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ABSTRACT 

SECURITY AND COMPLEXITY ANALYSIS OF LUT-BASED OBFUSCATION: A 

COMPREHENSIVE STUDY 

Gaurav Kolhe, M.S. 

George Mason University, 2018 

Thesis Director: Dr. Houman Homayoun 

 

Logic locking and Integrated Circuit (IC) camouflaging are the most prevalent 

protection schemes that significantly thwart security threats, such as Intellectual Property 

(IP) piracy, hardware Trojans, reverse engineering, counterfeiting, and overproduction. 

However, the state-of-the-art attacks, including Boolean Satisfiability (SAT), Signal 

Probability Skew (SPS), and approximate-based attacks demonstrate the lack of having a 

comprehensive powerful defense scheme. Recent obfuscation schemes have employed 

reconfigurable logics, such as Look-up-Tables (LUTs) to prevent reverse engineering. 

However, existing LUT-based approaches focus on only a specific design factor such as 

replacement strategy or optimization metric such as SAT-hardness.  

In this work, we study all proposed state-of-the art hardware obfuscation and 

attacks and forms a rationale for studying the LUT based obfuscation technique. We then 

propose a comprehensive analysis on LUT-based obfuscation based on all substantial 
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metrics that have considerable impact on design criteria, i.e. Power/Performance/Area 

(PPA) and Security (PPA/S). We performed a large design-for-security space exploration 

using four crucial factors for LUT-based obfuscation which has remarkable effect on PPA 

and security, namely (1) LUT technology, (2) LUT size, (3) number of LUTs, and (4) 

replacement strategy. Among these design parameters, the size of LUT is identified to have 

the most impact on making the obfuscation SAT resilient even for a weak random 

replacement strategy. A smarter replacement strategy helps to reduce the reliance on using 

large LUT to achieve SAT resiliency. Moreover, we found that while a clear trade-off exists 

between SAT resiliency, area and power overhead of LUT-based obfuscation, the delay 

trade-off can be substantially eliminated by using our proposed iterative security-driven 

design method which is non-disruptive to current standard ASIC design flow. Our 

experimental results indicate that for the studied designs, less than two iterations are 

sufficient to enhance the PPA/S along with eliminating the delay overhead with the 

proposed iterative security-driven PPA optimization. Our empirical results further 

demonstrate that increasing the size of LUTs from 2 to 8 provides SAT-resiliency with 

only less than 1% of gates replaced with LUTs. 
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INTRODUCTION 

Hardware Security 

Massive integration of billions of transistors on a single integrated circuit (IC) led to 

improved functionality, but at the cost of design complexity. In addition, increasing the 

manufacturing costs and heterogeneity in IC components are leading towards integrating 

multiple design units manufactured by different vendors onto one single IC [1]. Despite 

the cost-effectiveness, using designs from untrusted vendors for fabrication further 

exacerbates the security concerns [2,3] such as IC reverse engineering (RE) and insertion 

of hardware Trojans [4]. Such a security breach can occur at any phase of IC design and 

manufacturing process, such as during design, at foundry, SOC integration, or even at the 

end user. For example, 

3PIP (Third Party Intellectual Property): Any rogue employee in 3PIP design house with 

access can sell, modify, overuse, or reverse engineer an IP as the design is open and visible 

in this phase. 

SoC and DFT inserter: A malicious entity in SoC or DFT insertion phase with access to 

unencrypted IP can also sell, modify, or reverse engineer the design. 

Untrusted foundry: Any adversary with access to the final GDSII file of the IC design 

might overproduce the design or sell it to a third party. They might reverse engineer the 

design to retrieve higher level description to exploit vulnerabilities. 
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Assembly, distributor, and user: An attacker in assembly and distribution stage or an end 

user does not have access to the original design. However, they might reverse engineer the 

fabricated IC. Hence, the active participation of various external agents in the design and 

manufacturing how has made the entire process highly vulnerable to various security 

threats.  

Although IC reverse engineering is a slow and expensive process, it has become more 

practical today with the advent of advanced imaging and probing techniques such as 

focused ion beam (FIB) and scanning electron microscopy (SEM). To reverse engineer the 

design, an attacker needs to perform delayering, high-resolution imaging or X-raying, and 

image processing to retrieve the netlist from a fabricated IC. If the adversary is a foreign 

government or competitive ill-intended organization, acquiring this expensive imaging 

equipment is possible. Therefore, sensitive designs, like military grade ICs, need to be kept 

secure from such threats. [5] 

IC Security Threats 

A Figure 1 Threats on third party IP in supply chain demonstrate the various 

threats that exacerbates hardware security at various levels. Below we explain each of 

these threats. 

 

 
Figure 1 Threats on third party IP in supply chain 

 

https://media.springernature.com/original/springer-static/image/art:10.1007/s41635-018-0036-3/MediaObjects/41635_2018_36_Fig2_HTML.png
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IC Piracy 

This is a scenario where the IP is illegally used and/or copied without paying the 

lawful royalty to the IP vendor [6]. 

 

IC Overuse 

In this scenario, the manufacturing fab illegally copies and reverse engineers the 

design database of an IC sent for fabrication to manufacture illegal copies (“clones") of 

the IC [7]. 

 

IC Modification 

The design can be modified in the design house during the design phase or in the 

fab by malicious insertion, deletion or modification of circuits, referred to as Hardware 

Trojans, which cause the IC to deviate from its intended functional behavior during 

deployment [8, 9]. Typically, these Trojan circuits are stealthy by design, which makes it 

extremely challenging to detect them by traditional post-manufacturing testing [10]. 

 

Secret Information Leakage 

Though the “deploy and monitor" step of the design is completely trustable, it has 

been shown that secret information can be extracted by an adversary from secure ICs with 

cryptographic functionality [11]. Such threats increase with increasing controllability and 

observability of the internal nodes of the circuit because of widespread adoption of “Design 

for Testability" (DfT) techniques in modern ICs. It is worth noting that the “design" stage 
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itself is designated as one of the partially insecure stages of the entire flow. This takes into 

consideration the possible presence of untrusted personnel in the design house with access 

to the design, who might sabotage the design to serve other interests. 

 

Concept of Obfuscation 

Obfuscation is a technique that makes understanding or reverse engineering of a 

design difficult. To protect hardware IP from these threats, the design needs to be 

unintelligible, even in decrypted form. Hardware obfuscation provides the option to 

effectively hide and disable the design, but still facilitate structural testing and 

static/dynamic parameter analysis [1,12,13]. This convenience makes obfuscation a 

desirable method for security and an active field of research.  

As shown in Figure 2 Hardware obfuscation obscuring logic function to prevent 

hardware attacks, obfuscation methods facilitate to create look-alike logic, uncertain logic 

(until post-fabrication configuration), and key-controlled logic. An attacker who does not 

have sufficient knowledge of the applied specific obfuscation procedure could 

misunderstand the logic function of the module of interest. For instance, the NOR gate is 

recovered as a NAND gate; an XOR function is recognized as an addition.  
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Figure 2 Hardware obfuscation obscuring logic function to prevent hardware attacks 

 

The application of hardware obfuscation has been demonstrated at different 

abstraction levels in integrated circuits and systems. Hardware obfuscation techniques can 

also be classified based on whether they are combinational or sequential in nature. In this 

work, we focus on combinational obfuscation. This type of hardware obfuscation is 

realized by adding combinational components only to the combinational parts of a 

hardware design. We summarize different hardware obfuscation at various level in Figure 

3 Hardware Obfuscation at different abstraction levels. The following subsections 

introduce the key idea of the methods at each level in details. 
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Figure 3 Hardware Obfuscation at different abstraction levels 

 

Chip-Level Obfuscation: 

Chip-level obfuscation includes the hardware modification that we make on the 

device, circuit, gate, and register-transfer levels to confuse attackers who intend to insert 

hardware Trojans. 

 

Device-Level Obfuscation 

Device-level obfuscation is to disguise the real function of a device by introducing 

controllable faults, such as stuck-at and delay faults. Without knowing the exact details of 

the device implementation procedure, a reverse engineer may misinterpret the device (and 

the associated circuits) function based on the superficial understanding from, for instance, 

the SEM images. 
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Circuit-Level Obfuscation 

The circuit-level obfuscation techniques are divided into two categories: 

camouflaging layout and transistor locking. Camouflaging at circuit layout is used to thwart 

the reverse engineers from successfully reading the layout and thus recovering the 

transistor-level schematic for that circuit. The camouflaging techniques have been applied 

to two-dimensional (2D) and three-dimensional (3D) ICs. Transistor locking is another 

type of obfuscation (in a general sense), which changes the logic gate functionality by 

muting some transistors in the schematic [14,15]. 

 

Gate-Level Obfuscation 

The gate-level obfuscation methods hinder the hardware Trojans from affecting the 

module under protection by modifying the state transition function of a circuit such that 

the attacker is not able to reach the real power-up state. Thus, the inserted hardware Trojan 

is either in the states belonging to the authentication mode or in the normal operation mode. 

As the attacker does not know the correct obfuscation key, the Trojans in the latter mode 

will never be triggered. There are many Gate-level obfuscation which have been proposed 

both for combinational and sequential circuit. We have focused mainly on combinational 

gate level obfuscation and various obfuscation methods are discussed further in other 

section. 
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Register Level Obfuscation 

The basic idea is to transform the RTL core into control and data flow graph 

(CDFG) and then integrate a well obfuscated finite state machine (FSM) of special 

structure, referred as “Mode-Control FSM”, into the CDFG in a manner that normal 

functional behavior is enabled only after application of a specific input sequence. [16] 

 

On-Chip Network Communication Obfuscation 

The hardware Trojan mitigation method in [17] aims to detect and mitigate the 

hardware Trojan attacks that (1) modify the flit type, (2) change the legal packet destination 

address to an unauthorized one, and (3) sabotage the integrity of a packet. The main 

consequence of the hardware Trojan targeted in [17] is the NoC bandwidth depletion. 

Hence, to overcome such type of attacks, the NOC modules are obfuscated. 

 

Other Methods 

Split manufacturing methods [18, 19, 20, 21, 22] obfuscate the design by dividing 

a circuit into multiple tiers, which are sent to different foundries for fabrication. As each 

foundry does not have the complete design, attackers from the untrusted foundry have 

limited understanding on the entire design and may not be able to insert effective hardware 

Trojans to the design portion they have. In recent years, researchers have realized that split 

manufacturing may not be as necessarily secure as expected [23, 24 ,25, 26]. 

After, the obfuscation re-synthesis is necessary. Among the methods that we have 

looked, there are some obfuscation methods which are done after the first synthesizing step, 
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where one of the example being layout obfuscation. Figure 4 Integration of hardware obf. 

in all levels of abstraction through design flow shows the integration of these different 

obfuscation techniques at different abstraction levels and the modified design flow. 

Verification is necessary to be carried out before and after obfuscation, to ensure the 

implementation has been properly done and the original functionality is preserved when 

unlocked. 

 

 
Figure 4 Integration of hardware obf. in all levels of abstraction through design flow 

 

Recent Work 

Hardware design-for-trust (DFTr) mechanisms water marking, IC metering, IC 

camouflaging, split manufacturing, and logic locking [27,28,29,30,31], camouflaging and 

logic locking are the techniques which have shown a better resiliency to many of the 

existing potential hardware-design stealing or attacking techniques [32]. Figure 5 Security 

threats in a modern IC life-cycle, and corresponding solution shows the security threats at 

various stages of the IC design lifecycle along with different obfuscation solutions that 

have been proposed. 
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Figure 5 Security threats in a modern IC life-cycle, and corresponding solution 

 

Increasing interest of the research community in logic locking and camouflaging 

persuaded a major CAD tool provider, i.e. Mentor Graphics, to release Trust Chain which 

is a CAD framework that supports logic locking and camouflaging [33]. Numerous logic 

locking, and camouflaging schemes have been proposed to thwart these security concerns. 

Due to the invent of Boolean Satisfiability (SAT) based attack, which is one of the powerful 

de-obfuscation/de-camouflaging techniques, the correct key can be extracted from most of 

the logic locking and camouflaging schemes in few minutes [34, 35]. Hence, this is still an 

active area of the research. 
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Outline of Proposed Research 

Defense vectors are defined at various level, but Gate level obfuscation is an 

effective way to curb many attack threats such as overproduction, IC piracy, Trojan 

insertion etc., However, A Boolean Satisfiability (SAT) based attack breaks all the existing 

combinational logic locking techniques, and hence forms the priority for addressing first.  

Some of these schemes use reconfigurable logics based on hardware 

reconfiguration and/or transformation, such as Look-Up-Tables (LUTs) [36, 37, 38]. The 

obfuscation using LUT also serve the purpose of hindering various IC threats while having 

significant resiliency against the SAT attack and the removal Attack. The LUT also has an 

interesting aspect of reconfigurability & hence replacing a gate with LUT means there exist 

22𝑁
possibilities the LUT can be configured and this increases the search space for the SAT 

Solver. Hence, we evaluate the LUT Based obfuscation in this paper and efficacy of 

integrating it into the circuit. 

The prior LUT-based obfuscation schemes have used diverse approaches like 

increasing the number of LUTs [38] or using different replacement strategies [39], 

however, we demonstrate that despite considering all substantial and effective factors for 

LUT-based obfuscation, security can be compromised.  

In this work, we comprehensively explore the design space of LUT-based 

obfuscation to show how it is possible to achieve the most powerful resiliency against state-

of-the-art attacks like SAT attack, while trading power-performance (delay)-area (PPA). 

Based on our design space exploration, we demonstrate that four factors play a key role for 

security enhancement and PPA optimization in LUT-based obfuscation. These four factors 
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consist of (1) technology of the LUT, (2) the number of LUT inputs (LUT size or scale up), 

(3) the number of cells replaced by LUTs (LUT count or scale out), and (4) the replacement 

strategy. With the aid of design space exploration (i.e. investigate all possible combinations 

for these factors), we provide a LUT-based obfuscation, which is not only resilient against 

SAT attack but also has permissible PPA overhead. In contrast to [39], which uses 

combination of number of LUT factor and replacement strategy to achieve the resiliency, 

we show that the LUT size has significantly more impact on SAT solver execution time. 

In fact, our investigations show that the LUT size (number of LUT inputs) plays a crucial 

role in enhancing the resiliency of the obfuscation scheme, even in presence of weak 

replacement policy such as random placement of LUTs.  

An iterative design flow for PPA optimization towards reducing the delay and 

enhancing security is introduced in this work and showed be to non-disruptive to standard 

CMOS ASIC design flow which is important for the designability and manufacturability 

of the solution.  

The main contributions of this work are outlined in five-fold manner, as follows: 

(1) Studying Existing literature: Studying the existing obfuscation & attack 

techniques to evaluate robustness of existing obfuscation scheme. 

(2) Performing Design Space (factors) Exploration: We explore the impact of LUT-

based design parameters on the security resiliency and PPA metrics. Identifying the 

Size of LUTs (scale up) as the Most Important Factor for SAT Resiliency  

(3) Increasing the Size of LUTs (scale up) as the Most Important Factor in case of 

SAT Resiliency: We show that using enlarged LUTs with extra arbitrary inputs, 
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called dummy inputs, is the most effective factor for amplifying the resiliency of 

LUT-based obfuscation against SAT attack, even for weak replacement policy such 

as random insertion of LUTs.  

(4) Proposing Iterative Security-driven Design Flow: Regardless of chosen LUT 

obfuscation factors, we introduce a simple iterative security-driven PPA 

optimization design flow, which allows maximizing the efficiency for any type of 

LUT-based obfuscation with several factors.  

(5)  Proposing SAT-resilient LUT-based obfuscation Solutions: Leveraging 

comprehensive design space exploration studied in this work, we demonstrate what 

combinations of the four factors provide SAT resiliency, and which solution is the 

best among all SAT-resilient combinations.  

 

A sub-optimal solution, however better than existing approaches is shown with the 

`proposed STT-LUT based obfuscation and iterative security-driven design flow. While 

we found that a clear trade-off exists between SAT resiliency, area and power overhead of 

LUT based solutions, the delay trade-off can be substantially eliminated by using our 

proposed iterative optimization methodology enabled by the state-of-the-art industry class 

synthesis tools optimization engine. As a panacea for high resiliency and optimal PPA, a 

customized or camouflage customized LUT architecture can be deployed.  
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BACKGROUND 

An overview of logic obfuscation, SAT attack, and challenges are presented here. 

We’ll present the defense and the corresponding attack.  

 

Logic Obfuscation and De-Obfuscation 

In logic obfuscation process, the functionality of the design is concealed by 

inserting additional logic gates including key programmable XOR/XNOR gates, key-

programmable MUXes for interconnections, avoiding netlist extraction after delayering by 

adding ambiguity. The strength of traditional logic obfuscation schemes is based on the 

location of inserted/replaced gate according to gate selection algorithm [31, 40, 41]. Below 

are some of the obfuscation techniques that were proposed. 

 

Strong Logic Obfuscation 

Strong logic obfuscation hinges on inserting key-gates with complex interferences 

among them. Logic obfuscation is weak when the inserted key-gates are isolated, or their 

effect can be muted. If mutable gates are employed, then the attacker can determine the 

key bits within a second. However, it can be strengthened by inserting key-gates such that 

their effects are not mutable. In such insertions when the key size is greater than 100, it 

will take several years for an attacker to determine the key bits. The Figure 6 Ideology of 
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Strong Logic Obfuscation shows the Strong Logic Obfuscation. The attacker cannot 

propagate the effect of key bits K1 and K2 individually to the outputs. Hence, the attacker 

has to brute force to determine the values of K1 and K2. [40] 

 

 
Figure 6 Ideology of Strong Logic Obfuscation 

 

Camouflaging: 

IC Camouflaging in layout obfuscation technique. In one embodiment of IC 

camouflaging, the layouts of logic gates are designed to look identical, resulting in an 

incorrect extraction. For example, in Figure 7 Standard Cell Versus Camouflaged Cell the 

layout of regular NAND cell Figure 7(a) and NOR Figure 7 (b) cell look different and are 

hence easy to reverse engineer. However, the layout of camouflaged NAND cell Figure 

7(c) and NOR cell Figure 7(d) look identical and are difficult to differentiate [42, 43, 44, 

45]. When deceived into incorrectly interpreting the functionality of the camouflaged gate, 

the attacker may obtain a reverse engineered netlist that is different from the original. The 
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netlist obtained by an attacker is the deceiving netlist where the functionality of the 

camouflaged gates are arbitrarily assigned.  

 

 
Figure 7 Standard Cell Versus Camouflaged Cell 

 

Figure 8 Generic Camouflaged Layout shows the layout of a camouflaged cell that 

can function as either 2-input XOR, NAND, or NOR. The sets of true and dummy contacts 

to implement distinct functions with the camouflaged gate are listed in List of true and 

dummy contact to realize different function using the camouflaged layout shown in figure 

8Table 1. Similarly, one can design a camouflaged cell that can function as either 2-input 

XNOR, NAND or NOR. [55] 

 



17 

 

 
Figure 8 Generic Camouflaged Layout 

 

 

Table 1 List of true and dummy contact to realize different function using the camouflaged layout shown in 

figure 8 
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SAT Attack 

In computer science, the Boolean satisfiability problem (sometimes called 

propositional satisfiability problem and abbreviated as SATISFIABILITY or SAT) is the 

problem of determining if there exists an interpretation that satisfies a given Boolean 

formula. The concept of SAT was introduced to defeat the obfuscation schemes that were 

discussed so far. 

SAT attack iteratively eliminates the incorrect keys based on specific input patterns, 

called Distinguished Input Patterns (DIPs) [46, 47]. SAT attack finds one DIP in each 

iteration which produces two different outputs for two different keys. As its name implies, 

each DIP can distinguish between keys. Based on this iterative based structure SAT attack 

can find and eliminate all incorrect keys within few minutes, even for large circuits.  

A SAT solver takes a Boolean function in Conjunctive Normal Form (CNF) as 

input and finds a valid assignment for input variables to satisfy the function. To attack an 

obfuscated netlist using a SAT solver, a working copy of the chip and its obfuscated netlist 

is required. The adversary can acquire the working chip after it is unlocked by the 

manufacturer and shipped to the market and could gain access to the obfuscated netlist by 

means of RE. In case of supply chain adversary, the obfuscated netlist is readily available 

to the attacker. Then, the obfuscated netlist should be transformed into a circuit SAT 

problem. This process is explained next: 

Let us refer to the functional black-box copy of the obfuscated circuit as CF . The 

CF is used to find the correct output for any given input. When using K keys, random 

assignment of key could create at most 2K instances of a circuit. Similar argument applies 
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to camouflaged cells, where each of K camouflaged gates could assume one of the M 

different possibilities (for simplicity, let us consider M = 2). Let us denote obfuscation 

scheme obtained by means of using K keys or obfuscated gates by K-obfuscation. A circuit 

C with Nx inputs that is subjected to K-camouflaging could be represented with an 

equivalent CK circuit with NX + K inputs. Let us denote the circuit C with input X and 

output Y by C (X, Y) and its K-obfuscated netlist by C (X, K, Y). If the correct set of 

keys 𝐾̂ = (k0, k1, ... , kK-1) is applied to the obfuscated circuit, for every input the obfuscated 

circuit reduces to the original circuit C(X,  𝐾̂, YK) , ≡≡ C(X, Y ).  

For a SAT attack the key signals in C (X, K, Y) should be available as input. Hence, 

obfuscation cells should be represented as Key-Programmable Gate (KPG), where 

insertion of the correct key converts them to the correct gate. The cells used for obfuscation 

could be divided into two categories: (1) key-controlled gates [31, 48] in which the key is 

an input signal (e.g. XOR, MUX based obfuscation). (2) keyless-gates [39, 46] where 

functionality is hidden in the ambiguous structure or by use of internal memory elements 

(e.g. camouflaged gates and LUTs). When using key-controlled gates, the key is stored in 

an internal memory or a burned fuse. Hence, in a reverse-engineered netlist the key inputs 

could be identified by tracking their connectivity to memory/fuse elements. To prepare the 

C (X, K, Y) netlist, the memory/fuse element is removed, and key inputs are connected to 

input port(s). 

When using keyless-gates, the gate must be transformed to a key-programmable 

gate before invoking a SAT attack. For a L-input LUT, the number of functional 

possibilities is 22𝑁
. To build a KPG for a LUT, the circuit illustrated in Figure 9 is 
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deployed. The inputs to the LUT are connected to the select lines of the S-MUX and keys 

are the select lines of B-MUXes. Then, each key is connected to an input port adding 2N 

keys to the C (X, K, Y). 

 

 
Figure 9 Converting a LUT to a KPG 

 

A camouflaged cell relies on hiding the gate functionality by keeping the structure 

of several gates similar. Even in the best camouflaging cells, the number of gate 

possibilities is limited, and it could be treated similarly to programmable cells, where the 

camouflaged cell is replaced by a MUX and each of the gate possibilities is fed to a 

different input of the MUX, while using the select lines of the MUX as key inputs that are 

routed to the input pins of the C (X, K, Y). 

Before invoking the SAT solver, every key input combination is considered as a 

candidate key. Let’s denote the Set of Candidate Keys by SCK. If we can find an input xd, 

and two distinct key values K1 and K2 in SCK such that C (xd ,K1, Y1) ≠ C(xd ,K2, Y2), the 

input xd is denoted as a Discriminating Input (DI) [35]. This is because the selected input 

can prune the SCK and find at least one incorrect key that is removable from SCK. In 
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addition, each time a new DI is found, the SCK search space for function FDI should be 

updated. This could be achieved by forcing the FDI to check each pair of new keys K1 and 

K2 against all previously founds DIs. A Complete-DI-set is a set of DI inputs that reduces 

the SCK to the Set of Valid Keys (SVK). SCK reduces to SVK when we no longer can find 

a DI using the updated FDI. At this point if a key is valid across the Complete-DI-Set, it is 

the correct key for all other inputs [35]. As suggested in Figure 10.b, a reverse-engineered 

netlist, where all obfuscated cells are replaced with KPG cells, is denoted by Key-

Programmable Circuit (KPC). To build the FDI, two copies of the KPC are used, their non-

key inputs (X) are tied together, and their outputs are XORed. This circuit produces logic 

1 when the output of two instantiated KPCs for the same input X but different keys K1 and 

K2 are different. This circuit, as suggested in Figure 10.c is denoted as Key-Differentiating 

Circuit (KDC). The candidate keys in the SCK can produce the correct output for all DIs 

that have previously been discovered and tested on the KPC circuit. To test the keys for 

one DI, the circuit in Figure 10.d is instantiated. In this figure, FC is the working copy of 

the chip, and its output is used for testing the correctness of both KPCs for a given DI and 

two key values. This circuit is denoted as DI-Validation Circuit (DIVC). To test the keys 

for all DIs, as illustrated in Figure 10.e, the DIVC circuit is duplicated D times, with D 

being the number of current DIs tested, and the output of all DIVC circuits ANDed 

together. The resulting circuit is a validation circuit for SCK set denoted as SCKVC. If two 

keys K1 and K2 produce the correct output for all previously tested DIs (SCKVC evaluates 

to true), but produce different results for a new input Xtest, then Xtest is a DI that further 

prunes the SCK. This, as illustrated in Figure 10.f, could be tested by using an AND gate 
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at the output of SCKVC and KDC circuits. The resulting circuit forms a SAT solvable 

circuit denoted by SATC. When SATC evaluates to true, the KDC has tested a pair of keys 

K1 and K2 that produce two different results for an input Xtest, and SCKVC circuit has 

confirmed that both K1 and K2 belong to SCK set. Hence, the input Xtest is yet another DI. 

Each time a new DI is found, the SCKVC should be updated by adding yet another DIVC 

circuit for testing the newly discovered DI. This process is continued until SAT solver no 

longer finds a solution to the final SAT circuit. In this case, any key remaining in the SCK 

set is a correct key for the circuit. On the SAT solver side, every time the SAT solver is 

executed, it learns a new set of conflict clauses. It is essential to store the learned clauses 

and use them in the next invocation of the SAT solver to prevent SAT solver from re-

learning these clauses. Hence, as illustrated in Figure 10.f a Learned-Clause Avoidance 

Circuit (LCAC) is added to the SATC to check for the occurrence of learned conflict 

clauses. 

 

 
Figure 10 SAT Attack Process 

 

 

The SAT attack, as illustrated in Algorithm for SAT Attack, follows the SATC 

construction process explained previously. In the first iteration, the SCKVC circuit does 
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not contain any logic, since there is no previously tested DI. Hence, it is set to 1 (true). The 

KDC circuit is simply built based on its definition by using the equation in Figure 10.c. 

The SATC circuit is constructed by using an ANDing the KDC and SCKVC circuits. SATF 

function is a call to SAT solver. Considering the to-be-assigned variables in SATC circuit 

are X, K1 and K2, the SAT solvers return an assignment to these variables and a list of 

conflict clauses (CC) learned during SAT execution. SATF return UNSAT if no such 

assignment exists. The while loop is controlled by the return status of the SAT solver. In 

every pass through the while loop, a new DI is found. Hence, the SATC circuit should be 

modified (lines 7-10). The parts of SATC circuit that is updated are the SCKVC and LCAC. 

After finding each DI, an additional DIVC is added to SCKVC to validate the keys 

generated in the next invocation of SAT solver with respect to the newly found DI. In 

addition, the newly learned CCs are added to LCAC. The CF is a call to the functional 

circuit that returns the correct output for each newly found DI. Finally, the SATC circuit is 

formulated at line 10 for the next invocation of SAT solver. The while loop is executed 

until no other DI is found. At this point, any key in the SCK set is a correct key. To obtain 

a correct key, the DIVC circuit is modified to take a single key denoted as KeyGenCircuit. 

Hence, KeyGenCircuit has input K, and its output is valid if K satisfy all previous 

constraints imposed by previously found DIs. A simple call to a SAT solver at this point 

returns a correct key assignment. If the SAT solver does not return a valid key, it means 

the obfuscation, locking, or camouflaging technique is invalid. Note that the SAT attack in 

each iteration, as explained in Algorithm for SAT Attack and illustrated in Figure 12, 

reduces the SCK by constraining the SATC with new clauses added to the SCKVC and 
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LCAC. But it does not explicitly check to find the keys in SCK. This way, SAT solver 

efficiently breaks all the obfuscation schemes. [49] 

 

 
Figure 11 Algorithm for SAT Attack 

 

 
Figure 12  Reduction in SCK Set as SAT Progresses 

 

 

SARLock 

There was a need to thwart the SAT attack and hence SAT-Attack Resistant Logic 

Locking (SARLock) technique was introduced. The proposed technique adds only a few 

XOR/XNOR gates; however, the attack effort increases exponentially with the number of 

key bits. Figure 13 defines the SARLock mechanism. Only when the input matches the 

applied key which is incorrect, the circuit produces the wrong answer, else the circuit works 
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just like the oracle, as shown in Figure 14.   Hence, in each SAT iteration only 1 key is 

eliminated, making the attack exponential with the key size, because SAT solver has to 

exhaustively search all DIPs. 

 

 
Figure 13 SARLock circuit 

 

 
Figure 14 Resisting the SAT attack by Controlling discriminating ability of input patterns. 

 

SARLock can be used in conjunction with existing logic locking techniques to 

protect against a wide spectrum of attacks. [54] 
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Anti-SAT 

Another type of attack called the Anti-SAT was designed to enhance the security 

of existing logic locking techniques against the SAT attack. Figure 15 a and b, illustrate 

two configurations of the proposed Anti-SAT block, referred to as type-0 Anti-SAT and 

type-1 Anti-SAT. They consist of two logic blocks g and g´, which share the same set of 

inputs 𝑋̂ = (X1…Xn). The functionalities of g and g´ are complementary. A set of keygates 

(XORs) are inserted at the inputs of two logic blocks, denoted as 𝐾̂11 = (K1…Kn) and 𝐾̂12 

= (Kn+1…K2n). Hence the key-size is 2n. The output of g and g´ are fed into an AND2 gate 

(for Fig. 4(a)) or an OR2 gate (for Figure 15 b) to form the final single-bit output Y. As a 

result, we have Y = g (𝑋̂ ⊕ 𝐾̂11) ^ g (𝑋̂ ⊕𝐾̂12) for type-0 Anti-SAT and Y = g (𝑋̂ ⊕ 𝐾̂11) 

∨ g (𝑋̂ ⊕𝐾̂12) for type-1 Anti-SAT. Type-0 Anti-SAT always outputs 0 if key values are 

correct while Type-1 Anti-SAT always outputs 1 if key values are correct. Figure 15 c 

shows the integration of Type-0 Anti-SAT block into a circuit. 

one basic property of Anti- SAT block is that when the key vector is correctly set, 

the output Y is a constant. Specifically, given a correct key, Y always outputs value 0 for 

type-0 Anti-SAT (Figure 15 a) and always outputs value 1 for type-1 Anti-SAT (Figure 15 

b). Otherwise, when a wrong key is given, Y can output either 1 or 0 depending on the 

inputs ~X. This property enables it to be integrated into the original circuit. [52] 

 

 



27 

 

 
Figure 15 Anti-SAT block configuration 

 

In the Anti-SAT obfuscation technique, the number of iterations needed by the SAT 

attack to decipher the correct key is lower bounded by 2n, where n is the length of key. 

 

Signal Probability Skew 

As an attack to the above proposed scheme, signal probability skew (SPS) attack 

was developed that not only defeats Anti-SAT but also conquests over SARLock within 

minutes. SPS attack is highly scalable to large circuits. This attack is more effective with 

increasing key size. 

The main vulnerability of Anti-SAT is that it is incorporated into the netlist at a 

single point, where its output Y is XORed with an internal net. Therefore, Anti-SAT 

defense relies on various obfuscations that make the identification of the block and its 
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output difficult. At the same time, SAT attack resilience is ensured by having a skewed p 

value irrespective of all the structural and functional obfuscations. This basic construction 

principle inevitably leads to structural traces that help identify Anti-SAT block output in a 

given netlist i.e. The two complementary blocks of Anti-SAT produce oppositely skewed 

signals that converge at a gate, whose output is Anti-SAT output Y that is integrated into 

the netlist. 

Absolute value of probability skew close to 1 indicates that the two inputs of the 

gate G exhibit highest skews with opposite polarity. This property of gate G distinguishes 

it from the rest of the gates in Anti-SAT block. SPS attack on a logic encrypted circuit with 

Anti-SAT block comprises computing the SPS of all the gates in the circuit. The gate with 

the highest SPS, i.e., a gate with oppositely skewed inputs is the suspect gate G, the output 

gate of Anti-SAT block. After finding this gate, Anti-SAT block can be removed from the 

circuit. 

In SARLock circuit, shown in Figure 13, the original logic cone is implemented 

intact without any modifications, which makes it vulnerable to removal attacks. An attacker 

must isolate the protection circuitry comprising of an XOR, comparator and mask block; 

he/she can then remove the protection circuitry and extract/pirate the original IP. The 

comparator is functionally composed of XNOR gates and an AND tree, which can be easily 

identified using existing AND-tree identification algorithms, or the SPS. Upon the removal 

of the protection logic, the original function O = F(I) is retrieved. Due to the invent of SPS 

attack the hardware security was again challenged to propose better obfuscation schemes. 

[53] 
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Tenacious and Traceless Locking: 

TTL is an extended version of the SARLock. TTLock modifies the original logic 

cone by inverting the response to one protected input pattern, while an additional inversion 

introduced by TTLock restores the correct functionality only for the correct key. Even 

though the TTLock logic can be identified via a signal-tracing attack, its removal will still 

leave the remaining logic different than the original one, thwarting removal attacks. Figure 

16 shows the TTL implementation. At each iteration, when input is equal to the wrong key, 

we observe the wrong output, whereas when the correct input pattern is applied, all outputs 

are wrong for any given key. The restore logic then corrects the output for the correct key. 

Hence when k6 is applied, you get the correct output. 

 

 
Figure 16 Proposed TTLock architecture and it's working 

 

SAT attack takes exponential time to find the key, while the SPS and other removal 

attack fails when TTL obfuscation is used. [56] 
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AppSAT 

AppSAT attack is an approximate de-obfuscation algorithm which is based on the 

SAT attack and random testing models. It uses probably-approximately-correct (PAC) 

settings with SAT attack. The SAT attack begins by satisfying the miter circuit with a DI, 

X0. Subsequently, the oracle is queried with X0 and a constraint is added to the SAT-

formula. Whereas for the exact SAT attack the algorithm continues to find DIs until no 

more DIs can be found while the approximate SAT(AppSAT) attack terminates the attack 

in any early step, i. AppSAT attack randomly queries input patterns to estimate error rate 

after every d DI queries, and the attack is terminated if error rate stays below a threshold 

for more than a certain number of times (settlement threshold).  

Figure 17 shows the overall AppSAT algorithm flow. The SAT is used to find the 

DI and at the same time DI is used to query oracle. If certain number of queries are not 

achieved then those queries are stored as a DI, to further prunes SCK. Otherwise, error rate 

is measured with Random Queries and if the error rate is below certain limit, AppSAT 

terminates. 
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Figure 17 AppSAT algorithm flow 

 

Low output corruptibility of point-function obfuscations is susceptible to removal 

attack hence, these methods are often combined with high corruptibility obfuscations to 

form the compound obfuscation scheme. Adding a high corruptibility obfuscation to the 

point-function schemes does not contribute to the overall security. The AppSAT attack is 

capable of deobfuscating the traditional portions of the compound obfuscation as if the 

point-function scheme was not present. This observation is key to utilizing the AppSAT 

attack to defeat various flavours of compound schemes such as SARLock, AntiSAT, TTL 

etc., [57] 

 

Double DIP 

Double DIP is another SAT-based decryption technique. It excludes at least two 

wrong keys each iteration, ensuring wrong keys in the part of traditional logic encryption 

being excluded without taking exponential iterations. SARLock minimizes the efficiency 

of SAT attack by exponentially increasing the required number of distinguishing input 

patterns, and only one incorrect key can be pruned each iteration. To avoid exponential 
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iterations, Double DIP only consider incorrect keys causing more than one incorrect input-

output pairs, which disables the SARLock and gets the correct key for traditional logic 

encryption.  [58] 

 

Other Attack Vectors 

Among the discussed attack and defense strategies there exist other methods to 

which are somewhat similar. For example, Camoperturb [59] is based on the SARLock but 

is a layout level obfuscation. Stripped Function Logic Level [32] is another obfuscation 

which is based on TTL. Few obfuscation schemes are based on adding cycles in the circuit, 

especially stateful/oscillating cycles [48, 50]. When SAT attack encounters these cycles, 

two states can happen: (1) SAT solver returns wrong key or (2) SAT solver will be stuck 

in an infinite loop. In fact, SAT solver cannot extract the correct key in cyclic-based 

approaches with stateful/oscillating cycles. However, CycSAT and SRCLock [30,28] 

shows that by considering some conditions and having some pre-processing, cyclic-based 

schemes can be decrypted. The Figure 18 below summarizes all the defense and attack in 

a gist. 
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Figure 18 Various Defense and Attacks proposed at Gate Layout 

 

 

 

LUT-based Obfuscation 

As mentioned previously, some obfuscation schemes use reconfigurable logic to 

prevent reverse engineering [36, 38, 39]. From the SAT attack perspective, each LUT is 

replaced with a (2+)-level MUX. Since each n-input LUT can provide all 22𝑁
 possibilities, 

replacing by MUXes lead to a log2(n)-level MUX-based structure. This indicates that 
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having large LUTs increase the depth of MUX structures, consequently improving the 

resiliency against diverse types of attacks. However, increasing the size of large LUTs 

imposes larger area and performance overheads. Another reason for considering the LUT 

based obfuscation is that it is resilient to removal attack as well. LUT based obfuscation 

strips the functionality in more abstract manner and prevents attacker from inferring the 

functionality that LUT has using the visual approach. 

The existing LUT-based obfuscation schemes though have shown some resiliency 

against attacks, they did not consider all the effective factors for enhancing power-

performance (delay)-area, security (PPA/S), which is crucial for hardware design. 

Furthermore, this also leads to having a sub-optimal solution. The work in [36] introduces 

gate selection policies for security and delay purposes. However, their proposed selection 

policy can be broken easily by SAT attack [35]. The [38] demonstrates that using spin-

transfer torque (STT)-based LUTs is the best technology for employing LUTs in a design 

for PPA optimization. However, it has no significant security strength against state-of-the-

art attacks. Also, LUT-lock [39] focuses on the number of LUTs, which has near to 

exponential hardness against SAT attacks even in some specific designs with topological 

structure. In contrast, the main aim of this work is to explore design space of LUT-based 

obfuscation based on different influential factors to show the effectiveness of each factor 

on PPA/S. Also, we show that the most effective factor that provides resiliency is the LUT 

size, even in presence of weak LUT replacement policy such as random. However, PPA 

overhead simply that for realizing LUT-based obfuscation, new customized LUT 

architecture equipped with camouflaging is required to significantly lower the overhead.  
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COMPREHENSIVE (PPA/S) ANALYSIS ON LUT-BASED OBFUSCATION  

As the primary factors affecting the PPA are: (1) the technology of LUTs, (2) the 

number of LUTs replaced, (3) the number of inputs per LUT (LUT size), and (4) 

replacement strategy, we investigate the influence of these factors on PPA/S. These factors 

are influencing the PPA as well as security metric. Increasing the size of LUTs (scaleup), 

increasing the number of LUTs (scale out), and replacement strategies impose PPA 

overheads.  

 

Impact of LUT Technology 

Design and Integration of STT-Based LUT 

As STT-based LUTs have shown higher PPA efficiency [14], we consider STT 

based LUT design and obfuscation in this work. STT technology not only can provide 

incredible features like (1) higher integration density than SRAMs, (2) high endurance and 

retention time, (3) near zero leakage, and (4) soft error resilience, it is also highly 

integrative in CMOS fabrication process [38]. Additionally, it provides on-die 

reconfigurability which enables to achieve high performance and security. 

In addition, for STT-based LUTs since reconfigurable bits are stored in magnetic 

tunnel junction (MTJ) inserted between metal layers, the stored bits are highly susceptible 

to be lost during reverse engineering delayering process. 
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In LUT-based obfuscation, the design is partially mapped to LUTs. This results in 

a design implementation that is a hybrid of custom (ASIC) and programmable (FPGA) 

styles. The custom part of the design is implemented using the standard cell-based ASIC 

design flow. Since the ASIC standard cells are implemented in the static logic style, the 

resulting designs are static. This imposes a limit on the LUT design to have a static type 

interface for connection with the static ASIC standard cells. Also, the existing STT-LUT 

design styles in which a dynamic circuit such as a dynamic sense amplifier resides between 

the LUT inputs and the output is not suitable for this application [51]. Contrasting, we 

propose an STT-LUT design concept in which the path from the LUT inputs to the LUT 

output is a MUX, as shown in Figure 19(a). The MUX of the LUT is a 2n to 1 (2n : 1) 

CMOS MUX implemented in static style, that can be written as a synthesizable RTL code 

for automatic implementation and optimization by the logic synthesizer tool in the process 

of design compilation. 

 

 
Figure 19 STT-LUT and Full Custom layout of MTJ Latch in Standard Cell Format 
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Each configuration bit is stored by a magnetic tunnel junction (MTJ) latch with 

scan chain programmability as shown in Figure 20. The MTJ latch uses a pair of 

differentially programmed MTJs for non-volatile storage, a pre-charge sense amplifier for 

sensing the state of the MTJs, and three write driver scheme for parallel write to both MTJs 

simultaneously with each MTJ receiving full voltage swing, offering more write current. 

The Sense Enable (SE) signal must be low during the write operation, and the Write Enable 

(WE) signal must be low during the sensing operation. To avoid conflict of state between 

the pre-charge state of the sense amplifier (when SE=0) and the state of the write driver 

outputs in the write mode, the pre-charge path to VDD is disconnected via the PMOS 

driven by the WE signal. The MTJ latch uses a dynamic latched sense amplifier that needs 

to be fired (SE low to high pulse) once on every power up to covert the resistive state of 

the MTJs into the volatile voltage states at the outputs (Q and QB). In this configuration, 

the MTJs are read only once and for the remaining time in the active mode, the LUT read 

power and delay is determined by the static MUX. Moreover, by not reading from the MTJs 

repetitively in the active mode as in the dynamic STT-LUT styles, the stress is removed 

from the MTJs enhancing their lifetime.  
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Figure 20 MTJ-Latch with Scan Chain Programming 

 

The MTJ-latch is designed in a full-custom manner and needs to be optimized for 

sensing reliability and area and delivered as a standard cell for integration to the ASIC 

design flow. The full custom design and optimization of the one-bit MTJ latch cell is 

performed in the Synopsys generic 28nm process. The write drivers tend to require large 

transistor to produce sufficient current needed for MTJ write. The write transistors need to 

be optimized so that the write operation can succeed under process variations. We have 

performed a statistical transistor sizing optimization on the write driver for achieving near 

zero (less than 0.1%) write failure rate. After the write driver sizing optimization, the read 

path (i.e. the sense amplifier) transistor sizes are statistically optimized for achieving less 

than 0.1% sensing failure rate at the smallest possible area. Moreover, a minimum sized 

scan flip-flop is inserted in front of the MTJ latch to store the data to be written to the MTJ 

latch. These scan flip-flops will form a scan chain for loading the configuration bits to the 

MTJ latches in a design. Figure 20 shows the full-custom layout of the one-bit MTJ-latch 

designed in the format of a standard cell layout (fixed height). Most of the layout area 
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(37.5%) is occupied by the write drivers since the MTJ write current is still fairly large. 

Notice that the MTJ devices are stacked on top of this layout between two metallization 

layers (assuming M3 and M4) and hence do not occupy 2D area. M3 pins are placed for 

connection to the MTJ layers.  

 

STT-Based LUT versus CMOS-based LUT 

 

Figure 21 shows the comparison of the area of the MTJ latch, STT-LUTs, and areas 

of other standard cells in 28nm. The MTJ latch area is 6× to 15× that of basic logic gates, 

and 3× larger than SRAM based D flip-flop (FF). The MTJ-latch, however, shows much 

less leakage power. It has 7× to 11× less leakage power compared to basic CMOS logic 

gates, and 20× smaller compared to SRAM based D-FF.  
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Figure 21 Comparison of (a, b) Power, (c) Delay, and Area of STT-LUT and Standard Cells in 28nm 

 

 

 

The delay and active mode power of the STT-LUT is determined by the multiplexer 

part of the LUT which is optimizable by the logic synthesizer. Figure 21 presents the 

comparison of delay and active mode power for various fan-in STT-LUTS with standard 

cells. LUT 2 to LUT 7 have delays comparable to the standard cell delays. Due to large 

MTJ latch area, the areas of LUTs are noticeably higher than the standard cells and their 

area increases exponentially with fan-in. The power of STT-LUTs is significantly less than 

the standard cells due to low leakage MTJ latches. 
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LUT Size versus Number of LUTs 

One of the straight forward approaches for LUT-based obfuscation is to increase 

the number of LUTs to enhance the security of the approach against SAT attack. In this 

scheme, each candidate gate will be replaced with same-input LUT. For instance, 2-input 

gates will be replaced with LUT2s, and 3-input gates with LUT3. However, this not only 

imposes non-negligible PPA overhead, it also cannot provide the highest resiliency against 

SAT attacks [35]. Despite increasing the number of same-input LUTs in design, which is 

not perfectly resilient against SAT attack, it is possible for a designer to use enlarged LUTs. 

As an instance, instead of using a LUT n for n-input gate, a LUTn+ (i.e. LUTn+1, LUTn+2, 

...) is used. Thus, by increasing the size of the LUTs, SAT attack replaces them with more 

deeper MUX trees, and consequently, the de-obfuscation time gets worse to exploit the 

value of keys for LUTs, making them resilient.  

In addition, SAT attacks works based on Conflict-Driven Clause Learning (CDCL) 

for finding DIPs. Consequently, due to symmetric structure of MUX tree model, there is 

no short leaf in the equivalent logic to find the cut-off (conflicts) in the logic tree. 

Accordingly, enlarging the size of LUTs (scale up) increases the depth of this symmetric 

tree which makes it harder against SAT solver to find conflicts.  

Figure 22 shows an example of using enlarged LUTs in the design. As it can be 

seen, two 2-input NOR gate (nor21) and 3-input NAND gates (nand31) are replaced by 

LUT4s. Using larger LUTs provide some extra inputs for each LUT, called dummy inputs. 

For example, LUT41 and LUT42 have 2 and 1 extra inputs, respectively. Although different 
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assignment strategies can be applied and evaluated for feeding these extra inputs, to acquire 

the most secure solution, we arbitrarily fed these inputs from primary inputs [52]. 

 

 

 
Figure 22 Using Enlarged LUTs for obfuscation, (a) A Sample Circuit, (b) Camouflaged with Enlarged LUTs 

with Primary Inputs as dummy Inputs 

 

Replacement Strategies 

Replacement strategy can potentially be considered as a promising optimization 

parameter for obfuscation, especially after the introduction of SAT attack. There are 

several conditions an effective replacement strategy need to meet to provide higher 

resiliency against SAT attacks. Two most important conditions are (1) low corruptibility, 

and (2) avoiding unintentionally correct key generation. By considering these conditions, 

we introduce a replacement strategy and compare it with random strategy [31]. To have 

better evaluation regarding the impact of each condition, we compare three different 

strategies in this work as follows.  
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Random Selection (RND) 

As the baseline replacement strategy, we implement random selection/replacement, 

as opposed to the Independent Selection in [38]. As its name implies, the gates are selected 

randomly. However, since we use enlarged LUTs, if the LUT size is larger than the 

candidate gate, dummy inputs will be connected to primary inputs. 

 

Low Output Corruptibility (LC) 

As mentioned previously, SAT attacks work based on Conflict-Driven Clause 

Learning (CDCL). Based on CDCL, SAT attack is looking for conflict clauses to make 

cut-off for learning clauses. Finding the conflict clauses depends on the comparison 

between two different outputs for two different keys. Consequently, higher hamming 

distance of two outputs, finding the DIP is easier. If obfuscation strategy influences 

different outputs by applying each input, the probability of hamming distance > 1 will be 

increased drastically, which lead to faster de-obfuscation. Therefore, the higher the 

corruptibility, the easier de-obfuscation by SAT attack is. So, it is evident that the optimal 

solution is to minimize the hamming distance to 1. In fact, maximum one output must be 

different when two different keys and DIP are applied. This is called low corruptibility if 

fewer (the best is 1) outputs are different after applying different keys and DIP. To have 

the lowest output corruptibility, we need to employ a custom Breadth First Search (BFS) 

on the logic design based on a corruption matrix which indicates the corruptibility of visited 

gates. While traversing from outputs toward the inputs, a dictionary with different 

corruption matrix will be created, which allows us to check the list of the gates with lowest 
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output corruptibility. After traversing, based on the number of gates targeted for 

obfuscation, the dictionary provides a list with the targeted number of gates, which have 

the lowest output corruptibility.  

 

Avoiding Unintentionally Correct Key Generation (LC_NoGen) 

Due to the capability of LUTs for implementing all 22𝑁
 possibilities for a LUTn, 

connecting LUTs directly to each other may generate some extra correct keys. This 

scenario provides additional options for SAT solver to find the key, which results in 

decreasing the execution time of SAT solver drastically. Also, increasing the number of 

LUTs which are directly connected to each other significantly increases the number of 

correct possibilities in a design. As a simple example, connecting two inverters directly to 

each other has the same functionality with connecting two buffers directly to each other. 

Hence, since previous work use many gates to be replaced with LUTs, the probability of 

choosing directly connected gates are extremely high. However, since in this work our 

result indicates that the LUTs scale-up is the most effective factor on SAT execution time, 

we show that only a few numbers of LUTs are enough for SAT-resiliency in case of using 

large LUTs. Consequently, we show that this condition effectively increases execution 

time. By considering dictionary-based gate selection and avoiding unintentionally correct 

key generation, the proposed LUT-based replacement strategy has been illustrated in 

Figure 23. We illustrate that like increasing the number of LUTs, applying this algorithm 

provides considerable security enhancement impact. However, as we will show later in this 

work the results indicate that this solution is not as effective as increasing the size of LUTs.  
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The aim of the algorithm is to maintain low output corruptibility while avoiding 

correct key generation. The graph of the netlist is created and BFS is applied starting from 

Primary Output (PO) towards the Primary Input (PI). While traversing each Primary Cone, 

we tag the gate present in that cone with the PO’s name. After traversing each cone, we 

have dictionary of gates with PO’s name to which they contribute. A key is generated from 

this value and the gate is added next to that key in a dictionary. This gives us a dictionary 

which gives us a list of gates when queried with any combination of Primary Output. This 

dictionary is then processed to avoid correct key generation. For example, if Gate A, 

contribute to Output G1 and G2, then gate A will be tagged with output G1 and G2. So, if 

you query dictionary with G1, gate A will pop up. This dictionary will help us in finding 

the Output gate which has maximum gate coverage. 

Now, the next aim is to select minimum number of Primary Output to keep less 

corruptibility while having maximum number of gate coverage. This problem is of 

minimizing one thing while maximizing the other. Once such primary outputs have been 

found, the algorithm replaces the gate with the LUTs. It may happen that we want to 

encrypt x gate, but if algorithm finds y gates where y > x, then gates can be sorted on 

various gate properties. 
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Figure 23 Algorithm for LC_NoGen to have less corruptibility and to avoid Correct key Generation 

 

ASIC Iterative Security-driven Design Flow 

The STT-LUT is defined as a Verilog module in which it has instances of the MTJ-

Latch (or NV-latch) cell and the RTL code of the multiplexer. Notice that the NV-latch is 

an empty module as it is a new primitive non-synthesizable standard cell. The RTL of the 

multiplexer gets synthesized and implemented by logic gates in the process of logic 

synthesis. The proposed logic obfuscation needs a gate level netlist. The result of the 

obfuscation is a new net list in which identified gates for logic obfuscation are replaced 

with NV-LUTs. Since the NV-LUTs are firm macros which contain RTL code of a 
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multiplexer, the net list with NV-LUT inserted needs to be re-synthesized and optimized, 

given their impact on timing constraint. To obtain the best PPA results for design space 

exploration and finding the best solution for LUT-based obfuscation, we introduce an 

iterative-based design flow, which not only does not trade PPA with security, but also 

operates iteratively to the best available PPA solution.  

 

 
Figure 24 Iterative-based Security-driven Design Flow with Maximizing PPA 

 

Figure 24 shows the proposed iterative security driven ASIC design flow 

optimization. The logic library of the NV-latch is used in the re-synthesized step and the 

multiplexer of the LUTs and the rest of the net list is further re-optimized to meet the 

original timing. If the design constraints cannot be met, the gate selection, replacement and 
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re-synthesis processes need to be iteratively performed until the PPA constraints as well as 

the security constraints are satisfied. After the final logic synthesis that meets the timing 

and area/power budget and the security requirements, the physical design steps follow to 

generate layout. While for our studied circuit benchmarks, two level of iteration was found 

to be sufficient to meet security and design parameter constraints, for larger circuits more 

iteration might be required.  

Since the most effective factor is the size of LUTs (scale up), we demonstrate that 

replacing with only a few LUTs can bring resiliency against SAT solver. Therefore, based 

on the conditions we consider for replacement strategy, i.e., less corruptibility and avoiding 

unintentionally key generation, various choices are available per design which are the same 

in case of security against SAT attack. Consequently, this allows us to get the best choice 

for PPA optimization. 

 



49 

 

 

 

 

 

EXPERIMENTAL SETUP 

To explore all design space including the impact of LUT size, the number of LUTs, 

the replacement strategy, we used a cluster computing environment which has 53 Dell 

computing nodes, each with dual Intel Xeon CPUs. The total number of cores ranging from 

16 to 24 with RAM varying from 64GB to 512GB. We employed ISCAS-85 benchmarks 

for revaluation, illustrated in table 1. For security evaluation, we employed SAT attack 

described and developed by Subramanyan et al. [35], which utilizes Lingeling as its SAT 

solver.  

We comprehensively measure and explore the SAT solver execution time by 

sweeping three out of four factors, i.e. (1) increasing the number of LUTs from 1 to 3 

percent of the total circuit gates, (2) increasing the size of LUTs from 2 to 14 by using 

dummy inputs fed via primary inputs, and (3) replacement strategy, to demonstrate the 

impact of each factor for security design. Also, for SAT attack, a run time limit of 5 days 

(432×103 seconds) is set to demonstrate time out states. To account for run-to-run 

variations in performance, we ran the SAT solver 5 times for each obfuscated benchmark.  

According to the security-driven PPA optimization, the benchmarks are first 

synthesized in Synopsys generic 28nm technology using Synopsys’s Design Compiler. 

After the first synthesis and determining different solutions based on replacement strategy, 

an iterative-based re-synthesis will be started to find the optimal solution. In all iterations, 
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we use STT-LUT as the technology of LUT replacement, and accordingly, the circuit PPA 

overhead will be evaluated.  
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RESULTS AND DISCUSSION 

Figure 25 illustrates the overall impact of the discussed three effective factors on execution 

time. As it can be seen, even for random insertion strategy, for LUT size larger than 10, 

obfuscating ∼1% of each circuit is sufficient to provide SAT resiliency. Therefore, scaling 

up LUTs (increasing the size of LUTs) significantly increases the hardness of obfuscation 

regardless replacement strategy and number of LUTs. Also, LC_NoGen, which has both 

conditions considered in replacement strategy, remarkably increases SAT execution time, 

which shows its effectiveness on SAT resiliency.  
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Figure 25 SAT Attack Execution Time for Different (1) Replacement Strategy, (2) LUT Size (scale up), and (3) 

Number of LUTs (scale out) in (a0 ISCAS-85 c2670, (b) ISCAS-85 c3540 

 

Figure 26 demonstrates SAT execution time with more details on ISCAS-85 C7552 

for smaller size of LUTs, and different number of LUTs. Since we increase the number of 

LUTs or LUT size in Figure 26, some variations, which are high in some cases can be 

observed. It should be noted that the variations (ups and downs in the execution time) are 

a result of the number of outputs selected for current obfuscation. Since our dictionary-

based algorithm for choosing candidate gates minimize the number of affected outputs, 

after a target number there is no choice to select a candidate which affects a new output. 

Therefore, increasing corruptibility in outputs results in variation in SAT execution time.  
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Figure 26 SAT Attack Execution Time on Synthesized ISCAS-85 C7552 with Different Number of LUTs and 

Different LUT Sizes 

 

Table 2 SAT-attack Execution Time on Synthesized-Camouflaged ISCAS-85 Benchmarks for Different LUT 

Size and Different Number of LUTs. 

 
 

Table 2 demonstrates the execution time for different benchmarks when 1%, 2%, 

and 3% of the gates are obfuscated. In addition, the size of LUTs is in the range between 2 

to 14. Note that, like Figure 26 SAT Attack Execution Time on Synthesized ISCAS-85 

C7552 with Different Number of LUTs and Different LUT Sizes, LC_NoGen is deployed 

as it is the most effective replacement strategy. As it can be seen, the SAT execution time 

increases nearly exponentially in both dimension, i.e. scale up (increasing the size of LUTs) 

and scale out (increasing the number of LUTs). However, for a fixed number of LUTs, 

scale up (increasing the size) is more effective rather than scale out (increasing the number 
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of LUTs). For instance, for LUT14, only replacing a single gate with a LUT14 is sufficient 

to make the design perfectly resilient against SAT attack.  

To understand and compare the impact of LUT scale up vs. scale out on SAT 

execution time, we use a regression model to demonstrate the relationship between SAT 

execution time with respect to these two parameters. Figure 27 provides two different 

scenarios to accurately model the relationship between SAT and size of LUTs, as well as 

the number of LUTs. As it can be seen in Figure 27 (a), one factor is fixed in each curve. 

In one of them, LUT size is set to 5, and the number of LUTs is swept from 1 to 29. In 

another curve, the number of LUTs is set to 13, and size of LUTs has been swept from 2 

to 8. Based on the independent (one-variable) exponential regression model illustrated on 

curves, it is clear to observe that LUT scale-up have significantly more influence on SAT 

execution time compared to LUT scale out. Figure 27 (b) shows another analogous 

situation that proves that LUT scale up is more effective than LUT scale out. In addition, 

according to a multi-dimensional linear regression, the impact coefficient of the number of 

LUTs on SAT execution time is 72.347. However, impact coefficient of LUT size is 

1969.25. In addition, these factors have an intercept coefficient by −8325.47. This 

regression coefficient demonstrates that LUT size is the most crucial factor for security 

purposes rather than the number of LUTs and replacement strategies.  
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Figure 27 LUT scale up vs. scale out: Comparison between the Impact of LUT size and Number of LUTs on 

SAT Execution Time 

 

Although our evaluations show that LUT scale-up is the most straight forward 

approach for LUT-based obfuscation with high resiliency against state-of-the-art attacks, 

investigation on PPA optimizations how that precipitous increases in the number of LUTs 

and the size of LUT can be inefficient solutions. In other words, while we identified design 

points that are resilient against current attacks, yet incur low PPA overheads, to guarantee 

resiliency against future complex attacks, just increasing the number of LUTs (scale up) 

and the size of LUT (scale out) are not effective solutions in terms of PPA overhead. Figure 

28 (a) depicts normalized delay overhead for the different number of LUTs and LUT sizes. 

As it can be seen, in some cases the delay overhead will be increased up to 2×. For instance, 

for LUT size = 14, although only one gate replacement is enough to make it SAT resilient, 

2× delay overhead is not negligible especially for designers who have tight timing 

constraint. Note that number of LUTs are swept in Figure 28 (a), and after each increase in 
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LUT size, one or more columns corresponding to a specific LUT size are eliminated. 

Eliminating any column means that for that situation SAT attack could not find the correct 

key and it returned timeout. In fact, all results are related to all configurations before SAT 

timeout.  

Although delay may impose up to 2x overhead in the best SAT resilient solutions, 

the area and power overheads for most SAT resilient solutions are much higher. As it can 

be seen in Figure 28 (b), and Figure 28 (c), the frontiers Pareto optimal curves are SAT 

resilient solutions with minimum area/power overhead for the shown configuration. Based 

on these figures, it is clear to observe that for large LUT sizes (more than10 inputs) we can 

impose even more than 100× area/power overhead. Note that all results are based on 28nm 

integrative STT-based LUTs, which is a competitive technology for 

area/power/performance constraints. This implies that while for today attacks hybrid STT-

LUT is an effective solution with respect to security and PPA design constraints, for future 

complex attacks, we cannot rely on scaling up (larger LUT) or scaling out (more LUT) 

LUTs for resiliency.  
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Figure 28 The Impact of Increasing # of LUTs and LUT size on Circuit (C7552) Design Properties: (a)Delay, 

(b)Area), (c)Power. 
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This leads towards designing and implementing new customized and area/power 

optimized LUTs to keep LUT-based obfuscation a promising solution. For instance, an 

STT-LUT where internally has only 4 MTJs accommodating 4 configuration states while 

externally is augmented with 10 additional inputs can deliver resiliency of a 12 input LUT 

while at the same time meeting PPA constraints of a 2 input LUT. A challenge in this case 

is that the type of customized LUT design can be detectable via delayering and the attacker 

can identify the discrepancy between the number of inputs to the LUT and the number of 

MTJ memory cells inside the LUT. To prevent this, the designer can employ camouflaging 

for implementing customized LUTs to not only meet all PPA constraints, but also to 

guarantee the security against reverse engineering. This will be an important topic of 

research for future work.  
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CONCLUSION 

In this work, we comprehensively investigate the four crucial factors of (1) the 

technology of LUT, (2) LUT size, (3) number of LUTs, and (4) replacement strategy which 

are influencing PPA optimization and security enhancement of LUT-based obfuscation. 

Unlike prior work which mostly focus on replacement policy, we show that while 

replacement policy can be effective, it is not the most important parameter for security 

guarantees. Our experimental results show that the size of LUT is the most influential and 

straight forward factor in SAT resiliency, even for a weak random replacement strategy, 

however, it introduces PPA design overhead. While the delay overhead can be substantially 

eliminated using our proposed iterative solution which is none disruptive to standard ASIC 

design flow, the power and area overhead need attention. The PPA results indicate that for 

today state-of-the-art attacks STT-LUT is an effective solution with respect to security and 

PPA design constraints, however for future evolving attacks, we cannot rely on scaling up 

(larger LUT) or scaling out (more LUT) solutions for resiliency, due to the large impact on 

power and area. To mitigate this impact, customized LUT design or camouflaged 

customized LUTs must be deployed to realize LUT-based obfuscation with permissive 

PPA overheads and guaranteed security.  
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