


 

Enhancing Global Observation of Soil Freeze/Thaw State Through Multi-Scale Data 

Fusion 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at George Mason University 

by 

Jeremy M. Johnston 

Master of Science 
George Mason University, 2019 

Bachelor of Science 

George Mason University, 2017 

Director: Viviana Maggioni, Associate Professor 
Sid and Reva Dewberry Department of Civil, Environmental, and Infrastructure 

Engineering  

Spring Semester 2022 

George Mason University 

Fairfax, VA 



ii 

 

 
Copyright 2022 Jeremy M. Johnston 

All Rights Reserved 



iii 

 

DEDICATION 

I dedicate this to all those who pushed, helped, and put up with me throughout this 5-year 

process. Especially my mother. 

I also dedicate this to the pursuit of new and exciting science. To discoverers, teachers, 
and explorers tackling new challenges. I share this accomplishment with all of you. 



iv 

 

ACKNOWLEDGEMENTS 

Just a few years ago I would have never considered the possibility that I could one day 

call myself a scientist. Through the direct support and guidance of many, and through 
taking the time to listen and learn from others, I have come a long way towards achieving 

this goal. Most importantly, without the help of my advisors Dr. Viviana Maggioni and 
Dr. Paul Houser, I certainly would not have had the opportunity to explore research 

questions interesting to me. Their efforts to steer me down this path took me to places I 
hadn’t dreamed of going, and I am forever grateful. For their guidance through the world 

of research and for pushing me to pursue new opportunities, I thank you both. I know I 
still have a long way to go. 

I want to also thank all of my colleagues and fellow graduate students at George Mason 
and within Dr. Maggioni’s Research Group. Collaborating and learning from you over 
the years has been a pleasure. Namely, Azbina Rahman, Tasnuva Rouf, Yiwen Mei, 

Ishrat Dollan, Yuan Xue, Soelem Bhuiyan, Gustavo Coelho, Maryam Zavareh, Andy 
Sachs, Felicio Cassalho, Tyler Meisse, and many others. I thank you all and hope to 

continue these collaborations into the future. 

Moreover, I’d to thank my committee member Dr. Celso Ferreira, for being a wonderful 
teacher, supporter, and collaborator during my years at George Mason. And, to Dr. Kirin 

Furst, who graciously accepted my request to be a member of my committee and has 
always asked me challenging questions. 

To all of those who helped me dive headfirst into field work, measuring snow, soil 
moisture, capturing imagery from new perspectives, as well as the many amazing 
scientists I have been able to learn from outside of the office, I thank you.  

Critically, without the support of the NASA Terrestrial Hydrology Program (Grant #: 
NNX17AL38G), none of this work would be possible. 

Last, but maybe most importantly, I want to thank my family and friends. Especially my 
parents, for supporting me at research events, expressing interest, and even poking fun at 

the number of times I have said the words ‘freeze-thaw’ over the last few years. I am 
beyond grateful to you all. 



v 

 

TABLE OF CONTENTS 

Page 

List of Tables .................................................................................................................... vii 
List of Figures .................................................................................................................. viii 
List of Equations ................................................................................................................. x 
List of Abbreviations and Symbols .................................................................................... xi 
Abstract ............................................................................................................................. xii 
1 Background and Project Motivation ............................................................................ 1 

1.1 Significance of Freeze/Thaw Processes .................................................................... 1 
1.2 Current Observational Approaches ........................................................................... 4 

1.2.1 Physics of Microwave Remote Sensing and Freeze/Thaw Transitions .............. 7 
1.2.2 An Introduction to Existing Sensors and Available Freeze/Thaw Products .... 14 
1.2.3 Known Limitations ........................................................................................... 21 

1.3 Project Overview ..................................................................................................... 22 
1.3.1 Research Objectives ......................................................................................... 23 
1.3.2 Project Tasks ..................................................................................................... 23 

2 Improving Characterization of Existing Freeze/Thaw Observation Products ........... 25 
2.1 Examining Near Surface Temperature Variables and their Relationship to the 

Microwave Derived Freeze/Thaw Observations ........................................................... 26 
2.1.1 Background and Objectives .............................................................................. 27 
2.1.2 Comparison Methods ........................................................................................ 32 
2.1.3 Results and Discussion ..................................................................................... 39 

2.2 A Global Comparison of Satellite Freeze/Thaw Records ....................................... 64 
2.2.1 The Need for Global Scale Comparisons of Freeze/Thaw Records ................. 64 
2.2.2 Methods for Global Comparison ...................................................................... 68 
2.2.3 Global Comparison Results .............................................................................. 78 

2.3 Chapter Outcomes ................................................................................................... 96 
3 Exploring Variables for Freeze/Thaw Estimation at Fine Scales ............................ 100 

3.1 Improving Freeze/Thaw State Classification Using Sub-grid Temperature ......... 101 
3.1.1 Background and Motivations .......................................................................... 101 
3.1.2 Research Methods ........................................................................................... 104 



vi 

 

3.1.3 Exploring Sub-grid Temperature and Freeze/Thaw ....................................... 116 
3.2 Exploring Field-scale Thermal, Soil Freezing, and Melt Processes ..................... 134 

3.2.1 Study Methods ................................................................................................ 136 
3.2.2 Results, Analysis, and Project Outcomes ....................................................... 142 

3.3 Chapter Outcomes ................................................................................................. 154 
4 GMU-Freeze/Thaw: Remote Sensing Data Fusion for Improved Freeze/Thaw 

Estimates ......................................................................................................................... 157 
4.1 Motivations and Approaches for the Enhancement of Freeze/Thaw Observation 158 
4.2 Deriving an Improved Classifier ........................................................................... 162 

4.2.1 Data Inputs ...................................................................................................... 163 
4.2.2 Decision Trees and Random Forests for Freeze/Thaw Classification ............ 169 
4.2.3 Feature Creation and Model Development ..................................................... 177 

4.3 Product Performance and Results ......................................................................... 181 
4.3.1 Freeze/Thaw Modeling at Point Locations ..................................................... 181 
4.3.2 Global Algorithm Training and Development ................................................ 190 
4.3.3 Global Application and Validation ................................................................. 196 

4.4 Chapter Outcomes ................................................................................................. 205 
5 Research Contributions, Future Opportunities, and Dissemination ........................ 207 
Appendix ......................................................................................................................... 210 
References ....................................................................................................................... 215 

 



vii 

 

LIST OF TABLES 

Table Page 

Table 1 Selected satellite derived freeze/thaw products ................................................... 29 
Table 2 Selected temperature products ............................................................................. 32 
Table 3 Classification accuracy results for existing products in North America ............. 40 
Table 4 Proportional differencing summary values .......................................................... 47 
Table 5 Freeze/thaw temperature distribution summary characteristics ........................... 59 
Table 6 Modified Köppen-Geiger climate classifications ................................................ 74 
Table 7 Modified IGBP land cover classifications from MODIS MCD12Q1 ................. 75 
Table 8 SMAP-FT to SSM/I-FT agreement statistics ....................................................... 86 
Table 9 Product agreement by freezing days .................................................................... 89 
Table 10 SMAP-FT to SSM/I-FT agreement by landcover .............................................. 92 
Table 11 Product agreement proportion by elevation standard deviation ........................ 95 
Table 12 Summary of ensemble validation results ......................................................... 107 
Table 13 Observational and satellite derived datasets .................................................... 110 
Table 14 Characteristics within analysis targeted freeze/thaw pixels ............................ 113 
Table 15 Test model point site descriptions ................................................................... 183 
Table 16 Site specific performance results for freeze/thaw classification algorithms .... 189 
Table 17 Model training summary and performance scores by climate region .............. 196 
Table 18 GMU-FT summary and validation statistics for 2020 period .......................... 202 

 



viii 

 

LIST OF FIGURES 

Figure Page 

Figure 1 The relevance of freeze/thaw cycles ..................................................................... 3 
Figure 2 Techniques for freeze/thaw observation ............................................................... 6 
Figure 3 Real and imaginary permittivity of soil ................................................................ 9 
Figure 4 SMAP-FT summer freeze classifications map ................................................... 38 
Figure 5 Classification accuracy of freeze/thaw products to air temperature ................... 43 
Figure 6 Classification accuracy of freeze/thaw products to soil temperature ................. 44 
Figure 7 Classification accruacy of freeze/thaw products to NLDAS skin temperature .. 45 
Figure 8 Classification accuracy of freeze/thaw products to MODIS skin temperature .. 46 
Figure 9 Mean proportional difference of freeze/thaw products to air temperature ......... 48 
Figure 10 Mean proportional difference of freeze/thaw products to soil temperature ..... 50 
Figure 11 Mean proportional difference of freeze/thaw products to NLDAS skin 
temperature ....................................................................................................................... 51 
Figure 12 Mean proportional difference of freeze/thaw products to MODIS skin 
temperature ....................................................................................................................... 52 
Figure 13 Mean frozen proportion differences timeseries ................................................ 54 
Figure 14 Absolute mean proportional differences by overpass ...................................... 55 
Figure 15 Boxplot temperature distributions of frozen and thawed states ....................... 57 
Figure 16 Probability distribution function histogram AMSR-FT to air temperature ...... 60 
Figure 17 Distribution of global Agreement Proportion SMAP to SSM/I-FT ................. 71 
Figure 18 Timeseries detrending and seasonality removal ............................................... 72 
Figure 19 Spatial comparison variable maps .................................................................... 77 
Figure 20 Total frozen classifications by hemisphere ...................................................... 78 
Figure 21 Agreement proportion between global P-MW freeze/thaw products ............... 79 
Figure 22 Comparing global records ................................................................................ 81 
Figure 23 Time series FT agreement proportion separated by climate class .................... 84 
Figure 24 Density plot of freezing days against agreement proportion ............................ 88 
Figure 25 Time series of product FT agreement separated by land cover ........................ 90 
Figure 26 Density plot of product agreement compared to elevation variability ............. 94 
Figure 27 Focus pixels, representative regions, and in-situ site locations ...................... 108 
Figure 28 North American climate, land cover, and elevation profile maps .................. 115 
Figure 29 Spatial mean sub-grid frozen proportion when classified as frozen ............... 117 
Figure 30 Sub-grid frozen proportion means when classified frozen by class ............... 118 
Figure 31 Percentage of agreement on frozen classifications ......................................... 122 
Figure 32 Freeze/thaw state to temperature comparison for Tundra pixel ..................... 124 
Figure 33 Freeze/thaw state to temperature comparison for Southern Plains pixel ....... 125 
Figure 34 Freeze/thaw state to temperature comparison for Mountainous pixel ............ 126 
Figure 35 Freeze/thaw state to temperature comparison for Northern Forest pixel ....... 127 
Figure 36 Freeze/thaw state to temperature comparison for Northern Plains pixel ....... 128 
Figure 37 Summary of results for each focus region ...................................................... 128 



ix 

 

Figure 38 Grand Mesa, CO study area ............................................................................ 137 
Figure 39 UAV thermal and visible image pairs captured in varied conditions ............. 144 
Figure 40 Timeseries of in-situ observations, FT classifications, and UAV imagery .... 145 
Figure 41 Surface temperature imagery from UAV collections ..................................... 149 
Figure 42 Timeseries of near site observations and energy balance ............................... 151 
Figure 43 R2 improvement by adding additional model predictors ................................ 152 
Figure 44 Distribution of global network of in-situ soil temperature sites ..................... 167 
Figure 45 Model accuracy and training time of machine learning methods ................... 171 
Figure 46 Soil temperature observational sites map ....................................................... 182 
Figure 47 Decision tree modeling for Alaska, USA site ................................................ 184 
Figure 48 Decision tree modeling for High Mountain Asia (HMA) site ........................ 185 
Figure 49 Decision tree modeling for Northern Italy site ............................................... 186 
Figure 50 Decision tree modeling for Illinois, USA site ................................................ 187 
Figure 51 Decision tree modeling for Texas, USA site .................................................. 188 
Figure 52 Sensitivity analysis for select random forest parameters ............................... 192 
Figure 53 Normalized feature importance by climate class ............................................ 194 
Figure 54 Framework for global freeze/thaw classification using random forests ......... 197 
Figure 55 Example outputs from GMU-FT global model .............................................. 198 
Figure 56 Global validation of GMU-FT against operational FT products .................... 200 
Figure 57 Comparison of total number of frozen days between FT classifiers .............. 201 
Figure 58 Classification accuracy of soil freeze/thaw state by temperature category .... 203 

 



x 

 

LIST OF EQUATIONS 

Equation Page 

Equation 1 Planck’s law of blackbody radiation ................................................................ 7 
Equation 2 Simplified formulation for brightness temperature .......................................... 8 
Equation 3 Normalized polarization ratio formula for SMAP bands ............................... 16 
Equation 4 Seasonal scale factor used in SMAP-FT algorithm ........................................ 16 
Equation 5 Thresholding for freeze/thaw classification NPR algorithm .......................... 16 
Equation 6 Freeze thaw single channel V-pol (SCV) algorithm ...................................... 17 
Equation 7 Classification Accuracy .................................................................................. 35 
Equation 8 Classification Accuracy .................................................................................. 36 
Equation 9 Agreement proportion .................................................................................... 70 
Equation 10 Frozen proportion ....................................................................................... 111 
Equation 11 Sub-pixel frozen proportion when classified as frozen (FZp) .................... 111 
Equation 12 Sub-pixel frozen proportion when classified as thawed (THWp) .............. 111 
Equation 13 Three-product agreement proportion .......................................................... 112 
Equation 14 Precision ..................................................................................................... 180 
Equation 15 Recall .......................................................................................................... 180 
Equation 16 F1-Score ..................................................................................................... 181 
 



xi 

 

LIST OF ABBREVIATIONS AND SYMBOLS 

Freeze/thaw state ............................................................................................................... FT 

Freeze/thaw State Product ............................................................................................ FTSP 
Earth Observing System ................................................................................................ EOS 

Passive Microwave ..................................................................................................... P-MW 
Soil Moisture Active/Passive ...................................................................................... SMAP 

Special Sensor Microwave Imager .............................................................. SSMI or SSM/I 
Special Sensor Microwave Imager/Sounder .............................................................. SSMIS 

Advanced Scanning Microwave Radiometer (-EOS, -Version 2) ................ AMSR (-E, -2) 
Brightness Temperature ..................................................................................................... Tb 

Unpiloted Aerial Vehicle .............................................................................................. UAV 
Scanning L-band Active/Passive Experiment ........................................................ SLAPEX 

Single Channel Algorithm ............................................................................................. SCA 
Normalized Polarization Ratio ....................................................................................... NPR 

Spectral Gradient ............................................................................................................. SG 
Machine Learning ............................................................................................................ML 

Decision Tree ................................................................................................................... DT 
Random Forest .................................................................................................................. RF 

Making Earth System Data Records for Use in Research Environments .........  MEaSUREs 
Geostationary Operational Environmental Satellite ................................................... GOES 

The Continental United States ................................................................................. CONUS 
World Meteorological Organization ........................................................................... WMO 

Thermal Infrared ............................................................................................................. TIR 
Agreement proportion ....................................................................................................... Ap 

Classification Accuracy ................................................................................................... CA 
Celsius ................................................................................................................................. C 

Kelvin .................................................................................................................................. K 
Degree .................................................................................................................................. ° 

Correlation .......................................................................................................................... R 
Root Mean Square Error ............................................................................................. RMSE 

Mean Absolute Error ..................................................................................................... MAE 
Gini’s Diversity Index .................................................................................................... GDI 

radiometer version of Scatterometer Image Reconstruction .......................................... rSIR 
National Snow and Ice Data Center .......................................................................... NSIDC 

Volumetric Water Content ........................................................................................... VWC 



 

xii 

 

ABSTRACT 

ENHANCING GLOBAL OBSERVATION OF SOIL FREEZE/THAW STATE 

THROUGH MULTI-SCALE DATA FUSION 

Jeremy M. Johnston, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Viviana Maggioni 

 

In cold regions, temperature acts as a hydrologic and ecological switch. As extended 

periods of sub-freezing temperatures can constrain various parts of the water cycle by 

preventing evaporation, infiltration, and runoff as well as defining the transition from 

periods of plant growth and ecologic activity to ecosystem dormancy. Hence, global 

knowledge of surface characteristics such as freeze/thaw state are exceedingly important 

for monitoring of biogeochemical cycles, such as the carbon cycle, and the implications of 

a changing climate. Current approaches leverage satellite observations in the microwave 

portion of the electro-magnetic spectrum to detect the transition between frozen and thawed 

states. However, investigations into the use of such observations have suggested 

freeze/thaw classifications remain uncertain and lack a clear physical meaning as to the 

type of freeze indicated (e.g., soil, surface snow and ice, frost). This project focuses on 

improving the characterization of freeze/thaw processes, in terms of both the observational 

techniques and the methods used to extract information from observations at multiple 
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scales. To achieve this, we employ extensive analyses of existing satellite derived 

freeze/thaw classifications, the introduction of new predictive variables (i.e., land surface 

temperature and land cover), targeted field campaigns, and the integration of thousands of 

global soil temperature observing sites. The result, a new and robust decision tree-based 

classification algorithm which introduces a freeze/thaw probability metric, soil specific 

classifications, and improved resolution. This information is expected to provide better 

inputs to hydrologic models used to predict runoff and flooding, allow for more accurate 

estimates of the growing season, and enable assessments of the agricultural implications of 

changing melt and refreeze cycles. At its core, the implementation of an improved 

freeze/thaw classification can enhance our understanding of fundamental physical 

processes which occur on our planet. 
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1 BACKGROUND AND PROJECT MOTIVATION 

This dissertation details the path to improving observations of water within the 

Earth system. With the growth of technological capabilities, especially in remote sensing, 

a breadth of opportunity has been unlocked in Earth observation. Specifically, capturing 

detailed changes in the cryosphere and in regions experiencing seasonal melt and refreeze 

cycles. This chapter provides a baseline of understanding for water freezing and thawing 

processes at the Earth’s surface and the associated importance. This includes detailing the 

relevance of these cycles to our lives as well as the many exchanges occurring between 

the land, environment, and atmosphere. We introduce the physics of water state changes, 

different observational techniques used to track these essential processes, and briefly 

explore limitations and opportunities that exist in the context of improving these 

techniques. This highlights the primary objective underpinning this work, which is to 

develop the next generation of algorithms to enhance observation of freeze/thaw cycling 

at a global scale. 

1.1 Significance of Freeze/Thaw Processes 

Seasonal freezing and thawing cycles at the Earth’s surface act as a critical 

control of global climate and the hydrologic cycle. Water not only facilitates many 

important processes within the human body, such as nutrient transport to cells and the 

regulation of body temperature, but provides a similar role at a global scale, by moving 
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energy (e.g., thermal, latent fluxes), sediment, and regulating weather and climate. As a 

result, both ecological activity and the prevalence of life as we know it are constrained by 

the movement and state of water. Extensive research has been devoted to characterizing 

the effects of freeze/thaw (FT) transitions on carbon, water, and energy cycles, further 

revealing the link between water phase changes and these global systems. For instance, 

changes in the frozen season timing and duration, especially at high elevations and 

latitudes, have significant implications for the length of the growing season, plant 

productivity, and the associated carbon uptake (Goulden et al. 1996; Kimball et al. 2004; 

Kreyling et al. 2008). 

Moreover, FT cycles play a substantial role in regulating energy exchanges 

between the Earth’s surface and atmosphere through impacts to evapotranspiration, 

sensible and latent heat flux, runoff, and albedo (Shanley and Chalmers 1999; Zhang et 

al. 2011; Zhang and Sun 2011; Betts et al. 2014). As a result, surface FT state can 

directly influence temperature regimes both at micro- and macro-scales, which is relevant 

to hydrologic, weather, and climate modeling (Stadler et al. 1997; Henry 2008; Koren et 

al. 2014; Xue et al. 2019). Essentially, surface freezes can act as a cap on the exchange of 

water between the soil and atmosphere. Frozen ground can prevent absorption of 

rainwater or snowmelt leading to increased runoff while also inhibiting evaporation by 

locking water in ice within the snowpack or soil. Similarly, global FT processes can 

constrain groundwater recharge, soil moisture, and infiltration rates, which can directly 

impact flood intensity through increases in runoff from snowmelt and rain on frozen 

ground events (Dunne and Black 1971; Koren et al. 1999; Bayard et al. 2005; Niu and 
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Yang 2006; Iwata et al. 2011). Freeze/thaw state and cycles are also linked to socio-

economic impacts through their connections to flooding, water availability, ground 

instability, and weathering of infrastructure such as roadways (Kalra et al. 2008; Martins 

et al. 2016; Daniel et al. 2017; Teufel et al. 2017; Hjort et al. 2018; Chen et al. 2021). 

 
 

 

Figure 1 The effects of freeze/thaw cycles on various components of the Earth system 

 
 

 

Detecting shifts in the duration of the frozen season using satellite observations 

has provided a new method to monitor a changing climate (Kimball et al. 2009; Kim et 

al. 2014; Du et al. 2019). In turn, due to the interconnected nature of FT and global 

climate, changes in FT seasonality can also have considerable impacts on climate, 

creating feedback loops. Existing records have been applied to identify a shortening of 

the frozen season (Kim et al. 2012), finding reductions in the frozen period by nearly 1 
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week and an increase in the number of diurnal FT cycles by 6 days across the Northern 

Hemisphere between 1979 and 2008. This carries direct implications for permafrost thaw, 

the release of trapped gases such as methane, and the duration and quantity of carbon 

uptake (Arndt et al. 2019; Biskaborn et al. 2019). The northern hemisphere growing 

season largely controls carbon sequestration as nearly 70% of the global land area exists 

in the northern hemisphere, including over 90% of the FT constrained regions. Regarding 

thawing permafrost, as the frozen season duration decreases and temperatures warm, the 

soil active layer (unfrozen layer) is expected to also expand (Hugelius et al. 2011). This 

may result in increased potential for plant productivity, an extended period of carbon 

uptake, and may also allow certain species to expand pole-ward while contributing to the 

extinction of others. Freeze/thaw cycles remain relevant in areas ranging from civil 

infrastructure and water resources to global circulation patterns and climate feedbacks. 

The extent to which these cycles effect the Earth system make their accurate observation 

chiefly important for scientific research and in other operational applications.  

1.2 Current Observational Approaches 

Due to the fundamental role and impact of freeze/thaw on climate, hydrology, and 

ecology, widespread efforts have been invested in the observation of these cycles. 

Initially, observational approaches of surface FT states relied on sparse networks of 

ground (in-situ) observing sites. In most cases these sites record air temperature, with 

some collecting information on soil temperature and moisture. An even smaller subset 

collects information on snow depth and surface layer temperatures. As a result, traditional 

estimates of freeze/thaw transitions have been made largely using air temperatures as 
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they fall below the freezing point (0 °C). Insulation of the soil due to snow or soil can 

result in considerable lag between air temperatures and observed soil FT states. Warming 

due to exposure to direct sunlight and freezing point depression can also result in 

considerable FT uncertainty, especially when using air temperature observations alone. 

Therefore, the combination of air and soil temperatures have provided a new means of 

validating estimates of the surface freeze condition. Still, these types of observations are 

only representative of single points in space (Figure 2A) and remain sparsely distributed 

around the world. This means, while useful, these observations may not be representative 

of regional scales as surface heterogeneity introduces spatial variability in surface states. 

For example, the difference between a forested northern facing slope with abundant 

moisture and the reduced solar exposure to that of a drier south facing slope leads to very 

different microclimates over a relatively small distance. 

In recent decades, the introduction of microwave remote sensing techniques, first 

using ground mounted sensors, became capable of observing FT transitions and soil 

moisture regionally (Figure 2A). The use of aircraft like in the Scanning L-Band Active 

Passive Experiment (SLAPEX; Kim et al. 2016; Rowlandson et al. 2018) has proven 

effective at collecting observational information over regions covering hundreds of 

square kilometers. Even more recently, unpiloted aerial vehicles (UAVs) have provided a 

method of quick deployment for field-scale (<1 km2) observations of soil temperatures 

and moisture using thermal imagery (Berni et al. 2009) and miniaturized microwave-

band sensors (Acevo-Herrera et al. 2010; Houtz et al. 2020). These approaches are 

information dense and spatially distributed but remain limited for timeseries analyses 
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(barring regular operational flight schedules) or studies at the regional or continental 

scale (Figure 2B-C). 

 
 

 
Figure 2 Techniques for freeze/thaw observation and associated observational scale. (A) In-situ sites and ground-
based radiometers (Kim et al. 2016), (B) UAVs and other small airborne vehicles, (C) Aircraft, from SLAPEX 
(Kim et al. 2016), and (D) Satellite; Soil Moisture Active Passive (SMAP, NASA JPL) is shown 

 

 
 

Satellites enable both regular revisit times and global observational coverage 

(Figure 2D). The use of similar microwave sensors on board polar orbiting satellites have 

provided FT relevant observations at a global scale. These approaches capture continuous 

records that can extend back decades while also providing daily products in near real 

time. These can be useful for long term climate studies as well as operational work like 

flood prediction and agricultural decision making. With continued improvements in 

technology and thus satellite coverage and resolution, remote sensing provides the best 

opportunity for capturing freeze/thaw states within the Earth system. Still, with increases 
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in spatial coverage come reductions in resolution, meaning both field-scale and sub-daily 

(i.e., hourly) collections remain largely beyond satellite capabilities. Integration of these 

multi-scale datasets can thus provide the best means of accurately capturing these 

processes. 

1.2.1 Physics of Microwave Remote Sensing and Freeze/Thaw Transitions 

All materials emit energy within the electromagnetic spectrum. The magnitude of 

this energy within a given portion of the spectrum (i.e., spectral energy density) depends 

on both the surface properties and the kinetic (or physical) temperature of an object. This 

decreases significantly in wavelengths above the visible portion of the spectrum (>1 µm). 

The theoretical magnitude of this emitted energy for a perfect emitter (i.e., black body) is 

determined by Planck’s law for blackbody radiation (Equation 1) and is a function of 

wavelength (l, meters) and temperature (T, Kelvin). Constants include the Planck 

constant (h, J-s), Boltzmann constant (k, J/K), and the speed of light (c, m/s): 

Equation 1 Planck’s law of blackbody radiation 

!(#, %) =
2ℎ*!

#" ∙
1

-
#$
%&' − 1

 

In nature, perfect black body emitters are unrealistic as material properties affect 

the emission of energy.  Thus, observations acquired through remote sensing methods are 

considered as brightness temperatures (Tb, Equation 2), or the observed magnitude of 

energy of an equivalent black body with a known temperature (Teff). Tb values are 

calibrated using hot and cold targets with known emissive properties. Tb can then be 

considered as a function of both the surface emissivity (e, unitless), which changes based 
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on surface physical properties, and Teff (Ulaby et al. 1986; Kerr and Njoku 1990). In 

other words, these observations provide a measure of emitted radiation at a specific 

wavelength (l), assuming the target acts as a black body (e = 1). 

Equation 2 Simplified formulation for brightness temperature 

%( = /%)** 

However, since true emissivity at the Earth’s surface varies considerably due to 

material physical properties and sensing band, brightness temperature observations can 

be used to infer properties of the surface. One such property is the dielectric constant (or 

relative permittivity), which measures the ability of a material to store energy in an 

electric field. Importantly, water is known to have high permittivity relative to that of ice 

(Figure 3). In terms of Equation 2, these changes have relevance to the emissivity (e) of 

an object particularly in the microwave portion of the spectrum, as e varies inversely with 

permittivity. Therefore, if the temperature and moisture content of a surface is held 

constant and permittivity is reduced (e.g., less water and more ice) Tb is expected to 

increase along with e. 
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Figure 3 Real ( !’) and imaginary (!’’) permittivity of an organic soil sample using various instruments (OECP 
and HP) and model results (TD and Zhang), from Mavrovic et al. (2021) 
 
 

 

Interpretation of Microwave Brightness Temperature Observations 

In theory, Tb changes are easy to interpret when the factors contributing to 

emissivity changes or physical temperatures are held constant. In reality, these factors can 

vary simultaneously and spatially, complicating the interpretation observed brightness 

temperatures. Such factors, beyond just the presence of water, include its quantity. As 

increased volumetric water content (VWC) results in higher permittivity and reduced Tb. 

This sensitivity has been widely leveraged for soil moisture estimation (Zuerndorfer et al. 

1990; Kerr et al. 2012; Dunbar et al. 2018). In other words, as more liquid water exists 

within in a surface such as soil or snow, the more microwave energy is dissipated, 
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absorbed, or stored, resulting in lower magnitudes of emitted microwave radiation and 

lower Tb. As an extreme case, surface waters (e.g., lakes, rivers, and ponds) tend to have 

very low emissivity in the microwave band (Figure 2D). As a result, emissivity can vary 

considerably over regions with abundant surface water features and land (i.e., mixed 

pixels) which is known to complicate the observation of soil moisture or freeze/thaw 

transitions (England 1990). 

Physical temperatures also remain an important consideration, as increases in Teff 

are proportional to increases in Tb. However, both temperature and moisture states tend to 

vary considerably throughout a given year. Variations of which can occur coincidently. 

For example, soil freezing requires colder physical temperatures (i.e., a reduction of Teff) 

and results in lower magnitudes of observed energy. But, as soil freezes, this also results 

in increased e due to decreased permittivity from phase changes (Zhang and Armstrong 

2001).  In moist soils, this becomes the dominant response since Tb increases more due to 

the transition between states than due to the minimal decrease in kinetic temperature 

required for freezing (Dobson et al. 1985). Nevertheless, these changes in properties may 

not occur right at 0 °C which can make the interpretation more challenging, but also may 

present opportunities to identify intermediate phases during such transitions (Figure 3). 

Over dry regions, moisture influence is minimal and because of the relatively small 

VWC, emissive properties remain relatively constant even as phase changes occur. In 

these regimes, the physical temperature of a surface is considered to provide the 

dominant contribution to microwave Tb observations. 
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Emission Depth in Microwave Remote Sensing 

The frequency (f) of the observing band provides critical controls on the relevance 

of any remote sensing observation. Band properties control which components of the 

surface dominate the observed emissions. As an example, sensors measuring shorter yet 

higher energy wavelengths, such as those in the thermal infrared band, only detect 

temperatures representative of a very small layer at the surface (skin). Due to short 

wavelengths (~7 - 13 µm), these observations are also impeded by water droplets (10 µm 

to >1000 µm) within clouds. This allows for observations of cloud top temperatures for 

meteorology but prohibits all-weather surface temperature observation.   

Similar considerations exist in microwave radiometry and are usually referenced 

as the emission (or penetration) depth, or depth to which observed energy is emitted from 

within a medium. This is known to be a function of frequency (or wavelength, 0 = $
%).  

Longer wavelengths >15cm (L-band microwave and above) thus are less affected by 

surface volume scattering (e.g., due to surface heterogeneity, vegetation, or snowpack 

water content) and have increased capabilities for sub-surface estimation compared to 

Ka-band (0.75 – 1.1 cm), which has higher correlations with air and soil surface 

temperatures (Zuerndorfer et al. 1990). This is because in higher frequencies (shorter 

wavelengths), the soil column ‘appears’ more heterogenous resulting in increased volume 

scattering at the surface thus relative reductions in the observed Tb during soil freezing. 

This is compared to longer wavelengths which respond more to soil properties, which can 

result in increased Tb due to soil freezing (Zuerndorfer et al. 1990; England et al. 1991).  
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In microwave bands, an effective emission depth of around 10% of the free space 

wavelength is expected in moist soils. In commonly used L- and Ka-bands this is 

equivalent to 1.5 – 3 cm and ~0.1 cm emission depths, respectively. Meaning these layers 

provide the dominant contribution to observed signals. For frozen soils, this can increase 

by around 3x as dielectric loss factors are reduced when freezing occurs, meaning less 

energy is attenuated or scattered within the medium (Zuerndorfer et al., 1990; Jin et al. 

2009). Over dry regions with VWC around 4%, emission depth can extend to 

approximately one wavelength (L-band, 15 – 30cm; Ka-band ~1 cm). In especially dry, 

frozen, and/or sandy regions, microwave emission can even be representative of depths 

exceeding 50 cm below the surface (Ulaby et al. 1986; Owe and Van de Griend 1998). 

Active vs. Passive Remote Sensing and Band Polarizations 

All of these inferences are made possible due to the relative transparency of water 

vapor and the minimal sensitivity of microwaves to atmospheric effects. This makes 

microwave remote sensing methods, both using active and passive approaches, effective 

for all weather monitoring of surface states (i.e., not effected by cloud cover). While this 

work focuses on the use of passive observations (i.e., radiometry), which relies on 

observation of naturally emitted energy, active approaches such as Radio Detection and 

Ranging (Radar) also exist using microwave bands. These techniques differ from passive 

ones in that they provide their own illumination source, similar to the flash on a digital 

camera. This can enhance resolution of observations and increase interpretability by 

using a known illumination source. Even so, these approaches come with drawbacks 

regarding observational coverage, sensor cost, and complexity. 
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In the case of linear polarization, the orientation of electromagnetic waves can be 

considered as either vertical or horizontal. This signifies waves either on the vertical or 

horizontal plane relative to the surface of the Earth. Many spaceborne remote sensing 

platforms collect observations across these polarizations, as the presence of highly 

polarized water molecules result in variable emission characteristics (Ulaby et al. 1986). 

Generally, regarding the phase change of water, horizontal polarizations have been 

observed to have greater magnitude changes relative to vertical polarizations (Brucker et 

al. 2014). 

Applied Microwave Remote Sensing 

In summary, interpreting changes in brightness temperatures (Tb) depends on 

moisture content, surface temperature, water phase, and band specific sensitivities. Other 

differences in surface properties between various soils and vegetations can also induce 

changes in Tb. This can complicate determination of signal contributions in the 

microwave portion of the spectrum making both soil moisture and freeze/thaw detection 

non-trivial. Still, due to the particular sensitivities of microwave bands to water relevant 

variables, passive microwave (P-MW) remote sensing has proven effective at capturing 

state changes of water at the Earth’s surface. Preceding studies have confirmed distinct 

changes in time series of Tb from both ground and satellite-based radiometers in L-band 

(1-2 GHz) and Ka-band (26.5 – 40 GHz) in order to characterize FT transitions (Zhang 

and Armstrong 2001; Zhang et al. 2010; Kim et al. 2011; Kerr et al. 2012; Rautiainen et 

al. 2012, 2014, 2016; Derksen et al. 2017). These efforts, among others, provide the 



 

14 

 

foundations for applying P-MW sensing approaches for the detection of frozen surfaces 

at global scales. 

1.2.2 An Introduction to Existing Sensors and Available Freeze/Thaw Products 

As has been established, in the right bands, satellite remote sensing approaches 

are directly sensitive to changes in surface properties due to the presence of water or ice. 

In some cases, freezing point depression can result in soil freezing at temperatures below 

0 °C, which can complicate FT observation even when using contact surface temperature 

observations. Impressively, microwave observations may present the capability for 

detection of ice even in these cases, providing a better true measure of surface states. 

Other observations such as those in the thermal infrared (TIR) band, may detect FT 

relevant information about surface temperatures, but do not have direct sensitivity to 

surface FT states as do microwaves. 

Current global FT products are limited to those developed as part of the FT-ESDR 

(1979-2020, Version 5; Kim et al. 2021a) and the recent SMAP FT product (April 2015 – 

present, Version 3; Xu et al. 2020). Both use similar seasonal thresholding algorithms 

(STAs) to distinguish between frozen and thawed states. To reach current versions, these 

products have been continuously refined since their inception; FT-ESDR (2009; Kimball 

et al. 2009) and SMAP-FT (2015; Derksen et al. 2017). General enhancements include: 

1) Improved resolution through use of higher resolution data inputs 

2) Improved masking procedures and reduction of false freezes or reduced 

accuracy over snow/ice covered regions 

3) Updates of freeze/thaw reference states 
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4) Implementation of regionally variable algorithms 

5) Extension of record length and more rigorous validation 

The products detailed herein provide a reference baseline of current global FT 

detection techniques and operational records.  

Soil Moisture Active Passive Freeze/Thaw (SMAP-FT) 

Following the recent launch of the Soil Moisture Active Passive (SMAP) mission 

in 2015, FT classifications have been derived from 1.41 GHz radiometer (L-band) 

observations and gridded to 36 km (or ~9 km) cell size (SMAP-FT) (Derksen et al. 2017; 

Dunbar et al. 2014-2020). This instrument follows a near-polar orbit passing the equator 

twice-daily at approximately 6 a.m. and 6 p.m. local solar time. The sensor follows an 8-

day orbit repeat cycle, though the majority of the global surface, especially in polar regions, 

is imaged twice-daily. Thus, daily coverage gaps tend to exist in the mid-latitudes. 

Valuable precursor investigations demonstrated L-band sensitivity to FT state including 

the use of Soil Moisture Ocean Salinity (SMOS) mission observations (Rautiainen et al. 

2012, 2014, 2016), ground-based radiometer and in-situ observation studies (Roy et al. 

2015, 2017a, 2020), and focused field experiments such as SMAPVEX (2012) and 

Scanning L-Band Active Passive experiment (SLAPEX 2015) (McNairn et al. 2015; Kim 

et al. 2016; Rowlandson et al. 2018). These studies have demonstrated the ability of L-

band observations to detect soil specific freezing processes more effectively than higher 

frequency observations (Ka-band), whereas also revealing FT classification challenges in 

dry regions, near water, and over complex terrain. 
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SMAP-FT is based on the combination of the normalized polarization ratio (NPR) 

seasonal thresholding algorithm (STA) and the single channel vertically polarized (SCV) 

algorithm. In the colder portion of the domain, which experiences clear and cyclical 

seasonality of freeze/thaw cycles, using information from each polarization (V- and H-, 

NPR) provides an improved classifier. Equations 3, 4, and 5 detail the NPR-STA which 

is applied to all grids meeting algorithm requirements (Dunbar et al. 2014-2020). 

Equation 3 Normalized polarization ratio formula for SMAP bands 

123(4) =
%5+.-+. −	%5+.-+/
%5+.-+. +	%5+.-+/

	× 	100 

First the NPR value is calculated as a unitless value between 0 and 100 (Equation 3). For 

each location, reference values for frozen and thawed conditions are then defined. These 

are considered to be the standard frozen and thawed signatures for a given location, as 

estimated from air temperatures (Equation 4).  

Equation 4 Seasonal scale factor used in SMAP-FT algorithm 

Δ4 =
123(4) −	123*0
1231#2	 −	123*0

 

Equation 5 Thresholding for freeze/thaw classification NPR algorithm 
Δ4	 ≥ %, 4ℎ<=
Δ4 < %, 0?--@- 

Finally, using the seasonal scale factor to indicate similarity to thawed conditions, a 

seasonal threshold (T) is estimated for each pixel using air temperature records to capture 

FT states (Equation 5). 

A modified baseline STA approach is applied for all other locations, which 

primarily include the mid- and lower latitudes. In these regions, only vertically polarized 
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Tb measurements in the L-band (1.41 GHz) are used to determine surface states. These 

efforts first determine the correlation (R) of SMAP Tb1.41V observations to air 

temperatures, which then are used to determine regional FT thresholds (Equation 6).  

Equation 6 Freeze thaw single channel V-pol (SCV) algorithm 

R > 0.5, FT = 	 G 4ℎ<=, H0	%5+.-+.	 > 4ℎ?-IℎJKL
0?--@-, H0	%5+.-+. 	≤ 4ℎ?-IℎJKL

R < −0.5, FT = 	 G 4ℎ<=, H0	%5+.-+.	 < 4ℎ?-IℎJKL
0?--@-, H0	%5+.-+. 	≥ 4ℎ?-IℎJKL

 

Recently, SMAP-FT has also implemented masking procedures to prevent false freeze 

flags through a combination of thresholding (Tb > 273 °K indicates thaw) and by 

applying climatological rules (i.e., never frozen) learned from existing long-term records 

of FT states (i.e., the Freeze/Thaw Earth System Data Record). 

Numerous efforts into SMAP FT validation have been performed (Lyu et al. 

2018; Rowlandson et al. 2018; Xu et al. 2018; Kim et al., 2019). Thorough analysis at 

SMAP core validation sites was performed over tundra and boreal environments showing 

the impacts of vegetation and deep snowpack on FT classification, with strongest 

performance over tundra sites occurring in areas of shallow snow and minimal vegetative 

cover (Xu et al. 2018). Additionally, these studies have shown similar characteristics of 

improved agreement with in-situ soil and air measurements in the afternoon (PM) as 

compared to morning (AM) observations as the poorest agreement occurs in spring when 

melting is widely prevalent. Since algorithm thresholds are optimized based on air 

temperatures, this may have an effect on increases in morning (77.1% soil to 81.0% air) 

and afternoon (78.6% to 86.6%) classification agreement at SNOTEL sites in Alaska 

relative to soil temperatures (Xu et al. 2018). Utilizing air temperature observations at 
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nearly 5,000 World Meteorological Organization (WMO) stations SMAP was found to 

agree 78% and 90% in the AM and PM respectively, mirroring results at SNOTEL and 

core validation sites (Kim et al. 2019). Further details regarding recent product versions 

can be found in recent SMAP algorithm theoretical basis documents (ATBD; Dunbar et 

al. 2014-2020). 

Freeze/Thaw Earth System Data Record (FT-ESDR) 

Estimates of freeze/thaw states from Measure’s Earth System Data Record (FT-

ESDR) are acquired through a methodology similar to SMAP-FT but using different 

observing bands and with varied observational times.  FT-ESDR, consists of multiple 

twice-daily Ka-band based FT records:  

1) SSM/I-FT, derived from Special Sensor Microwave Imager (Sounder) series 

(SMMR, SSM/I, SSMIS) 37.0 GHz Tb and,  

2) AMSR-FT, Advanced Scanning Microwave Imager series (AMSR, AMSR-E, 

AMSR-2) 36.0 GHz Tb observations (Kim et al. 2011) 

This remains the longest existing global record of FT classifications and extends from 

1979-2020 using 25 km grid spacing. A new spatially enhanced ESDR product (6 km) has 

also been recently made available as of April 2021. Observations are representative of 

overpass times for SSMIS which are similar to SMAP (6 a.m./p.m.), while AMSR-2 has 

equatorial crossings at approximately 1:30 a.m. and 1:30 p.m. local solar time. 

Vertically polarized microwave observations from these platforms have been 

shown to have the highest classification accuracies for FT detection, relative to horizontal 
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(Kim et al. 2011). Thus, FT records are derived from twice-daily overpasses using TbV 

observations. In lieu of the NPR approach, the single channel seasonal threshold approach 

is used within ESDR (Kimball et al. 2009; Kim et al. 2017). Expressly, the vertically 

polarized Tb observations from both satellite platforms are used to determine surface states 

through locally optimized thresholds (SCA-SCV). In other words, an identical algorithm 

is used as described in Equations 4 and 5, although NPR is replaced with band specific 

TbV observations. Earlier releases of FT-ESDR data records included optional edge 

detection and moving window approaches in addition to the aforementioned STA baseline 

algorithm. These have since been removed.  

Recent validation efforts for new product versions rely on a combination of lake 

and river ice phenology records and global air temperature observations (Kim et al. 

2021b). One such validation study of FT-ESDR, performed against WMO station air 

temperature measurements, showed annual agreement of 90.3% and 84.3% when using 

afternoon and morning retrievals, respectively (Kim et al. 2017). This indicates the strong 

capability of Ka-band P-MW sensors to detect changes at the soil surface. Observations 

from ground-based radiometers in the Ka-band have also proved highly correlated to soil 

FT states in the 0 to 5 cm soil layer (Zhang et al. 2010). Further information on these 

products and related research activities are available via the University of Montana 

(https://www.ntsg.umt.edu/freeze-thaw/). 

Other Efforts Towards Freeze/Thaw Estimation 

While no global product exists outside of SMAP and FT-ESDR records, 

additional freeze detection techniques have been employed on regional scales to enhance 
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FT classification, including over China and Alaska. These algorithms, extending beyond 

STAs and change detection, have been applied to capture the complexity of FT 

classification. Such approaches include decision trees (Jin et al. 2009), multi-band 

discriminant and probabilistic algorithms (Zhao et al. 2011; Zwieback et al. 2012), 

moving window or change detection approaches (Mortin et al. 2012; Chen et al. 2019), 

estimation of frozen soil fraction (Prince et al. 2019), the use of multiple MW band 

reflectance values (Muzalevskiy and Ruzicka 2020), as well as the combination of surface 

skin temperature with satellite brightness temperatures (Zhao et al. 2017; Hu et al. 2017). 

Chai et al. (2014) demonstrated the application of several algorithms to SSMIS and 

AMSR-E including decision trees, the use of FT indices, and discriminant functions and 

found that no one algorithm had dominant classification accuracy in all areas (i.e., region, 

time of day).  

Binary landscape scale observations used in both global (SMAP-FT and FT-

ESDR) records simplify complex freeze/thaw processes down to a course binary 

determination. Aforementioned novel classification approaches incorporate additional 

information combined with increasingly advanced computing techniques to achieve 

comparable or improved accuracy relative to global records. As a result, major steps have 

been taken towards improving the representation of FT states beyond coarse resolution 

binary products and in efficiently leveraging information from different sources. Similar 

approaches are explored within this work in the development of global data fusion 

approaches for FT classification. 
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1.2.3 Known Limitations 

As with any observational record, there remain limitations and uncertainties 

resulting from spatially varying and complex band sensitivities covered in prior sections. 

These uncertainties have been explored to a degree prior to the release of global scale FT 

records (Kimball et al. 2009; Derksen et al. 2017). Major factors known to affect the 

interpretability of P-MW observations for freeze/thaw detection include: 

1) Moisture. Current approaches are challenged over dry areas due to the lack of a 

clear freeze/thaw signal. Also, in moist regions variability in moisture content can 

change Tb reference states corresponding to the thawed or frozen conditions 

2) Surface Water and Mixed Pixels. Surface water within mixed land-water pixels 

can result in significant reductions in the observed P-MW signal, thus 

complicating freeze/thaw detection 

3) Snow. Shallow and dry snowpacks are largely transparent to microwaves 

especially in longer wavelengths. Even still, deeper, or wet snow at the surface 

can challenge retrieval algorithms 

4) Vegetation and Biomass. While vegetation can be transparent to longer 

wavelength microwaves, the thickness of the vegetative layer and its water content 

can complicate extraction of soil information from below this layer (Ulaby et al. 

1986). The canopy can also intercept snow and cause more rapid melt above the 

surface, leading to more challenging signal interpretation 
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5) Resolution and Topography. There remain limits on the scales that can be 

observed using P-MW techniques alone (~10 km). In areas with considerable 

variability in climates (i.e., complex terrain, sharp elevation gradients) can 

induce in a complex mixture of climates and surface states 

6) Validation Approach Variations. Differences in product calibration/validation, 

such as the use of soil or air temperature observations, can induce uncertainties 

While P-MW remote sensing approaches have known sensitivities to various land 

surface properties as detailed here, the degree to which these factors impact freeze 

detection is not well understood.  

1.3 Project Overview 

This section provides a concise overview of each section contained herein and 

defines research objectives underpinning this project. Extensive efforts went into data 

collection and analysis techniques included within this venture. The breadth of and 

unique strengths of various data inputs (i.e., in-situ/fieldwork, land cover, satellite 

observation) can help to enhance physical meanings and the observational approaches 

used for FT detection. Note: FT detection approaches have continuously been improved throughout the 

duration of this study (2017-2022). Through releases of new product versions some of the clear deficiencies 

detailed both in this document and by algorithm development teams are addressed. Due to continued 

change within the field, products used in earlier efforts (Chapter 2) may be outdated even as many of the 

conclusions remain accurate. 
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1.3.1 Research Objectives 

1) Improve characterization of existing freeze/thaw products by identifying their 

limitations and exploring the relationships between existing records 

2) Determine the utility of additional observations and new variables for improving 

freeze/thaw classification using focused regional-scale studies and field work 

3) Explore the value of and potential for implementation of new freeze/thaw metrics 

(i.e., fractional, probabilistic, enhanced resolution, and/or new freeze type 

identifiers) 

4) Develop a freeze/thaw classification methodology with improved accuracy at a 

global scale by leveraging additional data and global networks of ground-truth 

observations 

1.3.2 Project Tasks 

To accomplish the objectives highlighted above, this work begins with 

foundational explorations of existing classification approaches and moves towards the 

development of novel methods for freeze/thaw classification. The primary tasks are split 

into three stages (with the relevant chapters indicated): 

Task 1. Exploring existing freeze/thaw records; their limitations, sensitivities, and 

relationships to land surface variables (Chapters 2 - 3) 

Task 2. Determine the driving factors of freeze/thaw transitions at higher 

resolutions, the potential for resolution enhancement, and utility of new classifiers 

through focused regional studies and in-situ/ground observations (Chapter 3) 
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Task 3. Algorithm and predictor selection, sensitivity analyses, and validation of a 

new data driven global freeze/thaw classifier (Chapter 4) 

While included herein in a modified state for continuity, the chapters as presented 

in this work largely combine efforts from several research articles both previously 

published in leading peer-reviewed journals or that are currently undergoing revision. 

Each of the following chapters are founded on these works, detailed below. 

Chapter 2.1: Johnston, J., Maggioni, V., & Houser, P. (2019). Investigating the Relationship 

Between Satellite-Based Freeze/Thaw Products and Land Surface Temperature. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 1–25. 

https://doi.org/10.1109/JSTARS.2019.2926942 

Chapter 2.2: Johnston, J., Maggioni, V., & Houser, P. (2020). Comparing global passive 

microwave freeze/thaw records: Investigating differences between Ka- and L-band products. 

Remote Sensing of Environment, 247, 111936. https://doi.org/10.1016/j.rse.2020.111936 

Chapter 3.1: Johnston, J. M., Houser, P. R., Maggioni, V., Kim, R. S., & Vuyovich, C. (2021). 

Informing Improvements in Freeze/Thaw State Classification Using Subpixel Temperature. IEEE 

Transactions on Geoscience and Remote Sensing, 1–19. 

https://doi.org/10.1109/TGRS.2021.3099292 

Chapter 3.2: [Under revision] Johnston, J. M., Houser, P. R., Maggioni, V., & Pestana, S. 

(2022). Exploring Fine-Scale Temperature Processes with Unpiloted Aerial Vehicles (UAVs). 

Chapter 4: [Under revision] Johnston, J. M., Houser, P. R., Maggioni, V., & Xue, Y.  (2022). A 

New Machine Learning Framework for Enhanced Global Freeze/Thaw Estimation. 
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2 IMPROVING CHARACTERIZATION OF EXISTING FREEZE/THAW 
OBSERVATION PRODUCTS 

This chapter focuses on analyzing existing freeze/thaw (FT) products and their 

respective differences, capabilities, and limitations. While FT estimates using remote 

sensing data at continental scales have been around for decades (Rignot and Way 1994; 

Judge et al. 1997), no long-term continental scale records of FT states had been produced 

prior to 2009 (Kimball et al. 2009). In recent years, technological advancements have led 

to rapid growth within the field of cryosphere sciences as well as in remote sensing in 

general. While meteorology, visible imagery and land use, and communications 

applications have historically received the majority of funding for spaceborne endeavors, 

an array of new Earth Observing Systems (EOS) have provided a collection of new 

observational bands for emerging scientific applications such as FT state observation. 

 As a result, methods to extract FT states from microwave observations have 

remained a growing topic of scientific interest. Still, determinations of the physical 

surface characteristics being observed, such as snow melt, soil freeze/thaw, or changes in 

moisture status remain challenging to separate, most notably across heterogeneous 

regions. Variability across such land surface characteristics is known to effect microwave 

(MW) emissions, thus supporting the importance of improved regional product 

characterization. However, the true observational sensitivities are not well understood at 

regional scales. One challenge is the lack of appropriate validation datasets. In-situ 

sensing sites, which can be sparsely dispersed (especially in remote regions) and are 

unrepresentative of larger areas, have traditionally provided the validation baseline for 
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assessing FT classification accuracy using soil and air temperature (Zhang et al. 2003; 

Kimball et al. 2009; Dunbar et al. 2014-2020). Recent advances in modeling and data 

assimilation capabilities have opened up new opportunities for validation using reanalysis 

products which rely both on physically based models and ground observations. These 

approaches can provide data that is accurate, continuous, and can be derived at regularly 

spaced grids. 

To explore questions into the characterization of existing FT records and advance 

the literature on existing remote sensing FT classification approaches, this chapter 

examines how near-surface temperature observations such as those of soil, air, and land 

surface (skin) temperature relate to various operational passive microwave (MW) derived 

FT classification products. Also, through inter-comparisons between existing global FT 

records, this chapter explores where existing products diverge to assess where FT 

classifications remain uncertain and may require additional refinement. 

2.1 Examining Near Surface Temperature Variables and their Relationship to the 

Microwave Derived Freeze/Thaw Observations 

 

To address gaps in knowledge regarding existing remote sensing observations of 

surface freeze/thaw, the relationship between surface temperature variables and passive 

microwave-derived surface freeze/thaw states is explored. Utilizing retrievals from the 

Soil Moisture Active/Passive (SMAP), Advanced Microwave Scanning Radiometer 

(AMSR-2, AMSR-E), and Special Sensor Microwave Imager/Sounder instruments 

(SSM/I, SSMIS), surface FT records have previously been derived globally. Herein, these 
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records are compared against spaceborne surface temperature observations from the 

Moderate Resolution Imaging Spectroradiometer (MODIS), and North American Land 

Data Assimilation System (NLDAS) skin, 0–10-cm soil layer, and 2-meter air 

temperatures. These datasets provide dispersed temperature data at regularly spaced grids 

and enable a regional scale assessment in a FT constrained region stretching across 

southern Canada and the northern portion of the Continental United States (CONUS). 

The relationship of binary FT classifications to temperatures are explored through 

thresholding (at 0 °C), comparing sub-grid scale variability in temperatures, and by 

analyzing the associated probability distribution functions of regional temperatures when 

classified as frozen or thawed. These efforts contribute to an improved characterization of 

which surface components provide the dominant contribution to the FT signal in existing 

products and has relevance to the enhancement of FT products moving forward. 

Improved knowledge as to which components of the landscape undergo freeze/thaw 

cycles has considerable relevance to hydrology, carbon and nutrient cycling, and climate 

studies. 

2.1.1 Background and Objectives 

As satellite retrievals are acquired at various passive microwave (P-MW) 

frequencies, times, and spatial resolutions, significant variations in FT classifications can 

occur. These P-MW observations are generally sensitive to the holistic landscape FT 

state, which can include a heterogeneous combination of different vegetation covers, 

soils, snow, and terrain. This landscape complexity is not well understood, as defined FT 

state can represent canopy, snow surface, or soil FT state depending on observation band, 
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location, and time (Lyu et al. 2018). Similarly, these classifications have been shown to 

diverge from air temperature measurements by exhibiting sensitivity to land surface FT 

properties which may remain either colder or warmer than the surrounding air. This 

occurs especially in times of ephemeral FT events in which snow cover and soil thermal 

inertia can contribute to prolonged frozen periods even as air temperatures have climbed 

above freezing (Kim et al. 2015; Wang et al. 2016). Lower frequency L-band (1.41 GHz) 

brightness temperature (Tb) measurements, as are utilized in the Soil Moisture Active 

Passive (SMAP) (Dunbar et al. 2014-2020) FT products, have been shown to have an 

increased emission depth sensitivity as compared to Ka-band retrievals (36.5, 37 GHz) 

(Rautiainen et al. 2014). These Ka-band retrievals, as are observed by the Advanced 

Microwave Scanning Radiometer series (AMSR, E, 2) (Kawanishi et al. 2003; Zhao et 

al. 2011) and the Special Sensor Microwave Imager/Sounder (SSM/I, SSMIS) (Grody 

1991; Kim et al. 2017), are characterized by wavelengths (l) of around 1 cm. As a result, 

Ka-band retrievals exhibit increased sensitivity to surface features such as vegetation 

compared to SMAP L-band (l = 15–30 cm) retrievals (Zhang et al. 2010; Rautiainen et 

al. 2012, 2014). In both bands, both cloud cover and thin vegetation layers are largely 

transparent. However, dense canopies, snow interception and melt, and vegetation 

moisture conditions can affect MW emissions through changes in surface permittivity, 

especially in the Ka-band. 

These differences in P-MW frequencies have resulted in two unique types of FT 

state products (FTSPs). Including; i) L-band derived, represented by the SMAP passive 

FT products (Version 1; Dunbar et al. 2014-2016), produced at both 36	PQ × 	36	PQ 
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(SMAP-FT) (Xu et al. 2016) and at an enhanced 9	PQ × 9	PQ (SMAPE-FT) (Xu et al. 

2017; Long et al. 2019) resolution (Table 1), and ii) Ka-band based FTSPs, produced as 

part of the Freeze/Thaw Earth System Data Record (FT-ESDR) (Kimball et al. 2009), 

which are derived from AMSR and SSMI(S) instruments on a 25	PQ	 × 	25	PQ grid 

(Version 4; Kim et al. 2018). 

 

 

Table 1 Selected satellite derived freeze/thaw products. Note: SMAP products been expanded to the global domain 

 
 
 

 

Both SMAP and FT-ESDR derived products utilize a seasonal thresholding 

approach, in which retrievals are compared to Tb-derived FT reference states in order to 

classify areas as frozen or thawed. FT product validation remains an ongoing process, 

though in-situ air and soil temperature measurements have been the predominant 

evaluation dataset in meeting classification accuracy goals of both SMAP and ESDR FT 

records. In validating FTSPs, the use of in-situ validation sites has in many cases been 

limited to areas of primarily homogenous terrain and vegetation. This is done in order to 

best represent landscape FT through point measurements but tend to be unrepresentative 

of large heterogenous areas. Moreover, the sparse availability of in-situ observations, 

Descending (AM) Ascending (PM)

SMAPE - FT (SMAP) L-band (1.41 GHz) 9 km April 2015 - 
present > 45° N* 6:00 18:00

SMAP - FT (SMAP) L-band (1.41 GHz) 36 km April 2015 - 
present > 45° N* 6:00 18:00

AMSR - FT (AMSR-E, 
AMSR2) Ka-band (36.5 GHz) 25 km 2002 - 2016* Global 1:30 13:30

SSMI - FT (SSMR, SSM/I, 
SSMIS) Ka-band (37 GHz) 25 km 1987 - 2016* Global 6:30 18:30

Period of 
Record Domain

Overpass Times (local solar)

*at time of study completion

Freeze/Thaw (FT) 
Product (Sensors)

Microwave (MW) 
band

Spatial 
Resolution
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especially in high latitude regions, has made validation incomprehensive. The use of 

optical and thermal infrared RS techniques has been proposed to bolster validation 

efforts, but inconsistent coverage due to clouds, effects of snow cover, limited emission 

depth, and low solar illumination during FT transitions limit their use as effective 

methods (Kimball et al., 2009). Of note, these products were the most up to date versions at the time 

this study was undertaken in 2018. As of 2022, SMAP-FT is currently on Version 3 and FT-ESDR Version 

5 and include some algorithm updates such as a single channel approach in the mid-latitudes, extended 

record length, and resolution enhancements through down-sampling of input Tb observations. 

Previous studies have found high correlation of FT-ESDR products to air and soil 

temperature, as thresholding algorithms in many cases have been optimized based on 

these observations (Kimball et al. 2009; Kim et al. 2011). SMAP-FT validation efforts 

have followed a similar path by utilizing in-situ air and soil temperatures to evaluate and 

improve FT classification algorithms. This is done through the use of flags marking 

disagreement between FT state and in-situ observations (Dunbar et al. 2014-2020; 

Derksen et al. 2017). Evaluation and improvement of SMAP FTSPs is ongoing which 

considers the effects of terrain, surface water, snow cover, and vegetation through 

sensitivity analysis and masking procedures. Validation efforts, in a limited capacity 

compared to the use of air temperature observations, have been performed using modeled 

skin and soil temperatures as well as multi-scale measurements intended to reduce 

representation errors incurred through the use of point observations (Lyu et al. 2018). 

Previous studies have also applied SMAP based FT algorithms to latitudes south of 45 °N 

and validated these classifications utilizing air, 5 cm soil temperatures, and modeling 
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approaches (Kraatz et al. 2018). Historically, FT validation efforts have relied on 

imperfect measures, due to the difficulty in representing aggregate landscape FT state as 

is measured by P-MW remote sensing techniques. The SLAPEX field experiments 

demonstrated the effects of spatial heterogeneity on how P-MW observations relate to 

large scale FT classifications (Rowlandson et al. 2018). However, the majority of 

validation efforts continue to rely on point observations. As ground-based radiometer 

studies have shown varied retrievals depending on surface vegetation, soil, and moisture 

characteristics (Zhang et al. 2010; Rautiainen et al. 2012), satellite-based FT 

observations tend to only capture the aggregate emissions of these components making it 

difficult to accurately characterize entire areas at the kilometer scale. 

As such, the primary goals of this study are:  

1) To determine the land surface temperature variables which act as the best 

surrogates to satellite FT product defined surface states; and 

2) to investigate the differences and uncertainties among various FTSPs 

To do so, we assess the accuracy and limitations of four FTSPs over a study area 

encompassing varied terrain, climate, and land cover. Through a spatial analysis, we 

examine the factors contributing to FT classification differences between FTSPs and 

temperature-threshold based FT classifications. This study aims to improve our 

understanding of what current satellite FT products represent and ways in which they can 

be enhanced through a regional assessment of landscape FT complexity. Comparisons 

across existing global P-MW FT products have not been previously performed at this 

scale utilizing both modeled and satellite observed temperature variables. Hence, this 
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study fills a gap in the literature, contributing to the development of improved 

classification products. 

2.1.2 Comparison Methods 

Data Products 

This study compares the following four temperature datasets (Table 2) to SMAP, 

AMSR, and SSM/I FT products (detailed in Table 1):  

1) National Land Data Assimilation System Version 2 (NLDAS) Noah land surface 

modeled skin temperature (TN-skin) (Xia et al. 2009) 

2) NLDAS Noah 0-10 cm average soil temperature (Tsoil0-10cm) 

3) NLDAS forcing 2-meter air temperature (T2m-air) (Xia et al. 2009) 

4) MODIS thermal infrared-based skin temperature (TM-skin) on board the Aqua satellite 

platform (MYD11C1 V006, Wan et al. 2015).  

 

 

Table 2 Selected temperature products 

 
 
 
 

Temperature Variable Product Name
Spatial 

Resolution
Temporal 
Resolution

Period of 
Record

Domain

NLDAS 2-meter Air 
Temperature NLDAS FORA0125 V2

NLDAS 0-10cm Averaged 
Soil Temperature NLDAS NOAH0125 V2

NLDAS Surface Skin 
Temperature NLDAS NOAH0125 V2

MODIS-Aqua Land Surface 
Temperature MYD11C1 V006 0.05° (~4 km) 1:30 AM/PM 

local solar time 2002 - Present Global

25 - 53° N, 
67 - 125° WHourly0.125° (~11 km) 1979 - Present
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These comparisons are completed based upon product overlapping temporal 

(April 2015 – 2016) and spatial domains (45-53 °N, 67-125 °W), which includes the 

northern conterminous United States and southern Canada. This time series was sufficient 

to capture multiple seasonal and ephemeral FT transitions occurring within a 21-month 

period of FT product overlap.  

The Phase 2 of NLDAS project (NLDAS-2) dataset has been improved over the 

previous version of NLDAS (Cosgrove et al. 2003; Rodell et al. 2004, 

http://ldas.gsfc.nasa.gov) based on output from the atmospheric data assimilation system 

at the NASA Global Modeling and Assimilation Office (Suarez et al. 2005). NLDAS 

forcing variables such as 2-meter air temperature are derived from North American 

Regional Reanalysis (NARR) datasets, which are based on in-situ station, radiosonde, 

aircraft, and satellite observations (Mesinger et al. 2006). Significant positive biases in 

shortwave radiation have been observed in NARR datasets but have been improved upon 

in NLDAS-2 forcing by performing bias correction with Geostationary Operational 

Environmental Satellite (GOES) observations. Several studies have validated NLDAS 

T2m-air against observations from the Oklahoma Mesonet, the Atmospheric Radiation 

Measurement (ARM) program, and Cloud and Radiation Test Bed (CART) sites. High 

correlation of NLDAS to air temperature observations was shown across Mesonet, ARM, 

and CART sites having a small negative bias (Cosgrove et al. 2003; Luo et al. 2018). 

Other modeled surface temperature variables including TN-skin and Tsoil0-10cm, have also 

performed well compared to in-situ observations. Still, TN-skin has been shown to tend 

towards a warm bias during the mid-day period as well as a 3-5 °C cold bias during the 
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nighttime hours. These skin temperature biases are also expected to contribute to error in 

soil temperatures, though near surface layer soil temperatures have been shown to 

compare best with observations relative to lower layers. This is reflected by a 2.5 °C 

annual negative bias when compared to soil temperature observations at 10 cm, best 

among modeled soil layers (Xia et al. 2012b). This cold bias in Tsoil0-10cm is most 

pronounced in the late fall and early winter, while Tsoil0-10cm tends to be lower than 

observations most notably during the nighttime hours of the winter months. Inaccuracies 

in modeling snow cover insulation remains a contributor.  Multiple assimilation inputs 

along with imperfect model forcing have been shown to introduce small errors into 

NLDAS temperature data (Xia et al. 2012c). In contrast, MODIS TM-skin observations are 

derived from surface emissivity estimates and at sensor observations of emitted thermal 

energy, with errors on the order of 2 °K (Wan et al. 1999; Duan et al. 2019). This must 

be considered when assessing study results, especially as it pertains to uncertainty around 

the freezing point. 

Both standard (36 km) and enhanced resolution (9 km) SMAP FTSPs are used to 

investigate the degree to which resolution effects FT classification. This is particularly 

useful as temperature data are available at finer spatial resolutions, 0.05° (~5 km) and 

0.125° (~12 km), as compared to the moderate resolution of FT-ESDR (25 km) and 

SMAP FT products (36 km). Additionally, both Ka-band based FTSPs included in the 

FT-ESDR are included to evaluate the effect of different retrieval times when using the 

similar sensing frequencies of AMSR (36.5 GHz) and SSM/I (37 GHz). Intercomparison 

between SMAP L-band and FT-ESDR K-band FTSPs is also of particular interest. 
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Comparing Temperatures to Binary Freeze/Thaw Classifications 

Classification Accuracy 

Direct comparison of binary FT state and temperature is performed by 

thresholding the temperature values at 0 °C (~273 °K) and matching products to a 

common 0.5° grid (~50 km). The continuous temperature datasets are converted into a 

binary one with values either greater than 0 °C (thawed state) or lower than/equal to 0 °C 

(frozen state). Realistically, the ground surface may remain thawed at temperatures at or 

below the freezing point or frozen at temperatures above, due to freezing point depression 

and thermal inertia (Campbell 1951; Suzuki 2004). Nevertheless, this threshold provides 

a reasonable proxy for examining FT state under the assumption that phase changes at the 

surface will begin to occur at this temperature. After some investigation into threshold 

optimization, this value was set to 0 °C as to avoid the introduction of any additional 

biases. Overall classification accuracies (CA) are calculated for all overpasses within the 

study period by comparing the two binary datasets. CA quantifies the agreement between 

the temperature products (NLDAS and MODIS) and the FTSPs across the study region 

on a 0.5º grid using a cell-by-cell comparison: 

Equation 7 Classification Accuracy 

ST =
U%V

U%V + U%W 

where FTy indicates agreement, and FTn disagreement between data pairs. Large water 

bodies and grid cells missing frequent temperature or FT state classifications are 

excluded. Additionally, MODIS Aqua retrievals are limited in coverage due to cloud 

cover, therefore all regions are not equally represented. Cells containing no data in either 
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comparison member are excluded from overall CA calculations. Previously, similar 

validation approaches have been performed over China utilizing both AMSR and SSM/I-

based FT classifications (Chai et al. 2014). 

Proportional Comparison Technique 

In fitting data to a coarser resolution grid, simple averaging can result in 

mischaracterizing the true ground state, especially in regions with complex topography 

where the extent of frozen ground can vary considerably. Alternately, a grid-by-grid 

proportional analysis is adopted. Frozen proportions are calculated as the number of 

defined frozen values divided by the total number of data points within each 0.5° grid 

cell. After these values are calculated for both temperature-based FT classes and FTSPs, 

a difference in frozen proportion (DFTp) is defined by subtracting temperature product 

frozen proportion (FTp) from the corresponding FTSP frozen proportion (FFTp): 

Equation 8 Classification Accuracy 

X4'5 = U4'5 −	U'5 

For example, if all NLDAS air temperatures (1/8°) within a 0.5° grid cell (16 values) are 

below the freezing point and only half of the FTSP pixels are classified as frozen, DFTp 

would be -0.5, signifying 50% less frozen area from the FTSP compared to the 

temperature-based frozen area. Anywhere from 2 to 25 FT classifications are contained 

within each 0.5° cell, dependent on location and FTSP resolution. This method avoids 

effects of significant temperature variations and rounding errors incurred when upscaling 

FT state variables to a relatively course 0.5° grid. The proportional comparison 

methodology also enables a spatial representation in which positive values represent 
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greater FTSP defined frozen area as compared to temperature products, whereas negative 

values define a lesser FTSP defined frozen area in relation to temperature threshold-based 

products. This methodology moves beyond the binary agreement approach and 

contributes to the identification of contributors to FT classification disagreement.  

Freeze/Thaw Temperature Distributions 

To determine the temperature variables with the strongest relationship to FTSP 

states, all corresponding temperature values deemed frozen and thawed by each of the 

FTSPs are extracted and used to define two unique probability distributions. Overlap area 

between the normalized distributions is also computed. This methodology is used to 

enumerate the degree to which land surface temperature products distinguish FT states 

similar to those derived from P-MW emissions, where perfectly unique FT state 

distributions are equal to 0 (no overlap), and identical distributions equal to 1 (completely 

overlapping). Additionally, the value ranges at which land surface temperatures diverge in 

FT classification are also identified. These temperature values are determined as those in 

which 1% of the data has been classified below a given temperature as thawed, and above 

as frozen. This is done to summarize critical distribution characteristics, as the 1% 

threshold is employed to remove outliers in which values at very low or high temperatures 

are classified as both frozen and thawed. Similarly, the Two-sample Kolmogorov-Smirnov 

test is also employed to verify the relationship between the FT distributions. The test 

statistic is calculated using the greatest difference between the frozen and thawed 

cumulative distribution functions, where larger values indicate increasingly different 

distributions (Massey 1951; Miller 1956). 
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SMAP-FT False Freezes 

Errors are expected to occur when high temperatures are associated with frozen 

classifications due to topographic effects, temporal or spatial resolution mismatch, 

temperature uncertainties, and FT algorithm limitations. However, known challenges in 

establishing robust FT reference metrics in SMAP-FT Version 1 products can cause a 

substantial reduction in product performance (Lyu et al. 2018; Dunbar et al. 2014-2020). 

Here, to investigate this, the location and time of occurrence of high temperature freeze 

classifications is examined. In July and August, characterized by minimum temperatures 

well above the freezing point across the domain, we identify regions in which freeze 

classifications were likely false (Figure 4).  

 

 

 
Figure 4 SMAP-FT summer freeze classifications 

 
 

 

These regions correspond to areas with poor agreement in comparison metrics for SMAP-

FT explored later in this work. Outside of high elevation regions with persistent snow cover 

(many classifications west of 110 °W), areas indicating frequent frozen classifications, 

including areas in the Upper Midwest, Maine, Central and Eastern Canada, can be 

classified as false freezes by SMAP-FT. It is likely that dry conditions and the relatively 
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dense presence of surface water in some of these regions result in similar FT reference 

states. FTSPs in such regions will need to be improved moving forward to correct for false 

freeze classifications, especially in the mid-latitudes. Algorithm updates have been made 

in the recent SMAP Version 2 & 3 FT products in an attempt to improve upon this and 

extend to global product coverage (Xu et al. 2018).  

2.1.3 Results and Discussion 

Classification Accuracy 

First, classification accuracy (CA) of FT products with respect to various 

temperature datasets is explored during the period April 2015 – December 2016 (Table 

3). Overall, FTSPs agreed the best with T2m-air (CA = 81–91%) and show the least 

agreement with TN-skin (76–85%). Conversely, Tsoil0-10cm shows a comparatively stronger 

relationship with SMAP FTSPs than with FT-ESDR records, likely due to the deeper 

emission depth of SMAP L-band retrievals. MODIS TM-skin-based FT classifications 

show intermediate agreement with all products and are slightly improved relative to 

NLDAS skin temperatures (TN-skin). Also, increases in CA from SMAP-FT to SMAPE-FT 

ranged from 1.7-2.4% across all comparisons, suggesting higher resolution FTSPs match 

more closely with temperature implied states. Also of note, all SMAP FTSPs showed a 

clear reduction (~8%) in CA as compared to FT-ESDR products. The causes of this are 

investigated further by examining seasonal performance, proportional frozen percentage, 

and corresponding frozen and thawed temperature distributions in the following sections. 

This reduction may also be explained through the known prevalence of summer false 

freezes. 
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Table 3 Classification accuracy (CA) results for period of April 2015 – December 2016. Results are presented as 
totals throughout the study period and divided seasonally 

 
 

 

 

Seasonal analyses provide information on the dynamics of FTSPs during FT onset 

as well as during the winter frozen and summer thaw periods. During summer (JAS), 

when temperatures are largely well above freezing, all temperature products perform best 

at classifying the FT state (>83% SMAP-FT, and ~100% in FT-ESDR). As the fall 

transitions (OND) to winter freeze (JFM), NLDAS air (75-81%) and top layer soil 

temperatures (76-82%) become the best surrogates to SMAP FT states, as characterized 

by a CA increase relative to skin temperatures of 6-13% during the fall transition period. 

While this relationship also holds for Ka-band FT-ESDR products, it is less pronounced 

(0-12%). Additionally, during the spring thaw period (AMJ), slight increases on the order 

of 3-12% in CA are observed across most members compared to winter period, excluding 

TM-skin. All comparison members show a relative increase in CA when comparing the 

2015 freeze onset to the 2016 spring period (5-17%). This indicates improved agreement 

between temperature products and FTSPs when identifying FT conditions during the 

Classification 
Accuracy (April 

2015 - 2016)
AMJ JAS OND JFM AMJ JAS OND

NLDAS 2m Air Temperature 0.835 0.84 0.88 0.77 0.80 0.85 0.90 0.81
NLDAS 0-10cm Avg Soil Temperature 0.822 0.81 0.88 0.78 0.75 0.83 0.90 0.82
MODIS Skin Temperature 0.786 0.76 0.86 0.70 0.80 0.78 0.87 0.73
NLDAS Skin Temperature 0.777 0.80 0.86 0.67 0.72 0.82 0.88 0.69
NLDAS 2m Air Temperature 0.811 0.81 0.83 0.75 0.80 0.83 0.85 0.81
NLDAS 0-10cm Avg Soil Temperature 0.800 0.79 0.83 0.76 0.75 0.81 0.85 0.82
MODIS Skin Temperature 0.766 0.74 0.81 0.69 0.80 0.77 0.83 0.73
NLDAS Skin Temperature 0.760 0.78 0.82 0.67 0.72 0.80 0.84 0.70
NLDAS 2m Air Temperature 0.913 0.94 1.00 0.80 0.86 0.94 1.00 0.86
NLDAS 0-10cm Avg Soil Temperature 0.874 0.89 1.00 0.72 0.79 0.91 1.00 0.82
MODIS Skin Temperature 0.860 0.84 0.98 0.69 0.86 0.86 0.97 0.75
NLDAS Skin Temperature 0.849 0.84 0.97 0.71 0.82 0.86 0.97 0.78
NLDAS 2m Air Temperature 0.898 0.94 0.99 0.75 0.84 0.94 1.00 0.82
NLDAS 0-10cm Avg Soil Temperature 0.874 0.90 1.00 0.71 0.80 0.91 1.00 0.80
MODIS Skin Temperature 0.864 0.83 0.98 0.71 0.87 0.85 0.97 0.76
NLDAS Skin Temperature 0.841 0.90 0.99 0.63 0.78 0.90 0.99 0.70

SMAPE-FT

SMAP-FT

SSMI-FT

AMSR-FT

2015 2016
Freeze/Thaw 

Product Comparison Variable
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thaw period (74-94%) as compared to the freeze onset (63-86%). Poor relative agreement 

with skin temperatures is likely a result of sensor sensitivity deeper than the surface skin 

temperatures, in addition to potential NLDAS model deficiencies in representing 

temperatures of complex snow-covered surfaces. In support of this, FTSPs are shown to 

have better agreement with MODIS TM-skin than modeled NLDAS TN-skin. Small 

variations in CA between AMSR and SSM/I-FT can likely be attributed to the varied 

overpass times and is explored further in the coming sections. 

Large increases in classification accuracy are also observed during the primary 

freeze onset period (OND) from 2015 (63-80%) to 2016 (69-86%). The presence of near 

record high temperatures in December 2015 across the domain, likely resulting in more 

ephemeral FT-events, may be the cause (NCEI 2019). Depending on the characteristics of 

freeze and thaw onset as well as snow cover variability, CA is expected to vary annually. 

An uptick in accuracy over nearly all CA proportions occurs during the mid-winter 

period (JFM), as classified FT state and surface temperatures are continuously frozen 

across much of the domain. This is true for all but SMAP FTSP comparisons with soil 

temperature, in which the thermal insulation properties of snow cover should be 

considered as SMAP exhibits a reduced frozen area relative to FT-ESDR. During spring 

thaw (AMJ), T2m-air appears to be the best surrogate to P-MW measured FT state. As P-

MW based RS techniques begin to observe water in the landscape, FT products appear to 

closely resemble T2m-air as air temperature tends to define surface melt onset. This is 

because soil and skin temperatures can reflect the temperatures of snow insulated soil and 

surface snow temperatures prior to the disappearance of the snowpack, making these 
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products less likely to indicate the presence of ephemeral thawed conditions as air 

temperatures creep above freezing (Lyu et al. 2018). 

Maps of classification accuracy illustrate spatial variability in the relationship 

between FTSPs and surface temperatures (Figures 5 - 8). FT-ESDR products show 

comparable accuracy across the domain with higher accuracies in homogenous regions 

without prevalent surface water features and complex topography. FT-ESDR products 

show highest CA in regions downwind of the Rocky Mountains and slightly reduced CA 

in eastern portions of the domain with more vegetation. However, comparisons of FT-

ESDR products to MODIS skin temperature show increased CA over mountainous regions 

as compared to NLDAS parameters (TN-skin and Tsoil0-10cm, Figures 6 - 8). SMAP FTSPs 

illustrate similar dynamics to an exaggerated degree, as decreased CA values are prevalent 

in the Rocky and Cascade Mountain regions. In contrast to FT-ESDR products, SMAP 

FTSPs exhibit the strongest relationship to temperature variables in central Canada, which 

is a cold region with increased moisture and abundant vegetation relative to west-central 

Canada (west of 97 °N). The reductions in CA across portions of western and eastern 

Canada, the Pacific Northwest, central North Dakota, and Maine are primarily attributed 

to false freeze flags. 
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Figure 5 Gridded (0.5°) classification accuracy of freeze/thaw products compared to NLDAS-2 2-meter air 
temperature (April 2015 – December 2016). White areas signify no data or surface water 
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Figure 6 Same as Figure 5, but for NLDAS-2 0-10 cm soil layer temperature 
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Figure 7 Same as Figure 5, but for NLDAS-2 skin temperature 
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Figure 8 Same as Figure 5, but for MODIS skin temperature 
 

 

 

Proportional Differencing 

Regional Proportional Summary Results 

Two statistical measures are computed for each FT/temperature comparison:  

1) proportional mean (DFTp): representing FTSPs tending to overestimate (+) or 

underestimate (-) the temperature threshold-based frozen proportion; and  

2) absolute DFTp: used to represent the magnitude of overall average difference 
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Table 4 Proportional differencing summary values. Computed as average across all pixels and complete time 
period (April 2015 – 2016); proportional mean (DFTp) and absolute proportional mean (DFTp-abs), (Equation 8) 

 

 
 

The absolute average results mirror what was found in the CA analysis, with all FT 

products most closely comparable to T2m-air (Table 4). Overall, the results indicate an 

average frozen proportion mismatch across all grid cells ranging from 8.9% (AMSR-FT, 

T2m-air) to 24.7% (SMAPE-FT, TN/M-skin). In contrast to CA results, the 9 km SMAPE-FT 

has an increased average magnitude of disagreement as compared to the 36 km SMAP-FT. 

Presumably, the use of significantly more data points introduces increased variability in 

DFTp between overpasses. Also notable, is nearly all DFTp comparison values shown in 

Table 4 are negative, indicating that FT products defined less frozen area as compared to 

temperature products. The use of a lower temperature threshold (< 0 °C) would result in an 

increased DFTp by reducing the frozen extent accordingly. Still, when using a threshold at 

0 °C, the only case in which DFTp was positive occurred when comparing SMAPE-FT to 

T2m-air (Table 4). These results support the ability of P-MW techniques to capture phase 

changes in the surface that do not generally occur until temperatures drop below freezing 

DFTp DFTp-abs
NLDAS 2m Air Temperature 0.007 0.189
NLDAS 0-10cm Avg Soil Temperature -0.026 0.204
MODIS Skin Temperature -0.087 0.247
NLDAS Skin Temperature -0.088 0.247
NLDAS 2m Air Temperature -0.004 0.179
NLDAS 0-10cm Avg Soil Temperature -0.036 0.195
NLDAS Skin Temperature -0.099 0.240
MODIS Skin Temperature -0.098 0.243
NLDAS 2m Air Temperature -0.035 0.089
NLDAS 0-10cm Avg Soil Temperature -0.083 0.131
NLDAS Skin Temperature -0.129 0.155
MODIS Skin Temperature -0.141 0.163
NLDAS 2m Air Temperature -0.050 0.104
NLDAS 0-10cm Avg Soil Temperature -0.082 0.130
MODIS Skin Temperature -0.132 0.159
NLDAS Skin Temperature -0.130 0.159

Proportional Differencing Results (DFTp)
April 2015 - 2016

SSMI-FT

Freeze/Thaw Product (-)           Temperature Product

SMAPE-FT

SMAP-FT

AMSR-FT
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for an extended period. Documented NLDAS cold biases may also contribute (Xia et al. 

2012b, c). The prevalence of summer false freeze classifications in SMAP FTSPs can also 

affect this tendency, as spatial plots (Figures 9 – 12) show overestimated regions (in red) 

skew the mean results. Even with SMAP-FT mid-summer false freezes, FTSPs used in this 

study are much more likely to define a lesser frozen extent than temperature threshold-

based FT classifications, especially in the eastern portion of the domain. 

 

 
Figure 9 Mean proportional differences (DFTp) maps of FT products to NLDAS 2m Air Temperature for SMAPE 
– FT, SMAP – FT, AMSR – FT, and SSM/I – FT 
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FT-ESDR products tend towards underestimation of temperature-based frozen 

proportions across a wider area of the domain (compared to SMAP FTSPs), with the closest 

FT to temperature agreement occurring in the western plains. FT products follow similar 

patterns of variation in DFTp regionally (Figures 9 – 12), as compared to CA results 

(Figures 5 – 8) when averaged over the study period. However, regional causes of reduced 

CA are highlighted by FTSPs exhibiting less (blue) or more (red) frozen classification than 

temperature products. In central Canada, FTSPs show increased variability as compared to 

surface temperatures with DFTp ranging from around -0.1 (FT-ESDR) or -0.05 to 0.05 

(SMAP-FT). Eastern regions tend towards underestimation of temperature defined frozen 

area, whereas more mountainous regions display increased heterogeneity in classification 

DFTp (Figures 9 - 12). This result can be expected as a biproduct of imperfect modeled 

temperature parameters, limited spatial resolution affecting the ability to resolve smaller 

scale topographic features, FT sensitivities to other surface components (i.e., moisture), 

and known deficiencies in FTSPs at observing FT dynamics across complex topography 

(Kim et al. 2017; Derksen et al. 2017). A reduction in DFTp from SMAP-FT to SMAPE-FT 

in portions of the domain indicate improvements in the enhanced SMAP product’s ability 

to resolve complex features (except in coastal areas). Interestingly, there appears to be 

extensive regions where FFTp exceeds FTp focused on the leeward side of the mountains, 

which tend to be inherently drier. While they do share similarities, these results verify clear 

spatial inconsistency across FTSPs as compared to various land surface temperature 

variables. Even so, the small magnitude of proportional difference suggests that the satellite 
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observed FT state is closely linked to these variables, especially air temperature. While 

also suggesting that as skin temperatures may provide an indication of the underlying FT 

state, microwave-based approaches remain more sensitive to temperature changes beyond 

the surface skin layer. 

 

 
Figure 10 Same as Figure 9, but for NLDAS 0 – 10 cm depth soil layer temperatures 
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Figure 11 Same as Figure 9, but for NLDAS skin temperatures 
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Figure 12 Same as Figure 9, but for MODIS skin temperatures 

 
 

 

Time-series based analysis utilizing monthly T2m-air, Tsoil0-10cm, TN-skin, and TM-skin 

mean DFTp values is shown in Figure 13 to assess changes in agreement through time. 

Temperature-based frozen proportion values show the strongest relationship with FTSPs 

May through October. As FT-ESDR products closely resemble NLDAS air and soil 

temperatures during this period and DFTp values fall well within the -0.1 to 0.1 range. Skin 

temperatures tend to lead air and soil temperature in estimating increased frozen extent 
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(negative values) relative to FTSPs by September due to the onset of sub-zero temperatures 

occurring before soil freeze up. Additionally, FTSP defined frozen extent is exceeded by 

NLDAS TN-skin throughout much of the study period as MODIS skin temperature shows 

comparatively increased agreement with FTSPs through transitional periods and the 

January-February extended frozen period (Figure 13). For SSM/I-FT, MODIS skin 

temperature has a similar relationship to FTSPs as air temperature during the mid-winter 

period. As discussed, FTSPs exhibit reduced agreement to temperature products during 

freeze and thaw onset tending to underestimate temperature derived frozen proportions. 

Potential false freezes in SMAP FTSPs exhibit the opposite, as mean DFTp values show 

SMAP overestimating temperature-based frozen proportions even in mid-summer. 

Summer frozen areas in SMAP products are contributors to the increased absolute mean 

DFTp values and reduced CA over the summer period relative to ESDR FT products. 

However, agreement between temperature and FT products continues to be at its lowest 

during the shoulder seasons. This is likely due to increased ephemeral and diurnal FT 

events which tend to occur across the domain in spring and fall, making it more difficult to 

capture clear FT signals. 
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Figure 13 Mean frozen proportion differences (DFTp) of MODIS skin, NLDAS 2m air, NLDAS 0-10 cm soil, and 
NLDAS skin temperatures as compared to FT products over the northern CONUS, southern Canada domain. (A) 
SMAPE-FT, (B) SMAP-FT, (C) AMSR-FT, and (D) SSM/I – FT 

 

 
 

Comparing Morning and Evening Overpasses 

All FTSPs evaluated as part of this study are derived from both descending (AM) 

and ascending (PM) data from twice-daily satellite overpasses (Table 1). Previous studies 

have identified significant variations in the relationship between FT classifications and 

temperature variables dependent on overpass time (Kim et al. 2011; Lyu et al. 2018). 

Characteristically, morning overpasses (completed at either 1:30 a.m. or 6:00 a.m. local 
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solar time) have cooler temperatures and little solar exposure as compared to afternoon 

overpasses at 1:30 p.m. or 6:00 p.m. As a result, AM FT classifications have proven more 

susceptible to mismatches with surface temperature due to diurnal freeze events in which 

surface temperatures may creep below freezing while satellite FT retrievals continue to 

measure surface emissions of a thawed landscape, or vice versa. 

 

 
Figure 14 Absolute mean proportional differences (DFTp-abs) separated into morning (AM) and afternoon (PM) 
periods for all comparisons. Unbounded bars indicate AM overpasses and unbounded PM 

 

 
 

As presented in Figure 14, the general rule holds true as absolute mean proportional 

differences are significantly reduced from morning (AM) to afternoon (PM) retrievals 

across nearly all comparison members. This is most notable in SMAP FTSPs and 

comparisons involving TM-skin. The exceptions include SSM/I to T2m-air, Tsoil0-10cm, TN-skin 

and AMSR to Tsoil0-10cm. As shown across all FTSPs to Tsoil0-10cm comparisons, the relatively 

small reductions or increases in absolute DFTp can be attributed to increased soil insulation 

capacity relative to air. As a result, soil temperature tends to be less susceptible to slight 
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temperature variations and avoids falling below freezing during ephemeral freeze events 

in which FT classifications remain thawed. Conversely, soil can also retain colder 

temperatures as surface thaws, as the presence of wet surfaces may result in thawed P-MW 

based FT classifications while soil remains frozen at depth. The most significant reduction 

in absolute DFTp occurs in all FTSP comparisons with MODIS skin temperature. This 

occurs as a result of MODIS defining far more frozen extent in the morning as compared 

to afternoon observations relative to FTSPs. 

There are several complex dynamics driving the FT classifications of FTSPs, 

including surface characteristics, sensor configurations, and varied overpass times. 

During transitional periods where ephemeral FT events are common, slight temperature 

differences can lead to large differences in temperature threshold-based FT 

classifications. This is especially pronounced when dealing with varied retrieval times of 

different FTSPs. As such, precise time-targeted approaches would be valuable to draw 

improved information on FTSP-temperature relationships across different satellite-based 

FT products. 

Exploring Freeze/Thaw Temperature Distributions 

Following the association of NLDAS and MODIS observed temperatures with FT 

states, distributions are created for each temperature variable (Figure 15). Boxplots show 

clear variations between frozen and thawed classes across all temperature variables. In 

SMAP derived products, a clear overlap is observed between FT distributions well above 

and below the freezing point of 273 °K (0 °C). However, temperature distributions derived 

from FT-ESDR do not show overlap between the central 50% of the data in any case. Much 
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of this can be attributed to frequent SMAP FT classifications of regions as frozen while 

surface temperature variables indicate values >300 °K (>27 °C). Slight reductions in these 

high temperature frozen classifications were observed when using SMAPE-FT (9 km) as 

compared to SMAP-FT (36 km). As a result, slight increases were observed in separation 

between FT distribution values as compared to SMAP-FT reflected by a shift of frozen 

distribution median values by 3 to 5 °K. This increased separation between distributions 

supports the idea that SMAPE-FT shows improvement at accurately distinguishing surface 

FT states relative to SMAP-FT. 

 

 
Figure 15 Boxplot distributions of frozen and thawed states as associated with various temperature products. (A) 
SMAPE-FT, (B) SMAP-FT, (C) AMSR-FT, and (D) SSM/I-FT 

 

 
 

By calculating the proportion of overlap between normalized temperature 

distributions (or probability distribution functions, PDFs), we are able to quantify which 

associated temperature values defined the most unique frozen and thawed distributions 
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relative to various FTSPs. A minimal overlap signifies a comparison in which the frozen 

and thawed states were most clearly discerned by temperature variables (Table 5). As may 

be expected, all PDFs show highest values of overlap and associated classification 

uncertainty at the freezing point generally decreasing logarithmically away from this point 

in both directions (Figure 16). The resulting overlap proportions help to verify that none 

of the temperature variables defined particularly unique FT distributions when calculated 

with SMAP products (>20% overlap). This is compared to overlap values as low as 9% 

when comparing NLDAS T2m-air to associated AMSR FT classifications. Additionally, in 

order to summarize the characteristics of each PDF, the temperature at which 1% of data 

is classified below as thawed (‘Low’) and above as frozen (‘High’) are presented in Table 

5. The Two-sample Kolmogorov-Smirnov Test is performed as an additional method to 

determine the relationship between the two temperature distributions. A larger test statistic 

indicates that the two distributions are increasingly different, or more well separated. The 

resulting outputs are shown to mirror the PDF overlap proportions, providing verification 

in identifying which FTSP-temperature combinations provide the most unique frozen and 

thawed temperature classifications. 
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Table 5 Mean temperature of frozen and thawed distributions, distribution overlap proportions, Kolmogorov-
Smirnov test statistics, and other distribution summary characteristics 

 

 

 

Notably, the comparisons showed very distinctive temperature distributions 

between both T2m-air and TM-skin when compared to FT-ESDR products, with overlap 

proportions ranged from 9.0-9.9% (T2m-air) to 9.9-10.3% (TM-skin).  MODIS distributions 

were derived utilizing around 300,000 frozen and 900,000 thawed classifications. This 

amounted to about 1/3rd the total data-points as compared to NLDAS parameters, due to 

MODIS temperature data availability. Even so, the ability of TM-skin to define clearly 

separate temperature distributions when associated with ESDR FT classifications can help 

justify the use of satellite-based thermal products in estimating and evaluating the accuracy 

of FT states, especially in remote regions. Using MODIS skin temperature in efforts to 

validate SMAP-FT products may not be as suitable. As temperature distributions were most 

poorly defined for SMAP products, 21.3-25.7% overlap, when associated with skin 

temperatures. 

Frozen Thawed Low High

NLDAS-ST 0-10cm 271 283 0.20 266 296 0.596

NLDAS-2m 270 284 0.20 264 297 0.593

NLDAS-SkinT 265 282 0.21 256 297 0.574

MODIS-SkinT 266 284 0.23 257 307 0.539

NLDAS-ST 0-10cm 272 283 0.23 266 297 0.541

NLDAS-2m 271 284 0.23 263 299 0.541

NLDAS-SkinT 267 282 0.24 255 299 0.523

MODIS-SkinT 268 284 0.26 256 308 0.485

NLDAS-2m 265 285 0.09 268 281 0.820

MODIS-SkinT 260 285 0.10 260 279 0.803

NLDAS-SkinT 261 284 0.10 263 278 0.794

NLDAS-ST 0-10cm 268 283 0.11 266 279 0.779

NLDAS-2m 265 284 0.10 266 281 0.802

MODIS-SkinT 260 285 0.10 260 281 0.795

NLDAS-ST 0-10cm 268 283 0.11 266 279 0.785

NLDAS-SkinT 260 283 0.11 258 279 0.779
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Figure 16 Probability distribution function histogram for AMSR-FT defined frozen and thawed states, matched 
to NLDAS air temperatures. Overlap indicated by dark shaded region 

 

 
 

Characteristics of each FTSP-temperature distribution are uniquely representative 

of variations in each FT product over the domain. These characteristics are especially 

useful when evaluating whether skin temperature, soil temperature, or air temperature is 

most representative of current FTSPs along with associated measurement dynamics. The 

results show a tendency of P-MW FT classifications to observe the top few centimeters of 

the surface, as soil temperatures can remain below freezing, while the P-MW observation 

indicates surface thaw. This increase in thawed classifications below the freezing point for 

Tsoil0-10cm can also be related to periods in which wet snow is prevalent at the surface, 

resulting in a thawed P-MW Tb observation, even as soil temperatures are modeled to be 

frozen. In reality this can also occur in the opposite direction as soils remain thawed even 

as surface temperatures indicate frozen conditions due to thermal insulation of the snow 

and underlying soils. This illustrates a weakness of using air temperature as a direct 
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indicator of FT as it can both ignore the deeper surface state in addition to P-MW methods 

not being directly sensitive to air temperature. Relative to soil, the comparatively wide 

ranges of skin and air temperatures in which frozen classifications occur (Table 5) support 

this assertion. 

Study Limitations and Relevance 

Satellite FT products have shown an improved agreement as compared to in-situ 

temperatures over more non-arid northern regions with homogenous land cover. This is in 

contrast to performance in mountainous regions, areas with frequent freezing and thawing 

transitions, those with heterogeneous vegetation cover, frequent large precipitation events, 

and in dry regions in which FT product reliability can be reduced (Kimball et al. 2009; Kim 

et al. 2011). Various landscape characteristics can contribute to erroneous FT 

classifications especially in regions with small differences between frozen and thawed 

reference states. This can be due to high densities of water bodies or over dry regions as 

substantiated by this study. It is also important to note that radiometer-based FT products 

tend to retrieve less frozen area as compared to active products such as SMAP and Aquarius 

radars (Derksen et al. 2017). While active FT RS methods are not assessed in this study, 

comparisons have been performed over Alaska utilizing L-, C-, and Ku-band radars 

showing a similar ability to detect to changes in the surface FT state (Podest et al. 2014).  

Regarding study limitations, sparse coverage due to cloud cover of MODIS Aqua 

skin temperature retrievals increases comparison uncertainty by reducing the amount of 

evaluation data. Furthermore, as FT and temperature products are matched to a lower 

resolution grid, distortions of FT classifications due to classification rounding and 
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temperature averaging can induce further error. This use of different resolution products 

can increase uncertainty especially in mountainous regions where temperatures can vary 

significantly within a single grid pixel. 

NLDAS skin temperature (TN-skin) was found to over represent the frequency of 

temperatures around 273 °K (0 °C) compared to other temperature variables. NLDAS 

modeled TN-skin has minimal thermal inertia and is very sensitive to the longwave radiation 

balance. Therefore, it may cool (or warm) quickly and not be represented in the broader 

landscape FT state as observed using P-MW emissions. As Tsoil0-10cm is related to surface 

skin temperature in NLDAS assimilation systems, the freezing point bias can also be 

identified in the resulting Tsoil0-10cm values. An increased frequency of values around the 

freezing point are also associated with the increased energy required in phase changes, in 

which a surface can remain at freezing for an extended period of time during freeze up, or 

thaw. Due to NLDAS model physics (Cosgrove et al. 2003; Xia et al. 2012b) it is possible 

for the modeled temperatures to hover slightly above freezing as freeze up occurs before 

falling below 0 °C. When in reality, the majority of a surface may be frozen and deemed 

as such by FTSPs. 

Methodology presented herein has the potential to be improved through the removal 

of clearly false classifications, examination of an extended spatial and temporal record, the 

utilization of additional temperature datasets (geostationary satellites and in-situ networks), 

the assessment of microwave backscatter observations, and precise time matching 

techniques over an extended spatial and temporal domain. Still, by utilizing regional 

NLDAS and MODIS temperature data, we are able to identify spatial dynamics across FT 
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products that are difficult to examine through the use of limited point measurements and 

core validation sites. Moving forward, it will be critical to further assess SMAP L-band FT 

products as aspects of this analysis showed variations in the relationship to surface 

temperatures compared to Ka-band retrievals. Namely, increased similarity to soil 

temperatures relative to NLDAS in areas void of frequent summer false freezes. As likely 

false freeze classifications are removed in the future, relationships of SMAP FTSPs to land 

surface variables should become even clearer. The need to further investigate thermal 

profiles as they relate to regions with snow cover, precipitation, and varied landcover types 

will help to improve understanding of FT dynamics under various conditions as they relate 

to microwave RS techniques. Additionally, inter-grid cell heterogeneity in FT state is often 

not well captured at these product resolutions (~10 km +). The implementation of fractional 

or higher-resolution FT products will likely improve the representation of FT state across 

the global domain, especially during freeze and thaw onset. While there are limitations to 

the methodology utilized in this study, the resulting classification accuracy, proportional 

differencing, and FT-temperature associated distribution analyses have proven insightful 

in assessing the relationship between FTSPs and surface temperature. These methods 

provide a comprehensive assessment of these relationships through space and time, 

resulting in the ability to compare AMSR and SSM/I FTSPs, examine differences between 

SMAP 36 km and enhanced 9 km products, as well as those between K- and L-band based 

freeze/thaw classifications across an extended domain. 
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2.2 A Global Comparison of Satellite Freeze/Thaw Records 

Using lessons from regional-scale studies of satellite-based freeze/thaw estimates 

and surface temperatures, we employ a large-scale comparison to examine the limitations 

of current freeze/thaw observational approaches on a global scale. Specifically, this 

includes exploring where FT uncertainty is the highest by examining where products 

diverge. Preceding efforts to compare existing records are largely absent, in part because 

of known differences between microwave observations of different bands, but more so 

due to the relatively short duration of the SMAP-based FT record at the time of this 

project’s inception (April 2015 – 2017). In order to fill this gap, this study investigates 

regional agreement between ESDR and SMAP FTSPs and identifies potential sources of 

classification variability. The SMAP and SSM/I-FT records are compared over an 

extended period covering multiple seasonal cycles from April 2015 through December 

2017. The spatially and temporally varying relationship between these products is 

examined in relation to climate, land cover, and topography.  

While reiterating some challenges of classifying frozen ground identified by prior 

studies, this work also contributes new insights by providing detailed geospatial and 

seasonal analyses into the factors contributing to classification uncertainty over the global 

domain. This information can in turn be applied to address current product limitations 

and advance spaceborne observation of land surface freezing and thawing processes. 

2.2.1 The Need for Global Scale Comparisons of Freeze/Thaw Records 

The use of satellite P-MW remote sensing techniques has enabled the 

development of global twice-daily observations of surface properties over an extended 
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period. As mentioned, long term freeze/thaw records (1979 – present) have been derived 

using Tb retrievals from Ka-band sensors like the Advanced Scanning Microwave 

Radiometer (AMSR, AMSR-E, AMSR-2) and the Special Sensor Microwave/Imager 

Sounder (SSM/I or SSMI, SSMIS) series of instruments (Kim et al. 2011, 2017; Zhao et 

al. 2011). L-band P-MW retrievals from the Soil Moisture Ocean Salinity (SMOS) 

mission (Rautiainen et al. 2016) and the Soil Moisture Active Passive (SMAP) mission 

have also been useful for classifying surface FT state (Derksen et al. 2017). These 

records of surface FT are detailed in Table 1, with the exception of SMAP-FT products 

having been recently extended to global coverage (Version 2, Dunbar et al. 2018).  

However, the use of varied microwave frequencies, algorithms, and resolutions 

(spatial and temporal) can result in very different classifications due to physical 

differences in surface properties and sensing band capabilities (Colliander et al. 2010; 

Podest et al. 2014; Chai et al. 2014; Lyu et al. 2018; Johnston et al. 2019). Different 

retrieval timings of around 1:30 a.m./p.m. local solar time (AMSR-2) and approximately 

6 a.m./p.m. (SSM/I and SMAP) have resulted in significantly different observed 

responses, especially during transitional periods when surface states can change 

frequently (i.e., spring and fall). 

Still, the identification of areas in which P-MW derived FT classifications are 

most variable and uncertain has not been comprehensively assessed at a global scale. 

Regions with frequent FT transitions (Roy et al. 2015), snow cover/density, abundant 

surface water (Roy et al. 2017), topography and/or complex vegetation and soil layers 

(Ulaby et al. 1986; Kimball et al. 2009; Podest et al. 2014; Kraatz et al. 2018) have been 
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identified as challenging regions to accurately assess surface FT state. Many of these 

challenges also exist in the collection of any satellite-derived data records. Thus, a global 

comparison allows the many dynamics driving P-MW FT product uncertainty to be 

assessed across bands. Lower frequency L-band microwave retrievals have been shown 

more effective at estimating the underlying state of the soil, being less impacted by 

vegetation and snow cover (Kimball et al. 2009; Rautiainen et al. 2012; Bateni et al. 

2013). Still, SMAP field validation efforts have shown emissions and FT classification 

response are most dominated by the top few cm of the surface as frequent frozen 

classifications were made even as soil was not frozen at 5 cm depths (Rowlandson et al. 

2018). An assessment of SMAP FTSPs by Kim et al. (2019) confirmed reduced 

agreement of FT state classifications to ground temperature stations due to terrain 

complexity, open water, and vegetative cover in L-band. The FT product pixels adjacent 

to water bodies are shown to have diminished FT agreement with ground stations, most 

notably when compared against the enhanced 9 km SMAP product.  

Similarly, measured emissions in Ka-band as part of FT-ESDR have been shown 

least accurate in areas with open water, drier climates, and high grid cell heterogeneity 

(Kim et al. 2017). The introduction of such sub-grid-scale FT heterogeneity over 

mountainous and transitional regions introduces greater uncertainty in FT classification 

and reference states (Du et al. 2015). Other studies have indicated that P-MW FT 

products align more closely with air temperature than soil temperature when estimating 

FT state, as algorithms are frequently calibrated using synoptic air temperature 

measurements (Roy et al. 2015; Dunbar et al. 2018; Rowlandson et al. 2018; Johnston et 
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al. 2019). This indicates that current FT products may only capture the very top surface 

layer state, even in L-band. Seasonal dynamics can also lead to different landscape 

properties dominating the microwave FT response in spring and fall. In fall, during freeze 

onset with limited snow cover, soil temperature more closely mirrors MW-based FT 

products, whereas in spring the presence of wet snow tends to dominate the observed 

MW response and is better captured by air temperature (Johnston et al. 2019).   

A direct time-series comparison examining the seasonal contribution to variability 

in frozen extent is performed to identify the general trends in agreement or disagreement 

between these products. Spatial agreement trends are also examined along with 

differences in FT retrieval algorithms. Moreover, through the evaluation of FT 

classifications by topography, land cover, and climate classifiers, we assess the degree to 

which these variables impact FT classification globally. These results are processed 

during the time of record overlap of the FT-ESDR and SMAP Version 2 (R16) FT 

records from April 2015 – December 2017 and provide an extension to existing 

assessments of these products. The ability to accurately represent FT state has 

implications beyond hydrology and ecology as FT state and land surface temperature are 

also valuable inputs in global climate modeling (Farhadi et al. 2014; Reichle et al. 2010; 

Xue et al. 2019). As the first extended global comparison of P-MW FT products, this 

study provides valuable insight into the identification of challenging classification 

regions and climates as well as probable causes of FT state disagreement. The outcomes 

of this work bolster efforts towards improving algorithms and increasing the accuracy 
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and representativeness of freeze/thaw classifications. Outcomes from this work are 

expected to be used in climate studies and future modeling efforts.  

2.2.2 Methods for Global Comparison 

Freeze/thaw Detection Considerations 

As a result of largely similar classification methodologies (Chapter 1.2) of the 

SMAP FT (SMAP_L3_FT_P_E R16010, Xu et al. 2018) and FT-ESDR 

(AMSR_36V_FT & SSMI_37V_FT, Kim et al. 2017) products used herein, reasonable 

comparisons can be made in regard to differences between L- and Ka-band based FT 

classifications. Even still, algorithm variability over northern regions and masking 

procedures must be considered when examining results, as mask variability can 

artificially produce differences in FT classification agreement. Both products are masked 

over regions with permanent ice and snow (i.e., Greenland, Antarctica), open water, and 

non-FT constrained areas (Kimball et al. 2009; Dunbar et al. 2018). In order to mitigate 

false classifications, two additional masking procedures are applied to SMAP FTSPs. 

This consists of marking all cells in which vertically or horizontally polarized Tb is larger 

than 273 °K as thawed and applying daily ‘never frozen’ and ‘never thawed’ masks over 

regions that AMSR-E and AMSR2 derived FT maps have historically classified as only 

frozen or thawed (Kim et al. 2012; Dunbar et al. 2018; Kim et al. 2019). For example, 

this includes the high northern latitudes in January (‘never thawed’) and much of the 

northern hemisphere domain in late July (‘never frozen’). 

A limited number of studies have been performed analyzing the differences 

between P-MW derived FT state in various bands. Synthetic experiments have been 
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performed using passive (1.4, 18.7, 36.5 GHz) and active microwave (1.4, 5.4, 12 GHz) 

concluding that lower L-band frequencies are more effective at soil FT state estimation 

while higher frequencies were affected more by snow properties (Bateni et al. 2013). In a 

study by Podest et al. (2014), backscatter in L-, C-, and Ku-bands was assessed against 

vegetation, elevation, and aspect over Alaskan sites showing general agreement in FT 

classification. The largest differences were attributed to terrain and varied product 

resolutions. Global studies have not been performed comparing P-MW records, though 

Prince et al. (2018) showed that L- (Aquarius scatterometer) and Ka-band (FT-ESDR 

radiometers) FT classifications had agreement over 80% in the majority of grid cells 

>50°N. They also identified product differences relative to freeze/thaw onset dates and 

across tundra, forest, and open lands. However, these efforts provided a limited 

assessment over only a few broad land cover classes. 

Agreement Proportion Metric 

Prior to classification comparisons, all products are resampled to a 0.5° global 

grid (~49 km or ~2,400 km2 at 40° latitude). Both the 9 km (~81 km2) enhanced SMAP 

product and 25 km (~625 km2) FT-ESDR boast considerably higher resolution. This 

illustrates the relatively large regions covered by each comparison pixel, frequently 

capturing different terrain, water, soils, and vegetation types. For the SMAP enhanced 

product (9km) this results in having more than 5 datapoints in over 96% of half-degree 

cells, while the 25km resolution FT-ESDR products have a diminished data density in 

which 94% of cells had at-least 2 datapoints. These resolution differences can induce 

errors, especially in less data dense polar regions. Conversely, these regions are well 
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covered by the near-polar orbits of SMAP, AMSR-E, and SSM/I, which provide frequent 

coverage even if it is not well captured by the grid spacing used in this study. Grid 

matching was performed in order to match product resolutions while ensuring multiple 

classifications per cell and to reduce computational time. Overall, this methodology 

captures >40,000 comparable data cells globally within FT constrained areas matched to 

the same spatial domain. Variable datasets such as elevation, land cover, and climate 

classifications were also scaled to 0.5° resolution. While this does induce error by 

creating a lower resolution dataset, it is sufficient at capturing global patterns in spatial 

agreement between FT products and climate indicators, land cover, and topographic 

variables. 

The primary comparison metric between products, agreement proportion (Ap), is 

defined as the number of cells within a given class/location that agree (FTy) compared to 

the total number of comparison points. 

Equation 9 Agreement proportion 

T5 =
U%6

U%6 + U%7
 

where FTn is the total number of disagreeing FT classifications. This calculation is 

performed after matching SMAP and SSM/I ascending and descending classifications 

both to the FT constrained domain and same temporal range. Ap is then computed two 

ways, both geospatially and through time. The geospatial calculation computes agreement 

within a given cell over the entire study period, enabling a spatially distributed 

assessment of agreement. Alternatively, time series calculations are performed by 

computing daily Ap over an entire land surface category (e.g., deciduous forests). 
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Seasonal Adjustment for Statistical Analyses 

 
 

 
Figure 17 Distribution of global Agreement Proportion (Ap) SMAP to SSM/I-FT, for entire study period (April 
2015 – December 2017, includes 1,992 overpasses). (A) Raw distribution and (B) with seasonal adjustment to 
approximate normality. Distribution mean of 0.835 (~84% global agreement) indicated by black line. Normal 
distribution fits are shown by the dashed black curve 

 

 
 

In order to apply standard statistical methods, a seasonal adjustment is performed 

across all comparison classes. This is critical in meeting t-test assumption of approximate 

distribution normality. Clear seasonal variability in global Ap is observed across the study 

period forming a bimodal distribution (Figure 17A), having high agreement during the 

summer and lower relative agreement during the freezing period (Figure 18A). The 

seasonal adjustment is performed using time series deconstruction techniques in which 

data are split into trend, seasonal, and random anomaly components (Figure 18B). The 

trend component is determined through the fitting of a regression line to approximate the 

dataset mean at a given point in time. Next, Ap averages are computed for each individual 

day of the year forming the seasonal component. Lastly, this seasonal component is 
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removed by correcting for the difference between trend and seasonal components, leaving 

only the regression and anomaly components. 

  
 

 
Figure 18 Timeseries detrending and seasonality removal. (A) Global product agreement showing seasonal pattern 
and (B) which shows each deconstructed component (average, trend, anomaly) from (A) 

 
 

 

This process results in a new distribution of product agreement with seasonality 

removed, while preserving the overall distribution mean (Figure 17B). This method is 

applied to deconstruct time series of Ap from each comparison class, enabling the 

computation of 99% confidence intervals each classes’ respective mean. As a result, 

classes statistically different from each other and/or the overall global mean are 

recognized. Similar techniques are used by U.S. Census Bureau in which seasonal cycles 

are removed from a variety of datasets to reveal underlying trends (Monsell 2007). This 

approach is applied only in data summary tables and does not impact the spatial 

calculation or time-series figures. Additionally, we compare the seasonally adjusted data 
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to uncorrected raw distributions and verified that the resulting conclusions from this 

study were unaffected. 

Categories for Assessing Freeze/Thaw Agreement 

The agreement between the P-MW derived FT products is assessed in relation to 

four spatially distributed variables. These include temperature and precipitation relevant 

Köppen-Geiger climate classes and freezing days, as well as land cover classes, and 

topographic variability derived from a global elevation dataset. The original climate and 

land cover classifications have been slightly modified to reduce the number of 

comparison classes (Tables 6 - 7), whereas the number of freezing days is computed 

through a standard technique utilizing daily mean air temperatures from the Global Land 

Data Assimilation System (GLDAS).  

The climate classification dataset was updated in 2006 to accurately represent the 

global climate over the second half of the 20th century (Kottek et al. 2006). 

Classifications are dependent on regional precipitation and temperature datasets and split 

into equatorial (A), arid (B), warm temperate (C), snow (D), and polar (E) climates. 

Originally comprised by 31 classes within these climate types, this number is reduced to 

15 to include only classes included in FT constrained regions as defined by FT data 

products and to simplify comparison (Figure 19A). This is achieved through the removal 

of all equatorial classification types (4 classes), water, and the combination of several 

similar classifications into new classes (Table 6). Combined classes are determined by 

removing the distinction between hot and warm summers, steppe, and desert climates, as 

well as combining similar cold continental regions with few data cells. 
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Table 6 Modified Köppen-Geiger Climate Classifications with original and modified abbreviations. Similar 
climate classes combined, and tropical classes removed due to having too few comparable cells within the 
freeze/thaw constrained domain. Number of cells indicate total 0.5° grid cells within each class 

 

 
 

The International Geosphere-Biosphere Programme land cover classification 

(IGBP) utilized in this study consists of 17 land cover classes determined from MODIS 

spectral data (Friedl et al. 2010) accessed through the University of Maryland’s Global 

Land Cover Facility (GLCF; Channan et al. 2014). These classes have been reduced to 

12 by combining evergreen and broadleaf deciduous forests, open and closed shrublands, 

savannas, and cropland dominated classes (Figure 19B, Table 7). Original classification 

legends with detailed class descriptions can be found in the Collection 6 MODIS Land 

Cover user guide (Sulla-Menashe and Friedl 2018). 

BSh, BWh Bh Arid Hot 1,977
BSk, BWk Bk Arid Cold 4,778

Cfa Cfa Temperate Without dry season Hot summer 2,426
Cfb Cfb Temperate Without dry season Warm summer 1,954

Csa, Csb Csh Temperate Dry summer Hot/Warm summer 1,460
Cfc, Csc, Cwc Cc Temperate Cold summer 192

Cwa, Cwb Cwh Temperate Dry winter Hot/Warm summer 726
Dfa, Dfb Dfh Cold continental Without dry season Hot/Warm summer 5,212
Dfc, Dfd Dfk Cold continental Without dry season Cold summer/Very Cold winter 12,030
Dsa, Dsb Dsh Cold continental Dry summer Hot/Warm summer 286

Dsc Dsc Cold continental Dry summer Cold summer 262
Dwa, Dwb Dwh Cold continental Dry winter Hot/Warm summer 972
Dwc, Dwd Dwk Cold continental Dry winter Cold summer/Very Cold winter 1,415

EF EF Polar Eternal Winter/ Ice Cap 383
ET ET Polar Tundra 6,111

Label CellsOriginal 
Abbreviations

Modified 
Abbreviation
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Table 7 Modified IGBP land cover classifications from MODIS MCD12Q1 

 

 
 

Next, global topographic complexity is quantified through the use of 0.125° 

resolution elevation data. This global elevation dataset was developed by the United 

States Geological Survey (USGS) in 2010 as part of the Global Multi-resolution Terrain 

Elevation Datasets (GMTED) through a combination of existing 30-arc second elevation 

information (Danielson and Gesch 2011). Standard deviation is computed for each 0.5° 

cell using the higher resolution (0.125°) dataset. This results in elevation standard 

deviations ranging from 0 to 1300 meters over the study domain (Figure 19C). 

Finally, not to be confused with the number of freezing days defined by FT 

products, freezing days in this context refers to the number of days in which mean daily 

temperatures are below 0 °C. Several studies have used similar approaches by using air 

temperature (freezing degree-days) to characterize and estimate permafrost depth (Nelson 

and Outcalt 1987; Karunaratne and Burn 2003). Here, average daily temperature is 

computed utilizing 3-hourly air temperatures from the GLDAS forced Noah Land 

1 Evergreen needleleaf forest 2,214
2 Evergreen broadleaf forest 277

3 & 4 Deciduous forests 1,274
5 Mixed forest 5,083

6 & 7 Shrublands 9,559
8 & 9 Savannas 2,381

10 Grasslands 7,310
11 Permanent wetlands 343

12 & 14 Croplands 5,232
15 Snow and ice 1,385
16 Barren or sparsely vegetated 2,165
17 Water 3,642

IGBP Values Label Cells
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Surface Model L4 0.25° data product (GLDAS_NOAH025_3H; Rodell et al. 2004). This 

dataset was then resampled to 0.5° resolution.  

Ji et al. (2015) performed a comprehensive evaluation of GLDAS air temperature 

products, showing good skill at reproducing air temperature observations. Using this data 

set, the sum of the mean daily temperatures below the 0 °C threshold is computed as the 

total freezing days during the study period. This comparison of agreement by freezing 

days allows an assessment of the degree to which FT product variability is related to 

freezing potential. Regions with high numbers of freezing days are expected to 

experience extended frozen periods and are generally located at high latitudes and 

elevations, whereas lower numbers of freezing days indicate regions characterized by 

ephemeral freezing events generally in the lower and mid-latitudes (Figure 19D). 
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Figure 19 (A) Modified climate classes (see Table 6), (B) modified land cover classes (Table 7), (C) GMTED 
elevation standard deviation, and (D) freezing days. All non-FT constrained regions are masked 

A

B

D

C
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2.2.3 Global Comparison Results 

Exploring SMAP and ESDR Freeze/Thaw Products 

Time series of the total number of FT classifications for each product is shown in 

Figure 20, divided by hemispheres. Over the northern hemisphere (NH), products are 

characterized by high agreement in frozen extent during mid-summer (July) and during 

freeze onset. Relative to FT-ESDR, SMAP produces an increase in frozen classifications 

in the southern hemisphere (SH) year-round. This is in contrast to a reduction in SMAP 

frozen classifications relative to FT-ESDR records in NH. This also illustrates the larger 

area of FT constrained land in NH relative to SH (~25x more frozen classifications) 

(Figure 21). Similarities between FT-ESDR records are clear, as they are derived from 

identical algorithms using similar P-MW bands. 

 

 
Figure 20 Total frozen classifications by hemisphere. (A) Northern, (B) southern for select freeze/thaw products 
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The resulting Ap time series for the entire FT domain are presented in Figure 21. 

The agreement of the FT-ESDR AMSR and SSM/I is shown to frequently exceed 95% 

throughout the study period (April 2015 – December 2017). Overall, Ka-band FT-ESDR 

products derived from SSM/I and AMSR observations provide very similar 

classifications during the study period, agreeing 96% of the time. The largest 

classification differences occur during the NH freeze (September – December) and thaw 

(April – May) periods in which agreement falls marginally below 95%. In contrast, 

SMAP and FT-ESDR products agree at 83-84% over the study period with well-defined 

reductions in Ap from late September (<75%), remaining relatively low through June. 

Due to comparison similarity between ESDR records (Figure 21) and overpass time 

similarity between SMAP and SSM/I, only Ap derived from SMAP and SSM/I FTSPs is 

assessed against global variables. 

 

 
Figure 21 Agreement proportion (Ap) between global P-MW freeze/thaw products. Indicated values are mean 
Ap over the full study period 
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Global Agreement Trends 

A timeseries of global Ap, a comparison of SMAP frozen classifications relative 

to SSM/I, and the global distribution of Ap through time are detailed in Figure 22. As the 

northern hemisphere contains around 90% of the global FT constrained land mass, global 

agreement largely mirrors that of the region (Figure 22A). Slight Ap reductions are 

prevalent in June-August due to reduced winter agreement over the southern hemisphere, 

as well as small increases in October-May due to high summertime agreement. The 

seasonal relationship is apparent in both hemispheres, as the lowest Ap occurs during 

freeze onset during September-November in the NH (72-73%) and May-July in the SH 

(75-85%). Also, both hemispheres are characterized by the highest agreement in mid-

summer when the domain is primarily thawed. Over the NH, slight increases in Ap during 

the thaw onset (75-78%) are observed relative to freeze onset (72-73%), supporting the 

tendency L- and Ka-band P-MW FT products to observe melt conditions more similarly 

than during the seasonal freeze onset period. 
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Figure 22 (A) Mean agreement proportion between SMAP and SSM/I derived FT classifications, (B) normalized 
comparison of frozen extent by hemisphere and overpass, and (C) global map of agreement for entire period 

 

 
 

In the NH, mid-winter agreement increases to around 80% as SMAP and SSM/I 

retrievals agree over expansive frozen regions. While this leads to a slight increase in 

agreement, generally, as more area is defined frozen by these products, the more variation 

there is among them. However, it is important to note that much of the FT domain in 

South Africa and Australia is effectively thawed throughout the study period by both 
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products. This increased the agreement overall, while agreement in South America and 

New Zealand was considerably lower than the hemispheric average (Figure 22C). 

Figure 22B shows the relationship in relation to frozen extent, where a value of 1 

indicates an equivalent number of frozen classifications and >1 indicates SMAP as 

having more frozen classifications. In the SH, SMAP consistently classifies more cells as 

frozen compared to SSM/I. This is most pronounced during PM overpasses where the 

SMAP product ranges from having two (2x) to as many as six (6x) times the frozen 

classifications as SSM/I during the winter period. The large discrepancy in frozen extent 

in the SH is likely linked to the relatively small number of FT constrained cells, increased 

Ka-band sensitivity to surface thaw as soil remains frozen, as well as product differences 

in coastal and mountainous portions of South America (Figure 22C). Conversely, in the 

NH, SSM/I FT classifications tend to define a slightly larger frozen extent compared to 

SMAP, except during the PM overpasses during late melt (June) and freeze onset 

(October) periods. This result supports the increased sensitivity of L-band SMAP 

observations beyond the very surface skin layer, as Ka-band is more sensitive to surface 

melt. This likely results in the increase in thawed classifications by the SSM/I FT product 

as daytime heating and sun-exposure can lead to the presence of liquid water at the 

surface. FT-ESDR products are also characterized by an increased variability from the 

AM to the PM when compared to SMAP. This translates into classifying more frozen 

area than L-band during diurnal freeze events in the morning as well as classifying larger 

regions as thawed during the afternoon hours. These comparisons underscore the 
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increased sensitivity of Ka-band to detect ephemeral changes (e.g., frost or moisture 

changes) in the top surface while underlying soil may remain thawed or frozen. 

The spatial distribution of product agreement highlights regions in which P-MW-

based FT classification is particularly challenging. Some more temperate areas have very 

limited periods of sub-freezing temperatures (freezing days < 100, Figure 19D) and 

include the southern U.S., Australia, southern China, and portions of South America in 

which products agree in excess of 95% (Figure 22C). This is primarily due to consistent 

thawed classifications throughout the year in both products. Coastal areas and portions of 

Greenland as well as the higher latitudes frequently have Ap below the global mean 

(83.5%). While this is due in part to the varied product resolutions and algorithms, the 

land water interface in coastal regions has proven difficult for FT classification in prior 

studies (Kim et al. 2019). In addition to coastal regimes, mountainous regions and those 

with higher terrain exhibit reduced agreement between products, most notably regions 

such as South America, the western U.S., and High Mountain Asia (HMA). These areas 

prove challenging for remote sensing of FT due to the potential for increased inter-pixel 

heterogeneity and an increased number of FT cycles due to rapidly changing climates 

frequently found in high elevations (Podest et al. 2014). Dry conditions in HMA may 

also challenge freeze detection.  

Effect of Spatial Variables on Freeze/Thaw Agreement 

Climatology 

Uncertainty due to variations between SMAP-FT and FT-ESDR has been 

observed to follow clear seasonal cycles (Figures 21, 22). This variability occurs most 
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notably during periods in which large portions of the global domain are undergoing 

freezing or melt processes. The link between FT products and their performance over 

variable climate regions can provide insight as to what regions FT classifications remain 

uncertain and the contributing factors. 

 

 
Figure 23 Time series FT agreement proportion (Ap) separated by climate classes (Table 6). Colors correspond 
to those in Figure 19A 

 

 
 

Figure 23 presents the time series variability in Ap across 15 global climate 

classes. Arid regions (Bh/k) have notable variability in product agreement (Table 8) as 

hot arid regions are minimally FT constrained (0.2-2.5% frozen during the study period) 

compared to cold arid regions (15.0-17.1%). The low frequency of FT transitions results 
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in increased Ap over hot arid regions (97.4%) compared to cold arid regions (85.0%) 

which has Ap near the global mean. Similar relationships are shown to exist across all 

temperate regions (C) excluding the temperate cold summer (Cc) class and the largely 

non-FT constrained Cfa (91.9%) and Cwh (92.8%) classes. In these temperate zones the 

SMAP-based FT product has a clear tendency to define a larger frozen extent compared 

to SSM/I. Large decreases in agreement over Cc regions is likely related to coastal and 

resolution impacts as these cells are focused over the Aleutian Islands, Pacific Northwest, 

New Zealand, Iceland, and Northern Ireland. These relatively cool coastal regions are 

shown to have Ap of 59.9% falling significantly below the global mean as SMAP defines 

nearly 42% of all possible cells as frozen compared to just 14.5% for SSM/I (Table 8). 

FT classification challenges in these regions have been documented as SMAP is observed 

to classify large parts of the cool temperate regions (Cc) as frozen leading to reduced 

agreement in mid-summer (Figure 23). Seasonal variability in Ap is recognizable across 

all but the Cc class with the overall agreement declining over temperate classes such as 

Csh (82.3%) and Cfb (78.7%). In these areas, SMAP derived FT products define a 

notably higher number of frozen classifications. This indicates that over regions with less 

well-defined FT seasonality, FT classifications remain relatively uncertain. Variability in 

the fundamental emitting layers as observed by L- and Ka-band radiometers combined 

with an increased frequency of borderline freezing conditions are likely contributors to 

this uncertainty. 
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Table 8 SMAP-FT to SSM/I-FT agreement statistics for Ap (mean, standard deviation, and confidence interval) 
separated by climate classifications. Percentage of class defined as frozen is computed over the entire study period. 
Global mean = 0.835 

 

 

Continental zones can be described as having well-defined seasonality and 

generally frigid winters, including much of North America and Russia. Different from 

temperate zones, these regions are characterized by high agreement during the summer 

period (>95%) before a steep decline in the shoulder seasons (Figure 23). During the NH 

freezing period (September-June) agreement is shown to diverge greatly across 

continental sub-classes, ranging from 40% to 95%. In the northern most parts of the 

continental zone (Dfk, Dsc, and Dwk classes), following freeze onset and prior to thaw, 

products show high agreement >80%. Conversely, lower latitude regions are 

characterized by relatively low wintertime agreement, as low as 40%. This suggests 

extreme variability and uncertainty FT classifications, even in lower latitude continental 

zones even with clear FT seasonality (Table 8). In contrast to temperate regions, SSM/I 

regularly classifies more of the continental zones as frozen compared to SMAP, 

especially in drier regions (Dsh, Dsc, and Dwk 8.1-9.5% more frozen with SSM/I) 

SMAP SSM/I

Bh Arid Hot 1,977 0.974 0.034 .972 - .975 3% 0%

Bk Arid Cold 4,778 0.850 0.125 .847 - .854 15% 17%

Cfa Temperate Without dry season Hot summer 2,426 0.919 0.066 .917 - .921 7% 3%

Cfb Temperate Without dry season Warm summer 1,954 0.787 0.088 .785 - .790 20% 7%

Csh Temperate Dry summer Hot/Warm summer 1,460 0.823 0.117 .821 - .826 16% 5%

Cc Temperate Cold summer 192 0.599 0.084 .595 - .602 42% 15%

Cwh Temperate Dry winter Hot/Warm summer 726 0.928 0.087 .925 - .931 5% 4%

Dfh Cold continental Without dry season Hot/Warm summer 5,212 0.836 0.164 .832 - .839 16% 23%

Dfk Cold continental Without dry season Cold summer/Very Cold winter 12,030 0.844 0.131 .841 - .847 38% 43%

Dsh Cold continental Dry summer Hot/Warm summer 286 0.813 0.228 .808 - .818 11% 19%

Dsc Cold continental Dry summer Cold summer 262 0.822 0.178 .816 - .827 34% 43%

Dwh Cold continental Dry winter Hot/Warm summer 972 0.853 0.157 .849 - .857 20% 26%

Dwk Cold continental Dry winter Cold summer/Very Cold winter 1,415 0.850 0.168 .846 - .855 35% 44%

EF Polar Eternal Winter/ Ice Cap 383 0.727 0.156 .722 - .733 81% 72%

ET Polar Tundra 6,111 0.776 0.104 .773 - .778 48% 56%

Percentage of Class 
Defined as FrozenAbbreviation Label Cells Mean

Standard 
deviation

99% 
confidence 

interval
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indicating challenges in capturing a clear FT transition in measured P-MW emissions 

over land surfaces with little moisture. This also indicates that Ka-band derived FT 

records have an increased tendency to classify more of the domain as frozen during the 

September-June period. In Dwk zones, further investigation indicates a tendency of 

SSM/I to define more frozen area by a large degree (+8.9%), especially during the thaw 

period. This would support potential of L-band emissions to observe FT deeper into the 

surface, potentially measuring liquid water near the base of the snowpack. The utilization 

of FT products which better capture the ephemeral nature, such as fractional 

classification, will likely improve the accuracy of FT state representations. 

Regions covered by ice caps (EF) and polar tundra (ET) experience Ap 

significantly below the global mean of 83.5% (72.7%-77.6%) (Figure 23). Regions 

classified as ice caps are limited to outer boundaries of the Greenland ice sheet deeming 

any analysis over this region limited (Figure 19A). Nonetheless, these regions experience 

reduced agreement during the shoulder seasons (<50%) likely due to meltwater beginning 

to appear at the surface of the ice sheet. Interestingly, agreement in these regions is not 

near 100% even during the mid-winter period when regional temperatures are well below 

freezing, indicating difficulties with FT references over ice covered regions. SMAP 

(81.3%) also defines this region as frozen more frequently than SSM/I (71.6%) 

potentially showing the tendency of Ka-band to respond more to surface melt than SMAP 

(Table 8). When assessing contributors to differences in the number of frozen 

classifications, variability in algorithms over the high-latitudes and Greenland which use 

both the NPR and single channel SCA algorithms must also be considered. 
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Figure 24 Density plot of freezing days against agreement proportion (Ap) 

 

 

Further investigation into the relationship between climate, more specifically cold 

temperature periods, and product agreement is explored using freezing days. This 

relationship is presented in Figure 24 and summarized by Table 9. As anticipated, P-

MW FT products tend to agree (93.2%) over regions that are largely not FT constrained 

(0 freezing days). These regions include Australia, southern North America, as well as 

parts of South America and southern Africa in which zero days over the study period 

were modeled to have mean temperatures below freezing. Still, SSM/I and SMAP 

correspond poorly in the rare cases when either product classifies a cell as frozen. This is 

illustrated by SMAP classifying cells as frozen more than 7 times as frequently compared 

to SSM/I (6.6% to 0.9%). This discrepancy implies a cross platform challenge of using P-

MW remote sensing to classify FT state in regions that only experience ephemeral freeze 

events. Regions experiencing 1-300 freezing days are largely located in temperate zones 

(Figure 19D) characterized by less well-defined FT seasonality classified 5.7-21.4% of 
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the study period as frozen. Regions with 300-700 freezing days exhibit an increase in 

mean agreement between products as these zones are largely within continental climate 

classes which have high agreement during the summer and long winter period. In these 

areas both products classify a similar number of frozen cells as frozen, 22.7-52.0% 

(SMAP) and 28.6-55.9% (SSM/I). 

  

Table 9 Agreement by number of days in which GLDAS mean daily air temperatures are < 0 °C (Freezing Days). 
Includes April 1, 2015 – December 31, 2017 (1005 days) 

 

 

 

The increased number of freezing days generally results in improved agreement 

between both L- and Ka-band products as measured emissions both illustrate more well-

defined frozen signatures. Parts of the FT domain deemed to have >700 freezing days 

during the study period include the Arctic, Greenland, and parts of High Mountain Asia. 

Even as these regions are dominated by sub-freezing temperatures for the vast majority of 

the study period, FT products are shown to agree at a comparatively reduced rate in these 

regions (62.6-78.6%), falling significantly below the global mean. This result underlines 

the variability in measured P-MW emissions and their relationship to FT state, likely 

observing FT transitions in different parts of the land surface and algorithm deficiencies. 
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SMAP-FT 6.6% 13.6% 11.8% 15.2% 22.7% 30.7% 41.0% 52.0% 55.2% 58.9% 78.6% 84.0%
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Regions such as these would be expected to have the clearest FT signal, though this is not 

the case. Such regions remain critical to examining the impacts of a changing climate, as 

artic and sub-arctic regions experience rapid change. This highlights these areas as 

especially important, requiring improvement of current FT classifiers. 

Land Cover 

The relationship between SMAP and SSM/I based FT products is then assessed in 

relation to MODIS IGBP land cover classifications. The increased uncertainty 

corresponding to the seasonal growth and ablation of frozen land surfaces is clear among 

most all cover classes. This is illustrated by decreases in agreement proportion in the 

shoulder seasons and during the winter period (Figure 25).  

 

 
Figure 25 Time series of product FT agreement separated by land cover (Table 7). Colors match Figure 19B 
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Distinctive signatures are prevalent when comparing forested regions to those 

with little to no forest cover and to land surfaces characterized by an increased prevalence 

of water. It is important to note, that land cover and climate have considerable overlap, as 

specific plant species tend to grow in certain climates with particular temperature and 

moisture regimes. Those classified as evergreen broadleaf are located predominantly in 

the southern hemisphere and over largely non-FT constrained land. Evergreen broadleaf 

forests were defined as frozen by SMAP and SSM/I products in only 6.6% and 1.1% of 

cells over the study period. Other forested classes, while having similar Ap to the global 

mean of 83.5% (Table 10), each display large variability through the September – June 

time period. The evergreen needleleaf and mixed forest classes are shown to have similar 

steep reductions in agreement during the NH freeze onset (~60%) before increasing in 

agreement in mid-winter (>80%) and falling during the melt period. Located 

predominantly in the eastern U.S. and Russia, deciduous forests follow a similar tendency 

but with improved Ap during freeze onset and comparatively reduced Ap during the thaw 

period. This indicates potential varied emissions across L- and Ka-band related to snow 

melt within these forested regions. Across land cover types characterized by less tree 

cover (e.g., shrublands, savannas, grasslands, croplands, and barren regions) less seasonal 

variability is observed compared to forests (Table 10). This decrease in variability 

supports a smaller seasonal effect on P-MW emissions in less forested regions. Notably, 

similar agreement signatures are observed between areas with the least dense vegetation 

cover including the barren/sparsely vegetated, cropland, and grassland classes. These 
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regions are also primarily located in the mid-latitudes, where freezing cycles can be 

increasingly ephemeral, and are more homogenous. 

 

Table 10 SMAP-FT to SSM/I-FT agreement statistics for Ap (mean, standard deviation, and confidence interval) 
separated by land cover. Percentage of class defined as frozen is computed over the entire study period 

 

 

Classes in which a higher density of both solid or liquid phases water is prevalent 

experience very distinctive variations between L- and Ka-band products. Snow and ice as 

well as cells deemed water dominated experienced the lowest Ap across all classes of 

77.1% and 56.2% respectively. Even within these regions, products were able to agree on 

classifications during the mid-summer period near 80% of the time. However, as freeze 

onset begins over parts of the global domain, agreement in water dominated areas 

declines to below 40% emphasizing the variations in P-MW emissions over these largely 

coastal regions. Wetlands are generally characterized by clear thaw signals in summer 

(~100%) with sharp declines in agreement during the shoulder seasons (Figure 25). This 

variability during freezing periods underlines difficulties in classifying FT state over 

wetlands. This can be due to challenges in determining FT reference states and varied 

emission depths of P-MW frequencies in areas with heterogenous blends of vegetation, 

SMAP SSM/I

Evergreen needleleaf forest 2,214 0.847 0.155 .843 - .852 28% 32%
Evergreen broadleaf forest 277 0.928 0.038 .927 - .929 7% 1%
Deciduous forests 1,274 0.888 0.154 .883 - .894 35% 40%
Mixed forest 5,083 0.843 0.143 .840 - .846 21% 25%
Shrublands 9,559 0.880 0.100 .877 - .882 35% 37%
Savannas 2,381 0.905 0.104 .902 - .908 27% 29%
Grasslands 7,310 0.836 0.098 .834 - .839 28% 31%
Permanent wetlands 343 0.887 0.182 .881 - .892 40% 35%
Croplands 5,232 0.888 0.112 .885 - .890 13% 13%
Snow and ice 1,385 0.771 0.080 .768 - .774 68% 67%
Barren or sparsely vegetated 2,165 0.853 0.099 .850-.856 21% 23%
Water Dominated 3,642 0.562 0.118 .560-.564 19% 39%

Percentage of Class Defined 
as FrozenLabel Cells Mean

Standard 
deviation

99% confidence 
interval
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soil, and water. High agreement mid-winter would suggest products agree when wetlands 

freeze more uniformly. While transitional periods present a significant challenge over 

wetland regions across products, in cold regions, there remains a clear FT signal due to 

the abundance of water. 

The unique FT classification agreement trends across varied land types indicate 

the importance in accounting for and understanding the effects of land cover on FT 

signal. Most notably, challenges exist in FT classification near water, including over 

snow and ice, as well as in wetland and coastal regions. Other impacts of vegetation 

should also be considered when determining in which part of the landscape P-MW 

remote sensing techniques are capturing FT transitions whether it be the soil, snow/ice, 

surface vegetation, or canopy. 

Topography 

Mountainous regions are characterized by highly variable conditions stemming 

from both the impedance of emitted P-MW energy and prevalence of highly varied 

climates which occur with large sub-grid scale changes in elevation. These higher 

elevations with increased topographic variability also experience an increased potential 

for more frequent freezing and thawing processes, even in the lower latitudes. Sub-grid 

variability coupled with challenges in collecting consistent radiometric measurements 

across complex terrain has resulted in difficulty capturing ephemeral FT events (Dunbar 

et al. 2018). Figure 26 illustrates the agreement between SMAP (L-band) and SSM/I 

(Ka-band) FT products in relation to the standard deviation in elevation. A clear trend of 

decreasing product agreement with increasing topographic complexity emerges. 
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Figure 26 Density plot of product agreement proportion compared to sub-grid elevation variability 

 
 

 

Reductions in agreement from regions with standard deviations of 10 meters to 

greater than 500 meters are shown to occur (Table 11). Similar to previous results, areas 

with lower standard deviations in elevations (0 - 10 m), which commonly occur in low 

lying coastal regions, are shown to have the low Ap (78.9%). Conversely the regions with 

the highest variations in elevation (> 400 m) exhibit the most variability in Ap through 

time. The vast majority of the FT constrained land mass is comprised of regions with 

elevation standard deviations ranging from 10 – 200 meters (74% of comparison cells). 

These parts of the domain have Ap near the global mean and are characterized by less 

seasonal variability in classification. Therefore, these results underline the difficulty in 

measuring FT especially in mountainous and relatively flat areas adjacent to large water 

bodies. 
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Table 11 Product agreement proportion by elevation standard deviation groupings (in meters) 

 

 

Assumptions and Limitations 

This study makes a number of assumptions in regard to the accuracy of input 

temperature (GLDAS), landcover (MODIS), elevation (GMTED), and climate 

classifications (Köppen-Geiger). All of these data products have some degree of error, 

either in the spatial representation of land cover and climate classifications or in 

temperature and elevation values, which may include spatial errors as well. When data is 

upscaled for this comparison the uncertainties in these datasets are amplified. Due to the 

large number of datapoints and the use of 99% confidence intervals for the mean across 

variables, the effect of error in these datasets is not expected to significantly alter the 

presented results. Additionally, the use of timeseries analysis has shown similar classes 

following analogous temporal patterns which helps corroborate general trends within 

these results. Another limitation is the use of binned freezing days and topographic 

variability data to present agreement proportion (Ap). Changes in these boundaries may 

impact results, though the full distributions have also been presented to remedy this. It is 

also important to note that different seasonal thresholding algorithms (NPR and single 

0-10 10-50 50-100 100-200 200-300 300-400 400-500 >500

4,577 15,513 7,030 7,778 3,236 1,372 616 769

0.789 0.856 0.836 0.832 0.827 0.812 0.817 0.811

0.081 0.087 0.084 0.085 0.087 0.093 0.105 0.108

.787 - .791 .854 - .857 .834 - .838 .830 - .834 .825 - .830 .809 - .814 .814 - .820 .807 - .814

SMAP-FT 21.2% 26.4% 30.2% 30.7% 27.7% 27.1% 23.4% 20.3%

SSM/I-FT 30.1% 29.2% 33.2% 33.8% 30.4% 28.8% 25.4% 24.8%
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channel) will introduce some degree of classification variability, which is not 

comprehensively assessed in this study. In addition, the masking of coastal regions, 

removing Tb values impacted by water bodies before processing, and having consistent 

“never frozen/thawed” masks across product types is expected to enhance the agreement 

between global FT products. 

2.3 Chapter Outcomes 

 

Proper understanding of strengths and weaknesses of remote sensing approaches 

remains essential to their effective and accurate application. Especially early in the lifetime 

of any new remote sensing product, performance investigations are critical to better 

understand limitations and identify opportunities for improvement. The efforts detailed 

within this chapter illustrate efforts along these lines, resulting in several conclusions 

regarding the current state of freeze/thaw remote sensing. 

First, existing freeze/thaw records from the Earth System Data Record (Ka-band 

microwave) and SMAP (L-band microwave) are compared to surface skin, air, and soil 

temperatures. These comparisons were performed with the intent of better understanding 

how leading classifications relate to surface temperatures and to improve characterization 

of which surface components are represented.  The foremost results are as follows: 

• ESDR and SMAP freeze/thaw products have notably different relationships to 

temperature variables and large uncertainties around the freezing point (0 °C) 

• Air temperature is shown to have the closest relationship to all products, however 

SMAP was comparatively more representative of soil temperature 



 

97 

 

• When converted to binary freeze/thaw states using thresholding, skin 

temperatures are found to have the lowest agreement with FT products 

• Products tended to define less frozen area compared to observations of surface 

skin temperature and modeled skin, air, and soil temperatures 

• All products have improved performance in the afternoon relative to 

temperatures. Clear regional, seasonal, and band (Ka- vs. L-band) variability in 

these relationships is also observed 

• False freezes are identified in SMAP-FT records and not in FT-ESDR which had 

more distinct class associated temperature distributions. MODIS may provide a 

method to mask regions, reducing these false classifications. Note: Recent updates to 

SMAP products (Version 2, 3) have largely removed this issue, improved resolution, and have 

extended records through 2021 

Next, a detailed assessment directly comparing FT records relative to climate, land 

cover, and elevation is completed. All surface variables assessed are shown to exhibit 

unique time-series variations in agreement between the FT datasets. As the only global 

comparison of its kind, the uncertainty in FT classifications is quantified to enable product 

improvements and to detail potential reasons for classification divergence. Additional 

outcomes from these investigations include: 

• Globally, current records are found to agree on 83.5% of freeze/thaw 

classifications from 2015 – 2017 
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• Information on climate variability can be used to help tune algorithms, especially 

across areas of varied moisture and those with significantly different freeze/thaw 

regimes (e.g., continental and near polar vs. temperate and transitional) 

• Coastal regions and those dominated by liquid water, snow and ice are shown to 

have significantly lower agreement relative to the global mean (55.8% to 77.6%)  

• Forested and non-forested lands have different uncertainty regimes, suggesting 

the use of vegetative cover may help to refine and better constrain freeze/thaw 

algorithms moving forward 

• ESDR records are found to be very similar across comparisons 

Both studies highlight challenges over complex terrain, demonstrating the 

importance of both improving resolution and the potential to tune new algorithms with the 

consideration of topography. The implementation of fractional classification approaches 

may also help to improve representation of surface freeze/thaw states over these regions. 

Critically, band differences were also highlighted as Ka-band classifications experienced 

more variability between overpasses and better sensitivity to the surface layer. This is in 

contrast to L-band observations which remained more consistent and relatively more 

indicative of soil state. For example, ESDR (Ka-band) had increased frozen classifications 

in cold continental zones relative to L-band, suggesting that L-band may observe thawed 

soil under the snowpack when Ka does not. Different approaches thus have the potential to 

provide information on different components of the surface and fusing these records could 

provide enhanced and unified estimates of the surface states by utilizing their unique 

strengths and weaknesses. 
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While these are important studies for understanding current products, without the 

use of validation networks on the ground, we cannot determine which approaches may be 

performing better. Efforts to combine field work and in-situ observations provide a logical 

next step to enhance freeze/thaw classification algorithms. The ability to improve our 

understanding of complex FT processes through the combination of satellite observations, 

modeling, and in-situ measurements appears promising. 
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3 EXPLORING VARIABLES FOR FREEZE/THAW ESTIMATION AT FINE 
SCALES 

This chapter delves into a deeper exploration of the variables which control 

freeze/thaw processes at finer (sub-grid) scales and how these can be adequately captured 

by remote sensing approaches. More specifically, efforts included herein explore how 

new variables such as land surface temperatures, cover, climate, and topography, among 

others, may be useful for better characterizing freeze/thaw states. These efforts also 

provide further exploration into how these factors relate to surface states, by attempting 

to de-aggregate the contributions to the freeze thaw signal into its component parts (i.e., 

soil, snow, water, vegetation) and the thresholds at which a frozen signal may begin to 

dominate the microwave and thermal emissions. Prior efforts have explored freeze 

detection over focused study regions. Here, we combine field work campaigns with 

modeling, ground-based sensing sites, unpiloted aerial vehicle (UAV) observations, and 

snow sampling to reinforce and expand upon these efforts. Without a clear understanding 

of the physics and sensitivities of existing approaches at fine scales, the value and 

applicability of these products for operational assessments (i.e., of the growing season, 

runoff potential) is greatly reduced. Outcomes illustrated herein remain critical to the 

development of next generation of enhanced freeze/thaw classifications and represent the 

next step in foundational work towards achieving this goal. 
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3.1 Improving Freeze/Thaw State Classification Using Sub-grid Temperature 

Accurate representations of surface freezes can be exceedingly important due to 

the significance of seasonal freeze/thaw cycles within the Earth system. However, 

consistent freeze definitions with clear physical meaning can be challenging to achieve. 

This section closely explores the utility of resolution enhancement, draws conclusions 

towards freeze/thaw variability within a given sensor footprint, as well as how this may 

affect classifications. This includes studying thresholds that define the point at which 

frozen classifications begin (i.e., 50% of cell area), which may vary with variables such 

as land cover or moisture content. The results provide insight to improving surface 

freeze/thaw states and their definitions by examining the characteristics governing 

existing freeze classifications. 

3.1.1 Background and Motivations 

Frozen conditions are defined by the state change of water from liquid to solid, 

generally occurring around 0 °C. While simple in theory, accurate FT characterization 

remains challenging. As discussed, FT observation across large areas is constrained by 

limited in-situ surface skin and soil temperature observations, especially at high latitudes, 

making the use of satellite products crucial to spatially distributed FT cycle monitoring. 

Though, due to coarse resolution satellite-observations, the heterogeneous nature of the 

land surface, microwave (MW) observing bands with fundamentally different emitting 

layers, and varied classification algorithms, binary FT classifications come with 

considerable uncertainty (Rowlandson et al. 2018; Johnston et al. 2019; Johnston et al. 

2020). Grid spacing of existing FT classification records remain on the order of 25 km. 
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Even as enhanced products have been developed (< 10 km), they rely on much the same 

input MW data as native resolution products which is limited by band properties and 

antenna geometry. At these resolutions, MW FT observations capture a diverse blend of 

emissions due to varied surface soil characteristics, moisture states, and microclimates 

resulting in the coincident the presence of both frozen and liquid water (Rowlandson et 

al. 2018; Roy et al. 2017a; Roy et al. 2017b; Prince et al. 2019). 

We have previously highlighted frozen classification variations between lower 

frequency (SMAP, L-band 1.41 GHz) and higher frequency (FT-ESDR, Ka-band 36.5 

GHz) radiometer observations. Compared to the FT-ESDR, SMAP-FT has been shown to 

observe FT transitions deeper into the soil, to be less impacted by vegetation and surface 

snowmelt, though also being increasingly affected by arid conditions and having 

limitations due to a larger sensor observational footprint (Rautiainen et al. 2012; 

Johnston et al. 2019; Johnston et al. 2020; Wang et al. 2020a). Additionally, regions 

with ill-defined FT seasonality (i.e., mid-, and lower latitudes), persistent snow cover, 

abundant surface water, varied topography, and complex vegetation/soil layers have been 

identified as challenging regions to accurately assess surface FT state generally due to 

presence of mixed FT conditions (Ulaby et al. 1981; Kimball et al. 2009; Podest et al. 

2014; Roy et al. 2015; Kraatz et al. 2018). Varied threshold approaches considering only 

brightness temperatures (FT-ESDR), or polarization differences (SMAP-FT) can 

contribute to a fundamentally different FT classifier. As a result, frozen states can be 

poorly characterized, referring to the combined ‘landscape’ FT state of which the 

definition may vary between platforms. For these reasons, multi-sensor data fusion may 
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prove useful in clarifying the definition of frozen states, through leveraging this 

information into multiple freeze types, as well as fractional and enhanced resolution 

products. In addition to examining the relationship between temperature and FT state, this 

study thus aims to determine the utility of, and how, information at the sub pixel level can 

improve the characterization of freeze/thaw state and inform algorithm advancements. 

To understand the observational challenges and improve FT state observation, 

higher resolution data provide valuable ancillary information. Sub-grid cell temperature, 

land cover, soil type, and even climate classifications have the potential to help 

characterize both the threshold at which FT products determine a pixel as frozen and the 

characteristics that may dominate the emitted MW signal and govern binary FT 

classifications. Algorithms, which are the first to use higher-resolution surface 

temperature and topographic data, have been previously implemented over China with 

promising results (Zhao et al. 2017; Hu et al. 2017), but have not been applied over 

North America. As such, we include hourly land surface temperature observations from 

the Geostationary Operational Environmental Satellite-East (GOES-13, ~5 km) to assess 

inter-FT-pixel temperature variations (Freitas et al. 2013). Additionally, in many cases 

where in-situ observations are scarce and satellite products are challenged, land surface 

models provide a valuable input to understanding global-scale and spatially distributed 

physical processes at enhanced temporal and spatial scales. Therefore, through a model 

ensemble approach, we assess the ability of operational land surface models to accurately 

simulate landscape temperatures and physical processes, while also illustrating the 

associated FT classification uncertainties. In this study, we attempt to further characterize 
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the relationship between FT classification and environmental variables by answering the 

following questions:  

1) How do sub-grid scale surface temperature and land surface characteristics 

relate to microwave FT classifications, both at the regional scale and grid scale? 

2) Where are the greatest temporal and spatial uncertainties in MW-based FT 

classifications relative to each other, as well as to surface temperatures? 

3) What are the sources of these uncertainties? 

4) How can higher resolution land surface variables be applied for the 

improvement of FT classification algorithms? 

These efforts provide an extension to previous analyses over North America by 

introducing observations from ground sites and exploring characteristics over the extent 

of the continent. 

3.1.2 Research Methods 

North America (25 °N – 72 °N, 52 °W – 169 °W) is selected as the study region, 

as it encompasses a wide range of land cover, topography, and climate types. In addition 

to satellite FT classifications, land surface model (LSM) outputs from NASA’s Snow 

Uncertainty Ensemble Project (SEUP), as well as Copernicus derived hourly land surface 

temperatures (LST) from GOES-13 are available across the domain. The study period 

extends for 20 months, or two full seasonal FT periods from September 1 – June 30, 2015 

- 2017. 
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Freeze/Thaw Products and Algorithm Variations 

Freeze/thaw products as used in Chapter 2.2 are utilized herein and consist of 

binary state estimates. Specifically, the MEaSUREs Global Record of Daily Landscape 

Freeze/Thaw status Version 4 (or FT-ESDR, Kim et al. 2017) and the SMAP Version 2 

products (Xu et al. 2018). In assessing how these approaches relate to partial freezes, 

recent SLAP experiments (Rowlandson et al. 2018) shed light on sub-pixel temperature 

variability, showing that generally >60% of in-situ surface temperature measurements 

tended to be below freezing before SMAP deemed the pixel as frozen. However, there 

were also instances in which SMAP indicated frozen conditions when no in-situ sites 

indicated 5 cm depth soil temperatures below 0 °C. In these events, the surface layer was 

observed to dominate the observed emission. Seasonal thresholding algorithms (STAs) as 

used by SMAP-FT and FT-ESDR are generally effective for FT classification but do 

come with limitations as underlined in previous sections. Still, these products also rely on 

fundamentally different classification approaches, including single channel Tb (FT-

ESDR) and inter-band polarization ratio (SMAP-FT). 

Land Surface Models 

To capture a wide range of model physics and encompass several operational 

modeling suites, we use land surface model (LSM) outputs from the NASA SEUP project 

(Kim et al. 2020). This effort, originally focused on quantifying snow water equivalent 

and the associated uncertainties over North America, includes outputs of FT relevant 

variables related to energy exchange (shortwave/longwave radiation), snow 

depth/density, as well as surface radiative temperature and soil temperature of various 
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layers. Simulations were run in the NASA Land Information System (LIS) using 5 km 

grid cell size from 2009 – 2017 with four LSMs and three different meteorological 

forcing inputs. The LSM’s include Noah version 2.7.1 (Noah 2.7.1) (Ek et al. 2003), 

Noah Multi-parameterization land surface model version 3.6 (Noah-MP) (Niu et al. 2011; 

Yang et al. 2011), Catchment Land Surface Model version Fortuna 2.5 (CLSMFv2.5) 

(Ducharne et al. 2000; Koster et al. 2000) and the Joint UK Land Environment Simulator 

(JULES) (Best et al. 2011). Each of these models was forced using input data from the 

Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA2) 

(Molod et al. 2015; Gelaro et al. 2017), Global Data Assimilation System (GDAS) 

(Derber et al. 1991), and European Center for Medium-Range Weather Forecasts 

(ECMWF) (Molteni et al. 1996). The resulting 12-member ensemble provides a range of 

outputs from models used operationally at major modeling centers around the world (Kim 

et al. 2020). 

The two variables of interest include:  

1) Surface radiative temperature (Trad/RadT), representing the surface skin 

temperature, and  

2) Top layer soil temperature (Tsoil/SoilT) which represents the mean temperature 

of the 0 – 10 cm soil layer (JULES, Noah-MP, and Noah 2.7.1) and the 0 – 2 cm 

soil layer for CLSMFv2.5 

Whilst a shallow soil layer (0-2 cm) generally results in increased temperature 

variability compared to a thicker layer (0-10 cm), an investigation over the North 

American domain showed CLSMFv2.5 Tsoil falling within 1°C of the ensemble mean 
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during the cold season and is not the warmest, nor the coldest model during the study 

period. Radiative surface temperature outputs from Noah models are described as the 

aggregate surface skin temperature which can represent a mixture of canopy, soil surface, 

and snow temperatures. Similarly, JULES Trad represents the effective radiative 

temperature (surface skin) and cannot exceed 0 °C when snow remains on the ground. In 

CLSMFv2.5, over non-snow-covered locations, Trad represents surface skin temperature 

as determined by an area-weighted average of the temperature across different moisture 

and vegetation states within the computed area (De Lannoy and Reichle 2016). In this 

study, we do not explicitly compare snow states as they relate to FT and include both 

snow and non-snow-covered pixels, illustrating a mixture of results from snow free and 

snow on conditions. Notably, for timeseries analysis, ensemble mean snow depth is also 

included. 

 

Table 12 Summary of ensemble validation results 

 

 

 

Ensemble mean Trad and Tsoil is compared against GOES land surface temperature 

observations and soil temperatures from ground observing sites across five unique 

regions of the domain (Table 12). Observations included are from various sites within the 

Soil Climate Analysis Network (SCAN, USDA 2020a), the SNOwpack TELemetry 
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Mountainous, 
Non-Tundra

Bias (°C) 1.34 -0.28 1.17 1.82 0.94

RMSE (°C) 3.72 4.88 3.33 3.93 5.33

Sites (N obs) 5 (10,721) 4 (9,203) 4 (9,033) 5 (11,391) 4 (8,651)

Bias (°C) -1.97 6.66 -2.94 -5.49 0.50
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network (SNOTEL, USDA 2020b), the Real-Time In-Situ Soil Monitoring for 

Agriculture network (RISMA, Pacheco et al. 2019), and observations made in the 

Canadian tundra (via SoilTemp, Lembrechts et al. 2020). Results indicated an ensemble 

that is slightly warmer than GOES LST observations ranging regionally from bias of -0.3 

°C to 1.8 °C. This is most pronounced in the plains and mountainous regions in winter. 

Modeled soil temperatures present adequate performance with regionwide biases ranging 

from -5.5 °C to 6.7 °C (RMSE 4.2 °C – 9.3 °C). Diminished accuracy over the tundra and 

colder non-forested areas which represent more challenging regions to model. The 

location of validation sites and extent of focus regions is included in Figure 27. The 

derivation of these regions is based on climate, land cover, and elevation variability 

classes as described in subsequent sections. 

 

 
Figure 27 Focus pixels, representative regions, and in-situ site locations 
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The complexities of natural processes and meteorological input uncertainties lead 

to error and uncertainties in LSM simulations. As opposed to the use of individual 

models, an ensemble approach allows a quantification of these uncertainties, as the 

ensemble spread generally provides a measure of uncertainty across models and forcing 

data (Dirmeyer et al. 2006; Guo et al. 2007; Bohn et al. 2010; Murphy et al. 2020). 

Additionally, the combination of several model realizations can result in increased 

simulation accuracy by allowing model errors to negate each other (Xia et al. 2012a). 

Results presented in this study are computed through an aggregation of ensemble outputs. 

Other Remote Sensing Datasets 

In addition to LSM outputs, satellite observed LST is used to examine sub-FT-

pixel scale surface temperatures. Near global 5 km hourly resolution LST is derived by 

the Copernicus Global Land Surface using a constellation of the Geostationary 

Operational Environmental Satellites (GOES) and other geostationary satellites (Meteosat 

Second Generation, MTSAT/Himawari, Freitas et al. 2013). Specifically, retrievals from 

the GOES-13 (East) thermal band (band 4, 10.7 µm) are used in this study and cover a 

large portion of North America. Copernicus LST products do not include hourly land 

surface temperature from GOES-15 (West) during the period, therefore Alaska and 

northwestern sections of North America are not compared against GOES LST. Estimated 

temperature uncertainties of the Copernicus products are expected to be within 1°C 

during night-time and up to 3°C during the day. 
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Table 13 Observational and satellite derived datasets 

 

 

Additional input variables (Table 13) necessary to characterize land cover include 

500 m granules (MCD12Q1) and global 0.05° (MCD12C1, 2016) land cover from the 

Moderate Resolution Imaging Spectrometer (MODIS) (Friedl and Sulla-Menashe 2015) 

using the International Geosphere–Biosphere Programme (IGBP) classification scheme. 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

global terrain model provides high-resolution (30 m) and global elevation (1/12°) to 

assess the effect of complex terrain on FT classification and characterize focus pixel 

locations (ASTER Science Team 2019). Furthermore, information on climate types is 

sourced from 1/12° Köppen-Geiger climate classifications, using the updated and 

enhanced resolution products developed by Beck et al. 2018 (and updated relative to 

Kottek et al. 2006, Chapter 2). Mean annual temperature climatology is obtained from 

WorldClim bioclimatic variables at 5 km resolution (Hijmans et al. 2005). Where 

available, higher resolution inputs are utilized on the pixel scale, whereas coarser 

resolution products are used in the regional components of this analysis. 

 

Temporal Spatial

MODIS/Terra+Aqua Land Cover Type 
IGBP MCD12Q1 Global, granuals 2016 0.5° & 500m Land cover classification

ASTER Global Terrain Model ASTGTMV003 Global, granuals 2000 - 2013 0.083° & 30 m Intercell topography and standard 
deviations

Köppen-Geiger climate classes Beck_KG_V1_present Global 1980 - 2016 0.083° Climate classification

Interpolated mean annual 
temperature WorldClim Global 1970 - 2000 1 km Mean annual temperature

Copernicus LST, GOES-13 band 4 
(10.7 µm) LST_GLOBE_GEO_V1.2.1 North America Hourly 5 km Land surface temperature (LST)

SMAP L3 Radiometer Global 
Freeze/Thaw State SMAPL3FTP R16010 Global ~6 AM/PM local solar 

time 36 km Freeze/thaw state

SSMI_37V_v04 ~6:30 AM/PM local 
solar time

AMSR_36V_v04 ~1:30 AM/PM local 
solar time

MEaSUREs Global Record of 
Landscape Freeze/Thaw Global 25 km Freeze/thaw state

Data Product Product ID Coverage
Resolution

Usage
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Comparison Metrics 

Sub-grid Frozen Proportions 

To compare sub-grid temperatures to binary FT classifications we compute the 

proportion of sub-pixel temperatures below 0 °C, within a given FT product pixel (Pi). 

Similar to Chapter 2, this measure determines the proportion of sub-cells below freezing 

when classified as frozen (FZp) and thawed (THWp) by satellite FT products. The 

formulation of these metrics is described by Equations 10 – 12, providing indicators of 

sub-FT pixel temperature variability relative to FT classifications: 

Equation 10 Frozen proportion 

28(4) =
∑ G

1,			%9 < 0°S
0, 		%9 ≥ 0°S	

&
9:+

P  

k = the total number of temperature values within a given FT pixel [i] at a given time [t] 

Tj = the temperature in sub-pixel [j] 

Pi(t) = frozen proportion within a given FT pixel [i] at a given time [t] 

Equation 11 Sub-pixel frozen proportion when classified as frozen (FZp) 

U[\8 =	
∑ G28

(4),			H0	0?J@-W
0,			H0	4ℎ<=-L	

7
1:+

∑ G 1,			H0	0?J@-W0,			H0	4ℎ<=-L	
7
+

 

 

Equation 12 Sub-pixel frozen proportion when classified as thawed (THWp) 

%]^\8 =	
∑ G

0,			H0	0?J@-W
28(4),			H0	4ℎ<=-L	

7
1:+

∑ G 0,			H0	0?J@-W1,			H0	4ℎ<=-L	
7
+

 

FZpi = the mean sub-pixel frozen proportion for a given FT pixel [i] when classified frozen 

THWpi = the mean sub-pixel frozen proportion for a given FT pixel [i] when classified thawed 

n = total number of FT classifications within the study period 
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We employ various temperatures from the ensemble (Trad, Tsoil) and GOES (LST) as 

temperature inputs into Equation 10. Where high FZp (0.8-1) and low THWp (0 - 0.5) 

generally characterize a pixel as having well defined frozen and thawed states. 

Three-product Frozen Agreement 

To characterize the differences and associated FT uncertainty across products, 

FT-ESDR classifications are upscaled to the 36 km SMAP grid by averaging, and then 

rounding all values within a given SMAP pixel to ensure a binary classification. The 

three-product agreement proportion (Ap3FZ) is calculated across the 20-month study 

period for both morning and afternoon overpasses at each pixel using (Equation 13): 

Equation 13 Three-product agreement proportion 

T\;4<8 =	
∑ G								1,			H0	<KK	3	0?J@-W0,			J4ℎ-?=HI-	
7
+

∑ G 1,			H0	<WV	0?J@-W
			0,			H0	<KK	3	4ℎ<=-L	

7
+

 

where n refers to the total number of timesteps in which all products classify a given 

pixel’s (i) FT state.  

This method focuses only on periods when at least one product classifies a pixel 

as frozen to remove cases in which all products are deemed thawed, which can skew the 

product agreement. This has a considerable effect, especially in the mid- to low latitudes 

where thawed classifications are frequent in all seasons. 

Regional and Grid-scale Timeseries Analysis 

To better understand the relationship between coarse resolution FT classifications 

and the underlying temperature states, the sub-grid frozen proportion (Pi) is compared 

against binary FT classifications at the pixel scale. Five focus locations and larger 
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representative regions (Figure 27) are selected based on variable climate, topography, FT 

classification uncertainty, and land cover (Table 14). 

 

Table 14 Point location characteristics of product pixels nearest the indicated coordinates 

 

 

We employ timeseries to investigate the seasonal relationship between sub-grid 

surface states and their relationship to the observed FT state. This provides insight into 

the timing of freeze onsets, as defined by satellite-based products, along with information 

on pixel scale processes that may dominate the MW response over various regions. These 

regions include non-forested temperate regions (southern plains), forested cold climates 

with warm summers (northern forest), non-forested cold climates with warm/cold 

summers (northern plains), polar tundra, and non-tundra mountainous pixels (Table 14). 

Regions are classified using information shown in Figure 28. 

For comparison, all values for each ensemble member and LST observation 

within a given focus pixel (and surrounding region) are extracted at each FT product 

acquisition timestep. For the larger SMAP pixels, Pi is calculated with 672 – 1056 

individual ensemble temperature values and 56 – 104 from GOES LST. The mean 

Southern Plains Tundra Northern Forest Northern Plains Mountainous
(36° N, 97° W) (61° N, 76° W) (47° N, 74° W) (52° N, 103° W) (39° N, 108° W)

Cold, no dry season, cold 
summer

Arid, desert, cold
Arid, steppe, cold

Cold, no dry season, warm 
summer

15 to 20 °C -15 to -10 °C 0 to 5 °C -5 to 5 °C -5 to 15 °C

grasslands (83%), savannas 
(10%), cropland (4%) & 

other (2%)

grassland (94%), water 
(3%), wetland (2%) & other 

(1%)

mixed forest (90%), woody 
savannas (4%), deciduous 
forest (4%) & other (2%)

croplands (38%), woody 
savannas (28%), grasslands 
(16%),  mixed forests (7%), 
savannas (5%), other (6%)

grasslands (67%), savannas 
(18%), woody savannas (6%), 
croplands (5%) & other (4%)

ESDR 287m 290m 450m 606m 2507m
SMAP 278m 185m 484m 573m 2047m
ESDR 182 - 359m 170 - 478m 324 - 611m 514 - 683m 1565 - 3410m
SMAP 165 - 348m 38 - 319m 338 - 694m  482 - 670m 1450 - 3325m
ESDR 20m 64m 44m 17m 564m
SMAP 19m 42m  52m 32m 549m

Land Cover Description
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standard 
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Cold, no dry season, warm 
summer

Cold, no dry season, cold 
summer

Cold, dry summer, cold 
summer

Cold, no dry season, cold 
summer

Mean Annual Temperature

Focus Pixel
(Nearest Coordinate)

Köppen-Geiger Climate 
Classificaiton(s)

Temperate, no dry season, 
hot summer

Polar Tundra
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temperature from each dataset is computed at focus pixel locations and bounded by two 

standard deviations. This enables an assessment of sub-pixel modeled temperature 

uncertainty and observed temperature variability. For timeseries, SMAP pixel footprints 

are used to summarize the data and compute mean temperatures, snow depth, and Pi. In 

cases when multiple observations are present from FT-ESDR, frozen classifications are 

provided as a fraction. In contract, for the focus pixel descriptions (Table 14), product 

specific grids are used. 
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Figure 28 North American (A) climate, (B) land cover, and (C) elevation standard deviations classes 
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3.1.3 Exploring Sub-grid Temperature and Freeze/Thaw 

Spatial Results for North America 

Relationship of Freeze/Thaw to Sub-grid Temperature 

Existing FT products have been shown to be particularly sensitive to the near 

surface temperature (i.e., 2 m air) and moisture states (Rowlandson et al. 2018; Kraatz et 

al. 2018; Wang et al. 2020a). The results in Figure 29 reiterate this finding, as 

observations of frozen conditions over much CONUS occur when significantly less than 

50% (yellows/reds) of ensemble sub-pixel soil temperature (Tsoil/SoilT) values are 

modeled to be frozen. In contrast, in northern portions of the domain, FT states are 

accurately captured by both surface temperature and top layer soil temperature as FZp 

frequently exceeds 0.95. Over these regions, this indicates that on average nearly all 

modeled and observed near surface temperatures are below 0 °C at the sub-pixel scale 

when FT algorithms detect frozen conditions. While remaining largely above 0.80, this is 

slightly reduced in drier regions downwind of the Rocky Mountains. 

For all FT records, comparison against GOES observed LST results in the highest 

FZp values on average (0.79 – 0.92), indicating that the proportion of sub-grid scale LST 

below freezing is generally more than 80% when classified as frozen by FT products. 

Only a few regions with less than 50% of sub-pixels below freezing (when frozen) exist 

and include the southern Mississippi River basin, California’s Central Valley, and drier 

regions in the plains and southwest (SMAP only). The magnitude of the difference 

between FZp values associated skin as compared to soil temperatures (0.32, ESDR to 

0.22, SMAP) is considerably higher. This suggests that in many regions, frozen soil does 
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not provide the dominant part of the observed MW signal. Even though we expect a 

portion of the observed MW energy to correlate with soil temperatures (especially with 

SMAP), current algorithm thresholds have mostly been calibrated using synoptic air and 

surface temperature observations. This may explain the closer relationship of FT products 

to skin temperature as opposed to soil over many regions. 

 

 
Figure 29 Spatial mean sub-grid frozen proportion when classified as frozen (FZp) for soil and surface skin 
temperatures. Dark blue regions indicate areas in which nearly all sub-pixels have a frozen signature when 
classified as frozen by FT products. North America domain averaged FZp shown on each sub-plot 

 
 

 

Notably, results in Figure 29 do not indicate the point at which FT algorithms 

begin to observe frozen conditions, but rather the average FZp across the full study 

period. Extended cold periods in northern regions can skew the overall mean higher, the 

FZp at which frozen classifications begin is likely much lower than indicated values. Still, 

these efforts provide insight into sub-pixel temperature states during classified ‘frozen’ 

periods and how this can vary substantially across North America. 
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Comparisons Across Climate and Land Surface Variables 

As an extension to work regarding freeze/thaw classification across varied land 

surface characteristics (Chapter 2), we compare the mean sub-grid frozen proportions 

associated with frozen (FZp) and thawed (THWp) classified states to land cover, climate, 

and derived topographic variability to examine product relationships to these variables 

directly. 

 

 
Figure 30 Sub-grid frozen proportion means when classified by MW FT-products as frozen (FZp, y-axis) and 
thawed (THWp, x-axis). Averages shown for GOES-East footprint by column: climate (left), landcover (middle), 
topographic variability (right). Marker size indicates standard deviations (larger = higher standard deviation) 
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The results for each FT product are presented in Figure 30 and illustrate the 

averages over the entire 20-month study period. Instances in which pixel values are 

located near the 45° line indicate poorly distinguished FT states, as the sub-grid 

proportion of cells below freezing is nearly the same when classified as frozen or thawed 

by the indicated product. In contrast, points located towards the top left indicate well 

characterized FT states. These cases suggest that temperatures at the sub-grid level are 

nearly all frozen when classified as frozen and few instances exist in which thawed 

classifications occur when most sub-pixels are below freezing (THWp < 0.5). 

SMAP is shown to distinguish most poorly between FT states, with less 

separation between sub-pixel characteristics of frozen and thawed classifications 

compared to both FT-ESDR records. Across climates, SMAP-FT shows a clear contrast 

to FT-ESDR, in which THWp is frequently less than 0.20 (73% of classes) and FZp 

greater than 0.50 (73%), whereas only 57% and 50% of classes fall within these ranges 

using SMAP-FT (Figure 30, Column 1). There remains a notable distinction between 

sub-pixel temperature profiles dependent on climate, with polar/cold regions being well 

characterized (high FZp) compared to temperate and warm zones. Still, the high 

proportion of THWp on average in these zones (>0.40 for all temperatures) suggests a 

considerable number of thawed classifications when temperatures continue to support an 

at least partially frozen landscape. The reduction in the ability of SMAP-FT to clearly 

distinguish states is also illustrated when comparing across land cover (Figure 30, 

Column 2) and sub-pixel elevation standard deviations (Figure 30, Column 3).  
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Different from soil temperatures, surface temperatures have a considerably higher 

proportion of below-freezing sub-pixels when classified as frozen. Generally, lower skin 

temperatures and increased FZp can be expected due to the increased susceptibility of 

surface skin temperature to change rapidly with air temperature as compared to soil. This 

again illustrates that the LST observations are currently the best proxy to FT 

classifications derived from passive MW-based observations if binary frozen 

classifications are taken at face value (indicating frozen conditions throughout the entire 

pixel). This means that the vast majority of LSTs at the sub-pixel scale are below freezing 

before being classified as frozen by current products. While this remains true when 

compared to SMAP-FT, FZp derived from ensemble soil temperatures are comparatively 

closer to skin temperature derived FZp relative to FT-ESDR, having more similar FZp 

values. Even as FZp values are the highest when computed using GOES LST, this does 

not necessarily indicate that surface skin temperatures govern passive microwave FT 

classifications. In most cases while FZp is reduced (RadT to SoilT), so is THWp, resulting 

in minimal change in the difference between temperature profiles associated with frozen 

and thawed states across layers. 

Different sub-pixel temperature signatures associated with FT states are also 

shown across various land cover types. Over North America, wetland regions are very 

well characterized whereas coastal regions are not. This may be due to the clear FT signal 

of Canadian wetlands as they transition from liquid water dominant to ice and snow 

covered compared to mixed land/water pixels. Additionally, there is also an enhanced 

variability across coastal regions indicating a wide range of FZp and THWp values and 
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high uncertainty, as captured by the marker size in Figure 30. Variability within other 

classes is relatively small in comparison. 

In southerly regions with vegetative cover, most often found in sub-tropical 

climates (i.e., evergreen broadleaf), FZp and THWp values are very low. This shows that 

in most cases in which a pixel is deemed frozen, only a modest portion of the pixel is 

likely to be below freezing, whereas soil temperatures are unlikely to indicate frozen 

conditions at all. Another notable result is that SMAP classifications occur with 

significantly lower sub-pixel frozen proportion over sparsely vegetated areas and 

shrublands (0.16 – 0.60; SoilT - GOES LST) compared to FT-ESDR (0.36 - 0.95). The 

arid nature of these lands suggest that this may be a result of poorly distinguished FT 

reference states. Thus, sub-grid proportions shown here indicate that over particular 

regions the proportion of cells actually frozen when deemed as such by P-MW techniques 

varies widely.  

Finally, increased sub-grid heterogeneity in elevation is shown to reduce the 

average proportion of frozen sub-pixels required for a frozen classification (Figure 30, 

Column 3). Though this is especially true for SMAP-FT, all products show a general 

decrease in mean FZp from areas with more homogenous topography (<50 m inter-pixel 

standard deviation) to more complex and mountainous regions (50 - 250 m +). 

Freeze/Thaw Sub-regions and Timeseries Results 

Focus Pixel Selection and Product Comparison 

In regions in which several different products commonly agree, we have enhanced 

confidence in frozen soil and surface conditions compared to regions in which 
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classifications range widely. Especially in regions with ephemeral freezes, differences are 

expected in FT state classifications due to varied satellite observation timings. For 

example, observations around 6 p.m. local time from SMAP and SSM/I have an 

increased probability of being frozen compared to AMSR observations occurring near the 

solar maximum (~1:30 pm local time). However, these effects do not account for product 

agreement of less than 30% over most of the land area south of 50 °N (Figure 31). Such 

results indicate inconsistent frozen classification thresholds across much of North 

America, especially over CONUS. 

 

 
Figure 31 Percentage of agreement on frozen classifications only for all three of SMAP-FT, SSM/I-FT, and AMSR-
FT products. Includes September – June for 2015 – 2016 and 2016 – 2017. Focus pixel locations shown 

 
 

 

To examine the temporal characteristics between FT products regarding freeze 

onset conditions, we identify five representative SMAP pixels (36 km) over the study 

region that encompass major climate regions in North America (Figure 31). These 
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include polar/tundra, cold continental, and temperate climates. In addition, a pixel with 

considerable inter-cell elevation variability is included to assess the ability of FT products 

to distinguish FT state under conditions of high sub-pixel temperature heterogeneity. 

Several landcover classes are also encompassed by the selected regions and include forest 

dominant, grassland dominant, croplands, and mixed pixels. In addition, focus locations 

are also selected to represent a wide range of FT classification uncertainty ranging from 

the three-product agreement proportion (Ap3FZ) of around 16% in the southern plains to 

over 82% in tundra. The remaining focus pixels, which include the mountainous, 

northern forest, and northern-plains locations, have agreement of 20%, 56%, and 68%, 

respectively. 

Grid-scale and Focus Region Results 

Figures 32 – 36 illustrate a single 10-month period of temperature characteristics 

and FT classifications, which is long enough to capture the full frozen season even at 

high-latitudes. Whereas the numerical analysis is based on two of these periods from 

September through June (2015-2016, 2016-2017), the inter-annual FT onset and 

temperature characteristics are very similar. Therefore, we present a single FT season 

(2015-2016), though summary statistics (Figure 37) include both periods across all 

regions with similar climate and land cover (Figure 27). 

Figure 32 presents the seasonal FT characteristics over a pixel representative of a 

sub-arctic or tundra climate. Both temperature and FT products indicate an extended 

frozen season stretching from early October into June with continuous snowpack building 

through April before melting into the end of this period. This provides an example of a 
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well characterized site, as frozen classifications begin as soon as all sub-pixel soil and 

surface temperatures (GOES and SEUP) drop below the freezing point. 

 

 
Figure 32 Freeze/thaw state to temperature comparison for Tundra pixel. Shaded area denotes two standard 
deviations above and below the mean, timeseries are smoothed using 3-day averages, and dashed lines in top two 
plots indicate the freezing point 

 
 

 

In contrast, Figure 33 illustrates the sub-pixel characteristics across a temperate 

pixel located in Oklahoma, U.S.A. At this location, there are few clearly discernable 

points at which all products indicate frozen conditions outside of the period between late 

December and early January. Soil temperatures are never modeled to be frozen dominant 

during the entire period. This is in clear contrast to the results over the tundra, in which 

frozen classifications were not prevalent until most ensemble members indicated frozen 

surface and top layer soil temperatures. In the temperate non-forested regions, the SEUP 

ensemble also shows much stronger agreement with observed temperatures and reduced 

variability as compared to other focus locations (tundra, mountainous), indicating a 
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reduction in model temperature uncertainty. Still, frozen classifications appear to be 

relatively ambiguous, occurring during diurnal FT events in which less than half of sub-

pixel temperatures fall below freezing while also not-occurring during periods at which 

soil temperatures are modeled the coldest (e.g., mid-January). 

 

 
Figure 33 Same as Figure 32, but for Southern Plains pixel 

 
 

 

Mountainous pixels are characterized by high inter-grid cell topographic 

variability and seasonal snowpack, which result in a considerable range of both skin and 

soil temperatures within the footprint of a SMAP pixel (Figure 34). Interestingly, as sub-

freezing surface skin temperatures begin to encompass near 40% of the pixel area and 

FT-ESDR records begin to indicate diurnal freeze events, SMAP-FT no longer detects 

frozen conditions. Only when nearly all sub-pixels (>80%) are shown to be below 

freezing does SMAP-FT again classify the pixel as frozen. This also coincides with the 



 

126 

 

only period in which FT-ESDR records observe frozen conditions during both morning 

and afternoon overpasses. Finally, during the snowmelt onset period in mid-February, 

FT-ESDR observes diurnal FT cycling, while SMAP frozen classifications cease all 

together suggesting considerable differences in the surface components observed by FT 

classifications over such regions. Uncertainty in early and late season freeze 

classifications directly also correspond to the snow accumulation and ablation periods. 

 

 
Figure 34 Same as Figure 32, but for Mountainous pixel 

 
 

 

Figures 35 and 36 capture FT classifications over pixels including a forested 

region north of Montreal, Canada (northern forest) and within the grasslands of the 

Canadian province of Saskatchewan (northern plains), respectively. These pixels have 

similar temperature profiles characterized by large temperature fluctuations in the 

shoulder seasons, before having consistently sub-freezing temperatures from December 
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into March. Mean average annual temperatures range from -5 to 5°C indicating regions 

with extended frozen periods and clear seasonality, an assertion supported by the 

timeseries of FT classifications. Generally, seasonality is well captured by FT products 

within both regions as frozen classifications rarely occur with less than 80% of sub-pixels 

below the freezing point. Over the northern plains, this is especially true and illustrated 

by strong agreement in FT classifications from December into the spring (Figure 36). In 

the northern forest, SMAP classifications are clearly linked to the snow accumulation and 

ablation periods. This contrasts with FT-ESDR products in which frozen classifications 

were observed earlier in the season (and later), before (after) modeled SoilT are shown to 

fall below (increase above) freezing (Figure 35). FT-ESDR records appear to be strongly 

influenced by daytime melt occurring above the snow in the canopy, or at the air-snow 

interface. 

 

 
Figure 35 Same as Figure 32, but for Northern Forest pixel 
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Figure 36 Same as Figure 32, but for Northern Plains pixel 

 
 

 

Finally, to quantify the sub-pixel characteristics during the onset of MW frozen 

classifications, we examine the distribution of FZp within each characteristic region. 

Figure 37A presents these results as averages for the lowest 1%, 5%, 10%, 25%, and 

50% of FZp values, as well as the overall regional averages (100%). 

 

 
Figure 37 Summary of results for each focus region (shown in Figure 27). (A) Mean sub-grid frozen proportion 
when classified as frozen for the 1,5,10,25,50, and 100% of the lowest FZp values and (B) the proportion of frozen 
classifications to total classifications during the study period 
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Excluding far northern portions of the domain, the proportion of sub-pixels below 

freezing around onset remains below 10%, indicating that FT classifications may be 

dominated by the presence of proportionally small frozen areas. These differences 

between SEUP ensemble outputs and GOES LST observations may also suggest model 

biases. Still, while results support generally good performance in the tundra, shoulder 

season freezes are still characterized by uncertain temperature states and low FZp when 

using modeled soil and surface temperatures (FZp < 0.5). This can be explained in part by 

a considerable model warm bias in soil temperatures across the tundra region (~6.5 °C). 

Particularly over the forested, mountainous, and temperature regions, a clear difference 

between skin and soil derived FZp values is prevalent. Temperate pixels are shown to be 

the most poorly characterized, having very low FZp values for all observed and modeled 

temperatures. 

Figure 37B presents a comparison of the frozen classification rate during the 

period. Very similar frozen periods across ESDR products are shown, suggesting that 

varied retrieval timings have little effect on Ka-band classifications. However, 

differences between SMAP and FT-ESDR frozen classification rates are considerable 

across all regions. Indicating a shortened frozen period across all regions, as L-band NPR 

derived FT classifications are fewer by 4% (temperate, non-forested) to 13% (tundra). 

Discussion 

Each region detailed presents different FT detection challenges. While records 

diverge around freeze onset (October – November) in the case of the tundra and northern 

portion of the domain, the accuracy and definition of frozen classifications is clear, 
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indicating near surface soil and skin temperatures uniformly below freezing even at finer 

scales. However, with SMAP-FT especially, and over the more temperate and non-

forested regions (i.e., southern plains), FT classifications remain imprecise and have 

extended frozen periods during times in which frozen conditions are not supported by 

either ensemble or GOES observed temperatures (e.g., early December, Figure 33). The 

results suggest that improvement in FT references will be critical to introduce more 

consistency into FT classification in regions that are characterized by transient and 

diurnal freeze events. 

Over mountainous terrain (Figure 34), frozen conditions in a small portion of the 

mountainous grid cell can induce a frozen classification. This presents a case when 

enhanced resolution or fractional approaches would be useful to improve FT 

characterization. Also, in locations with persistent seasonal snowpack, depending on the 

onset of insulating snow cover, near surface soil temperatures have commonly been 

observed to gradually approach 0 °C, before remaining at the freezing point until the 

snowpack has melted. This means that even across many cold regions, soil temperatures 

can remain marginal making FT characterization increasingly challenging. We 

hypothesize that snow melt coupled with the insulating effect of the snow results in a 

layer of unfrozen soil that is observed by longer wavelength SMAP L-band, but not by 

FT-ESDR Ka-band products. 

In cold forest and northern plain regions there are considerably different 

vegetative cover and precipitation patterns. The forested regions are characterized by 

higher annual snowfall and dense vegetation compared to the relatively arid and sparsely 
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vegetated northern plains. This leads to a considerable divergence in FT classifications 

between products during the melt season (March – May) over the forested region 

compared to that of the northern plains. FT uncertainty in both focus pixels is shown be 

related to snow accumulation. A shortened FT season for SMAP (especially in forested 

regions), may indicate different emission characteristics observed by SMAP, compared to 

Ka-band. Thus, illustrating the increased sensitivity of shorter wavelength derived FT-

ESDR records, which continue to observe diurnal changes in the FT state of the surface 

(while SMAP tends to follow soil temperatures). These complex interactions between the 

vegetation, snow, and soil surface present challenges at explicitly detecting soil FT states 

as opposed to a general ‘landscape’ FT status. 

Over many regions existing FT algorithms are shown to identify freeze onset 

under inconsistent temperature conditions. Meaning, surface temperature states that may 

indicate a frozen classification in one region may not result in a frozen classification in 

another, even within FT products derived using the same observing MW band. Regions 

with less clear FT seasonality (e.g., southern plains) and more sub-pixel temperature 

variability (e.g., mountainous) experience increased FT uncertainty and require a 

significantly smaller proportion of sub-pixels to be below freezing for algorithms to 

indicate frozen conditions. 

Study Limitations 

Several study limitations are important to be aware of when interpreting these 

results. Factors such as varied sensor retrieval timings and radiometer footprints can 

induce errors between FT products and temperature data, especially in regions 
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characterized by ephemeral freeze events and topographic variability. Over mixed pixels, 

the smaller radiometer footprint of ESDR products can contribute to improved 

characterization and is not explicitly considered. Also, by examining a limited number of 

timeseries, incorrect generalizations can be made about larger classes of pixels sharing 

similar characteristics. Though, by examining spatial characteristics as well, we hope to 

minimize the impact of this on the study conclusions. Most critically, it is important to 

note that models used in this study are not observations nor considered as such. Instead, 

they are used to inform a reasonable range of sub-pixel temperature states. Whereas 

SEUP ensemble members are forced with reanalysis products that do use observations 

such as GDAS, MERRA2, and ECMWF, outliers in the data can impact the proportional 

comparison methodologies employed in this study. As such single biased model or 

forcing input can influence the presented results. 

Surface temperatures and microwave derived FT states utilizing changes in 

surface dielectric properties are also fundamentally different observations. While 

imperfect, the use of kinetic temperatures to infer surface FT states can help fill gaps in 

resolution (of P-MW) as well as directly relate these products to observed surface 

temperature states. In our estimation of FT using kinetic temperatures, we assume that 

modeled or observed temperatures below the freezing point indicate frozen conditions. 

While this assumption will not always be true, it provides a reasonable FT proxy. Ideally, 

direct satellite observation of soil temperatures would be preferable, but is not realistic, 

thus integrating LSMs and other satellite observations provides critical inputs to better 

defining frozen and thawed classifications. 
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Algorithm Improvements 

These results draw into question not only the consistency of FT definitions across 

different products, but within the same product spatially. FT uncertainty illustrated 

through analysis into various sub-regions asks several questions about what current 

frozen classifications represent, such as:  

o Is it the point at which frozen water exists in any part of the landscape or the 

majority of parts?  

o When plant productivity is inhibited by frozen soils and persistent sub-freezing 

temperatures?  

o Or, when the seasonal snowpack sets in?  

Among other possible definitions, it seems likely that it is a combination of these, 

depending on location, sensing band, and time. As such, a priority of these efforts 

includes asking questions regarding what frozen classifications currently reveal and what 

they should reveal, then tailoring remote sensing and data fusion strategies to capture 

relevant information. This work proposes the implementation of multiple data streams to 

achieve this goal, as information from high resolution kinetic surface temperatures can be 

combined with P-MW derived snow and soil properties to infer the specific frozen 

components of the surface (i.e., snow, soil, surface water). Integration of multiple MW 

bands such as L- and Ka-band, may allow freeze types to be distinguished between the 

surface and soil by combining information from fundamentally different emitting layers. 

New algorithms should rely on quality ground observations of surface and soil 

temperature as well as snow cover to help validate classifications. A transition from 
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binary representations of FT is also expected to contribute to improvements in 

classification by providing more realistic representations of freeze conditions. 

Existing FT classifications are valuable; however, these results suggest region-

specific improvements to these products that could expand their relevant applications 

moving forward. The importance of developing regionally variable algorithms is 

underlined, as similar observed MW responses in different regions may indicate 

completely different surface FT states. For example, current binary classifications can 

indicate frozen conditions both in portions of the sub-arctic (e.g., with soil frost depths >1 

meter) and lower latitudes (e.g., with discontinuous surface frost). States across which 

associated energy, hydrologic, and biogeochemical implications are substantially 

different. This work outlines the need for a unified definition of what a frozen 

classification indicates, such as soil state, and proposes that the implementation of 

multiple sensing bands will be critical in achieving this goal.  

3.2 Exploring Field-scale Thermal, Soil Freezing, and Melt Processes 

While many of seasonal freezing processes are examined on a macro-scale (i.e., 

10’s of kilometers) over global or continental domains, it is important to understand the 

driving factors which control melt and refreeze at fine scales. These fine, or ‘field’ scales, 

represent sub-basin conditions in which agricultural activities and spatial variability in 

topography, moisture, snow re-distribution, and land cover can be significant. These 

scales are what contain habitat (Parkin 1993), dominate watershed response (Ala-aho et 

al. 2021), have agricultural implications (Rowlandson et al. 2018), and are generally 

relevant to capturing realistic representations of surface freezing processes. In a way, 



 

135 

 

these explorations focus on the microclimates experienced by life on Earth, including 

ourselves. This includes the complex interplay between components like snow, 

vegetation, moisture, soil, solar exposure, and the associated energy balances. Satellite 

observations cannot explicitly capture these components and processes either due to 

spatial resolution limitations (e.g., km-scale microwave observations) or infrequent 

revisit times (e.g., 16-day cycles) for higher resolution imagers.   

Observations from point sites and aerial imagery provide a new perspective. The 

popularization of Unpiloted Aerial Vehicles (UAVs) or ‘drones’ have filled the 

observational gap between ground studies, airborne campaigns (e.g., SLAPEX, 

SMAPVEX), and orbiting sensors by enabling on-demand capture of surface thermal 

characteristics at unparalleled centimeter-scale resolutions. The growth in the use of 

UAVs for scientific applications has been fueled by improvements in drone platforms 

(i.e., batteries, automated flight), availability of a variety of light weight sensors, flexible 

deployment capabilities (e.g., over dangerous terrain and/or with frequent repeat), high 

resolutions, minimal atmospheric influence, and affordability when compared to 

traditional in-situ, airborne, or satellite remote sensing methods (Whitehead et al. 2014; 

Turner et al. 2014; Harvey et al. 2016; Manfreda et al. 2019). A wide range of sensors 

have been used on board UAVs in addition to thermal imagers, including multi-spectral, 

LiDAR, and visible band cameras with a myriad of applications within hydrology (Resop 

et al. 2019; Wigmore et al. 2019) and vegetation monitoring (Berni et al. 2009; Turner et 

al. 2014; Espinoza et al. 2017; Lin and Habib 2021). For these reasons, UAVs have 
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become a highly effective method of which to explore hydrology, micro-climates, and 

surface thermodynamics. 

The primary objectives of this project are to: 

1) Explore soil and snow temperature dynamics, their controls on freeze depth, 

and satellite freeze/thaw observations using in-situ observations from Grand 

Mesa, Colorado 

2) Explore surface temperature variability and its distribution using aerial 

imaging from UAVs at fine scales (<1 meter) 

3) Modeling and characterizing land surface features which drive temperature 

variability at the field-scale 

3.2.1 Study Methods 

Grand Mesa Study Site 

Located in western Colorado (39.0° N, 108.1° W), Grand Mesa spans over 1,400 

km2 and lies predominantly above 3,000 meters in elevation (Figure 38). Formed through 

volcanic activity and erosion, it is the largest Mesa in the world. This region was used for 

several UAV flight campaigns over the period from 2019 into 2020, indicated in Figure 

38. The area is ideal for field investigations, as it is well characterized as part of the NASA 

Snow Experiment (SnowEx 2017, 2019-20, https://snow.nasa.gov/campaigns/snowex) 

activities, has a considerable winter snowpack, relatively flat topography, and a mixture of 

forested and unforested areas. In terms of vegetation, Grand Mesa consists of primarily 

Spruce, Fir, Aspen, Pinyon Pine, and Juniper trees as well as open shrub and grasslands 

(USGS 2017). Four (4) long term meteorological stations (two shown in Figure 38) are 
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maintained across the Mesa as part of SnowEx and George Mason University field 

activities (2016 – present), along with a two (2) SNOTEL observing sites. UAV flights 

were flown primarily in November 2019, over the western portion of the Mesa, and in 

February 2020 in the northeastern portion near the long-term observing sites indicated. The 

sites record standard meteorological variables such as air temperature, wind speed, 

humidity, and precipitation in addition to being fully instrumented for radiation balance 

and multi-layer soil and snow temperature observations. 

 

 
Figure 38 Grand Mesa, CO Study area. Base map: Landsat 8 imagery (February 14, 2020) 
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Datasets and Processing 

UAV Collections 

A DJI Inspire 2 quadcopter is used to carry the sensor payload, which includes an 

integrated visible-band (RGB) camera (Zenmuse X4S, 20 megapixels) and a FLIR Vue 

Pro R radiometric thermal imager (7.5 – 13.5 mm, 640 x 512 pixels).  Both cameras are 

gimbal mounted to reduce blur in imagery and to ensure consistent incidence angles 

during flight (i.e., NADIR). The FLIR sensor consists of an uncooled microbolometer, 

which allows for low power consumption and remains light weight for UAV integration. 

However, compared to temperature controlled TIR imagers, these are less well 

characterized and forfeit accuracy. These sensors collect TIR energy emitted, reflected, or 

transmitted by an object, thus if emissivity and surface properties are known, they can 

remotely estimate target skin temperatures.  

Though, these values can be difficult to estimate, and observations remain 

affected by humidity, incidence angle, proximity to the target, camera temperatures, 

flight speed, and other sources of emitted or reflected energy (Sugiura et al. 2007; 

Mesas-Carrascosa et al. 2018; Kelly et al. 2019). Thus, these sensors require regular 

flight to flight calibration. While TIR sensors are typically calibrated using a temperature 

controlled black body target, this is not realistic in the field, thus self-recording 

calibration targets and in-situ surface snow temperature observations are used to develop 

an empirical relationship relating the observed camera digital numbers to the surface 

kinetic temperature. We employ a linear regression fit calibration using observed target 

temperatures and digital values in each individual image. This approach is similar to 
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efforts by Sheng et al. (2010), Harvey et al. 2016, and Kelly et al. (2019) which relied on 

various ground targets (e.g., water, painted control targets) to perform radiometric 

corrections. A global correction function is derived for each flight, in order to limit errors 

from changes in between flight environmental conditions (Sagan et al. 2019). Product 

validation efforts using outputs from this approach have shown image bias on the order of 

0.5 °C and RMSE < °2 C, with very high correlations to surface temperature 

observations. 

Satellite Temperature Data 

Observations from the Advanced Baseline Imager (ABI) on board the GOES-16 

(GOES-East) geostationary satellite provide sub-hourly observations in 16 spectral bands 

(0.45 – 13.6 µm) from across the majority of North and South America. These 

observations, among others from geostationary orbiting platforms (Meteosat Second 

Generation and the Multifunction Transport Satellite), have been utilized to derive a near 

global hourly land surface temperature (LST) product (Freitas et al. 2013; Martins et al. 

2019) at approximately 5 km resolution. Furthermore, observations from the Moderate 

resolution Imaging Spectroradiometer (MODIS, MOD/MYD11 Version 6.1, Wan et al. 

2021) are also leveraged for LST observation with twice-daily global coverage across 

two satellite platforms (Terra/Aqua). Together, these instruments provide four-times 

daily coverage with equatorial crossings at approximately 10:30 AM/PM (Terra) and 

1:30 AM/PM (Aqua) local solar time with approximately 1 km spatial resolution. 

Products are derived from seven MODIS TIR bands using the generalized split window 

approach with stated accuracy on the order of 1 °K (Wan et al. 1999). While other high-
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resolution imagers such as Sentinel-3 (SLSTR, 1 km), the Landsat 8 Operational Land 

Imager (Landsat 8 OLI, 120 m), the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER, 90 m), and the Ecosystem Spaceborne Thermal 

Radiometer Experiment on Space Station (ECOSTRESS, 70 m) have also been leveraged 

for LST estimation, these data products have much longer global repeat cycles (>14-

days) and were not available during this particular study period. 

Surface Temperature Modeling and Feature Importance 

Gaussian Process Regression Modeling 

Supervised machine learning (ML) approaches for regression problems remain 

valuable tools for capturing complex non-linear relationships and thus have strong 

predictive capacity.  ML approaches using supervised learning have been previously 

applied to the prediction of land surface temperature and shown the ability to downscale 

satellite estimates using predictors such as topography (Wang et al. 2020b; Xu et al. 

2021). For the prediction of fine-scale variability in LST, we apply a Gaussian Process 

Regression (GPR) framework (Rasmussen 2004). GPR models are a sub-set of 

probabilistic ML models which define a prior distribution (i.e., a Gaussian distribution) 

of a random variable, then update this distribution depending on evidence (i.e., 

predictors) forming a posterior distribution. While named after the Gaussian, or normal, 

distribution, this non-parametric approach is effective for capturing complex non-linear 

relationships through the combination of several Gaussian models and is effective for 

predicting unseen data (Barkan et al. 2016). As a probabilistic approach, GPR models 
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perform well at avoiding overfitting as they can generalize patterns in a Bayesian space 

and represent the uncertainty associated with a given prediction.  

For our application, GPR was used to estimate the magnitude of temperature 

changes relative to scene averages in UAV collected thermal imagery across mixed snow 

and vegetated areas with varied topography. This was done using various predictors 

detailed in the following section. This approach performed notably better at recreating 

surface temperature observations as compared support vector machines (SVMs), multiple 

linear regression, decision trees (DT), decision tree bagging (or random forests, RF), and 

simple neural networks (NN).  

The feature importance or ‘weighting’ of inputs to a LST model are of the utmost 

importance when assessing the physical drivers of temperature variability. Herein we 

estimate the importance of various predictors by computing their value within derived 

GPR models. It is of note, that the importance of a given predictor can change depending 

on the model type, and metric used. As such, values computed here specifically refer to 

the importance of various predictors within the GPR framework. To compute the relative 

feature importance, we evaluate model performance by iteratively training models 

without a given predictor and computing model RMSE and R2. This is repeated N times 

(N = 100) across all predictors. The average difference between the models including a 

given predictor to those excluding the same predictor is taken as a metric of feature 

importance. Specifically, the change in the R2 between model predictions is taken to 

quantify importance. 
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Predictive Features 

To assess drivers of observed surface temperature variability at study plots on 

Grand Mesa, several land surface and topographically derived predictors are used. 

Specifically, 1-meter resolution digital surface models (DSMs) of Grand Mesa from the 

Airborne Snow Observatory (ASO, February 2, 2020; Painter et al. 2016), land cover, 

and solar position. Land cover was partitioned into 2-classes using UAV collected visible 

imagery over the study site, representing vegetation and snow. Estimates of solar position 

are computed using the National Renewable Energy Laboratory’s Solar Position 

Algorithm (Reda and Andreas 2008). This algorithm relies on time, date, elevation, 

latitude, and longitude to estimate solar azimuth and zenith angles at a given point of 

interest (center of a grid cell). Using information regarding solar position and topography, 

several additional indices are computed as model predictors. Surface roughness (Rsrf, 

Rtpi), topographic prominence (localtopo), slope, curvature, aspect, shading and hill shade 

(Schwanghart 2021), as well as reflected and incident shortwave radiation are used in this 

context. Herein, these variables are assumed as the dominant drivers of small-scale 

surface temperature variability. Other features such as soil moisture, snow density, soil 

type and density, as well as vegetation type and health may also affect small scale 

variability in surface temperatures but are not considered in the context of this work. 

3.2.2 Results, Analysis, and Project Outcomes 

Freeze/Thaw Dynamics and Classification Estimates at Grand Mesa 

The land surface in cold constrained regions often consists of a blend of snow, 

shrubs, bare soil, and tree cover. Surface water in the forms of streams, lakes, and 
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impoundments are also exceedingly common, particularly at Grand Mesa. To explore the 

various thermal signatures during cold constrained periods, coincident visible and 

thermal imagery is collected across various conditions (Figure 39).  

The first collection (Figure 39A) illustrates the effect of shading on snow surface 

temperatures in a mixed snow-vegetated environment. In this instance, vegetation 

remains considerably warmer than surface snow temperatures and plays a role in melt 

processes through limiting solar exposure in forested zones or at the forests edge. As a 

result, these regions tend to be the last to melt out during thaw events. The reflective 

properties of snow (i.e., high albedo) and its reduced thermal conductivity, especially of 

fresh snow, also help to limit surface warming and slow thaw even in periods when 

temperatures exceed the freezing point. Figure 39B presents the TIR profile of a pond 

outflow. In the thermal band, the difference between open surface water and the 

surrounding ice and snowpack is clearly discerned. While a much larger portion of the 

ponds edge appears thawed in the visible band, there remained a relatively thin layer of 

surface ice. Thermal band sensitivity to a very small surface skin layer (LST) is also 

illustrated in this case. In mixed snow ice conditions such as this, regions with liquid 

water remain at 0 °C, whereas snow and ice temperatures can drop much lower. This 

leads to notably different thermal signatures. Similarly, the emissive properties of water, 

ice, and snow are known to vary widely, driving the difference in visible bands (dark 

water vs. bright white snow and ice) and thermal conductivity.  



 

144 

 

 
Figure 39 UAV thermal and visible image pairs captured in varied conditions (A) Mixed snow-vegetated, (B) Ice-
open water, and (C) bare ground-snow-vegetation. Blues indicate sub- or at-freezing temperatures 

 

 
 

In the shoulder seasons over most FT constrained land area, conditions tend to 

resemble the mixture of shrubs, soil, snow, and tree cover shown in Figure 39C. The 

presence of several thermal processes dominates freeze/thaw regimes at these scales. This 
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includes complex shading patterns from canopy and understory vegetation, which can 

create microclimates. Bare soil and rock can prove especially absorptive to solar radiation 

compared to snow; however, vegetation is observed to warm at an even faster relative 

rate and is elevated from the soil surface increasing its exposure to solar radiation. 

Temperature variability present at these scales further complicates the interpretation of 

remote sensing signals which aggregate emissions from large regions (~625 km2, for 25 

km pixel size) into single observations. These variations have implications for changes in 

the underlying soil freeze/thaw state. 

 

 
Figure 40 (Top) Air and skin temperature, (Middle) multi-layer soil temperatures, and (Bottom) UAV TIR 
imagery over observing site November 8, 2019 (red line). FT classifications indicated frozen (blue), thawed (yellow) 

 

 
 

-40

-20

0

20

40

Te
m

pe
ra

tu
re

 (°
K)

Tair
TIR

Oct 06 Oct 20 Nov 03 Nov 17 Dec 01
2019   

-40

-20

0

20

40

Te
m

pe
ra

tu
re

 (°
K)

Tsoil50cm
Tsoil20cm
Tsoil10cm

Tsoil5cm
Tsurf0cm

7:30 AM

-10 °C

-5 °C

0 °C

5 °C

-10 °C

-5 °C

0 °C

5 °C

-10 °C

-5 °C

0 °C

5 °C

8:30 AM 9:30 AM

SMAP-FT

SMAP-FT

ESDR-FT

ESDR-FT



 

146 

 

Figure 40 illustrates the comparison between point observations and the 

corresponding satellite freeze thaw classifications for the western portion of Grand Mesa 

(at the observing site indicated in Figure 38). Notably, coarse satellite-based 

classifications are representative of the land surface atop Grand Mesa and parts of the 

surrounding lowlands. FT-ESDR records accurately capture diurnal transitions in the 

region beginning in October and continuing through the snow accumulation period 

beginning in late November. SMAP-FT provides significantly different estimates of FT 

states over the same region. First, by indicating continuous frozen conditions in early 

October when soil temperatures to 10 cm depth begin to fall below freezing at night. 

These estimates while accurate in the nighttime hours are invalid during the day, when 

soil, surface, and air temperatures climb well above the freezing point (> 10 °C). Similar 

to conclusions in Chapter 2, the presence of snowpack is shown to significantly alter the 

between band FT response. With Ka-band capturing daily melt and refreeze cycles in 

early winter, while the SMAP algorithm suggests primarily thawed ground over this site 

until the end of the year. In this case, SMAP may observe a thin, thawed layer of soil at 

the snow air interface, as soil temperatures remain around 0 °C deep into winter. Near 

surface soil temperatures to around 10 cm depth are shown to mirror daily air temperature 

cycles prior to snow accumulation (Figure 40). While deeper into the soil layer, these 

temperature changes occur more slowly on seasonal scales (50 cm depth). Generally, 

phase changes in the top few centimeters of the soil are expected drive changes in the 

surface emissions and brightness temperatures observed by satellite instruments.  
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Based on observations on the morning of November 8, 2019, when air 

temperatures remained below freezing prior to the final flight, soil surface temperatures 

are shown to vary considerably in space, depending on variability in surface cover and 

shading (Figure 40). The rapid warming occurring from observations taken earlier in the 

morning (7:30 a.m.) to those taken two hours later (increases of >10 °C) can illustrate 

rapid FT transitions which can occur in the shoulder seasons and even during cold 

periods. Solar loading provides an abundance of energy to facilitate phase changes that 

can lead to frequent FT cycling as observed by both satellite products. Even so, aerial 

imagery suggests that certain portions of the landscape may remain frozen throughout the 

day, as other ‘hot-spots’ such as vegetation may appear to retain above freezing 

temperatures through the night. UAV observations and multi-layer soil temperature 

observations provide a good illustration of how FT representation using a binary indicator 

remains a vast oversimplification. The potential differences between 2-meter air 

temperature and phase changes, especially in the soil, remains clear (Figure 40). The FT 

signal and soil temperatures can largely depend on when snow cover arrives. For 

example, snowfall following an anomalously cold and dry period soil tends to result in 

persistent frozen soil throughout the winter beneath the snowpack. In contrast, if the 

snowpack sets in when the soil is relatively warm, it can remain thawed or at freezing 

through the duration of the cold season. Changes in snow cover extent, snow depths, and 

solar exposure regimes contribute to process complexity even across such fine, field-

scales. 
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Exploring Fine-scale Surface Temperature Variability with UAVs over Snow 

Compared to imagery in Figures 39 and 40, UAV imagery in Figure 41 show 

considerably less variation. Even so, there remain several fascinating ongoing processes. 

The relatively few land cover classes allow for further quantitative analysis into terrain 

parameters which control LST variability. In this case, multi-temporal surface 

temperature changes over snow are also characterized over a larger area (~6 acres) by 

combining many individual calibrated thermal images. 

Shading, differences in cover between the roadway, snow, and forest dominate the 

observed variability. Colder relative temperatures due to increased snow density over a 

packed trail also illustrate the effect snow density can have on surface temperature. Even 

as Figure 41 presents observations of snow during a period when air temperatures are 

observed to be above freezing (Figure 42A), the amount of energy required to drive large 

scale phase changes in a deep and non iso-thermal snowpack is large. As a result, no 

notable melt is observed over the study plot, though near tree crowns and the road surface 

snow surface temperatures are shown to approach 0 °C during the solar maximum 

(Figure 41C, Figure 42B).  
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Figure 41 Surface temperature imagery from UAV collections from February 2, 2020: (A) 9:33 a.m., (B) 10:42 
a.m., (C) 12:03 p.m., and (D) 4:23 p.m. All times are in Mountain Standard Time (MST, UTC – 7) 

 

Figure 4 - Timeseries of Thermal Mosaics
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Vegetation and snow classes are partitioned to develop class specific temperature 

distributions throughout the study period (Figure 43C). While changing at similar rates 

throughout the day and into the afternoon, each class has a distinct thermal signature. 

Expressly, snow surface temperature ranged from 262 °K (-11 °C) to around 273 °K (0 

°C), and 270 °K (-3 °C) to approximately 283 °K (10 °C) for vegetation. These values are 

shown to fall within the range of satellite LST observations from both GOES and MODIS 

for the study site. The tendency of a satellite observation in the region to be relatively 

colder or warmer is largely determined by the dominant local cover class of either snow 

(colder) or forested areas (warmer). These comparisons provide perspective on how 

satellite imagery remains an aggregation of many complex emissions from the surface, 

tending towards a blended average of all sub-pixel components. Future efforts to utilize 

modeling such as GPR, other ML approaches, and physically based modeling offers 

potential for de-aggregating or downscaling these observed signals to derive improved 

estimates of temperature and energy exchanges at the sub-pixel scale. 
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Figure 42 Timeseries of near site observations and energy balance: (A) In-situ air temperature (Tair), surface skin 
(snow) temperature (TIR), and humidity; (B) Longwave and shortwave radiation (observed and modeled); (C) 
Satellite LST observations and UAV partitioned snow and vegetation specific surface temperatures. Means (solid 
lines) and 1st – 99th percentile (dashed) 
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target variable, predicted through a combination of features such as land cover type 

(snow or vegetation), terrain, and derived predictors relevant to solar exposure such as 

hill shade, topographic prominence, and shading. Relative feature importance is 

estimated (Figure 43) to provide insight into which characteristics impact surface 

temperatures and the associated radiation balance.  

 
 

 
Figure 43 R2 improvement by adding additional predictors to land surface temperature model 
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for snow melt and freeze/thaw processes at fine scales (Charrier et al. 2015). 

Remarkably, the final trained GPR model showed exceptional predictive skill at de-

aggregating UAV imagery, even on holdout validation sets and between all four image 

collection periods (R2 = 0.84). This approach effectively reproduced the temperature 

spatial distribution at the study site, suggesting the predictive value of the presented 

variables at de-aggregating scene averaged surface temperatures. 

Extensive differences are observed in the thermal profiles of various different 

parts of the same landscape. Even in periods of stable temperatures, and relatively simple 

land cover (e.g., vegetation and snow), variations in the energy exchange between various 

surfaces and solar loading, can lead to a wide range of temperatures. Drivers of such 

differences can be challenging to determine through traditional regression and statistical 

approaches. Machine learning enables the learning of multi-dimensional relationships 

between air temperature, surface topography, solar loading, and land cover providing 

insights to modeling surface temperatures and associate melt freeze cycles at ever finer 

resolutions. Similar UAV investigations are expected to provide valuable observational 

data over additional land cover and climate regimes to aid in the development of new 

models relying on basic land surface parameters to predict surface and near surface soil 

temperatures at the field-scale. Such models may be useful for decision makers for 

prediction of freeze events for agricultural, hydrology, and numerous research 

applications. Applications merging coarse resolution satellite data with such models 

using a data assimilation framework also present a viable opportunity to downscale 

satellite temperature observations to any desired resolution.  
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3.3 Chapter Outcomes 

Introducing comparisons of known surface conditions (i.e., detailed ground-based 

observations) to remote sensing datasets (i.e., P-MW, thermal infrared, land cover) 

provides a valuable step towards deriving improved representations of surface freezing 

and thawing processes. These efforts have identified new variables which may be useful 

for freeze/thaw classification and also presents a new physically based understanding of 

variability in surface freeze/thaw conditions at sub-pixel and sub-watershed scales. 

Initially, through these comparisons we identify thresholds at which FT 

classifications begin, move to improve frozen classification definitions, and specifically 

examine seasonal changes and surface characteristics governing FT observations over a 

diverse range of climate regions. Specific conclusions and suggestions stemming from 

this work include: 

• Products perform well in far northern regions with clear freeze/thaw 

seasonality 

• Elsewhere, frozen classifications are shown to be uncertain and representative 

of a wide range of temperature states which underlines the weaknesses of 

seasonal threshold algorithms 

• Vegetation type, snow cover, and depth are identified as valuable contributors to 

varied FT signatures. As is varied topography, surface water, and climate 

• There is a considerable need for classifications beyond binary states, such as 

fractional products or those with several freeze classes to improve sub-grid and 
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regional representations. Especially in regions with mixed topography and 

abundant surface water  

• Fusion of multiple datasets such as surface temperature, land surface variables, 

ground observations, and multi-band microwave (L- and Ka-band) observations 

can provide different information towards achieving a classifier that captures 

specific surface components 

• Regionally varied classification algorithms should be implemented to ensure 

globally consistent definitions of surface freeze states 

• Surface skin temperature-based rules could be useful for reducing false freeze 

classifications and deriving improved resolution classifications 

Primarily, these results will inform new FT classification algorithms, in which 

well characterized FT definitions are the primary objective. For example, identifying the 

difference between frozen soil and surface frost using a combination of data inputs in the 

microwave bands (L- and Ka-band). The use of fractional and freeze type classifiers is 

expected to prove valuable in achieving this goal by better characterizing frozen states 

and thus the region-specific implications for water, carbon, and energy cycling. 

Other efforts focused on field-scale temperature characteristics have identified 

several factors driving differences in surface temperature and potential factors 

contributing to variability in FT cycling across relatively short distances. While some of 

these results support the above findings, detailed examinations of observational sites and 

UAV temperature surveys have supported additional conclusions: 
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• Existing freeze/thaw products capture different freeze signatures compared to 

an observing site at Grand Mesa. UAV observations illustrate how temperature 

variability at fine scales and the use of point observations may contribute to 

these uncertainties 

• Comparisons of UAV imagery to satellite observations support the assertion 

that coarse-scale observations represent the average emissions of many 

different fine-scale processes 

• Land cover type, vegetation, topographic prominence, surface roughness, 

aspect, and shading provide strong controls on surface temperature variability 

and offer potential for developing hyper-resolution predictive models 

• While land surface temperature does not explicitly observe soil freeze/thaw 

states, the captured patterns provide insight on how soil temperatures may be 

evolving beneath the surface skin layer 

Advanced computational approaches (i.e., machine learning) presents the 

capability to merge multiple data streams including in-situ and satellite information to 

tune and validate such algorithms. These approaches are being used increasingly to 

efficiently leverage all available information to optimize new classifiers. 
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4 GMU-FREEZE/THAW: REMOTE SENSING DATA FUSION FOR 
IMPROVED FREEZE/THAW ESTIMATES 

Preceding analyses ranging from local to global scales provide a comprehensive 

assessment of the current observational capabilities for detecting freeze/thaw transitions. 

These works also underline the potential of new approaches for improving such 

classifications by identifying limitations and new relevant variables that can be leveraged 

for their improvement. Within this chapter, the culmination of these lessons is applied to 

the development of a new freeze/thaw classification approach. 

Soil temperature observations remain the best method of which to accurately 

capture surface freezes since air temperatures have been found to vary considerably from 

actual surface states. Using soil temperatures specifically also provides a clear physical 

basis for the estimation of freezing and thawing transitions, which can allow for direct 

comparisons of surface freezes between different regions by moving beyond the 

somewhat arbitrary nature of current landscape classifiers. It has become clear, that the 

differences between regions in terms of climate, land cover, and topographic variability 

introduce significant variations in observed remote sensing signals across bands (i.e., L-, 

Ka-band, thermal infrared) and thus completely different relative meanings of what 

defines a ‘frozen’ or ‘thawed’ state. This work illustrates the value of merging multi-

dimensional and markedly different observations for optimizing freeze/thaw 

classifications. This is achieved by introducing new regional variables into the 

classification scheme, training algorithms based upon globally diverse networks of soil 
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observations, and by integrating machine learning approaches such as decision trees and 

random forests into global freeze/thaw classification. 

4.1 Motivations and Approaches for the Enhancement of Freeze/Thaw Observation 

Global and continental scale assessments of current freeze/thaw detection 

methods have identified several weaknesses of existing classifiers (Xu et al. 2018; Lyu et 

al. 2018; Johnston et al. 2020; Johnston et al. 2021). Current methodologies have 

exhibited reduced performance due to factors such low moisture content (i.e., arid 

regions), transitional areas (i.e., temperate regions), and over complex topography (Kim 

et al. 2011; Derksen et al. 2017). Similarly, existing approaches to FT detection have 

remained highly variable in their outputs and the associated physical meaning of a frozen 

classification within these areas. This highlights a need for improved classification 

approaches. Tailoring classification algorithms to explicitly target freeze detection for the 

near surface soil layer helps to improve model characterization and indicate periods in 

which runoff, plant productivity, and land atmosphere exchanges are most constrained.  

In-situ observations provide the best measure of realistic surface soil states, by 

avoiding large uncertainties in global reanalysis data or modeled temperatures to 

parameterize a classification model (Kim et al. 2017; Dunbar et al. 2014-2020). 

However, challenges at acquiring a regionally diverse dataset of soil temperatures, at 

least compared to the breadth of air temperature observations, can limit its applications. 

This is because regions with sparse data tend to have increased uncertainty from lack of 

an observational record and thus limited validation. Also, physical differences in soil 

properties such as increased salt content can cause depressed freezing points in which soil 
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temperatures can fall below 0 C and still remain thawed (Suzuki 2004). Still, with a 

sufficiently large and spatially diverse dataset, capturing the wide range of conditions can 

be achieved. The use of in-situ meteorological observations to train machine learning 

models does not represent a new paradigm (Du et al. 2019; Chen et al. 2020). The 

approach has even been applied on smaller sub-continental scales to FT classification 

with success (Zhong et al. 2022). Even still, its benefits have yet to be applied 

exhaustively towards the modeling of soil FT states on a global scale. Notably, 

approaches using spatially distributed variables such as microwave brightness 

temperatures for FT prediction tend to also be validated using in-situ observations. 

Meaning, that observational uncertainties are not well constrained over data sparse 

regions anyway. 

To compliment information provided by in-situ observations and in order to 

derive spatially relevant information at a global scale, remote sensing provides crucial 

inputs. Various bands present different observational capabilities. Namely, microwave-

band observations can provide information on water conditions in various layers of the 

surface and have direct sensitivity to FT transitions (Royer et al. 2010; Mavrovic et al. 

2021). Still, observational resolutions on the order of 5 to 10’s of kilometers, relative to 

shorter wavelength capabilities (< 100 m), can provide a limitation in microwave bands. 

Observed signatures can also be complex to de-aggregate and highly dependent on 

temperature and surface moisture conditions (Zheng et al. 2020a). Land surface 

temperatures (LST) have also shown relevance to the underlying freeze condition of the 

surface by providing a boundary condition and control on freeze depth (Zheng et al. 
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2020b). Relevant remote sensing LST products also present improved resolution (100 m 

– 5km) and have a clear relationship to surface physical temperatures. These capabilities 

have enabled resolution improvements for near-surface FT state estimates (Zhao et al. 

2017). Still, these observations are not directly sensitive to the surface FT state and can 

be regularly impeded by cloud cover. Snow cover presence and related snow indices, 

while usually binary, are also known to have relevance to surface FT conditions, 

providing additional information to better characterize surface states (Iwata et al. 2011; 

Chapter 3).  

In another vein, other surface features and relevant regionally variables that 

persist over extended periods of time (herein referred to as ‘static’ variables) also display 

value for achieving robust FT classification methods. Features such as topographic 

complexity can impact the net radiation balance (Yan 2020), the presence of vegetative 

cover can impair shorter wavelength bands, and climate variations can have direct 

implications moisture and surface temperature conditions (Ni et al. 2019). Such variables 

provide additional potential for regional varied classification, similar to existing 

approaches (Jia and Richards 1999; dos Santos et al. 2012), but instead by capturing 

regional drivers of soil FT states in place of tuned pixel-by-pixel thresholds (Kimball et 

al. 2009; Derksen et al. 2017). 

Data fusion through machine learning allows for the incorporation of many pieces 

of information and can selectively draw from various strengths or weaknesses of input 

data (Castanedo 2013). These data driven models have the capability to learn complex 

patterns and relationships within N-dimensional datasets, making them especially 
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attractive for research applications and in optimizing systems in our everyday lives. 

Compared to some classification tasks, which can have hundreds if not thousands of 

potential outputs to distinguish between (Pappu and Pardalos 2014), the task of 

modeling FT states is a relatively simple one. Still, single observational bands remain 

incapable of observing surface conditions across all components of the surface. The 

determination of physical states within a complex and everchanging environment also 

makes the application of such methods non-trivial.  

While binary FT representations are valuable, they greatly simplify true surface 

states, which can vary on extremely fine scales (Johnston et al. 2021, Chapter 3). 

Machine learning approaches enable probabilistic predictions that can directly give an 

indication of model confidence (Li 2013). This can be used to indicate uncertainty in 

transitional or other climatologically complex regions and to present intermediate or 

partial freeze states. The importance of product characterization cannot be understated. 

Differences between a 1-meter depth soil freeze, surface snow cover with thawed 

underlying soil, or diurnally cycling surface frost can have considerable and varied 

implications for global energy balances, nutrient exchange, biodiversity, and carbon 

uptake, especially when considered at continental scales (see Chapter 1). 

The underlying physics and detection methods for the remote sensing of 

freeze/thaw processes have been reviewed in previous chapters. From these efforts, we 

identify opportunities to fill observational gaps by drawing on the benefits of data fusion 

techniques (Johnston et al. 2021). Specifically, this work details the combination of an 

exhaustive global network of soil temperature observations, static variables (i.e., 
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topography, climate, land cover), and multiple daily satellite observations both in passive 

microwave bands (SMAP, SSMIS) as well as thermal infrared bands (MODIS, land 

surface temperature) for deriving an enhanced classifier. The details of both selecting and 

tuning an appropriate machine learning model to achieve this are also included herein. 

Project specific objectives for FT enhancement include: 

1)  Development of a freeze/thaw classifier with explicit physical meaning (i.e., 

soil states)  

2) Inclusion of associated fractional and probabilistic representations of the 

freeze likelihood 

3) Applying (1) and (2) for global-scale classification using regionally varied 

modeling, with associated model validation 

4.2 Deriving an Improved Classifier 

The successful implementation of any machine learning-based classification 

problem relies on an extensive training data set. This can be defined as a large and 

diverse collection of variables relevant to the classification problem of interest. This 

ensures model robustness by capturing a large set of possible conditions. In the case of 

supervised classification problems, it also relies on accurate labels to be associated with 

such variables. In this case, worldwide soil temperature observations serve as the ground 

truth to provide model labels by thresholding temperatures to define binary soil FT states. 

The selection of various predictors such as remote sensing observations or other static 

land surface information provide observational inputs enabling FT classification when 

soil states are unknown. This section details the development of a large soil temperature-
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based training set, the selection of model predictors, as well as the use of random forest 

models for FT classification. 

 

4.2.1 Data Inputs 

In-situ Observations 

A large quality-controlled ground truth dataset provides the backbone for 

supervised learning models and other data driven approaches. To achieve this, large 

observing networks containing observations of soil temperatures are identified globally. 

Namely, these consist of large, distributed networks within several regions of the United 

States and North America: 

1) The Snow Telemetry Network (SNOTEL, USDA 2020b) – 442 sites 

2) The Soil Climate Analysis Network (SCAN, USDA 2020a) – 201 sites 

3) The United States Climate Reference Network (USCRN, Bell et al. 2013) – 

115 sites 

4) The Real-Time In-situ Soil Monitoring for Agriculture Network (RISMA, 

Pacheco et al. 2019) – 7 sites 

5) The SnowEx Grand Mesa In-situ Network (Houser and Johnston 2021) – 5 

sites 

This network provides impressive coverage (770 long-term sites) over much of CONUS, 

Alaska, and southern Canada with particular site density in hydrologically relevant 

mountainous headwater basins. These records extend back decades in many cases, and all 
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capture the focus study period which uses observations spanning from SMAP launch 

(April 2015) through 2019, and in some cases extending into 2021.  

 While these provide a large training set over North America, these networks 

provide no information outside of the continent. Thus, the global SoilTemp (Lembrechts 

et al. 2020) database, developed specifically for providing soil and near surface 

temperatures, is also used. This network includes over 3,000 unique observational 

datasets provided by the research community from all seven continents and major climate 

regions (https://soiltemp.weebly.com/). Additional observations (57 sites) from in-situ 

networks are drawn from the data sparse High Mountain Asia (HMA) region (Yang 

2021). Considered the Earth’s third pole, this region remains particularly important for 

water availability in China and the surrounding regions. Improving FT classification here 

has implications for improving melt detection and runoff timing estimates. 

All datasets are carefully cleaned removing erroneous values. Sites with poor 

performance (i.e., frequent errant values) or limited data availability (i.e., large periods of 

missing data) are also not included in the training set. To be valid for use in the training 

set, near surface soil temperature observations between 1 cm and 10 cm depths are 

required. These define soil freeze/thaw state through classifying thawed soil when soil 

temperatures are below 0 °C, and thawed when ³ 0 °C. Where available, air temperature 

is also used to derive a more complex FT classifier, considering the potential of 

additional transitional states, however, these multi-class models are undergoing 

development.  
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The combination of all sites achieves an exceptionally large and dispersed global 

network of sites (>3,500). To our knowledge, this is the largest known aggregation of soil 

temperature information available at global scale. As such, it provides the best 

opportunity for training and validating soil FT state classifiers.  

Global-scale Static Variables 

Several inputs used to characterize climate or land surface variability are used 

throughout this project. Those of which that remain relatively constant over annual time 

periods are considered to be static variables. These static variables are included below as 

well as being detailed in Appendix A & B: 

1) Köppen-Geiger climate classifications for 1980-2016 (Beck et al. 2018). 

These define 30 major climate regions on an approximately 1 km resolution 

global grid (aggregated to 10 classes). These observations are also used to 

derive a metric capturing the number of unique classes within each 0.05° grid 

cell. Providing an estimate of potentially challenging classification regions, 

which frequently occur in areas with large elevation gradients.  

2) Global land cover from MODIS using a 17-class scheme (MCD12C1, Friedl 

and Sulla-Menashe 2015). This is aggregated to 13 by combining similar 

classes. Estimates of forest density and surface water coverage proportions are 

also derived from MODIS land cover products (0.05°). 

3) Elevation data from the ETOPO1 Global Relief Model (Amante et al. 2009). 

These 1/60° (~2km) grid of elevations are used to derive elevation standard 



 

166 

 

deviations, a topographic prominence index (TPI), and aspect, using a scheme 

similar to (Gómez-Plaza et al. 2001) at 0.05° resolution. 

The distribution of in-situ sites across these various classes is detailed in Figure 

44. All climate regions besides those in the comparatively small temperate, dry winter 

climate class are represented by over 30 observing sites. The distribution of sites across 

varied landcovers is also sufficient, outside of wetlands or areas with persistent snow and 

ice (i.e., Antarctica and Greenland). These areas are thus masked out in the soil FT 

classifier. Variability in the number of climates surrounding each site is shown to range 

from 1 to 5, with over 80% of the 0.05° grids containing each site being characterized by 

only one or two climate regions. Finally, topographic profiles suggest the majority of 

sites fall in relatively flat areas, but also illustrate a diverse range of topographic 

conditions with hundreds of sites having highly varied surrounding terrain (elevation 

standard deviations >200 meters). 
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Figure 44 Distribution of global network of in-situ soil temperature sites (N = 3757 sites) across various static 
variables. Global maps of these variables included in Appendix B 

 
 

Remote Sensing Observations 

Observations from various remote sensing platforms provide the backbone of FT 

detection algorithms. Here, enhanced passive microwave observations of brightness 

temperatures (Tb) from the Soil Moisture Active Passive (SMAP, Brodzik et al. 2021) 

and the Special Sensor Microwave Imager/Sounder (SSMIS, Brodzik et al. 2016) provide 

multi-band, twice daily retrievals with near global coverage. Both observing platforms 
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have similar equatorial overpass timings, allowing for direct intercomparison between 

these observations and improved model applicability by reducing uncertainties imposed 

due to varied retrieval times. Observational bands include: 

1) SMAP 1.41 GHz Vertical (V) and Horizontal (H) polarizations [L-band] 

2) SSMIS 19 GHz V/H-polarizations, 22 V-polarization [K-band], and 37 GHz 

H-polarization [Ka-band] 

All microwave bands between L-band and Ka-bands used herein respond to 

variability in near surface soil temperature, moisture, and water phase changes. Recent 

efforts combining many overlapping radiometer observations from these platforms have 

allowed for higher resolution Tb estimates approaching 3 km. The radiometer version of 

Scatterometer Image Reconstruction (rSIR) algorithm uses complex antenna specific gain 

and measurement response functions to estimate enhanced resolution brightness 

temperature observations at these resolutions (Brodzik et al. 2016). 

Other remote sensing inputs include land surface temperature observations from 

MODIS (11C1 v061, Wan et al. 2021) which use both Terra/Aqua platforms for 4-times 

daily global observation (0.05°). Finally, as snow cover is found to control FT processes 

in the underlying soil layers, snow cover extent from the Rutgers Global Snow Lab (GSL, 

Robinson and Estilow 2021) and MODIS Normalized Difference Snow Index (NDSI, 

Hall and Riggs 2021) observations are also included. Notably, snow cover extent from 

GSL products only provide coverage over the northern hemisphere with weekly temporal 

resolution. 
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4.2.2 Decision Trees and Random Forests for Freeze/Thaw Classification 

Decision Trees, Random Forests, and Model Selection 

Machine learning has permeated the disciplines of data science, academic 

research, artificial intelligence, and beyond. Continued advancements in computational 

capabilities and the underlying algorithms have enabled the implementation of such data 

driven approaches for a multitude of predictive tasks. Essentially, machine learning 

provides an effective framework for automated model building using mathematical 

principles.  These models can take many forms, and generally fall into categories of 

either supervised or un-supervised learning. Supervised models rely on the modeler to 

provide estimates of true class labels or known continuous outcomes (i.e., in regression 

problems). Whereas their unsupervised counterparts are used to examine the presence of 

potentially unknown patterns or clusters within a set of information. 

Decision trees (DTs) make up a specific sub-discipline of supervised machine 

learning methods. They come with a multitude of benefits such as their wide applicability 

as a non-parametric model for both classification and regression tasks. In classification 

problems, given labeled training set of features, a tree is grown by iteratively partitioning 

the data set through split rules into leaf nodes (Breiman et al. 1984). These rules come in 

many forms, but generally include measures of node purity (Song and Lu 2015). Purity 

metrics are used to identify the locations at which the dataset can be most closely 

partitioned into unique classes using a single predictor. This process is performed 

iteratively until a stop criterion is reached, which can be in the form of maximum number 

of splits, model performance thresholds, or the point when minimum entropy is reached. 
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Particularly in binary classification problems, these trees remain relatively non-complex 

while being highly effective (Bahel et al. 2020). Pruning can be employed to reduce the 

total number of leaf nodes and simplify the final model. In FT classification, Jin et al., 

(2009) previously used decision tree models to estimate soil FT states using microwave 

observations with success (87% accuracy) in China. 

Random forests (RFs) and bagging approaches leverage this predictive capacity 

by creating ensembles of unique decision trees. In bagging, random subsets of a training 

set are sampled, and models grown through the standard method by using splits across all 

predictors (M). RF approaches follow a similar methodology; however, they induce 

additional randomness by only allowing splits across a random subset of predictors (m) in 

which m < M. These approaches have been shown to result in more robust models for 

unseen data when compared to a single DT (Breiman 2001). 

Random forest classifiers in particular have grown in popularity within the remote 

sensing community due to their effectiveness across a multitude of classification tasks 

and ability to learn complex multi-dimensional relationships (Belgiu and Dragut 2016). 

For example, RFs have been used for remote sensing-based land cover classification (Pal 

2003) and in spatially downscaling spaceborne estimates of precipitation (Mei et al. 

2020). Similar approaches have even been recently applied in classifying lake phenology 

and its relationship to FT cycling (Han et al. 2020). Such approaches enable seamless 

combination of multiple data sets by allowing prediction even in the case of missing data 

while providing predictions at the highest resolution of any single input variable. 
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Figure 45 Model accuracy and relative training time of various supervised machine learning methods 

 
 

 

In assessing the applicability of tree-based models for FT classification, test data 

including several static and Tb observations as predictors over North America are used. 

Figure 45 shows the slower relative training time and reduced performance of various 

classifiers for FT detection tasks compared to DTs. Relative to linear discriminant, 

logistic regression, K-nearest neighbors (KNN), and support vector machine (SVM) 

approaches, DTs have proven the most effective with prediction accuracy approaching 

90%. The relative simplicity of DTs also ensures rapid training, applicability, and in 

many cases enhanced model interpretability. Alone, single decision trees have impressive 

predictive capacity, however, the integration of random forests specifically allows for 

probabilistic model estimates and improves model robustness. These models can allow 

for improved uncertainty estimates and provide valuable information beyond that of 

binary classifiers. 
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Model Parameters and Tuning 

Several parameters selection and tuning decisions must be made when optimizing 

decision tree and random forest models. These provide valuable limits on the model 

framework to avoid overfitting and increase generalization capacity. Metrics such as the 

number of trees within a random forest, maximum splits and minimum node size, feature 

weighting, and sampling techniques, when properly selected, can improve model 

performance and generalization substantially. Other additional modeling considerations 

during the training phase of this project include normalization, tree pruning, split 

criterion, and number of predictors to randomly sample in the case of random forests. 

However, these have been applied consistently across various regional models due to 

minimal effect on model performance. Further sensitivity analyses are included within 

Section 4.3. 

Number of Learners/Trees 

This metric largely defines the complexity of the model. Single decision trees 

provide the baseline of tree-based learners (1 learner) but are inflexible. While these 

models can be particularly effective, the introduction of many trees is applied to improve 

model generalization through creating an ensemble of random learners. More trees also 

allow for improved estimates of class membership probabilities associated with frozen or 

thawed soil states. This value is set at an optimized level in which additional model 

improvement was minimal while also avoiding overfitting. Generally, this value was set 

to 100 learners (200 in the case of very few freezes) as the gain in predictive capacity 

after this point is observed to be near zero. 
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Maximum Allowable Splits and Minimum Leaf Size 

Minimum leaf size and maximum allowable splits provide very similar influence 

on a given RF model. Each leaf represents a terminal node in which model classification 

occurs and presents considerable influence on model complexity and thus overfitting 

potential. For example, a model derived from large datasets such as within this project 

(~50 million feature sets), allowing splits that contain a single data point is unwise. This 

approach can lead to very high model performance scores but provides no predictive 

capacity in cases of unseen data (overfitting). In this project, the maximum number of 

splits is set as a function of the size of a given training set, ranging from 1% of training 

set size to as low as 1/1000th of a percent in the case of classes with very few freeze 

classifications. This value is tuned in the final algorithms, to optimize the performance 

and robustness trade-off. In other words, it is kept as large as possible without 

significantly reducing model performance. In model training the maximum number of 

possible splits is set at 200. In most cases, the leaf size parameter provides the primary 

limit on model complexity and the actual number of splits within each learner remains 

below 50. In deriving clearly traceable results such as when using a single decision tree, 

fewer splits are ideal. 

Weighting of Input Features 

The weight given to a particular correctly classified feature provides a method to 

effectively tune model performance in unbalanced datasets (e.g., many more thawed than 

frozen observations). In this project, we optimize weighting by climate type to ensure that 

there are not excessive frozen or thawed classifications and frozen events are consistently 
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captured. Weights are varied depending on the number of frozen classifications relative 

to thawed classifications, to ensure one dominant class doesn’t become the only one 

predicted. For example, in regions with <1% frozen classifications, the model can 

achieve 99% accuracy by predicting only thawed states. However, this approach will 

omit all cases in which freezes did occur. Notably, these weights do not play a role in the 

trained model, only in the optimization stage.  

In Bag Fraction 

In bag fraction defines the size of the sub-sample used to select data for each tree 

in the random forest. When doing a single DT, the data sampled includes all of the 

training data. However, in random forests, this value controls how the data is subset. The 

sample size in a random forest act as a control of randomness. When this value is set 

higher, there is less randomness, and more of the full set is represented in each tree. 

Conversely, a value that is too small may result in a subset that inadequately represents 

the data. When using a smaller subset, the trees tend to vary more widely which can lead 

to a more generalizable model but may result in reduced model performance due to 

training the model with small sub-samples of the full feature space. In practice, this value 

is selected using bootstrapping in which the sample size is equivalent to the training set 

size (In Bag Fraction = 1), though sampling is applied with replacement so certain 

features are not sampled while others are sampled twice. This leads to around 60-70% of 

the training dataset being used in each tree.  

For this application and in the case of large and diverse data inputs, this sampling 

proportion can be reduced to as low as 10% (0.1) of the training set. Using lower values 
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results in considerable reductions in training time and reduced overfitting potential. For 

most large feature sets in cold climates with abundant frozen classifications, we set this 

value to 20% (0.2). This value was increased (0.4 – 0.6) for smaller datasets with few 

frozen classifications in order to ensure sampling of feature sets classified as frozen. Even 

so, the impact to model performance was relatively small and no significant drop off is 

observed in performance until the In Bag Fraction was reduced to below 1% (0.01) of the 

training set. 

Split Criteria and Split Selection Method 

To quantify value of splits at any tree node, the Gini-Simpson Diversity Index 

(GDI) is employed (Simpson 1949; Sen 2005). This commonly used approach provides a 

measure of node purity, in which a fully pure node represents all features are labeled with 

the same class (i.e., frozen or thawed). GDI measures the probability of a particular 

variable being wrongly classified if randomly chosen. In a fully pure node, this 

probability is equal to zero, as is GDI. In cases in which elements are randomly 

distributed across various classes, GDI approaches unity (1). This provides a satisfactory 

metric of which to estimate optimal splits. Using computed GDI values, optimal splits are 

determined by minimizing GDI over all possible splits (Breiman et al. 1984). This 

approach was tested and shown to provide comparable accuracy to other split criteria 

metrics including maximum entropy and the twoing rule. 

Number of Predictors to Sample 

This hyperparameter is specific to random forest models as classical DTs use all 

input features to determine optimal splits. This metric determines the number of 
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predictors to randomly select and define the next split within each node of the tree. A 

standard rule of thumb involves estimating this value by rounding the square root of total 

predictors. For example, in the case of 20 (Nall) predictive features, 1=>?5@) =

	?J_WL(`1>@@), or 4 features. This parameter was varied in training to find minimal 

model improvement with more than 4 features, as higher Nsample values also result in less 

‘random’ or generalized model. 

Tree Pruning 

Tree pruning is a valuable approach to reduce the number of branches and nodes 

in the tree to improve its interpretability and avoiding overfitting. This is done in a way to 

reduce model complexity without forfeiting much accuracy. In the case of decision trees, 

this method is applied to classification branches contributing minimal model 

improvement until the desired number of splits is met. In the case of random forests and 

ensemble learners, pruning is generally thought to be unnecessary and does not affect 

classification estimates. 

Normalization 

Normalization remains an important consideration in the training of ML models. 

Normalization prevents any single predictor from dominating model performance, simply 

by having larger values. To be effectively applied, the valid range of values need to be 

well understood. In the case of decision tree classification problems, the problem of 

normalization is less critical, as splits are determined dependent on partitioning of class 

labels, not input predictor values. As such MW products are not normalized to retain 
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actual Tb observations and to retain interpretability. For detailed description of each 

predictor used in these models, see Appendix A. 

4.2.3 Feature Creation and Model Development 

Feature Engineering and Training Set Creation 

In addition to satellite Tb observations, two calculated freeze/thaw relevant 

predictors are incorporated into the model. The first, Normalized Polarization Ratio 

(NPR, Dunbar et al. 2018), has been widely used for FT detection in SMAP-FT products 

with good performance in northern regions. NPR approaches have shown the potential to 

detect dielectric changes in water properties which, due to the strong polar nature of 

water molecules, can result in different behaviors across bands. While this approach is 

generally applied to L-band observations (1.41 GHz), we also derive this metric using K-

band (19 GHz) cross polar observations from SSMIS using the approach detailed in 

Equation 3 (Chapter 1). 

The second metric, spectral gradient (SG) is computed as the change in Tb over 

the change in frequency (°K/GHz). Zuerndorfer et al. (1990) were the first to use this 

metric to discriminate FT boundaries. Negative spectral gradients between lower 

frequency to higher frequency bands are shown to correlate well to frozen classes as 

volume scatter darkening in the lower frequencies dominates the response. More 

specifically, Judge et al. (1997) demonstrated the sensitivity of the Ka-band to surface 

dielectric properties and FT state using the 19 to 37 GHz gradient. In this work, we utilize 

the same approach with SSMIS observations, as well as testing a new gradient using 
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SMAP observations between the 1.41 GHz and 37 GHz bands. In theory, this should 

exaggerate the band darkening response observed between 19 and 37 GHz. 

Any model derived through supervised learning techniques is only as accurate as 

the data it is trained on. For this task, a large and quality-controlled set of labeled training 

data is required. In this case, labels are defined using a binary metric representing frozen 

(Tsoil < 0 °C) or thawed (Tsoil ≥ 0 °C) soil states. Following the identification and 

selection of the aforementioned FT classification predictors, these metrics must then be 

matched to in-situ observations and soil FT classifications both in space and time. In the 

case of remote sensing observations, classifications were matched using the nearest-

neighbor approach, in which observational data from the grid cell center nearest a given 

in-situ site is appended to the feature set. However, variability in the temporal component 

may also induce errors as different satellite products may be representative of different 

times. To achieve this, product observational times included in product metadata are 

recorded for each specific site. These timeseries are then matched to the corresponding 

in-situ timeseries, with a 3-to-6-hour observational tolerance, depending on the observed 

rate of change of a given observation (i.e., LST was set to 3 hours, as it generally changes 

more rapidly than MW Tb observations). This allows for increased overlap between data 

originating from different observational platforms and thus a larger set of training 

features. Descriptions of all features in the final training set are included in Appendix A. 

Feature Importance Estimates 

Exploring feature importance provides a method to understand which variables 

provide the most information to a classification or regression task. In this case, 
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understanding how this varies spatially enables improved understanding of which remote 

sensing and land surface variables are most predictive of frozen soil. Random forest 

models are trained using a random sub-set of the training set, to ensure diversity in 

observations used to train each individual tree. The features not selected for a given tree 

are considered to be the out-of-bag features (OOB). Using these OOB features, the error 

of the originally trained tree is computed. Then, values of each predictor variable used to 

define splits are randomly permuted (while others are held constant) and error is again 

calculated on the dataset. The difference in error between the original model minus the 

permuted one provides a measure of feature importance. This approach is generally 

referred to as predictor importance by permutation (Breiman et al. 1984; Breiman et al. 

2001; La Cava et al. 2020). 

If the permutation error is large, it indicates that a predictor was of particular 

importance to the trained model, and vice versa. In other words, if it is high, it means the 

model estimates change significantly when a given variable is randomly re-ordered. If it 

is lower, it means the variable is less so important and thus as its values change, the 

model shows minimal loss in predictive capability. These metrics are then normalized 

within each trained RF (or DT) model by averaging scores across all trees (or a single 

tree) and predictors. Then values are normalized 0 – 1, in which the most important 

predictors achieve higher scores to allow for intercomparisons between regional models. 

Model Performance Metrics 

 The effectiveness of a given model and the importance of various predictors is 

captured through the use several metrics. Namely, these include classification accuracy 
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(Equation 7) as well as precision (Equation 14) and recall (Equation 15). These metrics 

enable thorough assessments classifier performance in binary classification problems. 

Precision details the ability of a product to avoid false positive (frozen) classifications, 

whereas recall measures the ability of a classifier to avoid false negatives (missed frozen 

classifications). In training effective models, we attempt to balance these metrics, with 

increased focus on improving recall scores. 

Equation 14 Precision 

2?-*HIHJW = 	
14<4<

14<4< + 14<'/A
	 

 
Equation 15 Recall 

3-*<KK = 	
14<4<

14<4< + 1'/A4<
	 

 
NFZFZ = the total number of instances where both the model and observation are frozen 
NFZTHW = the total number of instances where the model classifies frozen but is thawed  
NTHWFZ = the total number of instances where the model classifies thawed but is frozen 

Similarly, the F1-score (Equation 16) provides a metric which balances both 

precision and recall giving a more wholistic understanding of classification accuracy 

(Sasaki 2007). It has been used regularly to characterize model performance in land 

surface classification problems for soil (Abraham et al. 2020) and anomaly detection 

tasks (Kulanuwat et al. 2021). This metric places particular importance on the value of 

frozen classifications. For example, with classification accuracy alone, it is very difficult 

to assess model skill in a scenario in which freeze classifications are few (i.e., temperate 

regions). In such areas, a model can have very high accuracy scores by always classifying 

the region as thawed, however, this approach misses instances in which freezes do occur 

resulting in a very poor F1-score. 
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Equation 16 F1-Score 

U+I*J?- = 	2 ∙
2?-*HIHJW	 ∙ 3-*<KK
2?-*HIHJW + 3-*<KK	 

 

All metrics are computed for models using holdout validation in which 75% of a 

given training set is used for training and the remaining 25% is held out of the model and 

used for validation. This approach is used to prevent over fitting. A spatially weighted 

predictor selection approach is also employed, to avoid regions with very large data 

records from being weighted too heavily in the model. Specifically, limits are set on the 

number of soil observations that can be drawn from any single 1° x 1° grid cell 

depending on the median number values across all 1° grids containing data. Values are 

then randomly extracted for each region using these conditions. In the cases of very large 

sets of training data > 5 million features, even smaller random data subsets are used 

(<25% of features). Even so, model performance is shown to remain high (Section 4.3) 

when validated on the large holdout feature sets. 

4.3 Product Performance and Results  

4.3.1 Freeze/Thaw Modeling at Point Locations 

Sites for Point Modeling 

The effectiveness of decision trees and random forests, as well as the various 

regional differences in FT signatures is explored at five (5) unique observational sites, 

representative of different freeze/thaw regimes. This effort presents an investigation into 

the capabilities of DT-based modeling approaches and their accuracy at reproducing site-

specific observations of soil FT states. This work also introduces new probability metrics 
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to incorporate model confidence into classification estimates. Figure 46 details the 

locations of focus sites (numbered 1 – 5) as well as the distribution and features of soil 

temperature observing sites within the complete training set. 

 

 
Figure 46 Soil temperature observational sites. Record duration indicated by marker size, and relative percentage 
of the record with sub-freezing temperatures indicated by color. Red markers numbered 1 to 5 indicate sites where 
decision tree classification models were trained 

 

 
 

Observational sites selected herein exhibit multi-year and continuous records 

across different climate regions and land covers. The selected sites are detailed in Table 

15 and are ordered from most soil freezes (Alaska, ~60% of the multi-year period) to 

least (Texas, <1%). For each site, both DT and RF models are trained, using 75% training 

and 25% validation splits. In the case of DTs, models are limited to 10 splits for 

interpretability, then pruned accordingly to remove such splits which add minimal 

improvement in classification performance. For RF models, 100 unique trees were 
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trained using a maximum of 20 splits. Only non-static features, including MW 

observations, LST, snow cover, and derived metrics are included in model training. 

In Figures 47-51, classifications from the single DTs are shown along with the 

corresponding probabilistic estimates from the RF classifier. This provides an 

opportunity to compare predictor importance, model performance, and uncertainty across 

each unique site. 

 

Table 15 Focus site descriptions. Numbers correspond to sites in Figure 46 

 

 

Decision Tree and Random Forest Model Results 

At the Alaska observational site, characteristic of a sub-polar region with minimal 

vegetative cover, both RF and DTs are shown to be extremely effective (>95% accuracy, 

Figure 47). The coincident timing of snow cover and frozen soil result in snow cover 

presence acting as a strong proxy to soil FT state. Thus, snow cover is selected as the 

feature with the most predictive value (Figure 47C). Microwave classifications in the 

higher frequency bands (19 GHz – 37 GHz) also show increased model value relative to 

SMAP observations in L-band (1.41 GHz). The DT model effectively identifies site 

specific thresholds across bands that optimize performance (Figure 47B). This allows the 

Site (ID) Location Network Climate Frozen % Land cover Terrain (elevation)

Alaska, USA (1) 67.9° N, 
162.3° W SNOTEL Cold climate, no dry 

season 60% shrubland Flat (70 m)

High Mountain Asia (2) 31.6° N, 
91.7° E HMA Polar/tundra, dry 40% grasslands Flat, highlands (4550 m)

Northern Italy (3) 44.3° N, 
10.4° E SoilTemp Cold climate, no dry 

season 25% 63% decidious forest Mountainous (1815 m)

Illinois, USA (4) 40.0° N, 
88.4° W USCRN Cold climate, no dry 

season 10% croplands, 13% forest Flat (212 m)

Texas, USA (5) 33.4° N, 
99.9° W SCAN Arid, cold 0% croplands, 10% forest Flat (441 m)
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model to achieve exceptional accuracy, even in cases of minimal splits (6). Probabilistic 

estimates also clearly identify reduced freeze confidence during diurnal cycles when 

particular predictors are missing and in the transitional periods (i.e., spring thaw, fall 

freeze-up). 

 

 

Figure 47 Decision tree modeling for Alaska, USA site (1). (A) In-situ soil temperature observations with soil FT 
classification and model estimated FT class (from DT) and probability (from RF) (top), (B) DT model framework, 
(C) Predictor importance from RF training 

 
 

 

Over High Mountain Asia and the Tibetan Plateau, which is characteristic of a 

cold dry climate, model performance is reduced (~80%). Minimal snow, cloud, and 

vegetative cover as well as low soil moisture led to large daily swings in soil temperature 

across this region, even in in mid-winter (Figure 48A). This, coupled with a reduced 

freeze signal across dry soils result in higher frequency bands (i.e., 22 GHz) being more 

indicative of soil temperatures (Figure 48C). Spectral gradients are also shown to be of 

particular importance to classification in this region, as indicated by previous efforts of 

freeze detection in similar areas (Zhao et al. 2011). Diurnal temperature swings of as 
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much as 20 °C even in soil temperature, result in a challenging classification. 

Importantly, this uncertainty is captured by frozen soil probabilities around 0.5 even in 

mid-winter by the RF classifier. Still, a simple 4-split DT model (Figure 48B) is shown 

to achieve nearly 80% classification accuracy even across the multi-year period, 

supporting its value as a classifier. 

 

 
Figure 48 Decision tree modeling for High Mountain Asia (HMA) site (2). See Figure 47 for description 

 
 

 

In the mountains of Northern Italy, there exists clear FT seasonality and notable 

soil insulation by the snowpack in winter (Figure 49). In some cases, soil temperature is 

shown to fall below freezing and remain frozen for an extended period due to snow 

insulation (winter 2016, 2017). In contrast, snow is shown to have the opposite effect in 

the winter of 2018 as the soil temperature remains near, but above freezing for the 

duration of winter (Figure 49A). This adds considerable uncertainty to classifications 

during periods with snow cover as soil temperatures tend to remain close to the freezing 
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point and water in its liquid and frozen phases coexist. Due to these challenges, 

classification performance is somewhat reduced, approximately 82%. Relative to other 

locations, 1.41 GHz band observations have increased value to the RF model, suggesting 

their use for detecting thawed soil beneath snow. Even so, higher frequency observations 

more sensitive to surface layer and air temperatures (22 GHz, 37 GHz) are shown to have 

the highest predictive value (Figure 49C). 

 

 
Figure 49 Decision tree modeling for Northern Italy site (3). See Figure 47 for description 

 
 

 

Lower latitude cold constrained regions are characterized by short annual periods 

of frozen ground (i.e., Illinois, USA). Overall model performance remains high (>90%), 

due to extended unfrozen periods. When freezes occur, they are frequently captured, 

however precision scores of the DT remain low (Figure 50). This suggests over 

classification of frozen ground across the region. The importance of snow cover presence 

is a critical predictor in the simple DT model; however, RF modeling suggest both SMAP 

Tb observations and LST provide the most predictive value (Figure 50B). Over such 



 

187 

 

regions complex FT dynamics lead to very low L-band Tb observations (< 192 °K) as 

well as elevated values (> 256 °K) both resulting in freeze classifications. Lack of clear 

FT seasonality make the Illinois site a challenging case study. Here, the inclusion of the 

freeze probability metric is particularly valuable for capturing this uncertainty. 

 

 
Figure 50 Decision tree modeling for Illinois, USA site (4). See Figure 47 for description 

 
 

 

Over drier temperate regions such as Texas, soils may not freeze at all in any 

given year (Figure 51). This makes it particularly challenging to train a single DT model 

to capture soil freeze events without introducing excessive model complexity and many 

splits. The optimized DT model in this case predicts no freezes (no splits), as instances 

with frozen soil occur less than 1% of the time. This results in an accurate model but one 

with no predictive value for freeze detection. For this reason, no decision tree is shown in 

Figure 51. However, while no periods are classified as frozen with the DT, the RF 

algorithm shows reductions in probability of thawed soil during cold periods (Figure 

51A). Regions which experience rare freeze events are particularly challenged using a 
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binary classification for soil. Even though diurnal cycling in winter can result in sub-

freezing temperatures, snow, and surface freeze events. Thus, the introduction of new 

multi-class rules could be considered in future efforts, which distinguish between sub-

surface and air-skin freezes (i.e., frost). 

 

 
Figure 51 Decision tree modeling for Texas, USA site (5). (A) In-situ soil temperature observations with 5-class 
freeze category indicated with binary FT estimates (all thawed, DT) and associated thaw probability (RF) and (B) 
Predictor importance from 5-class RF model 

 

 
 

All site performance summary statistics resulting from these comparisons are 

detailed in Table 16. Training at such point locations provides both a proof of concept and 

a method to examine how well DT-based models work for freeze classification. The 

accuracy of these predictive approaches is shown to vary depending on location. Introduced 
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confidence metrics and probabilistic classifiers also exhibit value for identifying 

challenging classification areas. This is illustrated by regularly capturing changes in model 

confidence and during cases when particular predictors are missing (e.g., diurnal 

differences in observations). 

 

Table 16 Summary results for freeze/thaw classification algorithms at point locations. Numbers correspond to 
locations in Figure 46 

 

 

Unique site signatures have suggested the value of regionally varied algorithms and 

the fusion of multiple remote sensing observations for improving FT classification. While 

feature importance varies between sites, generally snow cover and microwave Tb 

observations provide the best predictive value. Cloud obscuration of MODIS observations 

and different retrieval timings compared to the other bands may cause the reduced value of 

LST at most locations. The training of regionally specific models and the use of categorical 

variables to better constrain such models is shown to be paramount in applying such 

approaches globally. The incorporation of variables like climate, snow cover, topography, 

and land cover have relevance for improving model applicability at larger spatial scales. 

Overall, simple DT models and RF classifiers exhibit similar strong performance, but 

tuning hyperparameters is expected to have large implications for improving the balance 

N Splits Accuracy Precision Recall Accuracy Precision Recall

Alaska, USA (1) 6 95% 0.949 0.972 96% 0.971 0.967

High Mountain Asia - HMA (2) 4 79% 0.859 0.561 80% 0.889 0.55

Northern Italy (3) 6 83% 0.623 0.683 82% 0.745 0.367

Illinois, USA (4) 4 93% 0.544 0.765 93% 0.806 0.232

Texas, USA (5) 0 100% -- -- 100% -- --

Binary FT Decision Tree Binary FT Random ForestSite (ID)
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between model precision and recall performance. The use of RFs also has a particular 

advantage of outputting enhanced probabilistic classifications. 

4.3.2 Global Algorithm Training and Development 

Introduction and Modeling Approach 

The next stage in this project involves scaling up these methods to accurately 

capture FT transitions at continental scales. In doing so, several regions are identified 

through the use of both in-situ sites and long-term climatological records as being non-FT 

constrained. This includes those deemed tropical zones, arid hot regions, and temperate 

regions with dry winters. While the former two classes do not experience sub-freezing 

temperatures; the latter is known to experience such conditions in rare cases. Yet, due to 

the relatively few training sites (N = 10) and no observed soil freeze events, this region is 

masked out. These temperate regions may be added into the FT constrained area in future 

efforts as additional training data becomes available. 

The remaining regions contain nearly 50 million individual training features and 

include a high number of observed soil-freeze events (> 7 million cases). The training set, 

derived from global site data between 2015 and 2019 (few sites extend to 2021), is then 

partitioned into each of the seven (7) remaining climate regions (see Appendix B). These 

include: 

1) Arid, cold 

2) Temperate, dry summer 

3) Temperate, no dry season 

4) Cold, dry summer 
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5) Cold, dry winter 

6) Cold, no dry season 

7) Polar/tundra 

 

Thus, FT modeling presented herein details optimization and performance of 

algorithms for these regions.  

Parameter Sensitivity Analysis 

In order to balance the tradeoff between avoiding false freeze classifications 

(precision) and under freeze classification (recall) a normalized (by site) F1 metric is 

used to assess model performance. Three parameters are optimized for each region-

specific classification model. These include: 

1) Minimum Leaf Size. Taken as a proportion of the total size of the training set. 

This metric is directly linked to the number of allowable splits. For example, a 

minimum leaf size of > 0.5 (50% of data) prevents any model splits, whereas 

small values (e.g., <0.01) allow for many potential tree splits. 

2) Label weights or weight ratio. This is taken as the relative value between 

weight parameters for frozen classifications (Wfrozen) to that of thawed 

classifications (Wthawed). Tuning this value has particular importance in 

unbalanced datasets (many thaws, few freezes). 

3) Number of trees. This metric defines the number of unique learners to use in 

creating the RF ensemble for each region. 
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The results for cold and polar climate regions are presented in Figure 52. 

Weighting ratios are also tuned for both temperate classes but are not shown to the large 

imbalance in training set feature frequency (weight ratios > 100).  

The top panels in Figure 52 suggest that finer trees generally result in improved 

performance but may also reduce model robustness by overfitting. The degree to which 

this performance increased after approximately 100 splits is shown to be minimal. Thus, 

each ensemble member in the random forest is limited to a maximum of 100 splits. In 

most cases the actual number of splits in each member remained well below this level 

while still achieving strong performance.  

 

 
Figure 52 Sensitivity analysis for select random forest parameters 
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Next, the weight ratio is set to normally spaced values (0.5 intervals) from 0.5 to 

10. Depending on the distribution of frozen to thaw classifications in the training set, this 

value was optimized. For instance, regions with similar numbers of frozen and thawed 

classes (i.e., polar, and cold, dry winters) are seen to have an optimal weight ratio near 1. 

Meaning the value of a correct frozen classification has the same influence in model 

training as a correct thawed classification. For other sites, model performance is 

optimized with weight ratios set near 4. 

Lastly, another critical hyperparameter in tuning of RF models is the number of 

learners, or trees. This determines the number of unique trees that will make up the 

random forest. Results suggest that greater than 20 trees cause minimal improvement in 

the model. Still, more trees can result in a more ‘random’ classifier with improved 

generalization capacity by using more data subsets and through the creation of a larger 

ensemble. Thus, for most cold and near polar regions, 100 learners are selected. In 

minimally FT constrained regions (i.e., temperate areas) this was increased to 200 to 

improve the likelihood that numerous learners will include multiple freeze-labeled feature 

vectors in their training. 

For models with larger training sets, around 20% of features were sampled for 

each random tree (In Bag Fraction = 0.2). For those with smaller datasets or fewer 

freezes, this value was set to around 50% (0.5). Additional sensitivity analysis identified 

that this parameter did not affect model accuracy much in the cases of large datasets but 

remained important in smaller datasets with few freezes. 
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Feature Importance and Climate Specific Model Results 

Using the final trained models (Table 17), feature importance estimates are 

computed by region using the permutated delta error approach (Figure 53). To assess 

prediction value across all predictors, each is kept in the model, and the relative 

importance is presented for each climate region. In cold, non-polar/tundra regions, snow 

cover and the amount of surface water adjacent to a given training set have particular 

importance to identifying soil FT states. In drier cold regions with little snow, additional 

variables relating to the topographic profile and SMAP Tb observations (1.41 GHz) are 

found to have increased model importance. 

 

 
Figure 53 Normalized feature importance by climate class. Darker green indicates variables that are more 
valuable to the random forest model. Based on permuted delta error method 
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In temperate regions, microwave observations and metrics derived from such 

observations show similarly high value in delineating frozen soil. This outlines the 

distinct climatological and regional differences in the relative importance of predictors. 

Interestingly, the value of physical surface skin temperature (LST) provides little to no 

added predictive value within each regional model. This suggests that omission of LST 

may be made in future as it does not have explicit sensitivity to soil temperature and data 

availability from cloud obscuration limit its usefulness as a predictor. 

Table 17 presents final training results across all climates. When weighted by 

global FT constrained land area, the trained model achieves nearly 88% accuracy. This is 

considering the complete dataset, even as models are trained using only a small fraction 

of the total feature sets. Specifically, 8% to 33% of the available training data is used for 

training. This value depends both on the amount of available training data and the relative 

density of sites in each unique 1° x 1° pixel represented. This approach prevents any one 

region with high data density from dominating the model training phase. As such, all 

indications suggest a spatially robust model. Accuracy remains comparable if not better 

than the existing stated accuracy of current classifiers (~80-85%) and is soil specific. 

Even in regions with few freeze classifications, recall scores indicate soil freezes are 

captured over 50% of the time. Conversely, this results in reduced F1 scores through an 

increased relative rate of false freezes. Even so, models in these temperate regions 

achieve greater than 99% classification accuracy. 
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Table 17 Model training summary and performance scores by climate region 

 

 

4.3.3 Global Application and Validation 

Model Framework 

As the final stage of product development, trained classifiers are applied globally 

for the 2020 validation period at 0.05° (~5 km) resolution. The general workflow is 

described in Figure 54. As a first stage, non-FT constrained or perennial snow- and ice-

covered areas are masked as never frozen or never thawed, respectively. Snow and ice 

regions are classified according to MODIS IGBP land cover, whereas non-FT constrained 

lands include tropical, arid hot, and temperate, dry winter climates. Pre-trained models 

are then applied to specific relevant climate regions and output binary soil FT 

classifications and associated frozen probabilities (0 – 1) for both morning (a.m.) and 

evening (p.m.) overpass periods. These are representative of soil FT state conditions at 

approximately 6 a.m. and 6 p.m. local solar time. Using masking information and 

probabilistic outputs, a flagging procedure is also implemented as follows: 

Flag 0: No flag (frozen probability < 25% or >75%) 

Polar 47 45.3% 6.9 M 17% 100 82.7% 0.875 0.818

Cold, Dry Winter 8 40.7% 0.6 M 33% 100 90.1% 0.907 0.861

Arid, Cold 104 14.2% 5.6 M 14% 100 86.9% 0.786 0.628

Cold, Dry Summer 7 12.0% 3.8 M 21% 100 83.0% 0.650 0.511

Cold, No Dry Season 275 11.6% 25.6 M 9% 100 83.5% 0.789 0.625

Temperate, No Dry 
Season

104 0.1% 3.9 M 8% 200 99.4% 0.503 0.249

Temperate, Dry 
Summer

31 0.1% 2.2 M 10% 100 99.0% 0.771 0.253

87.6% 0.760 0.590Overall Performance in FT Constrained Regions, Weighted by Class Land Area

Recall F1-score
Number of 

represented 1° x 1° 
pixel regions

Classification 
Accuracy

PerformanceTraining

Soil Freeze % in 
Training Data

Used for 
Training

Total Training 
Feature Sets Ntrees

Climate Region
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Flag 1: Frozen probability between 40% and 60% (high uncertainty) 

Flag 2: If not Flag 1, frozen probability between 25% and 75% (moderate uncertainty) 

Flag 3: Always frozen, ice caps 

Flag 4: Non-freeze/thaw constrained and not classified 

Flag 5: Masked water, defined as regions when >50% pixel is surface water 

The introduction of an additional thresholding step allows for new rules to be 

implemented in the future to avoid false freezes (or thaws) which can be applied globally. 

For example, current SMAP products set areas with TbV observations > 273 °K as 

automatically thawed. While this is not applied herein, similar rules can be implemented 

to improve model performance. Figure 55 details model output layers for the morning 

period on January 30, 2020. The top panel presents binary classifications, the second 

panel frozen soil probabilities, and the bottom presents the distribution of masked regions 

and uncertainty flags. 

 

 

Figure 54 Framework for global freeze/thaw classification using random forests 
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Figure 55 Example outputs from GMU-FT global model for morning (a.m.) period on January 30, 2020 
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The inclusion of probability metrics as presented can be used as a proxy for 

estimate uncertainty. This is an additional benefit of classification through the RF 

approach as compared to existing methods. As an example of its value, the regions with 

missing data from a given sensor on a given day can be directly characterized (see swath 

areas in middle and bottom panels, Figure 55). Since full global repeat cycles of SMAP 

and SSMIS are on the order of 8-days, certain regions in the mid-latitudes are not imaged 

on a daily basis. No interpolation is used herein, thus the number of assumptions is 

minimized and the product presents estimates based on the best available data for a given 

time period. 

Global Validation and Product Comparison 

Using the year 2020, the proportion of the year which is classified frozen by 

various products is presented in Figure 56. Results show comparable distributions across 

each product. In comparisons to SSMI-FT, spatial distributions of annual frozen 

proportion, while similar, have clear reductions over temperate regions (e.g., CONUS and 

much of Europe). Due to the introduction of a soil specific classifier, this approach 

suggests that SSMI-FT indicates freezes in these regions when the soil remains thawed. 

This is expected based on observational capabilities of Ka-band, which is not sensitive to 

the 5 cm depth soil layer and remains more representative of air temperatures in these 

regions. Over such regions, SMAP classifications remain more similar relative to GMU-

FT soil classifications. This agrees with previous results and the large body of literature 

suggesting SMAP L-band observations as a more effective soil state discriminant. 
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The introduction of global uncertainty metrics is also detailed in Figure 56. The 

metric presents the relative frequency of uncertainty flags (40 – 60% frozen soil 

probability) globally for the year 2020. Confidence is shown to be reduced in boreal 

forest regions as well as over HMA and Andes mountains in South America. Based on 

reductions in data availability closer to the equator, vegetation complexity, topographic 

variability, and low moisture conditions in the case of HMA, this assessment of 

uncertainty underlines known observational limitations but is output as a part of the new 

FT classifier. 

 

 
Figure 56 Global validation of GMU-FT against operational FT products 
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In quantifying the relationship between existing products for 2020, a comparison 

of the length of the frozen period (days) is performed over the global domain (Figure 

57). Regions marked as always frozen are excluded from such comparisons. Results 

indicate the new George Mason product (GMU-FT) to be more closely related to the 

ESDR-FT record in terms of the duration of the frozen period (R2 = 0.87) compared to 

SMAP-FT (R2 = 0.75). Specifically, the GMU-FT classifier suggests a considerably 

longer frozen period relative to SMAP-FT in mid-latitude cold regions (60 – 180 frozen 

days) as opposed to the most persistent cold regions (i.e., Tundra) in which frozen 

conditions dominate more than half of the year. In contrast, across both product 

comparisons, a reduction in the number of freezes is observed by GMU-FT in more 

temperate regions (<60 frozen days). Based on limitations of current classifiers at 

detecting freezes in transitional regions when soil remains thawed (Chapters 2 – 3), this 

indicates improved observational capacity of the soil FT state by GMU-FT in such areas. 

 

 
Figure 57 Density plot comparison (0.5° grid) total number of frozen days between freeze/thaw classifiers 
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Using a random subset of 30 soil temperature observing sites with continuous data 

records for the year 2020, the annual frozen period expressed as a fraction of the year is 

compared to remote sensing observations (presented in Figure 56). Against such sites, 

performance metrics suggest GMU-FT classifications have the highest correlation to the 

observed frozen period durations across all sites and products (Table 18). GMU-FT also 

presents the lowest mean absolute error (MAE) and is improved relative to soil FT states 

across all performance metrics compared to SSMI-FT. MAE of GMU-FT (0.09) equates 

to an approximately 5-day improvement in accurately capturing the duration of frozen 

soil relative to other products (0.10-0.11). 

 

Table 18 GMU-FT performance summary of annual frozen proportion compared to FTSPs for the year 2020 

 
 
 

 

Most error is induced by classifications in far northern regions (>59° N) in which 

snow cover insulates the surface and soil temperatures remain slightly above freezing. In 

this case (similar to Figure 49), the observed soil freeze proportion remains near 0, even 
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as products suggest >40% (55% for GMU-FT) of the period is frozen. In such situations, 

FT classification remains particularly challenging. SMAP-FT is shown to be the most 

effective at accurately capturing soil freezes in these cases, though uncertainty remains 

high as soil states are known to vary considerably over small distances depending on 

snow cover, moisture, and other properties (Chapter 3). This remains a limitation of 

using point observations for validation over large regions. Furthermore, soil temperature 

observational uncertainties of embedded sensors on the order of 0.5 to 1.0 °C and 

freezing point depression make these borderline cases particularly difficult to classify. 

Relative FT uncertainty and the likelihood of mixed FT states increase coincidentally in 

these cases. Figure 58 illustrates the reduction in model accuracy with soil temperatures 

within 1 °C of the freezing point (~64%) as compared to cases in which soil temperatures 

are observed to be > 5 °C or < -5 °C (>95% classification accuracy). 

 

 
Figure 58 GMU-FT classification accuracy of soil freeze/thaw state by temperature category using validation set 
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Early validation efforts GMU-FT performance is comparable if not improved 

relative to existing classifiers, especially in capturing soil freeze/thaw state. The 

effectiveness of spatially varied algorithms and the use of random forests offer effective 

FT classification with the benefit of improved characterization (i.e., soil specific state and 

quantifiable uncertainty or model confidence metrics).   

Limitations 

Additional validation efforts over a longer duration (2015 – 2021), with additional 

sites, and with consideration to new metrics such as freeze (and thaw) onset timing 

should be undertaken. Exploring classification accuracy against a larger number of in-situ 

sites and spatially distributed temperature data remains a next logical step in further 

validating these outputs. Density of observing sites is very high over North America and 

Europe, moderate over High Mountain Asia, and relatively sparse elsewhere. The 

expansion of this dataset as more observations become available will be important to 

validating the model and improving classification scores over regions in the southern 

hemisphere and much of Eurasia. The challenge of comparing point to satellite 

observations also introduces inherent errors and uncertainties, especially in cases where 

sub-pixel variability is high. Again, the use of ensemble learners such as random forests 

is intended to allow individual model errors to negate each other, providing the best 

possible classifier. Or in cases of mixed conditions, probabilistic freeze estimates around 

0.5 can be used to quantify uncertainty and the potential existence of mixed soil states. 

Results herein also show that a number of predictors may not provide particular 

value to models in certain regions, thus creating unnecessarily complex classification 
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models. This is especially true in the case of observations with high covariance, which 

includes similar microwave sensing bands. Model simplification in future versions can 

further improve generalizability. In contrast, the considerable training set size and 

diversity of predictors may help in presenting improved uncertainty scores and did not 

present limitations regarding model processing demands and prediction time. The validity 

of this assumption should be investigated further in the future. 

While machine learning comes with a multitude of benefits, achieving model 

interpretability and creating a connection between predictions and known physical 

principles can be a challenge. In many cases, ML models are seen as a black box and 

physically based approaches are preferred. This is especially true for operational 

modeling, as unseen data may limit detection in anomalous conditions. Still, in the case 

of decision trees, trained models are representative of optimized multi-dimensional 

threshold algorithms. Such approaches provide the backbone of existing FT classifiers 

(SMAP-FT and ESDR-FT). As such, the question of model generalizability in the case of 

GMU-FT would also draw into question existing detection approaches. Subsequently, the 

sufficiently large and diverse observational dataset, good validation results, and special 

attention to the avoidance of overfitting suggest this approach as both scientifically valid 

and robust. 

4.4 Chapter Outcomes 

Chapter 4 presents the culmination of work included within this dissertation. The 

training and implementation of an enhanced soil-specific freeze/thaw classification model 

is detailed. Specifically, decision trees and random forests are applied using satellite 
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microwave observations, static land surface variables, and snow cover as predictors. 

First, at various in-situ stations (i.e., point sites) within uniquely different regions, then at 

a global scale using unique classifiers by climate region. Validation results presented 

indicate strong model performance and classifier skill approaching 90% globally. Other 

major outcomes include: 

• Regionally, freeze/thaw signals and the value of various predictive features is 

shown to vary. Differences in climatology including temperature regimes, 

snowfall, and moisture states outline the value of spatially variable classifiers 

• The accuracy of random forest classifiers for defining soil FT states is 

demonstrated, along with the value of introducing a prediction confidence (i.e., 

frozen soil probability) metric 

• Classifications from this new model, termed GMU-FT, are computed for the 

year 2020 and validated against existing remote sensing freeze/thaw products 

from SMAP and the Earth System Data Record (ESDR, SSMIS) 

• Results suggest comparable and largely improved accuracy relative to these 

products for soil freeze/thaw state detection 
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5 RESEARCH CONTRIBUTIONS, FUTURE OPPORTUNITIES, AND 
DISSEMINATION 

A comprehensive assessment of freeze/thaw classifiers, their limitations, and 

opportunities for their improvement is completed in this project. The drivers of spatial 

variability in freeze/thaw cycling are also explored using a combination of field work, 

airborne sensing with Unpiloted Aerial Vehicles, model outputs, and global remote 

sensing observations. The value of combining the strengths of several observations and 

regionally variable classifiers is shown to have exceptional predictive capacity. As a 

result, a new algorithm for soil specific freeze detection is derived and associated 

classification uncertainty metrics are also introduced to improve current freeze classifiers, 

many of which are discovered to have varied physical meanings. 

Regarding project contributions and outcomes, several important findings are 

outlined by task as follows: 

Task 1. Exploring existing freeze/thaw records; their limitations, sensitivities, and 

relationships to land surface variables (Chapters 2 - 3) 

• Existing records have varied relationships to surface temperature states 

including air, skin, and soil temperatures 

• Currently, products remain most representative of air temperature 

• Globally, existing metrics are found to agree 83.5% of the time, with 

highest uncertainty due to variable moisture, climatology, and  land cover 
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• Coastal areas and those with high surface water fraction, snow, and ice 

also challenge current classifiers 

Task 2. Determine the driving factors of freeze/thaw transitions at higher 

resolutions, the potential for resolution enhancement, and utility of new classifiers 

through focused regional studies and in-situ/ground observations (Chapter 3) 

• Snow cover is identified as an especially important control on soil 

freeze/thaw status 

• Binary classifiers are insufficient to accurately represent surface states 

due to high fine-scale variability 

• Topography and land cover type are found to provide important controls 

on the surface energy balance and are the dominant drivers of sub-pixel 

variability 

Task 3. Algorithm and predictor selection, sensitivity analyses, and validation of a 

new data driven global freeze/thaw classifier (Chapter 4) 

• Random forest classifiers are presented as an effective, global scale data 

fusion approach for freeze detection 

• Regionally varied tuning of hyperparameters is used for model 

optimization as regional differences in predictor importance are shown 

• Early validation efforts of GMU-FT suggest global classification accuracy 

of soil states near 88% with comparable or improved performance relative 

to existing operational freeze/thaw products 
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Fusion of both physical principles and machine learning through random forests is 

shown to be a promising combination for global scale classification tasks. Combining 

known sensitivities and band physics, with an exhaustive network of in-situ observations 

provides a classifier directly optimized to the ground truth. Future efforts to modeling 

freeze states leveraging these lessons could provide estimates of surface freeze/thaw 

states on any scale as long as basic surface properties, land cover, snow cover, 

topography, and air temperature is known. Continued refinement and global validation of 

this approach is ongoing as well as is the expansion of the data record to include the 

period of 2015 – present day. This will enable assessments of variability in interannual 

frozen periods and freeze/thaw cycling. Next, the transition from algorithm development 

to implementation for forecasting, agricultural decision making, hydrological modeling, 

and global change studies present potential applications for such a dataset. Continued 

collaborations with the SoilTemp community to grow the usage of this dataset and 

support its improvement are planned. 

Relevant publications coming from this work have been cited in the text and 

included in Chapter 1, which also details two additional manuscripts to be published. 

Many of these results have been shared at leading conferences such as for the American 

Geophysical Union (AGU; 2018, 2019, 2020, 2021) and the American Meteorological 

Society (AMS; 2019). All relevant codes used to derive the GMU-FT classification are 

available publicly on GitHub (https://github.com/jjohns60/GMU_FT). Any requests for 

data sets produced herein should be sent to jjohns60@gmu.edu. Efforts to publish the 

extended record with the National Snow and Ice Data Center (NSIDC) are ongoing. 
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APPENDIX 

Appendix A: Model Prediction Features Detailed 

 

Feature Description References

Climate class

Köppen-Geiger classification of present-day climate class (1980-2016), according to methods 
and outputs in [1]. Reclassified from 30 classes to 10: A-classes combined to 'Tropical'; Bwh, 
Bsh to  'Arid, hot'; Bwk, Bsk to 'Arid, cold'; Cs-classes to 'Temperate, dry summer'; Cw-
classes to 'Temperate, dry winter'; Cf-classes to 'Temperate, no dry season'; Ds-classes to 
'Cold, dry summer'; Dw-classes to 'Cold, dry winter'; Df-classes to 'Cold, no dry season'; ET 
and EF to 'Polar'

Nclimates Number of unique climate classes (Original 30 class scheme, plus open water class) falling 
within each 0.05° grid cell

Land cover
Land cover classification according to MODIS MCD12C1 products [2] using the IGBP 17-
class classification scheme. Decidious classes combined, shrubland classes combined, 
savannas combined, and croplands combined to reduce total classes to 13

Forest proportion

Indicates an estimate of the average proportion of forest cover contained in each 0.05° grid 
cell. Uses data from [2] and taken as the average during the 6-year period from 2015-2020. 
Is a proportion ranging between 0 and 1, computed by the following equation: forest 
proportion = [0.8(%LC forested classes 1-5) + 0.45(%LC woody savanna class 8) + 0.2(% LC 
savanna class 9) + 0.1(% LC cropland class) + 0.25(LC cropland/natural veg class 14)]/80

Water proportion Indicates the average proportion of surface water within each 0.05° grid cell. From [2], the 
included cell water proportion value

Aspect

Indicates the aspect of a given site depending on its slope, calculated from 1/60° elevations 
in [3]. Is categorized using a scheme similar to [4], but adjusted hemispherically. Using this 
method 8 cardinal directions are partitioned as such that odd numbers (1,3,5,7) indicate 
east facing aspects and even numbers (2,4,6,8) indicate west facing. However, in the 
northern hemisphere the north facing slopes receive values between 1 and 4 (south facing 5 – 
8) and in the southern hemisphere the south facing slopes receive values between 1 and 4 
(north facing 5 – 8). Cases in which normal vector is approximately verticcal is indicated by 
0

Topographic Prominence 
Index (TPI)

Computed for each 0.05° grid cell using 1/60° data from [3]. The metric is computed as the 
elevation of the center pixel, minus the average of all surrounding pixels. Is normalized (0 - 
1) where 0 indicates <= -150 m and >= 150 m. Lower values indicate surrounding topography 
is more prominent than center of pixel, while higher values indicate the central pixel as 
higher than the surroundings.

Elevation St. Dev

Calculated as the standard deviation of all elevations within each 0.05° grid cell using the 
1/60° resolution elevation inputs from [3]. Values are normalized (0 - 1) using the range 0 m 
to 500 m. Values above or below this range are set to 0 and 500 respectively before 
normalization

1.41V GHz TB
1.41H GHz TB
19V GHz TB
19H GHz TB
22V GHz TB
37H GHz TB

Land Surface Temperature Thermal infrared band observations of physical surface skin temperature. From MODIS 
global 0.05° skin temperature products 11C1 v061 [9] (4x daily, Terra/Aqua) [9] Wan et al., 2021

Normalized Difference Snow 
Index (NDSI)

Provides the percentage of snow observed over land within each MODIS 0.05° global grid 
cell. Can be cloud obscured, see [10]

[10] Hall and Riggs, 
2021

GSL Snow Cover Extent Weekly, binary snow cover presence from the Rutgers University global snow laboratory at 
24 km grid spacing [11]

[11] Robinson and 
Estilow, 2021

1.41 GHz NPR The normalized polarization ratio (NPR) computed as the difference between 1.41 GHz 
vertical minus horizontal polarization brightness temperatures divided by their sum

19 GHz NPR Same as above, but computed using 19 GHz H- and V-polarized observations

SG 37H GHz - 19H GHz
Spectral gradient (SG) calculated as the difference between the 37 GHz and 19 GHz 
horizontally polarized brightness temperatures, divided by the frequency difference (18 
GHz). In units of °K/GHz

SG 37H GHz - 1.41H GHz Same as above, but computed between the 37 GHz and 1.41 GHz observations
Note: All features used in training are taken as the nearest value to each in-situ site, both in space and time

Vertically and horizontally polarized 1.41 GHz (L-band) microwave brightness 
temperatures derived from SMAP observations [5],[6] at 3.125 km resolution
Assorted vertically and horizontally polarized microwave brightness temperature 
observations in bands ranging from 19 GHz (K-band) to 37 GHz (Ka-band). Higher frequency 
37 GHz observations are matched to 3.125 km grid, whereas others use 6.25 km grid spacing 
[7], [8]

Freeze/Thaw Model Predictor Descriptions

[5] Long et al., 2019; 
[6] Brodzik et al., 

[2] Friedl and Sulla-
Menashe, 2015

[3] ETOPO1; [4] 
Gómez-Plaza et al., 

2001

[7] Brodzik and Long, 
2016; [8] Meier and 

Stewart, 2020

[1] Beck et al., 2018
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Appendix B: Global Maps of Static Predictors at 1/20° (0. 05°) resolution 
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