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ABSTRACT 

IDENTIFICATION AND PREDICTION OF INTRINSICALLY DISORDERED 
REGIONS IN PROTEINS 

Mauricio Oberti, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. Iosif Vaisman 

 

It has been the dominant paradigm in structural biology that a well-defined 

structure determines protein function. Intrinsically disordered proteins (IDPs), which lack 

a stable three-dimensional structure under normal physiological conditions, are a 

challenge to the structure-to-function paradigm. Disorder exists in up to half of the amino 

acids in eukaryotic proteins, and disordered regions are involved in numerous biological 

functions, as a result of their flexibility. Since amino acid sequence is known to 

determine protein structure, sequence information can be used to identify disordered 

regions. Protein disorder is involved in the development of many diseases, and 

identifying disordered regions can help us understand how to use them as potential drug 

targets. The identified regions can also be used to better understand the pathways of 

protein folding and provide insights into protein function. 
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In this study, we developed two machine-learning based algorithms to distinguish 

between disordered and ordered residues within a sequence-based on n-gram frequencies 

content and reduced amino acid alphabets. 

Our results show that using n-gram frequencies is an accurate, computationally 

inexpensive and fast method to predict disordered regions, based on raw protein sequence 

data. Furthermore, we show that an algorithm using a combination of Convolutional 

Neural Networks architecture and reduced amino acid alphabets encoding achieves state-

of-the-art prediction results on the CASP datasets. Both prediction algorithms can 

subsequently aid in the development of next-generation treatments for a variety of 

biomedical applications. 
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1. BACKGROUND AND SIGNIFICANCE 

It has been the dominant paradigm in structural biology that a well-defined 

structure determines protein function. Intrinsically disordered proteins (IDPs), which lack 

a stable three-dimensional structure under normal physiological conditions, are a 

challenge to the structure-to-function paradigm [1]. Disorder exists in up to half of the 

amino acids in eukaryotic proteins [2], and disordered regions are involved in numerous 

biological functions, as a result of their flexibility. Since amino acid sequence is known 

to determine protein structure, sequence information can be used to identify disordered 

regions. Protein disorder is involved in the development of many diseases and identifying 

disordered regions can help us understand how to use them as potential drug targets. The 

identified regions can also be used to better understand the pathways of protein folding 

and provide insights into protein function.  

In this study, we developed two machine-learning based algorithms to distinguish 

between disordered and ordered residues within a sequence-based on n-gram frequencies 

content and reduced amino acid alphabets.  

Our results show that using n-gram frequencies is an accurate, computationally 

inexpensive and fast method to predict disordered regions, based on raw protein sequence 

data. Furthermore, we show that an algorithm using a combination of Convolutional 

Neural Networks architecture and reduced amino acid alphabets encoding achieves state-
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of-the-art prediction results on the CASP datasets. Both prediction algorithms can 

subsequently aid in the development of next-generation treatments for a variety of 

biomedical applications.  

n-grams are a commonly used technique in computational linguistics, 

probability, text categorization, and biology. In this study, an n-gram has been denoted 

as a contiguous string of n amino acid residues in a protein sequence [3]. The primary 

structure, or the amino acid sequence of a protein, determines the protein’s three-

dimensional structure. This implies that disorder, or lack of stable structure, can also be 

encoded in the sequence. A sequence can be decomposed into a list of overlapping n-

grams. n-gram patterns have been previously used to show evolutionary relationships 

between protein sequences and to predict protein secondary structure. A key advantage 

to using n-gram frequencies is that they are a computationally inexpensive way of 

analyzing patterns in protein sequences.  

Current predictors of protein disorder use multiple sequence alignments, 

secondary structure analyses, PSI-BLAST sequence profiles, or distinctive residue 

compositions [4]. These predictors require analyzing and comparing entire sequences, 

taking relatively longer time compared to n-grams, which decompose sequences into 

smaller pieces, each of which can be readily analyzed quantitatively. Computational 

techniques used for predictions are generally referred to as “black-box” models such as 

Neural Networks and Support Vector Machines, and the features that these models 

utilize are generally not fully understood. To help with feature selection, n-gram 
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frequency data can also be used to train decision trees, which can provide more insight 

into how the training data is used to create the decision-making process [3]. 

 

Current disorder prediction methods 

Over 60 protein disorder prediction servers are currently available, although not 

all publicly available [5]. The methods they are based on can be classified in one of the 

following categories: (1) Ab initio or sequence-based, (2) clustering, (3) template based 

and (4) meta or consensus. The methods that can’t easily be assigned to one of the above 

categories fall into the hybrid classification. Below is a brief description of the basis of 

each of the type of method. 

Ab initio methods: They rely almost exclusively on amino acid sequence information to 

make a prediction. Features extracted from the primary sequence, alignment profiles or 

scoring matrices are used as input for statistical models to make predictions of disorder 

regions. This class of methods was widely used in the CASP8 and CASP9 experiments 

and a few examples of it are DISOPRED, ESpritz [6]  and PreDisorder [7]. 

Clustering methods: This approach generates tertiary structure models from the primary 

sequence. It then superimposes the different models onto each other under the assumption 

that positions in ordered regions will be conserved across the models [8] and residues in 

disordered regions are likely to vary. Since this approach doesn’t rely on a training set, it 

is less likely to be biased by the training data.  

Template based methods: Template methods, similar to clustering, predict disordered 

regions of proteins by aligning the input sequence to homologous proteins with known 
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structure. Homologous proteins are found by database search or by fold recognition 

methods. This method is frequently used in combination with other prediction approaches 

and they generally fall into the hybrid category.  

Meta methods: They combine the output of several disordered predictors into a single 

average, which tends to have a moderate increase in accuracy. This is one of the most 

popular methods and is used by metaPrDOS [9] and GSmetaDisorder among others. 

Hybrid methods: These are the methods combining two or more of the previous 

approaches in order to improve prediction accuracy. PrDOS [10] is one common 

example, combining ab initio and template based homologous alignment to output a 

prediction. 
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2. METHODS AND MATERIALS 

Databases and programs 

 
DisProt is a manually curated database collection of intrinsically unstructured proteins. 

Latest release (6.02) of DisProt contains 694 unique proteins. DisProt has been used to 

understand the properties of intrinsically unstructured proteins and as diverse training set 

for numerous methods. 

PDB (Protein Data Bank) is the worldwide repository of information about the 3D 

structures of large biological molecules, including proteins and nucleic acids. The 

structures are typically obtained by X-ray crystallography and NMR spectroscopy and 

submitted by biologists and biochemists from around the world.  

CASP (Critical Assessment of protein Structure Prediction) is a worldwide experiment 

for protein structure prediction taking place every two years since 1994. CASP provides 

research groups with an opportunity to objectively test their structure prediction methods 

and delivers an independent assessment of the state-of-the-art in protein structure 

modeling to the research community and software users. CASP had a specific category 

for protein disorder prediction but it was terminated due to lack of suitable targets for the 

11th edition. 

CAMEO (Continuous Automated Model Evaluation) is a protein structure model 

evaluation resource that is hinged on the PDB pre-release cycle. Each protein is classified 

into three categories based on the difficulty of the structure: hard, medium and easy. The 
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resource provides evaluations for Protein Structure and Contact Prediction on proteins yet 

to be released to the public on a weekly basis. 

CPTAC Program the Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

analyzes cancer biospecimens by mass spectrometry, characterizing and quantifying their 

constituent proteins, or proteome. Mass spectrometry enables highly specific 

identification of proteins and proteoforms, accurate relative quantitation of protein 

abundance in contrasting biospecimens, and the localization of post-translational protein 

modifications, such as phosphorylation, on a protein’s sequence. 

 

Machine learning 

Machine learning is a subfield of computer science at the center of data mining, 

focusing on the development and design of algorithms capable of automatically recognize 

meaningful patterns and make predictions on data [11]. The quality of the patterns and 

information inferred from the data is highly dependent on the information content and 

nature of the data itself. Moreover, specific predictions made for a subset does not always 

imply it will be true in the larger data from which the sample was taken. 

This section is a summary of machine learning methods commonly used in the 

training of disordered region predictors and some of their fundamental principles. They 

fall into the broad category of supervised learning, as a particular instance called 

classification algorithms. They map a given input vector or instance in one of the 

available categories or classes. This assignment is done based on the model learning from 

training instances being labeled with their actual classes (test cases). 
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Support Vector Machine 

Support vector machine (SVMs) are a class of supervised learning algorithm and 

are an extension of simple linear models [12]. SVMs use linear models to implement 

nonlinear class boundaries.  

Given a set of N training instances (𝑥#, 𝑦#)#'() , where 𝑥# is an observation vector 

and 𝑦# is a class label vector [-1,1], the goal of SVM is to learn a linear decision boundary 

or hyperplane that maximally separates instances of each class [-1,1]. The function 

describing the decision boundary is: 

𝑓(𝑥) = 𝑤-𝑥 − 𝑏 

Where x is the vector describing the attributes of a new instance which class is to be 

predicted, w is the normal vector to the hyperplane and 0
||2||

 is the distance to the origin. 

In the instance space, a hyperplane and supporting hyperplanes for a group of 

instances x are defined by: 

𝑤-𝑥 − 𝑏 = 0 

𝑤-𝑥 − 𝑏 = 1 

𝑤-𝑥 − 𝑏 = −1 

The distance margin between the supporting hyperplanes is equal to 5
||6||

 and 

instances on the margin are called supported vectors. 
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Some data may not be completely separated by a linear hyperplane, SVMs should 

account for a degree of misclassification. Taking into account the slack the hyperplane 

equation for a set of points x can be written as 

𝑦#(𝑤-𝑥 − 𝑏) ≥ 1 − ξ#	, 1 ≤ 𝑖 ≤ 𝑛 

Using Lagrange multipliers and quadratic programming techniques to solve the 

minimization problem, the maximum margin hyperplane can be written as a function of 

the support vectors  

𝑥 = 	𝑏 + Σα#y#𝑎(𝑖) ∙ 𝑎 

Where 𝐲𝒊 is the class value for a(i), b and 𝛂𝒊 are numeric parameters and a 

represents a new instance to be evaluated.  

The dot product is also called kernel function and allows mapping the original 

instance space to higher dimensional space (kernel trick). Selecting an appropriate kernel 

function allows finding non-linear decision boundaries to better fit the data. 

 

Naïve Bayes 

A naïve Bayes classifier (NBC) is based on Bayes’ theorem which assumes that 

each feature in a dataset is independent of one another. This assumption of feature 

independence is the naivety of the classifier, but the NBC has been shown to often 

outperform several sophisticated classification algorithms [13]. One of the advantages of 

the NBC is that only a handful of training data is needed to estimate the parameters 

necessary for classification. Because of the feature independence assumption, only the 

variances of the features for each class are calculated. 
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Let x = [x1, x2, …,xk]T be the feature vector. To label x in one of the M classes, C1, 

C2, …, CM, the posterior probability of a class, Ci, given the feature vector, x, is: P(Ci|x). The 

NBC assigns x to a class Č with the highest posterior probability among M classes 

Č = 𝑎𝑟𝑔𝑚𝑎𝑥#J𝑃(𝐶#|𝑥) 

The posterior probability of each class P(Ci|x) is calculated by 

𝑃(𝐶#|𝑥) =
𝑃(𝑥|𝐶#). 𝑃(𝐶#)

𝑃(𝑥)  

Since the NBC has the assumption that all features are independent of one another, P(x |Ci) 

can be calculated by 

𝑃(𝑥|𝐶#) = 	∏O'(
P 𝑃Q𝑥OR|𝐶# 

where k is the total number of features. Both P(Ci), the prior probability of each 

class, and P(x) can be ignored due to uniformity and constant assumption, respectively. 

Thus, the scoring function can be rewritten as 

Č = 𝑎𝑟𝑔𝑚𝑎𝑥#	∏O'(
P 𝑃Q𝑥OR|𝐶# 

 

Random Forest 

Random forests is a notion of the general technique of random decision forests 

that are an ensemble learning method for classification, regression and other tasks, that 

operate by constructing a multitude of decision trees at training time and outputting the 

class that is the mode of the classes (classification) or mean prediction (regression) of the 

individual tree [14]. 
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Each tree gives a classification, and it is said that the tree “votes" for that class. 

The forest chooses the classification having the most votes, over all the trees in the forest. 

Each tree is created as follows [14]: 

• If the number of cases in the training set is N, sample N cases at random - but 

with replacement, from the original data. This sample will be the training set 

for growing the tree. 

• If there are M input variables, a number m<<M is specified such that at each 

node, m variables are selected at random out of the M and the best split on 

these m is used to split the node. The value of m is held constant during the 

forest growing. 

• Each tree is grown to the largest extent possible. There is no pruning. 

The original paper on random forests [15] shows that the forest error rate depends on two 

things [14]: 

• The correlation between any two trees in the forest. Increasing the correlation 

increases the forest error rate. 

• The strength of each individual tree in the forest. A tree with a low error rate 

is a strong classifier. Increasing the strength of the individual trees decreases 

the forest error rate. 

Reducing m reduces both the correlation and the strength. When increased, it increases 

both. Somewhere in between is an optimal range of m, which is usually quite wide. This 

is the only adjustable parameter to which random forests is somewhat sensitive. 
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Artificial Neural Networks 

Neuron	models	
 

The building blocks of a neural network and part of every network architecture 

are the neurons. Neurons are often referred to as units and are mathematically equivalent 

to activation functions. Two types of neuron models are used in current state-of-the-art 

implementations of deep convolutional neural networks [16]: the rectified linear unit 

(ReLU) and the softmax unit. We also review two other activation functions (binary 

threshold neuron and hyperbolic tangent neuron) to put the benefits of ReLU and softmax 

into context. 

 

Binary Threshold Neuron 

 

𝑦 = S1	𝑖𝑓	𝑀 ≤ 𝑏 +	U𝑥# ∙ 𝑤#

V

#'(

, 𝑤ℎ𝑒𝑟𝑒	𝑀	𝑖𝑠	𝑎	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

This activation function behaves very similarly to a biological neuron model.  The 

output y takes a binary decision, either to activate or not. If the input parameters met the 

threshold for activation, a signal is sent as output. Despite being closer to a biological 

neuron than other activation functions, it is not differentiable. This makes it impossible to 

use local greedy optimization learning algorithms such as gradient descent, which 

computes the derivatives of the activation function in order to reduce the error. 
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Logistic Sigmoid Neuron 

 

𝑦 = 	
1

1 + exp	(−𝑧) , 𝑤ℎ𝑒𝑟𝑒	𝑧 = 	U𝑥# ∙ 𝑤#

V

#'(

	 

 

Like the binary threshold neuron, the output domain of this neuron is bounded by 

0 and 1. The main advantages of using this activation function are that it is fully 

differentiable and it is non-linear, which helps to increase performance [17]. The main 

disadvantage of this model is that it is computationally expensive to compute. 

 

Rectified Linear Neuron (ReLU) 

 

𝑦 = max{0, 𝑏 +	U𝑥# ∙ 𝑤#

V

#'(

} 

 
The rectified linear neuron is not fully differentiable or bounded above. It only 

has two values for slopes, so its derivative with respect to xi can only be 0 or wi. Despite 

its simpler appearance when compared to the other activation models, it is very efficient 

to compute in terms of value and partial derivatives. This simplicity enables much larger 

network implementations [18] and has been demonstrated to enable better training of 

deeper networks [19]. ReLU introduces a non-linearity with its angular and is currently 

the most popular activation function used in deep neural networks [20].  
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Figure 2.1 Logistic sigmoid (left) and rectified linear (right) activation functions 

 

Softmax Neuron 

𝑦O =
exp	(𝑧O)

∑ exp	(𝑧#)V
#'(

, 𝑤ℎ𝑒𝑟𝑒	𝑧O = 		U𝑥# ∙ 𝑤#

V

#'(

+ 𝑏 

 
The equation of a SoftMax neuron needs to be understood in the context of a layer 

of k such neurons within a neural network. The notation yj corresponds to the output of 

the jth SoftMax neuron, and wi,j corresponds to the weight of xi as in input for the jth 

SoftMax neuron. SoftMax function takes as input the vector of all the SoftMax neurons 

z1, z2, ..., zk, and normalizes it into a probability distribution consisting of K probabilities 

[16]. After applying SoftMax, each component will be in the interval (0,1), and the 

components will add up to 1 so that they can be interpreted as probabilities. This makes 

the SoftMax layer ideal for classification; neuron j can be made to represent the 

probability that the input is an instance of class j. One important point about the SoftMax 

function is that its derivative is quick to compute, and it is given by hi
hj
= i

(ki
. 
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Feed-forward	Architecture	
 

A feed-forward neural network is a form of artificial neural network where 

connections between nodes form a directed acyclic graph. A node represents an 

activation function f, an edge is the composition of two activation functions f ◦ g, and an 

edge weight is a parameter of f. This defines an input and output layer and enables the 

representation of a mathematical function [16]. The feed-forward architecture means that 

data travels in one direction across the network, from the input nodes, through the hidden 

nodes and the output nodes. 

Shallow Feed-Forward Neural Networks The most straightforward feed-forward neural 

network, called the perceptron, consists of a single layer of output nodes. The inputs are 

fed directly to the outputs via a series of weights. The first neural networks introduced in 

the 1960s [17], were of this type and used a binary threshold activation function. This 

architecture severely reduces the function space, and the single layer perceptrons are only 

capable of learning linearly separable patterns. This was generalized and proved [21] and 

lead to a move away from artificial neural networks for machine learning by the 

academic community during the late 1970s. However, a single-layer neural network can 

compute other activation functions instead of a step function. When the logistic sigmoid 

function is used as activation, the single-layer network is identical to the logistic 

regression model, widely used in statistical modeling. 

 Deep Feed-Forward Neural Networks This class of network is also called Multilayer 

Perceptron (MLP) and consists of multiple layers of computational units, interconnected 

in a feed-forward way. Each neuron in one layer has directed connections to the neurons 
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of the next layer and can be represented by a directed acyclic graph made up of more than 

two layers. The network units usually apply the sigmoid function as the activation 

function. The hidden layers, which roles are not set from the start, are learned throughout 

the training. When successfully trained, each neuron becomes a feature detector [17]. 

It can be mathematically proven that MLPs are universal approximators [22]. The 

universal approximation theorem for neural networks [23] states that every continuous 

function that maps intervals of real numbers to some output interval of real numbers can 

be approximated arbitrarily closely by a multi-layer perceptron with just one hidden 

layer. This result holds for a wide range of activation functions and solves the initial 

limitation faced by perceptrons. 

	

Backpropagation	

In the context of multi-layer feed-forward neural networks and supervised 

training, backpropagation is an algorithm used to train a neural network. The objective is 

to learn the appropriate internal representations to allow it to learn any arbitrary mapping 

of input to output [24]. Gradient descent relies on the partial derivatives of the error (or 

cost) function with respect to each parameter of the network. The backpropagation 

algorithm is an implementation of gradient descent which efficiently computes these 

values. 
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Compute Error-Weight Partial Derivatives 

Let t be the target output and let y = (y1, y2, ..., yP) be the actual value of the 

output layer on a training case. The error is given by 

𝐸 = 𝐶(𝑡 − 𝑦) 

Where C is the chosen cost (or loss) function. The error-weight partial derivatives are 

calculated using the chain rule twice and given by: 

𝜕𝐸
𝜕𝑤#,O

=
𝜕𝐸
𝜕𝑦#

∙
𝜕𝑦#
𝜕𝑛𝑒𝑡 ∙

𝜕𝑛𝑒𝑡
𝜕𝑤#,O

 

 

The derivative no
np
	is numerically obtained by perturbing x and taking the change in f(x). 

The advantage of this formula is that instead of individually perturbing each weight wij, 

only the unit outputs yi are perturbed. In a neural network with k fully connected layers 

and n units per layer, this amounts to Θ(k · n) unit perturbations instead of Θ(k · n2) 

weight perturbations [16]. This means that backpropagation scales linearly with the 

number of neurons making it very efficient to calculate even on large networks. 

 

Weight Values Update with Gradient Descent 

The learning rule is given by: 

𝑤#,qr( = 𝑤#,qr( + τ	 ·
𝜕𝐸
𝜕𝑤#,q

 

Being τ the learning rate 
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Weight values move in the direction that will reduce the error faster, which is the 

direction of steepest descent on the error surface (given by the partial derivative). 

Gradient descent converges (wi,t+1 equals wi,t+1) when the partial derivative reaches zero. 

This corresponds to a local minimum on the error surface. Figure 2.2 shows two training 

sessions where the only difference is the initialization of the two weights, and the minima 

attained in each case are different [16]. Gradient descent with backpropagation does not 

guarantee to find the global minimum of the error function, but only a local minimum. 

This is caused by the non-convexity of the error functions in neural networks. 

 
Figure 2.2 Error surface illustrating local minima issue 

 

Stochastic Gradient Descent 

Stochastic gradient descent (SGD), is an incremental implementation of the 

gradient descent algorithm. To perform the weight updates, the partial derivatives are 

obtained by averaging the weights over a randomly selected subset of the training set, 
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instead of the full set. These randomly selected groups are referred to as mini batches and 

the algorithm implementation as mini batch training [17]. 

	
Overfit	

Highly expressive and parameterizable models such as deep feed-forward neural 

networks are prone to overfit. This means that the model may work perfectly over the 

training set but will fail to generalize and perform poorly on unseen data. A good 

illustration of the overfitting problem is shown in Figure 2.3 [16]. This regression 

example tries to fit a polynomial curve of different orders (0, 1, 3, 9) to a set of points 

sampled uniformly with noise from a curve. 

 

 
Figure 2.3 Overfit as polynomial order increases 
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Cross Validation and Early stopping 

Cross validation is a method for estimating the generalization accuracy of a 

supervised learning algorithm. It consists in separating the labeled dataset into a training 

set, a validation set, and a test set. The partial derivatives are computed from the error 

over the training set, but the function that is retained at the end of training is the one that 

minimizes the error over the validation set [16]. The test set is used to measure the 

performance (by a chosen metric). The separation between the test set and the validation 

set is to obtain a stochastically impartial measure of performance. 

Early stopping is a form of cross validation that aims to prevent overfitting by 

allowing the training algorithm to continue while the validation error decreases. Training 

stops as soon as the error in the validation set increases, even if the training error is still 

decreasing.  

 

Dropout 

Dropout is a regularization technique aimed to reduce overfitting in deep neural 

networks by preventing complex co-adaptations on the training data [16]. Dropout 

randomly turns off a fixed proportion k ∈ (0, 1) of neurons at every training iteration, but 

uses the entire network (with weights scaled down by k) at test time. This significantly 

reduces overfitting and gives major improvements over other regularization methods 

[25]. At test time, the average of all models is used, and it can be seen as a powerful 

ensemble method.  
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This technique has been shown to improve performance on the MNIST image 

classification benchmark task [26], though this increase is only significant when 

compared to models where neither data augmentation, convolutional layers or 

unsupervised pre-training are used. 

 

Deep	Convolutional	Neural	Networks	
 

Convolutional neural networks (CNNs) are deep feed-forward neural networks 

containing at least one convolutional layer. As a general rule, deep neural networks are 

difficult and hard to train, but convolutional neural networks (using ReLU activation 

functions) are an exception to this [27]. They were inspired by the visual system’s 

structure, obtaining and maintaining state-of-the-art performances on several computer 

vision tasks [20]. A convolutional layer takes advantage of the spatial structure of the 

inputs which makes them different from a traditional fully connected layer. It imposes 

specific operations on the data before and after the data is fed to the activation functions 

[16]. Figure 2.4 shows the standard structure of a CNN, consisting of alternating 

convolutional layers and pooling layers (often each pooling layer is placed after a 

convolutional layer) [27]. The last layers are a small number of fully-connected layers, 

and the final layer is a SoftMax classifier which makes the final class prediction. 
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Figure 2.4 Two convolutional layer neural network 
 

Sliding kernel 

The convolutional layer is comprised of a set of learnable kernels or filters tasked 

to extract local features from the input. Each kernel is used to calculate a feature map. 

The units of the feature maps can only connect to a small region of the input, called the 

receptive field [27]. A new feature map is typically generated by sliding a filter over the 

input. The sliding kernel is defined as a k × k matrix W that is applied to k × k windows X 

of the object by performing the matrix dot product ∑ ∑ 𝑥#O ∙V
O'(

Vk(
#'v 𝑤#O. 

This is equivalent to the vector product component of the generic neural network 

inputs combination 𝑧 = 𝑏 +	∑ 𝑥# ∙ 𝑤#wk(
#'v . The pixel matrix representation of the entire 

image is flattened into the vector x, the weights of the kernel are flattened into a portion 

of the weight vector w, and all weights corresponding to a pixel that is not part of the 

window are set to zero [16]. 
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All units share the same filters among each feature map, reducing the number of 

parameters and increasing the ability to detect the same feature, regardless of its location 

in the vector input [28]. 

 

Class Imbalance 

Class imbalance is defined as the situation where the sample distribution of 

classes is significantly non-uniform, some classes have a significantly higher number of 

examples in the training set than other classes [16] [29]. The protein disorder prediction 

problem is an example where the training set present these characteristics, being the 

disordered class under-represented when compared to the ordered class. It is established 

that class imbalance can have a significant detrimental effect on the training of traditional 

classifiers and that it also affects deep convolutional neural networks [29]. Class 

imbalance can be addressed at the data or classifier level. Undersampling and 

oversampling are two data level methods which have been shown to perform better in the 

context of CNNs [29]. Oversampling, on its most basic implementation, replicates 

randomly selected samples from minority classes until achieving a balanced data set. 

Undersampling achieves the same results by randomly removing members of the 

majority class.  

 

 



23 
 
 
 

Initial problem exploration 

In order to explore the different machine learning methods, parameters and how 

they affect the prediction capabilities of our models, we developed a highly 

parameterizable model builder trained on a smaller dataset (DisProt). This simplified 

version, allowed us to explore different strategies for feature extraction and generation, 

sliding window construction, reduced amino acid alphabets, minimum data set size and 

machine learning methods. The findings and software artifacts from this exploratory 

work were used in the implementation of the final algorithms. 

 

Data Retrieval and datasets generation 

For our exploratory models, disordered and ordered regions were obtained from 

the Database of Protein Disorder (DisProt) version 6.02. DisProt dataset is a set of 

proteins containing experimentally determined IDRs using a variety of indirect 

biochemical methods. A total of 694 sequences were extracted from the online FASTA 

file, each of which at least 27 residues long. A total of 347,037 residues were analyzed 

(265,599 ordered and 81,438 disordered) in order to construct the initial complete set. A 

balance dataset was created by randomly drawing the same number of ordered and 

disordered residues from the complete set. Using this technique, a maximum set size of 

162,876 residues is possible but for practical reasons, we limited the maximum size to 

80,000. Datasets from the Critical Assessment of protein Structure Prediction 

experiments (CASP8, CASP9, and CASP10) were used for initial benchmarking and 

parameter selection (containing 122, 117 and 94 sequences respectively).  The balanced 
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dataset was randomly divided into disProt_TRAIN and disProt_TEST, each set 

containing 70% and 30% of the residues respectively.  

Figure 2.5 and Figure 2.6 show the distribution of the length of the disordered 

regions in the source datasets. The four datasets look very similar in terms of the 

distribution of IDRs lengths, with the exception of DisProt data, which contains longer 

IDRs. 

 

 

 
 
 

Figure 2.5 Distribution of length of disordered regions in the CASP8, CASP9 and CASP10 datasets 
 
 

CASP8 CASP9 

CASP10 
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Figure 2.6 Distribution of length of disordered regions in 

DISPROT datasets.  
 

n-gram frequencies 

n-gram frequencies are used as the primary target feature on all of our exploratory 

models. We calculated frequencies for each of the 347,037 residues in the DisProt 

database using a sliding window approach. The frequency of a certain n-gram in a given 

window is the number of times the n-gram appears in the window out of the total number 

of n-grams in the window. n-gram frequencies were calculated as follows: 

fn-gram	=	
i
m 

m	=	w	-	n	+	1 

i represents the number of times the particular n-gram occurs in the window, m is 

the total number of n-grams in the window, and w is the window size.  

n-gram frequencies were then normalized in order to prevent the frequency of a 

feature from skewing the decision process. The following shows how the 3-gram “BBB” 

was normalized, as an example: 
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qBBB = 
fBBB

fB*	fB* fB 
 

As is shown, an n-gram frequency was normalized by dividing the frequency by the 

product of the frequencies of each of its constituent (reduced) residues. The residue 

frequencies were calculated from all the sequences in the initial training data set. Each 

residue possessed a 3n-dimensional feature vector with the normalized frequencies of all 

possible n-grams. The disordered and ordered residues were labeled into two different 

classes for machine learning. 

 

Alphabet Reduction 

The 20-letter amino acid alphabet had to be reduced to a 3-letter alphabet in order 

to simplify and quicken the machine learning process, as the model would have to 

analyze fewer n-grams during training and testing. Another problem with using the 

original 20-letter alphabet is the total number of features (n-grams) would exceed the 

number of sequences. By reducing the number of letters in the alphabet to three, and thus 

decreasing the number of possible n-grams, the number of sequences would be almost 15 

times the total number of features, so it would be highly unlikely for the model to overfit.  

We explore five reduced amino acid alphabets taken from outside sources (Table 

2.1). Residues can be clustered based on various properties, including chemical and 

genetic properties. A critical feature of these alphabets is that they cluster residues in 

ways that prevent the loss of key biochemical information. 
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Table 2.1 The five initial reduced alphabets and their sources. Each letter contains a cluster of amino acid 
residues (one-letter abbreviations). The residue clusters were denoted by the letters “B”, “J”, and 
“U” in this study. 

 
Reduced Alphabet Letter 1 (B) Letter 2 (J) Letter 3 (U) Reference 

1 CFILMVWY AGHPRT DEKNQS [30] 
2 AFGILMPV DEKR CHNQSTWY [31] 
3 CFILMVWY  AGPST  DEHKNQR  [32] 
4 DHIMNVY EFKLQ ACGPRSTW [33] 
5 ACGILMPSTV EKRDNQH FYW [34] 

  

Feature extraction and process Automation 

 A collection of Java/Groovy scripts were written for data parsing and 

extraction, normalization, alphabet reduction, n-gram frequency calculations and 

generation of receiver operating characteristic (ROC) curves. The scripts were 

streamlined in such a way that automated the entire process from parsing the sequence 

data in the source databases to creating comma-separated values (CSV) files with the 

feature vectors for each sequence. Weka libraries [35] were used to calculate the ROC 

Area for each one of the sets. 
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Figure 2.7 Data process and script diagram 

 

Parameter selection and evaluation 

 In order to construct an optimal model, sets of different parameters and 

values were initially selected based on empirical data and literature [36][37]. 

 

Table 2.2 Tested parameters and values 
 

Parameter Tested Values 

Training Dataset Size 1000, 2000, 5000, 10000, 20000, 30000, 50000, 80000 

Sliding Window Size 9,11,15,19,23,29,39,51,71,81,91 

Alphabet Reduction Mapping 1,2,3,4,5 

n-gram 3,4 

Prediction algorithm Logistic Regression, Random Forest 
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A total of 1760 models were created using DisProt database as the base dataset. Each 

model was used to test its predictive value against each CASP dataset and performance 

metrics were stored in a local database. The main metric used for comparison was an 

average of the AUC for the three CASP datasets (AUC_AVG). Datasets with less than 

10,000 observations showed a lot of variabilities and were filtered out from further 

analysis. Figure 2.8 shows an optimal dataset size between 50,000 and 80,000 

observations. 

 

 
 

Figure 2.8 Dataset size performance, learning curve 
 

Machine learning method and n-gram selection accounted for most of the improvement in 

performance. Figure 2.9 shows Logistic Regression and 3-grams having a better 

performance across tested models. 
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Figure 2.9 Algorithm and n-gram performance (dataset size greater than 10,000) 

 

There is evidence that window sizes of at least 19 residues are necessary to capture 

secondary structure features [36]; this may not be necessarily true for disorder prediction 

and n-gram. We tested several window sizes ranging 9-91 residues long; Figure 2.10 

shows a clear improvement in performance when larger windows are used (greater than 

71 residues). 
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Figure 2.10 Sliding window size performance (3-gram, Logistic Regression) 
 

Finally, there seems to be significant improvement by using mapping Alphabet 1 and 3, 

as shown in Figure 2.11. 

 

 
Figure 2.11 Mapping alphabet performance (3-gram, Logistic Regression, Window size greater 71) 
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Prediction Algorithms Development 

Based on the findings from our exploration phase, we developed two slightly 

different algorithms to predict disordered protein regions. For the full algorithm 

development, we used a more extensive but less accurate training and test set based on 

PDB sequences. This extended set allowed us to experiment with more sophisticated 

machine learning methods that required a large number of instances during training. In 

particular, we expand our tests to include Random Forest and Convolutional Neural 

Network architectures. We also extended our reduced amino acid alphabet set to include 

an additional alphabet based on information content [38]. Experimentation with various 

window sizes leads us to select a somewhat bigger window (W=101) in both cases. 

Regarding feature generation, we adopted two different approaches depending on 

the machine learning classification method implemented. For Random Forest based 

method (Chapter 4) we use 3-grams frequencies calculated over reduced amino acid 

alphabet sequences. Our Convolutional Neural Network models are trained directly over 

the 3-letter reduced amino acid sequences without any further feature extraction (Chapter 

5). 
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3. SPECIFIC AIMS 

Problem statement 

The objective of this dissertation is to develop a novel protein disorder prediction 

method based on n-grams frequencies and machine learning principles. The underlying 

hypotheses behind this work are:  

• N-gram frequencies produce a signal that we will be able to detect through 

machine learning methods and used to predict order/disordered regions 

accurately. 

• Reducing the amino acid space from a 20-letter alphabet to a 3-letter 

alphabet will still make the signal detectable, despite the reduction in 

information content. 

To assess the efficiency of this method, it will be benchmarked against existing tools 

using CASP targets and a selected number of PDB structures.  

The specific aims that will be addressed are: 

1. Algorithm development and implementation  

a. Develop an n-gram based approach to classify individual residues in 

protein sequences into one of the following classes (disorder, order). 

b. Calculate a position-dependent disorder score for each individual 

residue in the analyzed sequence. 
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c. Benchmark the performance of the method against existing models 

using proteins from the CASP experiments, as well as a large subset of 

proteins extracted from PDB database. 

2. Explore advanced machine learning methods to improve on the 

accuracy and prediction capabilities of our original n-gram based 

algorithm. 

3. Develop a parameterized online resource for the prediction of 

disordered residues of a protein chain from its amino acid sequence-

based on our best performant method.  
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4. IDENTIFICATION AND PREDICTION OF INTRINSICALLY 
DISORDERED REGIONS IN PROTEINS USING N-GRAMS 

In this chapter, we present the paper submitted to the 8th ACM Conference on 

Bioinformatics, Computational Biology, and Health Informatics (ACM BCB) and 

published as part of the Conference proceedings [39]. 

 

Abstract 

Intrinsically disordered proteins (IDPs) play an important role in many biological 

processes and are closely related to human diseases [40]. They also have the potential to 

serve as targets for drug discovery, especially in disordered binding regions [41], [42]. 

Accurate prediction of IDPs is challenging, most methods rely on sequence profiles to 

improve accuracy making them computationally expensive. 

This paper describes a method based on n-gram frequencies using reduced amino 

acid alphabets, which tries to overcome this challenge by utilizing only sequence 

information. 

Our results show that the described IDP prediction approach performs at the same 

level as some of the other state-of-the-art ab initio methods. However, the simplicity of n-

grams allows constructing decision trees which can provide important insights into 

common patterns and properties associated with disordered regions. 
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Introduction 

It has been the dominant paradigm in structural biology that a well-defined 

structure determines protein function. Intrinsically disordered proteins (IDPs), which lack 

a stable three-dimensional structure under normal physiological conditions, are a 

challenge to the structure-to-function paradigm [43]. Disorder exists in up to half of the 

amino acids in eukaryotic proteins, and disordered regions are involved in numerous 

biological functions [4], as a result of their flexibility. Since amino acid sequence is 

known to determine protein structure, sequence information can be used to identify 

disordered regions. Protein disorder is involved in the development of many diseases, and 

identifying disordered regions can help us understand how to use them as potential drug 

targets [41], [44], [45]. The identified regions can also be used to better understand the 

pathways of protein folding and provide insights into protein function. 

In this study, machine-learning classification techniques will be applied to 

distinguish between disordered and ordered residues within a sequence-based on n-gram 

frequencies content. Initial results show that using n-gram frequencies is an accurate and 

computationally inexpensive method to predict disordered regions, based on raw 

sequence data. This method of prediction can subsequently aid in the development of 

next-generation treatments for a variety of biomedical applications. 

N-grams are a commonly used technique in computational linguistics, probability, 

text categorization, and biology [46]. In this study, an n-gram has been denoted as a 

contiguous string of n amino acid residues in a protein sequence. The primary structure, 

or the amino acid sequence, of a protein determines the protein’s three-dimensional 
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structure. This implies that disorder, or lack of stable structure, can also be encoded in the 

sequence. A sequence can be decomposed into a list of overlapping n-grams. N-gram 

patterns have been previously used to show evolutionary relationships between protein 

sequences and to predict protein secondary structure [46]. We also successfully used n-

gram analysis to predict functional properties of proteins, including drug resistance [47]. 

Current predictors of protein disorder use multiple sequence alignments, 

secondary structure analyses, PSI-BLAST sequence profiles, or distinctive residue 

compositions [4]. These predictors require analyzing and comparing entire sequences, 

taking relatively longer compared to n-grams, which decompose sequences into smaller 

pieces, each of which can be readily analyzed quantitatively. Computational techniques 

used for predictions are generally “black-box” models such as Neural Networks and 

Support Vector Machines. In addition, the features that these models use are not fully 

understood. To help with feature selection, n-gram frequency data can also be used to 

train decision trees, which can provide more insight into how the training data is actually 

used to create the decision-making process. 

 

Experimental and Computational Methods 

Current prediction methods 

Over 60 protein disorder prediction servers are currently available, although not 

all publicly. The methods can be classified in one of the following categories [5]: (i) Ab 

initio or sequence-based, (ii) clustering, (iii) template based and (iv) meta or consensus. 

The methods that can’t easily be assigned to one of the above categories fall into the 
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hybrid classification. Below is a brief description of the basis of each of the type of 

method. 

Ab initio methods. They rely almost exclusively on amino acid sequence 

information to make a prediction. Features extracted from the primary sequence, 

alignment profiles or scoring matrices are used as input for statistical models to make 

predictions of disorder regions. This class of methods was widely used in the CASP8 [48] 

and CASP9 [49] experiments. A few examples of it are Disopred [50], ESpritz [6] and 

PreDisorder [7]. 

Clustering methods. This approach generates tertiary structure models from the 

primary sequence. It then superimposes the different models onto each other under the 

assumption that positions in ordered regions will be conserved across the models [8]. 

Residues in disordered regions are likely to vary. Since this approach doesn’t rely on a 

training set, it is less likely to be biased by the training data. 

Template based methods. Similar to clustering, it predicts disordered regions of 

proteins by aligning the input sequence to homologous proteins with known structure. 

Homologous proteins are found by database search or by fold recognition methods. This 

method is frequently used in combination with other prediction approaches and they 

generally fall into the hybrid category. 

Meta methods. They combine the output of several disordered predictors into a 

single average, which tends to have a moderate increase in accuracy. This is one of the 

most popular methods and is used by metaPrDOS [9] and GSmetaDisorder [51] among 

others. 
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Hybrid methods. These are the methods combining two or more of the previous 

approaches in order to improve prediction accuracy. PrDOS [10] is one common 

example, combining ab initio and template based homologous alignment to output a 

prediction. 

 

Alphabet Reduction Evaluation and Selection 

The 20-letter amino acid alphabet was reduced to a 3-letter alphabet in order to 

simplify and quicken the machine learning process, as the model would have to analyze 

fewer n-grams during training and testing. One problem with using the original 20-letter 

alphabet is that the total number of features (n-grams) would exceed the number of 

sequences in the training set. By reducing the number of letters in the alphabet to three, 

and thus decreasing the number of possible n-grams, the number of sequences would be 

almost 250 times the total number of features. Therefore, it would be highly unlikely for 

the model to overfit. The reduction of the amino acid space from a 20-letter alphabet to a 

3-letter alphabet carries a reduction in the information content. One key hypothesis in our 

method is that this reduction won't affect the n-gram signal or the method predictive 

capability. 

The reduced alphabets were taken from outside sources (Table 4.1). Residues can 

be clustered based on various properties, including chemical and genetic properties. 

Reduced alphabets cluster residues in ways that prevent the loss of key biochemical 

information. 

 



40 
 
 
 

Table 4.1 The six reduced alphabets and their sources. Each letter contains a cluster 
of amino acid residues (one-letter abbreviations). The residue clusters were 
denoted by the letters “B”, “J”, and “U” in this study 

 
Alphabet/ref Letter 1 (B) Letter 2 (J) Letter 3 (U) 

a1 [30] CFILMVWY AGHPRT DEKNQS 
a2 [31] AFGILMPV DEKR CHNQSTWY 
a3 [32] CFILMVWY  AGPST DEHKNQR  
a4 [33] DHIMNVY EFKLQ ACGPRSTW 
a5 [34] ACGILMPSTV EKRDNQH FYW 
a6 [38] CILMVFWY AGHST DEKNPQR 

 

Disorder prediction by n-gram frequencies 

Feature Generation. For a given protein sequence of length L and a reduce alphabet of A 

letters, we extract L feature vectors of size T where T is the total numbers of possible n-

grams (T=An). In order to calculate the n-gram feature vector for a particular position, we 

use a centered sliding window of size W.  

Each position of the N-size feature vector contains the frequency of a particular n-

gram for the current residue centered window. N-gram frequencies are then normalized to 

prevent the frequency of a feature from skewing the decision process. The following 

shows how the 3-gram BJU was normalized, as an example: 

𝑞yz{ =
𝑓yz{

𝑓y. 𝑓z. 𝑓{
 (1) 

Where q is the normalized frequency and f is the frequency of the 3-gram of the reduce 

residue within the protein sequence. Finally, each feature vector is assigned a label 

(0=order, 1=disorder) based on the residue annotation and is used as input to a 

classification algorithm. Random Forest [52] was chosen based on its known 

performance and ability to provide insight into the mechanism of classification. It follows 



41 
 
 
 

a decision tree model, which creates different nodes on a tree based on the provided 

attributes in the training set [52], [53]. The algorithm constructs an ensemble of decision 

trees, which reduces overfitting, a common issue when only a single decision tree is used. 

Parameter Selection. In order to select the reduced alphabet, window size and n-gram that 

maximize the model predictive value, we construct a simplified classification model for 

each possible combination of a select group of values. We test each model performance 

using a dataset containing a combination of CASP8, CASP9 and CASP10 targets [48], 

[49], [54]. The AUC for each model is calculated and used as main metric to compare 

performance. Table 4.2 shows a summary of the parameters tested and  

Figure 4.1 shows the results for a selected group of parameters. It was found that 3-

grams, alphabets a1, a3 and a6 and W >71 have better overall performance and increase 

model predictive value. The final implementation of the method uses 3-gram, alphabet 6 

and W=101. The window size was derived after experimentation within the final model. 

Control Experiments. In order to ensure that the observed AUC values were different 

from those in a random feature space, controls were created by shuffling the residue 

labels. Labels were shuffled such that half of the disordered residues and half of the 

ordered residues were labeled into the incorrect class. The shuffled datasets were used to 

train the same machine learning algorithm. 
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Table 4.2 Model construction parameters 
 

 

 

 

 

 
 
Figure 4.1 Sliding window size models performance (3-gram, all alphabets) 
 

Results and Discussion 

Datasets 

Publicly available datasets are used to train and evaluate our method. High 

resolution X-ray crystal structures from the Protein Data Bank (PDB) [55] are used to 

construct the training and test data sets while CASP10 [54] and CAMEO [56] (http:// 

www.cameo3d.org) are used for further validation. We use Pisces protein sequence 

Parameter Tested values 
Sliding Window Size (W) 9,11,15,19,23,29,39,51,71,81 
n-gram (n) 3,4 
Reduce Alphabet (A) a1,a2,a3,a4,a5,a6 
Classification algorithm Naïve Bayes 
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culling server (http://dunbrack.fccc.edu) [57] to extract sequences from PDB to filter for 

high resolution and reduce redundancy. Parameters selected for culling are: (i) proteins 

sharing >25% sequence identity (ii) maximum resolution of 1.8 Angstroms (iii) R-value 

>0.30. In total, 7,119 proteins are retrieved from PDB with an average length of 349 

residues. We randomly divide the initial set into two distinct subsets: PDB70 containing 

70% of the sequences for training and PDB30 with the remaining 30% for testing.  

There is no common agreement on how to define disorder residues from PDB 

files [58]. For the purpose of this work, we consider a residue to be in a disorder position 

if it appears in the sequence records but its coordinates are missing from the electron 

density map. This is not a perfect definition since there are other reasons why a residue 

can have missing coordinates (i.e.: crystallization artifacts). However, it allows us to use 

a large number of proteins from PDB without further experimental validation.  

CASP10 is the latest dataset available from the series experiments, which released 

specific targets for protein disorder prediction. The 94 available targets are used for 

validation and as an independent benchmark set. To prevent any redundancy between 

training and validation sets, we use BLASTClust [59] to filter for sequence identity 

between the PDB70 (training set) and CASP10 (validation set). Finally, to further assess 

our method, we tested against CAMEO 6 Months targets released from August 26, 2016 

to February 18th, 2017 (504 targets, categorized in 3 groups). 
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Program benchmarking 

To benchmark our method, we selected previous CASP participating programs, in 

particular, a sequence-only method (Espritz) and a sequence profile based method 

(Disopred3). Espritz is an ensemble of sequence-only and multiple sequence alignments 

disorder prediction methods.  The sequence-only method has three different versions, 

depending on the initial set used for training (X-ray, NMR, Disprot). We used X-ray and 

NMR versions. The X-ray trained version is the one that performs best among the three. 

Disopred3 runs a PSI-BLAST search for each of the residues in a 15-residue window. 

The profile is then used as input to a neural network classifier which outputs a probability 

estimate of the residue being disordered. 

 

Metrics and Evaluation Criteria 

Disorder data is characterized by high class imbalance, disordered residues 

account for less than 5% of the data in the PDB set (training and test). Since disordered 

residues are relatively rare compared to ordered ones, they are harder to predict. 

Performance metrics should account for this imbalance and reward correct prediction of 

disordered residues higher than the correct prediction of ordered ones [49]. We selected a 

subset of the metrics commonly used for the assessment of disorder data [37], [60], [61] 

that take into account the nature of the imbalanced data: (i) specificity (ii) sensitivity (iii) 

balanced accuracy (iv) Matthews correlation coefficient and (v) AUC. 
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Binary metrics 

Speci�ity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (2) 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(3) 

Acc =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 +
𝑇𝑁

𝑇𝑁 + 𝐹𝑃	
(4) 

 

MCC =
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

�(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (5) 

 

True positives (TP) and true negatives (TN) are the numbers of correctly 

predicted disordered and ordered residues. False positives (FP) and false negatives (FN) 

are the numbers of incorrectly predicted disordered and ordered residues. 

 

Statistical metrics. The ROC curve is a plot that compares the true positive rate against 

the false positive rate under various threshold values for a binary classifier. 

AUC = Area under the ROC curve plotting 1-specificify and sensitivity (6) 

  

To confirm the robustness of our classifier we perform 10-fold cross validation [35], [62] 

across our PDB set. Complete data set is divided into ten equally-sized groups. One 

group is used as a validation set to test the model, while the other groups are used to train 

it. This process is executed ten times, with a different group used for testing each time. 

Results for cross validation are shown in Figure 4.5.  
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Method Performance 

We compare the performance of our n-gram method against the benchmark 

programs using CASP10 (Figure 4.2), PDB30 (Figure 4.3) and CAMEO hard targets 

(Figure 4.4) sets. Our method performs at the same level than Espritz NMR (sequence-

only) for PDB30 and CAMEO sets and outperforms it for the CASP10 set. The 

comparison with Espritz X-ray in the PDB30 set is not relevant since there is a significant 

overlap between sequences in our test set (PDB30) and Espritz X-ray training set. This 

overlap explains in part the relatively high performance. For the CASP10 dataset, we 

included results from Disopred3 to have a comparison point with a sequence profile 

method. Both methods were downloaded and ran locally in a Linux server using the 

default parameters.  

The performance of the method was evaluated on disordered regions of various 

lengths for the CASP10 dataset (Table 4.3). The percentage of residues correctly 

predicted to be disordered is reported in  

 

Table 4.4. As only disordered residues are considered for each category, the 

percentage of correctly predicted as disordered corresponds to the recall. 

Finally, to evaluate the speed at which our method performs predictions we 

created a script which takes as input a FASTA file of proteins to predict, performs 

predictions and saves the results to a file. Average execution time needed to perform 

predictions in a standard Linux server (4 CPUs/4GB memory) was 5.86s for the CASP10 

dataset. 
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Table 4.3 Performance of methods predictor against CASP10 targets 

 
Method Acc. Sens. Spec. MCC AUC 
Espritz (Xray) 0.72 0.54 0.89 0.30 0.81 
Espritz (NMR) 0.68 0.56 0.79 0.20 0.73 
ngram 0.72 0.61 0.83 0.26 0.80 
Disopred3 0.64 0.32 0.97 0.32 0.85 

 

 
Table 4.4 Prediction accuracy by region length in CASP10 

 
Method <10AA 10-30AA >30AA 
Espritz (Xray) 50.5 58.8 48.3 
ngram 48.8 46.3 54.7 
Disopred3 25.1 33.1 45.2 

 

 
 
Figure 4.2 CASP10 targets performance 
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Table 4.5 Performance of methods predictor against PDB30 targets 
 

 

 

 

 
 
Figure 4.3 PDB30 targets performance 

 

Table 4.6 Performance of methods predictor against CAMEO targets 
 

Method Acc. Sens. Spec. MCC AUC 
Espritz (Xray) 0.74 0.74 0.74 0.27 0.80 
ngrams 0.73 0.56 0.89 0.34 0.79 

 

  

Method Acc. Sens. Spec. MCC AUC 
Espritz (Xray) 0.83 0.78 0.87 0.39 0.90 
Espritz (NMR) 0.78 0.75 0.80 0.27 0.86 
ngrams 0.79 0.73 0.86 0.33 0.85 
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Figure 4.4 CAMEO targets (hard) performance 
 

 
Figure 4.5 PDB set 10-fold validation 
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Decision Tree Analysis 

 
 

Figure 4.6 provides an example visual representation of the type of trees 

generated by the random forest algorithm. Trees tended to use n-gram features with polar 

and charged residues (letter ‘U’ in the reduced alphabet). Since these n-grams tended to 

be close to the root of the tree, these features were particularly important in classification. 

This may imply that the presence of these residues is a key factor in how an n-gram based 

model differentiates between disorder and order. In fact, disordered sequences are known 

to contain higher proportions of polar and charged residues than ordered sequences [50]. 

This suggests a possible link between the importance of such residues in the decision 

trees and this previously known observation. 

 

 
 
 
Figure 4.6 Visual representation of 3-gram based C4.5 decision tree using reduced alphabet 1. Each circular 

node represents a 3-gram, and the edges show how the 3-gram frequencies were used in the decision-
making process 

 

 
 
 



51 
 
 
 

Conclusions 

This paper presents a new n-gram based classification method for protein disorder 

prediction. We demonstrated that a combination of an alphabet reduction strategy with n-

gram frequency patterns leads to an approach which can successfully compete with more 

elaborated and computationally expensive algorithms. 

Overall and despite its simplicity, our method performs at similar levels as other 

sequence-based algorithms across all tested data sets. It has the additional advantage of 

providing insight into the mechanism of classification on the supplied data set.  

Analysis of the decision trees showed that many n-grams were necessary for the 

decision-making process. However, the presence of polar and charged residues in the n-

grams contributes to how the model differentiates between disorder and order state.  
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5. CNNALPHA: PROTEIN DISORDER REGIONS PREDICTION BY 
REDUCED AMINO ACID ALPHABETS AND CONVOLUTIONAL 

NEURAL NETWORKS 

In this chapter, we present the work submitted to “PROTEINS: Structure, Function, and 

Bioinformatics” journal, currently under revision. 

 

Abstract 

Intrinsically disordered regions (IDR) play an important role in key biological 

processes and are closely related to human diseases [40]. They have the potential to serve 

as targets for drug discovery, especially in disordered binding regions [41], [42]. 

Accurate prediction of IDRs is challenging because their genome wide occurrence and a 

low ratio of disordered residues make them difficult targets for traditional classification 

techniques. Existing computational methods mostly rely on sequence profiles to improve 

accuracy which is time consuming and computationally expensive. This article describes 

an ab initio sequence-only prediction method -- which tries to overcome the challenge of 

accurate prediction posed by IDRs -- based on reduced amino acid alphabets and 

convolutional neural networks (CNNs). We experiment with six different 3-letter reduced 

alphabets. We argue that the dimensional reduction in the input alphabet facilitates the 

detection of complex patterns within the sequence by the convolutional step. 

Experimental results show that our proposed IDR predictor performs at the same 

level or outperforms other state-of-the-art methods in the same class, achieving accuracy 

levels of 0.76 and AUC of 0.85 on the publicly available Critical Assessment of protein 
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Structure Prediction dataset (CASP10). Therefore, our method is suitable for proteome-

wide disorder prediction yielding similar or better accuracy than existing approaches at a 

faster speed. 

 

Introduction 

Intrinsically disordered proteins (IDP) or intrinsically disordered regions (IDR) 

are segments within a protein chain lacking a stable three-dimensional structure under 

normal physiological conditions. They have been known to scientists for over 50 years 

and since then, linked to key biological processes including regulation of transcription, 

signal transduction, cell cycle control, post-translational modifications, ligand binding, 

protein interaction, and alternative splicing [63] [64]. Disorder regions exist in up to half 

of the amino acids in eukaryotic proteins [43] and at least 6% of all the residues in 

SwissProt are believed to be within a disordered region [65]. 

Experimental structure resolution of IDP/IDRs is complex, lengthy and 

expensive. DisProt database [66], a community resource annotating protein sequences for 

intrinsically disordered regions, currently contains just over 800 proteins. A large number 

of computational prediction methods have been developed ([4],[8]) because of this 

inherent complexity. Existing methods can be classified in one of the following 

categories [5]: (i) Ab initio or sequence-based. They rely almost exclusively on amino 

acid sequence information to make a prediction. Features extracted from the primary 

sequence, alignment profiles or scoring matrices are used as input for statistical models 

which then make predictions of disorder regions. Generally, methods that do not rely on 
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complex external sources of information fall into this category and are referenced as 

sequence-only. (ii) Clustering. This approach generates tertiary structure models from the 

primary sequence. It then superimposes the different models onto each other with the 

assumption that positions in ordered regions will be conserved across models. (iii) 

Template based. Similar to clustering, template-based method predicts disordered regions 

of proteins by aligning the input sequence to homologous proteins with a known 

structure. Homologous proteins are found by doing a database search or by fold 

recognition methods. (iv) Meta or consensus. They combine the output of several 

disordered predictors into a single average, which tends to have a moderate increase in 

accuracy. Evolutionary information contained in sequence profiles helps ab initio 

methods to improve prediction accuracy. However, generating sequence profiles is time 

consuming and methods relying on them for predictions may not be suitable for large 

proteome-wide analysis. 

This article presents a sequence-only ab initio method for predicting protein 

disorder based on reduced amino acid alphabets and convolutional neural networks 

(cnnAlpha). Our method relies solely on the amino acid sequence for determining 

disorder positions and is aimed to proteome-wide applications where speed and low false 

positive rate are prioritized over maximum accuracy [67]. 

Among the main challenges with sequence-based prediction methods are (a) the 

highly class imbalance nature of the datasets and (b) the difficulty in accurately capturing 

the interdependency of adjacent residues in determining the transitions between disorder 

and order states. If not addressed, a class imbalance can severely bias predictions toward 
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the majority class (order state). To solve the imbalance problem, we choose an 

undersampling technique where we randomly remove examples from the majority class 

until we have a balanced dataset. Undersampling has been proven to be highly successful 

yielding a positive performance within the context of convolutional networks and 

extreme ratio imbalance datasets [29]. In order to capture local sequence context, we use 

a sliding window approach which feeds into a convolutional neural network that is tasked 

with learning rich higher-order sequence features. 

Convolutional neural networks proved to be very efficient and well performing in 

the field of computer vision, excelling in tasks such as object detection and image 

classification [20]. The adaptation of convolutional neural networks architectures for 

biological problems has been successful in the context of DNA-protein binding 

prediction [68] and DNA function modeling [69]. Reducing the amino acid alphabet from 

20 to 3 letters enables a seamless adaptation of convolutional neural networks for protein 

models. Instead of analyzing 2-D images with three color channels (R,G,B), fixed length 

protein sequence windows are mapped to 1-D input vectors with three channels. This 

translation allows mapping the protein disorder prediction problem to the 2-class image 

classification problem in the computer vision domain. 

 

Methods and Materials 

Disorder definition and feature extraction 

There is no universal agreement on how to define disorder residues from PDB 

files [58]. In the context of this work, we consider a residue to be in a disorder position if 
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it appears in the sequence records, but its coordinates are missing from the electron 

density map. We annotated our PDB training and CAMEO validation sets using this 

definition. The annotation provided by the CASP experiments was created using a similar 

definition. 

This is not a perfect definition since there are other reasons why a residue can 

have missing coordinates (i.e., crystallization artifacts). However, it allows us to use a 

large number of proteins from PDB without further experimental validation. 

 

 
 

Figure 5.1 Sequence encoding, window generation and feature extraction 
steps using sliding window approach 

 

The primary sequences from our training set had to be translated to numerical 

features to be fed into the convolutional network. For that purpose, we implemented a 

101-residue length sliding window centered on the target residue. The window length 
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was set after experimenting with different sizes, finding that larger windows were more 

consistent in capturing disorder information. For each window, residues are represented 

by letters from the reduced amino acid alphabet and encoded using a one-bit hot encoding 

scheme. This generates a 3-D input feature matrix per target residue of size [3 x 101]. 

This process is illustrated in Figure 5.1 

 

 

 

Figure 5.2 Basic 1-layer CNN architecture shared among all models 
 

Reduced alphabets 

Reduced alphabets cluster residues in ways that prevent the loss of key 

biochemical information. The 20-letter amino acid alphabet was reduced to a 3-letter 

alphabet in order to simplify and quicken the network learning process, reducing the 
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number of possible encodings and size of the input feature vectors. The reduced alphabets 

were selected from the literature (Table 5.1), where each was designed with a specific 

structural protein task in mind. In each alphabet, residues are clustered based on various 

properties, including chemical and genetic properties. 

We found that alphabets 1,2 and 6 performed better in our specific classification 

task. Alphabet 1 achieves the reduction by mismatch minimization between the reduced 

interaction matrix and the Miyazawa and Jernigan (MJ) matrix. Alphabet 2 identifies the 

reduced alphabet which simplified sequence performs best in the context of protein fold 

recognition using global sequence alignments with the parent sequence. Alphabet 6 

implements an automated reduction protocol using information theory metrics tailored to 

the prediction of solvent accessibility. 

 

Table 5.1 The six reduced alphabets and their sources. Each letter contains a cluster of 
amino acid residues (one-letter abbreviations). The residue clusters were 
denoted by the letters “B”, “J”, and “U” 

 
Alphabet/ref Letter 1 (B) Letter 2 (J) Letter 3 (U) 

a1 [30] CFILMVWY AGHPRT DEKNQS 
a2 [31] AFGILMPV DEKR CHNQSTWY 
a3 [32] CFILMVWY  AGPST DEHKNQR  
a4 [33] DHIMNVY EFKLQ ACGPRSTW 
a5 [34] ACGILMPSTV EKRDNQH FYW 
a6 [38] CILMVFWY AGHST DEKNPQR 
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Convolutional neural network architectures 

The convolutional neural network architectures used in our models are variations 

of Figure 5.2. The input is a 3 x L matrix where L is the length of the sequence window 

(101 residues). Each symbol of the 3-letter reduced alphabet is mapped to one of the three 

one-hot vectors (B=[0,0,1], J=[0,1,0], U=[1,0,0]). 

The first layer of our network is a convolutional layer, step size 1 and window 

size of 32. The output of each neuron on a convolutional layer is the convolution of the 

kernel matrix. The second layer is a max-pooling layer, one for each convolutional layer. 

Each of these max-pooling layers only outputs the maximum value (global or local) of its 

respective convolutional layer outputs. The third layer is a fully connected layer of size 

256 where each of its neurons is connected to all of the neurons in the max-pooling layer. 

We use a dropout layer [25] after the fully connected layer to avoid overfitting. The final 

output layer consists of two neurons corresponding to the two classification results. These 

two neurons are fully connected to the previous layer. Table 5.2 highlights the differences 

between each of the tested models. 

 

Table 5.2 Description of the CNN architectures tested 
 

 

Method Architecture description 
 
64-ker-local 1-convolutional layer, 64 kernels, local max pooling 
128-ker-local 1-convolutional layer, 128 kernels, local max pooling 
64-ker-global 1-convolutional layer, 64 kernels, global max pooling 
128-ker-global 1-convolutional layer, 128 kernels, global max pooling 
2-conv-local 
 

2-convolutional layers, [64,32] kernels, local max pooling 
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Network training details 

We train our models using stochastic gradient descent (SGD) with mini batches of 

size 128. SGD works by utilizing chain ruling to take the partial derivative of the loss 

function with respect to each weight vector in the network and use the derivative to 

update the weights. We use a version of SGD with support for momentum and learning 

rate decay with default parameters and a learning rate set to 1e-3. All models are trained 

using the same setup and configuration the only difference being the seeds for initializing 

weights. We use early stopping, based on the validation set in order to pick the optimal 

set of weights. We train all our neural network models on AWS using G3 instances 

(NVIDIA Tesla M60 GPU) using python Keras libraries [70] running on top of 

TensorFlow library to assure model portability. 

 

 

Figure 5.3 Protein length distribution in training, test and validation sets 
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Results 

Training, Validation and Evaluation Datasets 

Publicly available datasets are used to train, validate and evaluate the performance 

of our method. High resolution X-ray crystal structures from the Protein Data Bank 

(PDB) [55] are used to construct the training and validation data sets while CASP [4] and 

CAMEO [56] (http://www.cameo3d.org) are used for further validation. Figure 5.3 

Protein length distribution in training, test and validation sets shows the protein length 

distribution for training, testing and validation sets. 

We use Pisces protein sequence culling server (http://dunbrack.fccc.edu) [57] to 

extract sequences from PDB, filter for high resolution and reduce redundancy. 

Parameters selected for culling are (i) proteins sharing less than 25\% sequence identity 

(ii) resolution better than 1.8 Angstroms (iii) R-value up to 0.30. In total, 7,119 proteins 

are retrieved from PDB with an average length of 349 residues. The original dataset is 

then undersampled to create a 50/50 class balanced set, containing 181,060 examples. 

The effect of class imbalance is very detrimental to classification performance. In cases 

of an extreme ratio of imbalance, undersampling has been shown to perform on a par 

with oversampling without the risk of overfitting [29]. Undersampling has the additional 

advantage of reducing training times given that the training set is smaller in size. 
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Table 5.3 Distribution of disordered regions by length on the three main datasets used 
 
Dataset  Number of Fragments  

1-5 6-15 16-25 >25 
     
CASP10 21 41 11 3 
CAMEO 143 114 27 11 
PDB 768 657 127 37 

 

The balanced dataset was randomly partitioned into ten equally sized subsets and 

a ten-fold cross-validation was performed to determine the optimal parameters for (a) 

convolutional network architecture and (b) encoding reduced protein alphabet (Section 

3.4). At each step of the cross validation, one subset is selected and used as validation set 

while the remaining nine are used as training set. This process is repeated until all subsets 

are validated, results for each of the parameters tested are shown in Table 5.4 and Table 

5.5. 

CASP10 is the latest dataset available from the series experiments, which released 

specific targets for protein disorder prediction. The 94 available targets are used for initial 

validation and as an independent benchmark set. Finally, to further assess and compare 

our method, we tested it against CAMEO 6 months targets released from August 26, 

2017 to February 18th, 2018 (504 targets, categorized in 3 groups). Since CAMEO 

targets were released after the construction of our PDB training set, there is no sequence 

overlap between the two set. However, CASP10 targets were already present in PDB at 

the time of extraction. To prevent any redundancy between sets, we use BLASTClust 

[59] to filter and remove sequences from the PDB training set sharing at least 25\% 

identity with sequences in the CASP10 set. 
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Metrics and evaluation criteria 

Disorder data is characterized by high class imbalance, disordered residues 

account for less than 5% of the data in the PDB set (training and test). Since disordered 

residues are relatively rare compared to ordered ones, they are harder to predict. 

Performance metrics should account for this imbalance and reward correct prediction of 

disordered residues higher than the correct prediction of ordered ones [41]. We selected a 

subset of the metrics commonly used for the assessment of disorder data [46] [61] [71] 

that take into account the nature of the imbalanced data: (i) specificity (ii) sensitivity (iii) 

balanced accuracy (iv) Matthews correlation coefficient and (v) AUC. 

 

Binary	metrics	

Speci�ity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (2) 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(3) 

Acc =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 +
𝑇𝑁

𝑇𝑁 + 𝐹𝑃	
(4) 

 

MCC =
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

�(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (5) 

 

True positives (TP) and true negatives (TN) are the numbers of correctly predicted 

disordered and ordered residues. False positives (FP) and false negatives (FN) are the 

numbers of incorrectly predicted disordered and ordered residues. 
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Statistical	metrics	
 

The Receiver Operating Characteristic (ROC) curve is a plot that compares the 

true positive rate against the false positive rate under various threshold values for a binary 

classifier. ROC curve represents a monotonic function describing the balance between the 

true positive and false positive rates of a predictor [72]. For a set of probability thresholds 

(from 0 to 1), a residue is considered as a positive example (disordered) if its predicted 

probability is equal to or greater than the threshold value. The area under the curve 

(AUC) is used as an aggregate measure of the overall quality of a prediction method. 

AUC has a minimum value 0, a random value 0.5 and a perfect value 1. 

 

Programs to compare 

To benchmark our method we selected the following programs: Espritz [6], 

Disopred3 [50], IUPred [73] and ngram-sAlpha [39]. Given that our predictor is 

sequence-based, we compared our results with similar methods and we leave out 

clustering, template and meta based approaches. Espritz is an ensemble of sequence-only 

and multiple sequence alignments disorder prediction methods.  The sequence-only 

method has three different versions, depending on the initial set used for training (X-ray, 

NMR, Disprot). We used X-ray trained version since it is the one that performs best 

among the three. Disopred3 runs a PSI-BLAST search for each of the residues in a 15-

residue window. The profile is then used as input to a neural network classifier which 

outputs a probability estimate of the residue being disordered. IUPred method is based on 

estimating the capacity of polypeptides to form stabilizing contacts. It has two prediction 
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modes: IUPred (Long) and IUPred (Short). Each mode optimizes predictions for either 

long or short disordered regions. Finally, ngramsAlpha is our previously published 

predictor based on n-grams frequencies and reduced protein alphabets. 

 

Parameter and model selection 

In order to select the best performing model, we experimented with two of the 

components of our method while leaving the remaining parameters constant. In 

particular, we tested several network architectures and reduced amino acid alphabets and 

analyzed their effect on the model predictive value. We performed a ten-fold cross-

validation, using the mean AUC across validation batches as the primary metric to 

compare performance. Values for parameters such as dropout and learning rate, 

optimizer, and window size have been selected after performing a hyperparameter search 

across a reduced size training set and are left constant. 

 

Alphabet selection 

Using reduced alphabets has two main advantages: (i) cluster residues with 

similar biochemical properties providing additional information to the original sequence 

and (ii) reduce the amino acid space from 20 to 3 residues, reducing, in turn, the model 

complexity and amount of data required for training.  

We tested six different alphabets from the literature and analyzed which 

performed better in the context of our classification problem. We used the (2-conv-local) 

network architecture across all runs. A modified version of the network using the full 
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amino acid alphabet as input features (no alphabet translation step) is included for 

comparison. The effect of alphabet selection is shown in Table 5.4. Across the ten 

validation batches, we found that alphabets 1, 2, and 6 achieved better overall 

performance than alphabets 3, 4 and 5. Results also show that all six alphabets 

outperformed the model where no alphabet reduction was applied. This highlights the 

benefit of the dimensionality reduction step before training our models. 

Despite being created with different objectives, the three alphabets cluster the 

same residues in group B, differing in the composition of groups J and U (Table 5.1). 

Group B contains most of the residues usually associated with ordered regions [74], 

which are hydrophobic and uncharged. The composition of group J and U differ among 

the three alphabets, containing disorder-promoting residues (polar/charged) and 

ambiguous residues (associated either with ordered or disordered regions). We selected 

alphabet 6 for our final model implementation based on the results shown in Table 5.4. 

 

Table 5.4 Alphabet cross validation 
 
 

Alphabet 
   AUC Value of 10 cross Validation Batch Datasets    

 
1 2 3 4 5 6 7 8 9 10 mean   

             

 Alphabet 1 87.5% 89.2% 86.4% 88.5% 88.8% 87.2% 87.4% 87.5% 87.5% 87.7 87.8% 

 Alphabet 2 83.0% 86.3% 82.8% 86.6% 83.9% 82.8% 83.5% 84.3% 84.5% 84.6% 84.4% 

 Alphabet 3 87.7% 88.8% 87.6% 89.3% 88.5% 87.1% 87.4% 88.0% 88.0% 87.8% 88.0% 

 Alphabet 4 81.8% 86.0% 83.9% 86.2% 85.0% 81.4% 84.1% 83.8% 83.8% 85.1% 84.4% 

 Alphabet 5 85.2% 87.1% 84.0% 87.4% 85.1% 83.8% 86.0% 84.8% 85.3% 85.7% 85.5% 

 Alphabet 6 87.3% 89.5% 87.4% 89.0% 88.9% 87.5% 87.5% 87.6% 87.6% 88.0% 88.2% 

 NoAlphab 82.1% 85.5% 82.9% 86.0% 83.0% 81.7% 82.9% 82.6% 83.6% 83.5% 83.4% 
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Convolutional network architecture 

To test the relationship between network architecture and performance, we trained 

five different networks models and evaluated their predictive value. We adapted models 

successfully used in the DNA space to predict DNA-protein binding and function ([68], 

[69]) hoping they would also perform well in the 3-letter reduced amino acid space. Our 

models differ in the number of kernels (50, 64, 128), the number of convolutional layers 

(1, 2) and max-pooling layer implementation (global vs. local). We found that the number 

of convolutional layers does not seem to have a great impact on performance. Models 

with a higher number of convolution kernels and local pooling implementation achieved 

better overall classification performance. Based on the results shown in Table 5.5, we 

selected 128-ker-local model. 

 

Table 5.5 Model cross validation 
 

Model 
   AUC Value of 10 cross Validation Batch Datasets    

1 2 3 4 5 6 7 8 9 10 mean  
            

64-ker-local 88.1% 89.6% 87.6% 89.6% 88.4% 87.4% 87.9% 88.0% 88.2% 87.9% 88.3% 

128-ker-local 88.4% 89.5% 87.8% 89.6% 88.4% 87.7% 87.8% 88.2% 88.4% 87.9% 88.4% 

64-ker-global 87.5% 88.2% 85.8% 89.0% 87.4% 86.3% 86.6% 87.0% 87.3% 86.8% 87.2% 

128-ker-global 87.4% 88.5% 86.4% 89.1% 87.6% 85.8% 86.7% 87.6% 87.0% 86.8% 87.3% 

2-conv-local 87.9% 89.1% 87.3% 89.2% 88.4% 87.4% 87.8% 87.8% 87.8% 87.7% 88.1% 

 

Method performance 

Figure 5.4, Figure 5.5, Table 5.6 and Table 5.7 compare the performance of our 

method against Disopred3, Espritz, IUPred, and ngramAlpha. It is worthwhile to mention 
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that -- of the listed methods -- Disopred is the only to make use of additional evolutionary 

information through sequence profiles (performing PSI-BLAST [75] searches for each 

input protein). This added evolutionary information gives the method an extra advantage 

in performance but comes at the cost of execution time. The other three methods are 

similar in nature to ours, using sequence-only information to make disorder/order 

predictions. All methods were downloaded and ran locally in a Linux server using default 

parameters. 

 

Table 5.6 Performance of predictors on CASP10 dataset. Metrics showed: balanced accuracy (B.Acc), 
Sensitivity (Sens), Specificity (Spec) Mattehews correlation coefficient (MCC), and Area under the 
ROC curve (AUC) 

  
Method  sequence 

profile 
B.Acc Sens Spec MCC AUC 

Disopred3  yes 0.64 0.32 0.97 0.32 0.86 
cnnAlpha  no 0.75 0.64 0.85 0.31 0.85 

Espritz  no 0.72 0.54 0.89 0.30 0.82 

ngramAlpha  no 0.72 0.61 0.83 0.26 0.79 

UIPred (short)  no 0.63 0.31 0.95 0.26 0.66 

UIPred (long)  no 0.57 0.17 0.96 0.15 0.60 

         
 
 
Table 5.7 Performance of predictors on CAMEO dataset. Metrics showed: balanced accuracy (B.Acc), 

Sensitivity (Sens), Specificity (Spec) Mattehews correlation coefficient (MCC), and Area under the 
ROC curve (AUC) 

 
Method  sequence 

profile 
B.Acc Sens Spec MCC AUC 

Disopred3  yes 0.72 0.48 0.96 0.43 0.86 
cnnAlpha  no 0.75 0.61 0.88 0.36 0.83 

Espritz  no 0.75 0.64 0.88 0.35 0.81 

ngramAlpha  no 0.73 0.56 0.89 0.33 0.79 

UIPred (short)  no 0.71 0.47 0.94 0.36 0.80 

UIPred (long)  no 0.64 0.35 0.93 0.27 0.73 

         
 



69 
 
 
 

In terms of balanced accuracy (B.Acc), our method outperforms all others on the 

two independent validation datasets. With respect to area under the ROC curve (AUC) 

and MCC, our method performs much better than the predictors not using sequence 

profiles (such as IUpred and Espritz) and nears the performance of Disopred3 for AUC 

on both validation sets. 

 

 

Figure 5.4 ROC curve for the evaluation set targets 
comparing the performance of the top four 
models (CASP) 
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Figure 5.5 ROC curve for the evaluation set targets 
comparing the performance of the top four 
models (CAMEO) 

 

The performance of the method was also evaluated on disordered regions of 

various lengths for the CASP10 dataset and compared with the other top performant 

methods. The percentage of residues correctly predicted to be disordered is reported in 

Table 5.8. While Espritz performs better on short length disorder regions, Disopred3 and 

cnnAlpha achieve better results on mid and long disordered regions. 

 

Table 5.8 Predictors recall by region length in CASP10 
 
Method <10AA 10-30AA >30AA 

cnnAlpha 0.40 0.42 0.46 
Espritz 0.43 0.39 0.33 
Disopred3 0.26 0.32 0.47 
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Finally, we evaluate the speed at which our method performs predictions on a 

large scale. We created a script that takes as input a FASTA file of target proteins, 

performs predictions and saves the results into a file. The average execution time needed 

to perform predictions in a standard Linux server (4 CPUs/4GB memory) for the 

CASP10 dataset (94 proteins, 25,370 residues) was 0.37 seconds per protein. 

 

Discussion 

This paper presents cnnAlpha, a new convolutional neural network-based method 

for protein disorder prediction using sequence information. We demonstrated that our 

combination of amino acid alphabet reduction strategy and convolutional neural networks 

leads to an approach which can successfully compete with more elaborated and 

computationally expensive sequence-based algorithms. The source code for an R/Shiny 

application with the model implementation of our predictor can be found at 

https://github.com/mauricioob/shiny-pred.  

CNNs are good at learning rich higher-order sequence features, such as secondary 

motifs and local sequence context. We believe that the reduction in dimension from 20 to 

3 letter amino acid alphabet helped the convolutional layer to better detect these 

relationships and patterns. The reduction in dimensionality and our undersampling 

approach to the class imbalance problem have the additional advantage of reducing the 

amount of data required by the training sets. This, in turn, made our models faster to train 

and allow us further experimentation in parameter setting. 
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Overall, our method outperforms similar sequence-only algorithms across both 

evaluation data sets and nears the performance of sequence-based methods using 

additional evolutionary information (sequence profiles). Being several orders of 

magnitude faster than sequence profile based approaches, our method is suitable for high-

throughput predictions at the proteomic scale. The high specificity of cnnAlpha also 

ensures a low false positive rate on high-throughput contexts, making it even more 

suitable for this task. 
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6. SHINY-PRED: A SERVER FOR THE PREDICTION OF PROTEIN 
DISORDERED REGIONS 

In this chapter, we present the paper submitted and published by F1000Research [76]. 

 

Abstract 

Intrinsically disordered proteins or intrinsically disordered regions (IDR) are 

segments within a protein chain lacking a stable three-dimensional structure under 

normal physiological conditions. 

Accurate prediction of IDRs is challenging due to their genome wide occurrence 

and low ratio of disordered residues, making them a difficult target for traditional 

classification techniques. Existing computational methods mostly rely on sequence 

profiles to improve accuracy, which is time consuming and computationally expensive. 

The shiny-pred application is an ab initio sequence-only disorder predictor 

implemented in R/Shiny language. In order to make predictions, it uses convolutional 

neural network models, trained using PDB sequence data. It can be installed on any 

operating system on which R can be installed and run locally. A public version of the 

web application can be accessed at https://gmu-binf.shinyapps.io/shiny-pred 

 

Introduction 

Experimental structure resolution of intrinsically disordered proteins/intrinsically 

disordered regions (IDP/IDRs) is complex, lengthy and expensive, leading to a variety of 

computational approaches being developed [4]. Over 60 computational protein disorder 
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prediction servers are currently available, although not all publicly. Methods can be 

classified in one of the following categories [5]: (i) Ab initio or sequence-based, (ii) 

clustering, (iii) template based, and (iv) meta or consensus.  

shiny-pred is an ab initio predictor, which means it relies exclusively on amino 

acid sequence information to make disordered predictions. It uses prediction models 

based on convolutional neural networks and reduced protein alphabets. Currently, there 

are three available models, each one built using the same training protein data from PDB 

[55] but differing on the convolutional neural network architecture. Since it doesn't rely 

in sequence profiles to make predictions, it is fast to be used in proteome-wide disorder 

scenarios. It performs at the same level or outperforms other state-of-the-art sequence-

only methods, achieving accuracy levels of 0.76 and AUC of 0.85 on the publicly 

available CASP10 dataset [54], at faster speeds. 

 

Methods 

Implementation 

shiny-pred is written in the R programming language [77] and the shiny web 

application framework is implemented using the Shiny R package v1.1 [78]. Currently, 

three convolutional neural network models are made available by our application: (i) cnn-

64-ker-local, is a one layer convolutional network (step size 1 and window size of 32) 

with 64 kernels and local max pooling model; (ii) cnn-128-ker-local, implements one 

convolutional layer (step size 1 and window size of 32) with 128 kernels and local max 

pooling model; and (iii) cnn-2-conv-local implements two convolutional layers (64 and 
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32 kernels) with local max pooling. The models were created, trained and accessed using 

the Keras R package v2.1.6 [70]. 

 

Operation 

Our tool has two operation modes; predicting disordered residues in protein 

sequences (prediction) and benchmarking the predictor performance against sequences 

with known disorder information (benchmark). The mode is selected automatically based 

on the format of the input sequences. Users can either upload a sequence file, type/paste a 

sequence into the text area or select pre-loaded examples from a list. 

When in prediction mode, the amino acid sequences are expected to be in FASTA 

format. In benchmark mode, input sequences in FASTA format are expected to have an 

additional line containing the disorder information (D=disorder, O=ordered). Multiple 

sequences can be submitted at once; several examples for different types of submissions 

(prediction and benchmark modes) are made available as examples. In both modes, the 

application will show a result panel, where for each input sequence a graph with the 

probability of disorder per residue is plotted. 

Prediction	mode	
The workflow for protein disorder prediction is: 

(i) Input the target sequences (in FASTA format) in the text area; 

(ii) Select the model to use for the prediction (default is cnn-128-ker-local)  

  and submit the sequence for prediction; 

(iii) Visualize and download results. 
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Figure 6.1 Input sequence format (prediction mode) 
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Figure 6.2 Prediction mode results 
 

Benchmark	mode	
In benchmark mode, input sequences are expected to have an extra line with the 

actual disorder information to be used as benchmark. Result tables will populate two 

extra columns (actual class and match) with the actual disorder information and if the 

prediction was accurate for the current residue. An extra panel (Benchmark) shows the 

ROC curve along with other common binary metrics (sensitivity, specificity, balance 

accuracy, and Matthews correlation coefficient).  
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Use Cases 

We use shiny-pred to predict disordered regions within the publicly available 

CASP10 benchmark dataset. The dataset contains 94 target sequences, each one 

annotated with the disorder/order information at the residue level. The annotated dataset 

is provided as an example (‘CASP_all’) and it can be selected from the example selection 

list on the ‘Sequence Input’ tab.  

Figure 6.3 shows the input panel after the dataset is selected and loaded. 

Predictions per sequence can be viewed and downloaded from the ‘Results’ tab while the 

‘Benchmark’ tab provides a summary of the performance using binary and statistical 

metrics.  

Figure 6.4 shows the server performance for the input dataset, achieving a AUC 

value of 0.85 and balance accuracy of 0.75. 
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Figure 6.3 Input sequence format (benchmark mode) 
 

 
 
Figure 6.4 Predictor benchmarking 
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Summary 

This article presents shiny-pred, a sequence-only ab initio web application for 

predicting protein disorder. It's based on reduced amino acid alphabets and convolutional 

neural networks, being fast and accurate, it is suitable for large proteome-wide 

experiments. 

 

Software availability 

Software available from: https://gmu-binf.shinyapps.io/shiny-pred  

Source code available from: https://github.com/mauricioob/shiny-pred  

Archived source code (publication): https://doi.org/10.5281/zenodo.2567259  

License: GNU public license (GPL-3) 
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7. CONCLUSIONS 

 

Two algorithms for the detection of intrinsically disordered regions in proteins 

were proposed in this dissertation work. Both approaches showed promising results, in 

particular, the one based on Convolutional Neural Networks achieved state-of-the-art 

results on the CASP benchmark datasets. After performing literature reviews of the 

current types of predictors and presenting the foundations of the methods to used, the 

specific objectives of this dissertation were to (i) develop an n-gram based approach to 

classify individual residues in protein sequences into one of the following classes 

(disorder, order) (ii) explore advanced machine learning methods to improve on the 

accuracy and prediction capabilities of our original n-gram based algorithm and (iii) 

develop a parameterized online resource for the prediction of disordered residues of a 

protein chain from its amino acid sequence-based on our best performant method. 

In order to achieve the objective (i), a machine-learning based approach was 

developed using n-gram frequencies over reduced amino acid alphabets as features. Our 

approach calculates a position-dependent disorder score for each residue in the analyzed 

sequence and outputs a prediction of ordered/disordered based on a cut-off value. We 

benchmarked the performance of our method against existing independent methods 

(Espritz, Disopred, IUPred) using proteins from the CASP experiments, as well as a large 

subset of proteins extracted from PDB database. Despite underperforming when 
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compared to existing methods over the CASP datasets, n-gram frequencies when 

combined with alphabet mapping have shown a strong predictive power. 

To achieve the objective (ii), we expanded on our first implementation losing the 

feature generation (n-grams frequencies) and training a Convolutional Neural Network 

directly on the translated reduced amino acid protein sequence. Our method showed 

promising outcomes when compared to algorithms of its same class (sequence-only ab 

initio).  

For accomplishing goal (iii), an online prediction server based on our most 

performant algorithm was developed, based on the work in this dissertation. The server 

was built using the R/Shiny framework and is currently publicly available. 

Finally, in order to improve the accuracy and performance of both methods, we 

suggest exploring the following series of modifications to be implemented and tested: 

• Apply second tier refinements, making use of the predictions made on the 

first tier may improve accuracy 

• Test other reduced alphabets in literature 

• Usage of n-gram patterns which may increase frequency counts over 

smaller windows 

• Explore different training datasets, combining proteins from PDB and 

DisProt and modifying our definition of disorder. 
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