(Sznajd-Weron & Weron, 2002), and a large model of the labor market. In addition, a 

model of the propagation of fraud in a company had an excellent description , and the 

authors invited follow-on researchers to investigate their results for different activation 

schemes. 

As noted in Cases II and III, the recent discoveries about the strong dependence of 

disparate results on state-based or endogenous activation provides motivation to examine 
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this further. Endogenous activation conditions provide nearly an endless potential for 

varying the rules of activation. The earliest proposals suggested varying activation rates 

depending upon the agents’ time since the last activation. (This, of course, would 

eliminate the possibility for replicating an exponential distribution and its accompanying 

‘memoryless’ property.) Agents activation rates could be varied based upon their 

cumulative characteristics (wealth, for example), or based upon some quantitative value 

from their last activation (profit from the last trade, for example). Finally, activation rate 

might even depend on some parameter associated with their neighbors, which would have 

echoes to the original prisoner’s dilemma research (Nowak & May, 1992; Huberman & 

Glance, 1993). In that model structure, agents might activate – reassess their prisoner’s 

dilemma strategy – if their score is much less than their neighbors or much better. Only 

the researcher’s imagination – perhaps spurred by observations on natural world systems 

– would limit the possibilities under endogenous activation rates. And, it is hoped that 

progress and insights produced by such explorations would motivate more replications of 

agent-based models and break down the barriers that exist among ABM research 

communities.  



149 

Appendix A 

Supplementary	Graphics	for	Zero	Intelligence	Trader	Model	

Numerous graphic explorations were made with the ZIT model that would have 

interrupted the text. They are presented here to document the full scope of model 

behavior explorations. These graphics are organized market by the three output measures: 

total wealth, dispersion of wealth, and timing of last trade. Within each market, the 

graphics for the four activation schemes are depicted. A small number of these were also 

used in the main text. 
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Total	Wealth	

Presented here (Figure 33) are the full results of runs that show total wealth. All four 

markets are shown; each market is shown in one row. Each column represents one of the 

four activation patterns, random, uniform, Poisson, and inverse Poisson.  

Figure 33. Total Wealth: All Markets, All Activation Patterns 



151 

Note that both the vertical and horizontal scales differ from one plot to another. This 

figure is actually provided to allow comparisons among the shapes of the histograms. 

Clearly these differ substantially across the activation patterns. 
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Wealth	Dispersal	

Figure 34 shows the histograms of the dispersion of wealth for all sixteen cases. Like 

its predecessor, it depicts markets in the different rows, and activation schemes in 

different columns. Again, the scales are not constant across all cases.  

Figure 34. Dispersion of Wealth: All Markets, All Activation Patterns 
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Last	Trade	Timing	

Similar results are shown for the timing (in turn number) of the last trade. As in the 

other output graphics, it should be noted that the scales vary and these plots are shown to 

compare shapes rather than absolute values.  

Many statisticians believe that Q-Q plots are much more probative than histograms. 

Included below are the Q-Q plots for all the markets and all the activations for the last 

trade over 2000 runs. The QQ plots of the same data show differences as well. 

To build the proper QQ plots, it must be noted that the above times are clearly not 

normally distributed (there are no times below zero, for example), but log-normally 

Figure 35. Last Trade Timing: All Markets, All Activation Patterns 
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distributed. Thus, the QQ plots depicted in Figure 36 test the experimental distributions 

against a log-normal distribution.  

 

Figure 36. QQ Plots of All Last Turn, All Activations 
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