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ABSTRACT 

THE GEOGRAPHY OF CLOUD-TO-GROUND LIGHTNING IN YELLOWSTONE 
NATIONAL PARK 

Ed Amrhein, M.S. 

George Mason University, 2016 

Thesis Director: Dr. Paul Delamater 

 

Yellowstone National Park is well known for its vivid and diverse landscape, its 

abundance of wildlife, and its wildfires such as the 1988 “Summer of Fire”. Yellowstone 

is also well known for its volcanic activity-the cause of several geothermal hot spots that 

cover the landscape in the form of geysers, hot springs, mud pots, and fumaroles. In this 

study we learn that Yellowstone has other hot spots that are also important to the ecology 

of the park: clusters of cloud-to-ground (CG) lightning flashes. 

With the use of the latest GIS technology available, a 10-year National Lightning 

Detection Network (NLDN) dataset from 1995 to 2004 was analyzed to better understand 

the spatial and temporal pattern of CG lightning in Yellowstone. Graphs and maps 

visualizing lightning strikes and flash density reveal the seasonal and diurnal behavior of 

CG lightning in the park. Global spatial statistics reveal the spatial pattern of CG 

lightning is more of a random pattern while local spatial statistics indicate CG lightning is 
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locally clustered. Maps visualizing results from local spatial statistics show hot spots of 

CG lightning activity over the mountain regions of the park and cold spots of CG 

lightning activity over the western and central plateau of Yellowstone. Finally, spatial 

regression analysis using the physical terrain properties of slope, aspect, elevation, and 

land cover resulted in statistically significant models that at most explained 17 percent of 

the variability in CG lightning flash density. Of the variables tested, only elevation 

appears to have a statistically significant relationship with observed spatial pattern of 

lightning flash density. 
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1. INTRODUCTION 

The summer of 2016 marked the 28th anniversary of Yellowstone’s “Summer of 

Fire” (as well as the 100th anniversary of the U.S. National Park Service). During the 

summer of 1988, there were 51 fires with 42 ignited by lightning (National Park Service, 

2007). The first major fire, the Storm Creek fire, began on June 14 while the last fire, the 

North Fork fire, started 22 July; all fires were declared out on 18 November (Franke, 

2000). These fires scorched about 1.4 million acres in the Greater Yellowstone Area, 

burning more than 36% of the park (793,880 acres burned within the park’s boundaries) 

making it the worst fire in the history of the park (Franke, 2000). Approximately 300 

large mammals perished in the fires and 67 physical structures were destroyed including 

18 backcountry patrol cabins. The total property damage was estimated at $3 million. 

More than 25,000 people and $120 million in logistical support were required to suppress 

these fires (National Park Service, 2007; Franke, 2000). While lightning provided the 

spark for most of the fires in the Greater Yellowstone Area, it was the combination of the 

fire management policy and extreme weather conditions that helped shape an 

environment conducive to wildfires ignited by cloud-to-ground lightning.  

The massive and highly destructive wildfires experienced during Yellowstone’s 

“Summer of Fire” highlighted the importance and benefits of fire in maintaining a 

healthy forest and revealed significant shortfalls in the forest fire management policy. 
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Since 1988, fire management policy has evolved from that of extinguishing all forest fires 

immediately upon ignition to an approach that allows small, naturally occurring fires to 

burn out with limited human intervention. Forest fire management policy continues to 

evolve as scientists learn more about the forest, the environment and the role of fire. The 

more recent plan includes factors such as the fire ignition type, the succession state of the 

forest, weather, location, and availability of fire suppression resources (National Park 

Service, 2014, 2004).  

This research project focuses on analyzing the geography of cloud-to-ground 

lightning as a step toward a better understanding of lightning-ignited wildfires in 

Yellowstone National Park. A better understanding of lightning-ignited wildfires begins 

with an examination of the spatial and temporal lightning patterns within the park in 

order to better understand their relationship with the physical environment. Lightning 

plays a role in the ecology of the park, while at the same time presents a hazard to the 

physical structures used to operate and manage the park as well as to the safety of its 

visitors. A better understanding of the geography of lightning in the park can enable park 

managers to refine the fire management program in a way that improves the park’s ability 

to “allow fire to continue to play its ecological role in the park while protecting human 

life, developments, and sensitive cultural and natural resources” (National Park Service, 

2014, 2004). Park managers would also be able to use lightning geography to point out 

lightning high risk areas to visitors so they can safely experience the park’s natural 

resources. 
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A better understanding of Yellowstone’s lightning geography can be obtained by 

leveraging geographic information systems and science (GIS). The latest advancements 

in GIS have provided methods and techniques to perform a more robust spatial analysis. 

We can now conduct point pattern or cluster analysis and surface analysis with relative 

ease within a GIS framework. We are also able to more readily apply various geospatial 

statistics-based methods that have been used in ecology for several years now. This 

research employs GIS and spatial analysis techniques to assess the spatial patterns, 

relationships, and trends in cloud-to-ground lightning. The overall goal of this research is 

to advance the understanding of the geography of cloud-to-ground lightning in 

Yellowstone National Park through the use of a spatial analytic framework. This goal is 

accomplished by answering the following research questions: 

1. Does cloud-to-ground lightning occur randomly across space or does it 
manifest in an observable spatial pattern? Hypothesis: The physical 
properties of lightning coupled with the topography of Yellowstone National 
Park interact to create a spatially clustered cloud-to-ground lightning pattern. 

2. Is the spatial pattern of cloud-to-ground lightning consistent throughout 
the year or does it vary by month or season? Hypothesis: The overall 
spatial pattern of cloud-to-ground lightning is not consistent throughout the 
year due to seasonal changes in regional and local scale weather patterns. 

3. Are specific areas or regions of Yellowstone Park more prone to 
experience cloud-to-ground lightning than others? Hypothesis: The spatial 
pattern of cloud-to-ground lightning manifests as localized clusters of high 
and low lightning activity within the park. 

4. Is cloud-to-ground lightning activity associated with Yellowstone Park’s 
topography? Hypothesis: The flash density pattern of cloud-to-ground 
lightning activity is related with features, such as land cover, and terrain 
variables (i.e. elevation, slope, and aspect). 

 

Knowledge about lightning cluster locations may help park managers enhance 

their fire monitoring programs by allowing them to determine where additional resources 
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and monitoring may be needed. Park managers may also use the information gained from 

this study in contingency planning for fire related events. Knowledge of potential 

problem areas due to increased levels of lightning activity could also be used to 

determine locations where park managers should consider pre-positioning firefighting 

equipment.  

Mapping Yellowstone’s cloud-to-ground lightning activity may also provide 

benefits for those who visit the park. These maps could be used by park rangers as part of 

the park’s public safety education program or by hikers when planning day hikes and 

back country trips. Park rangers can better inform visitors about the dangers of lightning 

and the areas of the park where increased awareness of the local weather conditions is 

warranted. Information from this study could be incorporated into the mandatory bear 

and animal safety briefing back country campers receive before they obtain the required 

back country permit at the ranger’s office.  

This thesis is organized as follows. Chapter two presents information on the 

cloud-to-ground lightning process and the basics of the lightning detection and 

measurement system used in the United States (US). A review of the previous lightning 

and wildfire related research as well as the use of GIS in studying this phenomenon is 

also presented in Chapter two. Chapter three describes the study area while Chapter four 

discusses the datasets used in the research. Chapter five contains the methods used to 

conduct the analysis. The results and discussion are presented in Chapter six. Chapter 

seven contains potential future research and Chapter eight presents a summary of the 

research and findings. 
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  2. LITERATURE REVIEW 

2.1  The Lightning Flash 
Lightning is defined as a transient, high current electric discharge resulting from 

the separation of charged particles within a cloud, usually a thunderstorm cloud or 

cumulonimbus cloud (Uman, 1987). The total lightning discharge, as an entity, is called a 

lightning “flash”. A flash that makes contact with an object on the ground is often called 

a “lightning strike” and defines cloud-to-ground lightning. The flash is a complex process 

involving one or more flows of current. In cloud-to-ground discharges this current flow is 

called a “stroke” (Telesca, Bernardi and Rovellie, 2005; Rakov and Uman, 2003). Each 

stroke is composed of a downward leader from the cloud followed by a return stroke 

from the ground. A flash can contain a single stroke or multiple strokes and the number 

of strokes in a flash is known as the multiplicity. The time scale of the lightning flash 

process is on the order of a half second while the strokes have a duration on the order of 

tens of microseconds (ms) that typically occur within 20 to 100 ms of each other (Orville 

et al., 2011; Telesca, Bernardi and Rovelli, 2005). The first downward leader of the flash 

is started as a “stepped” leader while the subsequent downward leaders of the flash are 

started as “dart” leaders (Rakov and Uman, 2003). The stepped leader-return stroke 

creates the initial channel for the movement of charge. Cloud-to-ground flashes can 

transfer either negative or positive electrical charge although negative flashes are 

considered more common occurring, 90% of the time (Rakov and Uman, 2003). The 

percentage of flashes transferring positive charge to the ground have been found to vary 

both seasonally and regionally (Orville and Huffines, 2001).  
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The return stroke is sometimes followed by a continuing current. While most 

charge is transferred during the sequence of leader-return strokes, there are cases where 

most of the charge is transferred as a continuing current (Orville et al., 2011). In one 

study, 75% of positive cloud-to-ground lightning flashes contained a continuing current 

while only 30% of negative cloud-to-ground flashes had a continuing current (Saba et al., 

2010). The presence of continuing current within a flash is considered a critical factor for 

wildfire ignition (Latham and Williams, 2001). Positive flashes often contain a single 

return stroke lasting more than 40 ms, with the greatest peak currents producing the 

largest charge transfer to ground. Negative flashes rarely contain continuing currents 

longer than 40 ms with peak currents greater than 20 kiloamperes (kA). Some evidence 

suggests that the combination of the long continuing and high peak current in the positive 

flashes are responsible for increased physical damage and wildfire ignition (Rudolsky 

and Fuelberg, 2011; Rakov, 2003; Rakov and Uman, 2003; Latham and Williams, 2001). 

2.2  Lightning Detection and Measurement 
Only within the last 40 years have detailed studies on the spatial distribution of 

lightning events in the U.S. been conducted and published (Zajac and Rutledge, 2001). 

This was largely due to the lack of detailed lightning data until the implementation of the 

National Lightning Detection Network (NLDN). The NLDN is a modern day lightning 

location system (LLS) that is able to determine location, intensity, and movement of 

thunderstorms in real time (Cummins and Murphy, 2009). An LLS employs a networked 

array of broadband (~1 to 400 kilohertz [kHz]) sensors that detect the electromagnetic 

fields radiated by lightning flashes (Krider et al., 1980). It is the distinct electric and 
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magnetic waveforms produced by the return strokes of cloud-to-ground lightning that 

makes detection possible (Cummins et al., 2010). The LLS obtains time of arrival (TOA) 

information from the distinct waveform generated by the fast-rising “onset” or “rise-

time” of these fields from the lightning discharges and uses the ratio of the peak field 

values measured by a pair of north-south and east-west (orthogonal) magnetic-loop 

antennas to obtain the direction of arrival (Cummins et al., 2010; Krider et al., 1980). The 

NLDN uses the Improved Accuracy through Combined Technology (IMPACT) 

algorithm to derive the latitude, longitude, and discharge time of the cloud-to-ground 

lightning based on the directional and arrival-time information (Cummins and Murphy, 

2009). The NLDN has been providing lightning data at the continental scale in the U.S. 

since 1989 (Cummins and Murphy, 2009). The flash detection efficiency of the NLDN 

has been found to be between 90-95% with positional errors (median error) less than 500 

meters (m) (Mallick et al., 2014; Nag et al., 2014; Cummins et al., 2006).  

2.3  Lightning Studies 
Data collected by the NLDN, as well as data collected by comparable systems in 

other countries, have been used in a variety of studies analyzing lightning behavior. Most 

studies use the collected lightning data to analyze lightning activity at the national or 

country scale. The analyzed data is often presented in the form of maps of flash density. 

One of the first papers published using the NLDN data at the national scale mapped the 

annual lightning flash density for the contiguous U.S. for 1989 (Orville, 1991). As the 

archive of NLDN data for the U.S has grown researchers have been able to map the flash 

density using longer periods of records to build national level lightning climatologies 
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(Orville and Huffines, 2001, 1999; Huffines and Orville, 1999; Lyons, Uliasz, Nelson, 

1998; Orville and Silver, 1997). These national climatologies often show the mean annual 

flash density across the country as well as other parameters such as mean annual positive 

flash density, mean annual negative flash density, percentages of positive flashes, mean 

multiplicities for both positive and negative flashes, median peak currents, and mean 

annual flash rates (Orville and Huffines, 2001; Huffines and Orville, 1999).  

While these lightning climatology studies conducted at the national scale are 

useful for identifying the overall spatial distribution of lightning activity across the area 

of study, they do little to address the relationships that may exist between the distribution 

of lightning flashes and the local physical environment. These studies may mask 

important relationships between the physical environment and lightning activity at the 

regional and local levels. In the U.S., studies conducted at the national level resulted in 

lightning flash density maps showing no apparent relationship between lightning strikes 

and the terrain (Orville and Huffines, 2001; Zajac and Rutledge, 2001). The lightning 

maps in these studies show the highest concentration of lightning in Florida and other 

parts of the southeast—regions that are relatively flat compared to other parts of the 

country. 

More research on lightning at local scales is necessary in order to gain a better 

understanding on how lightning flashes are related to land cover and terrain variables 

such as elevation, slope, and aspect. In recent years, studies conducted at regional scales 

have produced mixed results. A lightning study of the Northern Territory of Australia 

found noticeable differences between lightning strike density and vegetation type and 
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terrain height (Kilinc and Beringer, 2007). In this study, strike density appeared to be 

more related to elevation in the southern region while more dependent on vegetation 

cover in northern region of the study area. Weber et al. (2003) found a negative 

relationship between elevation and lightning frequency in the foothills of mountains in 

the Snake River Plains of southeastern Idaho. In Colorado, Hodanish and Wolyn (2006) 

found the highest flash densities occurred where the mountains and the plains intersect 

instead of at the peaks. In southeast Pennsylvania, DeCaria and Babij (2003) found a 

weak negative but statistically significant relationship between lightning density and 

terrain height.  

Research conducted on lightning strikes in the interior of Alaska revealed a dual 

relationship between lightning density and elevation (Dissing and Verbya, 2003). The 

relationship appears to be positive up to a maximum elevation of 1100-1200 m. However, 

above this elevation, the relationship is negative. Regression analysis further revealed 

that vegetation and elevation characteristics accounted for approximately 66% of the 

variation seen in lightning strike data. 

Reap (1986) found a pronounced magnitude of lightning activity with increase in 

terrain height while studying lightning activity in the Western U.S. during the 1983-84 

Summer seasons. The study also revealed lightning activity minimums between 0700 and 

0900 Mountain Standard Time (MST) and rapid increases in lightning activity between 

1500 and 1700 MST. In addition to the diurnal activity, the study found a high correlation 

between time of day and elevation. Maximum lightning activity in the higher elevations 

occurred in the early afternoon hours while the early evening and nighttime hours 
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appeared to favor the lower elevations. Reap (1986) concluded that the geographical and 

seasonal distributions of lightning activity appear to be the result of local topography, 

timing, and location. 

The NLDN not only made it possible to study both lightning location and timing, 

but it has also made it possible to analyze some of the physical characteristics about 

cloud-to-ground lightning such as strike polarity, peak current, and multiplicity. A study 

by Saraiva et al. (2008) reveals relatively low multiplicity (flashes per strike) for 

negatively charged strikes in Tucson, AZ. Lyons et al. (1998) found significant 

geographic differences in multiplicity with respect to both polarity and peak current. The 

authors found higher concentrations of cloud-to-ground lightning strikes with positive 

charge and high peak currents in the Midwestern high plains region and high 

concentrations of lightning strikes with negative charge and large peak currents over the 

Gulf of Mexico and along the Gulf Coast states. 

2.4  Lightning Ignited Wildfire Studies  
The spatial distribution of wildfire is often determined by a variety of structural 

and environmental factors. Vegetation, topography, and land use are structural factors 

that help shape the spatial distribution of wildland fires (Vadrevu, Badarinath, Anuradha, 

2008; Chou, 1992). Environmental factors include wind speed and direction, 

precipitation, and temperature (Westerling, 2003; Chou, 1992). In combination, these 

factors help determine the fuel characteristics of the area which is key in the spatial 

distribution of wildland fires (Amatulli, Perez-Cabello, de la Riva, 2007). While fuel 

characteristics are important at the point of ignition, they are more important in the 
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surrounding regions. The spatial distribution of wildland fires is greatly impacted by 

neighborhood effects and those from adjacent areas (Chou, 1992). The surrounding 

neighborhoods or adjacent areas influence the spread of wildfires as well as the level of 

fire suppression applied (Vadrevu, Badarinath, Anuradha, 2008; Chou, 1992;).  

Although these are important factors in the general category of wildfires, 

lightning ignited wildfires have other contributing factors. Lightning-caused fires are also 

dependent upon the meteorological conditions that lead to atmospheric convection 

including both large-scale synoptic and regional scale climatological conditions that vary 

each year (Bartlein et. al., 2008). Fires ignited by lightning are also generally collocated 

with fuels and high lightning frequencies (Rorig and Ferguson, 1999) and depend on fuel 

moisture conditions, atmospheric moisture conditions, concurrent rainfall amounts and 

duration, and fire suppression efforts (Rorig and Ferguson, 2002).  

Due to these relationships, a number of studies have found that fires caused by 

lightning are spatially clustered (see Amatulli, Perez-Cabello, de la Riva, 2007). Some 

have concluded that lightning caused fires are the most spatially clustered of all wildland 

fire types (Genton et. al., 2006). In mountainous regions, lightning-caused fires appear to 

be more clustered at higher elevations (Bartlein, 2008; Vazquez and Moreno, 1998). 

In addition to demonstrating spatial clustering, lightning-ignited wildfires also 

appear to be clustered in time, manifesting as a distinct fire season. For example, 

wildfires caused by lightning in the western U.S. are extensive in summer and have 

spatial and temporal structures that reflect controlling factors such as climate, weather, 

and regional distributions of vegetation (Bartlein et. al., 2008; Westerling et. al., 2003). In 
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addition, this work showed that lightning ignited fires display a definite seasonal 

distribution with annual variations. Seasonally, lightning fires peak in the July-August 

timeframe as vegetation is more flammable due to deficits in soil moisture. Furthermore, 

the location of the largest lightning-caused fires changes from year to year which reflect 

the inter-annual variation in climate (Bartlein et. al., 2008). Likewise, Vazquez and 

Moreno (1998) showed that the pattern of lightning fires coincides with the local weather 

patterns. This research found that fires are clustered more towards mid-year and are 

greatly affected by vegetation. Fire frequency has also shown to be related to the growing 

season temperature; precipitation, lightning strike frequency, elevation, aspect, and level 

of forest cover (Kasischke, Williams and Barry, 2002).  

In studying the physical properties of lightning strikes and their relationship to 

wildfires, Fuquay (1982, 1980) found that a relationship exists between flash polarity and 

fire ignition. Meisner (1993) correlated fire ignition with total flash counts. However, 

Rorig and Ferguson (1999) found no relationship between polarity and fire ignition by 

lightning.  

The role of fire in the ecosystem of national forests and parklands is known and it 

forms the basis of fire management plans. Forest fires are important issues from both a 

social perspective as well as a scientific perspective (Lee, Park and Chung, 2006). Both 

the National Park Service and U.S. Forest Service have to constantly balance the needs of 

the ecosystem with the needs of the people. Finding the balance point that enables 

successful planning and execution of any fire management plan requires considerable 

knowledge about wildland fires. Knowledge regarding the spatial and temporal patterns 
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of all types of wildfire can be effective in shaping a fire management plan (Chou, 1992) 

as it can lead to a better understanding of the fire regimes (Lee, Park and Chung, 2006). 

Fire regimes are used to study forest fires in terms of fire type, intensity, severity, size, 

return interval, seasonality, and spatial pattern (Agee 1993; Christensen and Abbott, 

1989). This type of knowledge can be obtained through the application of spatial analysis 

and GIS as well as spatio-temporal techniques. The results of spatial pattern analysis can 

provide managers with improved information used in determining how to enhance fire 

management policies (Vadrevu, Badarinath and Anuradha, 2007). 

2.5  GIS Applications  
A GIS is commonly defined as an integrated computer system that can capture, 

store, query, analyze, and display geographical information. The most well-known 

integrated system in use today is the ArcGIS platform, developed by the Environmental 

Systems Research Institute, Inc (ESRI) located in Redlands, CA. ESRI (2012) defines a 

GIS as a system with integrated hardware, software, and data allowing users to “view, 

understand, question, interpret, and visualize” data to reveal spatial relationships, 

patterns, and trends through maps, globes, reports, and charts. GIS allows users to 

analyze spatial and temporal patterns to identify, describe, and measure the shape, 

arrangement, location, configuration, trend, and relationships of spatial data (Scott, 

2015).  

As GIS technology evolves, more disciplines are leveraging its power. GIS has 

proven to be a great asset in fire research and park management (van Wagtendonk, 2002). 

Spatial analysis techniques have also been proven to be extremely valuable in analyzing 
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other incident data, including crime analysis (Chainey and Ratcliffe, 2005; Hirschfield 

and Bowers, 2001) and ecology (Johnston, 1998). Some of the techniques developed for 

research in ecology are now used in other environmental fields like forestry (Chuvieco 

and Salas,1996; Jaiswal et al., 2002; Kasischke, Williams and Barry 2002). Spatial 

pattern analytic approaches were shown to be very useful in detecting fire “hotspots” 

using a number of cluster analysis methods often employed in crime analysis such as 

quadrat analysis, nearest neighbor analysis, and the Ripley’s K-statistic (Vadrevu, 

Badarinath and Anuradha, 2008).  

Quadrat analysis evaluates point distributions by determining the change in 

density over space. It can help determine whether or not clustering of points is more or 

less than in a random pattern (Vadrevu, Badarinath and Anuradha, 2008). The nearest 

neighbor analysis gives a single value index that provides a more of a quantitative 

measure of a pattern. This index is simply the observed mean nearest neighbor distance 

divided by the expected mean nearest neighbor distance of a random pattern (Vadrevu, 

Badarinath and Anuradha, 2008). Ripley’s K-statistic can be used to describe the degree 

of spatial dependence in the pattern and to identify significance of clustering (Vadrevu, 

Badarinath and Anuradha, 2008). 

Another technique used to study forest fires is density estimation. Density 

estimation is the modeling of a density surface given a finite amount of data points 

recorded with x-y coordinates. The most common method simply counts the number of 

points within predefined aerial units of space using units of the same size. However, one 

drawback is that the resulting density surface can be affected by grid size and grid 
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orientation (Amatulli, Perez-Cabello, and de la Riva, 2007). Kernel density, which is a 

non-parametric technique, has several adjustable parameters such as the kernel function 

used, the bandwidth, and the amount of smoothing. Amatulli, Perez-Cabello, and de la 

Riva (2007) focused on tuning the bandwidth based on the nearest neighbors to convert 

fire point data into a continuous density surface to investigate wildfire occurrence in 

Aragón, Spain. This adaptive technique resulted in the application of a different 

bandwidth for each point. Wierzchowski, Heathcott and Flannigan (2002) also used 

density maps to analyze lightning-caused fires. Density maps were created for three grid 

cell resolutions: 1 kilometer (km), 5 km, and 10 km. The study found the 10 km 

resolution to show the most pronounced spatial patterns.  

Most research that has examined the spatial and temporal distribution of cloud-to-

ground lightning activity are based on the use of flash density maps. Average annual 

flash density maps are often generated along with monthly and seasonal flash density 

maps. While the nature of atmospheric science studies has always required the use of 

spatial thinking, the field itself has been slow to adopt the GIS framework for conducting 

analysis. Only over the previous ~10 years has the field moved to research using other 

spatial techniques to analyze lightning activity. Wagner et al. (2006) used a GIS based 

approach to lightning studies to create a series of flash density maps for studying 

lightning activity in West Texas. Vogt (2014) leveraged a GIS framework in studying the 

summertime lightning patterns on the Colorado “Fourteeners” (peaks ≥ 14,000 feet [ft]). 

In this study GIS was used to perform buffer operations to extract lightning data based on 

the terrain features of interest. Vogt (2011) used a GIS workflow to derive the local high 
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points from a digital elevation model within a study area in Colorado. These local high 

points fell along peaks, ridges, and steep convex slopes. A buffer operation was then 

applied to these local high spots to select lightning events that fell within the buffer 

allowing the author to focus on lightning-high point interaction. In Neuwirth, Spitzer, and 

Prinz (2012), the authors used a GIS to generate a series of maps that allowed them to 

determine high and low cluster regions based on flash density. They first generated the 

standard flash density map as seen in many other studies. These maps were then 

subjected to a 3 x 3 moving window to calculate focal mean to create a focal flash 

density. The focal flash density maps where then used to visualize “hot” spots, regions of 

high density and “cold” spots, regions of low density.  

Applying spatial analysis techniques within a GIS framework can help determine 

the variables that help shape the environment conducive for lightning ignited wildfires 

within Yellowstone National Park. Evaluating the spatial distribution of these lightning 

wildfire events can highlight areas within the park where variables such as topography 

and vegetation play a more favorable role as suggested by other similar studies. 

Knowledge about the temporal distribution of these events can also help identify factors 

favoring lightning ignition such as environmental factors. The use of GIS and spatial 

analysis has the potential to not only reaffirm previous knowledge but also may lead to 

the discovery of other variables that are important in this wildfire process. More 

importantly is what happens to the knowledge gained from these analytical techniques. 

Knowing the environment is only the first step in managing the process. These same 
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techniques can also be applied in the second step to help make the decisions needed to 

effectively manage wildfires in the park. 
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3. STUDY AREA 

Yellowstone National Park was established in 1872 as the first national park in 

the U.S. and is often proclaimed as the world’s first national park. The park occupies 

3,472 square miles and is primarily located in the extreme northwestern part of Wyoming 

(96% of the park’s area) but extends westward into Idaho (1%) and northward into 

Montana (3%) (Figure 1). It is home to a variety of wildlife including grizzly and black 

bear, elk, wolves, and bison. The park is considered one of the most thermally active 

regions in the world containing several types of geothermal features, hot spots in the form 

of geyser basins, hot springs, mud pots, and fumaroles. Yellowstone contains 

approximately 1,000 miles of hiking trails with 300 backcountry campsites. Over four 

million people visited the park in 2015 (National Park Service, 2016). 

Yellowstone’s terrain is very rugged (Figure 2 and Figure 3) with elevation 

ranging from a low of 5,282 ft at Reese Creek to a high of 11,385 ft at Eagle Peak. More 

than 90% of Yellowstone National Park is above 7,000 ft in elevation as it is located on 

top of a thermal bulge created through the uplift of the Yellowstone hotspot, an area of 

long-lived volcanism. Most of the park’s volcanic central plateau has an elevation 

between 8,000 and 9,000 ft. Flanking this plateau on three sides are mountainous regions; 

the Absaroka Range to the east, the Gallatin Range to the northwest, and the Beartooth 

Range to the north and northeast. The low lying Snake River Plain is located to the west 

and southwest of Yellowstone (Marcus, Meacham and Rodman, 2012).  
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The land cover in Yellowstone is 80% forest, 15% meadow, and 5% water and is 

home to more than 10,000 geothermal features. These features include mud pots, hot 

springs, fumaroles, pools, and geysers, the most famous being Old Faithful (Marcus, 

Meacham and Rodman, 2012). Major valleys include Lamar and Haden and major rivers 

include the Yellowstone River, the Madison River, and the Lamar River. Lake 

Yellowstone is the largest lake in the park as well as the largest high altitude lake in 

Northern America covering 286 square miles (Marcus, Meacham and Rodman, 2012).  

The weather regime in the Greater Yellowstone Area is driven by a combination 

of the synoptic scale atmospheric circulations and the regional influence of the 

mountainous topography. During the winter and spring months, the synoptic level flow 

funnels Pacific moisture through the Snake River valley and onto the Yellowstone 

plateau resulting in the highest precipitation and snowfall amounts of the year with south 

through southwestern part of the park receiving the most precipitation. During the 

summer and fall months, moisture from the Gulf of Mexico fuels the thunderstorms that 

often form due to the localized differences in surface heating and local wind patterns 

resulting from the mountainous terrain. Average temperatures can range from slightly 

below 0° Fahrenheit (F) during the winter months to the 70s and 80s (°F) during the 

summer months (Marcus, Meacham and Rodman, 2012).  
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Figure 1. Map depicting location of Yellowstone National Park (shaded in green) and the Greater Yellowstone 
ecosystem (shaded in tan). Base map courtesy of the Environmental Systems Research Institute (ESRI). State, 
park, and ecosystem boundaries courtesy of the U.S. National Park Service (NPS). 
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Figure 2. Map of Yellowstone National Park depicting topography, main roads, points of interest, lakes and 
rivers. Map data obtained from ESRI and NPS. 
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Figure 3. Visualization of the terrain in Yellowstone using data collected under the NASA Shuttle Radar 
Topography Mission (SRTM) and obtained from the U.S. Geological Survey (USGS) in DTED level 2 format. 
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4. DATA 

The primary datasets used to complete this project include the lightning data, a 

digital terrain elevation model and the National Land Cover Dataset (NLCD). Data 

preparation and pre-processing tasks were accomplished using ArcGIS Pro (version 1.3), 

python (version 3.4), and PostgreSQL (version 9.3).   

4.1  Lightning Data  
Lightning data used in this study were collected by the National Lightning 

Detection Network (NLDN), which is operated and maintained by Vaisala Inc.,Tucson, 

AZ (Orville, 2008) and obtained from the U.S. Air Force, 14th Weather Squadron, 

Asheville, NC. The dataset contains lightning data for a 20-year period of record ending 

in 2008 for a region bounded between 40°N and 46°N latitude and 105°W and 115°W 

longitude. Due to a series of sensor and network upgrades in the NLDN, a subset of the 

data covering a 10-year period of record of lightning events occurring within the park 

boundary was extracted for this study in order to have data points with consistent 

accuracy and to decrease data processing and analysis time. The period of record for this 

study covers from January 1995 to December 2004. The data were received in comma 

delimited (csv) file format, one csv file per year, with each row in the files representing a 

single lightning flash event. The dataset contains the following fields or attributes: 

Month, Day, Hour, Minutes, Seconds, Polarity, Strength, Multiplicity, Detectors, and 

Type. 
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In combination, the date- and time- related fields identify the precise time the 

lightning event occurred. Time is recorded using coordinated universal time (UTC) in the 

24-hour clock format. UTC is the internationally accepted time standard used to regulate 

clocks and time throughout the world. The 24-hour clock format does not use the day 

(am) and night (pm) designators used in the 12-hour clock format. A time of 19 UTC in 

24-hour clock format equates to 7PM UTC in 12-hour clock format and a time of 07 UTC 

in 24-hour clock format is 07AM UTC in the 12-hour clock format. Yellowstone falls in 

the MST time zone and the conversion from UTC to MST is -7 (MST = UTC – 7) during 

standard time and -6 during daylight savings.  

The remaining fields describe the physical properties of CG lightning. The type 

field indicates the type of lightning detected by the NLDN detectors. This analysis only 

considered the cloud-to-ground lightning type events. The polarity attribute indicates the 

charge of the lightning stroke; recorded as either positive or negative. The strength 

attribute is derived from the conversion of the signal strength to electrical current and 

represents the electrical strength of the lightning event (Lyons, Uliasz and Nelson, 1998). 

Only cloud-to-ground lightning events with strength values greater than 10 kA were used 

in order to alleviate noise being counted as false lightning detections (Cummins et al., 

2006). The count field, also called multiplicity, is an integer field indicating the number 

of flashes that occurred during the cloud-to-ground event (Grogan, 2004). The detectors 

field identifies how many of the NLDN sensors detected the lightning event. Only events 

detected by one or more detectors were used in this study. 
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The ten csv files containing data for the period of study were loaded as tables into 

a geospatially enabled PostgreSQL database to build a lightning data point cloud cube for 

processing and analysis. The 10-year lightning data point cloud cube was “sliced” by 

aggregating the data by month and by hour for use in analyzing the data at the month and 

hour time scales. Aggregating by month resulted in 12 slices while aggregating by hour 

of day resulted in 24 slices. A graphical representation of this slicing process is shown 

below (Figure 4) where the x-axis represents the year, the y-axis represents the month 

and the z-axis represents the hour. The monthly slices contain all of the data for the 

specified month from each year and hour in the study period while the hourly slices 

contain all of the data for the specified hour.   
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Figure 4. Conceptual drawing of the 10-year lightning data cube and temporal slices. 
 

 

 

The lightning data cube was assigned a projected spatial reference of UTM Zone 

12. A projected spatial reference is required when performing GIS and spatial analytic 

methods based on distance such as in clustering algorithms. A copy of the data cube was 

written out as a series of shapefiles. 

Python 3.4 code snippets were used to process the data. Python 3.4 provides an 

environment to script various geoprocessing tasks using the ESRI arcpy python module. 

The latest version of ArcGIS Pro (version 1.3) was used for all geoprocessing tasks to 

take full advantage of the software’s ability to implement multi-threaded, 64-bit 

processing on modern computer architectures.  
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4.2  Terrain Data  
Terrain data used in this project was obtained online from the U.S. Geological 

Survey (USGS). The USGS EarthExplorer web application 

(http://earthexplorer.usgs.gov) was used to select and download elevation data collected 

during the National Aeronautics and Space Administration (NASA) space shuttle 

Endeavor’s Shuttle Radar Topography Mission (SRTM) occurring February 11-22, 2000. 

The data collected by the Endeavor was post processed by the National Geospatial 

Intelligence Agency (NGA) to fill in void areas using special terrain interpolation 

algorithms and other elevation datasets. The final void filled dataset for the U.S. has a 

grid resolution of 1 arc-second (~30 m). For this project, nine tiles of SRTM elevation 

data in DTED 2 format covering the Greater Yellowstone region were downloaded from 

the EarthExplorer web application and mosaicked into a single elevation file. A 

Yellowstone National Park boundary shapefile was used to extract a clipped copy of the 

terrain mosaic file. The extracted Yellowstone Park terrain was used to generate terrain 

aspect and slope files for Yellowstone National Park. 

4.3  National Land Cover Data 
Land cover data was obtained online from the USGS Multi-Resolution Land 

Characteristics Consortium (MRLC) website (www.mrlc.gov). The National Land Cover 

Database (NLCD) is considered the definitive Landsat-based, 30 m resolution, land cover 

data base for the US (Homer et al., 2015). The 2011 edition (amended in 2014) for the 

Greater Yellowstone region was downloaded for this analysis. The data is in raster image 

format where each cell is assigned a thematic category code that describes the underlying 
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land surface. This project only used the land cover classification codes for forest (code 

42) and the grasslands/shrublands (codes 52 and 71). 
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5. ANALYSIS METHODOLOGY 

This study of cloud-to-ground (CG) lightning activity in Yellowstone began with 

a series of graphs to explore the temporal distribution of lightning flash events by year, 

by month (aggregated), and by hour (aggregated). To explore the spatial pattern and 

distribution of lightning activity in the park, a series of maps visualizing the locations of 

the individual CG lightning flashes as points was created as well as a series of maps 

displaying the flash density of the lightning activity. These point maps and flash density 

maps provided an initial visual analysis of the spatio-temporal pattern of lightning flashes 

within the park and were used as a first step in determining whether or not lightning 

activity is clustered or random (Research Question 1) and whether the activity varies by 

month or season (Research Question 2). 

While the point maps and density maps are useful in displaying the spatial 

distribution of lightning activity and may show areas where clustering may exist, they are 

qualitative in nature and can’t be used to measure the spatial autocorrelation of the 

pattern. According to Tobler’s “first law of geography”, “everything is related to 

everything else, but near things are more related than distant things” (Tobler, 1979). This 

relationship between “near things” is the foundation of spatial autocorrelation where 

Legendre defines spatial autocorrelation as pairs of observation a certain distance apart 

having more similar (positive autocorrelation) or less similar (negative autocorrelation) 

values than expected for randomly associated pairs of observations (1993).  
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Global spatial statistics were used to measure the degree of spatial autocorrelation 

to determine whether or not there is clustering in CG lightning flashes within the given 

study area (Research Question 1). Local spatial statistics were used to determine 

locations of clustering and the scale of clustering within the study area to identify areas in 

the park that statistically experience more or less CG lightning activity than other parts of 

the park (Research Question 3). The statistical tests were applied to each of the monthly 

and hourly data slices as well as to the entire data cube as a whole. Some of the statistical 

tests used the CG lightning point data as input while others used a spatially aggregated 

version of the data where the points were aggregated to a grid of hexagon polygon cells. 

The investigation of the influence of land formations, land cover, and terrain on 

the lightning pattern (Research Question 4) was based on ordinary linear regression and 

spatial regression analysis. Test results are presented as a series of maps, graphs, and 

tables as appropriate. The following text details the analytical workflow and summarizes 

the spatial statistics and tests used to answer the research questions. 

5.1  Visualizing the Spatial Pattern of CG Lightning Events 

5.1.1  CG Lightning Event Maps 
An essential element in conducting and communicating geospatial analysis is the 

map. This study used a series of maps to visualize the geospatial distribution of CG 

lightning activity within Yellowstone National Park. These maps displayed the individual 

lightning events as points using one point to represent a single CG lightning flash event. 

A map series was created visualizing the 10-year activity aggregated by month and 

another series was created showing the activity aggregated by hour of day. A map 
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visualizing the entire 10-year period of lightning activity was also created. These maps 

show where lightning activity occurred within the park over the 10-year period as well as 

the monthly and hourly spatial distributions of the lightning activity in an effort to show 

when the lightning activity occurred. 

5.1.2  CG Lightning Flash Density Maps 
When large numbers of point events are visualized on a map, it can be difficult to 

evaluate the spatial pattern for clustering. Mapping the density of a variable can be 

helpful in visualizing a variable’s spatial pattern. This study used a hexagonal binning 

technique to spatially aggregate the lightning flash data. A series of maps depicting the 

density of the lightning flashes were created as a first step in analyzing the spatio-

temporal pattern. Binning is considered a grouping and data reduction method often used 

when dealing with large datasets. While using squares to tessellate an area may be the 

more popular method, hexagonal tessellation is thought to be more advantageous since 

hexagons are considered to be more visually appealing, have better symmetry of nearest 

neighbors than square or rectangular bins, and are more efficient in spatially covering the 

study area (Genton et al., 2006; Carr, Olsen and White, 1992, Carr et al., 1987).  

Hex binning was accomplished by spatially joining each of the lightning data 

tables to a hexagon grid feature class. The spatial join process resulted in a new feature 

table containing a count field to store the number of flash events in each hex cell (labeled 

as “hexCounts”). A lightning flash density attribute was also added to the new feature 

table and calculated by dividing the hex counts by the hex cell area and then by the 

number of years spanning the dataset resulting in a count per km2 per year (Ng). For each 
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hex cell, the mean and standard deviation of the lightning flash density were also 

calculated and mapped using the aggregated monthly data to show the mean flash density 

and the flash density spatial variance across the study area. 

To determine an appropriate hex grid cell size to use for this study, several factors 

were considered including the size of the study area and the number of points within the 

study area. The size of the study area and number of events were used in the following 

equation (Equation 1) from Oyana and Margai (2015) for determining an appropriate cell 

size for gridding a study area: 

 

√2
𝐴𝐴
𝑛𝑛

 
Equation 1. Cell size for tessellating a study area. 

 

where A is the area of the region of interest and n is the number of points or events in the 

study area. Applying this equation to this study resulted in cell sizes ranging from 0.66 to 

2.5 km2 for n ranging from 5,000 to 20,000 points. For this study, it was desirable to have 

a single hex grid for use in conducting the analysis at the monthly and hourly time scales 

as well as for the entire data cube. Using a single grid instead of one that changes 

throughout the analysis aided in comparing the spatial patterns of lightning activity 

through time. Furthermore, several of the spatial statistical techniques used in the study 

required the input data to have a variety of cell values and very few empty grid cells. In 

addition, as noted by Yin et al. (2007), meteorologists use grid cell sizes of 1 ~ 5 km to 

study micro-scale patterns that may be influenced by topography, cell sizes of 10 ~ 20 km 
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to study meso-scale or regional patterns, and 40 ~ 50 km grids to analyze synoptic or 

planetary scale patterns.  

After considering all of these factors and after reviewing the frequency 

distributions of the resulting spatial join counts when cell sizes ranged from 0.5 to 22 

km2, a cell size of 1 km2 was chosen to tessellate the study area as this grid size met the 

analytical needs of this study. Tessellating the study area using 1 km2 hex cells resulted in 

a gridded feature layer containing 9,128 hexagonal polygon bins. Many of the hex cells 

along the park’s boundary had areas less than 1 km2 and therefor were not used in the 

analysis. This resulted in a total of 8,624 usable hex cells. 

5.2  Temporal Analysis of CG Lightning Activity 
This study used basic bar and line charts to visualize and explore the temporal 

distribution of CG lightning events within Yellowstone. Bar charts plotting the number of 

events versus year, events versus month, and events versus hour of day were created. A 

table was also created showing event counts aggregated by year and month along with 

max, min, and average events counts. 

5.3  Testing the Spatial Pattern of CG Lightning Activity for Clusters 

5.3.1  Nearest Neighbor and K-order Nearest Neighbor Analysis  
Nearest Neighbor Analysis (NNA) was used to determine if the spatial pattern of 

the CG lightning flashes is clustered, dispersed, or random. Using the raw point data, the 

distance between each point feature and its nearest neighbor is calculated and these 

nearest neighbor distances are then averaged over all of the points in the study area 

(Equation 2). The expected average nearest neighbor distance based on a hypothetical 
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random distribution of points is also calculated (Equation 3). The observed average 

nearest neighbor distance is divided by the expected average nearest neighbor distance to 

form a nearest neighbor index (NNI) R (Equation 4). When R is equal to one (R=1), the 

overall distribution of point features is considered to be perfectly random. When R is less 

than one (R<1), the point distribution is considered to be exhibiting clustering with R 

equaling zero (R=0) indicating a completely clustered pattern. When R is greater than one 

(R>1), the pattern is considered to be tending toward dispersion. A Z-score (Equation 5) 

and p-value are also calculated for testing the null hypothesis of complete spatial 

randomness (CSR) (Clark and Evans, 1954).  

 

𝑟𝑟𝑜𝑜 =
∑ 𝑟𝑟𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

Equation 2. Observed mean distance (ro) where N is the total number of points and ri is the nearest neighbor 
distance for point i.  

 

 

𝑟𝑟𝑒𝑒 =
1

2�𝜌𝜌
 

Equation 3. Expected mean distance (re) where 𝝆𝝆 is the study area point density calculated as the total number 
of points divided by the total area of the region under study. 

 

 

𝑅𝑅 =
𝑟𝑟𝑜𝑜
𝑟𝑟𝑒𝑒

 
Equation 4. Average nearest neighbor index (R). 
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𝑧𝑧 =
𝑟𝑟0 − 𝑟𝑟𝑒𝑒

0.26136
�𝑁𝑁𝑁𝑁�

 

Equation 5. Average nearest neighbor Z-score (Z). 
 

With a modification in how the expected mean distance is calculated, a 

distribution of K-order nearest neighbor indices can be calculated for neighbors beyond 

the first nearest neighbor or the first order (K = 1). Plotting the K-order NNI versus K can 

show larger scale clustering than what can be seen when using only the first neighbor. 

The plot can also show the order(s) where spatial clustering may be more intense or 

where clustering may cease to exist or begin (Bailey and Gatrell, 1995). The K-order 

expected mean distance is calculated according to Equation 6 (Levine, 2015; Thompson, 

1956). 

 

𝑟𝑟𝑒𝑒(𝐾𝐾) =  
𝐾𝐾(2𝐾𝐾)!

(2𝐾𝐾𝐾𝐾!)2�𝑁𝑁𝐴𝐴

 

Equation 6. K-order expected mean distance (re). K is the second, third, fourth, etc. nearest neighbor. N and A 
are the total number of points and the size of the study area. 

 

Nearest neighbor analysis was performed using the lightning flash event point 

data as input. First order nearest neighbor indices were calculated using ArcGIS Pro 

while CrimeStat was used to calculate the K-order nearest neighbor indices. K-order NNI 

were calculated out to the 100th order both with and without the application of a border 

correction. For the border correction case, the rectangular border correction was used to 

help minimize study area boundary edge effects. Results of NNA were displayed as a 

series of graphs. 
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5.3.2  Getis-Ord General G Statistic (High/Low Clustering) 
The Getis-Ord General G statistic, G(d), is a global measure of spatial association 

measuring the concentration or the degree of high and low clustering within a study area 

(Getis and Ord, 1992). The G(d) statistic is calculated using Equation 7. 

 

𝐺𝐺(𝑑𝑑) =  
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑑𝑑)𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

∑ ∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

, 𝑗𝑗 ≠ 𝑖𝑖 

Equation 7. Getis-Ord General G statistic (G(d)). 
 

where 𝑤𝑤𝑖𝑖𝑖𝑖(𝑑𝑑) is a spatial weights matrix of ones and zeros where 1 indicates points i and 

j are within the specified distance (d) of each other. The attribute values for points i and j 

are represented as 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 and n is the total number of points.    

A Z-score and p-value are also calculated for the statistic for use in evaluating the 

null hypothesis of no spatial clustering of high or low feature values (complete spatial 

randomness) within the study area. For statistically significant positive Z-scores, the null 

hypothesis is rejected and the spatial distribution of the high values is considered to be 

more clustered than expected under random conditions. Likewise, for statistically 

significant negative Z-scores, the null hypothesis is rejected and the spatial distribution of 

the low values is considered to be more clustered than expected under random conditions. 

The General G statistic was calculated using ArcGIS Pro. The calculated lightning 

flash density was used as input and the statistic was calculated using fixed distance bands 

(d) of 5, 10, 15, 20, and 25 km. These distances represent the micro and meso spatial 

scales previously mentioned (section 5.1.2).  The results from the series of monthly and 
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hourly tests were compiled in a spreadsheet and graphs of G(d) statistic Z-score versus 

distance were generated. 

5.3.3  Global Moran’s I (Spatial Autocorrelation) 
Moran’s I is another global measure of the degree of spatial autocorrelation and 

clustering. Whereas the Getis-Ord General G statistic is a measure of the overall 

concentration of high and low values, Moran’s I is a measure of the correlation where 

negative correlation indicates dispersion of similar values, positive correlation indicates 

clustering of similar values (either high or low) and zero correlation indicates complete 

spatial randomness. Moran’s I is based on the spatial covariation divided by the total 

variation as shown in Equation 8 (Oyana and Margai, 2015; Lloyd, 2011; Moran, 1950). 

 

𝐼𝐼 =  
𝑛𝑛∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑦𝑦𝑗𝑗 − 𝑦𝑦�)𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

(∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2)𝑛𝑛
𝑖𝑖=1 (∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 )

 

Equation 8. Moran's I. The total number of points is given by n while wij represents the spatial weights matrix 
between points i and j. The variable y is the points attribute value. 

 

Values for Moran’s I range from -1 (dispersion) to +1 (clustered). A Z-score and 

p-value are also calculated for Moran’s I statistic. For a statistically significant positive 

Z-scores, the null hypothesis of spatial randomness is rejected and the high or low values 

in the dataset are considered to be more clustered than expected. For a statistically 

significant negative Z-scores, the spatial distribution of high and low values is considered 

dispersed and the null hypothesis is rejected (Oyana and Margai, 2015, Lloyd, 2011; 

Moran, 1950). 
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The ArcGIS Pro software was used to calculate Global Moran’s I for lightning 

flash density using 30 distance bands beginning at 1500 m with distance increments of 

500 m. Results were plotted as graphs of Z-score versus distance. 

5.3.4  Ripley’s K (Multi-Distance Spatial Cluster Analysis) 
Ripley’s K, or the K function, is a measure used to describe the extent of spatial 

dependence in the distribution of events by analyzing the pattern at several distance 

scales. It differs from the nearest neighbor technique in that the nearest neighbor 

technique is only interested in the distance to the nearest features. The K function, on the 

other hand, is a second-order analysis and uses all inter-event distances between the 

points within the study area. Ripley’s K can show the impact of neighborhood size on 

spatial clustering or dispersion (Oyana and Margai, 2015; Bailey and Gatrell, 1995; 

Ripley, 1981). Ripley’s K is estimated using Equation 9. 

 

𝐾𝐾(ℎ) =
𝐴𝐴
𝑛𝑛2
� �

𝐼𝐼ℎ(𝑑𝑑𝑖𝑖𝑖𝑖)
𝑤𝑤𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1,𝑖𝑖≠𝑗𝑗

𝑁𝑁

𝑖𝑖=1

 

Equation 9. Ripley's K. 
 

where K(h) is the expected number of points within radius h. The area is given by A and n 

represents the total number of observed points. The spatial weights matrix represented as 

wij contains the weights associated with edge correction. The variable dij is the distance 

between points i and j. When the distance between points i and j are less than or equal to 

the radius (h), then 𝐼𝐼ℎ(𝑑𝑑𝑖𝑖𝑖𝑖) is 1 and 0 otherwise. K(h) is often transformed (Equation 10) 

to make it linear, faster to compute and easier to interpret (Oyana and Margai, 2015). 
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𝐿𝐿(𝑑𝑑) = �𝐾𝐾(ℎ)
𝜋𝜋

− ℎ 

Equation 10. Transformed K function to the linear function L(d). 
 

In addition to calculating the observed and expected K, a simulated confidence 

interval (envelope) for the desired α level is calculated under the null hypothesis of 

complete randomness by using a simulation process to determine a minimum and 

maximum L(d). L(d) is plotted along with the confidence envelope to determine areas of 

clustering and dispersion. Statistically significant clustering occurs where L(d) lies 

outside of the confidence envelope and above the max L(d) while statistically significant 

dispersion is indicated where L(d) lies outside the confidence envelope and below the 

L(d) min (Oyana and Margai, 2015). 

Ripley’s K analysis was performed on the lightning point data using CrimeStat. 

The analysis was conducted with the simulation number set to 100 and performed with 

and without the rectangular border correction. In the CrimeStat simulation process, the 

total number of point observations are randomly distributed in a minimum bounding 

rectangle equal to the specified study area and the L statistics are calculated. This process 

was repeated 100 times, each time using a different randomly distributed point pattern 

(Levine, 2015).   The results were tabulated and graphed. 

5.3.5  Getis-Ord Gi* (Hot Spot Analysis) 
The Getis-Ord Gi

* is a local version of the Getis-Ord General G statistic 

previously discussed. Whereas the General G determines an overall measure of spatial 
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autocorrelation, the Gi
* evaluates spatial autocorrelation at the local scale and identifies 

local “pockets” of dependence. The General G measures the concentration of the high 

and low values; the Gi
* statistic attempts to show the location of clusters through the 

identification of spatially significant patterns of high and low clusters by examining each 

feature within the context of its neighborhood; comparing local averages to global 

averages. The Gi
* statistic ranges in value from -3 to +3 and is calculated for each feature 

and produces a Z-score indicating the intensity of the high or low clustering with respect 

to its neighborhood depending on the sign of the Z-score. A statistically significant “hot 

spot” is one where a feature with a high value is surrounded by other features with high 

values (positive Z-score). Likewise, a “cold spot” is one where a feature with low value is 

surrounded by other features with low values (negative Z-score). (Ord and Getis, 1995, 

Getis and Ord, 1992). The Gi
* statistic is calculated using Equation 11. 

 

𝐺𝐺𝑖𝑖∗(𝑑𝑑) =  
∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑑𝑑)𝑥𝑥𝑗𝑗 − 𝑥̅𝑥 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑗𝑗=1

𝑠𝑠���𝑛𝑛∑ 𝑤𝑤𝑖𝑖𝑖𝑖
2𝑛𝑛

𝑗𝑗=1 � − (∑ 𝑤𝑤𝑖𝑖𝑖𝑖)𝑛𝑛
𝑗𝑗=1

2�/(𝑛𝑛 − 1)�
1/2 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 

Equation 11. Getis-Ord Gi* statistic. The variable s is the variance. All other variables are same as in the G(d) 
statistic previously discussed. 

 

The Gi
* statistic was calculated for lightning flash density using a fixed distance 

band of 3 km (d) in ArcGIS Pro. The results were visualized as a series of maps. 

5.3.6  Anselin’s Local Moran’s I (Cluster and Outlier Analysis) 
Anselin’s Local Moran’s I is a local test statistic for spatial autocorrelation. It is 

used to find statistically significant local clusters of similar high or low values as well as 

outliers (Anselin, 1995). Clusters of similar high values are areas of high values that are 
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surrounded by similar high values and are labeled as “H-H”. Likewise, clusters of similar 

low values are areas of low values surrounded by similar low values and are labeled as 

“L-L”. These two categories of clusters represent positive association. Two categories 

representing negative association are clusters of high values surround by low values, 

labeled as “H-L”, and clusters of low values surrounded by high values, labeled as “L-H” 

(Lloyd, 2011). Anselin’s local Moran’s I is calculated using Equation 12. 

 

𝐼𝐼𝑖𝑖 =  (𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)
∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑧𝑧𝑗𝑗 − 𝑧𝑧̅) 𝑛𝑛
𝑗𝑗=1

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1

, 𝑗𝑗 ≠ 𝑖𝑖 

Equation 12. Anselin's Local Moran's I statistic. 
 

where z are the attribute values for points i and j, n is the total number of points and w is 

the spatial weights matrix. Positive values of Ii indicate features with neighboring 

features of similar values while negative Ii values indicate features with neighboring 

features that have different values (outliers). A Z-score and p-value are also calculated as 

part of the test to determine statistical significance. The Local Moran’s I (Ii) statistic was 

calculated for lightning flash density a fixed distance band of 3 km in ArcGIS Pro. The 

results were visualized as a series of maps. 
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5.4  Analyzing the CG Lightning-Topography Relationship 
Regression analysis was used to investigate the relationship among physical 

terrain properties and the observed lightning flash density (Research Question 4). The 

regression analysis process produces a set of equations or models that can be used to 

examine, explore, and explain whether a statistical relationship exists between the 

physical terrain and the observed spatial patterns in the CG lightning data.  

In preparing the data for regression analysis, since the lightning data is in point 

data format aggregated to hexagonal polygons and the terrain and land cover data are in 

raster form, an extraction procedure was used to assign terrain elevation, slope, aspect, 

and land cover values as attributes for each of the 1 km2 hexagon polygons. The raster 

terrain dataset is stored as a grid with a much higher resolution than the 1 km2 hexagon 

bins used to aggregate the lightning data. Therefore, a majority filter was used to extract 

and assign the terrain parameters to the hexagon polygons. In addition, since aspect is a 

circular variable ranging from 0 to 360 degrees, it was decomposed into its north-south 

and east-west components for use in regression analysis. The land cover data was 

extracted to the hexagon polygons by calculating the percentage of forest (NLDC 42) and 

the percentage of grass/shrub (NLDC 52 and 71) occupying each hexagon. The flash 

density variable was transformed using the square root function to better approximate a 

normal distribution for this variable.    

Regression was first performed using the entire data. Initially, an ordinary least 

squares (OLS) linear regression analysis was performed on the 10-year period of record. 

Initial results showed that very little of the variance in the lightning density could be 

explained by terrain and land cover using general linear regression. Furthermore, a visual 
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inspection of the resulting residual standard deviation maps showed evidence of spatial 

autocorrelation, violating the assumptions of an OLS regression. Spatial regression using 

the GeoDa software package (Anselin, 2016; Anselin, Syabri & Kho, 2010) was also 

performed on the 10-year dataset following the spatial regression decision tree outlined 

by Anselin in the GeoDa workbook (Anselin, 2005) to determine whether spatial lag or 

spatial error model should be applied. During the initial regression, the spatial 

relationships were defined by generating the spatial weights matrix (wij) based on the 

first-order rook neighbors, neighbors (j) who directly share a boundary or edge with i 

(contiguous neighbors). In the case of a grid with rectangular cells, a rook contiguity 

order of 1 means the cells located immediately to the north, south, east, and west are 

considered neighbors resulting in 4 total neighbors. For a grid of hexagonal cells, first-

order rook contiguity results in all 6 of the immediate cells being identified as neighbors. 

Once it was determined that spatial error regression should be applied to this 

dataset, a series of spatial error regression models were generated by varying the order of 

the spatial weights matrices from 1 to 5, essentially increasing the radius of influence. 

While the first-order neighbors are those directly sharing a boundary or edge with i, the 

second-order neighbors are those that share boundaries with the first-order neighbors of i 

and the third-order neighbors share boundaries with the second-order neighbors, etc. The 

results were compared to see which model had the highest R2 value. In this case, the 

model using the third-order rook contiguity spatial weights matrix provided the highest 

R2 value. Regression analysis was then performed at the monthly scale using the spatial 

weights matrix based on the third-order rook contiguity. The results were aggregated and 
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summarized in a series of tables. To account for spatial effects, the spatial error 

regression models include a spatial autoregressive error term on the right hand side of the 

model and is an indicator of missing information in the model. 

To further explore the relationship between terrain parameters and CG lightning 

flash density, OLS regression was applied on the cells that were identified as either hot or 

cold spots for the entire dataset. The hex cells that the Getis-Ord Gi
* statistic identified as 

clusters of either high or low values for the entire dataset were selected and joined with 

the CG lightning flash density calculated for the entire 10-years, aspect, slope, elevation 

and land cover variables. Two separate OLS regression models were generated, one using 

the cells selected as hot spots and the other using the cells selected as cold spots mainly 

to see if there was any difference in the relationships between elevation and CG lightning 

flash density in areas of hot and cold spots.   
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6. RESULTS AND DISCUSSION 

This section presents the visualizations and analysis beginning with the dot maps 

of the individual lightning events and the lightning flash density maps. No lightning 

activity was observed during the winter months of the 10-year period of study; therefore, 

only maps showing activity between March and November are shown. The temporal 

distribution of the aggregated monthly and hourly data is shown next in the form of bar 

graphs and a table. These results are followed by charts and maps highlighting the results 

from the various geospatial statistical tests used to test the spatial pattern for evidence of 

clustering. For the aggregated monthly data, only the results from May through 

September are presented since the bulk of lightning activity occurred during these 

months. Likewise, for the aggregated hourly data, only the results for the 19 UTC 

through 02 UTC hours will be presented. The last part of this section presents the results 

of the regression analysis.  

6.1  Visualizing the Spatial Pattern and Analyzing for Global Clustering 

6.1.1  CG Lightning Event Maps 
Between January 1995 and December 2004, there were 64,721 cloud-to-ground 

lightning flashes within Yellowstone National Park. In the map displaying the entire 10-

year data set (Figure 5), no large areas void of CG lightning activity appear. Lightning 

flashes occurred in all parts of the park. Furthermore, visual inspection suggests higher 

density regions or clusters of lightning activity in some parts of the park. 
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Figure 5. Map of all cloud to ground lightning strikes in Yellowstone National Park between 1995 and 2004. 
Each red cross represents a single CG lightning event. During the 10-year period of study, 64,721 lightning 
events occurred within the park. 
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The series of maps (Figure 6) depicting the 10-year lightning data set aggregated 

on the monthly scale shows the number of lightning strikes increased as the seasons 

progressed from spring to summer and declined from summer to fall with no lightning 

strikes recorded during the winter months (December to February) of the period of study. 

The least amount of lightning strikes occurred during March (22 strikes) and November 

(28 strikes). The highest number of lightning strikes occurred in July (19,936 CG 

lightning events) followed by August (19,756 CG lightning events) and June (14,417 CG 

lightning events). Both July and August experience more than twice the number of 

lightning strikes than experienced during the March through May period and the 

September through November period combined. As in the previous map, visual 

inspection suggests that some regions may have a higher density or clusters of lightning 

activity. 

In the series of maps showing the dataset aggregated by hour of day (Figure 7 and 

Figure 8), the highest number of lightning strikes take place during the 19 UTC to 02 

UTC period of time with more than 4,000 lightning flash events occurring each hour. The 

03 UTC to 18 UTC time period experiences less than 3,000 strikes each hour with the 06 

UTC to 16 UTC time period showing less than 1,000 strikes each hour during this study 

period. It’s difficult to visually discern spatial clustering during the 03 UTC to 18 UTC 

time period. During the hours of peak activity between 19 UTC and 02 UTC, areas of 

possible clusters are more discernable. 

This series of maps shows that CG lightning activity is both seasonal and diurnal. 

This is an indicator that CG lightning activity is not consistent throughout the year.   
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Figure 6. Maps series of the aggregated monthly lightning activity between 1995 and 2004 in Yellowstone 
National Park. Each red cross represents a single CG lightning event. 
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Figure 7. Map series of lightning strikes aggregated by hour for the hours 06UTC to 17UTC. Each red cross 
represents a single CG lightning event. 
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Figure 8. Map sereis of lightning strikes aggregated by hour for the hours 18UTC to 05UTC. Each red cross 
represents a single CG lightning event. 
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6.1.2  CG Lightning Flash Density Maps 
Maps depicting the individual cloud-to-ground lightning point events are 

somewhat difficult to visually interpret. Clustering of CG lightning activity in 

Yellowstone is easier to detect in the map series of lightning flash density on the hexagon 

polygon grid. In the map depicting the CG lightning flash density using the entire 10-year 

dataset (Figure 9), the density of lightning flashes is not uniformly distributed across the 

study region. Areas of higher density values can be seen throughout the park especially in 

the more mountainous northeastern and southeastern regions. 

The map series depicting the aggregated monthly flash density of CG lightning 

(Figure 10) shows the density increases in coverage and value between March and 

August and then decreases in spatial coverage and value. Lightning flash density appears 

to be greatest during the summer months (Jun – Aug) with more spatial coverage and 

areas of higher density values during July and August, especially in the mountainous 

eastern part of the park. 

Lightning flash event density aggregated at the hourly scale is displayed as a map 

series in Figure 11 and Figure 12. The flash density pattern does not appear to be as 

intense between 06 UTC and 17UTC. Between 18UTC and 05UTC, there is an increase 

in spatial coverage and the flash density pattern appears more intense. Specifically, flash 

density is not consistent through time. 

Maps of the mean monthly flash density (Figure 13) and monthly flash density 

standard deviation (Figure 14) also show evidence that the spatial pattern of CG lightning 

activity is not consistent through time. These maps show several areas of the park where 

the flash density of lightning activity has a higher mean, including the mountainous areas 
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such as in the northeast and southeastern parts of park. Likewise, the spatial pattern of the 

monthly flash density standard deviation is not consistent across the study area, areas of 

low and high standard deviation values can be seen throughout the park. 

The spatial patterns of CG lightning events displayed in these series of maps show 

the spatial pattern is not consistent through time. The spatial pattern of lightning events 

changes along with the seasons on the monthly scale and diurnally on the hourly scale. 

These observed seasonal and diurnal changes in the CG lightning pattern are consistent 

with the changes observed as the weather regime in Yellowstone becomes influenced 

more by the mountain induced daytime convection during the summer months when 

surface heating from the sun is strongest. 
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Figure 9. Map depicting spatial density of cloud-to-ground lightning flashes within Yellowstone National Park 
between 1995 and 2004. Lightning density (Ng) displayed as the number of CG lightning events per km2 per 
year. 
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Figure 10. Map series depicting CG lightning flash density (Ng) between 1995 and 2004 aggregated by month. 
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Figure 11. Map series depicting CG lightning flash density (Ng) between 1995 and 2004 aggregated by hour 
(06UTC to 17UTC). 
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Figure 12. Map series depicting CG lightning flash density (Ng) between 1995 and 2004 aggregated by hour 
(18UTC - 05UTC). 
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Figure 13. Map of the mean monthly (Mar- Nov) lightning flash density (Ng) between 1995 and 2004. 
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Figure 14. Map of the standard deviation of the monthly CG lightning flash density (Mar - Nov) between 1995 
and 2004. 
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6.1.3  Global Spatial Autocorrelation 
In the previous section, maps of CG lightning activity demonstrated periods of 

peak lightning activity between May and September when evaluating the aggregated 

monthly patterns and between 19 UTC and 02 UTC when analyzing the aggregated 

hourly data. The focus of this section is the results of the clustering analysis during the 

periods of peak CG lightning activity. Table 1 summarizes the spatial test statistics used 

for analyzing the pattern and testing whether or not the CG lightning activity is spatially 

clustered (Research Question 1).  

 

 

 

Table 1. Table summarizing the spatial statistics used to test for global clustering of CG lightning. 
TEST 

STATISTIC 
REMARKS INPUT TOOL/ 

RESULTS 
NNA and 
K-Order 
NNA 

Determines if the distribution of points is 
clustered, random, or dispersed using a 
nearest neighbor index (NNI) comparing the 
average nearest neighbor distance for the 
given points to the expected average nearest 
neighbor distance for a random set of points. 
K-NNA is calculated over a range of nearest 
neighbors to evaluate clustering across 
spatial scales. 

Points CrimeStat 
(Tables) 

Getis-Ord 
General G 

Determines if similar values are clustered, 
either high values or low values clustered. 

Hex 
Cells 

ArcGISPro 
(Graphs) 

Global 
Moran’s I 

Measures spatial autocorrelation to 
determine if the pattern is clustered, 
dispersed, or random. Tested across a range 
of distances to identify scale of clustering. 

Hex 
Cells 

ArcGISPro 
(Graphs) 

Ripley’s K Identifies statistically significant clustering 
or dispersion over a range of distances. 

Points CrimeStat 
(Graphs) 
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6.1.3.1 Nearest Neighbor Analysis and K-order Nearest Neighbor Analysis  
Output from the Nearest Neighbor Index (NNI) analysis reveals that lightning 

activity is clustered both at the monthly scale (Table 2) and the hourly scale (Table 3). 

NNI values below 1 indicate spatial clustering while values greater than 1 indicate 

dispersion. When NNI equals 1 the pattern is considered to be completely random. The 

null hypothesis in a nearest neighbor analysis states the spatial pattern is random. In 

Table 2, the NNI values are all less than 1 ranging from a low of 0.44 to a high of 0.98. It 

is during the summer months when the spatial pattern is the least clustered (NNI nearest 

to 1) followed by May and September. The observed mean distance between events is 

less than 1000 m between May and September with the smallest mean distance occurring 

during July and August (326 m and 330 m). The observed mean distance is 183 m with 

an NNI of 0.98 when performed on the entire dataset. While the table also shows 

statistically significant results with very low Z-scores and p-values due to the large 

number of observations, the NNI values show the spatial pattern of CG lightning is closer 

to a random pattern than a clustered or dispersed pattern between May and September 

when CG lightning activity is the highest.   

Similar results are seen when NNI is calculated on the aggregated hourly data. 

The observed NNI is less than 1 for all hours of the day and the observed mean distance 

is less than 1000 m between the hours of 19 UTC and 02 UTC. Between 03 UTC and 18 

UTC, the mean distance is between 1000 m and 2000 m. The NNI values are the highest 

and closest to 1 between 18 UTC and 01 UTC suggesting a nearly random pattern of CG 

lightning activity. The spatial pattern has the highest degree of clustering with the lowest 

NNI values between 10 and 16 UTC with NNI values between 0.76 and 0.83. Once again 
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the table also shows statistically significant results with very low Z-scores and p-values 

due to the large number of observations. 

 

 

 

Table 2. Table of Nearest Neighbor Index (NNI) values for lightning point event data collected between 1995 and 
2004 and aggregated by month. Columns labeled as “Observed” and “Expected” refer to distance (m) between 
point events, “N” is the number of point events and “C/R/D” indicates whether the point pattern is considered as 
clustered, dispersed, or random. The row labeled “All” shows the results when applying nearest neighbor 
analysis to the entire 10-year dataset as a whole. 

 N Observed (m) Expected (m) NNI Z-score p-value C/R/D 
Mar 22 4462 10106 0.44 -5.01 <0.001 Clustered 
Apr 495 1767 2130 0.83 -7.26 <0.001 Clustered 
May 3504 740 801 0.92 -8.63 <0.001 Clustered 
Jun 14417 386 395 0.98 -4.82 <0.001 Clustered 
Jul 19936 326 336 0.97 -7.76 <0.001 Clustered 
Aug 19756 330 337 0.98 -5.53 <0.001 Clustered 
Sep 6211 576 601 0.96 -6.38 <0.001 Clustered 
Oct 352 2083 2526 0.82 -6.31 <0.001 Clustered 
Nov 28 6559 8958 0.73 -2.71 0.0067 Clustered 
ALL 64721 183 186 0.98 -8.54 <0.001 Clustered 
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Table 3. Table of Nearest Neighbor Index (NNI) values for lightning point event data collected between 1995 and 
2004 and aggregated by hour (UTC). Columns labeled as “Observed” and “Expected” refer to distance between 
point events, “N” is the number of point events and “C/R/D” indicates whether the point pattern is considered as 
clustered, dispersed, or random. The row labeled “All” shows the results when applying nearest neighbor 
analysis to the entire 10-year dataset as a whole. 

 N Observed (m) Expected (m) NNI Z-score p-value C/R/D 
0 7048 554 565 0.98 -3.05 0.0022 Clustered 
1 6179 570 603 0.94 -8.28 <0.001 Clustered 
2 4117 676 739 0.91 -10.50 <0.001 Clustered 
3 2086 949 1038 0.91 -7.50 <0.001 Clustered 
4 1285 1192 1322 0.90 -6.74 <0.001 Clustered 
5 1304 1209 1313 0.92 -5.43 <0.001 Clustered 
6 1047 1322 1465 0.90 -6.03 <0.001 Clustered 
7 806 1521 1670 0.91 -4.84 <0.001 Clustered 
8 426 1994 2297 0.87 -5.21 <0.001 Clustered 
9 682 1614 1815 0.89 -5.52 <0.001 Clustered 
10 446 1858 2244 0.83 -6.96 <0.001 Clustered 
11 388 1839 2406 0.76 -8.89 <0.001 Clustered 
12 571 1637 1984 0.83 -7.98 <0.001 Clustered 
13 456 1709 2220 0.77 -9.41 <0.001 Clustered 
14 369 1920 2468 0.78 -8.16 <0.001 Clustered 
15 410 1897 2341 0.81 -7.34 <0.001 Clustered 
16 681 1488 1816 0.82 -9.03 <0.001 Clustered 
17 1360 1155 1285 0.90 -7.15 <0.001 Clustered 
18 2646 882 921 0.96 -4.23 <0.001 Clustered 
19 5435 607 643 0.94 -7.91 <0.001 Clustered 
20 6651 552 581 0.95 -7.73 <0.001 Clustered 
21 7000 545 567 0.96 -6.14 <0.001 Clustered 
22 6781 551 576 0.96 -6.73 <0.001 Clustered 
23 6547 571 586 0.98 -3.80 <0.001 Clustered 
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The K-order Nearest Neighbor Analysis calculates the NNI for a specified range 

of nearest neighbors. In this study, nearest neighbor distances and indices were calculated 

for the first 100 neighbors (K = 100). Graphs of the K-order NNI plotted over the 

calculated average nearest neighbor distance for each order (Kth nearest neighbor) can 

show the scale of clustering. Distances where the NNI graph lies below 1 indicate the 

distances where clustering occurs while distances where the NNI graph lies above 1 

indicate the distances where dispersion exists in the pattern. 

In the graphs for the monthly aggregated CG lightning event data (Figure 15), the 

NNI increases as K (and distance) increases. The K-order NNI is less than 1 at distances 

less than 6 km in May. During the summer months, the distance where the NNI becomes 

larger than 1 decreases to less than 2 km by August and then increases to 4 km during 

September. Table 4 summarizes the results of the K-order NNI analysis for the monthly 

data showing the Kth neighbor and distance where the NNI first becomes greater than or 

equal to 1 as well as the minimum and maximum NNI. During the summer months when 

CG lightning is at its peak, the NNI ranges from a low of 0.97 to a high of 1.02 for K 

ranging from 1 to 100. While these values indicate a clustered pattern for distances up to 

3.28 km in June to 1.76 km in August, the degree of clustering is relatively small and the 

pattern of CG lightning activity is actually closer to a random pattern than it is to a 

clustered pattern. This is also true for May and September although the NNI is slightly 

smaller than seen during the summer months. Excluding March and November due to an 

extremely low number of CG lightning events, the magnitude of clustering is highest 

during April and October.   
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As seen in the graphs for the aggregated monthly data, the K-order NNI graph for 

the hourly data generally increases with the distance (Figure 16) as K increases from 1 to 

100. Between 19 and 02 UTC, the distance where the spatial pattern of CG lightning 

changes from a slightly clustered to a slightly dispersed pattern is between 4 and 8 km 

when CG lightning activity is highest. During these hours, the minimum NNI ranges 

from 0.93 to 0.97 and the maximum NNI ranges from 1.02 to 1.04 (Table 5). These 

values are very close to 1 suggesting the spatial pattern of CG lightning activity is closer 

to a random pattern than either a dispersed or clustered pattern during this time period. 

Between 03 and 18 UTC, the distance where the pattern changes from clustered to 

dispersed is between 6 and 23 km. During this time period the minimum NNI is between 

0.72 and 0.90 and the maximum NNI is between 1.05 to 1.31. The range of NNI values 

(highest maximum NNI – lowest minimum NNI) is much smaller for the 19 to 02 UTC 

time period, when CG lightning activity is highest, than it is for the 03 to 18 UTC time 

period. This suggests the spatial pattern of CG lightning is consistently closer to a 

random pattern between 19 and 02 UTC across spatial scales. During the 03 to 01 UTC 

time period, the spatial pattern changes from more clustered to more dispersed across 

spatial scales.       

When K-order NNI analysis is applied to the entire dataset, the average nearest 

neighbor distance where the NNI becomes greater or equal to 1 is 1.23 km. As K increase 

from 1 to 100, the NNI changes from 0.98 to 1.01. Once again these values are very close 

to 1 suggesting the spatial pattern of CG lightning is consistently closer to being a 

random pattern across spatial scales. 
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Overall, the results from the NNA and K-order NNA suggests the spatial pattern 

of CG lightning activity is only slightly clustered for the spatial scale ranging in distance 

from 1 to 23 km. During times of peak CG lightning activity, the spatial pattern exhibits 

the least amount of statistically significant clustering with the pattern actually being 

closer to a random pattern.  
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K-order (K = 100) Nearest Neighbor Analysis  
(Aggregated by Month for May through September) 

  

  

  
Figure 15. Series of graphs showing the K-order (K = 100) Nearest Neighbor Index (NNI) versus distance for 
Yellowstone Cloud-to-Ground lightning events aggregated by month for May - Sep. 
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Table 4. Summary results of K-order Nearest Neighbor analysis for the monthly data. N is the total number of 
events. K is the Kth nearest neighbor where the Nearest Neighbor Index (NNI) first becomes greater than or 
equal to 1.  D is the calculated average nearest neighbor distance for K (km). NNI min and NNI max are the 
lowest and highest NNI for K = 1 to 100. 

 N K D (km) NNI min NNI max 
Mar 22 11 46.79 0.39 1.84 
Apr 495 26 12.16 0.78 1.12 
May 3504 46 6.08 0.91 1.02 
Jun 14417 55 3.28 0.97 1.01 
Jul 19936 45 2.52 0.97 1.01 
Aug 19756 22 1.76 0.98 1.02 
Sep 6211 29 3.62 0.95 1.04 
Oct 352 35 16.74 0.75 1.20 
Nov 28 25 61.44 0.58 1.68 
ALL 64721 35 1.23 0.98 1.01 
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K-order (K = 100) Nearest Neighbor Analysis 
(Aggregated by Hour between 19 UTC and 02 UTC) 

  

  

  

  
Figure 16. A series of graphs plotting the NNI versus distance for lightning events aggregated by hour of day. 
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Table 5. Summary results of K-order Nearest Neighbor analysis for the hourly data. N is the total number of 
events. K is the Kth nearest neighbor where the Nearest Neighbor Index (NNI) first becomes greater than or 
equal to 1.  D is the calculated average nearest neighbor distance for K (km). NNI min and NNI max are the 
lowest and highest NNI for K = 1 to 100. 

 N K D (km) NNI min NNI max 
0 7048 39 3.94 0.97 1.02 
1 6179 N/A N/A 0.94 0.99 
2 4117 79 7.36 0.90 1.01 
3 2086 32 6.57 0.90 1.06 
4 1285 49 10.37 0.88 1.06 
5 1304 26 7.50 0.89 1.07 
6 1047 31 9.17 0.87 1.06 
7 806 25 9.34 0.88 1.10 
8 426 34 15.00 0.82 1.19 
9 682 52 14.67 0.85 1.09 
10 446 32 14.24 0.79 1.12 
11 388 30 14.75 0.73 1.25 
12 571 49 15.56 0.78 1.05 
13 456 81 22.43 0.74 1.07 
14 369 25 13.80 0.72 1.31 
15 410 48 18.17 0.77 1.04 

 
16 681 32 11.51 0.79 1.08 
17 1360 38 8.87 0.87 1.05 
18 2646 36 6.19 0.95 1.04 
19 5435 61 5.63 0.93 1.02 
20 6651 51 4.65 0.94 1.02 
21 7000 39 3.96 0.96 1.02 
22 6781 49 4.52 0.95 1.03 
23 6547 30 3.59 0.97 1.03 
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6.1.3.2 Getis-Ord General G Statistic (High/Low Clustering) 
The Getis-Ord General G statistic, G(d), measures the overall concentration, or 

lack of concentration, of all pairs of xi and xj that are within a specified distance (d) of 

each other by taking the sum of the products of each xi with all the xjs within the specified 

distance. Evaluating and comparing G(d) results are accomplished by using their 

equivalent Z-scores of the approximate normal distribution. When statistically 

significant, positive Z-scores indicate clusters of high values and the higher the Z-score 

the more intense the clustering. Negative Z-scores indicate clusters of low values and the 

lower the Z-score the more intense the clustering of the low values. Z-scores near zero 

indicate a random spatial pattern (Getis-Ord, 1992).   

The results of the Getis-Ord General G statistic are presented as a series of 

“spaghetti” charts displaying the G(d) index, the difference between the observed and the 

expected G(d), and the Z-score versus distance for the aggregated monthly (Figure 17) 

and aggregated hourly (Figure 18) CG lightning events. For the months of May through 

September, the G(d) has extremely small values. The values are near 0.001 at distance (d) 

of 3 km and increases to near 0.22 at 25 km. These values are statistically significant at 

the 99% confidence level for distances out to 25 km. The Z-scores remain positive as 

distance increases with the exception of August where the Z-score becomes negative near 

19 km.  Z-score values for these months are highest for distances less than about 5 km 

ranging in value from 25 to 40. Sharp decreases in Z-score values are seen up to about 15 

km where the decreases in Z-score are more gradual. This suggests the intensity of 

clustering of high values of CG Lightning is strongest for the shorter distances (d ≤ 5). 

For d = 25 km, high values of CG lightning are still clustered during May, June, and 
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September. During July and August, the Z-scores are near zero starting at 20 km 

indicating a random spatial pattern at this distance. Similar results are seen when applied 

to the entire dataset. Graphs of Z-scores for April and October are similar to the graphs 

for May and September showing a higher intensity of clustering of high values at the 

shorter distances and the intensity of clustering decreasing by 25 km.      

Similar observations are noted in the graphs for the CG lightning events 

aggregated by hour. The G(d) index starts out very small at the shorter distances (near 

0.003) and increases with distance to values less than 0.26. These values are also 

statistically significant at the 99% confidence level for distances out to 25 km. Likewise, 

the intensity of the clustering of high values is more intense for distances less than 5 km 

based on the higher Z-scores at these distances. The Z-scores generally remain above 

zero except for 23 and 00 UTC where they fall slightly below zero between 15 and 20 km 

suggesting a random spatial pattern at these distances. The Z-score values are also close 

to zero for 21, 22, and 02 UTC at 25 km also indicating a random spatial pattern of CG 

lightning at this distance during these times. 

Overall, the results from the General G tests were statistically significant at the 99 

percent confidence level (high Z-scores and low p-values were noted). The Z-scores 

show that the magnitude of the clustering of high values varies with distance with the 

intensity of clustering much higher at shorter distances (d ≤5 km) and lower at 25 km. In 

some cases, the Z-scores suggest the spatial pattern is more random between 20 and 25 

km. With statistically significant results, one could normally reject the null hypothesis of 

a random spatial pattern of events and conclude that CG lightning is clustered when 
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tested using this global statistic. However, the difference between the observed and 

expected G(d) is very small. This is especially true for the results when the CG lightning 

is at peak activity where the differences between the observed and expected G(d) are less 

than 0.005. Differences this small makes it very difficult to reject the null hypothesis of a 

random spatial pattern to conclude that CG lightning is spatially clustered globally 

(Research Question 1). 
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Getis-Ord General G Statistic (Monthly) 

  

  

Figure 17. Graphs of the Getis-Ord General G statistic results for the monthly data. 
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Getis-Ord General G Statistic (Hourly) 

  

  

Figure 18. Graphs of the Getis-Ord General G statistic results for the hourly data. 
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6.1.3.3 Global Moran’s I (Spatial Autocorrelation) 
Whereas the Getis-Ord General G statistic measures the overall concentration of 

all pairs of xi and xj that are within a specified distance (d) of each other, Moran’s I, I(d), 

measures the correlation of each xi with all xjs that are within a specified distance of each 

other (Getis-Ord, 1992). In this section, the results from the Global Moran’s I test are 

presented in the same way that the results for the Getis-Ord General G statistic were 

presented in the previous section. A series of charts are presented that display the I(d) 

index, the difference between the observed and the expected I(d), and the Z-score versus 

distance for the aggregated monthly (Figure 19) and aggregated hourly (Figure 20) CG 

lightning density.    

For the aggregated monthly CG lightning data, Moran’s I was greater than zero 

for all months tested, ranging in value from 0.06 to 0.21, indicating slight positive spatial 

autocorrelation or clustering of either high or low values of CG lightning density. The 

values of I(d) are greatest at 1.5 km (d) and decreases with distance where I(d) decreases 

to less than 0.08 indicating the spatial pattern is closer to a random pattern of CG 

lightning for the neighborhoods with longer distance (d). Clustering appears to be the 

greatest at all distances during the summer months as well as for the case when the entire 

dataset is tested. The Z-scores are well above zero and p-values are very low indicating 

the results are statistically significant. The graphs of Z-scores versus distance generally 

increase with distance with the greatest increase seen during the summer months, 

especially for June and July. Z-scores are highest during June and July where they 

approach 150 and are lowest during May and September where they stay below 50. The 

Z-score curves show no distinct peaks but some minor perturbations in the curves are 
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seen during the summer months between 1.5 and 12 km suggesting complex spatial 

processes are at work. Z-scores reach their highest value where the values of I(d) reach 

their lowest suggesting the spatial pattern is much closer to a random pattern at the 

farther neighborhood distances. Graphs of the difference between the observed and 

expected I(d) are not that useful here. These graphs are similar to the graphs of the 

observed I(d) since the expected I(d) are all very near to zero.  

The results for the aggregated hourly data are similar to those seen for the 

monthly data. The I(d) curves all decrease with distance ranging from 0.06 to 0.21 at 1.5 

km to values less than 0.06 at 15 km indicating the spatial pattern is slightly clustered at 

1.5 km and becomes closer to random as the neighborhood distance increases. The I(d) 

curves for 19 to 02 UTC all lie above the curves for the remaining hours suggesting the 

pattern is slightly more clustered during these times when lightning activity is the 

greatest. The Z-score graphs generally increase with distance with values in the 20 to 40 

range at 1.5 km and reaching values between 80 and 120 during the peak hours of 

activity. The curves have slightly distinct peaks in Z-scores for the hours between 23 and 

02 UTC where peaks in Z-scores occur between 5 and 10 km suggesting clustering is 

greatest between these distances during these times. Minor perturbations are also seen in 

the curves between 1.5 and 10 km suggesting complex spatial processes are involved.   

Overall, the results from this test indicate there is very slight global clustering of 

either high or low values of CG lightning density. The results are statistically significant 

to allow one to reject the null hypothesis of a random spatial pattern, however, the values 

of Moran’s I are generally less than 0.20 suggesting pattern of CG lightning density in 
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Yellowstone is actually closer to a random pattern for this spatial scale, especially when 

using neighborhoods with longer distances where the the Z-scores are the highest yet the 

Moran’s I values are the lowest. (Research Question 1).  
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Moran’s I Statistic (Monthly) 

  

  

Figure 19. Graphs of the Moran's I statistic results for the monthly data. 
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Moran’s I Statistic (Hourly) 

  

  

Figure 20. Graphs of the Moran's I statistic results for the hourly data. 
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6.1.3.4 Ripley’s K (Multi-Distance Spatial Cluster Analysis):  
The Ripley’s K test results are visualized as series of line graphs using the 

transformed Ripley’s K function, L(d). L(d) is plotted along with the simulated 

confidence envelope with an upper bound of 97.5% and a lower bound of 2.5%. 

Statistically significant clustering is indicated when the transformed Ripley’s K lies 

outside and above the envelope while statistically significant dispersion is indicated when 

it lies outside and below the confidence envelope. When Ripley’s K falls within the 

envelope, the pattern is considered random. 

The monthly plots of L(d) all increase with distance and indicate statistically 

significant clustering of CG lightning events for distances out to 35 km (Figure 21). 

Similar results are seen for the hourly (Figure 22) plots for the 19 to 02 UTC time period. 

The Ripley’s K test shows evidence that CG lightning events are not random but are 

globally clustered across the Yellowstone study area (Research Question 1). 

At first glance this may seem to counter the results seen in the NNI and K-order 

NNI tests. The NNI and K-order NNI are first-order tests that characterize the point 

pattern at the specified nearest neighbor; they only use the specified nearest neighbor for 

calculating the average neighbor distance. On the other hand, Ripley’s K is a second-

order, cumulative test based on the average distance of all neighbors that fall within the 

specified distance (Perry, Miller and Enright, 2006; Fortin, Dale and ver Hoef, 2002). In 

this case, the weak clustering seen in the NNI and K-order NNI is probably a reflection of 

the individual thunderstorms, as given by the shorter distances, whereas Ripley’s K is 

probably more of a reflection of the individual thunderstorms located close to each other 

resulting in clustering of lightning activity at larger distances.       
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Ripley’s K Statistic (L versus Distance) 
(Aggregated by Month for May through September and All) 

  

  

  
Figure 21. Graphs of L(d) (solid line) for CG lightning events aggregated by month. The confidence envelope of 
2.5% to 97.5% is plotted as dashed lines.  
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Ripley’s K Statistic (L versus Distance) 
(Aggregated by Hour between 19 UTC and 02 UTC 

  

  

  

  
Figure 22. Graphs of L(d) (solid line) for CG lightning events aggregated by hour. The confidence envelope of 
2.5% to 97.5% is plotted as dashed lines. 
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6.2  Temporal Analysis 
The series of maps of the aggregated monthly and hourly lightning events and 

flash density presented in the previous section highlighted some aspects of the spatial 

distribution of these events in the park at these time scales. Figure 23 highlights the 

temporal distribution of the CG lightning data during the study period. Between 1995 and 

2004, Yellowstone experienced the highest number of lightning strikes during 2004 

(11,683 events). The lowest number of events occurred in Yellowstone during 2000 when 

only 3,675 events were recorded.  

As shown in the lightning event and the hex flash density maps, the aggregated 

monthly total number of lightning flashes increases sharply as the year progresses from 

spring to summer. The total CG lightning events in the park peaks during July and 

August and then sharply declines during the fall season. During the summer months, July 

and August experienced an average of nearly 2,000 flashes each month (Table 6). No 

lightning strikes were recorded during the winter months between 1995 and 2004.  

When slicing the data on the hourly time scale, as demonstrated in the previous 

maps, the aggregated hourly data shows a distinct diurnal pattern. The total lightning 

events is at its lowest during the nighttime hours between 08 UTC and 15 UTC. The 

highest number of events are seen between 19 UTC and 02 UTC, in the early afternoon 

when daytime surface heating is at its strongest and continues through to the late evening 

hours as surface heating wanes with the setting sun. This same general trend can be seen 

throughout the spring, summer, and fall seasons although it’s not as evident during the 

spring and fall. 
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In combination with the series of maps presented in the previous sections, these 

graphs show that CG lightning activity in Yellowstone Park is not consistent through 

time (Research Question 2). Interannual variability can be seen in the graph of total 

lightning events by year. This interannual variability is probably a reflection of the 

variability seen in the two large scale weather patterns impacting this part of the country. 

The first is known as the North American Monsoon (NAM) bringing moisture from the 

Gulf of California and the Gulf of Mexico. The extreme northern extent of the NAM just 

reaches the Greater Yellowstone Area (Adams and Comrie, 1997). The second climatic 

control is known as the Pacific-North American (PNA) teleconnection pattern that 

streams moisture from the Pacific Ocean through the Snake River Gap and up the western 

and central plateau regions of Yellowstone (Stewart et al., 2002; Mock, 1996). The 

variability of these two large scale weather patterns is also probably a contributing factor 

in the monthly variability of lightning activity although the monthly variability is most 

likely more of a reflection of the variability in the amount of solar heating received at the 

earth’s surface throughout the year as the sun’s position with respect to earth changes 

throughout the year. The diurnal variability seen is also a reflection of the daily solar 

heating cycle as mountain storms are driven by mountain induced convection, once the 

sun sets the convection ceases.        
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Figure 23. Graphs of lightning events by year, aggregated by month, aggregated by hour, and by season. 

 

 

Table 6. Table showing the number of lightning events by year, month, and average, minimum, and maximum 
events. No lightning events were recorded during the 10-year period for Dec, Jan, and Feb. 

 Mar Apr May Jun Jul Aug Sep Oct Nov 
1995 0 0 64 469 2437 1601 1412 7 2 
1996 3 2 120 1243 1153 1869 315 0 3 
1997 0 62 322 2400 2308 2537 2109 81 5 
1998 1 3 153 1050 2433 2053 621 81 0 
1999 0 189 149 1250 1449 2378 222 28 0 
2000 0 47 544 522 982 1250 219 111 0 
2001 0 73 384 144 2072 915 564 1 6 
2002 14 61 119 1095 2171 1791 114 1 5 
2003 4 50 1312 2362 541 2772 169 32 7 
2004 0 8 337 3882 4390 2590 466 10 0 
Total 22 495 3504 14417 19936 19756 6211 352 28 
Min 0 0 64 144 541 915 114 0 0 
Avg 2 50 350 1442 1994 1976 621 35 3 
Max 14 189 1312 3882 4390 2772 2109 111 7 
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6.3  Analyzing the Spatial Pattern for Local Clustering 
The previous analysis demonstrated that CG lightning activity within Yellowstone 

National Park was at its peak during the summer months (June, July, and August) 

between 1995 and 2004. During the summer months, the Yellowstone weather regime is 

more under the influence of mountain induced convection resulting from surface heating 

that is strongest during the summer months. The analysis found that lightning activity is 

also noticeable during the seasonal transition months of May and September and that no 

activity to very little activity occurred during the remaining months.  

The remainder of this chapter will primarily focus on presenting the spatial 

pattern analysis results for the peak periods of CG lightning activity, using May through 

September when evaluating the aggregated monthly patterns and 19 – 02UTC when 

analyzing the aggregated hourly data. Table 7 summarizes the spatial test statistics used 

for analyzing the pattern and testing whether or not the CG lightning activity is spatially 

clustered (Research Question 1) and identifying those areas that may be hot or cold spots 

for lightning activity in the park (Research Question 3).  

 

 

 

Table 7. Table summarizing the spatial statistics used to test for local clustering in CG lightning. 
TEST 

STATISTIC 
REMARKS INPUT TOOL/ 

RESULTS 
Getis-Ord 
Gi* 

Finds locations of clusters of high values (hot 
spots) or low values (cold spots). 

Hex 
Cells 

ArcGISPro 
(Maps) 

Anselin’s 
Local 
Moran’s I 

Local indicator of spatial autocorrelation; 
identifies clusters of high and low values and 
outliers, strength of patterns. 

Hex 
Cells 

ArcGISPro 
(Maps) 
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6.3.1  Getis-Ord Gi* (Hot Spot Analysis) 
As a first step in applying the Getis-Ord Gi

* test statistic, an optimization routine 

was executed using ArcGIS Pro to determine an optimized set of parameters that can be 

used while testing both the monthly and hourly data as well as the entire dataset. This 

optimization routine included a test for determining an appropriate scale and the 

application of a false discovery rate (FDR) correction. The output from the optimization 

routines is provided in Table 8 and Table 9. The tables contain several columns 

displaying the descriptive statistics as well as the number of outliers for the flash density 

for the monthly or hourly data. The column labeled “Distance” indicates the optimal scale 

distance for that hour or month. The “D-Method” column indicates the method used by 

the routine to determine an optimal distance scale. The “PeakCluster” method determines 

an optimal distance by calculating Moran’s I over a range of distances to determine 

distance where peak clustering occurs. The “AvgD30” method indicates the average 

distance to 30 nearest neighbors. The number of statistically significant cells identified as 

part of a cluster are shown in the “FDRSigOut” column. Of particular interest in the two 

tables are the distance, the distance calculation method and the number of significant 

resulting features. The goal was to pick one set of parameters to apply when performing 

hot spot analysis to aid in comparing the monthly and hourly results. The distance that 

occurs most in the monthly and hourly tables is 2962 m. This is also the distance that was 

calculated when the optimization routine was run on the entire dataset. Based on these 

results, a fixed distance band of 3000 m was used to perform the Getis-Ord Gi
* hot spot 

analysis. 
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Table 8. Results from the ArcGIS Pro optimization routine applied to the monthly data. Column labeled as 
"Distance" shows the calculated optimal scale distance for hot spot analysis. The "D-Method" column indicates 
how the optimal distance was determined. The “FDRSigOut” column shows how many clusters were identified 
as significant clusters. The remaining columns are the descriptive statistics for the flash density for that month. 

MM Min Max Mean StDev Outliers Distance D Method FDRSigOut 
Mar 0.0000 0.1998 0.0003 0.0055 0 4300 PeakCluster 338 
Apr 0.0000 0.2998 0.0055 0.0253 0 5375 PeakCluster 1215 
May 0.0000 0.6994 0.0391 0.0688 0 2962 Avg D30 974 
Jun 0.0000 1.0991 0.1623 0.1483 0 2962 Avg D30 3094 
Jul 0.0000 1.6986 0.2236 0.1776 0 2962 Avg D30 2889 
Aug 0.0000 1.3989 0.2209 0.1672 0 2962 Avg D30 2093 
Sep 0.0000 0.7994 0.0700 0.0915 0 2962 Avg D30 891 
Oct 0.0000 0.3997 0.0039 0.0210 0 2962 Avg D30 480 
Nov 0.0000 0.1998 0.0003 0.0058 0 3225 PeakCluster 203 
All 0.0000 0.29976 0.7260 0.3303 0 2962 Avg D30 3355 

 
 
 
 
Table 9. Results from the ArcGIS Pro optimization routine applied to the hourly data. Column labeled as 
"Distance" shows the calculated optimal scale distance for hot spot analysis. The "D-Method" column indicates 
how the optimal distance was determined. The “FDRSigOut” column shows how many clusters were identified 
as significant clusters. The remaining columns are the descriptive statistics for the flash density for that hour. 

HH Min Max Mean StDev Outliers Distance D Method FDRSigOut 
00 0.0000 0.9992 0.0791 0.0977 0 8600 PeakCluster 4381 
01 0.0000 0.8993 0.0694 0.0960 0 2962 Avg D30 2943 
02 0.0000 1.1990 0.0463 0.0800 0 9675 PeakCluster 5708 
03 0.0000 0.5995 0.0232 0.0517 0 2962 Avg D30 596 
04 0.0000 0.3997 0.0114 0.0403 0 4190 PeakCluster 4190 
05 0.0000 0.5995 0.0146 0.0404 0 2962 Avg D30 565 
06 0.0000 0.3997 0.0117 0.0365 0 2962 Avg D30 722 
07 0.0000 0.2998 0.0090 0.0308 0 7525 PeakCluster 3388 
08 0.0000 0.2998 0.0048 0.0223 0 2962 Avg D30 600 
09 0.0000 0.2998 0.0077 0.0286 0 2962 Avg D30 602 
10 0.0000 0.2998 0.0050 0.0232 0 6450 PeakCluster 750 
11 0.0000 0.2998 0.0044 0.0221 0 7525 PeakCluster 1933 
12 0.0000 0.3997 0.0065 0.0271 0 4300 PeakCluster 698 
13 0.0000 0.2998 0.0051 0.0240 0 6450 PeakCluster 2042 
14 0.0000 0.3997 0.0041 0.0219 0 2962 Avg D30 604 
15 0.0000 0.2998 0.0046 0.0224 0 2962 Avg D30 645 
16 0.0000 0.2998 0.0077 0.0295 0 5375 PeakCluster 1554 
17 0.0000 0.4996 0.0154 0.0421 0 4300 PeakCluster 1350 
18 0.0000 0.4996 0.0298 0.0579 0 2962 Avg D30 647 
19 0.0000 0.6994 0.0606 0.0876 0 2962 Avg D30 2524 
20 0.0000 0.8993 0.0745 0.0976 0 2962 Avg D30 1816 
21 0.0000 0.9992 0.0784 0.0989 0 2962 Avg D30 1433 
22 0.0000 0.7994 0.0762 0.0974 0 2962 Avg D30 1729 
23 0.0000 0.5995 0.0733 0.0908 0 4300 PeakCluster 1696 
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Results of the Getis-Ord Gi
* statistical analysis on the entire 10-year CG lightning 

event dataset are mapped in Figure 24. The map graphic highlights regions of statistically 

significant clusters of high and low values (hot and cold spots) in shades of red and blue, 

depending on the calculated Z-score and p-values. Most of the larger clusters identified as 

hot spots are found in the more mountainous regions of the park such as in the 

northeastern through southeastern parts of the park. Clusters of statistically significant 

low values, or cold spots, are mainly located in the plateau regions in the western and 

central parts of the park as well as in the extreme northern section in the area of the 

park’s north entrance. The Getis-Ord Gi
* statistic identified 2,363 cells as statistically 

significant clusters at the 99 percent confidence level and 1,317 of these cells were 

identified as clusters of high values.   

The series of map graphics depicting the results of the Getis-Ord Gi
* statistic for 

the aggregated monthly data shows similar results during the summer months (Figure 

25). The number of hex cells identified as clusters of either high or low values is much 

smaller during the season transitional months of May and September and more cells are 

identified as clusters of high values for all months between May and September. Table 10 

shows the count and percentage of hex cells identified as clusters. The count and 

percentage of high and low clusters are also shown. June and July have the most cells 

identified as clusters and the most clusters identified as hot spots. The hot spots are not as 

extensive and are located in the extreme southern portion of the park during May and 

more central over the plateau region in September. During the summer months when 

lightning activity is at its peak, the larger hot spots are located in the more mountainous 
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region of the park along the Absoroka range extending from the northeast to the 

southeastern part of the park. The extreme northeastern and southeastern parts of the park 

consistently show high values of lightning flash density. Cold spots of lightning flash 

density are larger in coverage during June and July. Of the summer months, August 

appears to have the smallest coverage in both hot and cold spots of flash density. 

During the most active hours of the day (19 UTC to 02 UTC), the northeastern 

mountains have consistent high levels of lightning flash activity during this time period 

through 02 UTC where it’s almost non-existent. The hot spot coverage in this region of 

the park is largest between 19 UTC and 21 UTC (Figure 26). In the mountains of 

southeastern Yellowstone, the hot spot activity is consistent but relatively smaller in 

coverage except during 01 UTC where coverage is at its greatest in this region. Cold spot 

coverage appears to be at its greatest during 19 UTC and 01 UTC and appears to occur 

mostly over the plateau region of Yellowstone.  

Overall, graphics mapping the results of the Getis-Ord Gi
* test static reveal 

localized hot and cold spots of CG lightning activity within Yellowstone National Park 

(Research Question 3). The localized hot and cold spots vary with the seasons on the 

monthly time scale and varies diurnally with hour of day. The hot spots are generally 

found in or near the mountains while most of the cold spots of CG lightning flash density 

are found in the plateaus in the west and central part of Yellowstone.  
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Figure 24. Results from the Getis-Ord Gi* statistic tested on the entire CG lightning event dataset showing flash 
density hot and cold spots. 
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Figure 25. Results from the Getis-Ord Gi* statistic applied to the aggregated monthly CG lightning event data 
showing hot and cold spots of lightning flash density by month (May – Sep). 

 

Table 10. Summary table of the monthly and hourly Getis-Ord Gi* results. N is the total number (percentage) of 
the 8,624 hex cells that were identified as a cluster. High shows the number (percentage) of identified clusters 
labeled as clusters of high values. Low shows the number (percentage) of identified clusters labeled as clusters of 
low values. 

 N High Low 
May 855 (10) 615 (72) 240 (28) 
Jun 2120 (25) 1161 (55) 959 (45) 
Jul 1947 (23) 1202 (62) 745 (38) 

 
Aug 1555 (18) 965 (62) 590 (38) 
Sep 891 (10) 664 (75) 227 (25) 
All 2363 (27) 1317 (56) 1045 (44) 

19 UTC 1747 (20) 1102 (63) 645 (37) 
20 UTC 1415 (16)  875 (62) 540 (38) 
21 UTC 1157 (13) 805 (70) 352 (30) 
22 UTC 1251 (15) 880 (70) 371 (30) 
23 UTC 886 (10) 587 (66) 299 (34) 
00 UTC 1191 (14) 803 (67) 388 (33) 
01 UTC 1713 (20) 1173 (68) 540 (32) 
02 UTC 857 (10) 745 (87) 112 (13) 
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Figure 26. Results from the Getis-Ord Gi* statistic tested on the aggregated hourly CG lightning event data 
showing hot and cold spots of lightning flash density by hour (19UTC – 02UTC). 
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6.3.2  Anselin Local Moran’s I (Cluster and Outlier Analysis)  
Clustering of high and low CG lightning activity can also be seen in the maps of 

the Anselin Local Moran’s I spatial statistic (Figure 27). Results using the entire dataset 

identified clusters of high values mainly over the eastern part of the park where the 

Absaroka mountain range is located and clusters of low values mainly in the plateau 

regions of Yellowstone. Several hexagon cells are identified as outliers, either as a low 

value surrounded by high values or as a high value surrounded by low values. Table 11 

shows the count and percentage of hex cells identified as clusters. The count and 

percentage of clusters identified as high values surrounded by high values or low values 

surrounded by low values are also shown. The table also includes counts of cells 

identified as outliers, either low values surrounded by high values or high values 

surrounded by low values. The Local Moran’s I highlighted several hundred more hex 

cells than did the Getis-Ord Gi
*. However, a comparison of the “HH, LL” column from 

Table 11 with the total identified cells from Table 10 shows the Getis-Ord Gi
* identified 

more hex cells as clusters than Local Moran’s I. These differences in numbers are 

probably due to the slight difference in the structure of the two statistics, sum of products 

versus sum of covariances.   

As seen in the results for the Getis-Ord Gi
*, a few clusters of high values are 

indicated by the Local Moran’s I statistic during May and September (Figure 28). During 

May, a cluster of high values is located in the area of the southern border of Yellowstone. 

During June and July, the larger clusters of high values are located in the mountainous 

regions in the northeastern through southeastern parts of Yellowstone. A few clusters of 

low values are seen during July and August, although not as extensive as seen in the map 
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of the results for the entire dataset. Low value outliers and high value outliers are seen 

throughout the map series. However, these outliers appear more dispersed throughout the 

study area. 

The clustering pattern for the aggregated hourly data is similar to that observed in 

the hourly Getis-Ord Gi
* results (Figure 29). Clusters of high values are found in the 

mountainous northeastern part of Yellowstone between 19 UTC and 21 UTC. The 

clusters of high values decrease in coverage in this area of the park by 01 UTC. High 

value clustering is at its greatest in southeastern Yellowstone at 01 UTC. Clustering of 

low values is at its greatest extent during 19 UTC and 01 UTC in the western plateau 

region of the park. During 01 UTC, a relatively large cluster of low values appears in the 

extreme east-central part of Yellowstone. 
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Figure 27. Results of Local Moran's I applied to the entire 10-year lightning dataset showing clusters of high and 
low flash density and outliers. 
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Figure 28. Local Moran's I results applied to the 10-year lightning dataset aggregated by month (May – Sep) 
showing clusters of high and low flash density and outliers. 
 

Table 11. Summary table of the monthly and hourly Local Moran’s I results. N is the total number (percentage) 
of the 8,624 hex cells that were identified as a cluster. HH, LL shows the number (percentage) of identified 
clusters labeled as clusters of either high values surrounded by high values or low values surrounded by low 
values. HL, LH shows the number (percentage) of identified clusters labeled as clusters of high values 
surrounded by low values or low values surrounded by high values. 

 N HH, LL HL, LH 
May 1226 (14) 796 (65) 430 (35) 
Jun 2517 (29) 

  

1793 (71) 724 (29) 
Jul 2428 (28) 1768 (73) 660 (27) 
Aug 1912 (22) 1337 (70) 575 (30) 
Sep 1208 (14) 748 (62) 460 (38) 
All 2755 (32) 2055 (75) 700 (25) 

19 UTC 2201 (26) 1522 (69) 679 (31) 
20 UTC 1814 (21) 1237 (68) 577 (32) 
21 UTC 1522 (18) 1014 (67) 508 (33) 
22 UTC 1678 (19) 1098 (65) 580 (35) 
23 UTC 1168 (14) 720 (62) 448 (38) 
00 UTC 1602 (19) 1041 (65) 561 (35) 
01 UTC 2355 (27) 1619 (69) 736 (31) 
02 UTC 1340 (16) 952 (71) 388 (29) 
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Figure 29. Local Moran's I results applied to the 10-year lightning dataset aggregated by hourly (19UTC – 
02UTC) showing clusters of high and low flash density and outliers. 
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Maps of the Getis-Ord Gi
* and local Moran’s I output are displayed side by side 

for the entire 10-year dataset (Figure 30) as well as for the monthly results (Figure 31). In 

the side-by-side maps it is apparent that the two spatial techniques identified similar 

clusters of hot and cold spots (or clusters of high and low values) and the clusters 

identified also have similar spatial extents.  

Overall, graphics mapping the results of the local Moran’s I test statistic reveal 

localized statistically significant clusters of high and low values of CG lightning activity 

within Yellowstone National Park (Research Question 3). The localized clusters vary 

monthly with the seasons and diurnally with hour of day. 

 

 

 

  
Figure 30. Maps of Getis-Ord Gi* and Local Moran's I output when applied to the entire 10-year dataset 
displayed side by side for visual comparison of identified hot/cold spots and high/low clusters of flash density. 
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Figure 31. Maps of Getis-Ord Gi* and Local Moran's I output when applied to the aggregated monthly data 
displayed side by side for visual comparison of identified hot/cold spots and high/low clusters of flash density. 
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6.4  Analyzing the Relationship Between CG Lightning and Topography 
Overall, the regression analysis did provide some information regarding the 

relationship between the transformed flash density variable and the terrain parameters- 

land cover, aspect, elevation, and slope. Both the transformed flash density variable and 

the elevation variable have an approximately normal distribution while the aspect 

variables had close to a uniform distribution. The slope and land cover variables were 

skewed slightly to the right. OLS regression (Table 12 and Table 13) yielded models for 

the aggregated monthly data that could only explain 1 to 4 percent of the variation in CG 

lightning flash density during the peak activity months based on the resulting R2 values. 

During the non-peak months, less than 1 percent of the variation in lightning flash density 

could be explained by the physical terrain properties. For the case where the entire 

dataset was used in regression analysis, the resulting model explains 8 percent of the 

variability.  

The predictor variables used to predict flash density all have very low variance 

inflation factors (VIF) indicating very little redundancy among the explanatory variables. 

The terrain aspect variables do not appear to be statistically significant in predicting 

lightning flash density. The land cover variables were statistically significant (𝑝𝑝 ≤ 0.05) 

for most of the months as well as in the model based on the entire dataset and were 

mostly a positive relationship suggesting cells with higher percentage of forest or shrub 

had higher flash density (except during July where the relationship is slightly negative). 

Slope is mainly statistically significant during the summer months also having a positive 

relationship where hex cells with higher slope values had higher CG lightning flash 

density values. Elevation is also statistically significant (𝑝𝑝 ≤ 0.05) for most months as 
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well as in the model using the entire dataset. The elevation coefficients are positive 

suggesting that hex cells with higher elevation values have higher CG lightning flash 

density. 

Each of the models were identified as statistically significant with very low p 

values and the models for the high CG lightning activity months have very high F values 

meaning the model explains a non-zero amount of the variation in lightning density. 

However, these models have issues limiting their use in explaining the relationship 

between terrain and CG lightning flash density. The Jarque-Bera test statistic for each of 

the models were all statistically significant at the 99 percent confidence level indicating 

the regression residuals were not normally distributed. The histogram of the standardized 

residuals (not shown) approximate a normal curve but the scatter plot of standardized 

residuals versus predicted (not shown) shows a pattern with structure. Furthermore, the 

Breusch-Pagan (B-P) and the Koenker-Bassett (K-B) were also statistically significant 

with p-values much smaller than 0.01 allowing one to reject a null hypothesis of 

homeoskedasticity. The diagnostics for spatial dependence (not shown) showed evidence 

of spatial autocorrelation with statistically significant Moran’s I for the residuals with p-

values much smaller than 0.01. 
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Table 12. Classic OLS regression diagnostics for the data aggregated by month. 
Classic OLS Regression Diagnostics 

 R2  
F-stat 

p-value 

LL Akaike Schwarz Jarque-Bera 
 

p-value 

B-P 
 

p-value 

K-B 
 

p-value 

 

Apr 0.010259 
14.8869 
<0.001 

10431 
 

-20849 -20800 125959 
 

<0.001 

391813833 
 

<0.001 

41857188 
 

<0.001 

 
 
 

May 0.007871 
11.3931 
<0.001 

3230 -6446 -6397 1731 
 

<0.001 

726234 
 

<0.001 

880295 
 

<0.001 

 
 
 

Jun 0.033186 
49.2971 
<0.001 

916 -1819 -1770 261 
 

<0.001 

14660177 
 

<0.001 

22238500 
 

<0.001 

 
 
 

 
Jul 

0.042335 
63.4879 
<0.001 

930 -1846 -1796 310 
 

<0.001 

40636790 
 

<0.001 

42887062 
 

<0.001 

 
 
 

Aug 0.017072 
24.9443 
<0.001 

1118 
 

-2222 -2173 413 
 

<0.001 

15155024 
 

<0.001 

15564236 
 

<0.001 

 
 
 

Sep 0.002195 
3.15879 

0.004272 

1792 -3570 -3520 848 
 

<0.001 

120156673 
 

<0.001 

320526945 
 

<0.001 

 

Oct 0.004810 
6.94078 
<0.001 

11818 -23622 -23572 246811 
 

<0.001 

1270107980 
 

<0.001 

96923997 
 

<0.001 

 

ALL 0.080835 
126.302 
<0.001 

2099 -4184 -4134 107 
 

<0.001 

711118 
 

<0.001 

588241 
 

<0.001 
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Table 13. Classic OLS regression model parameters for data aggregated by month. 
Classic OLS Regression Model Parameters 

  Constant Slope Elevation NSAspect EWAspect %Forest %ShrubGrass 
Apr Coefficient 

t-statistic 
p-value 
VIF 

0.05336 
6.08352 
<0.001 

1.41e-005 
0.15512 
0.87653 
1.04175 

1.84e-005 
-5.05921 

<0.001 
1.08086 

-0.00194 
-1.73659 
0.08248 
1.00699 

-0.00101 
-0.92919 
0.35280 
1.00738 

0.00041 
7.34732 
<0.001 

1.04553 

0.00026 
4.48401 
<0.001 

1.09074 
May Coefficient 

t-statistic 
p-value 
VIF 

0.04706 
2.32735 
0.01997 

 

1.39e-005 
0.06655 
0.94580 
1.04175 

1.69e-005 
2.01913 
0.04352 
1.08086 

-0.00184 
-0.71476 
0.47469 
1.00699 

0.00211 
0.84091 
0.40036 
1.00738 

0.00096 
7.41191 
<0.001 

1.04553 

0.00048 
3.49506 
<0.001 

1.09074 
Jun Coefficient 

t-statistic 
p-value 
VIF 

-0.06722 
-2.54247 
0.01103 

 

0.00164 
6.01805 
<0.001 

1.04175 

0.00015 
14.3295 
<0.001 

1.08086 

0.00324 
0.961511 
0.33630 
1.00699 

-0.00170 
-0.51761 
0.60461 
1.00738 

0.00014 
0.82904 
0.40712 
1.04553 

0.00013 
0.76655 
0.44336 
1.09074 

Jul Coefficient 
t-statistic 
p-value 
VIF 

-0.00796 
-0.301738 

0.76303 
 

0.00178 
6.52659 
<0.001 

1.04175 

0.00017 
15.8385 
<0.001 

1.08086 

0.00366 
1.08808 
0.27657 
1.00699 

-0.00711 
-2.16506 
0.03041 
1.00738 

-0.00089 
-5.23382 

<0.001 
1.04553 

-0.00048 
-2.69201 
0.00712 
1.09074 

Aug Coefficient 
t-statistic 
p-value 
VIF 

0.15981 
6.18693 
<0.001 

 

0.00127 
4.75617 
<0.001 

1.04175 

9.57e-005 
8.90260 
<0.001 

1.08086 

0.00040 
0.12235 
0.90287 
1.00699 

0.00249 
0.77647 
0.43745 
1.00738 

0.00067 
4.07568 
<0.001 

1.04553 

0.00040 
2.30866 
0.02098 
1.09074 

Sep Coefficient 
t-statistic 
p-value 
VIF 

0.09435 
3.94969 
<0.001 

 

-0.00018 
-0.75514 
0.45022 
1.04175 

3.15e-005 
3.17055 
0.00153 
1.08086 

0.00296 
0.97203 
0.33112 
1.00699 

-0.00183 
-0.61667 
0.53757 
1.00738 

0.00031 
2.01611 
0.04382 
1.04553 

0.00025 
1.58354 
0.11333 
1.09074 

Oct Coefficient 
t-statistic 
p-value 
VIF 

-0.00795 
-1.06529 
0.28680 

 

0.00020 
2.58572 
0.00973 
1.04175 

5.62e-006 
1.81073 
0.07023 
1.08086 

0.00180 
1.89128 
0.05864 
1.00699 

-0.00210 
-2.26698 
0.02342 
1.00738 

0.00014 
3.11253 
0.00186 
1.04553 

0.00019 
3.87742 
<0.001 

1.09074 
ALL Coefficient 

t-statistic 
p-value 
VIF 

0.26290 
11.4035 
<0.001 

0.00221 
9.26592 
<0.001 

1.04175 

0.00021 
22.8258 
<0.001 

1.08086 

0.00211 
0.71804 
0.47270 
1.00699 

-0.00219 
-0.76541 
0.44396 
1.00738 

0.00048 
3.24055 
0.00120 
1.04553 

0.00036 
2.35903 
0.01834 
1.09074 

 

 

 

 

According to the diagnostics for spatial dependence, the spatial error model was 

appropriate to address the problems with spatial autocorrelation in the OLS models. 

Spatial error regression demonstrated some improvement in the ability to explain the 

variance in lightning flash density. During the peak months, spatial error regression 

resulted in models that could explain roughly 10 percent of the variability (Table 14). 

During non-peak months, spatial error models explained less than 4 percent of the 
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lightning flash density variation. When applied to the entire dataset, the resulting model 

explains 17 percent of the variability in flash density. The Akaike Information Criterion 

(AIC) is smaller for the spatial error models than the OLS models, indicating the error 

model is a better fit than the linear model. The coefficient for the lambda variable 

representing the spatially autocorrelated error terms is positive influence and is 

statistically significant in each of the monthly models and the model for the entire 

dataset. The likelihood ratio test (LRT) is statistically significant with very small p values 

(< 0.01) hinting that spatial dependence is still a problem. 

During the summer months of peak activity, slope is statistically significant (𝑝𝑝 ≤

0.05) in the spatial error models and has a positive relationship indicating hex cells with 

higher slopes have higher CG lightning flash density (Table 15). Elevation is also 

statistically significant for all months except October with a positive relationship 

meaning that hex cells with higher elevation values have higher CG lightning flash 

density except in April where it is slightly negative. The land cover variables are also 

statistically significant (𝑝𝑝 ≤ 0.05) for all months except June and September. The 

relationships are positive except during June where it is slightly negative. Similar to 

previous models, the aspect variables do not appear to be associated with lightning flash 

density. For the model based on the entire dataset, slope, elevation, and the land cover 

variable %forest appear to be statistically significant factors (𝑝𝑝 ≤ 0.05) followed by the 

land cover variable %shrubgrass (𝑝𝑝 ≤ 0.10).  
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Table 14. Spatial Error regression diagnostics for the data aggregated by month. 
Spatial Error Regression Diagnostics 

 R2 L-L Akaike Schwarz Likelihood 
Ratio Test 

LRT  
p-val 

Breusch-
Pagan Test 

BP  
p-val 

Apr 0.024921 10477.40 -20940.8 -20891.4 91.27 <0.001 N/A N/A 
May 0.041013 3337.15 -6660.31 -6610.88 213.45 <0.001 N/A N/A 
Jun 0.093827 1133.28 -2252.58 -2203.14 432.61 <0.001 N/A N/A 
Jul 0.103505 1148.71 -2283.44 -2234 437.02 <0.001 N/A N/A 
Aug 0.067737 1290.10 -2566.22 -2516.78 343.34 <0.001 N/A N/A 
Sep 0.022921 1858.05 -3702.11 -3652.67 131.98 <0.001 N/A N/A 
Oct 0.013796 11846.10 -23678.2 -23628.8 55.87 <0.001 120067821 <0.001 
ALL 0.173819 2456.35 -4898.71 -4849.27 714.68 <0.001 N/A N/A 

 
 
 
Table 15. Spatial Error regression model parameters for the data aggregated by month. 

Spatial Error Regression Model Parameters (coefficient, z-stat, p-value) 
 Lambda Constant Slope Elevation NSAspect EWAspect %Forest %ShrubGrass 

Apr 0.26730 
9.04136 
<0.001 

0.04362 
4.18175 
<0.001 

-1.17e-005 
-0.12204 
0.90287 

-1.40e-005 
-3.24351 
0.00118 

-0.00156 
-1.41031 
0.15845 

-0.00150 
-1.38629 
0.16566 

0.00037 
5.35203 
<0.001 

0.00023 
3.21590 
0.00130 

May 0.38597 
13.6522 
<0.001 

-0.01846 
-0.71237 
0.47623 

0.00022 
1.00850 
0.31321 

4.36e-005 
4.06903 
<0.001 

-0.00100 
-0.42300 
0.67229 

0.00174 
0.70481 
0.48092 

0.00078 
4.39764 
<0.001 

0.00053 
2.84409 
0.00445 

Jun 0.48112 
17.8993 
<0.001 

-0.09904 
-2.77132 
0.00558 

0.00114 
3.85333 
0.00012 

0.00017 
11.7265 
<0.001 

0.00410 
1.26210 
0.20691 

0.00050 
0.15960 
0.87319 

5.74e-005 
0.22634 
0.82093 

0.00016 
0.60294 
0.54655 

Jul 0.49220 
18.4399 
<0.001 

-0.10598 
-2.94816 
0.00320 

0.00072 
2.45682 
0.01402 

0.00021 
14.5993 
<0.001 

0.00261 
0.80576 
0.42038 

-0.00522 
-1.64055 
0.10089 

-0.00052 
-2.06234 
0.03917 

-0.00049 
-1.82547 
0.06793 

Aug 0.45689 
16.7552 
<0.001 

0.04611 
1.33598 
0.18155 

0.00086 
2.98237 
0.00286 

0.00014 
10.0676 
<0.001 

0.00144 
0.45297 
0.65057 

0.00414 
1.31925 
0.18709 

0.00064 
2.65178 
0.00801 

0.00047 
1.85900 
0.06303 

Sep 0.30506 
10.4475 
<0.001 

0.02530 
0.86990 
0.38435 

-0.00017 
-0.64406 
0.51953 

5.96e-005 
4.95330 
<0.001 

0.00320 
1.06379 
0.28742 

-0.00233 
-0.78990 
0.42958 

0.00030 
1.58830 
0.11222 

0.00025 
1.23627 
0.21636 

Oct 0.20735 
6.89636 
<0.001 

-0.00919 
-1.07653 
0.28169 

0.00020 
2.49384 
0.01264 

6.20e-006 
1.74943 
0.08021 

0.00178 
1.87908 
0.06023 

-0.00190 
-2.05206 
0.04016 

0.00014 
2.55575 
0.01060 

0.00019 
3.20686 
0.00134 

ALL 0.60416 
24.7215 
<0.001 

0.00236 
0.07110 
0.94331 

0.00110 
4.30364 
<0.001 

0.00032 
24.0163 
<0.001 

0.00275 
0.99456 
0.31995 

0.00061 
0.22742 
0.82009 

0.00061 
2.41848 
0.01559 

0.00047 
1.79540 
0.07259 

 

 

 

To further investigate the relationship between terrain parameters and CG 

lightning flash density, regression was applied separately on the cells identified as either 

hot or cold spots for the entire dataset (Table 16 and Table 17). The hot spot model was 
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able to explain 8.6 percent of the flash density variability while the cold spot model was 

only able to explain 1.3 percent. The models are statistically significant having very low 

p-values. The hot spot model shows a normal distribution in the standardized errors (not 

shown) and some structure in the scatter plot (not shown). The standardized errors in the 

cold spot model are skewed and the scatter plots shows more structure (not shown). In the 

hot spot models only the slope and elevation are statistically significant having very low 

p-values while elevation is the only statistically significant variable in the cold spot 

model. In both cases elevation has a positive coefficient meaning cells with higher 

elevation values have higher CG lightning flash density. Neither of the models showed 

evidence of statistically significant spatial dependence so spatial regression was not 

performed for these set of observations. 

 

 

 

Table 16. OLS regression analysis model diagnostics using the cells designated as either hot or cold spots. 
Classic OLS Regression Diagnostics 

 R2  
F-stat 

p-valuel 

LL Akaike Schwarz Jarque-Bera 
 

p-value 

B-P 
 

p-value 

K-B 
 

p-value 

M-C-N 

Hot 
Spots 

0.086266 
25.4436 
<0.001 

517 
 

-1021 -983 4.2443 
 

0.11977 

-1071405 
 

N/A 

-970835 
 

N/A 

32.793394 
 
 

Cold 
Spots 

0.013565 
3.95135 
<0.001 

520 -1027 -989 99.3534 
 

<0.001 

-11092573 
 

N/A 

-7909273 
 

N/A 

27.972654 
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Table 17. OLS Regression analysis model parameters using the cells designated as either hot or cold spots. 
Classic OLS Regression Model Parameters 

  Constant Slope Elevation NSAspect EWAspect %Forest %ShrubGrass 
Hot 
Spots 

Coefficient 
t-statistic 
p-value 
VIF 

0.46515 
8.97709 
<0.001 

0.00214 
4.59193 
<0.001 

1.124873 

0.00019 
9.180997 

<0.001 
1.211906 

0.00156 
0.25201 
0.80105 

1.000795 

-0.00444 
-0.71824 
0.47270 

1.003682 

-0.00019 
-0.63863 
0.52313 

1.041779 

-0.00032 
-1.20236 
0.22940 

1.123380 
Cold 
Spots 

Coefficient 
t-statistic 
p-value 
VIF 

0.50716 
11.3853 
<0.001 

0.00027 
0.485364 
0.62750 

1.053150 

8.61e-005 
4.53113 
<0.001 

1.047945 

0.00849 
1.38889 
0.16505 

1.005689 

-0.00298 
-0.48718 
0.62622 

1.002574 

-7.26e-005 
-0.150631 

0.88023 
1.407169 

-8.87e-005 
-0.1363446 

0.89154 
1.386593 

 

 

 

Overall, while the models were statistically significant, they only explain a small 

percentage of the variability of CG lightning flash density in Yellowstone National Park 

(Research Question 4). In this study the regression models only explained at most 17 

percent of the variability in CG lightning flash density which is slightly better than a 

previous study by DeCaria and Babij where only 3 percent of the variability was 

explained when modeling the relationship between flash density and terrain (2003). Of 

the variables tested in this study, it appears that elevation has the greatest role in the 

observed spatial pattern of CG lightning activity where the hex cells with higher 

elevation values have higher CG lightning flash density. This is followed by slope during 

the summer months where hex cells with higher slope values have higher CG lightning 

flash density. Areas with higher slope values are probably found mostly in the 

mountainous regions so a positive relationship here makes sense as lightning generally 

favors the high points of a landscape. Land cover also appears to be a positive factor in 

CG lightning flash density except during June. The hex cells with higher percentage of 

forest or shrub and grass have higher CG lightning flash density. This is important when 
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considering the role that CG lightning plays in the wildfire process. Lightning provides 

the ignition while forest, shrub, and grass lands provide the fuel source for wildfires.  

While these variables are important aspects to the study, some variables appear to 

be missing from the regression modeling. One variable that could be important and rather 

easy to include is terrain difference. For each hex cell, one could easily calculate the 

difference between the elevation of the hex cells and the difference in elevation between 

its neighboring hex cells. The elevation differences could be calculated as the difference 

with the average elevation of its neighbors. One could also include a difference between 

the hex cell and the one with the highest elevation (maximum difference) as well as with 

the cell and its neighbor with the lowest elevation (minimum difference). Furthermore, 

the hex cells neighborhood could be extended to include second or third order neighbors 

to form a terrain gradient variable that may also prove useful. Other variables that may be 

included is daily solar radiation received in each hex cell as well as weather related 

variables such as surface heat flux, wind direction and speed, upward vertical motion, and 

atmospheric stability to name a few. Since Yellowstone does not have a robust weather 

observing network, these variables would have to be modeled using numerical weather 

prediction techniques.  
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7. FUTURE RESEARCH 

This research analyzed the spatial pattern of cloud-to-ground lightning activity to 

better understand where lightning activity occurred in Yellowstone National Park 

between 1995 and 2004. Mapping where activity occurred (and did not occur) and 

identifying what areas of the park experienced significant clusters of activity is a step 

toward new information regarding the geography of CG lightning in the park. While this 

research provided important results, there is much that remains unknown regarding the 

physical processes influencing CG lightning activity and its expression on the landscape. 

In the introductory remarks of this paper, the original research questions 

hypothesized about the relationship between the physical geography of Yellowstone and 

the physical characteristics of CG lightning in Yellowstone. This research evaluated the 

physical aspects of Yellowstone with respect to CG lightning. Spatial analysis was 

performed to test for both global and local clustering based strictly on the location of CG 

lightning events and regression analysis was performed testing the relationship between 

CG lightning flash density and the physical properties of Yellowstone’s terrain. This 

research did not consider the physical properties of the lightning itself such as 

multiplicity (number of flashes that occurred during the cloud-to-ground event), polarity, 

and strength all of which could be important factors in the ignition of wildfires. This 

analysis should be extended to include these lightning parameters to determine locations 

of clusters of CG lightning activity with high (or low) multiplicity, clusters with positive 

(or negative) polarity, and clusters based on the strength of the current delivered by the 
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lightning. Adding the locations of lightning ignited wildfires to maps showing the 

location of these types of clusters could greatly improve our understanding in lightning-

ignited wildfires. This could help in determining whether or not lightning-ignited 

wildfires are more likely from lightning flashes with single strikes or multiple strikes and 

whether or not lightning strikes with high electrical currents are needed for wildfire 

ignition.  

The inclusion of the physical properties of lightning could also be used to 

possibly improve upon the regression results by using the lightning point data. The 

multiplicity property contains the number of flashes within each lightning event. This is 

basically a count variable that can be used as the dependent variable.  Likewise, the 

strength (electrical current) of the lightning flash could also be used as a dependent 

variable in the regression analysis.      

Improvements in the regression analysis using lightning flash density as the 

dependent variable might also be realized by modifying the method used to downscale 

the terrain and land cover variables to the hex cells. This study used a majority filter to 

assign terrain and land cover values to the hex cells. Using another filter such as 

maximum, mean, or median may improve the regression results. Another method that 

might prove useful is to assign the terrain variables using categories that are based on 

bands of elevation values. One could also analyze the terrain for high points and use the 

distance between the lightning event and the nearest high point as a regression variable.   
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Further evaluation of the cold spots or clusters of low CG lightning activity may 

prove interesting as well. Most of the cold spots of activity were located in the western 

and central plateau regions of the park, which is where most of the basins of geothermal 

activity are located. These geothermal hot spots release gases in the atmosphere. The 

concentration of releases in this part of the park may be impacting the weather process in 

a way that leads to the clusters of low CG lightning activity in this region. 

Another potentially fruitful extension of this research is analyzing CG lightning 

events using spatio-temporal point pattern analysis. This study sliced and aggregated 10-

years of CG lightning data using monthly and hourly time units to determine whether 

spatial clustering was present. Space-time clustering approaches evaluate the entire 

dataset as a whole to simultaneously find events that cluster in both space and time. This 

type of analysis may reveal trends in the processes leading to CG lightning occurrence 

that can’t be seen when evaluating an aggregated 10-year dataset such as in this research. 

Trends revealed in space-time clustering could be used to help compare and predict fire 

seasons from year to year. 

In addition to further investigating the temporal aggregation of CG lightning 

activity, the spatial aggregation of the study area should also be investigated further. 

While this study did an initial, quick test to determine an optimal cell size for tessellating 

the study area to a hexagonal grid, a more robust test to determine the sensitivity of grid 

cell size should be completed. Different cell sizes may result in different means and 

variances of CG lightning flash density which may in turn impact the resulting local and 

global statistics used in this study to test for spatial autocorrelation and clustering. 
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Along with performing sensitivity testing on cell size and clustering, the size of 

the study area could also be expanded to include the entire Greater Yellowstone Area. 

This would include the entire Absaroka Range and Gallatin Range instead of just parts of 

the ranges that lie within Yellowstone as well as the Teton Range to the south of 

Yellowstone. These ranges have several peaks that are higher than the peaks that lie 

within the Yellowstone. Including more of the mountain ranges should reveal more 

localized clusters of CG lightning activity may provide more clues about the CG 

lightning in these regions and a better understanding of the local weather patterns that 

lead to the spatial distribution of lightning activity in the region.           

While this research provided some initial results, there remains much to be 

discovered regarding the physical process leading to the observed spatial pattern of CG 

lightning activity. Integrating the regional meteorological conditions, as well as the local 

weather patterns resulting from the physical geography of Yellowstone, may provide an 

improved understanding of why CG lightning clusters in some regions while absent in 

other regions of the park. Knowledge of where and why clusters occur in these regions 

can be used to refine wildfire models used to predict and monitor the environment for 

lightning ignited wildfires. 
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8. SUMMARY 

Yellowstone National Park is well known for its vivid and diverse landscape, its 

abundance of wildlife, and its wildfires such as the 1988 “Summer of Fire”. Yellowstone 

is also well known for its volcanic activity which is the source of the geothermal hot 

spots that cover the landscape in the form of geysers like Old Faithful, hot springs, mud 

pots, and fumaroles. This research demonstrated that Yellowstone National Park has 

other hot spots that are also important to the ecology of the park: clusters of cloud-to-

ground lightning flashes. 

Using GIS and spatial analysis techniques, this research evaluated a 10-year CG 

lightning dataset from 1995 to 2004 to examine the spatial patterns of CG lightning over 

different time scales and their relationships with physical characteristics of the park such 

as terrain elevation, slope, aspect, and land cover. CG lightning point data was visualized 

as a series of maps with each point representing a single CG lightning flash event. CG 

lightning flash density was also calculated and visualized after tessellating the 

Yellowstone study area into a hexagon grid. The CG lightning points were aggregated to 

the hex grid temporally by month and by hour such that each grid cell contained a 

calculated flash density (Ng) value for each of the 12 months as well as a value for each 

of the 24 hours. The overall CG lightning flash density based on the entire 10-year 

dataset along with its mean and standard deviation were also calculated for each grid cell. 

Spatial analysis techniques were applied to this data focusing on 4 research questions.   
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Research question 1 asked “Does cloud-to-ground lightning occur randomly 

across space or does it manifest in an observable spatial pattern?” The hypothesis stated 

that the physical properties of CG lightning along with Yellowstone’s topography interact 

to create a spatially clustered pattern of CG lightning activity. Visual inspection of the 

spatial patterns in the point and flash density maps suggested that lightning activity 

exhibited spatial clustering. To formally test for global clustering, Nearest Neighbor 

Index (NNI), K-order Nearest Neighbor Index, and Ripley’s K (L(d)) were calculated for 

the study area using the lightning flash event data and the Getis-Ord General G statistic 

and the Global Moran’s I were calculated using the lightning flash density. Based strictly 

on the location of the CG lightning, these spatial statistics suggest there is weak evidence 

of global clustering and the spatial pattern of CG lightning activity is closer to a random 

pattern. Further tests integrating the physical properties of lightning and Yellowstone’s 

topography needs to be completed to fully investigate clustering resulting from the 

interaction of these properties. 

Research question 2 asked “Is the spatial pattern of cloud-to-ground lightning 

consistent throughout the year or does it vary by month or season?” The hypothesis 

asserted the overall spatial pattern of CG lightning varies in time due to regional and 

local scale weather patterns. The series of bar charts and line graphs of the lightning 

events provided evidence of the temporal variability of the lightning activity with the data 

showing definitive seasonal and diurnal trends. While these charts and graphs along with 

the maps of the lightning point data and lightning flash density all reveal that CG 
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lightning does vary with time, more research is needed to determine the impact of 

regional and local weather patterns on the spatial pattern of CG lightning. 

The third research question asked “Are specific areas or regions of Yellowstone 

Park more prone to experience cloud-to-ground lightning than others?” It was anticipated 

that the spatial pattern of CG lightning would exhibit localized clusters of high and low 

lightning values of activity within the park. To test for local clustering in the spatial 

pattern, the Getis-Ord Gi
* and Anselin’s Local Moran’s I were used to identify clusters of 

high and low activity. These tests revealed several clusters of low CG lightning flash 

density located mainly in the western and central plateau regions of the park and several 

clusters of high CG lightning flash density mainly in the mountainous regions of the park. 

The spatial scale of clustering appears to be consistent with the spatial scale of the 

physical process associated with the life cycle of convection and thunderstorm activity in 

mountain regions. The initiation of the convection process can take place on a scale of 

less than 1 km. As the process evolves to form thunderstorms, the scale of the process 

also grows resulting in thunderstorm cells that can be 1 to 10 km in diameter. The 

downdrafts of cold air in mature thunderstorms will often lead to the initiation of new 

thunderstorms adjacent to the mature storm thus forming a multicellular thunderstorm 

cluster. The scale of these thunderstorm clusters can range from 10 to 25 km (Vogt and 

Hodanish, 2016; Mason and Mason, 2003; Ziegler, Ray and MacGorman, 1986; 

Raymond and Wilkening, 1980). The results of the tests for global clustering showed 

weak evidence of clustering at distances reflecting both the single cell and multicellular 

thunderstorm clusters. The NNI and K-order NNI appear to reflect the clustering of 
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lightning activity resulting from single cell thunderstorm activity with weak clustering 

indicated between 1 and 5 km. Results from the Global Moran’s I and Getis-Ord General 

G statistic appear to reflect clustering of lightning activity associated with both single cell 

and multicellular thunderstorm activity as weak clustering was identified for distances up 

to about 20 km with peak clustering in the 5 to 10 km range. Likewise, the tests for local 

clustering appear to be a reflection of the lightning associated with single and 

multicellular thunderstorm activity. These tests, Getis-Ord Gi
* and Anselin’s Local 

Moran’s I, were conducted using a 3 km neighborhood and resulted in clusters of CG 

lightning activity that were generally 5 to 25 km wide.           

 Finally, the last research question asked “Is cloud-to-ground lightning activity 

associated with Yellowstone Park’s topography?” The lightning flash density pattern was 

expected to be related to land cover and the terrain variables elevation, slope, and aspect. 

The relationship between CG lightning flash density, land cover, and the terrain variables 

was analyzed using OLS and spatial error regression to account for spatial 

autocorrelation. While the resulting regression models were statistically significant, 

overall the regression only explained at most 17 percent of the variability in lightning 

flash density. Of the variables tested, elevation appears to play the greatest role in the 

observed spatial pattern of CG lightning activity, especially during the months of peak 

activity. Slope also appears to be a factor as well as the land cover variables forest and 

shrub-grass. For the most part, the variables have a positive relationship with lightning 

flash density such that hex cells with a higher percentage of forest or shrub-grass had 
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higher CG lightning flash density and hex cells with higher slope also had higher values 

of CG lightning flash density.  

While the regression models generated in this study may not have revealed as 

strong of a relationship with the terrain properties as expected, mapping the results of the 

tests for local clustering do show clusters of high CG lightning activity that are 

predominantly located in the mountain regions and clusters of low CG lightning 

predominantly in the western and central plateau of Yellowstone. This becomes more 

visually apparent when the results are visualized on a 3D map like the ones shown in 

Figure 32 and Figure 33.  

CG lightning studies found in scholarly publications typically only focus on 

visualizing the distribution of CG lightning activity as flash density maps for the simple 

purpose of identifying areas of high flash density rates. These types of studies often do 

little in explaining the observed spatial pattern of flash density. As possibly the first 

attempt at applying spatial statistics when analyzing CG lightning, this study appears to 

show the value in leveraging these techniques to gain new information about CG 

lightning. Spatial statistics revealed the statistically significant clustered nature of CG 

lightning in Yellowstone National Park during the 10-year period of study, identifying 

clusters of high and low CG lightning activity by evaluating these clusters within the 

context of its neighborhood. Maps of flash density do not tell us anything about areas of 

high or low flash density values within the context of its neighborhood. The spatial 

statistics implemented in this study also revealed that CG lightning in Yellowstone takes 
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place over spatial scales ranging from 1 to 20 km indicating complex processes are 

involved, information that can’t be readily obtained from flash density maps.  

Analyzing CG lightning activity in this manner allowed us to discover that 

clustering of CG lightning occurs over a range of spatial scales and helped to locate areas 

of the park that are more prone to localized clusters of high and low CG lightning 

activity. This naturally leads to the question of “why”. Why do localized clusters occur 

where they do? Is there something unique about the physical properties of the CG 

lightning that allows clusters to occur where they do? Is there something unique about the 

underlying terrain that plays a role in the process?     

In conclusion, this study clearly benefited from leveraging the power of GIS and 

spatial statistics to analyze the CG lightning within Yellowstone National Park. The 

spatial statistics used in this study allowed for the discovery of Yellowstone’s other “hot 

spots”. These hot spots are important not only to the ecology of the park but also to those 

who manage and visit the park.  
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Figure 32. A 3D visualization of hot and cold spots of CG lightning flash density in Yellowstone National Park. 
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 Figure 33. A 3D visualization of hot and cold spots of CG lightning flash density zoomed in to select regions. 



122 
 

REFERENCES 

Adams, D.K., & Comrie, A.C. (1997). The North American Monsoon. Bulletin of the 
American Meteorological Society, 78(10), 2197–2213. 

 
Agee, J. K. (1993). Fire Ecology of Pacific Northwest Forests. Washington, DC; Covelo 

CA: Island Press. 
 
Amatulli, G., Peréz-Cabello, F., & de la Riva, J. (2007). Mapping Lightning/Human-

Caused Wildfires Occurrence Under Ignition Point Location Uncertainty. Ecological 
Modelling, 200(3–4), 321–333. http://doi.org/10.1016/j.ecolmodel.2006.08.001 

 
Anselin, A. (2016). GeoDa: Release 1.8 [computer software]. Center for Spatial Data 

Science, University of Chicago. 
 
Anselin, L., Syabri, I., & Kho, Y. (2010). GeoDa: An Introduction to Spatial Data 

Analysis. In M. M. Fischer & A. Getis (Eds) Handbook of Applied Spatial Analysis 
(pp. 73-89). Berlin, Heidelberg: Springer. 

 
Anselin, L. (2005). Exploring Spatial Data With GeoDa: A Workbook. Retrieved from 

http://la1.rcc.uchicago.edu/media/geoda_files/docs/geodaworkbook.pdf (Accessed 9 
July 2016). 

 
Anselin, L. (1995). Local Indicators of Spatial Association (LISA). Geographical 

Analysis, 27, 92–115. http://doi.org/10.1111/j.1538-4632.1995.tb00338.x 
 
Bailey, T. C., & Gatrell, A. C. (1995). Interactive Spatial Data Analysis. Harlow Essex, 

England; New York, NY: Longman Scientific & Technical; J. Wiley. 
 
Bartlein P., Hostetler, S., Shafer, S., Holman, J., & Solomon, A. (2008). Temporal and 

Spatial Structure in Daily Wildfire-Start Data Set from the Western United States 
(1986–96). International Journal of Wildland Fire, 17(1), 8–17. 
http://dx.doi.org/10.1071/wf07022 

 
Carr, D. B., Olsen, A. R., & White, D. (1992). Hexagon Mosaic Maps for Display of 

Univariate and Bivariate Geographical Data. Cartography and Geographic 
Information Systems, 19(4), 228–236. http://doi.org/10.1559/152304092783721231 

 
Carr, D. B., Littlefield, R. J., Nicholson, W. L., & Littlefield, J. S. (1987). Scatterplot 

Matrix Techniques for Large N. Journal of the American Statistical Association, 
82(398), 424–436. http://doi.org/10.1080/01621459.1987.10478445 

 



123 
 

Chainey, S. & Ratcliffe, J. (2005). GIS and Crime Mapping. Chichester, West Sussex, 
England: J. Wiley. 

 
Chou, Y. (1992). Spatial Autocorrelation Analysis and Weighting Functions in the 

Distribution of Wildland Fires. International Journal of Wildland Fire, 2(4), 169–
176. http://dx.doi.org/10.1071/wf9920169 

 
Christensen, P., & Abbott, I. (1989). Impact of Fire in the Eucalypt Forest Ecosystem of 

Southern Western Australia: A Critical Review. Australian Forestry, 52(2), 103–121. 
http://doi.org/10.1080/00049158.1989.10674542 

 
Chuvieco, E., & Salas, J. (1996). Mapping the Spatial Distribution of Forest Fire Danger 

Using GIS. International Journal of Geographical Information Systems, 10(3), 333–
345. http://doi.org/10.1080/02693799608902082 

 
Clark, P. J., & Evans, F. C. (1954). Distance to Nearest Neighbor as a Measure of Spatial 

Relationships in Populations. Ecology, 35(4), 445–453. 
http://doi.org/10.2307/1931034 

 
Cummins, K., Murphy, M., Cramer, J., Scheftic, W., Demtriades, N. & Nag, A. (2010) 

Location Accuracy Improvements Using Propagation Corrections: A Case Study of 
the U.S. National Lightning Detection Network. 21st International Lightning 
Detection Conference & Third International Lightning Meteorology Conference, 
Orlando, FL 19-22 April 2010. 

 
Cummins, K. & Murphy, M. (2009). An Overview of Lightning Locations Systems: 

History, Techniques and Data Uses, With an In-depth Look at the U.S. NLDN. IEEE 
Transactions On Electromagnetic Compatibility, 51(3), 499–517. 
http://dx.doi.org/10.1109/temc.2009.2023450 

 
Cummins, K., Cramer, J., Biagi, C., Krider, E., Jerauld, J., Uman, M. & Rakov, V. 

(2006). The US National Lightning Detection Network: Post-upgrade status. In 
Preprints, Second Conference on Meteorological Applications of Lightning Data, 
Atlanta, GA. 

 
DeCaria, A. & Babij, M. (2003). A Map of Lightning Strike Density for Southeastern 

Penssylvania and Correlation with Terrain Elevation. USGS Digital Mapping 
Techniques ’03 Workshop, Millersville, PA, 1-4 June 2003 

 
Despain, D. (1990). Yellowstone Vegetation: Consequences of Environment and History 

in a Natural Setting. Santa Barbara, CA: Roberts Rinehart Publishers. 
 



124 
 

Dissing, D., & Verbyla, D. L. (2003). Spatial Patterns of Lightning Strikes in Interior 
Alaska and Their Relations to Elevation and Vegetation. Canadian Journal of Forest 
Research, 33(5), 770–782. http://doi.org/10.1139/x02-214 

 
Environmental Systems Research Institute (ESRI). (2016). ArcGIS Pro Online Help 

Documentation, http://pro.arcgis.com/en/pro-app/help/main/welcome-to-the-arcgis-
pro-app-help.htm (Accessed 9 July 2016). 

 
Environmental Systems Research Institute. (2016). ArcGIS Pro: Release 1.2 [computer 

software]. Redlands, CA 
 
Fortin, M., Dale, M. R. T., & ver Hoef, J., (2002). Spatial Analysis in Ecology. 

Encyclopedia of Environmetrics, 4, 2051–2058.  
 
Franke, M., & Yellowstone Center for Resources. (2000). Yellowstone in the Afterglow : 

Lessons From the Fires. Mammoth Hot Springs, Wyo.: Yellowstone Center for 
Resources, Yellowstone National Park. 

 
Fuquay, D. M. (1982). Positive Cloud-to-Ground Lightning in Summer Thunderstorms. 

Journal of Geophysical Research: Oceans, 87(C9), 7131–7140. 
http://doi.org/10.1029/JC087iC09p07131 

 
Fuquay, D. M. (1980). Lightning That Ignites Forest Fires. Sixth Conference of Fire and 

Forest Meteorology, Seattle, WA, 22-24 April 1980. 
 
Genton, M. G., Butry, D. T., Gumpertz, M. L., & Prestemon, J. P. (2006). Spatio-

temporal Analysis of Wildfire Ignitions in the St Johns River Water Management 
District, Florida. International Journal of Wildland Fire, 15(1), 87–97. 
http://dx.doi.org/10.1071/WF04034 

 
Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance 

Statistics. Geographical Analysis, 24(3), 189–206. http://doi.org/10.1111/j.1538-
4632.1992.tb00261.x 

 
Grogan, M. (2004). Report on the 2002-2003 U.S. NLDN System Wide Upgrade, 

Vaisala, Inc. 
http://www.vaisala.com/Vaisala%20Documents/Vaisala%20News%20Articles/VN16
5/VN165_Report_on_the_2002-2003_U.S._NLDN_System-wide_Upgrade.pdf 
(Accessed 9 July 2016). 

 
Hirschfield, A., & Bowers, K. (2001). Mapping and Analysing Crime Data: Lessons from 

Research and Practice. London; New York: Taylor & Francis. 
 



125 
 

Hodanish, S. & Wolyn, P. (2006). Lightning Climatology for the State of Colorado. 
Fourth International Lightning Meteorology Conference, Broomfield, CO 22-27 
January 2011. 

 
Huang, S., Rich, P. M., Crabtree, R. L., Potter, C. S., & Fu, P. (2008). Modeling Monthly 

Near-Surface Air Temperature from Solar Radiation and Lapse Rate: Application 
over Complex Terrain in Yellowstone National Park. Physical Geography, 29(2), 
158–178. http://doi.org/10.2747/0272-3646.29.2.158 

 
Huffines, G. R., & Orville, R. E. (1999). Lightning Gound Flash Density and 

Thunderstorm Duration in the Continental United States: 1989-96. Journal of Applied 
Meteorology, 38(7), 1013–1019. 

 
Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, 

N.D., Wickham, J.D. & Megown, K. (2015). Completion of the 2011 National Land 
Cover Database for the Conterminous United States – Representing a Decade of Land 
Cover Change Information. Photogrammetric Engineering & Remote Sensing, 81(5), 
345–354. 

 
Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest Fire Risk Zone 

Mapping from Satellite Imagery and GIS. International Journal of Applied Earth 
Observation and Geoinformation, 4(1), 1–10. http://doi.org/10.1016/S0303-
2434(02)00006-5 

 
Johnston, C. A. (1998). Geographic Information Systems in Ecology. Oxford; Malden, 

MA: Blackwell Science. 
 
Kasischke, E. S., Williams, D., & Barry, D. (2002). Analysis of the Patterns of Large 

Fires in the Boreal Forest Region of Alaska. International Journal of Wildland Fire, 
11(2), 131–144. http://doi.org/10.1071/WF02023 

 
Kharuk, V. I., Kasischke, E. S., & Yakubailik, O. E. (2007). The Spatial and Temporal 

Distribution of Fires on Sakhalin Island, Russia. International Journal of Wildland 
Fire, 16(5), 556–562. http://doi.org/10.1071/WF05009 

 
Kilinc, M., & Beringer, J. (2007). The Spatial and Temporal Distribution of Lightning 

Strikes and Their Relationship with Vegetation Type, Elevation, and Fire Scars in the 
Northern Territory. Journal of Climate, 20(7), 1161–1173. 
http://doi.org/10.1175/JCLI4039.1 

 
Krider, E. P., Noggle, R. C., Pifer, A. E., & Vance, D. L. (1980). Lightning Direction-

Finding Systems for Forest Fire Detection. Bulletin of the American Meteorological 
Society, 61(9), 980–986. http://doi.org/10.1175/1520-
0477(1980)061<0980:LDFSFF>2.0.CO;2 



126 
 

Latham, D., & Williams, E. (2001). Lightning and forest fires. In E. A. Johnson & K. 
Mayanishi (Eds) Forest Fires: Behavior and Ecological Effects (pp 375-418). San 
Diego, CA: Academic Press. 

 
Lee, B., Park, P. S., & Chung, J. (2006). Temporal and Spatial Characteristics of Forest 

Fires in South Korea Between 1970 and 2003. International Journal of Wildland 
Fire, 15(3), 389–396. http://doi.org/10.1071/WF05090 

Legendre, P. (1993). Spatial Autocorrelation: Trouble or New Paradigm? Ecolog, 74(6), 
1659–1673.  

 
Levine, N. (2015). CrimeStat IV: A Spatial Statistics Program for the Analysis of Crime 

Incident Locations (version 4.0.2) [computer software]. Ned Levine & Associates, 
Houston, TX, and the National Institute of Justice, Washington, DC.  

 
Lloyd, C. D. (2011). Local Models for Spatial Analysis. Boca Raton, FL: CRC Press. 
 
Lyons, W. A., Uliasz, M., & Nelson, T. E. (1998). Large Peak Current Cloud-to-Ground 

Lightning Flashes during the Summer Months in the Contiguous United States. 
Monthly Weather Review, 126(8), 2217–2233. http://doi.org/10.1175/1520-
0493(1998)126<2217:LPCCTG>2.0.CO;2 

 
Mallick, S., Rakov, V. A., Ngin, T., Gamerota, W. R. , Pilkey, J. T. , Hill, J. T., Uman, 

M. A., Jordan, D. M. , Cramer, J. A. & Nag, A. (2014). An Update on the 
Performance Characteristics of the NLDN. 23rd International Lightning Detection 
Conference & Fifth International Lightning Meteorology Conference, Tuscon, AZ 
18-21 March 2014. 

 
Marcus, W. A., Meacham, J. E., & Rodman, A. W. (2012). Atlas of Yellowstone. 

Berkeley; [Eugene, Ore.]: University of California Press; University of Oregon. 
 
Mason, J. & Mason, N. (2003). The Physics of a Thunderstorm. European Journal of 

Physics, 24, S99–S110. 
 
Meisner, B. N. (1993). A Lightning Fire Ignition Assessment Model. Twelfth Conference 

on Fire and Forest Meteorology, Jekyll Island, GA, 26-28 October 1993. 
 
Mitchell A (2005) The ESRI Guide to GIS Analysis Volume 2: Spatial Measurements and 

Statistics. Redlands, CA: ESRI Press. 
 
Mock, C.J. (1996). Climatic Controls and Spatial Variations of Precipitation in the 

Western United States. Journal of Climate, 9, 1111–1125. 
 
Moran, P. A. P. (1950). Notes on Continuous Stochastic Phenomena. Biometrika, 

37(1/2), 17–23. http://doi.org/10.2307/2332142 



127 
 

Nag, A., Murphy, M. J., Cummins, K. L., Pifer, A. E. & Cramer, J.A. (2014). Recent 
Evolution of the U.S. National Lightning Detection Network. 23rd International 
Lightning Detection Conference & Fifth International Lightning Meteorology 
Conference, Tuscon, AZ 18-21 March 2014. 

 
Neuwirth, C., Spitzer, W. & Prinz, T. (2012). Lightning Density Distribution and Hazard 

in an Alpine Region. Journal of Lightning Research, 4, 166–172. 
http://dx.doi.org/10.2174/1652803401204010166 

 
Ord, J., & Getis, A. (1995). Local Spatial Autocorrelation Statistics: Distributional Issues 

and an Application. Geographical Analysis, 27(4), 286–306. 
http://doi.org/10.1111/j.1538-4632.1995.tb00912.x 

 
Orville, R. E., Huffines, G. R., Burrows, W. R., & Cummins, K. L. (2011). The North 

American Lightning Detection Network (NALDN)—Analysis of Flash Data: 2001–
09. Monthly Weather Review, 139(5), 1305–1322. 
http://doi.org/10.1175/2010MWR3452.1 

 
Orville, R. E. (2008). Development of the National Lightning Detection Network. 

Bulletin of the American Meteorological Society, 89(2), 180–190. 
http://doi.org/10.1175/BAMS-89-2-180 

 
Orville, R. E., & Huffines, G. R. (2001). Cloud-to-Ground Lightning in the United States: 

NLDN Results in the First Decade, 1989–98. Monthly Weather Review, 129(5), 
1179–1193. http://doi.org/10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2 

 
Orville, R. E., & Huffines, G. R. (1999). Lightning Ground Flash Measurements over the 

Contiguous United States: 1995–97. Monthly Weather Review, 127(11), 2693–2703. 
http://doi.org/10.1175/1520-0493(1999)127<2693:LGFMOT>2.0.CO;2 

 
Orville, R. E., & Silver, A. C. (1997). Lightning Ground Flash Density in the Contiguous 

United States: 1992–95. Monthly Weather Review, 125(4), 631–638. 
http://doi.org/10.1175/1520-0493(1997)125<0631:LGFDIT>2.0.CO;2 

 
Orville, R. E. Lightning Ground Flash Density in the Contiguous United States–1989. 

(1991). Monthly Weather Review, 119(2), 573–577. 
 
Oyana, T. J., & Margai, F. M. (2015). Spatial Analysis: Statistics, Visualization, and 

Computational Methods. CRC Press. 
 
Perry, G. L. W., Miller, B. P., & Enright, N. J. (2006). A Comparison of Methods for the 

Statistical Analysis of Spatial Point Patterns in Plant Ecology. Plant Ecology, 187, 
59–82. 

 



128 
 

Rakov, V. A. (2003). A Review of Positive and Bipolar Lightning Discharges. Bulletin of 
the American Meteorological Society, 84(6), 767–776. http://doi.org/10.1175/BAMS-
84-6-767 

 
Rakov, V., & Uman, M. A. (2003). Lightning: Physics and Effects. Cambridge, U.K.; 

New York: Cambridge University Press. 
 
Raymond, D., & Wilkening, M. (1980). Mountain-Induced Convection under Fair 

Weather Conditions. Journal of the Atmospheric Sciences, 37(12), 2693–2706. 
http://doi.org/10.1175/1520-0469(1980)037<2693:MICUFW>2.0.CO;2 

 
Reap, R. M. (1986). Evaluation of Cloud-to-Ground Lightning Data from the Western 

United States for the 1983–84 Summer Seasons. Journal of Climate and Applied 
Meteorology, 25(6), 785–799. http://doi.org/10.1175/1520-
0450(1986)025<0785:EOCTGL>2.0.CO;2 

 
Ripley, B. D. (1981). Spatial Statistics. New York: Wiley. 
 
Rorig, M. L., & Ferguson, S. A. (2002). The 2000 Fire Season: Lightning-Caused Fires. 

Journal of Applied Meteorology, 41(7), 786–791. http://doi.org/10.1175/1520-
0450(2002)041<0786:TFSLCF>2.0.CO;2 

 
Rorig, M. L., & Ferguson, S. A. (1999). Characteristics of Lightning and Wildland Fire 

Ignition in the Pacific Northwest. Journal of Applied Meteorology, 38(11), 1565–
1575. http://doi.org/10.1175/1520-0450(1999)038<1565:COLAWF>2.0.CO;2 

 
Rudlosky, S. D., & Fuelberg, H. E. (2011). Seasonal, Regional, and Storm-Scale 

Variability of Cloud-to-Ground Lightning Characteristics in Florida. Monthly 
Weather Review, 139(6), 1826–1843. http://doi.org/10.1175/2010MWR3585.1 

 
Saba, M. M.,F., Schulz, W., Warner, T. A., Campos, L. Z.,S., Schumann, C., Krider, E. 

P., Cummins, K. & Orville, R. E. (2010). High-speed Video Observations of Positive 
Lightning Flashes to Ground. Journal of Geophysical Research Atmospheres, 115(24) 
doi:http://dx.doi.org.mutex.gmu.edu/10.1029/2010JD014330  

 
Saraiva, A. C. V., Saba, M. M. F., Campos, L. Z. S., Pinto Jr., O., Cummins, K. L. & 

Krider, E. R. (2008). Properties of Negative Cloud-to-Ground Lightning from High-
Speed Video Observations in Arizona, U.S.A., and Sao Paulo, Brazil. 20th 
International Lightning Detection Conference¸ Tucson, AZ 21-23 April 2008. 

 
Scott, L.M. (2015). Analysis of Spatial Patterns. In J.D. Wright (Ed) International 

Encyclopedia of the Social & Behavioral Sciences (Second Edition) (pp. 178-184). 
Oxford, Elsevier. 

 



129 
 

Stewart, J.Q., Whiteman, C.D., Steenburgh, W.J., & Bian, X. (2002). A Climatological 
Study of Thermally Driven Wind Systems of the U.S. Intermountain West. Bulletin of 
the American Meteorological Society,83(5), 699–708. 

 
Telesca, L., Bernardi, M., & Rovelli, C. (2005). Intra-cluster and Inter-cluster Time 

Correlations in Lightning Sequences. Physica A: Statistical Mechanics and Its 
Applications, 356(2–4), 655–661. http://doi.org/10.1016/j.physa.2005.02.090 

 
Thompson, H. R. (1956). Distribution of Distance to Nth Neighbour in a Population of 

Randomly Distributed Individuals. Ecology, 37(2), 391–394. 
http://doi.org/10.2307/1933159 

 
Tobler, W. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. 

Economic Geography, 47, 234–240. 
 
Uman, M. A. (1987). The lightning discharge. Orlando, FL: Academic Press. 
 
U.S. National Park Service. (2016). Facts About Yellowstone. Retrieved from 

https://www.nps.gov/yell/planyourvisit/parkfacts.htm (Accessed 9 July 2016). 
 
U.S. National Park Service. (2016). Yellowstone Resources and Issues Handbook. 

Retrieved from 
https://www.nps.gov/yell/planyourvisit/upload/RI_2016_FINAL_web.pdf (Accessed 
9 July 2016). 

 
U.S. National Park Service, Yellowstone National Park. (2014). 2014 Fire Management 

Plan. Retrieved from https://www.nps.gov/yell/learn/management/upload/YELL-
2014-FMP-Final_sm.pdf (Accessed 9 Jul 2016). 

 
U.S. National Park Service. (2012). Yellowstone Resources and Issues Handbook. 

Retrieved from http://s3.documentcloud.org/documents/357352/yellowstone-
resources-issues-2012.pdf (Accessed 9 July 2016). 

 
U.S. National Park Service. (2007). Fire as a Natural Force. Retrieved from 

http://www.nps.gov/yell/planyourvisit/upload/Yell288.pdf (Accessed 9 July 2016). 
 
U.S. National Park Service, Yellowstone National Park. (2004). 2004 Update of the 

Yellowstone National Park Wildland Fire Management Plan. Retrieved from 
http://gisedu.colostate.edu/webcontent/nr505/nps07/team7/Maps/Fire_Plans_pdf/Yell
owstone.pdf (Accessed 9 July 2016) 

 
Vadrevu, K. P., Badarinath, K. V. S., & Anuradha, E. (2007). Spatial Patterns in 

Vegetation Fires in the Indian Region. Environmental Monitoring and Assessment, 
147(1), 1–13. http://doi.org/10.1007/s10661-007-0092-6 



130 
 

van Wagtendonk, J.W., van Wagtendonk, K.A., Meyer, J.B. & Paintner, K.J. (2002). The 
Use of Geographic Information For Fire Management Planning In Yosemite National 
Park. Applied Geography, 19(1), 19–39. 

 
Vazquez, A., & Moreno, J. M. (1998). Patterns of Lightning-, and People-caused Fires in 

Peninsular Spain. International Journal of Wildland Fire, 8(2), 103–115. 
http://doi.org/10.1071/WF9980103 

 
Vogt, B. J., & Hodanish, S. J. (2016). A Geographical Analysis of Warm Season 

Lightning/Landscape Interactions Across Colorado, USA. Applied geography, 75, 
93–103. http://dx.doi.org/10.1016/j.apgeog.2016.08.006 

 
Vogt, B. J., & Hodanish, S. J.. (2014). A High-Resolution Lightning Map of the State of 

Colorado. Monthly Weather Review, 142(7), 2353–2360. 
http://doi.org/10.1175/MWR-D-13-00334.1 

 
Vogt, B. J. (2014). Visualizing Summertime Lightning Patterns on Colorado Fourteeners. 

Professional Geographer, 66(1), 41–57. 
 
Vogt, B. J. (2011). Exploring Cloud-to-Ground Lightning Earth Highpoint Attachment 

Geography by Peak Current. Earth Interactions, 15(8), 1–16. 
 
Wagner, G., Fuelberg, H.E., Kann, D., Wynne, R. & Cobb, S. (2006). A GIS-Based 

Approach to Lightning Studies for West Texas and New Mexico. Second Conference 
on Meteorological Applications of Lightning Data. Atlanta, GA 27 January - 3 
February 2006. 

 
Weber, K., McMahan, B., Johnson, P., Russell, G. (2003). Modeling Lightning as an 

Ignition Source Of Rangeleand Wildfire In Southeastern Idaho. Retrieved from 
http://giscenter.isu.edu/Research/Techpg/nasa_wildfire/pdf/Chapter6.pdf (Accessed 9 
July 2016) 

 
Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R., & Dettinger, M. D. (2003). 

Climate and Wildfire in the Western United States. Bulletin of the American 
Meteorological Society, 84(5), 595. 

 
Wierzchowski, J., Heathcott, M., & Flannigan, M. D. (2002). Lightning and Lightning 

Fire, Central Cordillera, Canada. International Journal of Wildland Fire, 11(1), 41–
51. http://doi.org/10.1071/WF01048 

 
Yin, Z. Y., Estberg, J., Hallissey, E. J., & Cayan, D. R. (2007). Spatial patterns of 

lightning at different spatial scales in the Western United States during August of 
1990 – A case study using geographic information systems technology. Journal of 
Environmental Informatics, 9(1), 4–17. 



131 
 

Zajac, B. A., & Rutledge, S. A. (2001). Cloud-to-Ground Lightning Activity in the 
Contiguous United States from 1995 to 1999. Monthly Weather Review, 129(5), 999–
1019. http://doi.org/10.1175/1520-0493(2001)129<0999:CTGLAI>2.0.CO;2 

 
Ziegler, C. L., Ray, P. S., & MacGorman, D. R. (1986). Relations of Kinimatics, 

Microphysics and Electrification in an Isolated Mountain Thunderstorm. Journal of 
Atmospheric Sciences, 43(19), 2098–2114. 



132 
 

BIOGRAPHY 

Ed Amrhein graduated from Bishop McNamara High School, Forestville, Maryland, in 
1985. Upon graduation, he enlisted in the United States Air Force as a Weather 
Technician. After returning from OPERATION DESERT STORM, Mr. Amrhein began 
his college studies at Central Texas College while stationed at Fort Hood, Texas.  He was 
soon accepted into the highly competitive Air Force Airman Education and 
Commissioning Program and received a scholarship to attend Texas A&M University. He 
received his Bachelor of Science in Meteorology from Texas A&M University in 1999 
and was commissioned as a 2nd Lieutenant after attending Air Force Officer Training 
School at Maxwell Air Force Base, Alabama. He received his Master of Science in 
Atmospheric Sciences from Texas A&M University in 2001. Mr. Amrhein retired from 
the Air Force in 2010 and began his second career as a Geospatial Information Scientist 
working for Kinsey Technical Services Incorporated (KTSI). 


	List of Tables
	List of Figures
	List of Equations
	List of Abbreviations
	Abstract
	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1  The Lightning Flash
	2.2  Lightning Detection and Measurement
	2.3  Lightning Studies
	2.4  Lightning Ignited Wildfire Studies
	2.5  GIS Applications

	3. STUDY AREA
	4. DATA
	4.1  Lightning Data
	4.2  Terrain Data
	4.3  National Land Cover Data

	5. ANALYSIS METHODOLOGY
	5.1  Visualizing the Spatial Pattern of CG Lightning Events
	5.1.1  CG Lightning Event Maps
	5.1.2  CG Lightning Flash Density Maps

	5.2  Temporal Analysis of CG Lightning Activity
	5.3  Testing the Spatial Pattern of CG Lightning Activity for Clusters
	5.3.1  Nearest Neighbor and K-order Nearest Neighbor Analysis
	5.3.2  Getis-Ord General G Statistic (High/Low Clustering)
	5.3.3  Global Moran’s I (Spatial Autocorrelation)
	5.3.4  Ripley’s K (Multi-Distance Spatial Cluster Analysis)
	5.3.5  Getis-Ord Gi* (Hot Spot Analysis)
	5.3.6  Anselin’s Local Moran’s I (Cluster and Outlier Analysis)

	5.4  Analyzing the CG Lightning-Topography Relationship

	6. RESULTS AND DISCUSSION
	6.1  Visualizing the Spatial Pattern and Analyzing for Global Clustering
	6.1.1  CG Lightning Event Maps
	6.1.2  CG Lightning Flash Density Maps
	6.1.3  Global Spatial Autocorrelation
	6.1.3.1 Nearest Neighbor Analysis and K-order Nearest Neighbor Analysis
	6.1.3.2 Getis-Ord General G Statistic (High/Low Clustering)
	6.1.3.3 Global Moran’s I (Spatial Autocorrelation)
	6.1.3.4 Ripley’s K (Multi-Distance Spatial Cluster Analysis):


	6.2  Temporal Analysis
	6.3  Analyzing the Spatial Pattern for Local Clustering
	6.3.1  Getis-Ord Gi* (Hot Spot Analysis)
	6.3.2  Anselin Local Moran’s I (Cluster and Outlier Analysis)

	6.4  Analyzing the Relationship Between CG Lightning and Topography

	7. FUTURE RESEARCH
	8. SUMMARY
	References
	Biography

