
WIDEBAND AND MULTIBAND TEMPORAL SENSING
FOR OPPORTUNISTIC SPECTRUM ACCESS

by

Joseph M. Bruno
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Electrical Engineering

Committee:

Dr. Brian L. Mark, Dissertation Co-Director

Dr. Yariv Ephraim, Dissertation Co-Director

Dr. Zhi Tian, Committee Member

Dr. Chun-Hung Chen, Committee Member

Dr. Monson H. Hayes, Chair, Department
of Electrical and Computer Engineering

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Spring Semester 2017
George Mason University
Fairfax, VA



Wideband and Multiband Temporal Sensing for Opportunistic Spectrum Access

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Joseph M. Bruno
Master of Science

The Johns Hopkins University, 2013
Bachelor of Science

University of Delaware, 2011

Co-Directors: Dr. Brian L. Mark, Professor and Dr. Yariv Ephraim, Professor
Department of Electrical and Computer Engineering

Spring Semester 2017
George Mason University

Fairfax, VA



Copyright c© 2017 by Joseph M. Bruno
All Rights Reserved

ii



Dedication

I dedicate this dissertation to my family. My wife Stephanie, my parents Mark and Irene,
and my sisters Anna and Maria have given me so much love and support, for which I am
eternally grateful.

iii



Acknowledgments

I would like to thank my advisors, Dr. Brian Mark and Dr. Yariv Ephraim. They have
invested many hours into my knowledge and abilities, and I have benefited immensely from
their hard work. Furthermore, they have held me to the highest standard, which I absolutely
appreciate. Thank you very much for your support.

I would like to thank my committee members, Dr. Zhi Tian and Dr. Chun-Hung Chen.
I have had the pleasure of working with them on portions of this dissertation, and I value
their expertise and willingness to provide quality input and feedback.

I would like to thank the National Science Foundation, who financially supported my
research under grants 1421869 and 1205453.

I would like to thank my colleagues at the JHU Applied Physics Lab, where I have
many wonderful coworkers, too numerous to name. Without such bright, hard-working,
and reliable people around me, I would never have found the balance required to complete
my dissertation research.

I would like to thank my family, who have always been there for me. Thank you for
bringing stability to my life when I was neck-deep in my studies and research. I would
like to thank my parents for teaching me the importance of academic achievement and
providing me with the opportunities to do well in school. I would like to thank Stephanie
for her endless support, and somehow knowing when I needed a break or when I needed to
be encouraged to get back to work. I could not have done this alone.

iv



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions and outline of dissertation . . . . . . . . . . . . . . . . . . . . 3

2 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Narrowband Sensing with Hidden Markov Models . . . . . . . . . . . . . . . 5

2.1.1 Accurate Parameter Estimation and User Detection . . . . . . . . . 5

2.1.2 User Occupancy Prediction . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Markov Modulated Gaussian Process . . . . . . . . . . . . . . . . . . 7

2.1.4 Score Function and Fisher Information Matrix . . . . . . . . . . . . 7

2.2 Wideband Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Wideband Energy Detection . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Wideband Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Multiband Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Optimal Compute Budget Allocation . . . . . . . . . . . . . . . . . . . . . . 12

3 Multiband Spectrum Sensing Based on Markov Modulated Gaussian Processes . 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Multiband Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 PU Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Cognitive Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.4 Markov-Modulated Gaussian Process . . . . . . . . . . . . . . . . . . 16

3.3 Multiband Spectrum Sensing From Observed Continuous-time Markov Model 17

3.3.1 Moment Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Allocation of Sensing Effort . . . . . . . . . . . . . . . . . . . . . . . 18

v



3.3.3 Bias of Moment Estimator in Noise . . . . . . . . . . . . . . . . . . . 19

3.4 Multiband Spectrum Sensing based on a Markov-Modulated Gaussian Process 20

3.4.1 MMGP Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Allocation of Sensing Effort . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3 Averaging of Parameter Estimates . . . . . . . . . . . . . . . . . . . 26

3.4.4 MAP Decision Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Simulation and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 A Computing Budget Allocation Approach to Multiband Spectrum Sensing . . . 32

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 MMSE Multichannel Estimation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 OCBA Multichannel Parameter Estimation . . . . . . . . . . . . . . . . . . 39

4.4.1 OCBA Sensing Allocations . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Channel Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 A Recursive Algorithm for Wideband Temporal Spectrum Sensing . . . . . . . . 49

5.1 Comparison of Wideband Spectrum Sensing Techniques . . . . . . . . . . . 51

5.1.1 Wideband Energy Detector . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.2 Wideband Edge Detector . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.3 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 PU Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 Cognitive Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Recursive Algorithm for Wideband Temporal Sensing . . . . . . . . . . . . 58

5.3.1 Wideband Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2 Channel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.3 Hidden Markov Model for Narrowband Sensing . . . . . . . . . . . . 61

5.3.4 Baum-Welch Algorithm and MAP Detector . . . . . . . . . . . . . . 62

5.3.5 Channel Usability and Channel Capacity . . . . . . . . . . . . . . . 64

5.3.6 Channel Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



5.3.7 Algorithm Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Simulation and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Simulation 1: Comparison of Techniques . . . . . . . . . . . . . . . . 70

5.4.2 Simulation 2: Performance at Varying SNR . . . . . . . . . . . . . . 71

5.4.3 Simulation 1 Results: Qualitative Comparison of Techniques . . . . 71

5.4.4 Simulation 1 Results: Quantitative Comparison of Techniques . . . . 72

5.4.5 Simulation 2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 An Edge Detection Approach to Wideband Temporal Spectrum Sensing . . . . . 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Wideband Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.2 PU Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.3 Cognitive Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Comparison of Wideband Spectrum Sensing Techniques . . . . . . . . . . . 82

6.4 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4.1 Channelization of Received Wideband Signal . . . . . . . . . . . . . 84

6.4.2 Sensing of Narrowband Subchannels . . . . . . . . . . . . . . . . . . 86

6.4.3 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 Multiband Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Wideband Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1 Multiband Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . 94

7.3.2 Wideband Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . 95

7.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Derivation of Conditional Distribution of a Rayleigh Channel Observed through

an Energy Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1 Narrowband Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.2 PU Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Cognitive Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



B Derivation of the Fisher Information Matrix for a 2-State Markov-Modulated

Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.2 Two-State Log Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.3 Important Expected Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.3.1 Expected Number of Jumps Between States . . . . . . . . . . . . . . 101

B.3.2 Expected Number of Samples in a State . . . . . . . . . . . . . . . . 106

B.4 Score Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.4.1 Score for Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . 108

B.4.2 Score for Gaussian Process Means . . . . . . . . . . . . . . . . . . . 108

B.4.3 Score for Gaussian Process Variances . . . . . . . . . . . . . . . . . . 109

B.5 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.6 Asymptotic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C Derivation of the Fisher Information Matrix for a CTMC . . . . . . . . . . . . . 114

C.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.2 Log Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.3 Log Likelihood In Terms of Mean Dwell Time and Transition Probability . 115

C.4 Score Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.5 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.6 Expected Number of Jumps Between States . . . . . . . . . . . . . . . . . . 117

C.7 Expected Time in States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.8 Asymptotic Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.9 Asymptotic MMSE Allocations . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

viii



List of Tables

Table Page

3.1 Continuous-time Markov process channel parameters. . . . . . . . . . . . . 28

3.2 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Algorithm complexity parameters. . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



List of Figures

Figure Page

3.1 Direct observation of PU state . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Effect of a decision error on sojourn time estimates . . . . . . . . . . . . . . 20

3.3 Multiband sensing performance at 10 dB SNR . . . . . . . . . . . . . . . . . 29

3.4 Multiband sensing performance at 0 dB SNR . . . . . . . . . . . . . . . . . 30

3.5 Multiband sensing performance at -5 dB SNR . . . . . . . . . . . . . . . . . 30

4.1 Continuous-time Markov chain model for PU state of a single channel. . . . 35

4.2 MSE for all channels using Equal, MMSE, and OCBA allocations . . . . . . 43

4.3 MSE for best channel using Equal, MMSE, and OCBA allocations . . . . . 43

4.4 MSE for all channels using Equal, MMSE, and OCBA allocations . . . . . . 44

4.5 MSE for optimal subset using Equal, MMSE, and OCBA allocations . . . . 45

4.6 Probability of correct selection using Equal, MMSE, and OCBA allocations 46

4.7 Expected opportunity cost using Equal, MMSE, and OCBA allocations . . 46

5.1 Results of a wideband energy detector for OFDM signals with 10 dB SNR

and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . . . . . . . . 53

5.2 Results of a wideband energy detector for GMSK signals with 10 dB SNR

and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . . . . . . . . 54

5.3 Results of a wideband edge detector for OFDM signals with 10 dB SNR and

100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . . . . . . . . . . . 54

5.4 Results of a wideband edge detector for GMSK signals with 10 dB SNR and

100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . . . . . . . . . . . 55

5.5 A wideband channel, i.e., a spectrum band with bandwidth W0, organized

into a balanced binary tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 A simple digital downconvertor for signal channelization. . . . . . . . . . . . 60

5.7 Results of wideband temporal spectrum detector for OFDM signals with

10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . 72

5.8 Results of wideband temporal spectrum detector for GMSK signals with

10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . 73

x



5.9 ROC curve for wideband energy detector for OFDM signals with 10 dB SNR

and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . . . . . . . . 73

5.10 ROC curve for wideband energy detector for GMSK signals with 10 dB SNR

and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . . . . . . . . 74

5.11 ROC curve for wideband edge detector for OFDM signals with 10 dB SNR

and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . . . . . . . . 75

5.12 ROC curve for wideband edge detector for GMSK signals with 10 dB SNR

and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . . . . . . . . 75

5.13 ROC curve for wideband temporal spectrum detector for OFDM signals with

10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . 76

5.14 ROC curve for wideband temporal spectrum detector for GMSK signals with

10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles. . . . . . . . . . . 76

5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Results of a wideband edge detector for OFDM signals with 10 dB SNR and

100%, 50%, 25%, and 12.5% duty cycles [12]. . . . . . . . . . . . . . . . . . 83

6.2 Results of a wideband temporal energy detector for OFDM signals with 10 dB

SNR and 100%, 50%, 25%, and 12.5% duty cycles [12]. . . . . . . . . . . . . 84

6.3 Results of wideband temporal energy detector for OFDM signals with 5 dB

SNR and 100%, 50%, 25%, and 12.5% duty cycles [12]. . . . . . . . . . . . . 85

6.4 Results of the proposed wideband temporal edge detector for OFDM signals

with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles [12]. . . . . . 89

6.5 Results of wideband temporal detectors for OFDM signals with 10 dB SNR. 90

6.6 Results of wideband temporal detectors for OFDM signals with 5 dB SNR. 90

6.7 Results of wideband temporal detectors for OFDM signals with 0 dB SNR. 91

xi



Abstract

WIDEBAND AND MULTIBAND TEMPORAL SENSING FOR OPPORTUNISTIC SPEC-
TRUM ACCESS

Joseph M. Bruno, PhD

George Mason University, 2017

Dissertation Co-Directors: Dr. Brian L. Mark, Dr. Yariv Ephraim

Opportunistic spectrum access is a proposed solution to the problem of increasing

scarcity of radio resources. In certain bands, spectrum is utilized extremely inefficiently

by the licensed, or primary, users. Opportunistic spectrum access would allow a secondary

user to utilize spectrum when the primary user is idle while not causing harmful interference

when the primary user is active. Spectrum sensing techniques determine portions of the

spectrum that are occupied by primary user signals at a given time and location. Temporal

sensing of a known narrowband channel involves modeling the temporal dynamics of the

primary user signal and performing estimation and prediction of the primary user state.

Wideband sensing involves determining which parts of a given wide spectrum are occupied

or unoccupied at a given point in time. Both temporal and wideband sensing have been

studied extensively in the literature. There has been relatively little work on temporal

sensing over a wide spectrum band with either well-defined or unknown channels.

In this dissertation, novel approaches to wideband and multiband temporal sensing are

developed. A class of hidden Markov models is proposed to jointly model time dynamics of

the primary system and channel impairments between the primary user and the secondary

user over a wide spectrum band. Methods to segment a wide spectrum band into individual



channels and to optimize parameter estimation over the channels are proposed. Simulation

results are presented to evaluate the effectiveness of the proposed wideband and multiband

temporal sensing schemes. Some comparisons to performance bounds are provided.
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Chapter 1: Introduction

1.1 Motivation

As demand for radio resources continues to grow, novel approaches to spectrum usage must

be developed to meet demands. Many of these innovations have included enhancement

to physical layers, development of better communications hardware, and development of

more efficient communications protocols. While these improvements are welcome, they do

not solve the problem of inefficiency in spectrum allocations. Today, radio frequency (RF)

bands are statically allocated to a licensed user. Some bands, such as the allocated cellular

bands and the industrial, scientific, and mechanical (ISM) bands are heavily utilized, but

other bands are woefully underutilized by their primary users [24]. Opportunistic spectrum

access (OSA), known also as dynamic spectrum access (DSA), is a proposed solution to the

problem of inefficient spectrum allocations. In OSA, the band is shared by the licensed user,

referred to as the primary user (PU), and an unlicensed secondary user (SU). The SU will

be responsible for detecting the presence of the PU and only utilizing the channel when the

PU is inactive. A perfect OSA system would allow a SU to utilize all idle periods, where the

PU is not in use, without causing harmful interference to the PU during its active periods.

For a SU to efficiently operate, it can attempt to predict changes in PU state and act

accordingly. Because of this, parametric modeling of PU activity is desired. A popular

model for prediction is the use of a Markov process to model the PU activity [3, 43, 55].

Some work has been done to extend this model to the multiband case, where many channels

are sensed jointly [55], but the theory is relatively undeveloped and many considerations

such as noise and fading between the PU and SU have not yet been investigated. To the

author’s knowledge, no research has been done to model the wideband case, where channel

boundaries are unknown, using Markov processes.

1



1.2 Problem statement

In this dissertation, the approach of modeling the PU as a Markov process is extended

to the wideband and multiband case, specifically using Hidden Markov Models (HMMs).

Hidden Markov models allow the SU to account for varying signal-to-noise ratio (SNR) and

other channel conditions. HMMs are applied to correct specific shortfalls in the current

state-of-the-art for wideband and multiband sensing.

In wideband spectrum sensing, the SU is missing external knowledge of channel alloca-

tions, and must perform segmentation to jointly detect channel boundaries and PU activity.

Current wideband spectrum sensing research has focused on segmenting the spectrum in

one of two ways: wideband energy detection [13, 29], and wideband edge detection [56].

The wideband edge detector, although it can perform better than the energy detector on

certain signals, is a signal-dependent detector. Signals with sharp band edges will be de-

tected accurately, but signals with sloping band edges will not be detected reliably, even in

very high SNR. Both detectors have a shortfall in that they require a time-average power

spectral density (PSD) for accurate detection. The time averaged PSD estimate is not a

problem if the PU is always either busy or idle over a long time window, but if the PU has

rapid changes over time, the detector reliability can be degraded. Depending on the PU

duty cycle, some amount of noise will be averaged into the PSD estimate. If the PU duty

cycle is low enough, a SU using traditional wideband sensing algorithms will not reliably

detect the PU and possibly cause unwanted interference.

In multiband spectrum sensing, channels have already been defined, but a SU must scan

over many channels to detect PU activity. Rather than spending fixed durations on each

channel, it is desirable to optimize sensing time allocations for each channel. In [55], a

multiband system is modeled such that there are many channels, each with an independent

PU. The PU is modeled as a continuous time Markov process, and the transition rates, λ1

and λ2 are estimated. Sensing periods are allocated such that the Cramér Rao bound (CRB)

of the transition rate estimates for all PUs is minimized. While this approach is generally

promising, several simplifications were made to achieve nice theoretical results. These
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simplifications rendered the multiband algorithm proposed in [55] very impractical. First,

the PU was modeled as a continuous-time Markov process (CTMP), where the PU state is

directly observed. This assumption is impractical because the PU state typically must be

inferred in a noisy environment. Another shortcoming is that the optimal sensing periods

rely on a sensing scheme where sensing durations increase without bound. In a practical

OSA system, sensing durations remain finite. IEEE 802.22 [2] and IEEE 802.11af [1] may be

referenced as examples of OSA designs that include finite-length sensing intervals. Finally,

the objective of minimizing MSE across all channels allowed for the derivation of nice closed-

form solutions, but it does not closely match what a practical SU would do. A practical

SU would want to consider the usability of a channel while allocating resources. Suppose

one channel is determined to be useless due to having few spectrum opportunities, and a

second channel is determined to be promising, having many spectrum holes, a SU would

want to focus on estimation of the promising channel, such that it can use the channel

more effectively. The objective of minimizing MSE does not necessarily motivate the SU to

allocate more sensing time to promising channels.

1.3 Contributions and outline of dissertation

The contributions of this document are outlined as follows.

In Chapter 2, background and literature review are given. Research on wideband sens-

ing, multiband sensing and hidden Markov models is discussed.

In Chapter 3, the problem of multiband spectrum sensing is considered. A type of HMM

is proposed as a solution to multiband optimization, where sensing durations are assigned to

each channel in a set based on previously-estimated parameters. The objective of variance

minimization for all sojourn time estimates is discussed.

In Chapter 4, a new method of multiband spectrum sensing which allows for maximiza-

tion of many different benefit functions is introduced. Benefit functions may be chosen by

an SU to achieve a specific objective. Results from simulation optimization are leveraged

to facilitate fast selection of the best channels, based on a given criterion.
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In Chapter 5, the application of hidden Markov models to wideband spectrum sensing

is developed in detail. To address the shortfall of existing wideband sensing algorithms,

that PU bursting is not properly modeled, an HMM-based sensing algorithm is used in a

recursive tree search for channel boundaries. By modeling the PU as an HMM, the SU

can obtain accurate PU power level estimates in the idle and busy states. Using this pair

of estimates, noise is not averaged into any PSD estimate. Based on Neyman-Pearson

hard decisions from the PU parameter estimation, the locations of channel boundaries are

detected.

In Chapter 6, the technique developed in Chapter 5 is extended. The result of the

recursive channel search is generalized as a conditional form of the PSD. Multi-resolution

edge detection is applied to this conditional PSD, allowing for more accurate spectrum

sensing at lower SNR.

In Chapter 7, results are summarized, and proposed follow-on research is discussed.
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Chapter 2: Background and Literature Review

Spectrum sensing for opportunistic spectrum access has been well-studied, and a relatively

rich body of research is available for narrowband temporal spectrum sensing. Although

some research into wideband and multiband spectrum sensing has been published, these

more general spectrum sensing problems still have plenty of room for innovation and theo-

retical investigation. In particular, many of the innovations of narrowband temporal spec-

trum sensing may be applied to wideband and multiband sensing problems. In this chapter,

background research on wideband and multiband spectrum sensing is discussed. Addition-

ally, we discuss narrowband spectrum sensing research that uses hidden Markov models

(HMMs). A motif of this dissertation is that HMMs may be used to simplify difficult multi-

band and narrowband sensing problems, and that research into HMMs in the narrowband

case may serve as the foundation for the wideband and multiband cases.

2.1 Narrowband Sensing with Hidden Markov Models

For narrowband spectrum sensing, Hidden Markov Models (HMMs) have been proposed

for estimation of bursty signals and prediction of channel occupancy [3, 43]. Ephraim and

Merhav give a thorough review on HMMs in [21].

2.1.1 Accurate Parameter Estimation and User Detection

Many narrowband sensing methods, such as energy detection and cyclostationary detection,

require integration over long windows for reliable detection [65]. If the PU is bursting,

cycling between busy periods and idle periods, detector performance can be degraded. If

the PU changes state during an estimation window, energy from busy and idle periods will

be averaged together, which will increase the probability of a detection error. By modeling
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the PU as a 2-state HMM, the Baum-Welch algorithm [9], or equivalently, the Expectation

Maximization (EM) algorithm, can be used to estimate the PU parameter. During the

expectation phase of the Baum-Welch algorithm, an auxiliary function is calculated as the

conditional mean of the logarithm of the complete statistics given the observations and a

current estimate of the parameter. During the maximization phase, the auxiliary function

is maximized over the parameter and thus provides a new update of the current estimate

of the parameter.

2.1.2 User Occupancy Prediction

Besides improving detector reliability, HMMs provide additional power in that they enable

prediction of future PU states [3, 43]. When the parameter of the HMM is accurately

estimated and a record of recent data has been obtained, the SU may predict future states

of the PU. This prediction power can allow a SU to overcome hardware latency and stop

transmitting or change channels if the PU is likely to come online. Use of an HMM for

modeling PU dwell times is limited in the sense that discrete-time Markov processes always

have geometric dwell time distributions, which is rarely a realistic model. Semi-Markov

models, Markov models whose dwell times may be from any distribution are proposed

in [3]. In general, semi-Markov processes are impractical from an implementation standpoint

because, although an EM algorithm has been proposed, the computational complexity is

relatively high [64]. Nguyen et al. proposed a hidden bivariate Markov model (HBMM)

for more accurate modeling of PU dwell distributions [43]. An HBMM is a hidden semi-

Markov model, but with the additional advantage in that it may be treated like a standard

HMM. The ability to treat a bivariate Markov process as a standard Markov process allows

us to use the Baum-Welch algorithm for efficient parameter estimation and other results

on HMMs. A bivariate discrete-time Markov process has dwell times that come from a

discrete phase-type distribution, of which the geometric distribution is a special case [22].

The ability of an SU to make predictions is substantially enhanced by using an HBMM,

especially when looking many samples in the future [43].
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2.1.3 Markov Modulated Gaussian Process

Similar to the HMM is the Markov-modulated Gaussian process (MMGP). The primary

difference between the HMM and the MMGP is that the underlying Markov process is

discrete-time for the HMM and continuous-time for the MMGP. An EM algorithm for

parameter estimation of a MMGP is derived in [47]. The MMGP is interesting because

the the continuous-time nature of the underlying Markov process does not require selection

of a sample rate as part of the model. The parameter estimator may sample the data at

whatever rate is deemed appropriate for the application. To our knowledge, no research has

previously been done on spectrum sensing using MMGPs.

2.1.4 Score Function and Fisher Information Matrix

The score function and Fisher information matrix (FIM) are used for a variety of statistical

applications, but are generally difficult to calculate for stochastic processes with recursive

definitions such as Markov processes [22]. In [39], Lystig and Hughes derived exact algo-

rithms for the score function and FIM based on the forward recursion calculated during the

expectation phase of the Baum-Welch algorithm [9].The calculated score function can pro-

vide statistical insight such as confidence intervals, and is used in Rydén’s recursive online

HMM parameter estimator [49, 54]. The inverse of the FIM gives the Cramer-Rao lower

bound on the covariance matrix of any unbiased estimator of the parameter. [32]. The FIM

can therefore be used to test model design. The FIM is used in [55] to determine sensing

time allocations across multiple channels.

2.2 Wideband Spectrum Sensing

The problem of wideband spectrum sensing revolves around channel segmentation, the

process of dividing a band into component channels. These channels may be heterogeneous

in bandwidth and waveform. Wideband spectrum sensing is required as an initialization

phase if no external channel information is given. In many use cases, wideband spectrum
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sensing may not be strictly required due to externally defined channels. One such use case

is TV whitespace applications, where 6 MHz channels are given. An opportunistic spectrum

access system that is operating without externally-defined channels will need a way to find

channel boundaries for subsequent sensing applications. Most of the wideband spectrum

sensing literature is divided into energy detection and edge detection techniques.

2.2.1 Wideband Energy Detection

The simplest and most pervasive wideband sensing method is wideband energy detection,

a wideband extension from the classic narrowband energy detector proposed in [58]. Wide-

band energy detection involves estimation of the power spectral density (PSD) and using

thresholds to determine subband occupancy. A variety of PSD estimators is available,

including parametric autoregressive modeling, averaged periodograms, and multitaper esti-

mation [29]. Many papers, including [37,46], have leveraged averaged periodogram methods,

such as the Bartlett [8] or Welch [62] methods. In [23], the multitaper method was used to

estimate the PSD, showing detector performance improvement over averaged periodograms.

A drawback to wideband energy detection is that to reliably detect low-energy signals,

many estimates must be averaged together over time [60]. This is handled naturally when

averaged periodograms are used, but multitaper estimation must also average over time if

detector sensitivity is to be improved. Averaging over time will increase detector reliability

if the PU signal is continuous in nature. However, if the signal is bursting, noise energy

will be averaged into the estimator, reducing reliability. The performance degradation from

averaging over time is based on the duty cycle. High duty cycle signals will have little

degradation in detector sensitivity due to averaging, but detection of low duty cycle signals

will be severely degraded. In [46], use of a maximum hold instead of an average was proposed

to combat this degradation. Although the maximum hold would prevent averaging of noise

into the estimator, it would increase the false alarm rate, especially at low SNR [60].
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2.2.2 Wideband Edge Detection

Another common wideband spectrum sensing method is edge detection, leveraging work

in image processing to find discontinuities in the PSD. A fundamental treatment of edge

detection is given by Canny in [14]. In [63], PSD discontinuities are found using the first

derivative of the PSD.

The multiscale wavelet product, a wideband edge detection method proposed by Tian

et al. has been widely cited in the cognitive radio literature [56]. To perform the proposed

wideband edge detection, we start by by estimating the PSD, Sr(f), of received signal r(t).

We then decompose Sr(f) into a set of resolutions using the continuous wavelet transform

(CWT). The CWT of Sr(f) for a resolution s is given by

Ws {Sr(f)} = Sr(f) ∗ φs(f) , (2.1)

where ∗ is the discrete-time convolution operator and φs(f) is a Gaussian wavelet of scale

s, given by:

φs(f) =
1

s
φ

(
f

s

)
. (2.2)

The jth resolution of the PSD has scale s where s = 2j and j = 1, 2, . . . , J . Once the PSD

is decomposed into component resolutions using the CWT, edge detection is performed by

taking the first derivative of each component resolution:

W ′s {Sr(f)} = s
d

df
(Sr(f) ∗ φs(f)) . (2.3)

Finally, we compute the multiscale wavelet product from the resulting gradient estimates:

UJ {Sr(f)} =

j∏
j=1

W ′s=2j {Sr(f)} . (2.4)
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The rationale behind computing the multiscale product is that the noise at the various reso-

lutions is uncorrelated, while signal at the various resolutions is correlated. By multiplying

the component resolutions together, the signal is amplified, while the noise is not, resulting

in noise suppression [50].

2.2.3 Compressed Sensing

A class of sensing algorithms known as compressive sensing (CS) has been proposed for

surveying very wide bandwidths with sub-Nyquist sampling rates. Because much of the

radio spectrum is underutilized, available bands may be represented as a sparse dataset,

and depending on the sparsity order of the dataset, the wideband signal may be sensed at a

fraction of the Nyquist rate [53]. To perform sub-Nyquist sampling, the signal time series is

divided into length-M blocks of Nyquist-rate samples, of which K samples are kept, giving

an undersampling fraction of N
K . Reconstruction of the sparse PSD from the undersampled

data is accomplished by solving for a linear inverse, which in the sparse case, requires a

numerical solution [57]. To select an appropriate under sampling fraction, the cognitive

receiver must have prior knowledge of the PU sparsity order. An online sparsity estimator

has been proposed in [52] that can be used to quickly determine an undersampling ratio.

Although CS can be utilized to sense much wider bandwidths than can be done with

traditional analog to digital conversion hardware, the result of CS typically involves a static

PSD estimate. For example, in [57], the estimated sparse PSD is analyzed with the wavelet-

based edge detector proposed in [56]. Because current CS methods rely on a static PSD

estimate, they suffer from a similar shortfall where low duty-cycle PUs can drastically

reduce the detector sensitivity. In [53] it is stated that the state of the art CS methods are

inadequate to properly handle sparsity in time and space.
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2.3 Multiband Spectrum Sensing

Multiband spectrum sensing involves accurate estimation of PU parameters across multiple

channels. Given a finite observation time, a SU should develop a sensing plan, where the

times spent on each channel are chosen to minimize some objective function.

A method for allocating sensing times for multiband sensing was proposed by Tehrani

et al. in [55] where the objective function is the CRB of the PU parameters. Tehrani

et al. modeled the PU of each channel as a continuous-time Markov process. The PU

state was directly observed by the SU, and the transition probabilities were estimated using

the maximum likelihood parameter estimator from [4]. The set of channels was sensed

sequentially, and after the entire set was sensed, the sensing duration for each channel was

reallocated, with the objective of minimizing the MSE of the transition rates for all channels.

A closed form solution for the asymptotically optimal sensing durations was derived and

shown to minimize the CRB and be strongly consistent given that the length of the sensing

interval approaches infinity.

Some papers on multiband sensing have been published which leverage energy detection,

such as [25,36]. In [36], multiband energy detection is proposed in a system where an optimal

subset of channels is selected such that the combined capacity of the subset is maximized

given that the size of the subset does not surpass a certain number. The capacity metric

in [36] considers, among other parameters, the proportion of time that the channel would

need to be sensed in order to keep the probability of interference to the PU below a threshold.

Also considered is the proportion of time that the PU is idle, which is not estimated in [36].

The capacity in [36] for channel i is formally defined as:

Cop
i = ηi · ρi ·Wi · Poff,i , (2.5)

where ηi is the sensing efficiency for channel i, or the proportion of time that is reserved

for sensing, ρi is the spectral efficiency of channel i in (bits/s/Hz), Wi is the bandwidth of

channel i, and Poff,i is the probability that the PU is idle, allowing for opportunistic access.
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In [25], an adaptive sensing method is employed which selects a subset of channels that

minimizes the probability of PU detection error over a fixed sensing budget. As probability

of false detect is estimated, candidate channels are ruled out until the list of candidate

channels is shorter than a given threshold.

In [33], a Bayesian approach to multiband spectrum sensing is proposed. In this ap-

proach, it is assumed that the channel gain between the PU and SU has already been

accurately estimated. The SU optimizes channel utilization rules such that the throughput

is maximized and the probability of interference with the PU is constrained.

There is plenty of room for innovation in multiband spectrum sensing, and as such, the

majority of this proposal is devoted to furthering the state of the art. There are obvious

practical concerns in [55] to address, such as the continuous-time Markov Chain (CTMC)

model when sampling is required, the direct observation of the PU state when there will

be a noisy channel between the PU state and observations, and the requirement for infinite

sensing durations. Improvements to multiband sensing that are more theoretical in nature

may be made as well, such as deriving optimal sensing allocations for a more general set of

objective functions and modeling the PU as a bivariate Markov process for better fitting of

the dwell time distributions.

2.4 Optimal Compute Budget Allocation

In the unrelated field of simulation optimization, optimal compute budget allocation (OCBA)

has been developed to minimize the simulation time required to find the optimal design [16].

OCBA employs a generic cost function minimization that can be easily applied to other

fields. In this proposal, OCBA will be leveraged for multiband sensing, selecting the best

channel with high reliability and a minimum amount of sensing time. OCBA may be ap-

plied more generally to find the optimal subset of designs, where the N best designs of a

set are chosen and ranked [17].
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Chapter 3: Multiband Spectrum Sensing Based on Markov

Modulated Gaussian Processes

3.1 Introduction

In this chapter, we focus on the problem of spectrum sensing for multiple PU channels, which

we refer to as multiband spectrum sensing. In multiband sensing, an SU performs spectrum

sensing on multiple independent channels in parallel. Multiband sensing has applications

in scenarios in which the SU has the option of exploiting spectrum hole opportunities in

multiple channels. An example of such a scenario is spectrum sensing for white space on

broadcast TV channels. In [12], a recursive algorithm for wideband spectrum sensing was

developed, which identifies the set of channels occupied by independent PUs in a given

spectrum band. Multiband sensing can then be applied to the set of identified channels.

Thus, multiband sensing can also be an integral component in a scheme for wideband

sensing, wherein the PU channel boundaries are not known a priori.

The spectrum access activity of a PU on a given narrowband channel may be modeled

as a 2-state process; i.e., the process alternates between an active state, in which the PU

transmits data, and an idle state, in which the PU does not transmit. In the literature, the

PU state process is often modeled as a Markov chain, either in continuous-time or discrete-

time. In practice, however, the PU state cannot be observed directly by a SU, but can

only be inferred from received signal measurements taken by the SU. Thus, hidden Markov

models (HMMs) have been found to be a useful class of models for temporal spectrum

sensing [3]. An HMM can take into account the noise and channel impairments introduced

by the wireless channel. In [43], the application of HMMs for spectrum sensing was extended

to the more general hidden bivariate Markov model (HBMM). The main advantage of

the HBMM is that it can model non-geometric sojourn time distributions for the state
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process, whereas the HMM restricts the state sojourn times to be geometrically distributed.

In particular, the state sojourn time distribution of an HBMM belongs to the class of

discrete phase-type distributions, which is dense in the class of all possible sojourn time

distributions [43].

In [55], a multiband sensing policy was derived which allocates sensing resources such

that the Cramér Rao bound (CRB) for estimators of the channel parameters is minimized

across all channels under constrained sensing time. In that work, the PU signal associated

with each channel is modeled as a continuous-time Markov process and it is assumed that

the PU state is directly observable. In practical scenarios, however, the PU state can only be

inferred from discrete-time measurements taken by the SU, so a more robust system model

must be employed to handle sampling and channel impairments such as noise and fading.

In this chapter, we propose the use of a Markov-modulated Gaussian process (MMGP), a

type of hidden Markov process to more accurately model PU traffic as observed by the SU.

An MMGP is a continuous-time finite-state homogeneous Markov chain observed through a

discrete-time memoryless Gaussian channel [47]. We will use the expectation-maximization

algorithm for MMGPs derived in [47] to estimate the PU parameter for each channel and

use an extended version of the sensing allocation updates from [55] to allocate optimal

sensing times for each channel such that the CRB for estimators of the MMGP parameter

is minimized.

3.2 System Model

3.2.1 Multiband Channel Model

A set of M channels with known center frequency and bandwidth is observed, each with a

single independent PU. It is assumed that PU channels are not overlapping in frequency.

The channel over which the ith PU is observed is assumed to be flat Rayleigh fading with

parameter σf,i combined with zero mean additive white Gaussian noise (AWGN), defined

by the circularly symmetric complex normal distribution C
(

0, σ2
n,i

)
. The mean SNR of the
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received signal on channel i, given that the PU is transmitting is

SNRi =
σ2
f,i

σ2
n,i

, (3.1)

at the input to the energy detector.

3.2.2 PU Traffic Model

A PU may be transmitting or idle at any given time. The state of the ith PU is denoted

by the random variable Xi, where Xi = 0, when the PU is not transmitting, and t Xi = 1,

when the PU is transmitting. The kth state of the PU is denoted by Xi,k. The sequence

of active/idle states from each PU is modeled by a continuous-time homogeneous Markov

chain with generator matrix Qi and initial distribution πi defined, respectively, as

Qi =

−λ0,i λ0,i

λ1,i −λ1,i

 , (3.2)

π0,i = P (X1 = 0) , πi = P (Xi,1 = 1) , (3.3)

where λj,i is the rate of the exponential sojourn time distribution in state j for PU i.

3.2.3 Cognitive Receiver Model

Let Yi,k denote the average energy at time k = 0, 1, . . . of the narrowband signal from

channel i over N samples. Let the sequence of energy estimates for channel i be denoted

Y n
i = {Yi,1, . . . , Yi,n}. The kth sample in the energy detection sequence, Yi,k, is defined as

Yi,k =
1

N

N∑
j=1

|Zi,(k−1)N+j |2. (3.4)

Assuming that N is sufficiently large, yi,k will approximately be conditionally normal
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with distribution

yi,k ∼


N

(
2σ2

n,i,
4σ4

n,i

N

)
, Xi,k = 0,

N

2σ2
f,i + 2σ2

n,i,
4
(
σ2
f,i + σ2

n,i

)2

N

 , Xi,k = 1,

(3.5)

This approximate conditional distribution is derived in Appendix A.

3.2.4 Markov-Modulated Gaussian Process

The continuous-time Markov chain representing the active/idle states of the PU, observed

through a sampled Gaussian channel, yields an MMGP. The parameter of the MMGP is

φ =
(
Q,π,µ,σ2

)
, (3.6)

where Q is the generator matrix for the CTMC, π is the initial state distribution, and(
µ,σ2

)
are the mean and variance respectively of the conditional Gaussian distribution. In

the case of spectrum sensing, the underlying CTMC will have two states, off and on, result-

ing in the generator defined in Eq. (3.2). In the case of Rayleigh fading and additive white

Gaussian noise observed through an energy detector, the conditional Gaussian distribution

is defined in Eq.(3.5). Other fading channels may be modeled using MMGPs as well, un-

der the assumption that the output of the energy detector is approximately Gaussian due

to the Central Limit Theorem, but closed-form expressions for the conditional Gaussian

distribution may not exist.
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3.3 Multiband Spectrum Sensing From Observed Continuous-

time Markov Model

In this section, we review the main results from [55], based on a continuous-time Markov

process model, which will be used to develop an MMGP-based multiband spectrum sensing

scheme in Section 3.4.

3.3.1 Moment Estimator

We assume that time is divided into a sequence of sensing intervals. Each sensing interval

is in turn subdivided into M sensing subintervals, one for each of the M channels. Let Tn

denote the duration of the nth sensing interval, and let Ti,n denote the duration of the nth

sensing subinterval devoted to channel i. To perform the first step of multiband sensing, all

M channels are sensed for exactly the same amount of time. In other words, the duration of

the initial sensing interval T0 is divided into M equal subintervals. Each channel is sensed

in sequence. For channel i, the sojourn times in the on and off state are calculated, based on

direct observation of the PU state. The parameter of the continuous-time Markov process

model of the ith channel, i.e., the pair of transition rates (λ0,i, λ1,i), is then estimated.

Since the PU state could extend beyond the beginning or end of the sensing interval, the

first and last sojourn time measurements are not used in the estimator. During a sensing

subinterval for channel i, the number of sojourns in each state is counted, and the counts

are denoted noff
i and non

i for the number of sojourns in the off and on states, respectively.

The jth recorded sojourn time for channel i during a sensing subinterval for the off and

on states are denoted by zoff
i,j and zon

i,j respectively. The estimator for the transition rates

proposed in [55], referred to in that chapter as the “moment estimator,” is given by:

λ̂0,i =
noff
i − 1∑noff
i
j=1 z

off
i,j

, λ̂1,i =
non
i − 1∑non
i
j=1 z

on
i,j

. (3.7)

This estimator is the well-known maximum likelihood estimator (MLE), with consistency
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proved by Albert [4, Theorem 6.10]. Asymptotic efficiency of this estimator was also proved

by Albert in section 7 of [4]. Efficiency of the moment estimator was demonstrated in [55]

through simulation.

3.3.2 Allocation of Sensing Effort

After all of the channels have been sensed for an interval, an allocation of sensing time for

each channel i, as a fraction, αi, of the total sensing time in the next sensing interval is

determined. In [55], αi is derived by minimizing the CRB for all transition rates, and is

given as follows:

αi =

√(
λ2

0,i + λ2
1,i

)( 1

λ0,i
+

1

λ1,i

)
∑M

j=1

√(
λ2

0,j + λ2
1,j

)( 1

λ0,j
+

1

λ1,j

) . (3.8)

The sensing duration allocated to channel i for the nth sensing interval, is given by Ti,n =

αiTn

The observed sojourn times used to compute the moment estimator (3.7) are saved for

the next sensing interval. Using the entire record of sojourn time measurements will improve

estimator accuracy. This allocation strategy was shown in [55] to approach, as n→∞, the

(CRB) for the joint estimation of all M independent channels, which is given as follows:

σ2 ≥
M∑
i=1

(
λ2

0,i + λ2
1,i

)( 1

λ0,i
+

1

λ1,i

)
Ti

. (3.9)

In [55], these results are proven to minimize the asymptotic CRB, as T → ∞. A more

practical scenario is when a finite sensing interval is considered. CR media access control

(MAC) protocols such as 802.22 [2] and 802.11af [1], rely on finite-duration quiet periods for
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Figure 3.1: Direct observation of PU state

all nodes to search for PU activity and enable coexistence with incumbent systems. With

this motivation, we will develop sensing allocations for finite interval durations in the next

section.

3.3.3 Bias of Moment Estimator in Noise

In a practical scenario, the PU state can only be observed through a noisy, possibly fading

channel. The simplest method of PU state estimation in noise is energy detection. With an

energy detector (cf. [58]), the state of the PU is determined to be on if the received power

surpasses a threshold, and the PU is otherwise determined to be off.

In Figure 3.1, the sojourn times from directly observing the PU state are shown. In

Figure 3.2, the effect of a decision error on the received PU signal is shown. The average

sojourn time during this sensing interval will be shorter, due to the detection error. The

parameter estimates λ̂0,i and λ̂1,i will be greater than the true parameter values. As the

SNR decreases, probability of detection error will increase, and the mean error of the mo-

ment estimator will increase. Therefore, decreasing SNR will result in bias in the moment

estimator.

Even with moderate SNR, estimation of the PU parameter using an energy detector

and moment estimator may be significantly impaired. In this chapter, we propose a sensing

algorithm which overcomes this deficiency.
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Figure 3.2: Effect of a decision error on sojourn time estimates

3.4 Multiband Spectrum Sensing based on a Markov-Modulated

Gaussian Process

In Section 3.2, we proposed a CTMC observed through a sampled Gaussian process to

model a PU on a single channel. In this section, we detail the process of spectrum sensing

by training an MMGP and propose a multiband optimization algorithm based on minimizing

the CRB of the parameter estimates across multiple MMGP channels.

3.4.1 MMGP Parameter Estimation

In [47], an algorithm for estimating the parameter of an MMGP was developed based on the

Expectation Maximization (EM) algorithm. We shall apply this algorithm to multiband

spectrum sensing through fading and additive noise.

Given a received energy sequence measurements for channel i, Y n
i , as defined in Eq. (3.4),

we want to derive the MMGP parameter for channel i: φi =
(
Qi,πi,µi,σ

2
i

)
, given in

Eq. (3.6).

We start with an initial MMGP parameter estimate for channel i: φ̂i,0 =
(
Q̂i,0, π̂i,0, µ̂i,0, σ̂

2
i,0

)
.

The jth iteration of the EM algorithm for channel i produces parameter estimate φ̂i,j with
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likelihood greater than or equal to that of φ̂i,j−1. Each iteration of the algorithm involves

the computation of forward and backward recursions [47, Section III].

Let φ̂i,j−1 denote the current parameter estimate at the start of the jth iteration of the

EM algorithm for channel i. Define the probability densities

bi,0 (Yk) = fi,0 (Yk) ,

bi,1 (Yk) = fi,1 (Yk) , (3.10)

as the conditional probability densities given that the underlying Markov chain for channel

i, Xi, resides in state 0 or 1, respectively. The Gaussian density functions are defined as

fi,0 (Yk) ∼ N
(
µi,0, σ

2
i,0

)
,

fi,1 (Yk) ∼ N
(
µi,1, σ

2
i,1

)
, (3.11)

which in the case of Rayleigh fading are given by Eq. (3.5). Define a diagonal matrix

Bi (Yk) = diag {bi,0, bi,1} . (3.12)

Define the transition density matrix for sample k of channel i as

fi (Yk) = eQ̂ihBi (Yk) , (3.13)

where Q̂i is the most recent estimate of the generator matrix for channel i, and h is the

sampling period. We denote the scaled forward and backward recursion vectors for sample

k of channel i by Li (k) and Ri (k) respectively. The forward recursion vector is defined as
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a row vector

Li (1) =
π̂iBi (Y1)

ci,1
,

Li (k) =
Li (k − 1) fi (Yk)

ci,k
, k = 2, . . . , n, (3.14)

where π̂i is the most recent estimate for the initial distribution of channel i and ci,k is a

scaling constant defined as

ci,1 = π̂iBi (Y1) 1,

ci,k = Li (k − 1) fi (Yk) 1, k = 2, . . . , n, (3.15)

where 1 is a column vector of all ones. The backward recursion vector is defined as a column

vector

Ri (n+ 1) = 1,

Ri (k) =
fi (Yk+1) Ri (k + 1)

ci,k+1
, k = n, . . . , 1. (3.16)

The forward and backward recursion vectors are used to estimate ma,b and Ta, the number of

state transitions from state a to b, and the amount of time spent in each state a, respectively

for all states. Define a (2× 2) matrix

Ni =
n∑
k=2

1

ci,k
Bi (Yk) Ri (k) Li (k − 1) . (3.17)

Note that Ri (k) is a column vector and Li (k − 1) is a row vector, so the product in 3.17

is an outer product, resulting in a (2 × 2) matrix. It is shown in [48] that the matrix of
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estimated transition counts can be computed as

m̂i = Q̂i � I ′ (3.18)

where X′ denotes the transpose of matrix X, � denotes element-wise matrix multiplication,

and the matrix I is defined as

I =

∫ h

0
eQ̂i(h−t)Nie

Q̂itdt. (3.19)

The integral 3.19 can be evaluated efficiently using the approach in [59]. Define a (4 × 4)

matrix

Ci =

Q̂i Ni

0 Q̂i

 . (3.20)

I is given by the upper-right (2× 2) block of the matrix eCih. The diagonal elements of m̂i

and Q̂i are used to compute the estimated time in each state

T̂i,1 =
m̂i,0,0

q̂i,0,0
,

T̂i,2 =
m̂i,1,1

q̂i,1,1
. (3.21)

The final calculation of the Expectation phase is to compute the a posteriori probability of

each state. Define ξi (k), the vector of a posteriori probabilities for each state at sample k

on channel i, as

ξi (k) =
Li (k)�Ri (k)′

Li (k)�Ri (k)′ 1
. (3.22)

For the Maximization phase, the parameter is re-estimated based on the results of the
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Expectation phase. The elements of the generator matrix are estimated using the result of

Eqs. (3.18) and (3.21)

q̂i,a,b =
m̂i,a,b

T̂i,a
, a 6= b

q̂i,a,a = −
∑
b 6=a

q̂i,a,b. (3.23)

The a posteriori probabilities from Eq. (3.22) are used to re-estimate µi,a and σ2
i,a, which

are respectively the conditional mean and variance for state a on channel i. The conditional

distributions are estimated as

µ̂i,a =
1

n̂i,a

n∑
k=1

ξ̂i,aYi (k) , (3.24)

σ̂2
i,a =

1

n̂i,a

n∑
k=1

ξ̂i,a (Yi (k)− µ̂i,a)2 , (3.25)

where n̂i,a is the estimated number of samples in state a for channel i, computed as

n̂i,a =

n∑
k=1

ξ̂i,a. (3.26)

3.4.2 Allocation of Sensing Effort

In our approach towards allocation spectrum sensing time between channels, we will take

a similar approach to that proposed in [55] of minimizing the CRB. Such an optimization

requires derivation of the Fisher information matrix (FIM) of an MMGP, which is done in

Appendix B. The FIM for a two-state MMGP is given as

I (Lc) = diag

{
E (m01)

λ2
0

,
E (m10)

λ2
1

,
E (n0)

σ2
0

,
E (n1)

σ2
1

,
E (n0)

2σ4
0

,
E (n1)

2σ4
1

}
(3.27)
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where E (m01) and E (m10) are the expected number of jumps between the two states of

the underlying Markov chain, and E (n0) and E (n1) are the expected number of samples in

each state. Closed-form expressions for these expected values are given

E (m01) =
λ0λ1

λ0 + λ1
t+

(
π0 −

λ1

λ0 + λ1

)
λ0

λ0 + λ1

(
1− e−(λ0+λ1)t

)
,

E (m10) =
λ0λ1

λ0 + λ1
t+

(
π1 −

λ0

λ0 + λ1

)
λ1

λ0 + λ1

(
1− e−(λ0+λ1)t

)
,

E (n0) =
λ1

h(λ0 + λ1)
t+

π0λ0 − π1λ1

h(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
,

E (n1) =
λ0

h(λ0 + λ1)
t+

π1λ1 − π0λ0

h(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
, (3.28)

where π0 and π1 are the initial probabilities, and h is the sampling period. In the case of

long sensing durations, a greatly simplified asymptotic approximation may be used

E (m01) =
λ0λ1

λ0 + λ1
t, t→∞,

E (m10) =
λ0λ1

λ0 + λ1
t, t→∞,

E (n0) =
λ1

h(λ0 + λ1)
t, t→∞,

E (n1) =
λ0

h(λ0 + λ1)
t, t→∞. (3.29)

The CRB on the total mean squared error in estimating the parameter for a single

channel is the trace of the inverse FIM, which in the case of a diagonal matrix is simply

the element-wise inverse. Because the channels are independent, the multichannel CRB is

simply the sum of the single channel CRB for each of the M channels

σ2 ≥
M∑
i=1

(
λ2
i,0

E (mi,01)
+

λ2
i,1

E (mi,10)
+
σ2
i,0 + 2σ4

i,0

E (ni,0)
+
σ2
i,1 + 2σ4

i,1

E (ni,1)

)
. (3.30)
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In the case of longer sensing times, the asymptotic approximation in (3.29) results in a CRB

of

σ2 ≥
M∑
i=1

λi,0 + λi,1
Ti

(
λi,0
λi,1

+
λi,1
λi,0

+
hσ2

i,0

λi,1
+
hσ2

i,1

λi,0
+

2hσ4
i,0

λi,1
+

2hσ4
i,1

λi,0

)
, t→∞, (3.31)

where Ti is the time spent sensing channel i.

To minimize the CRB in (3.30), numerical optimization must be used. For (3.31),

a closed-form optimization may be found using Lagrange multipliers. Minimizing (3.31)

under the constraint that the sum of all Ti equals T yields

Ti =

√
αi∑M

i=1

√
αi
T,

αi = (λi,0 + λi,1)

(
λi,0
λi,1

+
λi,1
λi,0

+
hσ2

i,0

λi,1
+
hσ2

i,1

λi,0
+

2hσ4
i,0

λi,1
+

2hσ4
i,1

λi,0

)
. (3.32)

Minimization of (3.30) requires numerical methods. In our simulations, we used Sequential

Quadratic Programming [44] to find the optimal sensing allocations. The approximate solu-

tion in Eq. 3.32 should be used as the initial time durations for the numerical optimization,

which should reduce time to convergence and increase the likelihood that a global optimum

is reached.

3.4.3 Averaging of Parameter Estimates

Between sensing intervals, the MMGP parameter estimates are averaged to take advantage

of all previous sensing intervals. During subsequent sensing intervals, the averaged parame-

ter from the previous sensing interval is used as the initial parameter for the EM algorithm

applied to the current sensing interval.

A simple averaging scheme is the infinite impulse response (IIR) average or exponential

average. Let φ̃i,n denote the averaged MMGP parameter for channel i, for sensing intervals
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up to and including the nth, and let φ̂i,n denote the (unaveraged) parameter estimate for

channel i, corresponding with the nth sensing interval. An exponential averaging scheme

with weight ω is given as

φ̃i,n = ωφ̃i,n + (1− ω) φ̂i,n, 0 < ω < 1. (3.33)

An exponential average of the parameter estimates is useful when the MMGP parameter

is changing over time. In the static case where the MMGP parameter never changes, a

block average will be better. In the case of the block average, the parameter estimate φ̂i,n

is weighted by the sensing times allocated to channel i

φ̃i,n =

∑n−1
j=1 Ti,j∑n
j=1 Ti,j

φ̃i,n−1 +
Ti,n∑n
j=1 Ti,j

φ̂i,n. (3.34)

In the case where the MMGP parameter does not change over time, block averages will

outperform any exponential average. Because the MMGP in this chapter is modeled as

static, block averaging is used.

3.4.4 MAP Decision Rule

Although not specifically used in the estimation of multiple PU statistics, maximum a

posteriori probability (MAP) decisions may be determined using the results of MMGP

estimation. The most likely state for channel i at time k is denoted x̂i(k), defined as

x̂i(k) = arg max
xk∈{0,1}

[ξi (k)] . (3.35)

3.5 Simulation and Numerical Results

To evaluate the proposed algorithms, a simulation was performed in which multiband spec-

trum sensing was performed and estimator errors were compared to the theoretical minimum
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in (3.30). Three multiband data sets were generated, and three methods for spectrum sens-

ing were tested: energy detection, MMGP parameter estimation with IIR averaging between

intervals, and MMGP parameter estimation with block averaging between intervals. In this

simulation, the energy detector used perfect knowledge of signal and noise statistics to select

a threshold which jointly minimized false alarm and false positive probability. The MMGP

parameter estimators were seeded with random values, and therefore performance is shown

without any prior knowledge of signal and noise parameters.

The simulated multiband scenario contained 4 channels as was done in [55] with transi-

tion rates given in Table 3.5.

Table 3.1: Continuous-time Markov process channel parameters.

Ch 1 Ch 2 Ch 3 Ch 4

λ0 0.1 0.6 0.2 0.5
λ1 0.7 0.1 0.8 0.9

Simulations were performed against channels with SNR of 10, 0, and -5 dB. The other

simulation parameters are given in Table 3.5.

Table 3.2: Simulation parameters.

Parameter Value Description

M 4 Number of channels

Nsim 200 Number of simulation itera-
tions

Nsense 20 Number of sensing intervals

T0 100 Initial sensing duration for
the first interval

Ned 100 Number of samples to aver-
age for energy detector

h 10 Sampling rate after energy
detection

Tn 1.25Tn−1 Sensing duration for the nth
interval

The simulation results for SNR of 10, 0, and -5 dB are shown in Figures 3.3, 3.4, and 3.5,
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Figure 3.3: Multiband sensing performance at 10 dB SNR

respectively. It is apparent that MMGP parameter estimation with block averaging is the

best option in all cases in terms of sensitivity. At the higher SNR of 10 dB, the energy

detector performed comparably, but its performance was inadequate at lower SNR. Use

of fixed-gain IIR averaging between intervals never reaches the efficiency of block averag-

ing at any SNR, but as discussed previously, IIR averaging enables tracking of PUs with

statistics that change over time. The simulation results also highlight the trade-off between

acquisition time and tracking performance of fixed-gain IIR estimates. Smaller gain values

will have reduced tracking errors but will take longer to converge. This can be seen in the

simulation results where the IIR estimator with feedback gain of 0.5 had lower estimation

error early on, but as more estimates were accumulated, the IIR estimator with the lower

feedback gain of 0.2 had smaller error. An IIR estimator with variable gain may be used to

remedy this trade-off, where the initial feedback gain is large to enable fast acquisition, and

the feedback gain is systematically decreased to enable accurate tracking. In the case where

the system parameter has absolutely no change over time, the proposed block averaging

estimator is the ideal variable-gain IIR estimator.
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Figure 3.4: Multiband sensing performance at 0 dB SNR
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Figure 3.5: Multiband sensing performance at -5 dB SNR

3.6 Conclusion

In this chapter, we proposed an MMGP as an accurate model for spectrum sensing in

noise and fading, and we have extended the work of [55] to perform efficient spectrum
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sensing based on this model. The FIM of a two-state MMGP was derived for finite sensing

intervals, and subsequently a numerical optimization problem was formulated to select

sensing allocations that minimize the CRB. The closed-form FIM was used to derive sensing

intervals to minimize the CRB on the variance of parameter estimation across multiple

channels. For asymptotically long sensing subinterval durations, closed-form allocations

were derived that minimize the CRB. A numerical method was proposed for determining

optimal sensing allocations in the general case. In simulation, performance of the MMGP

parameter estimator was compared to that of an energy detector. It was shown that MMGP

parameter estimation is efficient even in low SNR. A suggested extension to this work is

consideration of objective functions which may be more directly applicable to spectrum

sensing, such as minimization of estimator error on channels determined to be most usable

by an SU.
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Chapter 4: A Computing Budget Allocation Approach to

Multiband Spectrum Sensing

4.1 Introduction

In multiband spectrum sensing, the SU tracks states of PUs operating on a given set of

channels to determine spectrum access opportunities. We extend the work in [55], where

the active/idle state process of each PU is modeled as a two-state homogeneous continuous-

time Markov chain, and the Markov chains corresponding to different PUs are assumed

statistically independent. We assume M channels, each having the same bandwidth. The

parameter of each Markov chain is not known in advance and hence is estimated from

observations of the state processes. We assume, as in [55], that the PU state processes are

observed directly, and thus we ignore channel impairments. Our analysis is suitable for

channels with very high signal-to-noise ratio. Subsequent work should address the adverse

affects of the channels.

In the proposed approach, given a sensing interval of length T seconds, the SU senses

each channel i for Ti seconds such that
∑M

i=1 Ti = T . We address the problem of allocat-

ing the sensing times Ti among the M channels such that a subset of N ≤ M channels

with the largest mean idle times can be selected. As an additional objective, the total

parameter estimation error for channels in the selected set should be minimized. In prac-

tice, N � M , i.e., the number of channels for spectrum sensing is much smaller than the

total number of channels in a given spectrum band. When N = 1, the problem reduces

to allocating the sensing time budget to determine, the channel with the largest mean idle

time, and minimizing the estimation error for the associated parameter. When N = M ,

our approach defaults to the framework used in [55], where minimum mean squared error

(MMSE) parameter estimation is performed over all M channels.
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To address the multichannel estimation problem described above, we adapt the opti-

mal computing budget allocation (OCBA) methodology [16] from the field of simulation

optimization. The OCBA framework was developed as a means of testing multiple designs

through simulation by allocating simulation time to the designs with the objective of maxi-

mizing the probability that the best design is selected according to a given cost function [18].

The technique was subsequently extended to determine the best N > 1 designs among a

given set of M designs [17]. In the context of multichannel parameter estimation, instead

of allocating simulation time we allocate sensing times, and instead of simulating multiple

designs, we perform parameter estimation of multiple channels.

The OCBA approach is generally applied iteratively to a sequence of simulation time

intervals. Likewise, our proposed algorithm for multichannel parameter estimation iterates

over a sequence of sensing intervals. In a departure from the traditional OCBA, we have as

an additional objective, minimizing the estimation error for the parameters of the channels

in the selected subset. During each iteration of the algorithm, we employ the Bhattacharyya

distance metric [31] to eliminate from consideration channels that are unlikely to belong

to the selected subset. This approach allows the sensing resources to be concentrated, in

subsequent iterations, on estimation of the channels that are more likely to belong to the

selected subset.

The work in [55] allocates the sensing times {Ti} by minimizing the Cramer-Rao lower

bound on the minimum mean squared error in estimating the parameters of all M channels.

Our proposed approach focuses the estimation effort on a much smaller subset of the N

most promising channels with respect to mean idle time. In [55], an asymptotic expression

for large observation time of the inverse Fisher information matrix (FIM) is used. We refine

this result to apply to any finite time interval. By using the asymptotic expression, closed-

form formulas for the MMSE sensing time allocations were obtained in [55], as shown in

(4.9). In this chapter, we use an exact expression for the FIM, but resort to a numerical

optimization approach to solve for the sensing time allocations.

A number of articles on multiband spectrum sensing have approached the problem
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as a type of multi-armed bandit problem [6, 45, 61, 66] or the related partially observable

Markov decision process (POMDP) [67]. Several assume knowledge of the parameters of

the underlying Markov chains, but do not address the important issue of parameter es-

timation [6, 61, 67]. Our proposed multichannel parameter estimation algorithm obtains

estimates of this parameter, and thus could, in principle, be used in conjunction with these

approaches. Moreover, knowledge of the parameter can be used to improve spectrum de-

tection performance and allows the prediction of future PU state, which provides clear

advantages for spectrum sensing [43,61]. In [43], for example, a likelihood ratio detector for

PU state on a given channel is proposed based on an estimate of the associated parameter.

The rest of the chapter is organized as follows. In Section 4.2, we present the system

model assumed in the chapter. In Section 4.3, we summarize the multichannel estimation

algorithm in [55], which is based on minimizing the mean squared error over all channels. In

Section 4.4, we develop the proposed algorithm for multichannel estimation based on OCBA

and the Bhattacharyya distance measure. In Section 4.5, we present simulation results that

demonstrate the performance of the algorithm. The chapter is concluded in Section 4.6

with additional comments. A portion of the work in this chapter has been published in [10].

4.2 System Model

Consider a multiband spectrum sensing scenario consisting of M channels, which an SU may

leverage for opportunistic spectrum access. In each band, an independent PU is operating.

Each PU is modeled by a two-state continuous-time Markov chain as depicted in Fig. 4.1,

where state 0 represents an idle PU and state 1 represents a busy PU. An SU may only

use the band when the PU is in the idle state. For a given PU, let {Xt, t ≥ 0} denote

the Markov chain associated with the state process. The transition rate from state 0 to 1

is denoted λ0, and the transition rate from state 1 to 0 is denoted λ1. The parameter of

the Markov chain is given by θ = (µ0, µ1), where µj is the mean sojourn time in state j,

µj = 1/λj . For simplicity, we assume, as in [55], that the SU directly observes the PU state
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Figure 4.1: Continuous-time Markov chain model for PU state of a single channel.

process {Xt, t ≥ 0}. The model could be extended to incorporate channel impairments, as

was done in [43], for example.

Let Nt(j, k) denote the number of jumps of the PU state from state j to state k over the

time interval [0, t), and denote its expected value by N t(j, k), where j, k ∈ {0, 1}. Let Tj

denote the total PU time spent in state j over the time interval [0, t). We assume that the

Markov chain {Xt} has initial state probabilities {π0, π1}, where πj = P (X0 = j), j = 0, 1.

The Fisher information matrix (FIM) for {Xt} is derived in Appendix C as follows:

I(t) =


2T 0

µ3
0

− N t(0, 1)

µ2
0

0

0
2T 1

µ3
1

− N t(1, 0)

µ2
1

 . (4.1)

The derivation follows directly from the definition of the FIM and an expression for the

likelihood function of a continuous-time Markov chain given in [4, Sec. 4]. Let λ = λ0 +λ1.

The expected number of jumps from state j to state k can be expressed as follows (see

Appendix C for the derivation):

N t(j, k) =
1

µj + µk
t+

(
πj −

µj
µj + µk

)
µk

µj + µk

1− e
−
(
µj + µk
µjµk

)
t

 . (4.2)
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The expected total time in state j, fully derived in Appendix C, can be expressed as follows:

T t(j, k) =
µj

µj + µk
t+

µjµk (πjµk − πkµj)
(µj + µk)

2

1− e
−
(
µj + µk
µjµk

)
t

 . (4.3)

An expression for the inverse FIM in the nonstationary case follows from (4.1) and (4.2).

An asymptotic expression for the FIM of a stationary two-state Markov chain, valid in the

regime of large t, was derived in [55, Theorem 1]. The asymptotic FIM leads to a closed-

form solution for the sensing time allocations, see [55, Eq. (17)], but incurs non-negligible

approximation error for smaller values of t.

We use a subscript i to denote the ith channel, e.g., we denote the PU Markov process

for the ith channel as {Xi,t, t ≥ 0} and its associated parameter by θi = (µ0,i, µ1,i). Let

σ2
i (t) denote the sum of the variances in estimating the two components of θi by an unbiased

estimator over a sensing interval of length t seconds. Let Ii(t) denote the FIM for the ith

channel over the same sensing interval. The Cramér-Rao Bound (CRB) for a single channel i

over time t is given by [55]

σ2
i (t) ≥ trace[I−1(t)]. (4.4)

Applying (4.1), the CRB for a 2-state CTMC is given by

σ2
i (t) ≥

µ3
0

T t(0)− µ0N t(0, 1)
+

µ3
1

T t(1)− µ1N t(1, 0)
. (4.5)

The sensing interval of length t is partitioned into subintervals of length ti, i = 1, . . . ,M ,

where ti is the time spent estimating channel i, with t =
∑M

i=1 ti. The SU observes {Xi,t}

for an interval of length ti in the sequence i = 1, . . . ,M . The CRB for estimation of all M
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channels over a sensing interval of length t is given by

σ2(t) ≥
M∑
i=1

(
µ3

0,i

T ti(0)− µ0,iN ti(0, 1)
+

µ3
1,i

T ti(1)− µ1,iN ti(1, 0)

)
. (4.6)

4.3 MMSE Multichannel Estimation

In this section, we adapt the multichannel parameter estimation algorithm in [55], which

iteratively determines the sensing intervals and parameter estimates, to minimize sensing

error based on Eq. (4.6). In [55], a multiband sensing algorithm was developed to minimize

the CRB of the estimates of the transition rates {λ0, λ1}. We have adapted this work to

minimize the CRB of the estimates of the mean sojourn times {µ0, µ1}. As shown in this

section, the estimates of the mean sojourn times are asymptotically normal, a property that

will strengthen the OCBA methods developed in Section 4.4.

We assume that time is divided into a sequence of sensing intervals, {Tn}∞n=0. Each

sensing interval is in turn subdivided into M sensing subintervals, one for each of the M

channels. Let Tn denote the duration of the nth sensing interval, and let Ti,n denote the

duration of the nth sensing interval that is devoted to channel i, such that Tn =
∑M

i=1 Ti,n.

To perform the initial iteration of multiband sensing, all M channels are sensed for exactly

the same amount of time, i.e., we set

Ti,0 =
T0

M
, i = 1, . . . ,M. (4.7)

During each sensing interval, each channel is sensed in sequence.

For channel i, the number of sojourns in each state is counted, and the counts recorded up

to and including time t are denoted noff
i (t) and non

i (t) for the off and on states, respectively.

The jth recorded sojourn times for channel i are denoted by zoff
i,j and zon

i,j , respectively. The

estimator for the mean sojourn times is based on the estimator for the transition rates
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proposed in [55], referred to in that chapter as the “moment estimator”:

µ̂0,i(t) =
1

λ̂0,i(t)
=

∑noff
i (t)
j=1 zoff

i,j

noff
i (t)− 1

, µ̂1,i(t) =
1

λ̂1,i(t)
=

∑non
i (t)
j=1 zon

i,j

non
i (t)− 1

, (4.8)

Because the sojourn times are IID, it is clear that the estimates for the mean sojourn times

are asymptotically normal due to the Central Limit Theorem. The parameter estimate θ̂i

obtained at the end of the nth sensing interval is given by (4.8), and is used to calculate

the sensing time allocations for the next sensing interval. This estimator is the well-known

maximum likelihood estimator (MLE), with consistency normality proved by Albert [4,

Theorem 6.10]. Asymptotic efficiency of this estimator was also proved by Albert [4, Section

7]. Efficiency of the moment estimator was demonstrated in [55] through simulations.

Multichannel parameter estimation should be designed in such a way that the sensing

intervals are used most effectively. In Appendix C.9, sensing time allocations are derived

such that the right-hand side of the multichannel CRB in Eq. (4.6) is minimized. In this

derivation, similar to that performed in [55], an asymptotic approximation for inverse FIM

was used, which led to closed-form expressions for the proportion αi of the sensing interval

Tn that should be allocated to channel i, given as follows:

αi =

√
(µ̂0,i + µ̂1,i)

(
µ̂2

0,i + µ̂2
0,i

)
∑M

i=1

√
(µ̂0,i + µ̂1,i)

(
µ̂2

0,i + µ̂2
1,i

) (4.9)

where the estimates, µ̂0,i and µ̂1,i, are computed by applying (4.8) and Ti,n = αiTn, i =

1, . . . ,M . The allocation strategy based on (4.9) was shown in [55] to approach, as Tn →∞,

the CRB for the joint estimation of all M independent channels.
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4.4 OCBA Multichannel Parameter Estimation

In this section, we focus on an approach for selecting a smaller subset of the most promising

channels for opportunistic spectrum access, while estimating their associated parameters.

We adapt OCBA to determine the appropriate sensing time allocations to achieve this

objective.

4.4.1 OCBA Sensing Allocations

Our goal is to determine the N channels with largest mean dwell time in the idle state,

where ideally N � M . Equivalently, we seek the N channels with minimum cost, where

the cost function for channel i is defined by

Ji = −µ0,i. (4.10)

We assume that the initial sensing interval T0 is allocated according to (4.7). At the end

of the nth sensing interval of length Tn, the PU parameter is re-estimated using Eq. (4.8)

and we apply OCBA [16] to determine the channels with the lowest cost functions. In the

context of simulation optimization, given a fixed total computing budget and M alternative

designs, OCBA determines the computing budget allocation for simulating the M designs

that maximizes the probability of selecting the subset of N designs out of M with minimum

cost. The OCBA methodology requires knowledge of the standard deviation of the cost

function, which we denote by si for channel i. A lower bound on the standard deviation of

the cost function (4.10) follows from the CRB for estimating µ0, which can be derived from

the FIM in Eq. (4.1):

si(t) ≥

√
µ3

0,i

T ti(0)− µ0,iN ti(0, 1)
. (4.11)

To find the subset of the N best channels, we first sort the estimated values of the cost

function J in (4.10), denoted by Ĵi = −µ̂0,i(t), such that Ĵ1 ≤ Ĵ2 ≤ . . . ≤ ĴM−1 ≤ ĴM . We

39



then compute a reference constant c, which in [17] is the midpoint between the highest cost

value of the selected subset and the next highest cost value among the M channels, i.e.,

c =
ĴN + ĴN+1

2
. (4.12)

We denote the total sensing time on channel i up to and including iteration n as ΣT,i,n.

Applying OCBA, we must next find sensing intervals such that

ΣT,1,n(
s1/(Ĵ1 − c)

)2 = . . . =
ΣT,M,n(

sM/(ĴM − c)
)2 (4.13)

and

M∑
i=1

(ΣT,i,n − ΣT,i,n−1) = Tn. (4.14)

The resulting sensing time allocations are then given by

Ti,n = ΣT,i,n − ΣT,i,n−1. (4.15)

4.4.2 Channel Elimination

Once a desired level of certainty that a channel is not a member of the selected subset has

been reached, our algorithm ceases allocating sensing time to that channel for the current

and future iterations. This results in a smaller parameter estimation error for the channels

in the eventual selected subset compared to the standard OCBA. To determine whether

a channel i is unlikely to be part of the eventually selected subset, we compare it to the

member of the current selected subset with the highest cost, JN . We make use of the

Bhattacharyya distance for this purpose. The Bhattacharyya distance between a pair of
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normal random variables U ∼ N (µu, σ
2
u) and V ∼ N (µv, σ

2
v) is given by [19, p. 777]

DB(U, V ) =
(µu − µv)2

4(σ2
u + σ2

v)
+

1

4
log

[
1

4

(
σ2
u

σ2
v

+
σ2
v

σ2
u

+ 2

)]
. (4.16)

The Bhattacharyya distance is a useful metric for classification between a pair of normal

random variables, because it is related directly to the Chernoff upper bound on the proba-

bility of classification error [31]. The probability of classification error between distributions

i and j, denoted pe(i, j) is determined in [31] to be bounded by

1

4
e−2DB(i,j) ≤ pe(i, j) ≤

1

2
e−DB(i,j), (4.17)

given that the two random variables have equal prior probabilities. Therefore, a distance

threshold γ may be selected such that, within a certain probability of error, we can ensure

that a channel is not a true member of the optimal subset. A larger minimum distance

will allow for increased certainty of correct decision, but will increase convergence time.

Channel i is eliminated if

DB(ĴN , Ĵi) > γ, Ĵi > ĴN , (4.18)

where γ is a threshold chosen by the system designer. A larger value of γ will allow for

increased certainty of correct decision at the expense of longer time required to obtain the

final selected subset of N channels.

When we are left with the selected subset of N channels, subsequent estimation effort

can be applied to these channels. In the case of N = 1, the optimal sensing strategy is simply

to allocate all sensing time to the selected channel. More generally, MMSE allocations are

applied to the N selected channels, and the other M −N channels receive no sensing time

allocation. Thus, parameter estimation proceeds along the lines of [55] for the selected set

of N channels, except that we use the closed-form expression (4.2) to calculate the FIM.

Consequently, we resort to sequential quadratic programming [44] to numerically solve for
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the sensing time allocations. Nevertheless, the closed-form sensing time allocations given

in (4.9) may serve as the initial values to speed up convergence and increase likelihood of a

global optimum.

4.5 Numerical Examples

To test the proposed algorithm, we present numerical results of three example scenarios

based on examples that were considered in [55]. Results were obtained using the Python

packages SciPy, NumPy, and Matplotlib.

4.5.1 Example 1

In the first example, four channels were defined with parameter values given as follows:

{λ0,i} = {0.1, 0.6, 0.2, 0.5} ,

{λ1,i} = {0.7, 0.1, 0.8, 0.9} .

We used an initial allocation of T0 = 1000 samples, 250 samples per channel. We increased

sensing time by Tn = 2Tn−1 for each sensing iteration and performed 15 sensing iterations.

As a baseline, we performed the MMSE allocations as proposed in [55], as well as equal

allocations where the sensing duration is divided evenly among all tested channels. We

compared the MSE from the MMSE and equal allocations to OCBA allocations as proposed

in this chapter. For the fist simulation, we searched for a selected subset of size N = 1,

i.e., we only searched for a single best channel. We recorded the MSE for the known best

channel as well as the system MSE for all 4 channels. A total of 200 simulations were

performed, and a minimum Bhattacharyya distance of γ = 18 was used.

The results of this example are plotted in Figures 4.2 and 4.3. Figure 4.2 shows the

total MSE in estimating the parameters of all channels compared to the associated CRB.

After the best channel is determined, i.e., channel i = 1 with λ0,i = 0.1, the MSE for all
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Figure 4.2: MSE for all channels using Equal, MMSE, and OCBA allocations
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Figure 4.3: MSE for best channel using Equal, MMSE, and OCBA allocations

channels in the case of OCBA allocation diverges from the CRB. This is because all of the

sensing time is devoted to estimation of the parameter of the selected channel, while the

MSE for the other channels remains constant. Fig. 4.3 shows the MSE for only the best

channel in terms of the longest mean dwell time in the idle state. The MSE resulting from

both allocation strategies is compared to the CRB under the assumption that all sensing

43



104 105 106 107 108

Sample

10-3

10-2

10-1

100

101

M
SE

MSE for All Channels

CRB
MMSE Allocations
OCBA Allocations
Equal Allocations

Figure 4.4: MSE for all channels using Equal, MMSE, and OCBA allocations

time is given to the best channel.

4.5.2 Example 2

Here, 10 channels were defined with the following parameter values:

{λ0,i} = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} ,

{λ1,i} = {0.2, 0.7, 0.1, 0.1, 0.4, 0.8, 0.4, 0.9, 0.1, 0.4} .

We used an initial allocation of T0 = 2500 samples, 250 samples per channel. We increased

sensing time by Tn = 2Tn−1 for each sensing iteration and performed 15 sensing iterations.

Again, the resulting MSE in estimating the parameters of the channels from MMSE alloca-

tions and equal allocations was compared to that obtained from the OCBA allocations. For

the OCBA allocations, we set N = 3. We recorded the MSE for the set consisting of the

best three channels, i.e., {1, 2, 3}, as well as the system MSE for all 10 channels. In total,

200 simulation runs were performed, and a minimum Bhattacharyya distance of γ = 18 was

used.

44



104 105 106 107 108

Sample

10-4

10-3

10-2

10-1

100

101

M
SE

MSE for Best 3 Channels

CRB
MMSE Allocations
OCBA Allocations
Equal Allocations

Figure 4.5: MSE for optimal subset using Equal, MMSE, and OCBA allocations

The results for Example 2 are plotted in Figs. 4.4 and 4.5. Fig. 4.4 shows the total MSE

for estimation of all channels, compared to the CRB for all channels. As in Fig. 4.2, the

MSE for the OCBA allocation in Fig. 4.4, diverges from the CRB after the best subset is

selected. Fig. 4.5 shows the MSE for only the selected subset. The MSE resulting from

both allocation strategies is compared to the CRB under the assumption that all sensing

time is given to the selected subset.

4.5.3 Example 3

We performed a set of randomized trials to observe the convergence rates of the proposed

OCBA allocations in comparison to MMSE or equal allocations. For this example, 1000

simulations were performed. For each simulation, we generated a random set of 25 Markov

transition rates from the range [0.25, 0.75]. We used an initial allocation of T0 = 6250

samples, 250 samples per channel. To observe convergence over a finer time scale, we did

not increase sensing time between iterations, i.e. Tn = Tn−1. A total of 20 sensing iterations

was performed for each simulation. The probability of correct selection, the probability

that the selected best channel based on the channel estimates is the true best channel, was

45



0 50000 100000 150000 200000 250000
Sample

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P[
CS

]

Probability of Correct Selection

MMSE Allocations
OCBA Allocations
Equal Allocations

Figure 4.6: Probability of correct selection using Equal, MMSE, and OCBA allocations
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Figure 4.7: Expected opportunity cost using Equal, MMSE, and OCBA allocations

calculated at each iteration and averaged across simulations. The expected opportunity

cost, the mean difference between the selected best channel and the actual best channel,

was also computed at each iteration.

The results for Example 3 are plotted in Figs. 4.6 and 4.7. Fig. 4.6 shows the probability

of correct selection over time. In our tests, we observed that the OCBA allocations converged
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onto the correct selection much faster than MMSE or equal allocations. Fig. 4.7 shows the

expected opportunity cost over time. In our tests, we observed that OCBA allocations also

has reduced opportunity cost compared to MMSE and equal allocations.

4.5.4 Discussion

The numerical examples demonstrate that when total system MSE is to be minimized for

all channels, the MMSE approach proposed in [55] achieves the CRB. However, when the

performance of a smaller subset of channels is more important, the proposed algorithm based

on OCBA may be used to quickly determine the selected subset and to focus subsequently

on the most promising channels. This is an important feature of our approach, as the total

number of channels M may be significantly larger than the eventual number of channels

of interest, i.e., M � N . In such a scenario, diluting the spectrum sensing effort among

M channels is heavily resource-intensive, and ultimately is likely to result in degraded

opportunistic spectrum access. Thus, focusing the parameter estimation on a much smaller

set of N candidate channels is more efficient both computationally and in terms of exploiting

the spectrum access opportunities available among the original set of M channels.

4.6 Conclusion

We proposed a multichannel parameter estimation algorithm for multiband spectrum sens-

ing based on OCBA and compared it with an earlier algorithm of [55] which relies on an

MMSE approach. Over a sequence of sensing intervals, the algorithm iteratively allocates

sensing time among a set of channels that have the largest mean idle sojourn times under a

Markov model. The algorithm was verified through simulation and shown to approach the

CRB on the variance of the parameter estimator for channels in the selected set. Spectrum

sensing on the channels in the selected subset can be performed using an approach along

the lines of [43].

In this chapter, we have assumed that the PU state is directly observable. In principle,

the Markov chain model could be extended to take into account channel impairments as
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in Chapter 3 and to accommodate non-exponential PU state sojourn time distributions,

as was done in [43]. We have also assumed a simple cost function, i.e., Eq. (4.10), based

on the mean idle time of the PU. Alternative cost functions may be considered depending

on the spectrum access needs of the SU. For example, in addition to the mean idle time,

the variance of the idle time and the channel bandwidth may be incorporated into the cost

function.
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Chapter 5: A Recursive Algorithm for Wideband Temporal

Spectrum Sensing

Spectrum sensing techniques can be organized into three basic categories [53]:

1. Narrowband: A single channel is clearly defined, and the SU will only sense that

channel.

2. Multiband: Multiple narrowband channels, assumed to be independent, have been

defined, and the SU must sense each channel. Multiband techniques are useful for ap-

plications such as TV whitespace where multiple independent PUs operate on clearly-

defined channels.

3. Wideband: The SU must sense over a wide bandwidth which may contain multiple

narrowband channels with unknown boundaries. In wideband sensing, no extrinsic

information on channel boundaries or occupancy can be leveraged to simplify the

sensing task.

Of the three classes, narrowband techniques have been studied most extensively. Well-

known detection algorithms for narrowband sensing include energy detection, cyclostation-

ary feature detection, and matched filter detection [65]. The energy detector is the simplest

of the narrowband detectors and requires no a priori knowledge of the channel, but it per-

forms poorly in the case of low signal-to-noise ratio (SNR). The most sensitive of the listed

sensing algorithms is the matched filter, which requires a priori knowledge of the the PU

waveform, but can detect PU activity at extremely low SNR. Cyclostationary feature de-

tection lies between the matched filter and energy detector in terms of performance at low

SNR, but requires significant computation times and long integration windows in the case
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of low SNR. Cyclostationary detector performance is degraded in the case of low PU duty

cycle [26].

Additional complexity is added when dynamic behavior of the PU is considered in the

system model. Many narrowband spectrum sensing algorithms assume that the PU state is

constant over long periods of time. Given that many modern waveforms employ some sort

of time division multiple access (TDMA), Spectrum sensing algorithms such as [42], which

incorporate a dynamic PU model are highly desirable.

Research has also been performed on narrowband spectrum sensing algorithms which use

hidden Markov models (HMMs) to characterize dynamic behavior of the PU and predict

future spectrum holes on a narrowband channel [3]. The more general hidden bivariate

Markov model has been applied to model and predict the occurrence of temporal spectrum

holes with a high degree of accuracy [43]. Modeling PU activity as a Markov process has

been extended to the multiband case, where the allocation of total sensing time among bands

has been studied [55]. A multichannel MAC is proposed in [67] where the PU channels are

modeled as Markov on-off processes.

Wideband spectrum sensing, which is discussed in greater detail in Section 5.1, requires

algorithms which segment a band into independent channels. PU signals may be hetero-

geneous in frequency, bandwidth, and power, so robust algorithms must be developed to

detect all PU activity in the spectrum band. Incumbent wideband sensing algorithms, the

wideband energy detector and the wideband edge detector are considered in Section 5.1. We

show that these algorithms are inadequate for detection of PUs which dynamically change

states, and are especially inadequate for PUs with low duty cycle.

Many advanced wideband spectrum sensing methods have been proposed which offer

various improvements over standard wideband energy or edge detection but all model the

PU state as either on or off, not changing over time [5,7,38,41,51,64]. To our knowledge, no

wideband spectrum sensing research has been published where the system model includes

a PU which switches state and spectrum segmentation is performed.

In this chapter, we focus on the problem of wideband spectrum sensing, and we propose

50



a framework for wideband temporal sensing that can leverage the large set of narrowband

temporal sensing techniques that have already been developed. Specifically, we leverage a

hidden Markov model temporal sensing algorithm, allowing for detection of PUs with low

duty cycle in the wideband regime. We model the channel as a balanced binary tree and

perform a recursive search for spectrum holes. If any holes are detected that are adjacent in

frequency, they can be merged into a single spectrum hole with the objective of maximizing

PU independence between bands. We present experimental results obtained by simulation.

The remainder of the chapter is organized as follows. In Section 5.1, we discuss and

evaluate the performance of two existing wideband spectrum sensing techniques. In Sec-

tion 5.2, we introduce a system model for a dynamic PU in fading and noise. In Section 5.3,

we develop a recursive tree search algorithm to perform temporal sensing in the wideband

regime. In Section 5.4 we describe the simulation that was used to compare the proposed

algorithm to existing algorithms and present numerical results. Concluding remarks are

given in Section 5.5.

5.1 Comparison of Wideband Spectrum Sensing Techniques

In the wideband spectrum sensing scenario, a SU must sense an entire band and determine

channel boundaries. The bandwidth that must be sensed can vary from the order of 1 MHz

to 1 GHz. Wideband spectrum sensing is required if the SU can not leverage any external

information about channel allocation. An example of external channel information is the

television bands in North America where 6 MHz channels have been clearly defined by

national regulatory bodies. It is possible for a SU to only perform wideband sensing during

initialization and then revert to multiband or narrowband sensing during normal operation.

To evaluate the incumbent wideband sensing techniques, orthogonal frequency division

multiplexing (OFDM) and Gaussian minimum shift keying (GMSK) are used. OFDM sig-

nals exhibit sharp rectangular band edges, and GMSK signals exhibit gradual sloping band

edges. Because these signals represent extremes in the boundaries between signals, the per-

formance of the evaluated detectors with other modulation schemes should fall somewhere

51



between that of OFDM and GMSK. Not only do they have drastically different band edges,

but GMSK and OFDM are pervasive in modern wireless standards such as GSM (GMSK),

WiFi (OFDM), and LTE (OFDM).

We assume that a channel can take on one of two states: an idle state, in which the

PU does not transmit, and an active state, in which the PU transmits. We denote idle and

active states by 0 and 1, respectively. For a given channel, the steady-state probabilities

that the PU is idle and active are denoted, respectively, by π0 and π1. The duty-cycle of

the channel corresponds to π1 stated as a percent value.

5.1.1 Wideband Energy Detector

A very simple wideband sensing technique is a wideband energy detector [29], [13] where

the SU estimates the power spectral density (PSD) over the entire band and employs an

energy threshold to determine PU activity. Many PSD frames may be averaged to increase

reliability. This simple algorithm has many limitations. Like all energy detectors in additive

white Gaussian noise (AWGN), this technique has limited sensitivity, and performance is

severely degraded at low SNR. Furthermore, the sensitivity of the averaged PSD estimate

will be degraded in the case where the PU exhibits dynamic behavior. If the PU employs

a bursting signal or frequency hopping, idle periods may be averaged together with active

periods, which compromises the estimator’s accuracy.

Figures 5.1 and 5.2 qualitatively show the sensing results of a frequency-domain energy

detector for OFDM and GMSK signals, respectively. Shaded areas represent detected spec-

trum holes. All of the signals shown have an SNR of 10 dB, but for the bursting signals,

the magnitude of the PSD estimate decreases with the duty cycle. This decreased PSD

magnitude degrades the performance of the energy detector for both modulation schemes.

Performing a maximum hold operation rather than averaging PSD frames has been

proposed for detecting dynamic PUs [46]. However, maximum hold energy detectors are

outperformed by averaging detectors in low SNR [46]. Furthermore, maximum hold energy

detectors can actually cause an increased probability of false alarm as observation lengths
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Figure 5.1: Results of a wideband energy detector for OFDM signals with 10 dB SNR and
100%, 50%, 25%, and 12.5% duty cycles.

are increased due to increased likelihood of an abnormally high noise power during the

sensing interval. These two shortfalls make maximum hold energy detectors inadequate for

cognitive radio applications and motivate the need for a wideband sensing algorithm that

adequately detects dynamic PU activity.

5.1.2 Wideband Edge Detector

A popular approach to wideband spectrum sensing involves performing frequency-domain

edge detection to determine channel boundaries. The edge detector proposed in [56] uses

the continuous wavelet transform to decompose edge detection into multiple resolutions and

then multiplies the resolutions together, which has a beneficial effect of reducing the noise.

While edge detectors do offer an improvement over energy detectors in terms of performance

at low SNR, they come with several limitations. Most importantly, edge detectors require

that PU signals have sharp transitions in the frequency domain. This allows them to work

well with the rectangular spectra of signals like OFDM (see Fig. 5.3) and quadrature am-

plitude modulation (QAM) with low excess bandwidth, but edge detectors tend to perform
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Figure 5.2: Results of a wideband energy detector for GMSK signals with 10 dB SNR and
100%, 50%, 25%, and 12.5% duty cycles.
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Figure 5.3: Results of a wideband edge detector for OFDM signals with 10 dB SNR and
100%, 50%, 25%, and 12.5% duty cycles.

poorly on signals with gradual slopes on their band edges, such as QAM with large excess

bandwidth and GMSK.

The performance of an edge detector using the multi-resolution enhancements from [56]
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Figure 5.4: Results of a wideband edge detector for GMSK signals with 10 dB SNR and
100%, 50%, 25%, and 12.5% duty cycles.

is shown for GMSK in Fig. 5.4. The figure shows that wideband edge detectors suffer from

the same shortfall as wideband energy detectors in that they are also degraded by dynamic

behavior of the PU. Because received signal samples from both idle and active cycles are

averaged into the PU detector, the performance of the detector deteriorates with decreasing

duty cycle of the PU.

5.1.3 Compressive Sensing

A class of sensing algorithms known as compressive sensing has been proposed for surveying

very wide bandwidths with sub-Nyquist sampling rates. Because much of the radio spectrum

is underutilized, available bands may be represented as a sparse dataset, and depending

on the sparsity order of the dataset, the wideband signal may be sensed at a fraction of

the Nyquist rate [53]. To perform sub-Nyquist sampling, the signal time series is divided

into length-M blocks of Nyquist-rate samples, of which K samples are kept, giving an

undersampling fraction of K/M . Reconstruction of the sparse PSD from the undersampled

data is accomplished by solving for a linear inverse, which in the sparse case requires a
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numerical solution [57]. To select an appropriate undersampling fraction, the cognitive

receiver must have prior knowledge of the PU sparsity order. An online sparsity estimator

has been proposed in [52] that can quickly determine an undersampling ratio.

Although compressive sensing can be utilized to sense much wider bandwidths than can

be done with traditional analog to digital conversion hardware, the result of compressive

sensing typically involves a static PSD estimate. For example, in [57], the estimated sparse

PSD is analyzed with the wavelet-based edge detector proposed in [56]. Since current

compressive sensing methods rely on a static PSD estimate, the presence of low duty-cycle

PU signals can drastically reduce the detector sensitivity. In [53] it is stated that current

compressive sensing can not be used to properly handle sparsity in time and space. Although

our proposed sensing algorithm requires sampling at the Nyquist rate and can therefore not

be used for ultra wideband sensing, its success does not rely on signal sparsity in any domain,

and it more flexibly detects bursting signals by leveraging time-domain sensing methods.

5.2 System Model

Over a frequency band B, an unknown quantity of independent PUs is operating. Each PU

has an unknown center frequency, fc and bandwidth, W . It is assumed that PU channels

are not overlapping. The channel over which the ith PU is observed is assumed to be flat

Rayleigh fading with parameter σf,i combined with additive white Gaussian noise (AWGN),

defined by the circularly symmetric complex normal distribution C
(

0, σ2
n,i

)
. The mean SNR

of the received signal on channel i, given that the PU is transmitting is

SNRi =
σ2
f,i

σ2
n,i

(5.1)

at the input to the energy detector.
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5.2.1 PU Traffic Model

A PU may be transmitting or idle at any given time. The state of the ith PU, denoted

by random variable Xi, may alternate between the idle state Xi = 0, where the PU is not

transmitting, and the busy state Xi = 1, where the PU is transmitting. The kth PU state is

denoted Xi,k. Each PU is modeled by a discrete-time Markov chain with transition matrix

Gi and initial distribution νi, defined as

Gi = [gi,ab : a, b ∈ {0, 1}] , (5.2)

gi,ab = P (Xi,k = a,Xi,k+1 = b) , (5.3)

νi,0 = P (Xi,1 = 0) , vi,1 = P (Xi,1 = 1) . (5.4)

5.2.2 Cognitive Receiver Model

Received Wideband Signal

A transmitting PU will generate a bandpass signal t̃i,k. The transmitted signal for PU i at

any time k is

ti,k = t̃i,k · 1{Xi,k=2}, (5.5)

where 1{A} is the indicator function on the set or condition A. The ith PU signal is multiplied

at time k by fading signal fi,k ∼ C
(

0, σ2
f,i

)
. All M PU signals are received simultaneously

and added to noise signal nk ∼ C
(

0, σ2
n,i

)
. The received wideband signal is represented by

a sequence of samples znwb = {zwb,1, . . . , zwb,n}, where zwb,k, the kth I-Q sample from the

wideband channel, is defined as

zwb,k =
M∑
i=1

ti,kfi,k + nk. (5.6)
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Channelized Received Signal

The SU will divide the wideband received signal into J narrowband subchannels. Initially

this division must be done done arbitrarily, but after wideband sensing, the set of subchan-

nels should describe all PU statistics as well as the statistics of the spectrum holes between

PU signals. The sequence of observation samples in the jth subband is denoted zj .

Energy Detected Signal

For spectrum sensing, the channelized narrowband signals are processed with an averaging

energy detector, which estimates the power of each sample and averages N samples together.

The resulting random variable for the received energy in in subchannel j is denoted by Yj ,

and the sequence of energy estimates for subchannel j is denoted ynj = {yj,1, . . . , yj,n}. The

kth sample in the energy detection sequence, yj,k, is defined as

yj,k =
1

N

N∑
i=1

|zj,(k−1)N+i|2. (5.7)

Assuming that N is sufficiently large, yj , k will be conditionally normal with distribution

yj,k ∼


N

(
2σ2

n,i,
4σ4

n,i

N

)
, Xi,k = 0,

N

2σ2
f,i + 2σ2

n,i,
4
(
σ2
f,i + σ2

n,i

)2

N

 , Xi,k = 1,

(5.8)

This conditional distribution is derived in Appendix A.

5.3 Recursive Algorithm for Wideband Temporal Sensing

In this section, we propose an approach that extends narrowband temporal sensing tech-

niques to the wideband scenario. Narrowband techniques that use HMMs [21] to model
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Figure 5.5: A wideband channel, i.e., a spectrum band with bandwidth W0, organized into
a balanced binary tree.

the dynamic behavior of the PU [3] are leveraged to overcome the limitations of current

wideband spectrum detectors. The proposed wideband search algorithm may be adapted to

leverage other narrowband sensing techniques for various special purposes. For example, for

channels with high duty cycle but very low SNR, the proposed wideband algorithm could

be adapted to work with a cyclostationary detector.

5.3.1 Wideband Tree Search

In our proposed algorithm for wideband temporal sensing, the spectrum band is organized

as a balanced binary tree, where each node has two child nodes representing the upper

and lower halves of the band. The band is recursively divided into smaller pieces as depth

increases [34]. A maximum depth is selected based on a desired resolution for the wideband

sensing algorithm. The depth of the tree is given by d = dlog2 (W0/Wr)e, where W0 is

the bandwidth, and Wr is the maximum frequency resolution. The division of a band into

subbands using a balanced binary tree is shown in Fig 5.5.

The algorithm recursively divides a given channel in half until the desired resolution is

reached. An inorder traversal, a recursive search where child nodes are visited before parent

nodes [34] is performed on the balanced binary tree that is used to model the spectrum band.
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Figure 5.6: A simple digital downconvertor for signal channelization.

At the highest resolution, each subband or channel is sensed using a narrowband temporal

spectrum sensing technique.

5.3.2 Channel Selection

A channelizer must be employed to divide the wideband channel into 2d subbands, where d is

the search tree depth. A conceptually simple channelizer is a bank of digital downconverters

(DDCs), with one DDC for each subband. A diagram for a simple DDC is shown in

Fig. 5.6. Given a sequence {ak}∞k=1, we use the convenient notations ank = {ak, . . . , an} and

an = {a1, . . . , an}. The received wideband signal can then be represented by a sequence of

samples znwb = {zwb,1, . . . , zwb,n}, where zwb,k denotes the kth I-Q sample from the wideband

channel. When the received wideband signal znwb is passed into the DDC, it will first be

mixed down by center frequency fc, such that the center of the band of interest is now at

baseband. The baseband signal is next lowpass filtered with FIR taps h(n) to isolate the

band of interest. Finally, the signal is decimated by rate dec, keeping 1 sample out of every

dec. The channelized narrowband signal is denoted zn.

Because all subbands are eventually channelized by the recursive search, a frequency-

domain channelizer using the fast Fourier transform (FFT) [27,28] can substantially reduce

the computational cost of the channel selection. Frequency-domain channelizers have been

studied in detail [27], and while faster computationally, use of a frequency-domain chan-

nelizer would not alter the outcome of the proposed algorithm. Therefore, for the sake of

simpler algorithm description, a simple filter-and-decimate channelizer was discussed above.

For spectrum sensing, the channelized narrowband signals are processed with an averaging
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energy detector, which estimates the power of each sample and averages Navg samples to-

gether. The received power estimate of the sample zk in linear units, e.g., mW, is denoted

yk, and is calculated as follows:

yk =
1

Navg

Navg∑
i=1

|zk+i|2 . (5.9)

5.3.3 Hidden Markov Model for Narrowband Sensing

Although the recursive tree search that we propose can leverage a variety of narrowband

techniques, we are addressing the specific issue of PU dynamics such as bursting and fre-

quency hopping. An HMM is used to model the channel dynamics, assuming a lognormal

shadowing model. In [43,54], a more general form of HMM referred to as a hidden bivariate

Markov model (HBMM) is applied to narrowband temporal spectrum sensing. An exten-

sion of the Baum-Welch algorithm was developed in [43] for estimating the parameter of a

HBMM. The Baum-Welch algorithm is an offline algorithm, which iteratively produces a

sequence of parameter estimates with increasing likelihood, based on a given an observation

sequence. An online parameter estimation algorithm for the HBMM was developed in [54].

Since the focus of the present chapter is on wideband sensing, we will restrict ourselves to

the simpler HMM and the standard Baum-Welch algorithm for parameter estimation.

We use P to denote a generic probability measure and Pφ to denote a probability measure

that depends on a parameter φ. Similarly, we use p and pφ to denote a probability density

function or probability mass function as appropriate. In the notation p(xk) = P (Xk = xk),

the lowercase symbol xk on the left-hand side implicitly implies the associated random

variable represented by the uppercase symbol Xk. The HMM, denoted by (Y,X), consists

of an observable sequence of received signal strengths, Y = {Yk}∞k=1, and an underlying or

hidden state sequence X = {Xk}∞k=1, which is assumed to be a discrete-time Markov chain.

At time k, Yk represents the averaged received signal power, after processing, in linear units

(mW) and Xk represents the state of the PU, i.e., Xk = 0 when the PU is idle and Xk = 1
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when the PU is active. Assuming a standard path loss plus Rayleigh fading model, the

received signal power Yk can be expressed as follows (cf. [54]):

Yk =

 µ1 + ε1, Xk = 0,

µ2 + ε2, Xk = 1,
(5.10)

where µa represents the mean received signal power when the PU is in state a ∈ {0, 1}, and

εa is a zero-mean Gaussian random variable with standard deviation σa, which may repre-

sent impairments such as receiver noise, fading, or shadowing. This model was validated

empirically in the context of temporal spectrum sensing of a narrowband channel in [43].

In this chapter, Rayleigh fading was simulated, resulting in Eq. (5.8) for Yk.

Let G = [gab : a, b ∈ {0, 1}] denote the transition matrix of the underlying Markov chain

X, where gab denotes the transition probability from state a to state b. Let ν = [ν0, ν1]

denote the initial state probability distribution, where

ν1 = P (X1 = 0), ν2 = P (X1 = 1).

The parameter of the HMM is given by φ = (ν,G, µ,R), where µ = [µ0, µ1] and R = [σ2
0, σ

2
1].

5.3.4 Baum-Welch Algorithm and MAP Detector

The Baum-Welch algorithm [9] is applied to obtain an estimate of the HMM parameter for

a given channel, as part of the recursive tree search. The input to the algorithm is an initial

parameter estimate φs and an observed sequence yn obtained from the channel. Starting

with the initial estimate, φ̂0 = φs, the ιth iteration (ι ≥ 1) of the algorithm produces a

new estimate φ̂ι with likelihood greater than or equal to that of φ̂ι−1. Each iteration of the

algorithm involves the computation of forward and backward recursions [21, Section V.A]).
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Let φ denote the current parameter estimate at the start of an iteration of the Baum-

Welch algorithm. Define a diagonal matrix

B(yk) = diag{pφ(yk | xk = 0), pφ(yk | xk = 1)}.

We denote the (scaled) forward and backward variables by ᾱ(xk, y
k) and β̄(ynk+1 | xk),

respectively. The forward vector is defined as a row vector

ᾱk = [ᾱ(xk = 0, yk), ᾱ(xk = 1, yk)],

while the backward vector is defined as a column vector

β̄k = [β̄(ynk+1 | xk = 0), β̄(ynk+1 | xk = 1)]′,

where ′ denotes matrix transpose. Let 1 denote a column vector of all ones, of appropriate

dimension depending on the context. The forward recursion is given by

ᾱ1 =
νB(y1)

c1
, ᾱk =

ᾱk−1GB(yk)

ck
, k = 2, . . . , n, (5.11)

where c1 = πB(y1)1, and ck = ᾱk−1GB(yk)1 for k = 1, . . . , n. The forward variables have

the following interpretation: ᾱ(xk, y
k) = p(xk | yk). The backward recursion is given by

β̄n = 1; β̄n = GB(yn+1)
β̄n+1

cn
, k = n− 1, . . . , 1. (5.12)

The state conditional probability can be obtained from

pφ(xk | yn) = ᾱ(xk, y
k)β̄(ynk+1 | xk). (5.13)
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The joint state conditional probability can be calculated as follows:

pφ(xk−1, xk | yn) =

ᾱ(xk−1, y
k−1)β̄(ynk+1 | xk)gxk−1,xkpφ(yk | xk)∑

xk−1,xk
ᾱ(xk−1, yk−1)β̄(ynk+1 | xk)gxk−1,xkpφ(yk | xk)

. (5.14)

The re-estimation formulas for the new parameter estimate are given in terms of (5.13) and

(5.14) as follows:

ĝab =

∑n
k=2 pφ(xk−1 = a, xk = b | yn)∑n

k=2 pφ(xk−1 = a | yn)
,

µ̂a =

∑n
k=1 pφ(xk = a | yn) yn∑n
k=1 pφ(xk = a | yn)

, (5.15)

σ̂2
a =

∑n
k=1 pφ(xk = a | yn) (yk − µ̂a)2∑n

k=1 pφ(xk = a | yn)
, (5.16)

where a, b ∈ {0, 1}.

After the Baum-Welch algorithm converges to a final parameter estimate φ, the maxi-

mum a posteriori (MAP) decisions may be obtained from the a posteriori state probabilities,

as given in (5.13), as follows:

x̂k = arg max
xk∈{0,1}

pφ(xk | yn). (5.17)

Since the MAP decisions take into account the temporal dynamics of the PU signal, the

MAP detector can be significantly more accurate than a standard energy detector (cf. [43]).

The MAP detector (5.17) can be used for online spectrum sensing of the given channel.

5.3.5 Channel Usability and Channel Capacity

A heuristic test based on the HMM parameter estimate for a channel is performed to

determine whether the channel can be used by the SU. Given the transition matrix G, the
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stationary state distribution π = [π0, π1] can be computed from the equations

π = πG, π1 = 1. (5.18)

The channel is deemed to be a hole if the probability that the PU is idle, π0, exceeds a

threshold πmin,0 (see Algorithm 1, line 13). Note that π1 represents the duty cycle of the

channel. If the sensed channel is determined to be a hole, the center frequency, bandwidth,

MAP decisions on the PU state, and filtered decimated samples of the channel are passed

to the parent node in the tree.

Given an estimate of the HMM parameter for a channel, an estimate of the SNR for the

channel can be obtained. Let µa denote the mean received signal strength in linear units,

e.g., mW, for a = 0, 1. The SNR estimate is computed as

S

N
=
µ1 − µ0

µ0
. (5.19)

The capacity of the channel can then be estimated using the sensed bandwidth, the esti-

mated SNR, and the stationary distribution of the HMM. The capacity is derived from the

capacity for a single user with availability π0 in a TDMA system [20, Eq. 15.150]. We have

defined π0 as the stationary probability that the PU is not using a given band. With these

considerations, the capacity in (bits/s/Hz) is computed as follows:

C = π0 log2

(
1 +

S

N

)
. (5.20)

The proposed estimate for channel capacity does not play a direct role in our algorithm for

wideband temporal sensing, but is useful for assessing the potential capacity gains achievable

through spectrum sensing.
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5.3.6 Channel Aggregation

As the algorithm recurses upward, the parent nodes combine two lists of spectrum holes:

one from the lower half of the band, and the other from the upper half of the band. If the

highest-frequency hole from the lower band and the lowest-frequency hole from the upper

band are adjacent, the two holes can possibly be combined. The objective of wideband

sensing is to determine a set of narrowband channels that can be sensed independently and

shared by the SU. To achieve this objective, the adjacent holes will only be combined if they

are sufficiently correlated. The channel aggregation scheme proposed in this chapter is based

on the time-domain cross-correlation. The rationale behind doing so is that the resulting

narrowband channels will be uncorrelated and may therefore be treated as independent.

This enables multiband spectrum sensing techniques to be applied to the set of aggregated

channels.

The proposed channel aggregation function, while based on time-domain correlation,

must account for dynamic signals. Two perfectly-correlated bursting signals will appear

uncorrelated during idle periods, since white noise signals are by nature uncorrelated. The

MAP detector in (5.17) can be used to determine the periods during which the PUs are most

likely idle for both adjacent channels. Based on the MAP decisions, a correlation metric

between two adjacent channels can be computed. Let Zlo = {Zlo,k}∞k=1 and Zhi = {Zhi,k}∞k=1

denote the observation sequences for the lower and higher frequency channels, respectively.

The observed sequences from n-sample realizations are denoted by znlo and znhi, respectively.

The HMM parameter estimates φlo and φhi are obtained for the two channels using the

Baum-Welch algorithm. Let x̂nlo = {x̂lo,1, . . . , x̂lo,n} and x̂nhi = {x̂hi,1, . . . , x̂hi,n} denote the

corresponding decision sequences determined according to (5.17).

The normalized crosscorrelation at zero lag between the sequences znlo and znhi is given

by

ρ (znlo, z
n
hi) =

|〈znlo, znhi〉|∥∥znlo∥∥∥∥znhi

∥∥ , (5.21)
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where

〈znlo, znhi〉 =
n∑
k=1

zlo,kz
∗
hi,k, (5.22)

denotes the Hermitian inner product between znlo and znhi, z
∗ denotes the complex conjugate

of z, and ‖·‖ denotes the standard `2-norm. However, for the purpose of channel aggregation,

we require a correlation metric that takes into account the idle periods that coincide for the

two channels. We denote the indicator function on the set or condition A by 1A, and the

indicator function for the complement of A by 1Ac . Using this notation, we define modified

observation sequences for the two channels by zeroing out the samples for which the PU is

detected to be idle on both channels, i.e.,

z̃lo,k = zlo,k · 1{x̂lo,k=x̂hi,k=0}c ,

z̃lo,k = zlo,k · 1{x̂lo,k=x̂hi,k=0}c , (5.23)

for k = 1, . . . , n. The fraction of observation samples for which the PU is detected to be

idle on both channels is given by

γ =
1

n

n∑
k=1

1{x̂lo,k=x̂hi,k=0}. (5.24)

For such samples, the correlation should be assigned the value 1, indicating perfect corre-

lation. We then define a modified correlation metric as follows:

ρ̃ = γ + (1− γ)ρ (z̃nlo, z̃
n
hi) . (5.25)

It is easy to see that 0 ≤ ρ̃ ≤ 1. In our channel aggregation algorithm, two channels

are merged if their correlation ρ̃, computed using (5.25), exceeds a threshold ρ̃min (see

Algorithm 2, line 7). When holes are combined, their MAP decisions must be combined as
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well. This combination of decisions is given by

x̂k =


0, if x̂lo,k = x̂hi,k = 0

1, otherwise.

(5.26)

The PU in the combined channel is determined to be idle at time k if the PU in both

subbands is determined to be idle at time k. Otherwise, the PU is determined to be active

at time k.

5.3.7 Algorithm Descriptions

Table 5.1: Algorithm complexity parameters.

Parameter Description

Nc Number of channels at the finest sens-
ing resolution

Nt Number of filter taps for the channel
selecting LPF

Ns Number of samples in the sensing du-
ration

Ni Number of Baum-Welch iterations

A formal description of the proposed recursive wideband temporal sensing framework is

given in Algorithm 1. The computational complexity is given by

O (Nc log2Nc ·NtNs +NcNiNs) , (5.27)

where the various parameters involved are shown in Table 5.3.7. The terms of the complexity

equation are derived as follows: Nc log2Nc is the number of nodes in the binary tree [34]

and is therefore the maximum number of narrowband channels that can be sensed; NtNs is

the complexity of the filtering operation used to select a narrowband channel for sensing.

The term NiNs represents the per-channel complexity of the Baum-Welch algorithm.
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Algorithm 1 Wideband temporal sensing algorithm.

1: function RSense(fc, W , Wr, z
n
wb)

2: if W > Wr then
3: Llo = RSense(fc −W/2,W/2,Wr, z

n
wb);

4: Lhi = RSense(fc +W/2,W/2,Wr, z
n
wb);

5: if Lhi and Llo are not empty then
6: L = AggregateCh(Lhi, Llo, z

n
wb);

7: else
8: L = empty list;
9: else

10: h(n) = LPF(W,Nt);
11: dec = Floor(W0/W );
12: zn = DDC(znwb, fc, h(n),dec);

13: yn = EnergyDet(zn);
14: (ν,G, µ,R, x̂n) = BaumEst(yn);
15: π = StatDistr(G);
16: if π1 > πmin,1 then

17: L = list with single entry (fc,W, z
n, x̂n);

18: else
19: L = empty list;
20: return L;

We shall not formally describe any of the other functions used in Algorithms 1 and 2,

but basic descriptions are given. The function AggregateCh(Lhi, Llo, z
n
wb), as specified in

Algorithm 2, determines whether two adjacent holes should be combined. The function

Correlate(n, znlo, x̂
n
lo, z

n
hi, x̂

n
hi) computes the modified correlation metric given by (5.25). The

function LPF(W ) designs a finite impulse response (FIR) lowpass filter with bandwidth W .

The function DDC(znwb, fc, h(n),dec) performs channelization as discussed in Section 5.3.2.

The wideband signal znwb is mixed down by center frequency fc, lowpass filtered by a FIR

filter with discrete taps h(n), and decimated by dec. The function EnergyDet(zn) performs

energy detection based on the processed received power samples given in (5.9).

The function BaumEst(yn) estimates the parameter of the PU in the selected nar-

rowband channel with processed received power samples, yn, using the Baum-Welch algo-

rithm as summarized in Section 5.3.4. The function StatDistr(G) computes the stationary

state distribution corresponding to the transition matrix G using (5.18). The functions

HighestCh(L) and LowestCh(L) select the highest-frequency narrowband channel and the
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Algorithm 2 Aggregate channels.

1: function AggregateCh(Lhi, Llo, znwb)

2: (flo,c,Wlo, z
n
lo, x̂

n
lo) = LowestCh(Lhi);

3: (fhi,c,Whi, z
n
h , x̂

n
h) = HighestCh(Llo);

4: L = CombineLists(Lhi, Llo);
5: if fhi,c −Whi/2 == flo,c +Wl/2 then

6: ρ = Correlate(n, znlo, x̂
n
lo, z

n
hi, x̂

n
hi);

7: if ρ̃ > ρ̃min then
8: Remove(flo,c,Wlo, z

n
lo, x̂

n
lo) and

9: (fhi,c,Whi, z
n
hi, x̂

n
hi) from L;

10: h(n) = LPF(Wlo +Whi, Nt);
11: dec = Floor(W0/(Wlo +Whi));
12: fc = flo,c +Wlo/4 +Whi/4;

13: zn = DDC(znwb, fc, h(n),dec);

14: x̂n = Merge(x̂nlo, x̂
n
hi);

15: Add (fc,Wlo +Whi, z
n,x̂n)

16: to L;
17: return L;

lowest-frequency narrowband channel, respectively, from a list of estimated channel parame-

ters L. The function CombineLists(L1, L2) merges two lists of estimated channel parameters

into a single list and sorts the list in decreasing order of center frequency. The function

Merge(x̂nlo, x̂
n
hi) combines the MAP decisions from the two channels as in (5.26).

5.4 Simulation and Numerical Results

5.4.1 Simulation 1: Comparison of Techniques

We tested the wideband energy detector, the wideband edge detector, and the proposed

wideband temporal spectrum detector against OFDM and GMSK signals with duty cycles

varying among 1.0, 0.5, 0.25, and 0.125. We used an energy detection average of N = 1. We

assumed a minimum duty cycle πmin,1 = 0.1 and a minimum modified correlation threshold

for combining channels of ρ̃min = 0.7. For each modulation scheme and duty cycle tested,

a wideband capture was generated with signals of random center frequency and baud rate.

The modulated data on the signals was generated by a uniform random number generator.

All of the signals were received through a simulated AWGN and Rayleigh fading channel
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with 10 dB SNR and used the currently tested modulation and duty cycle. A total of 10,000

simulation iterations were performed for each modulation and duty cycle pair.

Wideband signals were also generated specifically for plotting qualitative results. These

wideband signals contained 4 narrowband signals with 1 MHz bandwidth and carrier spacing

of 2 MHz. The four signals have duty cycles of 1.0, 0.5, 0.25, and 0.125 from lowest-frequency

to highest-frequency. All highlighted PSD plots in this chapter show the results of applying

a wideband sensing algorithm to one of these wideband signals, where the shaded areas are

the detected holes and the white areas are the detected signals.

5.4.2 Simulation 2: Performance at Varying SNR

To test the performance of the proposed wideband temporal detector, we tested the detector

against OFDM and GMSK signals with duty cycle of 0.125 and SNR ranging between -20

and 20 dB. We varied the energy detection window, N , between 1, 10, 100, and 1000. We

assumed a minimum duty cycle πmin,1 = 0.1 and a minimum modified correlation threshold

for combining channels of ρ̃min = 0.7. For each modulation scheme, a wideband capture

was generated with signals of random center frequency and baud rate. The modulated data

on the signals was generated by a uniform random number generator. All of the signals

were received through a simulated AWGN and Rayleigh fading channel. A total of 10,000

simulation iterations were performed for each modulation and energy detection window.

5.4.3 Simulation 1 Results: Qualitative Comparison of Techniques

Qualitative results of the proposed wideband temporal sensing algorithm are depicted in

Fig. 5.7 for OFDM and Fig. 5.8 for GMSK. Shaded areas represent detected spectrum

holes. It can be seen that the proposed wideband temporal spectrum detector performed

well for all tested duty cycles and both simulated modulation schemes. The qualitative

simulation results of the proposed spectrum detector can be compared to the qualitative

results from Section 5.1. Comparing Fig. 5.7 to Figs. 5.1 and 5.3 shows that reducing the

duty cycle does not degrade the performance of the proposed detector for OFDM like it does
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Wideband Temporal Detection

Figure 5.7: Results of wideband temporal spectrum detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

for wideband energy detection. Similarly, comparing Fig. 5.8 to Figs. 5.2 and 5.4 shows that

the proposed detector is also not degraded by reduced duty cycles for GMSK. Furthermore,

comparing Fig. 5.8 to Fig. 5.4 shows that the smooth band edges of GMSK do not degrade

the performance of the proposed detector like they do for the wideband energy detector.

5.4.4 Simulation 1 Results: Quantitative Comparison of Techniques

Quantitative sensing results are depicted by ROC (receiver operating characteristic) curves

generated by the simulation. The ROC curves represent the average detector performance

over many random wideband captures using the same modulation, duty cycle, and SNR.

Performance of the wideband energy detector is shown in Fig. 5.9 for OFDM and Fig. 5.10

for GMSK. Performance of the wideband edge detector is shown in Fig. 5.11 for OFDM

and Fig. 5.12 for GMSK. In the wideband energy and edge detector results, it can clearly

be observed that detector performance degrades as PU duty cycle decreases. In the case of

GMSK, the performance of the wideband edge detector is substantially degraded, due to the

edge detector’s hindered ability to detect gradual changes. Performance of the wideband
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Figure 5.8: Results of wideband temporal spectrum detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Figure 5.9: ROC curve for wideband energy detector for OFDM signals with 10 dB SNR
and 100%, 50%, 25%, and 12.5% duty cycles.

temporal spectrum detector is shown in Fig. 5.13 for OFDM and Fig. 5.14 for GMSK. It

is clear from these results that the proposed detector’s performance was not significantly

degraded by reduced duty cycles.
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Figure 5.10: ROC curve for wideband energy detector for GMSK signals with 10 dB SNR
and 100%, 50%, 25%, and 12.5% duty cycles.

5.4.5 Simulation 2 Results

For simulation 2, false alarm rate and true positive rate were collected for a variety of

thresholds at all tested SNR and energy detection windows. To impose many ROC curves

onto a single plot, true positive rate at a constant false alarm rate (CFAR) of 0.01 is shown.

In Fig. 5.15, true positive rate for a CFAR of 0.01 is shown for the proposed detector against

OFDM signals with duty cycle of 0.125 and varying SNR. In Fig. 5.16, true positive rate is

shown for GMSK signals. As the energy detection window increases, the sensitivity of the

detector increases. The drawback to using too large of a detection window, however, is that

increasing energy detector length increases the likelihood that samples from idle cycles and

busy cycles are averaged together, degrading detector performance.

5.5 Conclusion

The proposed wideband temporal spectrum sensing framework performed comparably for

bursting signals with various duty cycles to the wideband energy detector applied to signals

with 100% duty cycle. In the case of bursting signals, the recursive wideband temporal

74



0.0 0.2 0.4 0.6 0.8 1.0
Probability of false detect

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f t
ru

e 
de

te
ct

OFDM Edge Detector Performance

Duty Cycle
100%
50%
25%
12.5%

Figure 5.11: ROC curve for wideband edge detector for OFDM signals with 10 dB SNR
and 100%, 50%, 25%, and 12.5% duty cycles.
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Figure 5.12: ROC curve for wideband edge detector for GMSK signals with 10 dB SNR
and 100%, 50%, 25%, and 12.5% duty cycles.

spectrum sensing algorithm proved to be much more robust than the frequency-only sensing

algorithms. The power of the proposed sensing algorithm comes at the cost of computation

time: O(Nc log2Nc) narrowband sensing operations must be performed, as well as FIR
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Figure 5.13: ROC curve for wideband temporal spectrum detector for OFDM signals with
10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Figure 5.14: ROC curve for wideband temporal spectrum detector for GMSK signals with
10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

filtering for channel selection. We suggest that a cognitive radio would use this wideband

sensing algorithm during initialization and revert to narrowband or multiband sensing once

the set of independent channels has been determined.
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Figure 5.16:

Several extensions of the proposed wideband temporal spectrum sensing algorithm could

be explored further. To reduce overall computation, use of a frequency-domain channelizer

that allows the channel selection operators to share filter computations and leverages heav-

ily optimized implementations for the FFT could be investigated. To improve detection
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accuracy for a wider range of PU behaviors, the HMM could be extended to a hidden bi-

variate Markov model [43], which has phase-type, rather than geometric state sojourn time

distributions. In the present chapter, a simple energy detector was used as a front-end for

the HMM-based parameter estimator and state detector. Even with the performance gain

that could be achieved by extending our scheme using a hidden bivariate Markov model,

detection of a PU at very low SNR using an energy detector may perform poorly. For such

low SNR scenarios, better performance could be achieved by means of a matched filter or

cyclostationary detector in conjunction with the recursive channel search.
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Chapter 6: An Edge Detection Approach to Wideband

Temporal Spectrum Sensing

6.1 Introduction

In [12], a sensing framework for reliable wideband detection of PUs with low duty cycle

was developed. The approach, referred to as wideband temporal sensing, involves parti-

tioning the given spectrum band into smaller subchannels. The energy in each subchannel

is measured and an HMM-based spectrum sensing approach is applied to each subchannel.

A recursive tree search is performed to aggregate correlated subchannels into a set of inde-

pendent narrowband channels, which effectively reduces the sensing task to the multiband

case. The wideband temporal sensing approach developed in [12] allows PU signals with

low duty cycle to be detected accurately at high to moderate SNR.

The main contribution of this chapter is to apply an edge detection algorithm to wide-

band temporal sensing, which allows for more reliable detection at low SNR compared to the

wideband temporal energy detector of [12]. Moreover, the use of edge detection avoids the

need for the recursive tree search used in the wideband temporal energy detector, resulting

in a computationally more efficient spectrum sensing scheme. Our approach incorporates

the wavelet-based edge detection algorithm of [56] into the wideband temporal sensing

framework proposed in [12]. We present experimental results obtained through simulation.

The remainder of the chapter is organized as follows. In Section 6.2, we define the

system model for wideband spectrum sensing. In Section 6.3, we discuss and evaluate the

performance of two existing wideband spectrum sensing techniques. In Section 6.4, we

develop the proposed edge detection approach to wideband temporal spectrum sensing. In

Section 6.5, we describe the simulation that was used to compare the proposed algorithm
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to existing algorithms and present numerical results. Concluding remarks are given in

Section 6.6. A portion of the work in this chapter has been published in [11].

6.2 System Model

6.2.1 Wideband Channel Model

Over a given wideband spectrum band, we assume that an unknown number of independent

PUs are operating. Each PU has an unknown center frequency and bandwidth. It is

assumed that PU channels do not overlap in frequency. The channel over which a given

PU is observed is assumed to be flat Rayleigh fading with parameter σf combined with

additive white Gaussian noise (AWGN), defined by the circularly symmetric complex normal

distribution C
(
0, σ2

n

)
. The mean SNR of the received signal on the PU channel, given that

the PU is transmitting, is given by

SNR =
σ2
f

σ2
n

, (6.1)

at the input to the energy detector.

6.2.2 PU Traffic Model

A given PU may be transmitting or idle at any given time. The state of the PU is denoted

by a discrete-time random process X = {Xk}∞k=1, where Xk = 1 if the PU is idle or

Xk = 2 if the PU is active at time k. We shall assume that the PU state process X is

characterized by an ergodic time-homogeneous discrete-time Markov chain with transition

matrix G = [gab : a, b ∈ {1, 2}], where

gab = P (X2 = b | X1 = a) , (6.2)
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and initial distribution ν = [νa : a = 1, 2], where

ν1 = P (X1 = 1) , v2 = P (X1 = 2) . (6.3)

The equilibrium state distribution, denoted by π = [π1, π2], satisfies the following equations:

π = πG, π1 + π2 = 1. (6.4)

The value π2 corresponds to the duty cycle of the PU in steady-state.

6.2.3 Cognitive Receiver Model

Received Wideband Signal

A transmitting PU will generate a bandpass signal t̃i,k. The transmitted signal for PU i at

any time k is

ti,k = t̃i,k · 1{Xi,k=2}, (6.5)

where 1{A} is the indicator function on the set or condition A. The ith PU signal is multiplied

at time k by fading signal fi,k ∼ C
(

0, σ2
f,i

)
. All M PU signals are received simultaneously

and added to noise signal nk ∼ C
(

0, σ2
n,i

)
. The received wideband signal is represented by

a sequence of samples znwb = {zwb,1, . . . , zwb,n}, where zwb,k, the kth I-Q sample from the

wideband channel, is defined as

zwb,k =
M∑
i=1

ti,kfi,k + nk. (6.6)
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Channelized Received Signal

The SU will divide the wideband received signal into J narrowband subchannels. Initially

this division must be done done arbitrarily, but after wideband sensing, the set of subchan-

nels should describe all PU statistics as well as the statistics of the spectrum holes between

PU signals. The sequence of observation samples in the jth subband is denoted zj .

Energy Detected Signal

For spectrum sensing, the channelized narrowband signals are processed with an averaging

energy detector, which estimates the power of each sample and averages N samples together.

The resulting random variable for the received energy in in subchannel j is denoted by Yj ,

and the sequence of energy estimates for subchannel j is denoted ynj = {yj,1, . . . , yj,n}. The

kth sample in the energy detection sequence, yj,k, is defined as

yj,k =
1

N

N∑
i=1

|zj,(k−1)N+i|2. (6.7)

Assuming that N is sufficiently large, yj , k will be conditionally normal with distribution

yj,k ∼


N

(
2σ2

n,i,
4σ4

n,i

N

)
, Xi,k = 0,

N

2σ2
f,i + 2σ2

n,i,
4
(
σ2
f,i + σ2

n,i

)2

N

 , Xi,k = 1,

(6.8)

This conditional distribution is derived in Appendix A.

6.3 Comparison of Wideband Spectrum Sensing Techniques

It was shown in Chapter 5 and [12] that standard wideband detection methods are inade-

quate for PUs with low duty cycle. The edge detection algorithm from [56] was performed
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Figure 6.1: Results of a wideband edge detector for OFDM signals with 10 dB SNR and
100%, 50%, 25%, and 12.5% duty cycles [12].

on a wideband signal with four orthogonal frequency division multiplexing (OFDM) car-

riers of varying duty cycle. It was demonstrated that as the duty cycle was reduced, the

detector sensitivity was also reduced. Performance of the standard edge detector is shown

in Fig. 6.1 for OFDM signals with SNR of 10 dB and varying duty cycles, where the shaded

areas indicate detected spectrum holes. Clearly, the edge detector fails to correctly detect

the two rightmost OFDM signals.

Wideband temporal spectrum sensing was introduced in Chapter 5 and [12] to more

reliably detect a PU with low duty cycles, where the proposed algorithm performed compa-

rably to energy detection for duty cycles of 1.0 and did not degrade substantially for lower

duty cycles. Because we are extending the wideband temporal spectrum sensing algorithm

from [12], we shall refer to the incumbent algorithm as wideband temporal energy detection.

Performance of the wideband temporal energy detector is shown in Fig. 6.2 for OFDM

signals with SNR of 10 dB and varying duty cycles.

Although wideband temporal energy detection has been shown to reliably detect PU

signals at 10 dB SNR for a variety of duty cycles, spectrum sensing applications may demand

accurate PU detection at substantially lower SNR. It can be seen in Fig. 6.3 that at higher
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Figure 6.2: Results of a wideband temporal energy detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles [12].

noise levels, the wideband temporal energy detection algorithm proposed in [12] begins to

experience detection errors. Note that the wideband temporal energy detector incorrectly

characterizes the rightmost spectrum hole. The edge detection algorithm proposed in [56]

allows for accurate detection of high duty cycle signals in high noise levels, which motivates

the development of an algorithm that extends wideband temporal spectrum sensing with

edge detection.

6.4 Proposed Algorithm

In this section, we extend the wideband temporal sensing algorithm from [12]. Since the

proposed algorithm uses edge detection to determine channel boundaries, the recursive tree

search used in [12] for channel aggregation is not necessary.

6.4.1 Channelization of Received Wideband Signal

First, the received wideband signal is divided into J narrowband signals of equal bandwidth.

The narrowband signals are spaced such that they are non-overlapping and cover the entire
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Figure 6.3: Results of wideband temporal energy detector for OFDM signals with 5 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles [12].

band. Selection of J depends on the desired sensing resolution, Wr. Signals narrower than

Wr may not be reliably detected, and detected channel boundary locations may have a

frequency error as large as Wr
2 . The number of subchannels required to achieve sensing

resolution Wr is given by

J =

⌈
W0

Wr

⌉
, (6.9)

where W0 is the width of the entire band. Channelization may be accomplished in a con-

ceptually simple fashion using a bank of digital downconverters or more efficiently using a

frequency-domain channelizer, as described in [12, Sec. III-b]. If a frequency-domain chan-

nelizer is used, J from Eq. (6.9) should be rounded up to the next power of 2 for efficient

FFT computation. The resulting set of all J narrowband received signals is denoted by

Z =
{
Z(1), . . . , Z(J)

}
.
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6.4.2 Sensing of Narrowband Subchannels

The observation of PU traffic through a noisy channel can be accurately modeled using a

hidden Markov model (HMM), denoted by (Y,X), where X is an underlying discrete-time

Markov chain and Y is a random sequence of observations, conditionally dependent on X.

The transition matrix and initial distribution of the HMM are given in (6.2) and (6.3),

respectively. The noisy samples are modeled by normal distributions. The parameter of

the HMM for a PU is given by φ = (ν,G, µ,Σ), where µ = [µ1, µ2] and Σ =
[
σ2

1, σ
2
2

]
are,

respectively, the sets of conditional means and conditional variances for subchannel j given

by (6.8).

For a set of J subchannels that partition a spectrum band evenly, the conditional means

µa =
{
µ(1)
a , . . . , µ(J)

a

}
, a = 1, 2, (6.10)

determine the conditional power spectral density of the received signals on the subchannels.

If the J uniformly distributed channels which cover the band have frequencies {f1, . . . , fJ},

the conditional power spectral densities are defined as

µa(f) =
J∑
j=1

µ
(j)
a

∆f
rect

(
f − fj

∆f

)
, a = 1, 2, (6.11)

where rect(·) denotes the unit rectangular function and ∆f is the frequency spacing between

subchannels. Here, µ1(f) is the power spectral density of the received signal given that all

PUs are idle, and µ2(f) is the power spectral density of the received signal given that all

PUs are transmitting.

For each of the J narrowband subchannels, energy detection and HMM parameter esti-

mation is performed. The set of observed energy sequences is denoted Y =
{
Y (1), . . . , Y (J)

}
and is given by Eq. (6.7). Subchannel j is characterized by an HMM parameter, φ(j) =
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(
ν(j), G(j), µ(j),Σ(j)

)
, which is estimated using the Baum-Welch algorithm [9]. In the wide-

band temporal energy detector proposed in [12], the set of HMM parameters for the entire

band is used directly.

Our performance baseline will be the wideband temporal energy detector from [12],

which directly computes µ2(f) from the conditional power spectral density, defined in

Eq. (6.11), with a threshold λ to determine which subchannels contain an active PU. The

adjacent active subchannels which are determined to be correlated are combined into a

single channel.

6.4.3 Edge Detection

In our proposed algorithm, we apply the wideband edge detection algorithm from [56]

to the conditional power spectral density of the received signal. We first decompose the

conditional power spectral density into a set of resolutions using the continuous wavelet

transform (CWT). The CWT of µ2(f) for a resolution γ is given as

Wγ {µ2(f)} = µ2(f) ∗ ψγ (f) , (6.12)

where ∗ denotes convolution and ψγ(f) is a wavelet of scale γ, given by

ψγ (f) =
1

γ
ψ

(
f

γ

)
. (6.13)

The mother wavelet, ψ (t), is the Ricker wavelet, defined in [40, Eq. (4.34)] as

ψ (t) =
2

π1/4
√

3σ

(
t2

σ2
− 1

)
exp

(
−t2

2σ2

)
. (6.14)

The Ricker wavelet is the second derivative of a Gaussian function, and a standard Ricker

wavelet, where σ = 1, is particularly useful for edge detection [40]. The rth resolution of the

conditional power spectral density has scale γ where γ = 2r and r ∈ {1, 2, . . . , R}, where R
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is the number of CWT resolutions.

Once the conditional power spectral density is decomposed into component resolutions

using the CWT, edge detection is performed by taking the first derivative of each component

resolution:

W ′γ {µ2(f)} = γ
d

df
(µ2(f) ∗ ψγ (f)) . (6.15)

We then compute the multiscale wavelet product from the resulting gradient estimates:

UR {µ2(f)} =
R∏
r=1

W ′γ {µ2(f)}
∣∣∣
γ=2r

. (6.16)

By multiplying the component resolutions together, the signal is amplified, while the noise

is not, resulting in noise suppression [50]. The resulting peaks in UR {µ2(f)} are determined

to be channel boundaries.

6.5 Simulation and Results

6.5.1 Simulation Setup

We tested the proposed wideband temporal edge detector against the wideband temporal

energy detector from [12]. Wideband signals with OFDM carriers were tested. A duty cycle

of π2 = 0.1 was used, and SNR values of 0, 5, and 10 dB were tested. A total bandwidth

of 10 MHz with four randomly placed PU signals was tested. The bandwidth and center

frequency of each non-overlapping PU carrier were randomly generated each iteration, and

the PU signal bandwidths were drawn randomly within the range 0.5 to 2.0 MHz. The full

set of simulation parameters is enumerated in Table 6.5.1. Note that the number of CWT

resolutions (R) applies only to the edge detector.
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Table 6.1: Simulation parameters.

Simulation Parameter Value

Modulation OFDM

Total bandwidth (W ) 10 MHz

Duty cycle (π2) 0.1

SNR {0, 5, 10} dB

Number of PU carriers 4

Number of narrowband subchannels (J) 1024

Energy detector average length (N) 10

Number of CWT resolutions (R) 4

Sensing duration per iteration 0.01 s

Number of simulation iterations 10000

Figure 6.4: Results of the proposed wideband temporal edge detector for OFDM signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles [12].

6.5.2 Qualitative Results

The visual output of the proposed wideband temporal edge detector is shown in Fig. 6.4,

where the proposed detector was tested against a wideband signal with PUs of varying duty

cycle with 5 dB SNR. This performance may be contrasted with the wideband temporal

energy detector proposed in [12] in 5 dB SNR plotted in Fig. 6.3. Visually, it can be seen
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Figure 6.5: Results of wideband temporal detectors for OFDM signals with 10 dB SNR.
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Figure 6.6: Results of wideband temporal detectors for OFDM signals with 5 dB SNR.

that the proposed wideband temporal edge detector performs accurately in relatively low

SNR.

6.5.3 Numerical Results

Next, we present numerical results demonstrating the performance improvement achieved

by wideband temporal edge detection for a variety of medium to low SNR signals. In each
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Figure 6.7: Results of wideband temporal detectors for OFDM signals with 0 dB SNR.

simulation iteration, every narrowband channel was recorded as either a true detect, a true

positive, a false detect, or a false positive, depending on the known PU signal locations and

the detector results. A variety of thresholds were tested so that the relationship between

detection rates can be observed. Averaged detection characteristics are plotted as receiver

operating characteristic (ROC) curves. The resulting plots are shown in Fig. 6.5, 6.6,

and 6.7 for SNRs of 10, 5, and 0 dB, respectively. From these results, it is apparent

that the wideband temporal edge detector performs favorably compared to the wideband

temporal energy detector from [12] for all simulated SNR values. The performance benefit

of edge detection is especially pronounced at the low SNR of 0 dB. The simulated duty cycle

of π2 = 0.1 was lower than any duty cycle simulated in [12], and the wideband temporal

energy detector produced similar results to those in [12] at 10 dB SNR.

6.6 Conclusion

We have proposed a wideband spectrum sensing algorithm that is capable of detecting PU

signals at low duty cycles and relatively low SNR. We leveraged the wideband temporal

sensing framework introduced in [12], which had been shown to perform well for low duty
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cycle PU signals at moderate SNR. We enhanced the wideband temporal sensing framework

with the edge detection algorithm from [56]. This enhancement was shown to perform sub-

stantially better at lower SNR, making the proposed algorithm more suitable for cognitive

radio tasks that require highly reliable detection at low to moderate SNR.

Several extensions to the proposed algorithm are being investigated in our ongoing work.

One such extension is failure detection, where the SU would detect that no signal edges are

present and default to wideband temporal energy detection, which would allow for sensing

of PU signals without sharp band edges, as discussed in [12]. Another extension to the

proposed sensing algorithm involves smoothing of the conditional power spectral density in

Eq. (6.11) using the maximum a posteriori (MAP) decisions produced by the Baum-Welch

algorithm to more reliably estimate average received signal power.
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Chapter 7: Conclusions

This dissertation presented a set of spectrum sensing algorithms which can enable wideband

or multiband opportunistic spectrum access. Although each of the sensing schemes devel-

oped in Chapters 3, 4, 5, and 6 may stand alone as a useful spectrum sensing algorithm,

the set of proposed algorithms builds a picture of how a standalone secondary user can

characterize its environment.

Hidden Markov processes are used throughout this thesis to model primary user activity

and channel impairments jointly. By modeling the primary user traffic as a Markov process,

prediction of future transmit states may be performed, and use of the hidden Markov process

allows for inference of the primary user state through noisy observations.

7.1 Multiband Spectrum Sensing

In Chapters 3 and 4, we considered multiband spectrum sensing, the case in which frequency

channels have already been identified, and the secondary user must observe many to deter-

mine a plan for whitespace exploitation. Although a baseline for multichannel estimation

exists, this dissertation addresses many of the practical concerns mentioned in Chapter 2. In

Chapter 3, we propose the Markov-modulated Gaussian process, a continuous-time version

of a hidden Markov process, to model a discrete-time noisy channel. Multichannel esti-

mation is performed against noisy data, and we compare the simulated estimator variance

to a theoretical lower bound. In moderate SNR or higher, the variance of the proposed

multichannel estimation algorithm approaches the theoretical lower limit. In Chapter 4,

we present optimal compute budget allocation (OCBA) as a framework for multichannel

optimization. We use OCBA to select the “best” channel, or subset of channels, with the

goal of maximizing a certain objective function. Under the condition that the objective
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function is normal, OCBA minimizes the sensing time required to select the optimal subset

of channels.

7.2 Wideband Spectrum Sensing

In Chapters 5 and 6, we consider wideband spectrum sensing, the case in which a band may

contain many channels, but the number of channels, center frequencies, and bandwidths

are unknown. We develop a wideband spectrum sensing algorithm called wideband temporal

spectrum sensing, which performs accurate detection of bursting primary users and performs

parameter estimation on the primary user, which has been modeled as a hidden Markov

process, allowing for time series prediction during spectrum exploitation. In Chapter 5,

the wideband temporal spectrum sensing is introduced and shown to work on a variety of

signals with different modulations and duty cycles. In Chapter 6, the wideband temporal

spectrum sensing algorithm is extended to perform multi-resolution edge detection, allowing

for accurate detection of certain signals at much lower SNR.

7.3 Future Work

The work in this dissertation may be extended in a number of directions. Many opportu-

nities exist for implementation of cognitive radio systems based on this work. There are

also some excellent opportunities for original research based on this work. Some of these

opportunities are enumerated in this section.

7.3.1 Multiband Spectrum Sensing

Multiband spectrum sensing using hidden bivariate Markov processes would be extremely

beneficial. Hidden bivariate Markov processes have substantially improved predictive power

(c.f. [43]), and have elegant parameter estimators based on those developed for standard hid-

den Markov processes. The expectation maximization algorithm from [47] can be extended

to the bivariate case and used for multiband optimizations.
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Additional research into OCBA for multiband spectrum sensing is recommended. First,

the two-part algorithm proposed in Chapter 4 should be reconsidered as a single-part esti-

mation algorithm, where minimization of the variance of the “best” channel is attempted.

Furthermore, OCBA only minimizes search time in the case where the objective function

is normal. We proposed an objective function that is asymptotically normal, but other more

complicated functions may not work as well with the proposed algorithm. Creating versions

of OCBA where the objective functions map to other distributions would give implementers

more freedom in selecting objective functions while maintaining the guarantees of OCBA.

7.3.2 Wideband Spectrum Sensing

While wideband temporal spectrum sensing allows for spectrum sensing in a much greater

range of environments, many deficiencies still exist. First, wideband temporal spectrum

sensing should be considered in very low SNR, in which some cognitive radios will be required

to operate. Detectors with increased processing gain like the cyclostationary feature detector

should be considered as a front-end to wideband temporal spectrum sensing, which currently

relies on an energy detector.

Furthermore, wideband temporal spectrum sensing does not support the case where

primary user channels overlap in frequency. Extensions should be considered in which

overlapping channels can be correctly identified.

7.3.3 Implementation

Implementers of opportunistic spectrum sensing systems should consider how to use the

multiband and wideband sensing algorithms in this dissertation in a coordinated fashion.

One example of such an implementation would be use of wideband temporal spectrum

sensing as an initialization stage to identify the channels, and then multiband spectrum

sensing to track primary users. In more dynamic environments, wideband spectrum sensing

could be repeated periodically.
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Appendix A: Derivation of Conditional Distribution of a

Rayleigh Channel Observed through an Energy Detector

In this appendix, we derive the conditional normal distribution of a PU signal received

over a Rayleigh fading channel with additive white Gaussian noise (AWGN) and observed

through an energy detector.

A.1 Narrowband Channel Model

A channel with known center frequency and bandwidth is and a single PU is observed. The

channel over which the PU is observed is assumed to be flat Rayleigh fading with parameter

σf combined with zero mean AWGN, defined by the circularly symmetric complex normal

distribution C
(
0, σ2

n

)
. The mean SNR of the received signal on the channel, given that the

PU is transmitting is

SNR =
σ2
f

σ2
n

, (A.1)

at the input to the energy detector.

A.2 PU Traffic Model

A PU may be transmitting or idle at any given time. The state of the PU is denoted by

the random variable X, where X = 0, when the PU is not transmitting, and t X = 1,

when the PU is transmitting. The kth state of the PU is denoted by Xk. The sequence of

active/idle states from the PU is modeled by a continuous-time homogeneous Markov chain
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with generator matrix Q and initial distribution π defined, respectively, as

Q =

−λ0 λ0

λ1 −λ1

 , (A.2)

π0 = P (X1 = 0) , π1 = P (X1 = 1) , (A.3)

where λj is the rate of the exponential sojourn time distribution in state j.

A.3 Cognitive Receiver Model

Let Yk denote the average energy at time k = 0, 1, . . . of the narrowband signal over N

samples. Let the sequence of energy estimates be denoted Y n = {Y1, . . . , Yn}. The kth

sample in the energy detection sequence, Yk, is defined as

Yk =
1

N

N∑
j=1

|Z(k−1)N+j |2. (A.4)

An SU will need to detect slow changes in the PU state to properly leverage spectrum holes.

We therefore assume that N is sufficiently small such that no state changes occur within

the N samples. We further assume that {Zk} are iid Gaussian with conditional distribution

Zk ∼

 C
(
0, σ2

n

)
, Xk = 0,

C
(

0, σ2
f + σ2

n

)
, Xk = 1,

(A.5)

The resulting energy estimates, yk, will be scaled chi-squared random variables with 2N

degrees of freedom. We will denote a chi-squared distribution with D degrees of freedom
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X 2 (D). The conditional distribution of the energy detector is therefore

yk ∼


σ2
n

N
X 2 (2N) , Xk = 0,

σ2
f + σ2

n

N
X 2 (2N) , Xk = 1,

(A.6)

The mean and variance of a chi-squared distribution with D degrees of freedom are D and

2D respectively. Assuming that N is sufficiently large, yk will be conditionally normal with

distribution

yk ∼


N
(

2σ2
n,

4σ4
n

N

)
, Xk = 0,

N

2σ2
f + 2σ2

n,
4
(
σ2
f + σ2

n

)2

N

 , Xk = 1,
(A.7)
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Appendix B: Derivation of the Fisher Information Matrix for

a 2-State Markov-Modulated Gaussian Process

B.1 Definitions

In [47], a Markov-Modulated Gaussian Process (MMGP) is defined as a continuous-time

finite-state homogeneous Markov chain observed through a discrete-time memoryless Gaus-

sian channel. The log likelihood function for an MMGP [47, Eq. 5] is given:

logLc =
r∑
i=1

1{X(0)=i} log πi −
r∑
i=1

Tiqi +
∑
i 6=j

mij log qij

−1

2
n log 2π − 1

2

r∑
i=1

ni log σ2
i −

1

2

r∑
i=1

n∑
k=1

ξk(i)
(yk − µi)2

σ2
i

, (B.1)

where 1{·} is the indicator function, X(0) denotes the initial state of the underlying Markov

process,

Ti =

∫ T

0
1{X(t)=i} dt (B.2)

denotes the total time that the underlying Markov process spent in state i during the

interval [0, T ],

mij =

m∑
k=1

1{sk=i,sk+1=j} (B.3)

denotes the number of jumps from state i to state j, where i 6= j, the state sequence over

the interval [0, T ] has m jumps, and sk is the state of the Markov chain immediately after

its kth jump. ,

ξk(i) = 1{X(tk)=i} (B.4)
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indicates whether or not the underlying Markov process is in state i for sample k,

ni =
m+1∑
k=1

ξk(i) (B.5)

denotes the number of samples of the observed signal while the Markov chain is in state i,

and yk denotes the kth sample of received noisy data.

B.2 Two-State Log Likelihood

For spectrum sensing applications, 2-state Markov processes are commonly used to model

the signal from the PU. This allows us to make some important simplifications to the log

likelihood function. The likelihood function of the Markov chain and observed sequence is

given by

logLc = 1{X(0)=0} log π0 + 1{X(0)=1} log π1

−T0λ0 − T1λ1 +m01 log λ0 +m10 log λ1

−1

2
n log 2π − 1

2
n0 log σ2

0 −
1

2
n1 log σ2

1

−1

2

n∑
k=1

ξk(0)
(yk − µ0)2

σ2
0

− 1

2

n∑
k=1

ξk(1)
(yk − µ1)2

σ2
1

, (B.6)

where λi is the transition rate out of state i. For a two-state underlying Markov process:

λ0 = q0 = q01 (B.7)

λ1 = q1 = q10 (B.8)

B.3 Important Expected Values

Certain expected values are required to derive the Fisher Information Matrix.
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B.3.1 Expected Number of Jumps Between States

For a two-state CTMC, the expected number of jumps between states may be derived using

renewal theory.

Renewal Events

Consider a sample function of the process such that X(0) = 0. Then the state of X

alternates from 0 to 1, and the cycle of a sojourn in state 0 followed by a sojourn in state

1 repeats. Alternatively, if X(0) = 1, a cycle consists of a sojourn in state 1 followed by a

sojourn in state 0. For our purposes, the sequence of states within a cycle is immaterial.

Let us call the completion of each cycle a renewal event. Let M(t) denote the number of

renewal events in (0, t]. Then, the number of transitions from state 1 to two in (0, t] can be

related to M(t) as follows:

Nt(0, 1) = M(t) + 1{X(0)=0,X(t)=1}, (B.9)

where 1{A} is the indicator function of event A. This additional term is necessary to account

for the event of an additional transition from state 0 to state 1 without the completion of

an entire renewal, i.e. a transition back to state 0. Similarly, the number of transitions

from state 1 to state 0 in (0, t] can be written as

Nt(1, 0) = M(t) + 1{{X(0)=1,X(t)=0}}. (B.10)

Letting R(t) = E (M(t)), the expected number of transitions from 0 to 1 and 1 to 0,

respectively can be written as

E (Nt(0, 1)) = R(t) + π0P01(t), (B.11)

E (Nt(1, 0)) = R(t) + π1P10(t), (B.12)
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where P01(t) and P10(t) are respectively defined as:

P01(t) = P (X(0) = 0, X(t) = 1) , (B.13)

P10(t) = P (X(0) = 1, X(t) = 0) . (B.14)

Transition probabilities for a finite-state Markov process

Kolmogorov’s forward and backward equations are given respectively:

dP (t)

dt
= P (t)Q = QP (t), (B.15)

where P (t) = [Pij(t)i, j ∈ X] denotes the transition probability matrix at time t [35, Eq.

16.35, 16.38]. Note that

P (0) = I, (B.16)

where I is the identity matrix. The unique solution to the forward and backward equations,

P (t) = etQ =
∞∑
n=0

(tQ)n

n!
, (B.17)

applies when all entries of Q are bounded [35, Eq. 16.39].

Transition probabilities for a 2-state Markov process

For the 2-state case, the forward and backward equations (B.15) can be solved explicitly.

From Eq. (B.7, B.8), the generator for a 2-state CTMC is

Q =

−λ0 λ0

λ1 −λ1

 . (B.18)
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Because the rows of a transition probability matrix must sum to 1, it is clear that

P00(t) = 1− P01(t),

P11(t) = 1− P10(t). (B.19)

The transition probabilities for a 2-state CTMC are given [30, Ch. 3, Eqs. 28-29 ]:

P01(t) =
λ0

λ0 + λ1

(
1− e−(λ0+λ1)t

)
,

P10(t) =
λ1

λ0 + λ1

(
1− e−(λ0+λ1)t

)
. (B.20)

Renewal function

An expression for R(t) can be obtained using some results from renewal theory, see, e.g.,

Cinlar [15]. A renewal process can be defined as follows. Let

S0 = 0; Sn+1 = Sn +Wn, n = 0, 1, 2, . . . . (B.21)

The sequence S = {Sn; n = 0, 1, . . .} is called a renewal process if W1,W2, . . . are indepen-

dent and identically distributed random variables. The Sn are called renewal times. Let

F denote the distribution function of the interrenewal times Wn and let M(t) denote the

number of renewals in (0, t]. Then we can write

M(t) =

∞∑
n=1

1{Sn≤t}. (B.22)

Therefore,

R(t) = E[M(t)] =

∞∑
n=1

P [Sn ≤ t] =

∞∑
n=1

F (n)(t), (B.23)
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where F (n) denotes the n-fold convolution of F with itself, defined by

F (1) = F (t), (B.24)

F (n) = F (n−1) ∗ f(t). (B.25)

Let R̃(s) denote the Laplace-Stieltjes transform of R(t) and let F̃ (s) denote the Laplace-

Stieltjes transform of F (t). From (B.23), we obtain (cf. [35, Eq. (14.79)])

R̃(s) =

∞∑
n=1

F̃n(s) =
F̃ (s)

1− F̃ (s)
. (B.26)

Returning to the 2-state Markov process, the interrenewal time distribution is the con-

volution of the distributions of two exponential random variables, one with parameter λ0

and the other with parameter λ1. Thus, the Laplace-Stieltjes transform of the interrenewal

time is given by

F̃ (s) =
λ0

s+ λ0
· λ1

s+ λ1
=

λ0λ1

s2 + sλ0 + sλ1 + λ0λ1
. (B.27)

Applying (B.27) into (B.26), we obtain

R̃(s) =

λ0λ1

s2 + sλ0 + sλ1 + λ0λ1

1− λ0λ1

s2 + sλ0 + sλ1 + λ0λ1

=
λ0λ1

s2 + sλ0 + sλ1
. (B.28)

Using partial fraction expansion:

R̃(s) =
λ0λ1

λ0 + λ1

(
1

s
− 1

s+ λ0 + λ1

)
, (B.29)
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from which we obtain

r(t) =
λ0λ1

λ0 + λ1

(
1− e−(λ0+λ1)t

)
. (B.30)

Finally, we derive the renewal function:

R(t) =

∫ t

0
r(τ)dτ =

[
λ0λ1

λ0 + λ1
τ +

λ0λ1

(λ0 + λ1)2
e−(λ0+λ1)τ

]t
0

(B.31)

=
λ0λ1

λ0 + λ1
t− λ0λ1

(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
. (B.32)

Applying (B.32) and (B.20) in (B.11), we have:

E (Nt(0, 1)) = R(t) + π0P01(t)

=
λ0λ1

λ0 + λ1
t+

(
π0 −

λ1

λ0 + λ1

)
λ0

λ0 + λ1

(
1− e−(λ0+λ1)t

)
. (B.33)

Similarly, we have:

E (Nt(1, 0)) =
λ0λ1

λ0 + λ1
t+

(
π1 −

λ0

λ0 + λ1

)
λ1

λ0 + λ1

(
1− e−(λ0+λ1)t

)
. (B.34)

As t approaches ∞, the constant term becomes negligible, and we have the asymptotic

approximation:

E (Nt(0, 1)) = E (Nt(1, 0)) =
λ0λ1

λ0 + λ1
t =

t
1
λ0

+ 1
λ1

, as t→∞. (B.35)
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B.3.2 Expected Number of Samples in a State

The expected number of samples in state i is related to the expected amount of time in

state i and the sampling interval h:

E (ni) =
1

h
E (Ti) . (B.36)

The expected amount of time in state i is related to the transition probability:

E (T0) = π0

∫ t

0
P00(τ)dτ + π1

∫ t

0
P10(τ)dτ,

E (T1) = π1

∫ t

0
P11(τ)dτ + π0

∫ t

0
P01(τ)dτ. (B.37)

Applying (B.19):

E (T0) = π0

∫ t

0
(1− P01(τ)) dτ + π1

∫ t

0
P10(τ)dτ,

E (T1) = π1

∫ t

0
(1− P10(τ)) dτ + π0

∫ t

0
P01(τ)dτ. (B.38)

Applying (B.20), the above integrals are solved as:

∫ t

0
P01(τ)dτ =

λ0

λ0 + λ1

∫ t

0

(
1− e−(λ0+λ1)τ

)
dτ,

=
λ0

λ0 + λ1
t− λ0

(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
. (B.39)

∫ t

0
(1− P01(τ)) dτ =

∫ t

0

(
λ0 + λ1

λ0 + λ1
− λ0

λ0 + λ1
+

λ0

λ0 + λ1
e−(λ0+λ1)τ

)
dτ,

=
λ1

λ0 + λ1
t+

λ0

(λ1 + λ0)2

(
1− e−(λ0+λ1)t

)
. (B.40)
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Similarly,

∫ t

0
P10(τ)dτ =

λ1

λ0 + λ1
t− λ1

(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
, (B.41)

∫ t

0
(1− P10(τ)) (τ)dτ =

λ0

λ0 + λ1
t+

λ1

(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
. (B.42)

Applying (B.40) and (B.41) into (B.38),

E (T0) =
λ1

λ0 + λ1
t+

π0λ0 − π1λ1

(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
. (B.43)

Similarly,

E (T1) =
λ0

λ0 + λ1
t+

π1λ1 − π0λ0

(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
. (B.44)

Applying (B.43) and (B.44) into (B.36):

E (n0) =
λ1

h(λ0 + λ1)
t+

π0λ0 − π1λ1

h(λ0 + λ1)2

(
1− e−(λ0+λ1)t

)
, (B.45)

E (n1) =
λ0

h(λ0 + λ1)
t+

π1λ1 − π0λ0

h(λ0 + λ0)2

(
1− e−(λ0+λ1)t

)
. (B.46)

As t approaches ∞,

E (n0) =
λ1

λ0 + λ1

t

h
, as t→∞, (B.47)

E (n1) =
λ0

λ0 + λ1

t

h
, as t→∞. (B.48)
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B.4 Score Function

The score function is defined as:

χ = ∇ logLc. (B.49)

In the case of the two-state MMGP, the score function is given:

χ =

[
∂

∂λ0
,
∂

∂λ1
,
∂

∂µ0
,
∂

∂µ1
,
∂

∂v0
,
∂

∂v1

]
logLc, (B.50)

where vi = σ2
i is used to denote the variance, in the interest of simpler notation.

B.4.1 Score for Transition Rates

The score for λ0 is given:

∂

∂λ0
logLc = −T0 +

m01

λ0
. (B.51)

Similarly, the score for λ1 is given:

∂

∂λ1
logLc = −T1 +

m10

λ1
. (B.52)

B.4.2 Score for Gaussian Process Means

The score for µ0 is given:

∂

∂µ0
logLc =

∂

∂µ0

[
−1

2

n∑
k=1

ξk(0)
(yk − µ0)2

v0

]
,

=
n∑
k=1

ξk(0)
yk − µ0

v0
. (B.53)
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Similarly, the score for µ1 is given:

∂

∂µ1
logLc =

n∑
k=1

ξk(1)
yk − µ1

v1
. (B.54)

B.4.3 Score for Gaussian Process Variances

The score for v0 is given:

∂

∂v0
logLc =

∂

∂v0

[
−1

2
n0 log v0 −

1

2

n∑
k=1

ξk(0)
(yk − µ0)2

v0

]
,

= − n0

2v0
+

1

2v2
0

n∑
k=1

ξk(0) (yk − µ0)2 . (B.55)

Similarly, the score for v1 is given:

∂

∂v1
logLc = − n1

2v1
+

1

2v2
1

n∑
k=1

ξk(1) (yk − µ1)2 . (B.56)

B.5 Fisher Information Matrix

To compute the Fisher Information Matrix (FIM), we must first compute the Hessian of

the log likelihood function. From the score functions derived in the previous sections, it is

apparent that many of the parameters are orthogonal, corresponding to zero elements in
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the FIM. The Hessian may be substantially simplified:

∇2 logLc =



∂2

∂λ2
0

0 0 0 0 0

0
∂2

∂λ2
1

0 0 0 0

0 0
∂2

∂µ2
0

0
∂2

∂µ0∂v0
0

0 0 0
∂2

∂µ2
1

0
∂2

∂µ1∂v1

0 0
∂2

∂v0∂µ0
0

∂2

∂v2
0

0

0 0 0
∂2

∂v1∂µ1
0

∂2

∂v2
1



logLc (B.57)
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The individual partial derivatives are given:

∂2

∂λ2
0

= −m01

λ2
0

(B.58)

∂2

∂λ2
1

= −m10

λ2
1

(B.59)

∂2

∂µ2
0

=

n∑
k=1

ξk(0)
−1

v0
(B.60)

∂2

∂µ2
1

=
n∑
k=1

ξk(1)
−1

v1
(B.61)

∂2

∂v2
0

=
n0

2v2
0

− 1

v3
0

n∑
k=1

ξk(0) (yk − µ0)2 (B.62)

∂2

∂v2
1

=
n1

2v2
1

− 1

v3
1

n∑
k=1

ξk(1) (yk − µ1)2 (B.63)

∂2

∂v0µ0
=

∂2

∂µ0v0
= − 1

v2
0

n∑
k=1

ξk(0) (yk − µ0) (B.64)

∂2

∂v1µ1
=

∂2

∂µ1v1
= − 1

v2
1

n∑
k=1

ξk(1) (yk − µ1) (B.65)

The FIM is defined as:

I (Lc) = E
(
−∇2 logLc

)
(B.66)
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The individual components of the FIM are given:

E

(
− ∂2

∂λ2
0

)
= E

(
m01

λ2
0

)
=

1

λ2
0

E (m01) (B.67)

E

(
− ∂2

∂λ2
1

)
= E

(
m10

λ2
1

)
=

1

λ2
1

E (m10) (B.68)

E

(
− ∂2

∂µ2
0

)
= E

(
n∑
k=1

ξk(0)
1

v0

)
=

1

v0

n∑
k=1

E (ξk(0)) =
1

v0
E (n0) (B.69)

E

(
− ∂2

∂µ2
1

)
= E

(
n∑
k=1

ξk(1)
1

v1

)
=

1

v1

n∑
k=1

E (ξk(1)) =
1

v1
E (n1) (B.70)

E

(
− ∂2

∂v2
0

)
= E

(
− n0

2v2
0

+
1

v3
0

n∑
k=1

ξk(0) (yk − µ0)2

)

= − 1

2v2
0

E (n0) +
1

v3
0

n∑
k=1

E
(
ξk(0) (yk − µ0)2

)

= − 1

2v2
0

E (n0) +
1

v2
0

E (n0) =
1

2v2
0

E (n0) (B.71)

Similarly,

E

(
− ∂2

∂v2
1

)
= E

(
− n1

2v2
1

+
1

v3
1

n∑
k=1

ξk(1) (yk − µ1)2

)

=
1

2v2
1

E (n1) (B.72)

E

(
− ∂2

∂v0µ0

)
= E

(
− ∂2

∂µ0v0

)
= E

(
1

v2
0

n∑
k=1

ξk(0) (yk − µ0)

)

=
1

v2
0

n∑
k=1

E ((yk − µ0) I(X(tk) = 0))

=
1

v2
0

n∑
k=1

P (X(tk) = 1) E ((yk − µ0) |X(tk) = 0) = 0 (B.73)

112



Similarly,

E

(
− ∂2

∂v1µ1

)
= E

(
− ∂2

∂µ1v1

)
= E

(
1

v2
1

n∑
k=2

ξk(1) (yk − µ1)

)
= 0 (B.74)

The FIM is given:

I (Lc) = diag

{
E (m01)

λ2
0

,
E (m10)

λ2
1

,
E (n0)

σ2
0

,
E (n1)

σ2
1

,
E (n0)

2σ4
0

,
E (n1)

2σ4
1

}
(B.75)

Because the FIM is a diagonal matrix, inversion is trivial. The inverse FIM is given:

I−1 (Lc) = diag

{
λ2

0

E (m01)
,

λ2
1

E (m10)
,

σ2
0

E (n0)
,

σ2
1

E (n1)
,

2σ4
0

E (n0)
,

2σ4
1

E (n1)

}
(B.76)

B.6 Asymptotic Approximation

As t increases, the FIM is simplified:

I (Lc) =
t

λ0 + λ1
diag

{
λ1

λ0
,
λ0

λ1
,
λ1

hσ2
0

,
λ0

hσ2
1

,
λ1

2hσ4
0

,
λ0

2hσ4
1

}
, as t→∞. (B.77)

I−1 (Lc) =
λ0 + λ1

t
diag

{
λ0

λ1
,
λ1

λ0
,
hσ2

0

λ1
,
hσ2

1

λ0
,
2hσ4

0

λ1
,
2hσ4

1

λ0

}
, as t→∞. (B.78)
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Appendix C: Derivation of the Fisher Information Matrix for

a CTMC

In this appendix, we derive the Fisher information matrix for a continuous-time Markov

chain (CTMC) in terms of the mean sojourn times and transition probabilities. A closed-

form expression for the 2-state case is given.

C.1 Definitions

For a continuous-time finite-state homogeneous Markov chain, we define the generator ma-

trix as Q, where qij is the transition rate from state i to state j (i 6= j), and the diagonal

terms qi are defined as qi =
∑

i 6=j qij . We define the state at time t as X(t). When observing

a continuous-time Markov chain (CTMC) over the closed time interval [0 ≤ t ≤ T ], we de-

note the time spent in state i as Ti. We define the initial distribution π as πi = P (X(0) = i).

C.2 Log Likelihood

The log likelihood function for a CTMC is given in [4, Sec. 4] as

logLc =

r∑
i=1

1{X(0)=i} log πi −
r∑
i=1

Tiqi +
∑
i 6=j

mij log qij , (C.1)

where 1{·} is the indicator function, X(0) denotes the initial state of the underlying Markov

process,

Ti =

∫ T

0
1{X(t)=i} dt (C.2)
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denotes the total time that the underlying Markov process spent in state i during the

interval [0, T ], and

mij =
m∑
k=1

1{sk=i,sk+1=j} (C.3)

denotes the number of jumps from state i to state j, where i 6= j, the state sequence over

the interval [0, T ] has m jumps, and sk is the kth state in the sequence.

C.3 Log Likelihood In Terms of Mean Dwell Time and Tran-

sition Probability

The log likelihood function may be expressed in terms of the mean dwell times µi and the

transition probabilities, pij , given by

µi =
1

qi
, (C.4)

pij =


0, i = j

qij
qi
, i 6= j

(C.5)

Applying Eqs. (C.4) and (C.5) into Eq. (C.1), we get a new log likelihood function in terms

of the mean dwell times and transition probabilities

logLc =

r∑
i=1

1{X(0)=i} log πi −
r∑
i=1

Ti
µi

+
∑
i 6=j

mij log

(
pij
µi

)

=
r∑
i=1

1{X(0)=i} log πi −
r∑
i=1

Ti
µi

+
∑
i 6=j

mij log pij −
∑
i 6=j

mij logµi. (C.6)
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C.4 Score Function

The score function for a random process is defined as:

χ = ∇ logLc. (C.7)

The score functions with respect to the mean dwell times and transition probabilities are

given

∂

∂µi
logLc =

Ti
µ2
i

−
∑
i 6=j

mij

µi
(C.8)

∂

∂pij
logLc =

mij

pij
, i 6= j . (C.9)

C.5 Fisher Information Matrix

To compute the Fisher Information Matrix (FIM), we must first compute the Hessian of

the log likelihood function. It is apparent from Eqs. (C.8) and (C.9) that the off-diagonal

elements of the Hessian are zero. The diagonal elements of the Hessian are given

∂2

∂µ2
i

logLc =
∑
i 6=j

mij

µ2
i

− 2Ti
µ3
i

, (C.10)

∂2

∂p2
ij

logLc = −mij

p2
ij

, i 6= j . (C.11)

The FIM is defined as the expected value of the negative Hessian matrix of the log

likelihood function. For a CTMC with two states, the FIM is given as

I (Lc) = E
(
−∇2 logLc

)
. (C.12)
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The diagonal terms of the FIM are given

E

(
− ∂2

∂µ2
i

logLc
)

=
2E (Ti)

µ3
i

−
∑
i 6=j

E (mij)

µ2
i

, (C.13)

E

(
− ∂2

∂p2
ij

logLc
)

=
E (mij)

p2
ij

, i 6= j . (C.14)

In the special case of a 2-state CTMC, the transition probabilities are known, and the

transition rates or the mean dwell times are a sufficient statistic. The resulting FIM for a

2-state CTMC is given

I (Lc) = E
(
−∇2 logLc

)

=


2E (T1)

µ3
1

− E (m12)

µ2
1

0

0
2E (T2)

µ3
2

− E (m21)

µ2
2

 . (C.15)

C.6 Expected Number of Jumps Between States

The expected number of jumps from state j to k for a 2-state CTMC is given in B as

E (Nt(j, k)) =
λjλk
λj + λk

t+

(
πj −

λk
λj + λk

)
λj

λj + λk

(
1− e−(λj+λk)t

)
. (C.16)

In terms of the mean dwell times in states j and k, the expected number of jumps is

expressed as

E (Nt(j, k)) =
1/(µjµk)

1/µj + 1/µk
t+

(
πj −

1/µk
1/µj + 1/µk

)
1/µj

1/µj + 1/µk

(
1− e−(1/µj+1/µk)t

)

=
1

µj + µk
t+

(
πj −

µj
µj + µk

)
µk

µj + µk

1− e
−
(
µj + µk
µjµk

)
t

 . (C.17)
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C.7 Expected Time in States

The expected time spent in state j for a 2-state CTMC, where state k = −j + 1, is given

in B as

E (Tt(j)) =
λk

(λj + λk)
t+

πjλj − πkλk
(λj + λk)2

(
1− e−(λj+λk)t

)
. (C.18)

In terms of the mean dwell times in states j and k, the expected time in state j is expressed

as

E (Tt(j)) =
1/µk

(1/µj + 1/µk)
t+

πj/µj − πk/µk
(1/µj + 1/µk)2

(
1− e−(1/µj+1/µk)t

)

=
µj

µj + µk
t+

µjµk (πjµk − πkµj)
(µj + µk)

2

1− e
−
(
µj + µk
µjµk

)
t

 . (C.19)

C.8 Asymptotic Approximations

The expressions for the expected number of jumps and the expected time in a state may be

simplified in the asymptotic regime. Approximate values from Eqs. (C.17) and (C.19) are

given

E (Nt(j, k)) =
1

µj + µk
t , t→∞, (C.20)

E (Tt(j)) =
µj

µj + µk
t , t→∞. (C.21)

Applying Eqs. (C.20) and (C.21) to Eq. (C.15), we derive the Asymptotic FIM

I (Lc) =
t

µ0 + µ1


1

µ2
0

0

0
1

µ2
1

 , t→∞. (C.22)
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The resulting Cramér Rao bound for a single channel is therefore

σ2(t) ≥ µ0 + µ1

t

(
µ2

0 + µ2
1

)
, t→∞, (C.23)

and the multi-channel CRB is

σ2(t) ≥
M∑
i=1

µ0,i + µ1,i

t

(
µ2

0,i + µ2
1,i

)
, t→∞, (C.24)

C.9 Asymptotic MMSE Allocations

In [55], per-channel sensing allocations were derived such that the multi-channel CRB is

minimized. Because our multi-channel CRB in Eq. (C.24) is different than that in [55,

Eq. 14], we must derive new sensing durations which minimize our new CRB. We use

Lagrange multipliers to derive the optimal time durations which minimize Eq. (C.24) under

the constraint

M∑
i=1

Ti = T. (C.25)

Define the vector t = [T1, . . . , TM ] as the vector of time allocations for all M channels. We

define our optimization functions as

f(t) =

M∑
i=1

βi
Ti

,

g(t) = T −
M∑
i=1

Ti , (C.26)

where βi = (µ0,i + µ1,i)
(
µ2

0,i + µ2
1,i

)
. We define our auxiliary function as

L(t, λ) = f(t) + λg(t) . (C.27)
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We compute the gradient with respect to t

∇L(t, λ) = 0 ,

∇f(t) +∇λg(t) = 0 ,

−β
t2
− λ1 = 0 , (C.28)

where β = [β1, . . . , βM ], t2 is the component-wise square of the vector t, and 1 is a row

vector where every element is a 1. Solving for t, we get

t =

√
−β
λ

, (C.29)

where
√

x is the element-wise square root of a vector x. Applying the solution Eq. (C.29)

to the constraint Eq. (C.25), we can solve for λ.

M∑
i=1

√
−βi
λ

= T .

√
−1

λ

M∑
i=1

√
βi = T .

−1

λ

(
M∑
i=1

√
βi

)2

= T 2 .

−
(∑M

i=1

√
βi

)2

T 2
= λ . (C.30)
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Applying Eq. (C.30) into Eq. (C.29), we solve for the optimal time durations

t =

√√√√ −β
−(
∑M

i=1

√
βi)

2

T 2

,

= T

√
β∑M

i=1

√
βi

,

Ti = T

√
βi∑M

i=1

√
βi

,

= T

√
(µ0,i + µ1,i)

(
µ2

0,i + µ2
1,i

)
∑M

i=1

√
(µ0,i + µ1,i)

(
µ2

0,i + µ2
1,i

) (C.31)
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[15] E. Çinlar, “Markov Renewal Theory: A Survey,” Management Science, vol. 21, no. 7,
pp. 727–752, Dec. 1975.

[16] C.-H. Chen, Stochastic simulation optimization: an optimal computing budget alloca-
tion. World scientific, 2010, vol. 1.

[17] C.-H. Chen, D. He, M. Fu, and L. H. Lee, “Efficient simulation budget allocation for
selecting an optimal subset,” INFORMS Journal on Computing, vol. 20, no. 4, pp.
579–595, 2008.
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