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Dr. Daniel Barbará, Committee Member

Dr. Daniel B. Carr, Committee Member

Dr. Duminda Wijesekera, Committee
Member

Dr. Stephen G. Nash, Senior Associate Dean

Dr. Kenneth S. Ball, Dean, The Volgenau
School of Engineering

Date: Summer Semester 2016
George Mason University
Fairfax, VA



Countering Malicious Documents and Adversarial Learning

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Charles Smutz
Master of Science

George Mason University, 2009
Bachelor of Science

Brigham Young University, 2006

Director: Dr. Angelos Stavrou, Professor
Department of Information Technology

Summer Semester 2016
George Mason University

Fairfax, VA



Copyright c© 2016 by Charles Smutz
All Rights Reserved

ii



Acknowledgments

I thank my dissertation committee members for crucial guidance, feedback, and patience as
I’ve conducted this research. I also acknowledge the feedback received from numerous re-
viewers of this work. I recognize the support of my employer, Lockheed Martin Corporation,
as I’ve conducted this research.

iii



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Content Randomization in Office Documents . . . . . . . . . . . . . . . . . . . . 11

3.1 Microsoft Office File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 OLE Compound Document Format . . . . . . . . . . . . . . . . . . 12

3.1.2 Office Open XML File Format . . . . . . . . . . . . . . . . . . . . . 13

3.2 Microsoft Office Exploit Protections . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Content Randomization in .doc Files . . . . . . . . . . . . . . . . . . 16

3.3.2 Content Randomization in .docx Files . . . . . . . . . . . . . . . . . 18

3.3.3 Strength of Content Randomization Mechanisms . . . . . . . . . . . 20

3.4 Exploit Protection Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 .doc DCR Performance . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 .docx DCR Performance . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Content Randomization Evasion . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Content Injection and Memory Displacement . . . . . . . . . . . . . . . . . 35

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Structural Feature Based PDF Malware Classifier . . . . . . . . . . . . . . . . . 41

4.1 PDF File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Machine Learning Algorithm Selection . . . . . . . . . . . . . . . . . . . . . 44

iv



4.4.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Classification Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 PDFrate Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Evaluation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.2 Adequacy of Features . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.3 Classification & Detection Performance . . . . . . . . . . . . . . . . 53

4.6.4 New Variant Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.5 Comparison to PJScan . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.6 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 PDFrate Online Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Countering Adversarial Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Top Feature Mimicry Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Mimicry Attack Effectiveness . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 Introducing Noise to Counter Top Feature Mimicry . . . . . . . . . . 64

5.2 Independent Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Mimicus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 EvadeML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.3 Reverse Mimicry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.4 Parser Confusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Mutual Agreement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Evaluation on Operational Data . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Evaluation on Virustotal Data . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Independent Evasion Attack Evaluations . . . . . . . . . . . . . . . . . . . . 84

5.6.1 Mimicus Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.2 EvadeML Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6.3 Reverse Mimicry Evaluation . . . . . . . . . . . . . . . . . . . . . . . 89

5.6.4 Parser Confusion Evaluation . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Mutual Agreement Threshold Tuning . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Ensemble Classifier Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9 Evaluation on Drebin Android Malware Detector . . . . . . . . . . . . . . . 97

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Specific Value Based Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 PDF Metadata Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Metadata and Structural Based Signatures . . . . . . . . . . . . . . . . . . 108

6.3 Quantized Prevalence of Specific Values . . . . . . . . . . . . . . . . . . . . 109

v



6.3.1 Combining General and Specific Value Methods . . . . . . . . . . . . 112

6.3.2 Improving Extrapolation through Prevalence Database Bagging . . . 113

7 Microsoft Office Document Malware Detection . . . . . . . . . . . . . . . . . . . 116

7.1 Detection of OLE Based Malware Using Metadata and Structure . . . . . . 116

7.2 Detection of Zip Based Malware . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.1 Zip File Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.2 Zip Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.3 Zip Based File Format Classification Evaluation . . . . . . . . . . . 120

7.2.4 Zip Creator Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Examples of Malicious PDF Structure . . . . . . . . . . . . . . . . . . . . . . . . 129

B PDF Feature Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vi



List of Tables

Table Page

3.1 DCR Exploit Protection Evaluation . . . . . . . . . . . . . . . . . . . . . . 24

3.2 DCR Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Metasploit Windows Shellcode Sizes . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Deflate Decompressor Size (Linux) . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Optimal SVM Error Rates by Kernel Type . . . . . . . . . . . . . . . . . . 45

4.2 SVM Tuning: Error Rates for Polynomial Kernel . . . . . . . . . . . . . . . 46

4.3 SVM Tuning: Error Rates for Linear Kernel . . . . . . . . . . . . . . . . . . 46

4.4 SVM Tuning: Error Rates for Sigmoid Kernel . . . . . . . . . . . . . . . . . 47

4.5 SVM Tuning: Error Rates for Gaussian (RBF) Kernel . . . . . . . . . . . . 47

4.6 Random Forest Tuning: Classification Error Rates . . . . . . . . . . . . . . 48

4.7 Classifier Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Data Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 FP/TP Rates: Training Set (ben/mal) . . . . . . . . . . . . . . . . . . . . . 53

4.10 FP/TP Rates: Training Set (opp/tar) . . . . . . . . . . . . . . . . . . . . . 54

4.11 FP/TP Rates: Operational Set (ben/mal) . . . . . . . . . . . . . . . . . . . 55

4.12 FP/TP Rates: Operational Set (opp/tar) . . . . . . . . . . . . . . . . . . . 56

4.13 Variants in Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.14 PJScan Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.15 Run Times on Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Mimicry: Classifier Error Increase . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Classifier Error with Features Removed . . . . . . . . . . . . . . . . . . . . 65

5.3 Classification Error with Training Data Perturbation . . . . . . . . . . . . . 65

5.4 Relative Performance of Individual Trees in Contagio Classifier . . . . . . . 72

5.5 Ensemble Classifier Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 PDFrate Outcomes for Benign Documents . . . . . . . . . . . . . . . . . . . 76

5.7 PDFrate Outcomes for Malicious Documents . . . . . . . . . . . . . . . . . 76

5.8 Scores of Benign Documents Using Supplemented Classifier . . . . . . . . . 78

vii



5.9 Scores of Malicious Documents Using Supplemented Classifier . . . . . . . . 78

5.10 Outcomes for Benign Documents from VirusTotal . . . . . . . . . . . . . . . 80

5.12 Comparison of Classifier Performance . . . . . . . . . . . . . . . . . . . . . 81

5.13 PDFrate Contagio Classifier Outcomes for Mimicus Evasion Attacks . . . . 85

5.14 PDFrate Outcomes for EvadeML Attacks . . . . . . . . . . . . . . . . . . . 87

5.15 PDFrate Outcomes For Reverse Mimicry Attacks . . . . . . . . . . . . . . 90

5.16 PDFrate Scores for Parser Confusion Attacks . . . . . . . . . . . . . . . . . 91

5.17 University Classifier Mutual Agreement Threshold Tuning . . . . . . . . . . 93

5.18 Ensemble SVM Classifier Performace with Feature Bagging . . . . . . . . . 95

5.19 Ensemble SVM Classifier Performace with Training Data Bagging . . . . . 95

5.20 PDFrate SVM Ensemble Classifier Outcomes for GD-KDE Attacks . . . . . 96

5.21 Drebin Random Forest Mutual Agreement Threshold Tuning . . . . . . . . 99

6.1 Example Creator Value Frequencies . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Example Box Value Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Classification Error by Feature Set Formulation . . . . . . . . . . . . . . . . 112

6.4 Evaluation of Quantized Indexes . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Combining General and Specific Value Methods . . . . . . . . . . . . . . . . 113

6.6 Varying Portion of Training Set in Prevalence Database . . . . . . . . . . . 114

6.7 Bagging of Prevalence Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 OLE Data Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 OLE Classification Matrix (ben/mal) . . . . . . . . . . . . . . . . . . . . . . 117

7.3 OLE Classification Matrix (opp/tar) . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Zip File Format Top Features . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5 Zip File Classification Result by Type . . . . . . . . . . . . . . . . . . . . . 120

A.1 Example Structure: Targeted . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.2 Example Structure: Opportunistic . . . . . . . . . . . . . . . . . . . . . . . 134

viii



List of Figures

Figure Page

3.1 OLE Compound Document Format . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 OLE Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 ZIP Encoding Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Dual Classifier Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Error Decrease with Feature Count(ben/mal) . . . . . . . . . . . . . . . . . . . 52

4.3 ROC for Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Classification Votes Density (ben/mal) . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Classification Votes Density (opp/tar) . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Mutual Agreement Based on Ensemble Vote Result . . . . . . . . . . . . . . 74

5.3 Operational Evaluation Score Distributions . . . . . . . . . . . . . . . . . . 77

5.4 VirusTotal Score Distributions, University Classifier . . . . . . . . . . . . . 82

5.5 Mimicus Score Distributions, Contagio Classifier . . . . . . . . . . . . . . . 86

5.6 Score Distribution for FC Mimicry Attack, University Classifier . . . . . . . 87

5.7 EvadeML Score Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 Reverse Mimicry Score Distributions, University Classifier . . . . . . . . . . 91

5.9 Score Distribution Random Forests Based Drebin Classifier . . . . . . . . . 99

5.10 Comparison of Detection Rates for Previously Unknown Malware Families . 100

5.11 Score Distribution for Unknown Family A . . . . . . . . . . . . . . . . . . . 101

ix



Abstract

COUNTERING MALICIOUS DOCUMENTS AND ADVERSARIAL LEARNING

Charles Smutz, PhD

George Mason University, 2016

Dissertation Director: Dr. Angelos Stavrou

In order to exploit the large number of vulnerabilities offered by user applications,

malware is often distributed through insertion in document, media, and application files.

This avenue for malware propagation is also frequently enabled by user response to a ruse,

such as opening a fake invoice or following a link to a purported shipping tracking site.

Embedded malware is used in a wide range of criminally motivated attacks, but it is also

used in highly targeted espionage attacks. Targeted attacks are particularly challenging due

to the increased resources of the attacker, which make novel malware, very specific social

engineering, and persistent exploitation attempts feasible.

Current approaches to defeating embedded malware include exploit protections such as

data execution prevention (DEP) and address space layout randomization (ASLR), which

are implemented in most current operating systems. Signature matching systems, such

as antivirus tools, are deployed ubiquitously to prevent malware propagation. Other ap-

proaches to embedded malware detection include dynamic analysis and machine learning

based methods. While these defense mechanisms make malware distribution more difficult,

common file formats remain widely used carriers for malware. In this thesis, I build on ex-

isting work to advance both exploit protection and malware detection. While the methods

I introduce apply to embedded malware generally, I focus my evaluations on document file



formats, such as Adobe PDF and Microsoft Office, because these file formats have been

used the most in targeted attacks [20,49].

To improve exploit protection, I propose modifications to document files that introduce

exploit breaking entropy into the reader application without changing the user visible con-

tent. This method is called document content randomization (DCR). DCR functions by

randomizing the layout or encoding of document content which changes the raw document

file and document reader memory. DCR is effective in preventing many current exploits,

but can be circumvented by scripting and use of external content.

Recognizing that exploit protections can be circumvented, I also advance detection of

malicious documents. To complement other detection mechanisms, I propose use of a Ran-

dom Forest based classifier relying on features derived from document metadata and struc-

ture. This detector, called PDFrate, provides high malware detection rates, even when op-

erating on previously unseen malware samples. PDFrate is available to researchers through

an online service. Due to the high classification rates and availability of PDFrate, it has

been subject to numerous recently published evasion studies [23,70,71,107,120].

Adversarial learning can limit the effectiveness of machine learning based classifiers

through training set poisoning or mimicry attacks that operate by subverting feature ex-

tractors or using knowledge of trained models to create evasive samples. Since preventing

all forms of evasion is not feasible, I propose mechanisms that detect classifier degradation

due to novel malware or mimicry attacks. Ensemble classifier mutual agreement analysis

measures the coherence of votes in an ensemble to determine when the classifier is provid-

ing an accurate prediction. If the individual classifiers do not agree on the prediction, the

prediction is not trusted and must be found through another source. Mutual agreement

analysis is shown to be effective against most contemporary mimicry attacks and assists

in optimizing classifier retraining. While the effectiveness of mutual agreement analysis

is dependent upon the accuracy of the underlying classifier and susceptibility of feature

extractor to subversion, it raises the bar for mimicry attacks.



Chapter 1: Introduction

1.1 Background

Computer misuse includes unauthorized access to computer systems, compromise of user

privacy, exposure of confidential information, distribution of unwanted messages (SPAM),

and denial of service. While many attack vectors are used, distribution of malicious software

(malware) remains a key enabler of computer system abuse. In years past, direct exploita-

tion of the operating system through internet worms such as Code-Red [78], Blaster [10],

and Witty [99] was common. However, as use of firewalls has expanded, operating system

security has improved, and automated updates are used widely, attackers have focused on

vulnerabilities in applications.

Today, most exploits target vulnerabilities in client applications such as document read-

ers, multimedia programs, and internet browsers. For example, in 2008, Microsoft reported

that the number of operating system vulnerabilities had decreased steadily over the past

five years and that vulnerabilities in applications constituted over 90% of disclosed vul-

nerabilities [47]. Hence, large scale attacks such as the Storm Worm [51] evolved to use

email attachments or links as the propagation method. More recently, exploit kits, such

as Blackhole or Incognito [41, 46] are commonly used to automate exploitation of browsers

and browser plugins by using one of many available exploits depending upon the software

exposed by the victim system.

As malware propagation has shifted from attacking network services to user facing ap-

plications, exploitation often relies on user action such as opening an email attachment or

following a link. Indeed, social engineering, or tricking the user to take an action that leads

to exploitation of the user’s system or exposure of sensitive information is common [87].

Use of specific file formats, such as documents attached to emails, often helps make the ruse

1



seem more realistic. For example, an attacker may use the promise of an attached purchase

order or a link to a shopping promotion to entice users to open a malware laden document

or follow a link to malware. On the other hand, some infection occurs without interaction

of the user through drive-by downloads of malware [28, 37, 109]. In either case, embedding

malware in media files or web content also helps evade detection. Most file formats allow

for various forms of encoding, linking, embedding, and scripting that can be used to evade

signature matching and advance exploits [32,38,89].

Malware is used for various nefarious purposes. Botnets, or large networks of compro-

mised systems, are used to assist in further malware propagation or to wage distributed

denial-of-service attacks [5, 113, 124]. Financial fraud has long been one of the top goals of

malware [50,79]. Ransomware, such as CryptoWall, which performs extortion by promising

decryption of maliciously encrypted user files, is now a prevalent problem [40, 45]. Some

malware is used in targeted attacks to conduct espionage. Beyond traditional national se-

curity and diplomatic goals, these attacks also seek to undermine the economic competitive

advantage of private companies and disrupt the activities of non-governmental organizations

(NGOs) [2, 6, 14, 20, 49, 65, 115]. Reports that these attacks are performed on the behalf of

governments are especially concerning because of the resources that can be expended in

these attacks [3,31,39,42,54,73,75,94]. These targeted attacks typically involve emails with

very specific information related to the intended victim and malware embedded in Adobe

PDF or Microsoft Office documents [1, 20,49,65].

Validating digital signatures or using vetted application stores are both common ap-

proaches to preventing malware execution, but these mechanisms are often circumvented

or subverted [123]. Operating system level protection mechanisms such as address space

layout randomization (ASLR) [86] and executable space protection [33] are used widely, but

these mechanisms are commonly defeated [111]. Preventing software flaws and automati-

cally updating software also limit exploitation, but preventing all software exploitations is

not practical.

Another means of preventing the spread of malware is through detection. Antivirus

2



and intrusion detection systems (IDS) [91] are deployed widely, using signatures to detect

known malware. These systems are limited in the their ability to stop previously unseen

malware variants so they are often complemented with dynamic analysis [35]. Dynamic

analysis is used in limited situations due to difficulty in modeling end systems (and users),

computational expense, and need for an expert to interpret software behavior. In order

to improve malware detection systems using both statically and dynamically extracted

features, machine learning is employed [9, 30, 100, 106]. Machine learning based classifiers

promise to provide better detection of new malware variants, but they are susceptible to

mimicry attacks.

Adversarial learning concerns learning based systems that operate in environments

where attackers actively seek to avoid detection, such as malware detectors or SPAM fil-

ters [52]. Mimicry attacks leverage knowledge of features and the learned model to create

attack samples that appear benign to the classifier. Many recent studies have shown that

mimicry attacks against machine learning based classifiers are practical [71,107,120]. Other

studies have demonstrated the importance of keeping training sets free from influence of

attackers [11, 29, 63, 80]. Improving evasion resistance of learning based malware detectors

remains an open problem.

1.2 Thesis Contributions

I seek to prevent the use of common file formats as a carrier for malware. I propose

interrupting exploits through entropy inducing modifications to documents that do not

change document rendering [101]. Because it is not practical to block all exploits, I also

advance methods for malware detection. I propose a machine learning based classifier that

relies on features derived from document structure and metadata [100]. This learning based

detector, PDFrate, has been the target of numerous recent adversarial learning studies [23,

70, 71, 107, 120]. In order to counter mimicry attacks, I devise a novel method of detecting

evasion attacks using ensemble classifier introspection [102].
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The key contributions are:

Document Content Randomization An exploit protection technique using permuta-

tions to documents to introduce entropy in the reader application

PDFrate A malware detector for PDF documents using metadata and structural features

with a Random Forests classifier

Mutual Agreement Analysis A method of detecting failures in ensemble classifiers by

measuring the level of coherence in voting

1.3 Thesis Outline

Following this introductory chapter, Chapter 2 contains an overview of related work. I

demonstrate how exploits in Office documents can be defeated through document content

randomization in Chapter 3. As a complementary approach, Chapter 4 describes clas-

sification of malicious PDF documents employing structural and metadata features. My

approach to countering recent mimicry attacks against PDFrate utilizing ensemble classi-

fier mutual agreement analysis is found in Chapter 5. In addition to numeric features, my

study to determine the degree to which term based features improves PDF classification

is reported in Chapter 6. In Chapter 7, I study machine learning based detection for file

formats beyond PDF documents.
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Chapter 2: Related Work

This thesis builds upon years of research in the areas of exploit protections, malware de-

tection, and machine learning techniques. I seek to defeat all forms of malware, but am

especially motivated by targeted attacks in which threat actors aggressively pursue specific

organizations in order to achieve strategic objectives such as espionage.

Computer systems are exploited for a large number of end goals including financial gain,

political demonstration, and espionage. Network intrusion attempts for the purpose of es-

pionage are often called targeted attacks [2, 6, 73, 115]. These targeted attacks differ from

financially motivated attacks in both methods and consequences. Herley [50] argues that

targeted attacks are not effective for an attacker driven solely by economic gain. Li et al.

expose malware obtained from two email based attacks in order to prove that target per-

sistent attacks exist [65]. Hardy et al. find that espionage focused attacks involve varying

levels of technical sophistication but usually involve a high degree of social engineering [49].

Blond et al. also perform analysis of targeted attacks against members of a non-government

organization [20]. These studies confirm that while other exploitation vectors are studied,

emails with malicious documents as attachments remain an extremely common methodol-

ogy for targeted attacks. This thesis seeks to detect malware from all threat types, but the

serious consequences of targeted attacks provide additional impetus and focus. I seek to

improve identification of malicious documents, a common exploit vector used by targeted

attackers. I build upon previous in characterizing targeted espionage threats by demon-

strating that I can train a high accuracy classifier which will separate targeted attacks from

opportunistic threats.

Amin [7] advances a machine learning based approach for detecting targeted malicious

email. This thesis is related in that it seeks address delivery of targeted attacks and uses

a Random Forest classifier. While I focus on malware-centric features of documents, Amin
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finds that features of emails reflecting persistent attackers and recipient targeting can im-

prove detection rates. Recognizing that malware construction utilities are often re-used,

Donaldson studies fingerprinting of specific document generation tools using structural el-

ements of documents [34]. I also study the repetition of specific structural and metadata

items in malware samples, knowing that these items often coincide with, but are not nec-

essary to, the existence of malware.

Seeking to defeat all threat types, there is a large corpus of research in probabilistic

exploit mitigations that are typically implemented in the operating system of computing

systems. Address space layout randomization (ASLR) [86] is adopted widely. ASLR is

effective in defeating many classes of exploits, but is circumvented through limitations in

implementation [97], use of heap sprays [19, 117], or data leakage [95]. As return oriented

programming and similar techniques [96,118] have become popular, mechanisms to relocate

or otherwise mitigate code (gadget) reuse have been proposed [59,84,122]. ALSR incurs little

run time overhead because it relies on virtual memory techniques where address translation

and relocation are already performed.

Code level approaches such as instruction set randomization have also been proposed

but are prohibitively expensive [60]. Data space randomization enciphers program data

with random keys, but this method is not feasible in practice due to deployment difficulty

and computational expense [16]. My approach focuses on misuse of data in exploits but

differs in that I propose modifications to the malware hosting document to induce compu-

tationally efficient entropy in the document reader. Other policy enforcing techniques, such

as executable space protections (DEP or W⊕X) [33], are used widely. Despite the many

proposed exploit mitigations, exploits are still practical on modern systems [111].
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Because exploit protection does not prevent all malware propagation, detection of mal-

ware, including malware embedded in common file formats such as documents, is a cur-

rent research topic. Pattern matching and malware clustering have been studied exten-

sively [13, 22, 56, 58, 68, 121]. Despite known limitations in detecting new samples, sig-

nature matching and policy enforcement techniques are found in commonly deployed sys-

tems [91,103]. More specifically, malware bearing documents have been the subject of much

research over the years. Rautiainen describes the exploitation techniques and vulnerabilities

used in PDF files [90]. Wressnegger et al. disclose that the very obfuscation methods used

to evade signature matching in Office documents can be detected using probable plaintext

attacks [119], but this approach is limited to situations where weak cryptography is used.

Stolfo et al. perform n-gram analysis on various file types including Office and PDF

documents, finding that this analysis provides an improvement over signature based detec-

tion [108]. Li et al. also study n-gram analysis in Office files [67], finding that parsing files

into individual document objects is necessary to achieve high detection rates. While exist-

ing malware can be detected in this manner, byte level statistical analysis is shown to be

fragile due to the ability to obfuscate malware and inherent issues in separating malicious

code from other data [74,105]. Li et al. also demonstrate that examining dynamic traces of

documents opened in sandbox systems can detect many forms of malware, but challenges

with this approach include separating benign from malicious content and ensuring complete

execution of stealthy malware. Tabish et al. layer various statistical measures of divergence

or entropy on top of standard n-gram data to achieve modest classification rates on various

file types including documents [112]. While I do not rely on content based features, I do

study the degree to which the specific values observed in structure and metadata can be

used to improve classification rates.

Cova et al. perform execution of javascript and utilize features derived from both system

behavior and inspection of generated content in a Bayesian classifier to identify malicious

javascript [28]. Although originally designed for web based javascript, this functionality
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has been extended to detect malicious content in PDF files1. Laskov and Šrndić parse

and extract lexical features from javascript embedded in PDFs to provide classification

using Support Vector Machines (SVM) [64]. Tzermias et al. combine basic structural

analysis with emulation of the Adobe reader javascript API in a PDF to detect shellcode

obfuscated by javascript [114]. Maiorca et al. perform classification based on javascript

API references. Liu et al. inject monitoring javascript into documents, combining dynamic

monitoring with static features at run time [69]. I also study document based malware

execution, but instead of focusing on detection, I seek to defeat exploits through document

content randomization [101].

Cross and Munson [30] use an instrumented reader application and dynamic analysis

to extract structural features of PDF documents to be used in a machine learning based

classifier. Maiorca et al. advance a pattern matching based approach focusing on PDF

document structure and utilizing a Random Forest based classifier [72]. These studies are

very similar in concept to my work. My thesis differs in that I use a more comprehensive

feature set employing both metadata and features derived from multiple structural mark-

ers [100]. Šrndić and Laskov further advance static analysis of PDF document structure

by employing more complete parsing of documents to model the hierarchical structure of

documents utilizing a linear SVM classifier [106]. Maiorca et al. advance the combination of

structural features with scanning of content for suspicious conditions including malformed

objects [70]. Despite these varied techniques for malware detection, malware propagation

still occurs due to evasion through polymorphism and mimicry attacks.

Beyond detection of malicious documents, machine learning techniques are used perva-

sively to solve computer security problems such as detection of unsolicited email [15,57,92],

malicious downloads [28, 88], detection of account misuse in social networks [36, 110], and

detection of malware in other file formats such as Java Archives [93] and Android ap-

plications [9]. Due to the pervasive use of machine learning and statistical techniques,

adversarial learning, or the use of machine learning in a hostile environment, is a popular

1https://wepawet.iseclab.org/
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research topic. Huang et al. provide a taxonomy and models for describing the threats that

machine learning based classifiers face [52].

Some studies have proposed methods for creating effective classifier based intrusion

detection systems [12,43,104]. Many studies have addressed the importance of data saniti-

zation or adversarial influence at training time [11,29,63,80]. Yet other adversarial learning

studies focus on evasion of the deployed classifier [17, 18]. Maiorca et al. study a reverse

mimicry attack against detection systems including PDFrate [71]. This attack method

seeks to minimize the visibility of the malicious objects in PDF documents. Šrndić and

Laskov perform a systematic evaluation of mimicry attacks against PDFrate, modeling an

attacker that has knowledge of PDFrate’s features, training set, and classifier [107]. Xu

et al. use a genetic programming approach employing multiple randomized mutations to

attack PDFrate [120]. Another current research thread demonstrates that many malware

detectors are defeated by exploiting weaknesses in their parsing routines [48,55]. Carmony

et al. demonstrate that most PDF malware detectors can be foiled by exploiting bugs and

limitations in PDF parsers [23]. I also focus on evasion of a classifier during operation, but

instead of focusing on strategies for evasion, I propose a means of detecting these evasion

attempts.

Recent work has demonstrated that the diversity in ensemble classifiers can improve

malware detection rates [62,76,116,121]. Few studies, however, advance practical strategies

for detection of evasion attempts against these ensemble classifiers. Chinvale et al. pro-

posed the use of mutual agreement between a small number of independent SPAM filters to

optimize individual classifier re-training necessary due to drift in input data [26]. I extend

this approach to introspection of ensemble classifiers in order to provide a per observation

confidence estimate at test time [102]. My thesis differs fundamentally from Chinvale et al.

in that they use the majority result of their ensembles as ground truth for re-training of

individual classifiers while I focus on identifying the specific examples where the ensemble

prediction is not trustworthy. In short, Chinvale et al. use diversity in ensembles to improve

classifier performance. I use diversity to identify when resorting to external ground truth
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is necessary. Nissim et al. utilize inspection of SVM margins to identify samples to be

added to the training set, but they do not address mimicry attacks [82]. I study the factors

that enable diversity based confidence estimates in ensembles using variations of bagging.

Going beyond natural drift or novel attacks, I apply mutual agreement analysis to focused

mimicry attacks.

Estimation of confidence based on knowledge of a population has long been founda-

tional to statistical methods [81]. Contemporary research has demonstrated how these

confidence estimates can be applied to a machine learning based classifier deployed in an

online setting [98]. However, since these approaches rely on new observations matching the

distributions of training samples for which ground truth is known, they are not applicable to

intrusion detection systems that face novel observations and mimicry attacks. Rather than

seeking to quantify the overall accuracy of a classifier, I identify the individual observations

for which a classifier cannot provide a reliable response. My approach makes use of data

already provided by the classifier, without additional appeal to ground truth or independent

outlier analysis.

10



Chapter 3: Content Randomization in Office Documents

I studied methods to prevent exploits in common file formats through modifications to

the input data. Due to the popularity of document based exploits, I sought to defeat

exploits through document content randomization (DCR). The goal of DCR is to make

modifications to documents that introduce exploit disrupting changes without interfering

with normal document use. This approach is inspired by existing execution environment

based exploit mitigations such as ASLR and data randomization, but is implemented in the

document itself.

I designed and evaluated exploit protections using transformations performed on doc-

uments between production and consumption. Document content fragment and encoding

randomization are effective in scrambling exploit critical content in document files and in

document reader process memory. I evaluated the ability to mitigate current exploits in

Office 2003 (.doc) and Office 2007 (.docx) file formats using hundreds of malicious docu-

ments, demonstrating a memory misuse exploit block rate of over 96%. The overhead of

transforming documents is comparable in run time to a common antivirus engine and the

added latency of opening a content layout randomized document is negligible for .doc and

about 3% for .docx files. The transformed documents are functionally equivalent to the orig-

inal documents, barring the exploit protections that are induced. The evasion resistance of

content randomization is rooted in the number of raw content permutations possible. File

content randomization should be applicable to other file formats as complementary controls

force attackers to use direct access to file content to advance their attacks.

I also studied exploit protection mechanisms using resource consumption, such as large

memory allocations. While this approach can mitigate some exploits, it is not practical for

use due the extreme computational resources required.
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3.1 Microsoft Office File Formats

There are multiple commonly used Microsoft Office file formats. The OLE Compound

Document Format was used as the default by Office 97-2003 and is used in the files whose

extension is .doc, .ppt, or .xls. Beginning in Office 2007, the default file format is Office

Open XML, which uses the .docx, .pptx, and .xlsx extensions.

3.1.1 OLE Compound Document Format

The file format used by Office 97-2003 is called by many names including Compound File

Binary Format [77,83] and OLE Compound Document Format. I refer to this format as the

“OLE” file format throughout this thesis, as many of the libraries and utilities for parsing

this format use variations of this name.

The OLE Compound Document Format supports the storage of many independent data

streams and borrows many structures from filesystems, especially the File Allocation Table

(FAT) filesystem. OLE files are used as a container for many file types, including Of-

fice 97-2003 (.doc/.ppt/.xls), Outlook Message (.msg), Windows Installer (.msi), Windows

Thumbnails (Thumbs.db), and ActiveX or OCX controls (.ocx). All of these file formats

use the OLE format as a base container, implementing their own data structures inside of

streams stored by the OLE format. In this way, the OLE file format can be compared to the

zip archive that serves at the base container for diverse file formats including Java Archives

(.jar), Office Open XML Documents (.docx/.pptx./.xlsx), and Mozilla Extensions (.xpi).

Like a filesystem, the OLE format is comprised of many data blocks or sectors. The vast

majority of OLE files use a 512 byte sector size, but other sizes are possible. The first sector

of an OLE file is a header which contains the file signature 0xd0cf11e0, various parameters

for the file such as the size of the blocks, and the offsets of key data structures. This could

be compared to the super block of a filesystem.

The first data block also contains the Master Sector Allocation Table, which contains

pointers to the sectors used by the Sector Allocation Table. The Sector Allocation Table is

a table of pointers to the next sector in each data stream. Following the chain of pointers
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to data sectors in this allocation table allows the individual data streams to be constructed

from potentially arbitrarily ordered sectors. The majority of the data blocks in a typical

OLE file are allocated to the storage of the embedded file streams. Some data sectors in a

file may not be used so it is possible to have OLE files larger than the logical contents of

the file.

The individual data streams are logically organized in a hierarchical structure similar to

the file/folder organization of a filesystem. There is a directory entry for each OLE stream

containing the name of the file, the location of the first sector, and other metadata such as

modification times. These entries create a tree data structure starting at the root entry.

The OLE format also supports small or mini data streams. These are similar to the

normal data streams, but are intended to be much smaller to prevent the space wasted

by allocating a full sector to a very small data stream. Typically, the block size for these

streams is 64 bytes. Another sector allocation table and these smaller sectors are embedded

into normal sector size data streams.

Figure 3.1 shows the layout of a typical OLE Compound Document Format file. Except

for the header, which must be located in the first sector, all of the contents in an OLE file

can be located arbitrarily within the OLE file. Furthermore, there is no requirement for

the various data streams to be arranged in order or in contiguous blocks, although it is the

norm.

The OLE format serves as a container for arbitrary data streams. Individual file formats

use this basic container but implement their own format for the data in the various streams.

I do not describe the particular OLE-based file formats because they vary widely, they are

often proprietary and poorly documented, and my study relies on the container capability

of OLE files.

3.1.2 Office Open XML File Format

The Office Open XML (OOXML) file format became the default file format for Office

documents starting in Office 2007. These files use the extensions of .docx, .pptx, and .xlsx.
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Figure 3.1: OLE Compound Document Format

This format has been codified in international standards ECMA-3761 and ISO/IEC 295002.

The OOXML file format uses a zip file as a container, with individual objects stored as

files in the zip. The majority of the content in an OOXML file is XML data. The document

content is represented as XML with markup that is unique to the OOXML format, but

which is generally similar to other markup such as HTML. The contents of an OOXML

document can be modified by unzipping the archive, modifying it with a text editor, and

zipping the archive. However, the relatively complex markup requires extensive knowledge

1http://www.ecma-international.org/publications/standards/Ecma-376.htm
2http://www.iso.org/iso/catalogue detail?csnumber=51463

14



to make major changes.

While text and formating can be represented using XML, other content, such as images

and other documents, are embedded in the document as separate files in the zip archive.

Some of the binary objects embedded in OOXML files use the OLE format. Examples of

these files include Office 2003 files, some multimedia files, equations, ActiveX controls, and

executables.

Throughout this thesis, I refer to the container format common to Office 2003 and many

other files as OLE. I refer specifically to Office 2003 and Office 2007 files by their extension:

.doc and.docx respectively. While I refer to these file formats by the file extension of the

document files (.doc/.docx) for brevity, I also included the presentation (.ppt/.pptx) and

spreadsheet (.xls/.xlsx) files in my evaluations. My study relies on file format characteristics

that are common across the document, presentation, and spreadsheet file variations.

3.2 Microsoft Office Exploit Protections

I briefly describe some of the most important exploit protections provided by Microsoft

Office. Macro based viruses have long been an issue in Office documents. All recent Of-

fice versions disable the automatic execution of macros. The OOXML file format assigns

macro based files a separate extension, such as .docm instead of .docx, making inadvertent

execution of macros extremely difficult. The OOXML format is designed to minimize the

amount of binary content and improve the readability in the text content of documents,

making the file format more easy to validate and simplifying the parser.

Data Execution Prevention (DEP) was enabled in Office 2010, which prevents execution

of arbitrary shellcode in the heap and has generally forced the adoption of return-oriented

programming (ROP) code reuse techniques. ASLR was enabled by default in Windows

Vista. Office running on versions of Windows since Vista will have the benefit of ASLR

for operating system libraries, but ASLR was not enabled for all Office provided libraries

until Office 2013. Hence, up until Office 2013, one observes use of ROP gadgets from Office

libraries without the need for an ASLR bypass.
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3.3 Approach

Inspired by the simplicity and generality of ASLR-like techniques, I seek to obtain similar

exploit mitigation outcomes through transformations to input data. The properties of a

document can often directly and predictably influence various run time attributes of the

opening application. The memory of a reader program is necessarily influenced by the file

that it opens. I seek to find practical ways to make exploitation more difficult by content

induced variations to the document file and reader memory. I call this general approach

Document Content Randomization (DCR).

I propose two specific forms of document entropy infusion: document content fragment

randomization (DCFR) and document content encoding randomization (DCER). DCFR is

analogous to ASLR in that the order of data blocks in the document file is randomized.

DCER can be compared to data space randomization because I randomize file level encoding.

Both of these approaches apply to data stored in document files, but they can affect memory

as files and subfiles are loaded into memory.

These transformations are envisioned to operate on documents during transfer between

the potentially malicious source and the intended victim. They could be employed in net-

work gateways such as email relays or web proxies where modification is already supported.

In practice, filtering based on blacklists and antivirus scanning is already common at these

points. The modifications to the document could also be implemented on the client. For

example, the web browser could employ the mechanisms presented here at download time,

similar to other defenses such as blacklists and antivirus.

I focus on Office documents, but most of the high level principles discussed here apply

to other file formats. Specifically, I seek to mitigate exploits in two common document

formats: Office 2003 (.doc) and Office 2007 (.docx).

3.3.1 Content Randomization in .doc Files

The most promising opportunity to apply DCR to .doc files is at the raw document file

level. Malicious content is often stored in the raw document file and accessed through the
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filesystem during exploitation. Typically, file level access of malicious content occurs later

in the exploitation phase and this content is usually malicious code, whether it be shellcode

or a portable executable. Sourcing malicious content from the file is surprisingly common

in document based exploits.

I observed obfuscated portable executables embedded in the raw document file of 96%

of the malicious Office 2003 documents in the Contagio document corpus [85]. This set of

malicious documents, observed in targeted attacks, includes files that were 0-day attacks

when collected. Retrieving additional malicious content from the raw document file is also

common in PDF files used in targeted email attacks, while web based PDF exploits usually

load their final payload through web download.

File level access is most frequently achieved through standard file access mechanisms,

such as reading the file handle. Because most client object exploits, including document

exploits, are triggered by opening a malicious file, a handle to the exploit file is usually

already available in the reader application. While the malicious content may be embedded

raw into the document file, exploits typically employ signature matching evasion techniques,

such as trivial XOR encryption. The malicious content accessed through the raw document

is sometimes accessed by offset, but typically an egg hunt is employed, where the file is

searched for a specific marker. In most .doc files, I observed the shellcode and portable

executables embedded within the bounds of the structure of the document, but simply

appending malicious content to the end of an existing document is possible and is used

sometimes.

I defeat raw file reflection by malware by performing file level content fragmentation

(DCFR). OLE based file formats such as .doc files are especially accommodating of this

technique. Typically, the streams in an OLE file are sequentially stored. However, reorder-

ing can occur and is expressly allowed. To implement this approach I built an OLE file

block randomizer. It simply creates a new OLE file functionally equivalent to the original

except that the layout of the data blocks is randomized. This is accomplished by random-

izing the location of the data blocks, and then adjusting the sector allocation tables and
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Normal Layout: 

Random Layout: 

Figure 3.2: OLE Fragmentation: The Order of Blocks in Data streams is Randomized,
Fragmenting the Payloads

directory data structures accordingly. This is essentially the inverse of running a filesystem

defragmentation utility. An example of fragmentation of three OLE data streams is given

in Figure 3.2. Note that the blocks in the data streams are typically sequentially arranged.

I randomize the order of the data blocks across all the streams. In the event that any data

exists in the raw document file stream but is not contained in valid OLE sectors, the data

is not transfered to the new randomized document.

Reordering data blocks, or DCFR, in an OLE file provides a consistently effective and

quantifiable way to prevent access to malicious content in raw document files without im-

pacting normal use. Since OLE files do not implement any form of encoding at the container

level, DCER is not a practical option.

3.3.2 Content Randomization in .docx Files

I also studied the use of document content in .docx exploits. I found a small number of

OOXML files where the raw zip container was accessed for a malicious payload. These

attacks simply included the malicious payload, usually an encrypted portable executable,

in the zip file without compression. It is then trivially located in the file through an egg

hunt, similar to that done in OLE files.

I devised two simple ways to introduce entropy in the OOXML file. First, I randomized

the order of the files in the zip archive. This defeats access based on offset. I also re-

compressed the zip data streams, randomly selecting one of four deflate compression levels
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Figure 3.3: ZIP Encoding Randomization: The Order and Compression Level of Data
Streams is Randomized

(superfast, fast, normal, maximum). Figure 3.3 demonstrates transformation of a simple

zip file with three subfiles. Note that the order of the files in archive and the compression

used on each file is randomized. Office uses superfast compression, the lowest compres-

sion level, so my archive randomization usually results in smaller files. Compression level

randomization is enough to foil simple access to file content, even if an egg hunt is used.

Therefore, content encoding randomization (DCER) applied at the file level is applicable

to some .docx exploits.

However, most .docx exploits gain access to the final malware payload through a web

download or through an egg hunt in memory. I found a common method of performing

scriptless heap sprays in contemporaneous exploits that can be mitigated by DCFR [4,

66]. In this heap spray technique, first observed in CVE-2013-3906, many ActiveX objects

containing primarily heap spray data are read when the document is opened and loaded into

the heap. These objects are loaded into memory raw, without interpretation or parsing. It

is not clear why these objects are loaded into memory in this manner, while other embedded

files do not receive the same treatment. Dynamic analysis by the author confirmed that

these embedded ActiveX objects are loaded directly into memory, while most other data

from the document is not loaded into memory wholesale. Even if these ActiveX controls

are not activated, they represent a simple and effective way to introduce content directly

into the memory of the reader program.

Heap sprays are used to defeat ASLR. They ensure that the malicious payload can be

19



located with high certainty through duplication of the malicious payload across a large

memory address range, even if the address of a single copy cannot be predicted. Only

one copy of the malicious payload is needed for successful exploitation. Traditionally, heap

sprays contain shellcode. However, DEP prevents execution from the heap. In the case of

exploits targeting systems with DEP, the heap is commonly sprayed with ROP gadgets and

a stack pivot is used to move the stack into the sprayed region. These attacks successfully

evade ASLR and DEP. I observed this technique for scriptless heap sprays used for both

traditional shellcode and to implement fake stacks containing malicious ROP chains. While

these two techniques have been observed, this ability to easily and predictably influence the

reader process’s memory could be used for other attacks such as object corruption exploits.

This general technique is also used to load single copies of arbitrary content, including

portable executables, into memory that is later egg-hunted and used in exploits.

Since these ActiveX objects use the same OLE container format that Office 2003 doc-

uments use, I use the same OLE fragmentation techniques to defeat these scriptless heap

sprays. I randomized the layout of all OLE files embedded in .docx files, regardless of their

role. When these objects are loaded into RAM, the content is scrambled, but can still be re-

trieved by a document reader that implements the OLE decoding routines. These scriptless

heap sprays in .docx files represent an example of how document content directly influences

reader memory.

For .docx files, I perform both file level encoding randomization and fragmentation of

objects to be loaded into memory.

3.3.3 Strength of Content Randomization Mechanisms

Like other probabilistic exploit protections, one can calculate the likelihood of exploit suc-

cess in the face of brute force attacks against DCR. Methods such as ASLR obfuscate the lo-

cation of malicious payloads. Document content randomization does this as well. However,

content based malicious payloads are very frequently located via egg hunts or are dupli-

cated in heap sprays, obviating randomized relocation. In practice, the primary protection
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power lies in randomization of the content representation, whether through fragmentation

or through encoding.

In the simple case, the probability of a randomly fragmented payload being in proper

order is the inverse of the number of possible permutations or 1/n! where n is the number of

fragments. In practice, this should be adjusted to account for other data mixed in with the

malicious payload, repetition of the malicious payloads, and other limitations or constraints.

For example, when OLE DCFR is employed, the number of fragments that influence the

possible permutations is not just the number of fragments in the malicious payload, but

includes all of the sectors that are randomized.

When I perform DCER on .docx files, I randomly select among four deflate compression

levels. This is adequate for all the samples we observed where DCER has affect because they

all involve data streams that are originally uncompressed. This is, however, a very small

number of permutations. Part of the strength of DCER is also rooted in how difficult the

encoding of the content is to reverse or circumvent. Compression makes generating a specific

post compression malicious payload more difficult through transformations and restrictions

in the encoded output. For example, repeated byte sequences, such as the high order bytes in

addresses used in ROP gadgets, are not found in compressed output. Unlike straightforward

fragmentation, the constraining power of encoding is more difficult to quantify. Individual

implementations of deflate are deterministic, but they are also allowed great latitude in how

the encoding occurs. The same data stream can have many byte level representations using

the same encoding method. If an entropy inducing compressor/encoder is used, the number

of encoding induced permutations could be quantified.

The strength of DCR lies in the ability to fragment or encode malicious payloads in

an unpredictable and constraining manner. This strength can be quantified as propor-

tional to the number of randomized content permutations. I address possible DCR evasion

approaches in Section 3.6.
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3.4 Exploit Protection Evaluation

I evaluated the effectiveness of my content based exploit protections on hundreds of mali-

cious Office documents sourced from VirusTotal3. These documents were downloaded daily

from the recent uploads to VirusTotal over the course of months. My downloads were lim-

ited primarily by my monthly download limit on VirusTotal. I obtained 64,617 unique .doc

files between May 2013 and March 2015 and 32,383 unique .docx files between November

2013 and March 2015, averaging 98 .doc and 66 .docx files per day. Of these collected

documents, 40,720 .doc and 2,901 .docx files were labeled by at least one AV engine as

malicious in a scan conducted two weeks following initial submission. Of these malicious

documents, 1,085 .doc and 578 .docx files were labeled by the antivirus engines as utilizing

a known exploit. The majority of the non-exploit malicious documents were identified by

the antivirus engines as utilizing macros.

I advance methods to break exploits using mechanisms not applicable to pure social

engineering attacks. Therefore, I focused my evaluation solely on maldocs leveraging a

software vulnerability. Furthermore, to be able to better explain how my mechanisms

applied to specific exploits, I used only those maldocs that were labeled by antivirus engines

to use a single exploit. I was left with 962 .doc and 363 .docx files after inconsistent exploit

labels were removed. Of these documents, I found all exploits for which I was able to

replicate successful exploitation and for which there were at least 20 samples. This resulted

in three exploits in .doc files and three exploits in .docx files. Surprisingly, the malicious

documents were distributed heavily across a small number of particularly popular exploits.

For example, the three top exploits in the .docx file types comprised 306 of the 363 files, with

225 of these samples using the most popular exploit. In the event that I had many samples

for a given exploit, I randomly selected a subset achieving a maximum of 100 documents to

test and a maximum of 50 viable maldocs per exploit. In total, there were 343 documents

tested and 217 documents demonstrating successful malware execution across these six sets.

To test for exploitation, I attempted dynamic execution of the Trojan documents by

3https://www.virustotal.com/
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opening them in a virtual machine. To achieve successful exploitation, I used various

configurations of software including both Windows XP and Windows 7 and Office 2007

and Office 2010. The ROP based exploits required specific versions of the libraries from

which they reuse code. Since one of the exploits selected for my testing is in Adobe Flash,

I also installed the appropriate version of Flash player. I considered the malware execution

successful when malicious code was executed or requested from the network that would have

been executed. Successful exploitation occurred in 217 or 63% of the malicious documents

I tested. I attribute this relatively low malware success rate to VirusTotal being used

by malware authors for testing, sometimes testing unreliable or incomplete exploits. For

example, in a few of the successful exploits I observed calc.exe, the malware “hello world”,

as the final payload. There were a small number of apparent false positives by antivirus

software as well.

Taking these successful malicious document based exploits, I applied my document

content based mitigations and re-ran the documents. I considered the exploit blocked by

DCR when the final malware payload was blocked. I observed the differences in malware

execution through both host based and network based instrumentation. In a very small

number of cases, DCR was not possible due to the malicious document having defective

structure. These failures were considered blocked as well, due to the rudimentary file

validation provided by performing content randomization.

Generally, the malicious documents I observed employ a portable executable as the final

malicious payload. Most of these executables are extracted from the raw document file,

many are downloaded from an external server, and a few are extracted from document

reader memory. In many of the Trojan documents, the original document file is overwritten

by a benign document, which is opened and presented to the user. Most of the malware

immediately beacons to a controller node, but a small minority of the malware performed

other actions such as infecting other files on the local system. I observed dropped be-

nign documents and malware that correlate to recent reports of targeted attacks against

NGOs [20,49] as well as more opportunistic crimeware.
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Table 3.1: DCR Exploit Protection Evaluation

CVE File Type Blocked Total Block Rate Effective Mechanism

2009-3129 .xls 36 36 100% File Fragmentation

2011-0611 .doc, .xls 29 29 100% File Fragmentation

2012-0158 .doc, .xls 50 50 100% File Fragmentation

2012-0158 .pptx, .xlsx 4 10 40% File Encoding

2013-3906 .docx 42 42 100% Memory Fragmentation

2014-4114 .ppsx, .docx 2 50 4% File Validation

All - 163 217 75.1% -

When the document based exploit is blocked by DCR, the document reader typically

crashes. However, sometimes instead of crashing, the reader enters an infinite loop, pre-

sumably performing an egg hunt that is never successful. When a decoy benign document

is provided by the malware, it is either never opened due to a failure in malware execution

or the benign document is scrambled due to DCR and the attempt to open the document

fails because the file is invalid. When DCR interrupts file-level access, shellcode that is

attempting to extract a portable executable or additional shellcode from the document file

is interrupted. When memory fragmentation is effective, it scrambles either shellcode or

ROP chains, preventing exploitation earlier. Table 3.1 contains the high level results of my

evaluation.

CVE-2009-3129 is triggered by a malformed spreadsheet that causes a memory corrup-

tion error. All of the successful exploits were .xls spreadsheet files. In all of these exploits,

the pattern of extracting an encrypted portable executable and benign decoy document is

employed. Due to raw access to the document file, all of these exploits were defeated by file

level DCFR.

CVE-2011-0611 is actually a vulnerability in Adobe software products, including Flash

player, but it is most often observed inside of Office documents. This exploit triggers a type

confusion error through a malformed Flash file embedded in the Office document. I was

able to observe successful exploitation in both .doc and .xls files. Like the other exploits

embedded in OLE based file formats, all of the exploits are defeated by file level DCFR
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because the malicious executable and decoy document are extracted from the raw document

file.

It is interesting to observe that this exploit in Adobe products was used so heavily in

Office files. It is likely that part of the reason this exploit was embedded in Office documents

was to leverage the social engineering of email based attacks.

CVE-2012-0158 is caused by malformed ActiveX controls that corrupt system state.

While originally reported in RTF documents, my VirusTotal sourced malware contained

a large number of 2012-0158 exploits in the OLE container as well. I observed successful

exploitation in both .doc and .xls files, which was defeated by file level document fragmen-

tation.

I also observed 2012-0158 in OOXML based files. These .docx based 2012-0158 were

much less common than the .doc version, making this set the smallest in my evaluation. I

observed both .pptx slideshows and .xlsx spreadsheet files containing viable exploits.

This vulnerability exists in the MSCOMCTL library which handles ActiveX controls.

Until May 2014 (CVE-2014-1809), ASLR was not enabled on this library on all versions

of Office (including Office 2013) and on all version of Windows (including Windows 7 and

Windows 8). Since this library is easily locatable, it is trivial to reuse code from the same

library as is used for the initial vulnerability. Due to this lack of OS level exploit mitigations

and the simplicity of exploitation, DCR, including memory fragmentation, does not block

this exploit. It is noteworthy that since the ActiveX controls used in this exploit are OLE

files, my DCR mechanisms fragmented these objects. However, since the access to these

objects comes through legitimate means, the layout randomization provides no mitigation

power.

However, some exploits are foiled because they use anomalous access to the raw docu-

ment file. In the case where the raw document is accessed, the encrypted malicious payload

is stored in the zip container without compression. My recompression of the zip streams

with a randomly selected compression level defeats this file level access.

CVE-2013-3906 is a vulnerability in the TIF image format parser that permits memory
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corruption resulting in possible code execution. This exploit was manifest in .docx docu-

ments. Some of these exploits use ROP chains, while some use traditional shellcode. The

ROP based exploits can evade DEP using a stack pivot and code reuse. Since ASLR is

not enabled on the MSCOMCTL library, this library is used for gadgets in the ROP based

exploits. Hence, the ROP formulation of the exploit was able to evade both ASLR and DEP

as implemented at the time. However, in either the case of traditional shellcode or ROP

chains, the 2013-3906 exploits are defeated through fragmentation of ActiveX objects used

to implement a scriptless heap spray. The majority of the 2013-3906 samples I observed

attempt to load final malware via HTTP requests. The other exploits load the final malware

in memory using the same ActiveX control loading mechanism, such that these payloads

are also fragmented.

The CVE-2014-4114 vulnerability is not caused by a software coding flaw, but rather

policy that allows remote code to be executed. In this vulnerability, an ActiveX control

allows execution of a remote .inf file which then allows execution of a portable executable.

The malware is most typically downloaded via Windows file sharing (SMB/CIFS). The vast

majority of these maldocs were .ppsx files which are presentations that open automatically

as slide shows. There were a small number of .docx files as well. Since this vulnerability

is a policy flaw, mitigations such as ASLR and DEP do not apply. Similarly, DCR does

not apply even though I fragment the OLE ActiveX controls implementing the exploit. I

only block a small number of these exploits because my file fragmenter identifies them as

improperly formatted.

Overall, I am able to block over 75% of the exploits in my evaluation set. If 2014-4114,

which is not a traditional memory safety vulnerability, is excluded, then DCR blocks over

96% of the exploits in my evaluation set.
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Table 3.2: DCR Performance

File Type Transform Speed Render Overhead

.doc 68.9 Mbps 0%

.docx 43.1 Mbps 2.9%

3.5 Performance Evaluation

The core performance characteristics of DCR are the time required to perform the document

transformation and the overhead incurred when opening the document. The document con-

tent randomization time was evaluated by performing DCR on a number of documents. The

file open overhead was measured by timing the document reader opening and rendering the

document, comparing the times from the original and randomized documents. I also vali-

dated that the view of the document presented to the user remained invariant by scripting

Office to open the document and print it as a PDF. I compared the resulting PDFs created

from the original and modified documents to ensure equivalence in rendering. The results

of the performance evaluation of DCR are summarized in Table 3.2.

3.5.1 .doc DCR Performance

To evaluate the computational expense of performing the document content randomization,

I measured the time to perform this operation on a 1000 document, 249 MB, set randomly

selected from the Govdocs corpus [44]. The average time to perform the document frag-

mentation was 28.9 seconds using a single thread on a commodity server. This equates to

68.9 Mbps of throughput in a single thread. To put this execution time in perspective, I

scanned the same corpus with ClamAV which required an average 28.7 seconds to complete.

Performing this content fragmentation on a single 248K sample (close to average document

size) yielded an average 0.028 second execution time. The DCR operations are similar in

cost to that incurred by a common antivirus engine and result in a delay that should be

acceptable for most situations.

To test the performance impact of DCR on document opening and rendering, this set of
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benign documents was converted to PDF using Microsoft Office and powershell scripting.

There were 39 documents that were removed from this set because they required user input

to open or printing was prohibited by Office. The most common cause of failing to print was

invocation of protected view, which limits printing, apparently because they were created

by old versions of Office (the Govdocs corpus contains some very old documents). Other ob-

stacles to automation included prompting for a password or prompting the user as a result

of automated file repair actions. In addition, following OLE file format fragmentation, an

additional 125 documents opened in protected view which prevented automated printing.

These files apparently triggered some file validation heuristics in Office. The same mech-

anisms used to break exploits can also be used for malicious intent, such as evading virus

scanners. All content was present, and it was later discovered that the validation heuristic

did not trigger reliably on independent formulations of the same original document–some

transformations would trigger this protected view and some would not. This protection

built into Office triggers on some particular block layouts but the exact criteria was not

discovered by the author. If DCR is to be use widely, it would be necessary to understand

and prevent triggering of this heuristic, although documents from untrusted sources (email

or web) are already opened in protected view.

The test data set therefore contained 836 documents totaling 197 MB. It took about 15

minutes for the documents to be converted to PDFs which equals just over one second per

document. Performing multiple trials, there was no consistent difference in speed between

the original and the fragmented documents. The differences in mean open times between the

original and fragmented documents was 1/50th of the 95% confidence interval. Therefore,

the randomized documents take no longer to open and render. This is expected as there is

no additional work required to reassemble the randomized streams. Any effects resulting

from less efficient read patterns seem to be masked by file caching.

Having converted both the original and fragmented documents to PDF documents,

the resulting PDFs were compared for similarity. Since the PDFs had unique attributes

such as creation times, none of the PDFs generated from rendering the original documents
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were identical to those generated from the fragmented documents. However, they were

very similar in all respects. The average difference in size of the resulting PDFs was 40

bytes, with 513 of the PDF pairs having the exact same size. The average binary content

similarity score of these derivative document pairs was 87 (out of 100) using the ssdeep

utility [61]. Manual review of a small number of samples also confirmed the same content

in the fragmented documents as in the original documents.

3.5.2 .docx DCR Performance

The performance impact of .docx DCR was similarly evaluated. To measure the cost of

performing embedded object layout randomization, I compiled a corpus of benign .docx

files from the Internet, using a web search with the sole criteria of seeking .docx files. The

search yielded a wide diversity of sites with no known relevant bias on the part of the

researchers.

This corpus consisted of 341 files weighing in at 76 MB. Executing my utility required

an average 14.3 seconds from which I derive a single threaded bandwidth of 43.1 Mbps.

Scanning the same corpus with ClamAV required 28.0 seconds, nearly double the time

required for my mechanism. The time to execute on a single 225 KB document, which was

an average size document in this corpus, was 0.034 seconds.

As with .doc files, I tested the impact on rendering by converting both the original and

randomized documents to PDF using Office. The outcome was a mean open time of 268.5

seconds for the original documents and 276.3 seconds for the DCR documents. This 2.9%

increase in document render time following document fragmentation is greater than the

95% confidence interval for these trials. This slow down is very likely due to the use of

higher levels of compression in the zip container. By default, Microsoft Office uses deflate

compression with the fastest compression level while the randomized compression levels are

spread among four compression levels. Indeed, the corpus of randomized documents was

8% smaller than the original document set.

This performance evaluation excluded one of the 341 documents that crashed Office
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post randomization. This document did not appear to be malicious in any way, but sim-

ply contained a large number of ActiveX controls that triggered a bug in Office following

fragmentation. I did not determine the exact cause of this crash, but did isolate it to

the fragmented OLE based ActiveX objects. Since it caused a crash instead of causing a

file validation/parsing error, I do not consider it evidence of a fundamental issue with my

approach, but rather a bug in Office or a special case my randomizer needs to handle.

Beyond the zip container, the vast majority of the documents in this benign corpus were

not modified. Of the 341 documents, only 10 documents had OLE subobjects on which

fragmentation was performed, including the crash inducing document. Since this number

was so small, the user visible representation of these samples were validated manually.

Both the original and the modified document were opened and compared. Barring the

aforementioned single document, randomizing the OLE objects embedded in .docx files

maintained the integrity of the original document as presented to the user.

For both .doc and .docx files, the CPU time required to perform document random-

ization is reasonable–comparable with that of signature matching based detectors. The

overhead on document open is negligible. I observed an issue with heuristic detections trig-

gering protected view in about 12% of .doc files. I also seemed to trigger a bug for a single

.docx file. Barring these exceptions, the transformed documents provided the same display

to the user as is produced by the original.

3.6 Content Randomization Evasion

Document content randomization is effective against many exploits created without knowl-

edge that it would be used. If it is to remain effective following wide-scale deployment, it

must be resilient to evasion.

The strength of malicious payload fragmentation lies in the number of fragments required

for the payload. For fragmentation to be effective, the size of the malicious payload must

be larger than the fragmentation block size.

The OLE containers used in .docx heap sprays employ a default block size of 64 bytes
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which is much smaller than the shellcode required for a meaningful exploit. In most of the

examples I observed, the shellcode was approximately 500 bytes in length.

Table 3.3 lists the names and sizes of shellcode components provided in the Metasploit

Framework4. Some of these shellcode components are intended to be combined with other

components to implement full shellcode functionality. For example, the block api compo-

nent provides access to the windows API via hashes as identifiers. Most of the single and

stager shellcode items implement a practically useful shellcode chain. The average size of all

of these components is 289 bytes. In most situations, these shellcode blocks will be extended

a small amount with exploit specific register setup and shellcode encoding. The size of the

larger shellcode components is on par with the approximately 500 byte shellcode observed

in the .docx scriptless heap sprays. All but the smallest shellcode components would require

multiple 64 bytes content blocks. The smallest components provide simple building blocks

that are not useful on their own. For example, the block exitfunk component provides

functionality to terminate a process and requires the inclusion of the block api component

to function. Shellcode that provides enough malicious content to be useful in a real exploit

is invariably larger than can fit within the 64 byte default size restriction imposed content

fragmentation in these examples.

Current exploits are not resilient to malicious payload fragmentation because it is not

currently widely deployed. However, the documented countermeasure to limits on payload

size is to perform an egg hunt per payload block, which has been styled omelette shell-

code [21]. Omelette shellcode locates and combines multiple smaller eggs into a larger

buffer, reconstructing a malicious payload from many small pieces. The omelette approach

adds at least one more stage to the exploit, in exchange for accommodating fragmentation

of the malicious content.

A typical heap spray involves filling a portion of the heap with the same malicious

content repeated many times, with each repetition being a valid entry point. This approach

would be altered for an optimal omelette based exploit. One would spray the heap with the

4http://www.metasploit.com/
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Table 3.3: Metasploit Windows Shellcode Sizes

Name Size (bytes)

stage shell 240

stage upexec 398

single shell hidden bind tcp 341

single service stuff 448

single shell reverse tcp 314

single shell bind tcp 341

single loadlibrary 190 + strlen(libpath)

single exec 192 + strlen(command)

single create remote process 307

createthread 167

apc 244

executex64 75

migrate 219

block service change description 448

block service 448

block exitfunk 31

block api 137

block create remote process 307

block service stopped 448

stager sysenter hook 202

stager reverse tcp rc4 405

stager reverse https proxy 274

stager bind tcp nx 301

stager reverse ipv6 tcp nx 298

stager reverse https 274

stager reverse tcp nx 274

stager bind tcp rc4 413

stager reverse tcp dns 274

stager reverse tcp nx allports 274

stager reverse tcp dns connect only 274

stager reverse http 274

stager reverse tcp rc4 dns 405

omelette code solely, then load a single copy of the additional shellcode eggs into memory

outside the target region for the spray.

When multiple egg hunts are used to defeat malicious payload fragmentation, then the

primary mitigation power is shifted to the size of a block in which the reassembly code
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must reside. Each egg containing the partitioned payload could have an arbitrarily small

size with a few bytes overhead for a marker used to locate the egg and an identifier to

facilitate proper re-ordering. The size of the omelette code is invariably the bottleneck of

the technique. If the omelette code can fit fully within a fragmentation block, then malicious

payload fragmentation will not be effective.

Therefore, for omelette shellcode to operate, it must be loaded in a single 64 byte block or

it will be fragmented and re-ordered. Most openly available examples of omelette shellcode,

which are designed specifically to be as compact as possible, are about 80-90 bytes [27]. Of

course, it may be possible to shrink the size of the omelette functionality in a given exploit,

and probabilistic attacks are possible.

However, if the 64 byte block size provides insufficient fragmentation, this block size

could be dropped to a level rendering any sort of egg hunt infeasible. The size of these

blocks in OLE files is tunable. It is also noteworthy that the cutoff between normal and

small block streams can be changed and that the block size for the normal streams is

also tunable. Ergo, this flexibility in size applies generally to both normal and small OLE

streams. Due to the arbitrary tuning of OLE block sizes, it is not feasible to prevent

malicious payload fragmentation by shrinking the payload size using techniques such as

omelette shellcode.

In exploring malicious payload size limitations, I use shellcode because methods such

as omelette shellcode are relatively well documented. The same general principles apply to

other situations such as ROP based exploits. Typical ROP chains are similar in size to the

shellcode, so the fragmentation of DCFR is equally effective. The ROP chains I saw in the

CVE-2013-3906 heap sprays were about 1000 bytes in length. Therefore small block OLE

fragmentation should be able to disrupt ROP chains as well, even if omelette style techniques

are employed. The same arguments should apply to .doc file level content randomization.

To the degree that exploits cannot implement malicious payload reconstruction mechanisms,

then file level content randomization will remain effective.

Because document content randomization is not used widely, no examples of malicious
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documents could be found in the wild that used countermeasures such as omelette code.

However, observations made during the manual validation performed for current exploits

indicate that DCR would still be successful.

In my study of Office documents, I saw a relatively small number of exploits that were

defeated by encoding based content randomization. I observed no attempts to counter this

exploit protection, and there is a dearth of studies that apply to DCER evasion. As such,

counterevasion strategies are necessarily speculative.

One likely DCER evasion approach would be to anticipate the encoding and adjust

the payload accordingly. Some encodings are so simplistic that they could be defeated by

preparing the malicious payload so that it appears as desired post encoding. For example, if

base64 were a possible encoding, it would likely be possible to prepare a malicious payload

that was operable following encoding despite some restrictions in content [74]. This ap-

proach would be more difficult with encoding mechanisms such as compression which have

greater complexity. Even if attackers were able to circumvent the tighter constraints caused

by compression, an arbitrarily large number of compression representations are possible

because of the latitude afforded in compression algorithms such as deflate. Adding a cus-

tom, entropy infusing, compressor to the existing DCR mechanisms would be operationally

feasible.

Assuming there are enough possible encodings to make brute forcing infeasible, the

indirect approach, analogous to omelette shellcode, would be to implement a decoder. If

a very small decoder can be created then it might be used to decode a larger payload.

Trivial encodings such as hexadecimal or base64 may well be possible to implement in a

very small decoder. Assuming an encoding method such as deflate compression is used, it is

not likely that a sufficiently small decoder can be created to make this method worthwhile.

I studied the compiled size of a few common decompress only deflate implementations

designed specifically for small size567. Table 3.4 shows the size of these implementations

5https://code.google.com/p/miniz/
6https://bitbucket.org/jibsen/tinf
7http://www.zlib.net/
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Table 3.4: Deflate Decompressor Size (Linux)

Object Size (KB)

Name 32 bit 64 bit

tinf tinfl100.c 5.1 6.3

zlib puff.c 5.4 6.9

miniz tinfl.c 15 18

compiled for 32 bit and 64 bit Linux. The minimum size of these implementations is about

5 KB. When compared with other decoders used in exploits, these sizes are very large.

It seems that scenarios where using an over 5 KB decoder is useful for defeating content

encoding based would be rare.

When attacked directly, DCFR’s strength is driven by minimum fragment size which

drives the number of fragments and the resulting number of possible permutations. It is

not feasible to drop the size of a malicious payload small enough to evade the granularity

provided by DCFR in OLE files. DCER’s evasion resistance lies in both the constraints im-

posed by the encoding techniques employed and the number of possible encodings. It seems

that the flexibility provided by encoding, especially compression, should allow sufficient

entropy to make defeating DCER infeasible.

3.7 Content Injection and Memory Displacement

I explored alternatives for influencing process memory in Office using modifications to the

document data itself, instead of the document container. For example, I attempted rear-

ranging subcomponent reference or XML tag order, but could not find any practical way

to influence memory load order without changing the representation of the document. A

less sophisticated approach is to add non-visible content to consume memory and shift sub-

sequent memory allocations. I sought to confirm that I could influence memory layout by

injecting additional content.

Specifically, I sought to defeat .docx heap sprays by displacing them with benign content.

To decrease the concentration of the heap spray, one injects benign content in the midst of
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the malicious content. Because most documents have a relatively small amount of content

compared to heap sprays, which are often 10s of MB or larger, large amount of benign

content must be added to the heap.

This approach, while functional, has many limitations. The primary shortcoming is

that it requires loading a large amount of useless content into memory, which comes at

great cost. Heap sprays have very poor performance, in and of themselves. To be effective,

one has to drown out the malicious content with even more inert content. This insertion

of content must occur on all documents, including benign ones, for this technique to be

effective. However, maldocs are free to create very large heap sprays. I sought for alternative

mechanisms to dilute heap sprays, but I could devise no way to consume virtual memory

space without incurring resource sapping data copies into memory. Using this technique

incurs considerable overhead and is probably often not feasible due to performance impacts.

In addition to the cost of all the benign content needed to dilute a heap spray, there are

other challenges. For this technique to be effective, the benign content must either displace

or be interspersed with the malicious content. Proper alignment can be challenging because

the part of the document that implements the heap spray cannot be known a priori. In the

case of Office 2007 .docx files, adding additional content required changing some semantic

meaning of the document, unlike OLE file fragmentation or OOXML zip re-encoding.

To demonstrate the effectiveness of content based memory consumption, a utility was

created to modify .docx files such that when opened, the heap was sprayed with benign con-

tent. This method of spraying inert content without use of scripting is similar to that used

in contemporaneous exploits [4]. This technique was pioneered in CVE-2013-3906 exploits,

but has since been used in connection with other vulnerabilities and file formats [66].

ActiveX controls, with a large amount of benign superfluous content, are inserted into

the document at random locations in the document. These items are set to be hidden

so that they do not impact normal content. No method of adding benign content to the

heap without making additions to the document could be found. However, under normal

conditions, these items are hidden so the document does render as usual.
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Inspection of the memory using dynamic analysis showed that the benign and malicious

sprays were both loaded in memory. The individual benign and malicious objects were

shuffled together such that the two sprays were interspersed according to the location of

these objects in the document.

After performing manual validation via dynamic analysis on a small number of CVE-

2013-3906 samples, it was confirmed that the malicious heap sprays were diluted as the

ratio of exploit success matched that expected. For example, when the benign content

was equal in size to the malicious heap data, the exploit success rate was consistent with

the estimated rate of 50%. When the benign content was increased, the exploit success

rate dropped proportionally. I found that ensuring proper alignment and therefore optimal

mixing of the benign and malicious sprays is challenging, resulting in deviations from the

anticipated exploit success rate.

Adding content to influence memory layout resulted in generally poor performance. Due

to compression and the ability to reference data stored in the document multiple times, it

was possible to incur only minor file size increases. However, to influence memory layout,

memory had to be used, and the processing to consume the memory space was expensive. I

found that optimal memory displacing benign objects added about 10 seconds of load time

per 100MB of memory filled.

The performance characteristics of influencing memory layout through memory con-

sumption, the difficulty of ensuring that benign content is interspersed with malicious con-

tent, and the difficulty of overpowering potentially large heap sprays with benign content

make heap spray dilution impractical. Document content based mitigations using displace-

ment would be similar to operating system based memory protections that instead of using

virtual memory based techniques to implement ALSR, used actual allocations that con-

sumed memory to introduce entropy in memory addresses.

Despite high cost, interspersing malicious content with inert content is possible using

document content modifications. The ability to dilute heap sprays and drop exploit success

rates was demonstrated. Since it is relatively easy to ensure that inert objects are loaded
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early in the document, reliable shifts to the heap are possible. While the document had to

be modified, the objects used to consume memory were marked as hidden, such that they

did not change the rendering of the document.

It is possible that other exploit tactics, including memory corruption, object confusion,

use after free, or other ASLR bypass techniques may provide situations where a limited

content based memory dilution or shift could break exploits that would not be mitigated by

OS level mitigations [25]. If situations are found where a small shift in the heap is useful for

defeating exploits, the memory consumption based technique could be useful in practice.

3.8 Discussion

Not all exploits are directly impacted by DCR and some vulnerabilities may be formulated

to circumvent DCR. For example, the malicious documents foiled through OLE file random-

ization could be modified to load the final malicious executable through a web download

instead of extracting it from inside the document file. Similarly, the OOXML documents

defeated through memory content location randomization could use a scripted heap spray

instead of relying on document content loaded into memory. However, these changes might

cause the exploit to run afoul of additional mitigations such as restrictions on ability to

download executables or restrictions on the execution of macros. Hence, DCR is enabled

by environmental controls such as restrictions on web downloads, Office based protections

such as disabling of scripting, and operating system controls such as DEP. If these comple-

mentary protection mechanisms are not used, DCR will not be as effective. To the degree

that security controls that drive attackers to use raw file content become more prevalent,

DCR should increase in applicability, including in other file formats.

Some forms of DCR are more difficult to circumvent than others because they operate

much earlier in the exploitation process where the attacker has lower control over the system.

For example, DCR that defeats heap sprays is more resilient than that which disrupts

egg hunts that extract the final malicious payload. In my evaluation, the older exploits

were interrupted later in the exploitation process while the newer exploits occur much
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earlier. It appears that complementary mitigations in the operating system (ALSR and

DEP) constrain exploit authors to use document content earlier in the exploits.

DCR is an attractive mitigation technique because it incurs a very low performance

impact. Transforming the document requires roughly the same computational resources

that are already commonly employed to perform signature matching on both network servers

and client programs. DCR incurs a very small performance penalty when the transformed

document is opened because this mechanism leverages the file stream reassembly routines

already executed by the document reader.

Just as virtual memory mechanisms enable ASLR with little overhead, the parsing and

reassembly that enables multiple file level representations of the same logical document

allows for efficient DCR. Any situation where data is referenced indirectly, providing for

multiple possible low level representations, could potentially be used to implement exploit

protections similar to DCR. I focus on content fragmentation because the file formats stud-

ied here support a large degree of layout changes. Content encoding randomization is only

effective in a small number of Office exploits. However, other document and media formats

might not support the same level of data fragmentation but may support arbitrary encoding

or compression. The PDF format is a good candidate for file level DCER to prevent raw

file reflection based malware retrieval. There is an opportunity for studying the limits of

DCER, especially in document formats such as PDF where there are multiple options for

encoding, the encodings can be combined for the same stream, and encoding mechanisms

themselves can be tweaked. For example, instead of using standard compression levels for

the deflate method, one could use probabilistic Huffman coding trees and randomized use

of LZ77 data deduplication. Operating system based encoding or data randomization tech-

niques generally have been unsuccessful due to computational overhead and the difficulty of

deploying the technique which requires modifying system libraries as well as applications.

However, DCER has the potential to be computationally feasible because the content en-

coding already occurs.

DCR is likely to be employed in situations where many multiple repeated exploitation
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attempts are not easy, lowering concern of probabilistic attacks. For example, document

based attacks usually require the user to take an action to view the document. Because of

how client applications are used, probabilistic attacks requiring numerous attempts, similar

to those employed against network daemons to defeat ASLR, are not likely to be possible.

While DCR does not impact the content of the document as interpreted by the document

reader and viewed by the user, it does change the raw document file. This could potentially

impact signature matching systems that operate on raw files instead of interpreting as

the document reader does. Also, cryptographic signatures such as those used in signed

emails would not validate correctly on the transformed document. Solutions to these issues

have yet to be elaborated, but potential solutions are promising. For example, signature

matching systems can implement file parsing. Signature validation systems could operate on

an invariant logical representation of the parsed document, instead of a potentially arbitrary

file level representation.
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Chapter 4: Structural Feature Based PDF Malware Classifier

I recognize that preventing all exploitation is not possible. Even when exploits can be

prevented, it is often advantageous to detect attacks so that current threats can be com-

prehended. Because of this, I sought to improve detection in commonly exploited file

formats. Seeking to complement existing detection mechanisms, including signature match-

ing, I studied machine learning based approaches. I found that features based on structural

and metadata elements were robust for classifying PDF documents. Evaluating multiple

learning algorithms, I found Random Forests to be effective. I named this PDF malware

classifier PDFrate.

In evaluating my approach, I found that PDFrate provides high classification rates

through cross-validation and on malware not included in the training set. PDFrate also

separates commodity crimeware from malware used in targeted attacks. PDFrate is imple-

mented as a free online service.

4.1 PDF File Format

The PDF file format is documented in ISO 320001. PDF documents are based on the

hierarchical organization of many objects. For example, documents are made up of pages

that can contain forms, images, fonts, and text. The relationships between objects are

tracked through references based on object identifiers. The PDF format utilizes various

text based markers to delineate objects contained in the document and their relationships.

For example, pages are contained in objects proceeded by a /Page marker, fonts exist

within a /Font object, and javascript objects are denoted with a /JS or /JavaScript tag.

Appendix A demonstrates the structure of two PDF documents.

1http://www.iso.org/iso/catalogue detail.htm?csnumber=51502
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While the structure of a PDF document is text based, the format allows binary data

streams such as images to be embedded in the document. Furthermore, the PDF format

allows data to be compressed and encoded with a large number of methods. PDF documents

also permit inclusion of dynamic content based on javascript, forms, and other media formats

such as Flash. Malware authors use the flexibility of the PDF format to advance their

exploits and evade detection.

4.2 Feature Extraction

I implemented my own routines for reliably extracting metadata and structural information

from PDF documents to ensure computational efficiency and resiliency in the face of mal-

formed documents. Regular expressions are applied to the raw document to identify and

extract data for further processing, if necessary. Many of the features can be derived from

simple string matching. For example, the number of font objects is determined by counting

the number of /Font markers. Some features require simple comparisons of string matches.

For example, the size of stream objects is determined from the relative location of the start

of stream and end of stream markers. Many features required extracting specific data for

further normalization or processing. Examples include the dimensions of a box object or

the number of lower case characters in the title. This software functions without signifi-

cant PDF structure parsing or validation. This approach is beneficial when dealing with

malformed documents, and it provides strong performance. This fast and loose metadata

extraction intentionally results in some inaccurate or ambiguous extracted data, but the

end features are deterministic. For example, a PDF edited with incremental updates may

have extracted features that report an inflated object count. Additionally, instead of trying

to determine the correct value in the case of multiple instances of a metadata item repeated

in a document, other features such as the number of times the values differ are used. Fea-

ture extraction and classification works well even on encrypted documents because in PDF

documents each object/stream is encrypted individually, leaving structure and metadata to

be extracted the same as normal documents.
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The majority of the metadata items are inherently numeric. The other features are all

extracted or transformed to make them numeric. There are largely no differences in how

binary, discrete, and continuous data is handled, although some of each type exist.

4.3 Feature Selection

I selected a large number of features to characterize PDF documents. My aim was to provide

strong classification quality, including the ability to reliably distinguish targeted attacks

from opportunistic attacks. In addition, the approach taken here seeks to be resilient to

differences in threats and vulnerabilities by focusing on patterns in documents that apply

broadly. Therefore, features are derived either from PDF document metadata or structure.

In my approach, the extracted features are designed to eliminate reliance on specific

strings or byte sequences. For example, when dealing with data that might represent

artifacts of specific actors, such as the author metadata item, abstracted features, such as

the number of characters in the author field, are used. Similarly, features were intentionally

avoided that are tightly related to specific vulnerabilities, but which have little general

application, because including these features could result in strong classification for known

attacks while yielding low detection rates for novel attacks.

The philosophy for feature identification was to generate as many features that parame-

terize the metadata and structure of the document as possible, without short-sighted regard

for usefulness of individual features in discriminating between document classes. The fea-

tures reflect properties of the metadata, such as the count of the characters in each metadata

field; objects/streams, such as the size and count of each; boxes and images, such as the size

and location of each; data encoding methods, such as use of each data encoding method;

and object types, such as count of encryption objects. In total, 202 features were chosen

for use.

A brief description of all the features are given in Appendix B. The names of the

top features are shown in Figure 5.1. More detailed descriptions are given here for a few

of the features. The count font, count javascript, and count js features are determined
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by the number of instances of /Font, /JavaScript, and /JS markers. The count stream diff

variable is the difference of the instances of “stream” and “endstream” markers. The relative

position in the document of the last box marker (box objects are used in layout) is reported

as pos box max. The sum of all the pixels in all the images in the document is named

image totalpx. producer len is the number of characters in the producer metadata object

and count obj is the number of instances of the “obj” marker. Each document has a unique

document identifier that should never be modified between revisions, which is called pdfid0–

pdfid0 mismatch reflects the number of unique instances of pdfid0 values in a document

(which is usually always one). These features are identified by either simple string matches

or more complex regular expressions applied to the raw document.

Most features are taken directly from observation of the document metadata or docu-

ment structure, such as the number of font objects in the document. A few of the features

are further refined by transformation of one or more elements. For example, one feature is

the ratio of the number of pages to the size of the whole document.

4.4 Machine Learning Algorithm Selection

The proper selection and tuning of the machine learning mechanism is important for the

overall performance of my approach. Both Support Vector Machines (SVM) and Random

Forests were evaluated. Random Forests was found to be the most effective, but Support

Vector Machines was competitive.

In determining the best machine learning algorithm, both Random Forests and Support

Vector Machines were studied extensively, including tuning their respective parameters.

These methods were chosen for primary focus because they both perform well on the type

of data and features used in this study. Also, these mechanisms perform well in other similar

research. The details of tuning each method is found hereafter. Other mechanisms, such as

naive Bayes and artificial neural networks were explored in a limited manner but were not

studied extensively due to poor initial results.

As shown in sections 4.4.1 and 4.4.2, when both are tuned optimally, Random Forests
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performs about a half of an order of magnitude better than Support Vector Machines.

Random Forests is used as the primary machine learning method throughout this thesis.

4.4.1 Support Vector Machines

Support Vector Machines is a kernel method based classifier. SVMs operate by finding an

optimal boundary or margin that separates the classes of the data in the training set. To

make this practical on multidimensional data sets, the kernel trick, where the data is mapped

into highly dimensional feature space using a kernel function, is used. The classifier model

consists of the parameters of the boundary that separates the classes and the parameters

of the kernel that define the feature space mapping. When a new observation is classified,

the data is normalized and the boundary is applied using the kernel function based feature

space resulting in the determined classification.

There are a few parameters that need to be tuned to optimize SVM. The primary

option is the kernel type. Four kernel types were evaluated: polynomial, linear, sigmoid,

and Gaussian (radial basis function). In addition, the various parameters for SVM and

those specific to the various kernel functions were optimized. The optimal value for these

tunables was found through a grid search of the various parameters using cross validation

on the generic features from the training set. The 10-fold cross validation was repeated ten

times per parameter permutation and the results averaged.

The overview of the optimal classification performance by kernel type is given in Table

4.1.

Table 4.1: Optimal SVM Error Rates by Kernel Type

Kernel Error Rate

Polynomial 0.53%
Linear 0.83%
Sigmoid 0.98%
Gaussian (RBF) 1.6%

The results of the grid search for each kernel type is reported in Tables 4.2, 4.3, 4.4,
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and 4.5. For brevity and simplicity, only variations in cost and gamma are shown in these

tables. For the kernels with additional parameters, data presented represents the optimal

value for these other parameters. In the case of the polynomial kernel, the data presented

is for a coefficient of 1 and a degree of 2 while the grid search included values of 1, 0, 1 and

2, 3, 4 for these parameters respectively. For the sigmoid kernel, the values -1, 0, 1 were

used for the coefficient and the results with this set at 0 are presented.

Table 4.2: SVM Tuning: Error Rates for Polynomial Kernel

cost

gamma 1 10 100

10e-6 39% 4.2% 2.6%

10e-5 4.2% 2.6% 1.3%

10e-4 2.6% 1.3% 0.90%

10e-3 1.1% 0.76% 0.57%

10e-2 0.62% 0.53% 0.54%

10e-1 0.68% 0.26% 0.68%

Table 4.3: SVM Tuning: Error Rates for Linear Kernel

cost

gamma 1 10 100

10e-6 0.83% 0.89% 0.92%

10e-5 0.83% 0.89% 0.92%

10e-4 0.83% 0.89% 0.92%

10e-3 0.83% 0.89% 0.92%

10e-2 0.83% 0.89% 0.92%

10e-1 0.83% 0.89% 0.92%

4.4.2 Random Forests

The Random Forests classification method gives the result of classification based on the

output of many individual classification trees, each of which votes for one of possible classes.

Each decision tree is generated from a randomly selected subset of training data. Hence,

Random Forests is an ensemble classifier using bagged training data. Each node in a tree is
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Table 4.4: SVM Tuning: Error Rates for Sigmoid Kernel

cost

gamma 1 10 100

10e-6 50% 5.0% 3.3%

10e-5 5.0% 3.3% 1.5%

10e-4 3.3% 1.5% 0.98%

10e-3 1.6% 1.6% 2.2%

10e-2 4.7% 5.2% 5.1%

10e-1 13% 14% 14%

Table 4.5: SVM Tuning: Error Rates for Gaussian (RBF) Kernel

cost

gamma 1 10 100

10e-6 29% 4.4% 2.8%

10e-5 4.6% 2.9% 1.8%

10e-4 3.2% 1.9% 1.6%

10e-3 2.3% 1.8% 1.7%

10e-2 3.0% 2.6% 2.6%

10e-1 4.8% 4.6% 4.6%

created by selecting a random subset of features and determining the best split at each node

using the training data for that node. Furthermore, each tree is based on an independent

subset of features. Lastly, during classification the votes of each tree determine the result.

The Random Forests algorithm has two primary parameters that were tuned for this

study. The parameter “ntree” dictates the number of trees to grow in the classifier. In

addition, “mtry” controls the number of features sampled at each node in the trees. By

default, a Random Forest is constructed using the square root of the number of variables

for mtry and 500 for ntree. To properly tune these parameters, multiple values were tested

with the classification error being compared. For the results shown in Table 4.6, the average

of 10 independent trials of ten fold cross validation was used on the training data set. The

values for the parameters are given as the ratio of the default values.
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Table 4.6: Random Forest Tuning: Classification Error Rates

ntree

mtry .5 1 1.5 2

1 0.25% 0.23% 0.25% 0.24%

1.5 0.22% 0.22% 0.22% 0.22%

2 0.21% 0.20% 0.21% 0.21%

2.5 0.19% 0.19% 0.21% 0.19%

3 0.20% 0.20% 0.19% 0.20%

3.5 0.20% 0.18% 0.19% 0.19%

It should be noted that the variance between individual cross-validation runs was rela-

tively high when compared to the average error rate itself. In fact, the mean of the standard

deviations in the trials with the same parameters was .088%. The relatively low differences

between the various tuning parameters and the relatively high variance exhibited between

cross-fold validation trials indicates that the actual values chosen have very little reliable

impact on classification rates.

The majority of the parameter values tested perform equally well. I select double the

default for ntree and triple the default for mtry, which are among the optimal levels. These

parameters are used throughout this thesis. As data sets changed, this optimization was

occasionally re-tested, with this selection consistently yielding among the optimal classifi-

cation rates. Since the ntree is not dependent on the data set, a constant 1000 is used for

ntree, while three times the square root of the number of variables is used for mtry.

Given optimal parameters for each classifier, a summary of the classification and compu-

tational performance is given in Table 4.7. While Random Forests provides better classifi-

cation, the training time is higher with the chosen parameters, than that of Support Vector

Machines. Classifying unknown observations is essentially identical. Drawing conclusions

from the tuning sections for the respective learning methods, SVM is more dependent on

proper tuning as it has a much larger variance in the outcomes as the classifier parameters

are tuned.
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For this study, Random Forests is used primarily due to its edge in classification perfor-

mance and much lower reliance on appropriate tuning. However, Support Vector Machines

can be tuned to have classification rates that are very competitive and both are computa-

tionally efficient for the task of classifying new observations. I also found Random Forests

to be more resistant to evasion attacks (see Chapter 5).

Table 4.7: Classifier Performance Comparison

Classifier Error Rate Train Time Classify Time

Random Forest 0.20% 260 sec 0.04 sec
Support Vector Machine 0.53% 4.9 sec 0.04 sec

4.5 Classification Labels

In our experiments, documents are classified as either benign or malicious, with malicious

being further split into two categories: opportunistic and targeted. These are abbreviated

“ben”, “mal”, “opp”, and “tar”, respectively. This arrangement, which is achieved using a

dual-stage classifier, is represented in Figure 4.1 To be classified as malicious, documents

must exploit a software vulnerability and execute malicious code. For the purpose of this

study, documents that contain text instructing the reader to perform malicious actions (wire

money), that contain hyperlinks to malicious content where the user must click, etc. are

considered benign. Targeted attacks are separated from opportunistic ones by factors such

as victim specific social engineering and correlations with other known targeted attacks.

4.6 PDFrate Evaluation

We evaluated the performance of our classifier which uses features taken from document

metadata and structure. We studied the adequacy of the features selected and the resulting

classification performance. Classifier performance is demonstrated through application to

the training data set, use on the independent operational data set, application to multiple
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Figure 4.1: Dual Classifier Arrangement

variants, and comparison to other contemporary techniques.

4.6.1 Evaluation Data

There are two primary data sources used in this study. The first is the widely available

Contagio data set [85], which is designated for signature research and testing. This data

set was selected because it contains a large number of labeled benign and malicious docu-

ments, including a relatively large number from targeted attacks. This source provides a

few collections of documents. All of the PDF documents from “Collection 1: Email attach-

ments from targeted attacks” were used as targeted malicious documents. The documents

from “Collection 4: Web exploit pdf (I think they all are pdf) files” are used as malicious

documents. The vast majority of the documents from Collection 4 were attributed to op-

portunistic threats and were used as such, with a few exceptions. There were 10 identical

documents in Collection 1 and Collection 4; these were considered targeted. Also, a few

additional documents were identified as targeted through manual inspection and correlation

to other targeted attacks. Lastly, “Collection 5: Non-Malicious PDF Collection” was used
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for benign PDF examples. A total of 10,000 documents were used from the Contagio data

set as training data.

The second collection is taken from monitoring a large university campus network. These

documents were extracted from HTTP and SMTP traffic. The bulk of this collection was

taken from approximately six days of capture. Because this data is taken from a real data

feed, it is termed the “operational” data set. The operational data set required labeling by

the researchers to be useful for evaluation. To separate the malicious documents from the

benign, a combination of five common virus scanners were used. The corpus was scanned

with the virus scanners until signature updates ceased adding detections. The virus scan-

ner detections continued to improve until approximately 10 days following the end of the

collection. Note that no single virus scanner detected all the malicious documents. All the

documents that were flagged by a single scanner were subjected to additional virus scanning

and manual analysis. Two of the twelve documents identified by a lone AV scanner as ma-

licious were found to be benign. All of the malicious documents from the six-day collection

were considered opportunistic, as there was no evidence to support labeling them as tar-

geted. Eleven malicious PDFs associated with targeted attacks on the same organization,

but representing multiple victims and attack groups, were added to this collection. These

targeted PDFs were observed on the campus network over the span of approximately 18

months and were collected in the same manner. The addition of these targeted attacks was

necessary to allow the operational data set to be used to evaluate targeted attack detection.

A total of 100,000 unique documents were used from the operational data set.

In both data sets, only unique documents were used. Sampling, when it occurred, was

random. Table 4.8 summarizes these data sets by displaying the number of documents

of each class. Note that the training data set includes equal parts benign and malicious

documents, which is desirable for training. The operational data set’s ratio of benign to

malicious is intended to mirror a typical operational environment and to provide insight into

detection rates and false positives in the real world. The number of targeted documents is

undesirably low but is the best that could be obtained given their scarcity. The operational
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Table 4.8: Data Set Summary

Training Testing/Operational

benign (ben) 5,000 99,703

opportunistic (opp) 4,802 286

targeted (tar) 198 11

total 10,000 100,000

and training data sets are completely independent. The training set was compiled months

before the operational data set.

4.6.2 Adequacy of Features

I sought to determine the degree to which the features I selected were adequate for accurate

classification. In Figure 4.2, I depict the classification error as features are added to the

benign/malicious classifier. The average and 95% confidence interval of the classification

error of multiple randomly selected subsets of features are presented.
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Figure 4.2: Error Decrease with Feature Count(ben/mal)
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4.6.3 Classification & Detection Performance

The classifier was applied to the training data set using 10-fold cross-validation. The results

from each fold are averaged to produce a single outcome for the whole set. These resulting

Receiver Operating Characteristic (ROC) curves for the ben/mal and opp/tar classifiers are

displayed in Figure 4.3a and Figure 4.3b respectively.
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Figure 4.3: ROC for Training Set

In addition, Table 4.9 and Table 4.10 list select data points from these graphs. The

cutoff reported in these tables is the minimum percentage of votes that an observation must

exceed to be considered in the positive class (mal for ben/mal, tar for opp/tar).

Table 4.9: FP/TP Rates: Training Set (ben/mal)

Votes FP Rate TP Rate FP Count TP Count

0.7 0 0.9942 0 4971
0.6 0 0.9962 0 4981
0.5 0.0008 0.998 4 4990
0.4 0.0014 0.9986 7 4993
0.3 0.0034 0.999 17 4995
0.2 0.0076 0.999 38 4995
0.1 0.0208 0.9998 104 4999
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Table 4.10: FP/TP Rates: Training Set (opp/tar)

Votes FP Rate TP Rate FP Count TP Count

0.7 0.00125 0.8889 6 176
0.6 0.00167 0.9195 8 182
0.5 0.00271 0.9495 13 188
0.4 0.00333 0.9545 16 189
0.3 0.00437 0.9595 21 190
0.2 0.00583 0.9595 28 190
0.1 0.00854 0.9645 41 191

The classifier (trained with the training set) was applied to the operational data set col-

lected from live network observation. In lieu of presenting the ROC graphs of the classifiers

applied to the operational data set, Figures 4.4 and 4.5 contain the density plots of the

votes for the two classes in each of the binary classifiers.
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These plots show the separation between the classes in each classifier. Perfect clas-

sification would result in the negative class being a spike at zero and the positive class

being located at one. Note that while the operational data set is largely independent of

the training set, the classifiers still provide strong discrimination between the classes, even

if some trees contribute an incorrect vote. These plots also clearly demonstrate the ability

the operator has to tune the sensitivity of the classifier by adjusting the vote threshold.

In Table 4.11 and Table 4.12 I list select data points for the ROC from this data.

Table 4.11: FP/TP Rates: Operational Set (ben/mal)

Votes FP Rate TP Rate FP Count TP Count

0.8 0.00021 0.9327 21 277
0.7 0.00057 0.9461 57 281
0.6 0.00132 0.9529 132 283
0.5 0.00244 1.0000 243 297
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Table 4.12: FP/TP Rates: Operational Set (opp/tar)

Votes FP Rate TP Rate FP Count TP Count

0.8 0.0000 0.82 0 9
0.7 0.0000 0.82 0 9
0.6 0.0035 1.00 1 11
0.5 0.0105 1.00 3 11

Table 4.13: Variants in Data Sets

Training Operational Overlap

opp samples 4,802 286 -

opp variants 812 31 6

tar samples 198 11 -

tar variants 186 9 1

4.6.4 New Variant Detection

To demonstrate the resiliency of structural and metadata features across differing data sets,

the results of the off-the-shelf antivirus scanners were used to distinguish “variants” of very

similar malicious documents. The results of the five antivirus scanners were used to create

a variant identifier which is the 5-tuple of the signature name of each scanner. The results

of categorization of the samples into variants are shown in Table 4.13.

This categorization of samples into groups of variants resulted in a significant reduction

in the opportunistic samples but a relatively minor reduction in the targeted samples. This

is consistent with the wider and more automated distribution of opportunistic samples as

well as the more exclusive distribution and higher likelihood to include manual modifications

to support AV evasion of targeted samples.

To the degree possible to discern from the names, the AV signatures are related to

the exploit and javascript used in exploitation. There were relatively few signatures that

appeared to be related to the actual malware families concealed in the document. Indeed,

many of the documents merely contain shellcode which in turn downloads specific malware.
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Of the two groups of targeted variants in the operational data set, one pair was attributed

to the same persistent actor/embedded malware family, while the other pair of documents

are from separate actors/embedded malware families. In both cases, the documents had

very similar structure and metadata, leading to the conclusion that they were derived from

the same document template.

There is a relatively small amount of overlap in the variants from the training and

operational data sets. The ability of the classifier to effectively classify new variants that

were not included in the training set demonstrates that the features used for classification are

durable. Variations in malicious documents that require unique signatures can be detected

with a common classifier based on metadata and structure.

4.6.5 Comparison to PJScan

To demonstrate the effectiveness of the mechanisms presented here and to add further

validation to the quality of the data sets used, the results of using PJScan are presented

here. PJScan is not designed to separate targeted from opportunistic attacks. Thus, I only

used benign/malicious classification to separate malicious from benign documents regardless

of the type of threat. The classifier was trained on the 5,000 malicious documents in the

training set with default parameters. Results are shown in Table 4.14. PJScan only returns

a result for documents from which it can extract javascript. Therefore, in our experiments,

I only count the number of documents for which a result is returned. The classification

error rate is given for those documents for which a result is returned.

Table 4.14: PJScan Results

Data Set Class Classified Not Classified Classification Error Detection Rate

Training ben 5% 95% 1% -
Training mal 85% 15% 9% 78%
Operational ben 3% 97% 1% -
Operational mal 17% 83% 36% 3%

PJScan was unable to classify many malicious documents. Manual analysis reveals
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that many of the malicious documents PJScan cannot analyze have javascript in them but

javascript is in atypical locations. Javascript code inside document metadata sections or

inside corrupted document structures is not correctly parsed by PJScan, which is a known

limitation. It appears that the newer operational data set has a much higher prevalence

of these conditions, which prevent successful analysis. PJScan provides decent results for

the training set, but when the trained classifier is applied to the operational data set, the

quality of classification drops dramatically.

The biggest limitation of PJScan applied to the data sets in this study is the inability

to successfully extract the features used for classification. The mechanisms presented here,

which use simple signature matching without document parsing or decoding, compare fa-

vorably because they can be more reliably extracted in practice. The mechanisms presented

here also compare favorably when considering the adequacy and durability of the classifier

when applied to the training data and extrapolated to other, independent data sets.

4.6.6 Computational Complexity

The document classification process can be divided into three logical steps: feature ex-

traction, classifier training, and classification of new observations. Feature extraction must

occur for both training data and new data to be classified. The majority of the processing

in feature extraction is dedicated to matching signatures on the documents. This facet was

poorly optimized in the implementation used for this study where multiple signatures were

applied to the document serially, with each of the signatures requiring another pass through

the document. This implementation could be improved by making this signature matching

parallel, which would improve performance approximately an order of magnitude and put

performance roughly on par with conventional antivirus scanners.

Once the features are extracted from documents to be classified, running these obser-

vations through the classifier is extremely fast. Training the classifier is more expensive,

but this only needs to occur infrequently. Table 4.15 demonstrates the run times of these
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operations applied to the training data set, which contains 10,000 documents. The exper-

iments were performed on an Intel Xeon X5550 processor running 2.67GHz CPU. All the

applications were executed in single-thread mode.

Table 4.15: Run Times on Training Data

Operation Time

Feature Extraction 14 min
Classifier Training 38 sec
Observation Classification 1 sec

Similarly, little effort was placed into minimizing use of memory. However, for all

operations, memory usage was negligible except for training the classifier, which required

about 1 GB of RAM.

4.7 PDFrate Online Service

To better study adversarial learning, I provided a publicly accessible online implementation

of PDFrate2. The goals were to collect additional PDF based malware samples, including

novel malware and evasion attacks, and to observe attempts at other forms of adversarial

learning, including training set poisoning.

The PDFrate website provides scores from classifiers based on multiple training sets. The

Contagio data set is taken from a widely available data set designated for researchers [85].

It contains 10,000 documents, evenly split between benign and malicious. The list of doc-

uments in this set is provided such that this training set can be replicated. I compiled the

University data set from various sources. It contains over 100,000 documents. There is

another classifier, based on a training set created by the PDFrate user community. The

PDFrate service allows users to provide labels for individual documents and these labels are

used in construction of this Community classifier.

During operation from September 2012 to March 2016, over 50,000 unique documents

2http://pdfrate.com
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were submitted to PDFrate. The vast majority of these documents are associated with

external studies [23, 70, 71, 107, 120]. PDFrate has been among the most popular malware

detectors used in recent adversarial learning studies. While the PDFrate service was very

effective at attracting practical mimicry attacks, there were few attempts at adversarial

learning in the form of training set poisoning attacks. The PDFrate online service received

under 100 community labels. This small amount of data makes any studies of attacks

against the community driven training set impractical as that training set is not sufficiently

differentiated from other training sets.
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Chapter 5: Countering Adversarial Learning

I studied the operation of PDFrate in an adversarial environment extensively. I evaluated

synthetic attacks targeting the top features and demonstrated how to counter these attacks

by introducing noise in the training set. Since these attacks operate on feature vectors

instead of real documents, it is not clear if they are practical to execute.

As a result of making PDFrate available for public use at pdfrate.com, there were mul-

tiple studies that sought to defeat PDFrate [23, 70, 71, 107, 120]. These studies implement

state of the art attacks against PDFrate. These attacks include mimicry attacks (addition

of benign attributes), reverse mimicry attacks (mimization of malicious attributes), and

feature extractor subversion.

I study ensemble classifier introspection. Mutual agreement analysis produces a per

observation confidence estimate by measuring the amount of coherence in voting. I find

that ensemble classifier mutual agreement analysis detects most misclassifications, including

evasion attempts and previously unseen malware. My approach is also effective in optimizing

retraining of the classifier. We find that feature bagging is important to building a classifier

with enough diversity to withstand evasion.

5.1 Top Feature Mimicry Attack

It is important that any detection mechanism demonstrate resistance to intentional evasion.

Therefore, the robustness of the selected features under mimicry and evasion attacks is

crucial to the actual detection rates that can be achieved in a real-world environment. The

detection mechanism presented in this thesis is designed to classify documents based on

similarity to past documents of the same class. These similarities between documents can

arise from a wide spectrum of root causes varying among necessity, convenience, convention,
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and ambivalence. Presumably, some of the attributes of malicious docs are easy to modify

and others are more difficult. For example, while use of javascript is often not strictly

required for exploiting vulnerabilities in PDF readers, it is often the most practical method

for triggering many exploits. Hence the features related to the existence of javascript may

be hard for attackers to modify. Alternatively, it may be trivial to spoof or remove metadata

such as the producer field. It is infeasible to fully enumerate or to accurately predict or

anticipate all the methods used to attempt evasion, especially as some of the factors are

dependent on the attacker and attack vector. Some constraints on evasion are also caused

by the use of this mechanism in parallel to other techniques.

Note that the mere existence of benign elements or lack of specific malicious artifacts

is not sufficient to evade detection. Some of the malicious documents evaluated in this

study contained large portions of benign content. This indicates that the malware packager

either intentionally added benign elements to a malicious document or that the malware was

added to an existing benign document. Conversely, many malicious documents are devoid

of optional metadata. Reliable classification, regardless of the existence of coincidental

features, is critical.

5.1.1 Mimicry Attack Effectiveness

One likely evasion technique I anticipate is a mimicry attack where malicious documents

are purposefully modified to normalize some of their features and make them similar to

benign documents while still retaining the embedded malicious content. If the attacker

has knowledge of specific features used in the classifier and their importance, along with

a good representation of what the defender considers as normal, the attacker can focus on

mimicking the features most important for classification.

To simulate mimicry of document properties, I modified the top ranked features of

malicious observations and subjected these modified observations to the classifier. For sim-

plicity’s sake, the documents themselves are not actually modified, but rather the previously

extracted feature sets are modified. Specifically, the mean and standard deviation of the
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benign observations is calculated and the values for the malicious documents are replaced

with random values that fit a normal distribution with the same mean and standard de-

viation. Note that this method may result in doctored features that are inconsistent or

illogical. The six most important features, as ranked by the mean decrease in accuracy

measurement, were selected for evasion testing. These features are ranked above the others

with some amount of separation, as shown in Figure 5.1.
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Figure 5.1: Feature Importance

By causing the malicious samples to mirror the top six features of the benign, the

classifier error rate can be raised a great degree, as shown in Table 5.1. The average of the

results of five independent trials using 10-fold cross validation is presented.
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Table 5.1: Mimicry: Classifier Error Increase

Features Mimicked Classification Error (%)

None 0.14
count font 12.26

(+) count javascript 17.04
(+) count stream diff 20.01

(+) count js 20.07
(+) pos box max 22.18

(+) image totalpx 22.30

By manipulating the most heavily used or distinctive features, it is possible to severely

curtail the detection capabilities of the classifier.

5.1.2 Introducing Noise to Counter Top Feature Mimicry

The best reaction to changes in document attributes leading to misclassification is to re-

train the classifier, causing the classifier to adjust how it treats the mimicked features. If

retraining the classifier is not adequate to raise classification rates to an acceptable level,

additional features can be discovered and used instead. This tactic is reactionary at best

and cannot ensure detection of documents that are very dissimilar to historical examples of

documents of the same class. To be able to detect intentional evasion, proactive measures

must be taken.

An obvious reaction to mimicry attacks on the features heavily employed by the classifier

is to remove them altogether and rely on the other features. An important distinction is

that variable importance, as reported by Random Forests, is an indication of the value of

the feature as used in the classifier. However, that a feature has a high importance does not

necessarily mean that the feature is useful for classification on its own, nor does it mean

that the classifier has to rely heavily on that feature for successful classification. Table 5.2

shows the increase in classification error as the top features are removed.

Removing the top ranked features has a surprisingly low effect on classification error

because so many other useful features are retained. If the attacker is able to only modify a
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Table 5.2: Classifier Error with Features Removed

Features Removed Classification Error (%)

None 0.14
count font 0.21

(+) count javascript 0.28
(+) count stream diff 0.28

(+) count js 0.29
(+) pos box max 0.29

(+) image totalpx 0.29

few attributes of malicious documents, and the defender is able to anticipate these, removing

features may be an acceptable countermeasure. It is desirable to be able to counter evasion

without fully negating the predictive value of variables targeted for evasion. One method

of achieving this result is to perturb the training set such that the resulting classifier is no

longer as susceptible to evasion. The perturbation is performed by artificially modifying the

features of a subset of the malicious observations in the training set to increase the variance

of these features, making them less uniform. The loss of a focal point due to the increased

variance reduces the importance of these features without fully eliminating them.

Table 5.3: Classification Error with Training Data Perturbation

% Perturbation Original Data Mimicry Data

0 0.14 26.12
0.05 0.14 14.11
0.1 0.15 9.19
0.5 0.15 1.80

1 0.16 1.13
5 0.21 0.69

10 0.22 0.52
50 0.26 0.16

100 2.06 0.12

To test the effectiveness of perturbation, the same method used to simulate evasion is

used to modify a subset of the observations in the training set. The top six features of
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a subset of the malicious observations is set to values taken from a randomly generated

normal distribution mirroring the mean and standard deviation of the benign observations.

Table 5.3 shows the results of testing using the perturbation method. The average of the

results of 5 independent trials using 10-fold cross validation is presented. The training data

is perturbated and the resulting classifier is used both on the remaining unmodified training

data and the same training data modified to simulate mimicry evasion. The percentage of

the training data perturbated is varied, demonstrating a trade-off between accuracy with

historical data and evasion resistance. Hence, it is possible to defeat the top feature mimicry

attacks with only a minor drop classification accuracy by perturbing the training set. This

perturbation decreases the learned model’s reliance on these top features.

5.2 Independent Evasion Attacks

PDFrate was the target of many published evasion studies: Mimicus [107], EvadeML [120],

Reverse Mimicry [70,71], and Parser Confusion [23].

5.2.1 Mimicus

Mimicus1 is a framework for performing mimicry attacks against PDFrate. It is the im-

plementation of what is described by Šrndić and Laskov as “the first empirical security

evaluation of a deployed learning-based system” [107]. It is an independent, comprehensive,

and openly available framework for attacks against the online implementation of PDFrate.

Mimicus implements mimicry attacks by modifying existing malicious documents to

appear more like benign documents. Mimicus adds markers for additional structural and

metadata items to documents. These additions do not involve adding actual content that

is interpreted by a standards conforming PDF reader, but rather these additions exploit a

weakness in the feature extractor of PDFrate. The extraneous PDF attributes are added

in slack, or unused space, immediately preceding the document trailer (structure at the

end of the document), which is not prohibited by the PDF specification. This approach

1http://github.com/srndic/mimicus
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provides considerable flexibility in the evasion attack as the additional elements do not have

to be valid. Mimicus enables a simple process for the attacker. The attacker constructs a

malicious document without concern for PDFrate evasion. Mimicus then adds the necessary

decoy structural elements. This mimicry attack only adds fake elements to the document

file–no existing elements are removed or modified.

Mimicus constructs these decoy elements by comparing a malicious document to multiple

different benign documents. The feature vectors for the malicious documents are adjusted

to mirror the feature vectors for the benign documents. These adjustments are bounded by

the modification approach Mimicus uses. The candidate mimicry feature vectors are run

through a local PDFrate replica to determine the scores. The best feature vector is selected.

That feature vector is used as the goal in modifying the original malicious document by

adding decoy structural and metadata elements. Due to interrelated features and other

complications, it is not feasible to construct a final mimicry malicious document that exactly

matches the target mimicry feature vector. The resulting mimicry malicious document has

a feature vector that is somewhere between that of the original Trojan document and that of

a benign document. After the mimicry document is created, it is submitted to pdfrate.com

for evaluation.

An important observation of the Mimicus study is that the interdependency of PDFrate’s

features make mimicry attacks more difficult because modifying one feature necessarily

affects other features. It is generally accepted that irrelevant or redundant features are

not desirable for machine learning methods. However, in the case of PDFrate, redundant

features appear to make evasion attacks, like those implemented by Mimicus, more difficult

by making construction of a PDF matching a target feature vector more difficult.

The Mimicus attack model requires knowledge of the feature set used by PDFrate. The

premise is that for a mimicry attack to be successful, at least knowledge of the type of

features is necessary. Also, since this attack leverages a difference between normal PDF

readers and the PDFrate feature extractor, knowledge of how to exploit this difference is

also necessary. Hence, all Mimicus attack scenarios are labeled with an “F”, indicating that
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the attacker used knowledge of the feature set.

Relying on the common basis of the feature extraction, the Mimicus attacks demonstrate

various levels of knowledge used by the attacker. In situations where the training data and

classifier are known by the attacker, replicas that are very close to the original are used.

When an attacker with limited system knowledge is modeled, reasonable substitutes are

employed. The labels “T” and “C” are used to denote attacker knowledge of training data

and classifier, respectively. Hence, an attack scenario with the label “FTC” denotes attacker

knowledge of all three major facets of PDFrate.

The training set used by the Contagio classifier of PDFrate is publicly documented and

is readily available to researchers. Hence, in attack scenarios where the training data is

known by the attacker, the same data set is used by PDFrate and Mimicus. For scenarios

where the attacker has no knowledge of the training set, Šrndić and Laskov compiled a

surrogate training set with malicious documents sourced from VirusTotal and benign docu-

ments sourced from the Internet. In addition, they selected 100 malicious documents from

within the Contagio training set for the baseline attack documents. To allow reproduction

of results, all of the data sets used by Šrndić and Laskov are documented.

Lastly, to complete the offline PDFrate replica, Šrndić and Laskov used a Random

Forests classifier when knowledge of the classifier was known, and a Support Vector Ma-

chine classifier to simulate the case of the naive attacker. The Mimicus study shows that

when all three particulars of PDFrate are spoofed, the result is nearly identical scores from

the PDFrate online and the Mimicus offline classifier, despite various implementation differ-

ences. Mimicus also implements a GD-KDE attack which seeks to attack the SVM surrogate

classifier directly. This attack does not apply to Random Forests classifiers, and therefore

does not directly apply to PDFrate.
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5.2.2 EvadeML

Xu et al. studied yet another approach to evading machine learning based PDF classi-

fiers [120]. Their approach, EvadeML2, is inspired by evolution in living beings. Xu et al.

perform randomized mutations to documents operating on PDF objects. Each mutation

either adds an object from a benign PDF, removes an object from the malicious PDF,

or performs an object replacement. To evaluate the mutuation, it is applied to multiple

documents. A mutated document is subject to dynamic analysis to ensure the malicious

behavior is retained. The evasiveness of the mutated document is evaluated by testing

against a local replica of PDFrate. Multiple rounds of mutation are performed resulting in

evolution traces up to hundreds of mutations in length.

Xu et al. performed random mutations on 500 seed documents. They found that their

technique was able to drop PDFrate scores below 50% using traces ranging from very short

up to length of 354, depending upon the document. In analyzing the modifications found to

be effective in dropping PDFrate scores, Xu et al. observed that the genetic programming

approach was effective in identifying features ranked highly by the classifer, but which

are not high fidelity indicators of either benign or malicious documents. The stochastic

mutation approach takes advantage of the same weakness that my top feature mimicry

attack exploits (see Section 5.1).

5.2.3 Reverse Mimicry

Maiorca et al. also study evasion against PDFrate and other PDF document classifiers [70,

71]. They advance the Reverse Mimicry technique. Instead of adding content to a malicious

document to make it appear benign (as Mimicus does), they embed malicious content into

a benign PDF, taking care to modify as little as possible. The Reverse Mimicry attack

implements an independent evasion approach against PDFrate.

Three different evasion scenarios are advanced by Maiorca et al. In the EXEembed

scenario, a malicious executable is implanted in an existing benign PDF document. The

2http://evademl.org/
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malware is executed when the document is opened. These documents utilize CVE-2010-

1240. In the PDFembed scenario, a malicious PDF is embedded into a benign PDF. These

embedded documents are rendered automatically when the document is opened. For evalu-

ation, Maiorca et al. embedded a document leveraging CVE-2009-0927 into existing benign

PDF documents. Lastly, in the JSinject scenario, malicious javascript, the same used in the

PDFembed embedded document, is injected directly into the root benign document.

In order to evade detection, the Reverse Mimicry attacks focus on changing the document

structure as little as possible. For example, in the EXEembed attack, a new logical version

of the PDF is constructed with few new structural elements, but all the content from the

original PDF is left in the file. A compliant reader will not display the content associated

with the previous version of the document, but the artifacts will be analyzed by the feature

extractor of PDFrate and similar detectors.

In addition to minimizing the structural artifacts of the malcode injection, Maiorca et al.

make use of PDF encoding, especially stream compression, to hide the inserted content. For

example, in the PDFembed attack, the malicious document is embedded in a compressed

PDF stream. Detection tools, such as PDFrate, that do not decompress the PDF streams

are not able to extract features from the embedded malicious PDF.

5.2.4 Parser Confusion

Carmony et al. study the ability to defeat PDF detectors through parser confusion at-

tacks [23]. These attacks operate by exploiting flaws or limitations in PDF parser imple-

mentations. Carmony et al. focus on various popular PDF parsing libraries and tools.

The confusion attacks leverage ambiguities in the PDF specification, mis-interpretations of

the specification, incomplete implementations of the specification used by malware parsers.

These attacks also leverage promiscuous parsing in the Adobe PDF reader, which attempts

to repair and render broken or invalid documents. In addition to parser confusion attacks,

Carmony et al. also implement a reverse mimicry. This approach is similar to, but more

advanced than, the PDFembed scenario proposed by Maiorca et al. This technique involves
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embedding malicious content in many layers of encoding including encryption techniques

that are often not implemented.

Carmony et al. evaluated their approach using a single base malicious file with var-

ious parser confusion methods against multiple parsers and detection mechanisms. Since

PDFrate does not analyze PDF content (only structure and metadata), PDFrate is eval-

uated against the combination of all parser confusion methods and their reverse mimicry

implementation.

The Mimicus, EvadeML, Reverse Mimicry, and Parser Confusion attacks all use unique

paths to evade PDFrate. Mimicus uses addition of decoy objects that would not be processed

by a normal PDF reader but are parsed by the simple regular expression based processing of

PDFrate. EvadeML uses genetic programming to find mutation traces that result in evasive

documents. The Reverse Mimicry attacks, on the other hand, use valid PDF constructs to

minimize and hide malicious indicators. The Parser Evasion attacks attempt to break the

parsing routines necessary for feature extraction.

5.3 Mutual Agreement Analysis

An ensemble classifier is constructed from many base classifiers. To provide meaningful

diversity in the ensemble, each individual classifier is constructed using mechanisms such as

random sampling (bagging) of training data and features. Typically, the result is combined

by voting, where each independent classifier gets an equal vote. The count of votes are

summed to generate a score. If the score is over 50%, then the observation is labeled

malicious. Otherwise, the result is benign.

Ensembles have been shown to improve accuracy in many use cases, including malware

detection. However, we have found the primary advantage of ensemble classifiers to be that

they can provide a measure of internal coherence that serves as an estimate of the classifier’s

confidence of individual predictions.

In a well preforming ensemble, the majority of individual classifiers provide the same

vote. If the base classifiers provide conflicting votes, then the ensemble is in a state of
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Table 5.4: Relative Performance of Individual Trees in Contagio Classifier Indicated as
Above (+), Below (-), or Within (0) 0.5 Standard Deviations of Forest Average

Evasion Scenario Individual Tree Performance

F mimicry 0 + + - 0 0 - + 0 + - 0 + - + 0
FC mimicry + + + - + 0 - + 0 + - - + 0 0 0
FT mimicry 0 + + - - 0 0 + 0 0 - 0 0 0 + -
FTC mimicry - + + - 0 + 0 - - + 0 - + 0 + +
F gdkde - + + + + + - - + + 0 0 + - + -
FT gdkde + + + + 0 + - - + + + - + + - -
JSinject + - - 0 + + - 0 + + + 0 0 + 0 0
PDFembed 0 - - + 0 0 0 - - - - + + - - -
EXEembed - 0 0 - - - + 0 + 0 - - - + 0 +

disagreement and the prediction is less trustworthy. The agreement or disagreement in

voting of individual contributors in the ensemble provides an estimate of the confidence of

the prediction of the ensemble.

A classifier may not be able to provide an accurate response for some observations. For

example, when a 50/50 vote split occurs in traditional ensembles, a prediction is provided

using a method such as random selection. Most applications will treat a randomly selected

prediction when the classifier is in total disagreement the same as one in which all con-

tributors vote for the same class. However, in the case of complete disagreement, the only

reasonable interpretation is that the classifier cannot make a competent prediction.

Diversity in ensemble classifiers is the core attribute that facilitates mutual agreement

based confidence estimates. This diversity is caused by extrapolation in individual classi-

fiers. Barring limitations of the classifier scheme and quality of features, when an observa-

tion is close to samples in the training set, the classification is well supported and should be

accurate. However, as new observations diverge farther from training samples, the classifier

is forced to extrapolate. For ensemble classifiers that employ bagging effectively, the farther

new observations are from classifier training, the more disagreement there will be in the

ensemble.

This diversity in extrapolation is observed in the Random Forest based classifiers used in
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Table 5.5: Ensemble Classifier Outcomes

Voting Score Outcome Evasion Type

[0,25] Benign Strong Evasion

(25,50)
Uncertain

(Benign)
Weak Evasion

[50,75) (Malicious)

[75, 100 ] Malicious No Evasion

PDFrate. Table 5.4 shows the classification performance of the first 16 trees (out of 1000) in

the Contagio classifier applied to various mimicry attacks. Performance is reported relative

to the forest average number of votes for the correct class, dividing at ± 0.5 standard

deviations. It is observed that the vast majority of the trees have all three outcomes

depending upon the evasion scenario: average (0), below average (-), and above average

(+). Hence, when applied to data distant from the training data, the accuracy of each

tree varies widely among observations. There are no universally strong or weak trees. The

random noise present when extrapolating far from the training data is what enables mutual

agreement analysis.

To apply mutual agreement analysis generally, I propose a new outcome, uncertain, in

addition to the predictions of benign and malicious. Instead of splitting the vote region in

half, I split it into four quadrants. In the 0% to 25% region, the majority of the votes agree

that the result is negative (benign). Similarly, in the 75% to 100% region, the majority

of the votes agree that the result is positive (malicious). However, if the score is between

25% and 75%, the individual classifiers disagree and the outcome is uncertain. To support

comparison with simple ensemble voting predictions, this area can be split into the other

two quadrants: uncertain (benign) from 25% - 50% and uncertain (malicious) from 50%

- 75%. These classification outcomes are demonstrated in Table 5.5. The uncertain rate

(UR) is the portion of observations that fall within the uncertain range.

To be more precise about this concept, I introduce a metric to quantify the agreement

between individual votes in an ensemble classifier:
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Figure 5.2: Mutual Agreement Based on Ensemble Vote Result

A = |v − 0.5| ∗ 2

Where A is the ensemble classifier mutual agreement rate and v is the portion of votes

for either of the classes. This function is demonstrated in Figure 5.2, which also shows the

classifier outcomes resulting from a 50% mutual agreement threshold. The end and middle

points drive the general shape of this function. If the classifier vote ratio is either 0 or 1,

then the classifier has full agreement on the result and the mutual agreement should be

1 (or 100%). If the classifier is split with 0.5 of the votes for each class, then the mutual

agreement should be at the minimum of 0 (or 0%). As long as a single threshold is used,

it is not important what shape is used for the lines between these end and middle points–

any continuous curve would allow the selection of a given threshold on the classifier vote

scores. The function need not follow the distribution of scores, for example. I choose a

linear function because it is straightforward.

The threshold for mutual agreement is the boundary above which the classifier is said

to be in a state of ensemble agreement, and the resulting classification should be considered
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valid. Below this mutual agreement rating, the classification is specious. I use the boundary

of 50% throughout most of this thesis. However, this value should be adjusted by the oper-

ator. Decreasing this threshold decreases the number of observations in the disagreement or

uncertain classification zone. Tuning of this threshold is discussed in detail in Section 5.7.

Mutual agreement analysis is effective at identifying the specific samples on which the

classifier performs poorly. In the context of evasion attacks, ensemble mutual agreement

serves as criteria for separating novel attacks and weak mimicry attacks from effective

mimicry attacks. For novel attacks, it is common for the voting result to be distributed

around 50%, indicating that the observations under consideration map consistently close to

neither the benign or malicious samples in the training set. Since these attacks fall in the

relatively rare uncertain range, they are easily discerned and are considered weak evasions.

Strong mimicry attacks are those where the distribution of the attack votes is close to that

of the benign observations. Hence, typical novel attacks are identified by mutual agreement

analysis, but strong mimicry attacks cannot be. Since uncertain observations are supported

poorly by the training set, these observations are the most effective to add to the training

set in order to improve classifier accuracy.

In operation, mutual agreement analysis is employed to prevent evasion of an intrusion

detection system. The mutual agreement rate is trivially derived from the result provided by

an ensemble classifier at the time that detection occurs. Ensemble classifier agreement can

be used in many ways by the operator, including adjusting the vote threshold to prevent

false positives or false negatives, filtering observations for quarantine or more expensive

analysis, and prioritizing alerts. The strength of mutual agreement analysis is that it can

be used to identify probable intrusion detection evasion at the time of evasion attempts.

5.4 Evaluation on Operational Data

I applied mutual agreement analysis to PDFrate scores for documents taken from a net-

work monitor processing files transferred through web and email. This data set includes

110,000 PDF documents, which I randomly partitioned into two data sets. The operational
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Table 5.6: PDFrate Outcomes for Benign Documents from Operational Evaluation Set

Benign Malicious

Classifier Uncertain

Contagio 98076 1408 203 40

University 99217 360 95 55

Table 5.7: PDFrate Outcomes For Malicious Documents From Operational Evaluation Set

Benign Malicious

Classifier Uncertain

Contagio 0 0 19 254

University 0 0 0 273

evaluation set contains 100,000 documents and operational training set contains 10,000 doc-

uments. Ground truth for the documents was determined by scanning with many antivirus

engines months after collection. These data sets included 273 and 24 malicious documents

respectively. Table 5.6 and Table 5.7 show the scores for the operational evaluation data

set using both the Contagio and the University classifiers of PDFrate. The distribution of

the PDFrate scores for the benign and malicious samples of this operational evaluation data

set Figure 5.3.

It is important to note that the scores for the benign and malicious examples are weighted

heavily to the far end of their respective score range, with the distribution falling off quickly.

In a typical system deployment, the number of observations in the uncertain range is very

small and the majority of misclassifications fall within the uncertain region. Hence, mutual

agreement analysis can be used to make an estimate of the upper bound on the number of

misclassifications, at least in the absence of strong evasion attacks.

Not only is ensemble classifier mutual agreement analysis useful for identifying when the

classifier is performing poorly, it is also effective for identifying specific examples that will

provide the most needed support to improve the classifier. To demonstrate this, I sought

to replicate improvements to the classification scores that would occur in the operational

evaluation data set as additional samples are added to the classifier training set. I started
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Figure 5.3: Operational Evaluation Score Distributions

with the Contagio classifier and added samples from the operational training set.

Using the original Contagio training data set, I determined the rating of all the obser-

vations in the operational training set. In an operational setting, all observations above

the uncertain threshold (scores greater than 25) would typically require additional investi-

gation, whether the outcome is uncertain or malicious. There were 200 documents in the

operational training set matching this criteria. Of these 200 samples, 43 would be false

positives and 14 would be false negatives using a traditional threshold. I added these 200

observations to the Contagio training set with the correct ground truth and created another

classifier.

For comparison, I also created additional classifiers with varying sized randomly selected

77



Table 5.8: Scores of Benign Documents from Operational Evaluation Set Using Contagio
Classifier Supplemented with Operational Training Data

Benign Malicious

Additional Training Data Training Set Size Uncertain

None (original Contagio) 10000 98076 1408 203 40

Random subset 2500 12500 99332 265 98 32

Random subset 5000 15000 99444 200 71 12

Random subset 7500 17500 99502 169 49 7

Uncertain and Malicious 10200 99506 183 26 12

Full training partition 20000 99540 134 48 5

Table 5.9: Scores of Malicious Documents from Operational Evaluation Set Using Contagio
Classifier Supplemented with Operational Training Data

Benign Malicious

Additional Training Data Training Set Size Uncertain

None (original Contagio) 10000 0 0 19 254

Random subset 2500 12500 0 14 4 255

Random subset 5000 15000 0 14 4 255

Random subset 7500 17500 0 14 4 255

Uncertain and Malicious 10200 0 14 7 252

Full training partition 20000 0 14 4 255

subsets of the operational training set to simulate randomly selected additions to the Con-

tagio classifier. The performance of these classifiers applied to the operational evaluation

set is demonstrated in Table 5.8 and Table 5.9.

These results indicate that local tuning of the classifier has a great effect on improving

the accuracy of the classifier. Note that shifting a few samples across the score midpoint in

the wrong direction, as occurs with the malicious observations, is not considered harmful as

these samples are already deep in the uncertain range (very close to the 50% vote mark) as

shown in Figure 5.3b. The ratio of observations in the benign region (certain true negatives)

rises from 98.3% to 99.8% for either of the top two re-training strategies, even surpassing

the accuracy of the generally superior University classifier (99.5%). The corresponding drop

in false positives is important because it coincides with a drop in uncertain observations.
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In this case, if an operator responds to all uncertain or malicious observations, the majority

of alerts will be true positives.

The random subset training additions have the outcome anticipated by intuition. As

the number of random samples added from the training set increases, the classification

results on the partitioned evaluation data improve. Adding the samples above the uncertain

threshold from the training partition results in a classifier that is very close in accuracy to

that constructed with the complete training partition. It follows that mutual agreement

analysis is effective at identifying the observations on which the classifier performs poorly. It

also follows that adding these samples to the training set does indeed improve the classifier

by providing support in the region near these samples. On the other hand, adding the

observations for which there is high mutual agreement improves the classifier very little.

The result of adding the whole training set and adding the uncertain samples is similar,

but the effort invested is drastically different. The difference in obtaining ground truth and

adding 10,000 vs. 200 observations to the training set is monumental.

5.5 Evaluation on Virustotal Data

I measured the mutual agreement of PDFrate scores for Virustotal submissions during the

year following the latest re-training of the University classifier, which occured in October

2013. From a corpus of PDF documents organized by initial upload to Virustotal, I ran-

domly select 500 benign and 500 malicious documents per month. I consider any sample

that has a detection by 3 or more AV engines as malicious and any that has less as benign.

Table 5.10 contains the two PDFrate classifier outcomes for the malicious samples, and

Table 5.11 for the benign samples. I present monthly results for the University classifier,

but for brevity, only present the year total for the Contagio classifier. These tables present

the number of documents that receive classifier ratings of benign, uncertain, or malicious.

I keep the convention of showing the split in the middle of the uncertain region based on a

50% score, allowing better comparison to standard classifier predictions and better showing

the distribution of the scores. Generally, these tables demonstrate that the classifiers cast
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Table 5.10: Outcomes for Benign Documents from VirusTotal

University Classifier

Benign Malicious

Date Uncertain

201311 7 4 11 478

201312 2 0 2 496

201401 2 1 20 477

201402 10 6 16 468

201403 2 20 19 459

201404 9 10 19 462

201405 3 4 4 489

201406 20 9 22 449

201407 11 2 8 479

201408 20 18 22 440

201409 2 25 14 459

201410 7 21 5 467

total 95 120 162 5623

Contagio Classifier

total 841 1246 667 3246

the majority of their votes for the correct class, malicious and benign respectively. The

counts drop off rapidly through the uncertain outcomes, and the incorrect class is a rare

outcome. The distribution of ensemble classifier voting scores for the University classifier

is shown in Figure 5.4.

The primary observation is that using mutual agreement to add an additional outcome

or prediction of uncertain dramatically decreases classifier error. This comes at the expense

of a small number of observations receiving a prediction of uncertain. Table 5.12 compares

the predictions of a traditional classifier with that using mutual agreement analysis. Clas-

sification error and uncertain rates are presented. For the University classifier, the false

positive rate (FPR) drops from 0.22% to 0.08% and the false negative rate (FNR) drops

from 3.57% to 1.58%. The trade-off is that 3.68% of the incoming observations are classified

as uncertain. Of the observations labeled uncertain, 34% would be misclassifications with

a traditional vote threshold. For the Contagio classifier, 54% of the uncertains would be
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Table 5.11: Outcomes for Benign Documents from VirusTotal

University Classifier

Benign Malicious

Date Uncertain

201311 479 19 0 2

201312 494 5 1 0

201401 483 14 3 0

201402 480 19 1 0

201403 493 6 1 0

201404 492 5 2 1

201405 490 9 0 1

201406 483 17 0 0

201407 485 14 0 1

201408 482 18 0 0

201409 491 9 0 0

201410 483 17 0 0

total 5835 152 8 5

Contagio Classifier

total 5638 280 72 10

Table 5.12: Comparison of Classifier Performance Using Conventional Vote Threshold and
Mutual Agreement Derived Uncertain Rate (UR).

University Classifier

FPR FNR UR

Conventional 0.22% 3.57% -

Mutual Agreement 0.08% 1.58% 3.68%

Contagio Classifier

FPR FNR UR

Conventional 1.37% 34.8% -

Mutual Agreement 0.17% 14.0% 18.9%

classification errors. Note that I report the Uncertain Rate (UR) using the count of all

observations as the denominator, while I use the conventional definition for FPR and FNR

which use the count of the benign and malicious observations as the denominator.

One would typically expect the portion of classifier errors in the uncertain outcome to
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Figure 5.4: VirusTotal Score Distributions, University Classifier

be under 50%, at least when counts of benign and malcious samples are equal. Even the

most uncertain classifier, a random guess, should yield the correct prediction half the time.

So even uncertain predictions should be correct about 50% of the time. Hence, 50% should

be the normal upper bound for the classification error rate inside the uncertain outcome.

The Contagio classifier exceeds this slightly because of it has an irregular score distribution.

With the known classes of the samples labeled, it is clear that the University classifier

is superior to the Contagio classifier. This is expected, as the Contagio classifier contains

over an order of magnitude fewer documents and was compiled nearly three years before

the University classifier. Without any external knowledge, the mutual agreement analysis

derived Uncertain Rates of 3.68% for the University classifier and 18.9% for the Contagio

classifier gives us an objective measure of the relative confidence of these classifiers. These

measures are very close to the ground truth misclassification rates of 1.9% and 18.1%

respectively. The ability to estimate classifier error with no knowledge of ground truth

makes the mutual analysis derived Uncertain Rate extremely valuable.

One surprising observation from this data is the lack of a steep decrease in classification
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accuracy throughout the year following the training of the classifier. It might be anticipated

that the classifier would need to be retrained frequently to retain accuracy. I suspect that the

low drift in the malicious documents over time was due to a lack of active evasion attempts

against PDFrate. While polymorphism may be used to attempt to defeat signatures, rapid

changes to the features used by PDFrate do not appear to occur in Virustotal submissions.

I also tried to correlate exploits over time with classifier error and could discern no strong

correlations between new software vulnerabilities and classifier evasion. In fact, the most

common exploit found in the samples labeled uncertain was CVE-2010-0188, a very old, if

not prolific, exploit. This exploit was the most common exploit reported in my VirusTotal

submission data set. My labeling of exploits was limited to the analysis provided by the

cumulative detections of the AV engines in VirusTotal, which may introduce a bias in this

analysis. To the degree my ability to correctly identify the exploits used in documents

was not biased, it appears that new exploits are not associated with PDFrate evasion. It

also appears that the various techniques used to defeat signature matching are generally

orthogonal to the attributes that PDFrate uses for classification. This implies that PDFrate

and signature matching techniques complement each other well.

It is also noteworthy that the false negative rate is higher than the false positive rate and

the contribution to the uncertain outcome is also higher from the malicious samples than the

benign samples. This has a few implications. First, it seems that the classification PDFrate

provides is more volatile for malicious samples than for benign–possibly due to less variation

in benign samples. I presented equal quantities of benign and malicious documents, but

most environments are heavily skewed to benign observations. Hence, classification error

and uncertain rates will drop in a typical, mostly benign, environment.

Despite covering half of the possible voting score range (using a 50% mutual agreement

threshold), the uncertain result occurs relatively infrequently in practice because the bulk

of the scores reside at the ends of the spectrum. Removing the observations with high

ensemble classifier disagreement allows the classification error to drop dramatically. Mutual

agreement analysis permits a higher degree of confidence in the outcome of a classifier
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without additional external information.

5.6 Independent Evasion Attack Evaluations

I evaluated the degree to which mutual agreement analysis allows identification of classifier

evasion using published evasion studies against PDFrate: Mimicus [107], EvadeML [120],

Reverse Mimicry [70,71], and Parser Confusion [23].

5.6.1 Mimicus Evaluation

To demonstrate the utility of mutual agreement analysis in identifying observations that

evade detection, I reproduced the work of Šrndić and Laskov [107] and applied mutual

agreement analysis to these evasion attempts. I used the Mimicus framework to generate

PDF documents that implement various evasion attack scenarios. I used the same data sets

as the Šrndić and Laskov publication and submitted the resulting documents to pdfrate.com

to obtain scores. Because I used the same attack data, my results are limited to 100 samples

per attack type. I was able to achieve results that closely mirrored those documented in

the Mimicus study.

I present the results of classification using mutual agreement from the various attack

scenarios in Table 5.13. Note that since all of these documents are malicious, the correct

classification is malicious. A rating of benign indicates successful evasion.

The distribution of PDFrate voting scores for the documents in each non-GD-KDE

scenario is demonstrated in Figure 5.5. The GD-KDE attacks will be addressed specifically

in Section 5.8. The vote score distribution of these attacks is largely disjoint of that in typical

benign or malicious observations. Using an ensemble classifier diversity based approach, the

majority of these attacks can be separated from benign observations. Hence, these attacks

should be considered weak mimicry attempts.

When all attributes of the classifier are known, 33% of the attacks are effective. However,

when either the details of the classifier or the training set are withheld, the attack success
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Table 5.13: PDFrate Contagio Classifier Outcomes for Mimicus Evasion Attacks

Benign Malicious

Scenario Uncertain

Baseline Attack 0 0 0 100

F mimicry 2 70 26 2

FC mimicry 7 78 15 0

FT mimicry 10 64 26 0

FTC mimicry 33 62 5 0

F gdkde 7 92 1 0

FT gdkde 4 95 0 1

rate drops to 10% or lower. In addition to evaluation against the Contagio data set, the

mimicry attack data was tested against the classifier trained with the University data set.

This results in an alternate FC attack scenario because the training set is unknown to the

attacker. Figure 5.6 shows the distribution of scores from applying the malware from the

FTC attack scenario against the Contagio classifier to the University classifier. The results

are very similar between the two classifiers. In both cases, only seven of the 100 evasion

attempts are classified as benign. Carefully comparing Figure 5.5c and Figure 5.6 yields the

observation that the University classifier provides a tighter cluster of scores near the center

of the disagreement region. The results from the Contagio classifier are similar to that of

the University classifier because the Mimicus evasion attempts use Contagio data for both

baseline benign and attack data.

When mutual agreement analysis is employed, the majority of mimicus attacks are la-

beled as uncertain, indicating known classifier failure and possible evasion. In the best

mimicry attack scenario, where all attributes of PDFrate are known, only 33% of the

mimicry attempts are successfully classified as benign. If some details of the classifier,

such as the exact training set, are not known by the attacker, then the mimicry success rate

is below 10%.
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(d) Score Distribution for FTC Mimicry Attack

Figure 5.5: Mimicus Score Distributions, Contagio Classifier

5.6.2 EvadeML Evaluation

I evaluated the effectiveness of mutual agreement analysis applied to the EvadeML attacks

advanced by Xu et al. [120]. The procedures to replicate the EvadeML attacks are publicly

documented, including source code 3. In addition, Xu et al. provided the documents used

in their published evaluation for validation against PDFrate.

The evaluation performed by Xu et al. resulted in 16,985 documents derived from

500 seed malicious PDFs. Unlike the Mimicus and Reverse Mimicry attacks, there is only

one evasion scenario advanced in EvadeML. Since there are multiple samples derived from

a single seed, I provide results for all document mutations and the best mutation (lowest

3http://evademl.org
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Figure 5.6: Score Distribution for FC Mimicry Attack, University Classifier

Table 5.14: PDFrate Outcomes for EvadeML Attacks

Contagio Classifier

Benign Malicious

Scenario Uncertain

All 57.5 42.5 0.0 0.0

Best 81.8 18.2 0.0 0.0

University Classifier

Benign Malicious

Scenario Uncertain

All 0.0 94.8 5.2 0.0

Best 0.8 97.2 2.0 0.0

PDFrate score) for each seed document. Table 5.14 contains the results for the application of

mutual agreement analysis to the EvadeML attacks using both the Contagio and University

classifiers. To remain comparable with the results from the Mimicus and Reverse Mimicry

attacks, I report these results as a percentage of all the documents for their respective

attacks sets. Figure 5.7 depicts the score distributions for these various evasion attacks.

Analyzing mutual agreement in the PDFrate outcomes for the EvadeML results in dif-

ferent outcomes based on the training set. Many attacks against the Contagio classifier are

effective, falling below the 50% mutual agreement threshold or below a 25% voting score. In

fact, over 80% of the best attacks per seed fall below the 25% vote score threshold, making
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Figure 5.7: EvadeML Score Distributions

this a relatively strong attack. However, less than 1% of the attacks are effective against

the University classifier.

The EvadeML attacks used the Contagio data set for evaluation during construction.

It is difficult to determine how much of the difference in the score distributions for the two

classifiers is due to general differences in quality (University classifier contains many more

training samples) and how much is due to the University classifier being unknown to the

attacker. The large difference in the distributions for the two classifiers and similar quali-

tative results when compared to that of Reverse Mimicry attacks seem to indicate that the

quality of the training sets is important in preventing evasion attacks. On the other hand,

the difference in score distributions for all the mutations and the best mutations indicate
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that there is a large degree of variance in the outcomes using the genetic programming

approach. Indeed, Xu et al. observed that the longest traces were not necessarily the most

evasive. Hence, optimizing these attacks, or finding the best attack for a given classifier,

probably requires testing against that classifier. As with the other attacks, it appears that

a private training set does improve evasion resistance.

The EvadeML attacks are able to attain over 80% evasion when the classifier based

on the publicly known Contagio data set is used. However, when the University classifier,

which higher quality and unknown to the attacker, is used, under 1% of evasion attacks are

successful.

5.6.3 Reverse Mimicry Evaluation

I also applied mutual agreement analysis to the Reverse Mimicry attack proposed by

Maiorca et al. [70, 71]. The exact procedures required to replicate these attacks are not

publicly documented. However, Maiorca et al. provided me with the documents used in

their studies. Their most recent attacks involved approximately 500 documents in each

evasion scenario. To remain consistent with the Mimicus attack evaluation, I took a 100

sample random subset of each evasion attack for my evaluation.

In Table 5.15, I present the results of applying mutual agreement analysis to the Reverse

Mimicry attacks against both the Contagio and University classifiers. The score distribu-

tions for these attacks against the University classifier are shown in Figure 5.8 In spite

of mutual agreement analysis, 67% of the Reverse Mimicry attacks are successful evasions

(considered benign) against the Contagio classifier.

The University classifier fares much better than the Contagio classifier. The only eva-

sions against the University classifier are achieved by the PDFembed attack. This attack is

so successful because a complete malicious PDF is embedded in an otherwise benign docu-

ment. This embedded document resides in a compressed data stream, which means that the

structural features cannot be observed by PDFrate’s feature extractor. This is in contrast

to the other scenarios, EXEembed and JSinject, where despite efforts at minimization, some
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Table 5.15: PDFrate Outcomes For Reverse Mimicry Attacks

Contagio Classifier

Benign Malicious

Scenario Uncertain

EXEembed 77 22 1 0

PDFembed 93 7 0 0

JSinject 30 67 3 0

University Classifier

Benign Malicious

Scenario Uncertain

EXEembed 0 4 16 80

PDFembed 81 19 0 0

JSinject 0 22 55 23

indicators of malfeasance remain exposed.

The PDFembed scenario is effective against the detector at pdfrate.com because it does

not perform recursive decoding and analysis as would be necessary in an operational system.

This failure is similar to malware analysis systems that assume an input of an unpacked

executable and fail when presented with a packed executable or a Trojan document. When

PDFrate is deployed in operational detection systems, it is usually done within a framework

that provides both decoding of PDF streams and extraction of PDFs from other containers

such as emails or zip files [8]. In all the PDFembed attacks, the embedded document was

identical. The Contagio and University classifiers both easily detect this document with

high confidence once it is extracted, returning scores of 97.6% and 100% respectively.

For the isolated PDFrate implementation, the PDFembed scenario represents a strong

evasion scenario, where classifier introspection provides little benefit because the feature

extractor is evaded so well. Even though the Contagio based classifier is a poor fit for

the malware used in the EXEembed and JSinject, many of these samples still fall in the

uncertain outcome vote range. When the stronger University classifier is used, mutual

agreement analysis flags these evasion scenarios that would otherwise be successful.
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Figure 5.8: Reverse Mimicry Score Distributions, University Classifier

Table 5.16: PDFrate Scores for Parser Confusion Attacks

Attack Scenario Contagio Classifier University Classifier

Base Malicious 86.4% 89.6%

Parser Confusion 70.0% 65.8%

Parser Confusion and Reverse Mimicry 7.8% 2.3%

5.6.4 Parser Confusion Evaluation

We also evaluated the effectiveness of the parser confusion attacks of Carmony et al. A

single base malicious document implementing their parser confusion and reverse mimicry

attacks was tested against PDF in their evaluation. The hash of the document for each

attack variant was published in their study. The PDFrate scores for these attack methods

are shown in Figure 5.16.

91



The Parser Confusion attack is able to drop the voting score into the uncertain region,

but it remains far from a successful evasion. This result is explained by the fact that PDFrate

focuses on structural features instead of content, limiting the impact of this method. How-

ever, when combined with the reverse mimicry attack, the result is strong evasion. This

is explained in the same manner as the PDFembed attack discussed in Section 5.6.3. This

attack is effective because the features indicating the malicious activity are hidden from the

PDFrate feature extractor through various layers of encoding and encryption. However, due

to the parser confusion attacks, the file is not trivially decoded with existing PDF parsing

libraries or tools. Hence, even if PDFrate is used in a framework that provides recursive

PDF parsing and analysis, the parsing will not be effective if the parser is subverted.

5.7 Mutual Agreement Threshold Tuning

For most of my evaluations, I used a 50% mutual agreement threshold, which splits the

classifier voting score region into four equal sized quadrants. It is possible to choose an

arbitrary mutual agreement threshold. In Table 5.17, I present the PDFrate University

classifier outcomes applied to the operational evaluation data set and the FC Mimicus

attacks across the full mutual agreement range.

The exact mutual agreement threshold chosen strikes a balance between improvement

in classification failure detection and the number of classifier predictions thrown out as

uncertain. Operators who wish to have a lower amount of uncertain outcomes may choose

a lower threshold. Taking the PDFrate performance in Table 5.17 as an example, if 30%

is selected as a threshold, the uncertain region comprises ensemble classifier voting scores

between 35% and 65% instead of 25% and 75% with a 50% threshold. For the operational

data set, the uncertain rate for benign samples drops from 0.456% to 0.256%. However,

the number of successful evasion attempts rises from 7% to 12%. The optimal setting for

this threshold depends on the preferences of the operator. The sensitivity of uncertain

detection is adjusted by tuning the mutual agreement threshold, setting the boundaries for

the uncertain range.
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Table 5.17: University Classifier Performance as Mutual Agreement Threshold Is Adjusted

Benign Operational Evaluation

True False
Mutual Uncertain Negative Positive Uncertain
Agreement Score Rate Rate Rate
Threshold Range (TNR) (FPR) (UR)

0% - 99.8% 0.150% 0%

10% (45,55) 99.8% 0.128% 0.0592%

20% (40,60) 99.7% 0.103% 0.147%

30% (35,65) 99.7% 0.0832% 0.256%

40% (30,70) 99.6% 0.0712% 0.342%

50% (25,75) 99.5% 0.0552% 0.456%

60% (20,80) 99.3% 0.0331% 0.618%

70% (15,85) 99.1% 0.0291% 0.825%

80% (10,90) 98.7% 0.0261% 1.27%

90% (5,95) 97.0% 0.0120% 3.01%

100% (0,100) 53.6% 0% 46.4%

Malicious Operational Evaluation

Threshold Range FNR TPR UR

0% - 0% 100% 0%

10% (45,55) 0% 100% 0%

50% (25,75) 0% 100% 0%

60% (20,80) 0% 99.6% 0.366%

70% (15,85) 0% 99.6% 0.366%

80% (10,90) 0% 99.6% 0.366%

90% (5,95) 0% 99.6% 0.366%

100% (0,100) 0% 95.6% 4.40%

Mimicus FC Attack

Threshold Range FNR TPR UR

0% - 84% 16% 0%

10% (45,55) 69% 8% 23%

20% (40,60) 31% 4% 65%

30% (35,65) 12% 4% 84%

40% (30,70) 7% 1% 92%

50% (25,75) 7% 1% 92%

60% (20,80) 7% 0% 93%

70% (15,85) 6% 0% 94%

80% (10,90) 0% 0% 100%

90% (5,95) 0% 0% 100%

100% (0,100) 0% 0% 100%
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5.8 Ensemble Classifier Diversity

Mutual agreement analysis should apply to all ensemble classifiers that provide sufficient

diversity in individual classifiers. To validate this, I studied the feasibility of countering

evasion against SVMs by applying mutual agreement analysis to SVMs using an ensemble

approach.

The Mimicus attack framework implements a Gradient Descent and Kernel Density

Estimation (GD-KDE) attack against their PDFrate replica utilizing an SVM classifier. This

attack operates by exploiting the known decision boundary of a differentiable classifier [17].

I reproduced the GD-KDE evasion attacks of Mimicus and confirm that they are indeed

extremely effective. Using the e1071 package of R 4, which relies on libSVM [24], I calculated

the average probability of 8.9% malicious (or 91.1% benign) for both GD-KDE scenarios,

putting these attacks squarely within the evasion region. Šrndić and Laskov use the scaled

distance from the SVM decision boundary of a different SVM implementation to provide

a similar result. The GD-KDE attacks demonstrate that introspection of a single classifier

such as SVM cannot be relied upon to detect evasions.

While effective against an SVM classifier, the results on PDFrate’s Random Forest

classifier using the GD-KDE attack are roughly comparable to the conventional counterparts

(see Table 5.13). It is not practical to wage a similar type of attack against Random Forests

because Random Forests have extremely complex and stochastic decision boundaries.

I sought to determine the extent to which I could make an SVM classifier identify

probable evasions through diversity enabled introspection. I implemented a simple SVM

based ensemble classifier using 100 independent SVM classifiers with the score being the

simple sum of the votes of individual classifiers. To determine the attributes important to

building diversity in ensembles, I varied the subset of features and training data used in

constructing each of the individual SVMs. I performed a full grid search. The most salient

results are reported in Table 5.18, which shows feature bagging using the full training data

set, and Table 5.19, which shows bagging on training data using the full feature set. These

4http://www.r-project.org/
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Table 5.18: Number of Documents per GD-KDE Attack Where Ensemble SVM Classifier
Provides Correct Prediction as Portion of Features Used Is Varied

Feature Subset

Attack 5% 7.5% 10% 12.5%

Baseline Malicious 100 99 98 98

Baseline Benign 2 41 93 94

F gdkde 100 100 99 5

FT gdkde 99 100 92 1

Table 5.19: Number of Documents per GD-KDE Attack Where Ensemble SVM Classifier
Provides Correct Prediction as Portion of Training Data Used Is Varied

Training Data Subset

Attack 12.5% 25% 50% 100%

Baseline Malicious 86 87 92 98

Baseline Benign 100 100 100 100

F gdkde 0 0 0 0

FT gdkde 0 0 0 0

tables demonstrate the portion of classifier outcomes that match the correct result (desired

result for evasion attempts is malicious or uncertain).

It appears that bagging of training data is not particularly important in building an

ensemble classifier where mutual agreement analysis is useful. To my amazement, I found

no situation where anything but the full training set provided the best results. However,

bagging of features is critical to constructing a classifier where mutual agreement analysis

is able to identify uncertain predictions. This bagging of features for an SVM classifier

provides the necessary diversity in extrapolation that makes mutual agreement analysis

meaningful. It seems that the individual classifiers based on subsets of the complete feature

set are much harder to evade collectively than a single classifier using all the features. While

a single classifier can be evaded by successfully mimicking a subset of the features, it appears

that a combination of multiple classifiers based on a small number of features requires a

more complete mimicry across the full feature set. The application of feature bagging to
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Table 5.20: PDFrate SVM Ensemble Classifier Outcomes for GD-KDE Attacks

Benign Malicious

Attack Uncertain

Baseline Malicious 0 0 2 98

Baseline Benign 93 7 0 0

F gdkde 3 97 0 0

FT gdkde 8 91 1 0

the many independent SVMs makes a GD-KDE style attack infeasible as there is no longer

a single predictable decision boundary to attack.

The results also indicate that careful tuning of the portion of features used in bagging

is critical when using an SVM based ensemble. There seems to be a trade-off between the

ability to correctly classify malicious observations (including evasion attempts) by using

fewer features in each classifier, and benign observations by using more features. The use of

fewer features results in a more complex classifier with smaller divisions while more features

moves closer to a standard SVM, which has a single hyperplane divider. This result might

be explained by suggesting that the features used in PDFrate provide better extrapolation

for benign samples but that malicious samples have higher variation in PDFrate’s features

requiring more similar training samples for successful classification.

Table 5.20 shows the outcomes of the SVM ensemble classifier applied to the Mimicus

GD-KDE attacks and baseline benign and malicious samples. The outcome shows that

while the evasion attempts are successful in dropping the scores out of the malicious range,

the vast majority of the evasion attempts fall in the uncertain range. Only 8% of the evasion

attempts are fully successful in the best scenario while only 4.5% of the known data is in the

uncertain region. These results are comparable to results obtained using PDFrate’s Random

Forest classifier where GD-KDE attacks are not possible. Hence, mutual agreement analysis

applies not only to Random Forests, but seems to apply generally to all ensembles that have

adequate diversity. Bagging of features appears central to this capability.
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5.9 Evaluation on Drebin Android Malware Detector

Ensemble classifier mutual agreement analysis should be applicable to all situations where

evasion is possible, including other malware classifiers. I evaluated the utility of mutual

agreement analysis on the Drebin Android malware detector [9]. Drebin is a strong com-

plement to PDFrate because it operates on a software package instead of a document and

utilizes many string based/binary features instead of numerical features. Since the data

used in the original Drebin study has been published, I use this data for my evaluation.

Drebin operates by performing a quick scan to extract features from the Android appli-

cation manifest and disassembled code. These features are formatted as strings. Features

extracted from the manifest include the names/values of hardware components, requested

permissions, application components, and intents (message framework). The values of API

calls, used permissions, and network addresses/URLs are taken from the dissembled code.

The string values are mapped into a binary feature vector containing over 500,000 unique

values.

A linear SVM is trained offline and used to provide weights (distance from hyperplane)

for each feature observed during classification. This per predictor weight is combined to

provide an overall score and compared to a threshold to determine the outcome. Due to

this scheme, Drebin provides a malicious score and can identify variables that contribute

to this score. Drebin is evaluated with over 100,000 benign and 5,000 malicious samples,

providing a false positive rate of 1% and a malware detection rate of nearly 94%.

Since the linear SVM’s score is based on a single division, it does not have enough

diversity to provide a measure of internal coherence. I employ a Random Forest classifier,

which requires adapting the features to ensure computational efficiency and to ensure results

comparable to the original linear SVM. Instead of using all string values as features, I use a

subset of 891 features that comprise the most resilient features. I use all of the features for

constrained categories such as API calls and permissions. For arbitrarily named attributes,

such as components and intents, I use the most prolific values, selecting those which occur

over 100 times in the training set. I ignore specific values for highly volatile items such as
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URLs and network addresses, which compose over half the features used by Drebin. Lastly,

I sum the occurrences of each category of features and use these counts as features. As an

optimization, I de-duplicated any equivalent feature vectors during classifier training (not

during evaluation). This de-duplication using our narrow feature set results in a reduction

from 123,453 to 63,379 unique benign and 5,560 to 2,185 unique malicious samples. Barring

these transformations of data, I used the published Drebin data sets and data set partitions

in my evaluation.

I tuned my Random Forest based classifier to provide classification performance com-

parable to the linear SVM classifier of Drebin. The primary item I tuned was the ratio of

benign to malicious samples used in training each tree. This was necessary because there is

an extreme imbalance in the benign to malicious ratio of the various training sets. I tuned

this ratio of benign to malicious for individual tree training to 2.5 benign to 1 malicious in

order to match the desired false positive rate of 1% chosen by Arp et al. I set the other tun-

able parameters for Random Forest to standard values: each Random Forest contained 1000

trees and number of variables tried at each split was set to the square root of the number of

features. My Random Forest classifier provided an average false positive rate of 1.06% and

a malware detection rate of 92.3% on the published data set partitions using a traditional

threshold without an uncertain region. The Random Forest based classifier performance is

very similar, albeit slightly inferior to that provided by Drebin’s linear SVM. Figure 5.9a

shows the distribution of scores for the benign samples using one of the published data set

partitions. Figure 5.9b shows the same for the malicious samples. As expected, the score

distributions are shaped similarly to that of PDFrate, but since the classifier accuracy is

lower, the samples are distributed farther from the respective ends of the score continuum.

Table 5.21 shows the classifier outcomes for typical mutual agreement thresholds.

An important facet of the original Drebin study is the division of the malware by family

and evaluation of the classifier on previously unknown malware families. This was achieved

by withholding the family to be evaluated from the training set, and then applying the

resultant classifier to the malware samples in that family. It is noted by Arp et al. that
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Figure 5.9: Score Distribution Random Forests Based Drebin Classifier

Table 5.21: Drebin Random Forest Outcomes as Mutual Agreement Threshold Is Adjusted

Benign Samples

Benign (%) Malicious (%)

Mutual Agreement Threshold (%) Uncertain

30 97.46 1.49 0.54 0.52

40 96.49 2.45 0.63 0.43

50 95.12 3.82 0.71 0.35

Malicious Samples

30 4.44 3.27 5.44 86.85

40 3.77 3.93 7.30 84.99

50 3.16 4.56 10.34 81.95

Drebin provides relatively poor classification of previously unknown malware. I applied my

Random Forest based classifier and uncertain score region to this same problem. Figure 5.10

compares the detection rates of the linear SVM classifier and our Random Forest based

classifier using mutual analysis agreement.

As expected, the vast majority of unknown malware families have the score distribution

of a weak evasion attack, indicating that the classifier considers these observations similar

to neither the benign or malicious samples seen in the training set. As an example, the

scores of malware family A are shown in Figure 5.11. On average, 75.2% of every family
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Figure 5.10: Comparison of Detection Rates for Previously Unknown Malware Families

is labeled as unknown and an additional 8.2% are labeled as malicious using our Random

Forest base classifier, while 50.6% of every family is labeled as malicious by the Drebin

linear SVM. Families Q and R represent strong evasion. Arp et al. note that Family R

cannot be reliably detected with the feature set used by Drebin. While the features used by

Drebin are sufficient for the detection of Family Q when included in the training set, it is

too different from other families in Drebin’s feature space to be flagged as an evasion. On

the other hand, Family P is so similar to other malware families in Drebin’s feature space,

that it is not necessary to have samples of this family in the training set. Removing these

three families, an average 89.7% of the samples in the remaining 17 families are identified

as malicious or uncertain by the Random Forests while 53.2% are detected by the linear

SVM. It should be considered advantageous to label these previously unknown samples as

uncertain so that the operator can take action to improve the classifier. While the linear

SVM provides the average classification accuracy of a coin toss in these scenarios, the mutual

agreement conscious ensemble is able to flag the majority of the novel attacks as possible

evasions.

Mutual agreement analysis does apply well to the Drebin Android malware detector.

While the linear SVM classifier performs poorly on novel malware attacks, a Random Forest
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classifier monitoring ensemble disagreement flags the majority of novel attacks as uncertain.

5.10 Discussion

Mutual agreement analysis in ensemble classifiers provides an estimate of confidence that the

classifier prediction is accurate, without external validation. Many classifiers can provide a

score continuum, such as the distance from the decision boundary used in SVM, but these

metrics are not accurate in the face of mimicry attacks. Furthermore, conventional measures

of confidence are not applicable to data that diverges from the population for which ground

truth is known.

Mutual agreement reflects the internal consistency of the classifier. This internal con-

sistency is a proxy for the confidence of the classifier, assuming adequate strength of the

features. The attacks against PDFrate demonstrate that mimicry resistant features are

critical to identification of novel attacks. If the feature extractor is resistant to tampering

and the features are proper indicators of malfeasance, then novel attacks will either be

detected as malicious or be rated as uncertain. However, if the feature set (or feature ex-

traction mechanism) is weak, then evasion will still be possible. Operators must be vigilant

to prevent evasion during the feature extraction phase of malware detection.

101



The evasion attacks that were successful against PDFrate, fully evaded PDFrate’s fea-

tures through embedding a malicious PDF in another, making the malicious PDF invisible

to the feature extractor. Other attacks, while seeking to fool the feature extractor, were

insufficient because some features were still operative. This evasion could be overcome by

a parser that more fully mirrors that of the target application. However, this is difficult

in practice due to the issues exposed by the Parser Confusion attacks. As an alternative

to using the target reader program to extract features, one could add parsing errors or

anomalous constructs to the feature set.

In building an ensemble using base SVM classifiers, I found feature bagging to be critical

to generating the diversity necessary to make mutual agreement measurements meaningful.

Unqualified, bagging refers to the utilization of random subsets of training data. This

method is used extensively in machine learning techniques. In our study, bagging of training

data was not shown to be important for mutual agreement analysis. This may have been

due to a lack of diversity in that training set. Further studies might show under what

conditions training data bagging provides diversity useful for facilitating mutual agreement

analysis. I also observed that tuning the portion of features used in our SVM ensemble was

important. I observed no similar need to tune the parameters of Random Forest, but this

could be an area of future study. The number of features tried at each node (mtry) and the

depth of the trees might impact the useful diversity in a Random Forest. It appears that

many features, even if they are interdependent or have low classification value, contribute

to make evasion more difficult.

If the features are strong, then the relevance of the training set will dictate the mutual

agreement rating for individual observations. If the test observations are similar to samples

in the training set, then high certainty predictions will occur. The test observations that

differ from the training set in feature space will be given classifications considered uncertain

by the classifier. In some instances in our evaluation, the quality of the training set was

shown to be important to detection of evasion attacks. For example, the superior PDFrate

University classifier had considerably fewer evasions than the Contagio classifier for the
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Reverse Mimicry attacks. For the Drebin evaluation, Family R represented strong evasion

due to weak features, but Family Q was detectable if it was included in the training set.

Therefore, the effectiveness of mutual agreement analysis is also dependent upon adequate

coverage in the training set. However, the effectiveness of the training set is directly depen-

dent upon the strength of the features. A weak feature set will require a more expansive

training set than a feature set that more closely models fundamental malicious attributes.

Operators should ensure that features used for malware detection are not only resistant to

spoofing but that they are based on artifacts caused by malware and not merely coincidental

with current attacks.

As was shown in Section 5.6.1, keeping the training set of a classifier secret helps im-

proves resiliency against targeted evasion attempts. It might be advisable for operational

systems to hide the exact scores returned from their classifiers as these scores assist attack-

ers in knowing if changes they make hurt or help their evasion attempts. This information

could weaken the benefit provided by a secret training set [52].

The GD-KDE attacks of Mimicus demonstrate that some classifiers can make machine

learning based detectors susceptible to evasion attacks. Stochastically generated ensemble

classifiers have not been shown to be vulnerable to similar attacks, but new approaches

might be found. The ability to measure mutual agreement in ensemble classifiers comes

at little cost, but provides for detection of practical classifier evasion. This capability is a

strong reason to use ensembles in situations where classifier evasion is a concern, such as

in malware detectors. If mutual agreement analysis is used to optimize classifier training,

then an attacker may have more knowledge of additions to the training set than if random

selection is used. However, it is not obvious how this knowledge could be exploited by

an attacker. Any effective attacks that use knowledge of mutual agreement based training

optimization to poison the classifier would be important.

Some advocate the use of simple, monolithic classifiers, because the result is perceived as

easier to interpret. For example, the ability of Drebin to identify the features that contribute

to the classification is lauded. It is not clear, however, if this information is really useful to
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end users. Users are already given the opportunity to review permissions and often choose

incorrectly when prompted. Given that URLs and API calls can be socially engineered and

that users are generally not aware of these elements, it is not likely that providing these

items as context to a user will help them make a correct decision. For security professionals,

ensemble classifiers provide mechanisms that aid in analysis such as similarity to existing

known malicious or benign samples. Most importantly, the feature set will be useful to a

trained analyst.

Mutual agreement analysis gives operators greater confidence in the accuracy of the

classifier and the ability to prioritize response to alerts. Some operators will use ensemble

classifier introspection simply to adjust the voting threshold. Environments that seek to

avoid false negatives (evasion attacks) will use a low threshold and increase the number

of false positives. On the other hand, some environments might use a higher than normal

voting threshold to achieve a low false positive but potentially higher false negative rate,

such as that achieved by antivirus engines. The operator gets the most benefit from mutual

agreement analysis when uncertain observations are subjected to focused analysis. These

samples must necessarily be subjected to different and complementary analysis or detections.

Since the number of uncertain observations is low for a well performing classifier, this second

opinion can be relatively expensive, possibly manually driven or involving dynamic analysis.

Ensemble diversity based confidence estimates are useful for organizations that desire to

identify novel attacks to perform additional analysis. While possibly unconventional for the

machine learning field, the addition of the uncertain outcome is intuitive for the security field

where many systems provide only adjudications for known observations, whether benign or

malicious. For example, it is common for SPAM filters to utilize a quarantine for samples

that cannot be classified reliably. Very often, high fidelity alerts are preferred over a response

for every observation.

Mutual agreement analysis is very effective at identifying those samples that are not

similar to the already known samples in the training set. Since adding uncertain samples to

the classifier dramatically improves the classifier accuracy, analysis of uncertain observations
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is likely to motivate rather than desensitize operators. Operators are empowered to improve

the classifier in a manner much more effective than random additions to the training set.

Evaluation of machine learning based detectors might be improved though application

of mutual agreement analysis. A concise metric is the Uncertain Rate, or portion of ob-

servations for which a classifier is poorly suited to provide a prediction. The effectiveness

of classifier evaluation using the mutual agreement score distribution and variance could

be a topic of future studies. The classifier score distributions shown in Figure 5.9a and

Figure 5.9b seem to indicate that regression could be used to predict the amount of suc-

cessful evasions. The difficulty in this type of analysis, however, is separating the arcs for

the benign and malicious data when external ground truth is not provided.

Most importantly, monitoring mutual agreement in ensemble classifiers raises the bar for

evasion, for both previously unseen attacks and targeted mimicry attacks. Contemporary

evasion attacks, which have called into question the resiliency of learning based detectors,

are shown to be weaker than previously supposed. Merely obfuscating attacks such that

they no longer appear as known attacks is not enough. Successful mimicries must very

closely mirror benign samples. Of course, future research into the degree to which mutual

agreement analysis can improve attack quality is imperative.
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Chapter 6: Specific Value Based Features

PDFrate relies on features that parameterize the documents. In all cases, these features

quantify general metrics of the document, minimizing reliance on specific values or terms.

For example, features such as the number of characters in a metadata field are used.

I studied the feasibility of using specific value or term based features in addition to

general structural and metadata based features. Since these features are optional and

easily modified by the document author, it was recognized these features were inadequate

on their own. However, I sought to determine the degree to which employing observation

of specific values could improve classification performance. I attempted various methods

of turning these values into numeric features suitable for machine learning. I found that if

bagging is used in a prevalence database, it is possible to train a classifier that is able to

use the overlap in specific values when present without a large increase in false negatives

when values do not overlap.

6.1 PDF Metadata Values

I studied the specific values found in PDF documents. I used the same regular expression

based metadata and structural information based extractor. However, instead of deriving

numeric features such as the number of objects, I operated on this data as strings or terms.

This data can be categorized as follows:

• Author, Company, etc.: Metadata items tied to the author of the PDF.

• Creator, Producer, etc.: Metadata items likely that identify the tool used to generate

the PDF.

• Title, Subject, etc.: Metadata items associated with the document content.
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• Box dimensions, Image dimensions, etc.: Structural artifacts that reflect the layout of

the document.

• CreateDate, InstanceID, etc.: Metadata items that should be unique on a per-document

basis.

I studied the metadata for nearly 7 million PDFs taken from the same source as the

operational data set. I observed that the opportunistic malicious PDFs had a much smaller

amount of metadata than the other classes. It also appeared that many of the targeted ma-

licious PDFs had consistent metadata. As examples of the types of metadata encountered,

I present a selection of values from the Creator metadata item and layout box dimensions.

I report the prevalence of a few specific values giving the count of the occurrences of these

metadata values (can be more than once per document). I observed notable differences

between the targeted attacks and the other document types (benign or opportunistic mali-

cious) so I provide counts based on this division.

The Creator metadata values indicate the software used to generate the document.

Table 6.1 shows some of the most common specific values that are exclusive to each class,

as well as some that occur in both.

Table 6.1: Example Creator Value Frequencies

Benign and
Targeted Opportunistic
Malicious Malicious Value

22 0

20 0 ...A.c.r.o.b.a.t. ....Vh. .8...0

6 0 Advanced PDF Repair: http://www.pdf-repair.com

8 6769 Adobe LiveCycle Designer ES 8.2

5 724 ...W.P.S. .O.f.f.i.c.e. N*N.rH

4 33 llPDFLib program

4 308 ...A.c.r.o.b.a.t. .P.D.F.M.a.k.e.r. .9...0. .W.o.r.d. rH

0 298307 Microsoft Word

0 384345 PScript5.dll Version 5.2.2
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The Box structural items reflect the dimensions of various types of boxes used in layout

of the document. Table 6.2 shows some of the most common values for these classes. It

should be noted that some values are either exclusively found within or without the targeted

malicious class, while some are found in the benign class also.

Table 6.2: Example Box Value Frequencies

Benign and
Targeted Opportunistic
Malicious Malicious Value

24 0 Box: 8240x1 (other)

1 0 Box: 196x554 (other)

1 0 Box: 1691x1532 (other)

543 10362262 Box: 595x842 (A4)

242 95145391 Box: 612x792 (letter)

82 62 Box: 379x698 (other)

76 25 Box: 674x799 (other)

65 5108 Box: 14x20 (other)

40 151123 Box: 1000x1000 (other)

35 852932 Box: 2568x1314 (other)

34 5247 Box: 7x17 (other)

31 14447 Box: 1300x1135 (other)

31 19632217 Box: 0x0 (other)

30 44 Box: 81x4 (other)

0 6696393 Box: 1x0 (other)

0 8455450 Box: 10x10 (other)

0 8890847 Box: 0x1 (other)

0 10740361 Box: 432x648 (other)

6.2 Metadata and Structural Based Signatures

An obvious mode of employing specific value indexes would be to generate signatures for

values appearing in one class but not appearing in others. A quick scan of the data indicates

that one could generate static signatures for a few Creator values and detect a large number

of the targeted documents. More extensive analysis has been done on artifacts associated
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with box sizes common in targeted documents. While most of the box sizes as summarized

above are not strong indicators themselves, the actual objects they are part of seem to

be. It is possible to create more precise signatures by including actual raw values seen in

the document, and in some cases, some surrounding data. A handful of these signatures

can be constructed to have over 50% TP rate while maintaining a zero FP rate. Manual

analysis shows that these signatures, and the artifacts they are derived from, can be found

consistently across a large number of documents, which span different embedded malware,

different exploits, vastly different structure, and years of time.

Using this knowledge in static signatures is significant because it represents a previously

untapped source of signatures that can be used in conventional systems. However, it is

conceded that if attackers know this analysis is being performed, that they may learn how

to evade these detections, much like malware authors evade other signatures. Even without

direct evasion, it may not be feasible to have a large enough data set to vet signatures

enough to ensure an acceptably low FP rate.

Where metadata and structural based byte level analysis is likely to have value is in

linking related attacks. It is likely that documents that share rare indicators are related

either through use of a common tool or common PDF structures used in embedded malware

in the document. This view into malware provenance is particularly useful in targeted

attacks where understanding of a persistent attacker is sought.

6.3 Quantized Prevalence of Specific Values

When used in conjunction with other features in a machine learner, these specific values

show promise to add value when they are consistent. The challenge is to determine if these

consistencies can be achieved without hurting detections when metadata values are dynamic

or absent.

An important question is how this data would be leveraged in a machine learner. A

straightforward implementation would be to use each term as a variable as one would do in

SPAM detection or document clustering. The core challenge in doing so is that the count of
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these values is very great. It is not clear how one would reduce these terms to an acceptable

number of features. Unlike terms in an email body or a document text, there are a very

sparse number of each class of metadata/structural item in a given document. It is not

feasible to select a subset of terms in this data that will be present in a large number of

documents of each class.

One must consider various forms of dimension reduction. For example, one could reduce

the Creator field to the core program name while ignoring versions or reduce box sizes to an

acceptably low number of box size ranges. Unfortunately, this will not likely be effective,

as the specific Creator versions or box sizes are what are useful for correlation. Note that

the generic features already include some amount of binned sizes, such as image sizes. One

could use some form of statistical learning on a first pass to identify the most important

terms, and then use these. This will likely have significant challenges including a still very

unwieldy number of terms to select from, lack of stability over time and data sets, and no

guarantee that the features selected by one statistical learning method will be optimized

for use with the second one actually used for classification.

Another option for using this data would be to only use terms for minority classes, such

as targeted documents. This would largely address the dimensionality problem. However,

it would limit the value of deviations from the majority classes.

I explored various approaches for converting these values extracted from the documents

into usable features that could be used in conjunction with the numeric features already

employed. I studied using the feature hashing, but this provided poor performance. I

also considered a Bayesian approach, but it provided lower classification quality and higher

complexity. I found using binned prevalence based features were more effective than the

other methods I tested.

I employed features based on the quantization of the frequency of the term in each class,

with the features split by the high level type of the field from which the value is taken. The

histogram of the number of documents containing each term is split into buckets, with the

bucket which a given term falls into forming the basis for these features. The count of the
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existence of each pertinent metadata or structural item is calculated on a per document

basis as well as aggregated into a database providing counts of membership of each value

in each class.

The basic types of specific values are split into 10 divisions: creator, producer, author,

company, box, image, subject, keywords, title, and file representing their respective meta-

data and structural items. Furthermore, frequency of observance of the values in each class

is divided into a small number (2-5) of buckets. A feature set can be derived from the

counts of the items in each bucket. The buckets can be constructed with each class consid-

ered independently, or the cross product of the prevalence levels for the classes can be used.

For example, when classes are taken independently and three levels are used, the features

for the creator items would be:

creator benign bucket0, creator benign bucket1, creator benign bucket2,

creator malicious bucket0, creator malicious bucket1, and creator malicious bucket2.

If the classes are used together to generate buckets, then features for two prevalence levels

would be:

creator benign bucket0 malicious bucket0, creator benign bucket0 malicious bucket1,

creator benign bucket1 malicious bucket0, creator benign bucket1 malicious bucket1.

When a new document is to be classified, each value is looked up in the database and

is determined to belong in one of the buckets. The count for that bucket is incremented.

This is repeated for all present metadata and structural elements.

The primary tunable parameters for this method are the number of levels or quantiza-

tions indicating the frequency of a given value, whether the frequency for each class is taken

independently or dependently, and the function that used is for partitioning the prevalence

parameter.

In general, the function used to define the prevalence based quantization does not matter.

This is not surprising as the number of divisions used also had a relatively small impact on

the outcome. The following functions were tested: log, sqrt, linear, square, and exp. There
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was very little difference between them, but the linear divisions performed the best, so they

were used.

Table 6.3 demonstrates the differences in classification error based on if buckets were

created independently by class or if the features included the full cross products of the

buckets by class and the number of levels or divisions by term prevalence. The error rate

is the Random Forests out-of-bag error estimate. Here again, these parameters only have a

small affect on classification error rates. Hence, for my evaluations, I employ two prevalence

levels and use features based on a single class.

Table 6.3: Classification Error by Feature Set Formulation

Number of Prevalence Levels Class Dependent (Error %) Class Independent (Error %)

2 .12 .11

3 .08 .11

4 .07 .12

5 .07 .11

This results of applying this method to the training and operational data sets are shown

in table 6.4. I use the Contagio data set for training and the Operational data set to test

extrapolation. Using quantized indexes provides mediocre classification rates, which drop

as the method is used in extrapolation to less closely related data sets.

Table 6.4: Evaluation of Quantized Indexes

Cross Validation Extrapolation

Method TPR (%) FPR (%) TPR (%) FPR (%)

Quantized Indexes 99.3 4.2 99.3 13.6

6.3.1 Combining General and Specific Value Methods

It is important to evaluate the effectiveness of specific value methods in conjunction with

features based on general attributes. The classification effectiveness of both the quantized

and per term forms of specific value indexing are shown in 6.5.
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Table 6.5: Combining General and Specific Value Methods

Cross Validation Extrapolation

Method TPR (%) FPR (%) TPR (%) FPR (%)

Generic Features 99.7 0.20 100 0.28

Specific Value Features 99.3 4.2 99.3 13.6

Generic + Specific Value 99.9 0.20 99.7 0.82

The specific value indexing methods perform especially poorly when extrapolating from

one data set to another unrelated data set. Combining generic features and quantized

specific value indexes does improve detection rates for cross-validation (TPR rises from

99.7 to 99.9). It also raises the false positive rate (from .28 to .82).

6.3.2 Improving Extrapolation through Prevalence Database Bagging

Thus far, specific value indexing has been shown to be effective for data from similar sources,

but has been less effective when operating on more diverse data sets. There is a tendency to

high false positive rates when extrapolating to unseen data. This error could be explained

by poorer durability in the underlying features, or it could be caused by generation of a

machine learner that extrapolates poorly due to overfitting, for example.

To improve the predictive capabilities of specific value indexes, the training process

was modified such that the database used to look up terms during feature generation was

populated with a subset of documents from the training set. The full training set is used

to generate the feature set for the Random Forests classifier, but the database of specific

values from which specific values prevalence rates are taken only contains a portion of the

training set. Ergo, during training, many of the specific values found in the documents in

the training set are not found or have a lower prevalence than they would have otherwise,

tending to diminish the classification error related to previously unseen values.

The results of modulating the amount of the training set in the specific value prevalence

database is shown Table 6.6.

Note that if only half the training set is represented in the specific value incidence
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Table 6.6: Varying Portion of Training Set in Prevalence Database

Subset Size (%) True Positive Rate (%) False Positive Rate (%)

100 99.3 14

80 93.6 1.6

66 93.6 0.72

50 93.6 0.55

33 15.5 0.57

database, then the high false positive rate that occurs when extrapolating to unseen data

dramatically diminishes. This suggests that these features are durable enough to be useful

for classification, but the classifier needs to be trained with tolerance for unseen data.

When the data in the prevalence database is bagged, specific value indexing is shown to be

effective.

This improvement also causes the combination of the specific value features and the

generic features to perform much better than either alone. This improvement is demon-

strated in Table 6.7.

Table 6.7: Combining Specific Value and General Features with Bagging of Prevalence Data

Cross Validation Extrapolation

Feature Set TPR (%) FPR (%) TPR (%) FPR (%)

Generic 99.7 0.20 100 0.28

Specific Value 99.6 0.20 93.6 0.55

Generic + Specific Value 99.8 0.10 99.7 0.16

When optimized, specific value indexing can be effective at reducing a portion of the

residual classification error from classification based on general features of PDF documents.

It was determined that using a quantized approach to generating features based on specific

value prevalence is most effective. Also, using bagging during insertion to the specific

value prevalence database allows the classifier to be more robust to typical differences in

documents and perform better when extrapolating to previously unseen data. The challenge

to this approach is that the majority of these values should be relatively easy to modify as
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they are generally coincidental with adding malware to documents.
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Chapter 7: Microsoft Office Document Malware Detection

The ability to detect malware using features based on document structure and metadata

is not unique to the PDF file format. To demonstrate the universality of this approach,

the same methodology is applied to other file formats, particularly the Microsoft Office file

formats. I demonstrate that it is possible to classify both OLE and zip based files using

features derived from these file containers.

7.1 Detection of OLE Based Malware Using Metadata and

Structure

I performed a much less rigorous study using mechanisms similar to PDFrate on the Mi-

crosoft Office (OLE) file format. The same general methodology was applied to the Mi-

crosoft Office file format, including development of metadata extraction techniques, iden-

tification of features (231 were used), and the application of the same statistical learning

routines. The features used for OLE files were similar to that used for PDF but were pe-

culiar to the OLE format. For example, the number and sizes of embedded streams, the

number and type of embedded image files, and the count of embedded fonts and tables are

used as features.

The data set for these preliminary results consisted of 10,000 documents obtained from

a combination of the same sources as the Contagio and operational PDF data sets, but is

compiled without regard for maintaining separation of the two data sources. This data set

is summarized in Table 7.1. The outcome of this testing is shown in Tables 7.2 and 7.3

which show the classification confusion matrix for the internal estimate of error performed

during classifier construction for each facet of classification. The overall classification error

estimate is 0.45% for ben/mal and 1.47% for opp/tar.
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Table 7.1: OLE Data Set Summary

Class Count

benign (ben) 9,592

opportunistic (opp) 352

targeted (tar) 56

total 10,000

Table 7.2: OLE Classification Matrix (ben/mal)

Class Count Count

ben mal

ben 9587 (TN) 5 (FP)

mal 40 (FN) 368 (TP)

Table 7.3: OLE Classification Matrix (opp/tar)

Class Count Count

opp tar

opp 349 (TN) 3 (FP)

tar 3 (FN) 53 (TP)

Similar to PDF documents, it is anticipated that detection rates can be increased

through improvements to the feature extraction and data set compilation. Regardless,

these basic results demonstrate strong promise in classifying OLE files.

7.2 Detection of Zip Based Malware

There are numerous file formats based on the zip container. I studied the ability to classify

various file formats using features from the zip container. Specifically, I studied classification

of Office 2007 OOXML (.docx), Java Archives (.jar), and android packages (.apk).
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7.2.1 Zip File Attributes

Zip files contain a fair amount of metadata about each file contained inside of them. Gener-

ally, they contain information similar to a filesystem such as dates and attributes. Zip files

also contain information related to how the files are compressed, including the compression

type and the version of the zip specification needed to extract the file.

7.2.2 Zip Features

From the few attributes contained in the zip metadata, 99 features were constructed. The

most important features by file type are shown in Table 7.4.

There are a few classes of features that are ranked highly across all zip based file types.

The “file type” predictors are based on the prevalence of several categories of file types

derived from inspection of the extension of the file name. For example “file type img”

indicates the prevalence of various types of images including .gif, .jpg, and .png image

files. The “dir depth” features indicate the prevalence of files at the specified level of the

directory tree in the archive. For example, “dir depth 0” indicates the prevalence in the

root of the zip archive. The “compress ratio” features indicate the prevalence of files whose

compressed size to raw size are below the threshold specified. For example, “compress ratio

20” indicates the prevalence of files whose ratio of compressed size to raw size is between

0% and 20%. The features that end with “first” or “last” indicate relative position of the

first or last file in the archive that contains the indicated attribute. For example, “core.xml

last” indicates if the last file in the archive is named “core.xml”. “extended field” features

indicate the prevalence of specific extended fields.

The effectiveness of these features can be split into two main heads. Many of the features

reflect attributes of the files making up the zip archive. Some of the features are artifacts

of the program used to create the zip archive, which can also be useful for classification.

Most of the features that are useful for classification reveal attributes of the files con-

tained in the zip archives. For example, the features based on file type reveal the type

of files contained in the archive. In the cases of .docx files, the existence of .bin files is
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Table 7.4: Zip File Format Top Features

docx jar apk

file type bin dir depth 0 ext cafe last

compress ratio 20 create version 2.0 type sig last

file type xml compress method store extended field 0xCAFE

extended field 0xA220 dir depth 2 AndroidManifest.xml last

dir depth 0 compress method deflateN compress ratio 100

dir depth 1 file type class dir depth 2

dir depth 3 num dir entries classes.dex last

Content Types.xml last dir depth 1 create version 2.0

compress ratio 60 file type oth dir depth 1

dir depth 2 extended field 0xCAFE compress ratio 40

compress ratio 40 compress ratio 40 file type oth

file type oth ext cafe last file type xml

core.xml last file type xml compress method deflateN

num dir entries dir depth 4 compress ratio 60

compress ratio 80 file type img compress ratio 80

compress method deflateS compress ratio 120 file type img

app.xml last compress ratio 80 num timestamps uniq

compress ratio 120 file type sig compress method store

compress method store num timestamps uniq dir depth 0

file type img compress ratio 60 file type dex

important because dynamic content such as ActiveX content is stored in these files. The

only features that provide definitive information about the content of the files in the archive

is the compression ratio which is a proxy for the entropy or information density of the files.

This is painted with a broad stroke, but does provide the capability to separate highly

compressible data such as text from data that does not compress as well.

These features provide high classification quality based on a relatively small amount of

data and superfluous analysis of the zip archive. The durability against direct evasion of

these features is not well known and can probably only fairly be evaluated with extended

research. However, there are a few reasons why these features are rooted in attributes that

are not completely arbitrary and, therefore, not trivially evaded by an attacker. Typically,

the declared file extension is not to be trusted. In many cases the method of file access

and conventions of the file format may enforce some consistency. For example, the .jar
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Table 7.5: Zip File Classification Result by Type

.docx .jar .apk

ben mal error ben mal error ben mal error

ben 399 16 3.9% 4745 271 5.4% 1780 184 9.4%

mal 26 389 6.3% 163 4853 3.2% 396 1568 20.2%

format generally requires Java class files to be named as .class files to be loaded through the

typical class loading mechanisms. Similarly, the information density of some content may

be difficult for an attacker to normalize. For example, it may be difficult or even prohibitive

to convert malicious code to match the information density of other content, especially if

decoding of the content is not practical because of how the content is used in the exploit.

Some malicious file attributes may be relatively easy for an attacker to mimic. For example,

the tendency of malicious files to have simpler directory structure could be overcome by

an attacker by merely adding superfluous files and directories the malicious archive. If this

additional inert content does not make delivery of the exploit more difficult, then this class

of features may be easy to evade.

7.2.3 Zip Based File Format Classification Evaluation

The effectiveness of the classification for each file type is shown in Table 7.5. The data for

this evaluation is taken from VirusTotal, using equal parts benign and malicious samples.

The results are taken from the Random Forests out-of-bag error estimate.

This demonstrates that just operating on zip features, it is possible to provide surpris-

ingly high accuracy in classifying various zip based file formats. For example, for .docx and

.jar, the accuracy is near 95% and for .apk it is near 85%.

7.2.4 Zip Creator Fingerprinting

Some features derive their utility from how the zip archive is constructed and, therefore,

reflect characteristics of specific archive creation mechanisms or programs. The features

may reflect a known malicious zip archive creator or the features may indicate that a known
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benign creator or set of benign creators was not utilized. The basis of classification is not

then the content in the zip file, but the way the zip file is packaged.

Some zip archive programs create zip files with attributes that allow them to be discrim-

inated. At a high level, this is similar to other forms of software fingerprinting including

OS network stacks, web browsers, and web server software. These include the zip version

attributes, the compression algorithms used, the dates set, permission attributes, various

facets of extended fields, the inclusion or exclusion of specific files, and the order of files in

the archive. Despite all these attributes, many of the zip creators use null, default, or the

same values for these attributes, resulting in the inability to uniquely fingerprint every zip

creator program. However, some generally benign and some generally malicious zip creators

can be successfully identified by the zip files they create.

The following demonstrates a basic .docx file that was created with Microsoft Office as

reported by the zipinfo utility:

-rw---- 4.5 fat 1312 b- defS 80-Jan-01 00:00 [Content_Types].xml

-rw---- 4.5 fat 590 b- defS 80-Jan-01 00:00 _rels/.rels

-rw---- 4.5 fat 17187 b- defS 80-Jan-01 00:00 word/document.xml

-rw---- 4.5 fat 6994 b- defS 80-Jan-01 00:00 word/theme/theme1.xml

-rw---- 4.5 fat 1797 b- defS 80-Jan-01 00:00 word/settings.xml

-rw---- 4.5 fat 1295 b- defS 80-Jan-01 00:00 word/fontTable.xml

-rw---- 4.5 fat 677 b- defS 80-Jan-01 00:00 word/webSettings.xml

-rw---- 4.5 fat 713 b- defS 80-Jan-01 00:00 docProps/app.xml

-rw---- 4.5 fat 641 b- defS 80-Jan-01 00:00 docProps/core.xml

-rw---- 4.5 fat 15148 b- defS 80-Jan-01 00:00 word/styles.xml

Attributes that are strongly characteristic of Microsoft Office zip packaging include the

zip version of 4.5, the use of deflateS zip algorithm, and the date set to the windows epoch.

In contrast, the following excerpt from a malicious .docx file leveraging the cve-2013-3906

shows differences in these attributes:
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-rw---- 4.5 fat 1296 b- defS 80-Jan-01 00:00 word/fontTable.xml

-rw-a-- 6.3 fat 19098 bx defN 13-Mar-23 13:57 word/media/image2.tiff

-rw---- 4.5 fat 1584 b- defS 80-Jan-01 00:00 word/settings.xml

-rw---- 4.5 fat 15542 b- defS 80-Jan-01 00:00 word/styles.xml

-rw---- 4.5 fat 7043 b- defS 80-Jan-01 00:00 word/theme/theme1.xml

-rw---- 4.5 fat 260 b- defS 80-Jan-01 00:00 word/webSettings.xml

-rw-a-- 6.3 fat 6678 bx defN 13-Apr-06 19:48 [Content_Types].xml

-rw---- 4.5 fat 590 b- defS 80-Jan-01 00:00 _rels/.rels

-rw-rw- 2.0 fat 2097088 b- defN 13-Apr-26 16:28 word/activeX/activeX.bin

-rw-rw- 2.0 fat 482542 b- stor 13-Jul-08 04:37 word/activeX/activeX1.bin

Note that the files added/modified to enable the exploit have different zip versions,

varying dates, differences in permissions and attributes, and that the order of the files

([Content Types].xml should be first file) is different than would be the case if this zip was

created with Microsoft Office.

Characteristics that are normally tied to benign or malicious zip archive creators must

be used cautiously, however. Detections based on these characteristics are false negative

prone because not all malicious files necessarily deviate from the norm for benign files. For

example, in the case of malicious .docx files, it was observed that all the files that involve an

exploit have zip packaging characteristics that do not align with Microsoft Office. However,

there were a large number of malicious documents that used macros instead of true exploits.

The majority of these macro based maldocs had zip characteristics consistent with Microsoft

Office with one notable exception being those created with Metasploit. Detections based on

artifacts of the creation program are also false positive prone. While the vast majority of

benign documents are created by Microsoft Office, other applications, such as Libre Office

and Polaris Office, are commonly used to create benign documents that do not match the

zip characteristics of Microsoft Office.

These attributes of zip archive structure that aid classification are superficial. Whether

indicative of differences from benign creators or artifacts left by malware generation tools,
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countering detections based on these attributes would be achieved by mimicking typical or

benign zip archive attributes. This is not particularly difficult. It would be straightfor-

ward to create a utility to modify these attributes by re-creating zip archives with typical

characteristics.

7.3 Discussion

Detection of malfeasance is possible using attributes of zip archives in various zip based

file formats. Classification accuracy can be as high as 95%. However, features of this type

have not been shown to be durable: many should be susceptible to mimicry evasion with

varying degrees of difficulty on the part of the attacker. As such, these features based on

zip attributes could be suitable for inclusion in a classifier considering features from other

sources.
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Chapter 8: Conclusion

8.1 Summary

In this thesis, I sought to defeat exploits through modifications to commonly exploited file

formats. I also studied detection of malicious documents using structural and metadata

features and a machine learning based classifier. Responding to evasion attacks against

PDFrate, I used diversity in ensemble classifiers to identify possible evasion.

I found that document content randomization, where content storage is modified at

the file format level without changing the logical representation, is effective in blocking

many exploits in Office documents. It is possible to randomize the block layout in OLE

files and the encoding method in zip files, mangling exploit data in both document files

and reader memory. This method is employed between document creation and document

opening such that no modifications to the reader program or operating system are required.

The overhead is comparable to signature matching. Document content randomization is

applicable to situations where exploits use improper access to document content.

Recognizing that not all exploits can be prevented, I sought to improve malware detec-

tion rates using a Random Forest based classifier and structural features from documents.

PDFrate provides high classification accuracy including detection of novel malware samples

that evade signature based detectors and separation of targeted attacks from broad based

malware.

Due to the accuracy and availability of PDFrate, it has been the target of numerous

recently published evasion studies. The attacks in these studies employed addition of de-

coy elements (mimicry), minimization of malicious content (reverse mimicry), and feature

extractor subversion. Most attacks against PDFrate cause the classifier voting score dis-

tribution to fall between that of benign and malicious documents, making them easy to
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differentiate as outliers. I introduce mutual agreement analysis, where the level of consen-

sus in the votes from individual trees in the Random Forest is measured. Mutual agreement

in ensemble classifiers serves as an effective estimate of classifier confidence for each pre-

diction. Mutual agreement analysis applies generally to situations in which classifiers are

subject to mimicry attacks and helps optimize retraining.

8.2 Lessons Learned

In this thesis, I learned the following:

Content Randomization Based Exploit Protections Modifications to input data, such

as randomization of content in Office documents, can foil exploits by inducing entropy

in raw file access and reader memory. It is possible to permute data in common file

formats without changing the representation presented to the end user.

Structural Feature Based Malware Detection Machine learning based classifiers can

provide high malware detection rates for files such as PDF documents. A robust

feature set can be extracted from PDF document structure and metadata. Using a

Random Forest classifier, reliable detection of previously unseen malicious documents

can be achieved.

Mutual Agreement Analysis Identifies Classifier Failures Measuring the level of con-

currence in the individual votes in an ensemble provides a measure of confidence of

predictions. Feature bagging is critical to creating the entropy in an ensemble that

provides evasion resistance. Using mutual agreement analysis, most classifier failures

due to novel malware or mimicry attacks can be identified.

8.3 Limitations

I recognize the following limitations in this work:
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Content Randomization Applicability Document Content Randomization is applica-

ble when exploits rely on misuse of document content. The use of document content

in malware is often driven by exploit protections such as ASLR, prohibitions on script-

ing or macros, and obstacles to using externally sourced malware. Office documents

fit these parameters, hence content randomization is found to be effective. I did a

cursory study of PDF documents and found that some have embedded malware that

should be defeated with file level encoding randomization. In many malicious PDFs,

javascript is used for heap sprays and the final malicious executable is downloaded

from an external source.

Exploit Based Attacks This thesis focuses on defeating delivery of malware through ma-

licious documents. I advance malicious document countermeasures that focus on pre-

venting exploitation of vulnerabilities in the reader application. I do not seek to detect

malware propagation that relies on user exploitation. The mechanisms proposed do

not detect macro based malware, which is very common in Office documents, and other

social engineering based attempts to convince users to execute malware contained in

documents. Furthermore, I do not address documents used to exploit human vulnera-

bilities, such as those that instruct users to visit malicious websites or transfer money.

Hence, this thesis is limited to malware that exploits a software vulnerability, and the

mechanisms presented have limited applicability to other forms of malicious content.

Superficial Feature Extractor and Deployment As demonstrated by the Mimicus at-

tacks explained in Section 5.2.1, my feature extractor can be fooled by spoofed doc-

ument artifacts. Approaches that employ more complete parsing could prevent these

forms of evasion. As shown in Section 5.2.3 and Section 5.2.4, limited or incorrect

parsing of documents can cause incomplete feature extraction and can enable classifier

evasion. Also, both my exploit mitigation techniques and malicious document detec-

tors are stand alone systems that operate on documents. These mechanisms require

a system that provides raw files for analysis, such as Laika BOSS 1 which is used

1https://github.com/lmco/laikaboss
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with PDFrate in practice. The mechanisms presented in this thesis require access to

raw document files for operation and rely on effective feature extraction for reliable

detection.

Ground Truth My evaluation relies on knowledge of the classification of a large number of

documents. It is not trivial to determine ground truth for large numbers of documents.

I rely on antivirus engines after a waiting period to determine if documents are benign

or malicious. This is very effective for known malware, but it has been shown that

antivirus engines can fail to detect targeted malware for years [53]. Determining

ground truth for classification as opportunistic malicious or targeted malicious is much

more difficult, as the difference between these two attack groups can be difficult to

define, let alone determine. Very often, the distinction is made using factors loosely

related to the document itself including information in the embedded malware or

patterns in the delivery vector or targeting. The accuracy of my evaluation rests in

the validity of my ability to obtain ground truth on these samples.

8.4 Future Work

Building upon this thesis, the following are topics for future work:

Input Based Exploit Protections Document Content Randomization prevents some ex-

ploits. Other forms of input based exploit protections and additional file formats

should be studied. For example, greater investigation of compression based data

permutations is warranted. Improving file format specific exploit protections using

modifications to the document format or reader program operation is an area of fu-

ture work. For example, designing file formats that facilitate or prevent use of file

content in exploits is a possible research topic.

Structural and Metadata Based Features In this thesis, I demonstrate that the struc-

tural and metadata based approach provides high classification accuracy for PDF files.

I conduct only a limited evaluation on other file formats. Understanding the degree
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to which other file formats are amenable to this technique is a natural extension of

this work.

Combining Structural Features with Other Attributes I advance the use of features

based on structure and metadata in documents. Future work should explore these fea-

tures combined with features taken from sources such as document content, dynamic

analysis, malware delivery infrastructure, and victim specific targeting. Since feature

extractor subversion is major evasion vector, features that indicate extractor failures

is an additional feature type that should be explored.

Mutual Agreement Analysis Refinement Mutual agreement analysis is shown to be

effective through evaluation on evasion attacks against real malware detectors. The

general applicability of mutual agreement analysis could be better demonstrated with

a study of a larger number of evasion attacks on machine learners. A more compre-

hensive comparison with other methods of outlier detection should be performed.

Mutual Agreement Aware Adversarial Learning This thesis demonstrates that mu-

tual agreement analysis is effective at distinguishing contemporary evasion attacks.

Mutual agreement analysis has not been subjected to direct adversarial learning. For

example, the degree to which mutual agreement analysis enables training set poison-

ing should be studied. Mutual agreement analysis will likely be employed to improve

mimicry attacks. Effective evasion of mutual agreement, and countering this evasion,

is an important topic that will likely be addressed in future research.
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Appendix A: Examples of Malicious PDF Structure

Malicious PDF documents present a wide diversity in structure. Presented here are two

distinct malicious documents with large differences in metadata and structure, despite using

the same exploit: CVE-2009-4324. The salient structural elements of these documents, one

targeted malicious and the other opportunistic malicious, are represented in Table A.1 and

Table A.2 respectively.

The targeted document is large (4MB) and was delivered via a targeted email. It was

rated by the classifier as 84.4% malicious and 80% targeted. The targeted document has

many structural elements and attributes, including text content and font objects, that

are superfluous to successful exploitation. Indeed, even the content in these unnecessary

elements, which would not be seen by the user, is inconsistent with the social engineering

used in this attack. Concerning metadata, the targeted document contains PDF ID values,

which is normal. However, these values are the same which indicates that this document was

not modified by a conventional PDF editor, which should change the ID1 value but leave the

ID0 static. Upon successful exploitation of the reader program, the shellcode decrypts and

drops a malicious windows portable executable and a benign PDF document. The existence

of benign document artifacts and the method of embedding the malicious payloads in the

targeted document suggest the author constructed the document from an existing benign

document or document template. Construction was likely performed without a conforming

PDF editor as evidenced by PDFID metadata and invalid streams.

The opportunistic document is very small (2 KB) and was delivered through malicious

web traffic. The classifier assigned a rating of 100% malicious, 0% targeted (100% oppor-

tunistic). This document is minimal in structure. It has only the few structural elements

necessary for obfuscation and exploitation. This document has no valid optional metadata.

However, an object labeled as the “Creator” metadata item houses the bulk of the malicious

content in the document and comprises 70% of the document. Regardless, the “Creator”
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metadata item is not reported by PDF metadata extraction tools. When exploitation oc-

curs, the necessarily small shellcode pulls additional malicious content from the Internet.

Contrasting with the embedding seen in the targeted document, the streams containing the

exploit code must be decoded by the vulnerable reader, so these streams are well-formed.

Table A.1: Example Structure: Targeted

Location Content Description

000000

000020

000040

%PDF-1.5..%......1 0 obj..<</Pag
es 2 0 R /Type/Catalog/OpenActio
n 8 0 R >>..endobj..2 0 obj..<</

PDF header and OpenAction object

which executes javascript when docu-

ment is opened

000140

000160

j..4 0 obj..<</Type/Font/BaseFon
t/Times-Roman/Subtype/Type1>>..e

Font object: Times Roman.

000180

0001A0

...

000390

ndobj..5 0 obj.. <</Length 471/Fi
lter/FlateDecode >>stream..x.U..n

...

....endstream..endobj..6 0 obj<<

(Decoded, extracted raw text):

Financial Reform Puts Republicans

on the Spot
(April 26) -- Even as they lost

today’s Senate vote

Object containing formatted text.

The victim never sees this content.

This content is not consistent with rest

of social engineering used in attack.
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0003E0

000400

000420

.endobj..7 0 obj..<</Type/Font/S
ubtype/Type1/BaseFont/Helvetica/
Encoding/WinAnsiEncoding>>..endo

Font object: Helvetica.

000500

000520

000540

000560

000580

n..trailer..<</Size 9/Prev 01906

97/Root 1 0 R/ID[<5181383ede9472

7bcb32ac27ded71c68><5181383ede94

727bcb32ac27ded71c68>]>>..startx

ref..0..%%EOF..8 0 obj..<</Type

Document trailer and PDF metadata

(PDF IDs). These are likely artifacts
of an existing benign document that

was used in creation of this malicious

document.

0005A0

0005C0

...

0007D0

...

000AC0

/Action /S /JavaScript /JS (..fu
nction re(count, what) {...var v

...

...this.media.newPlayer(sgo);}..

...

..Func8x9();..)..>>..endobj..9 0

Malicious javascript object. This

javascript exploits CVE-2009-4324.
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000AE0

000B00

...

000F80

obj<</Filter /FlateDecode/Lengt

h 1062>>stream..iPh4Code........

...

....endstream..endobj..10 0 obj<

(Decoded, Extracted, and Disassem-
bled shellcode):

jmp short 0x12

pop edx

dec edx

xor ecx,ecx

mov cx,0x40f

xor byte [edx+ecx],0x8e

loop 0xa

jmp short 0x17

call 0x100000002

Object containing purported com-

pressed stream. This stream is not

compressed and contains shellcode.

The excerpt shows a JMP-CALL-POP

sequence followed by an XOR decryp-

tion loop that decodes more shellcode.
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000FA0

000FC0

...

3FF920

</Filter /FlateDecode/Length 114

688>>stream....l.............D..

...

..endstream..endobj..xref..9 4..

(File Extracted and Decrypted using
XOR key of 0xFC, location 000FCD to
0079CD):

Type:

PE32 executable for MS Windows

(GUI) Intel 80386 32-bit

Name:

update.exe

Compiled:

Wed Dec 29 02:37:00 2010

(File Extracted and Decrypted using
XOR Key of 0xFC, location 007A15 to
3FF921):

Type:

PDF document, version 1.5

CreationDate:

D:20110125105603+08’00’

Producer:

PDFlib 7.0.3 (C++/Win32)

PdfID0:

D19C9464650960655B0FB612FD9702E0

PdfID1:

D19C9464650960655B0FB612FD9702E0

(Decoded, extracted raw text):

Rovos rail - Pride of Africa

Object containing purported com-

pressed stream. This stream is not

valid compressed data. The majority

of the stream contains two encrypted

payloads: a PE executable and a PDF

document.

The PE executable is decrypted, in-

stalled on system, and executed. This

malware provides remote access trojan

capabilities.

The PDF document is decrypted and

opened for user. This PDF’s content is

consistent with rest of social engineer-

ing in the attack. When considered in

isolation, this dropped PDF is benign.
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3FF9A0 12>>..startxref ..1092..%%EOF..

End of document.

Table A.2: Example Structure: Opportunistic

Location Content Description

000000 %PDF-1.0..1 0 obj<</Type/Catalog

Document header.

000120

000140

000160

000180

...

000690

>>endobj..7 0 obj..<</Creator 8
0 R>>..endobj..8 0 obj..<</Lengt
h 1299 /Filter /FlateDecode..>>.

.stream..x..Y...(..R.‘...k:.‘..?

...

.........bw...endstream..endobj.

(Deflated and un-escaped to reveal
javascript excerpt):

function a(){util.printd(’p@1111

11111111111111111111 : yyyy111’,
new Date());}var h = app.plugIn

...

d + e;}a();a();try {this.media.n
ewPlayer(null);} catch(e) {}a();

(Further un-escaped to reveal shellcode
excerpt):

t....URLMON.DLL. URLDownloadToFil

eA.pdfupd.exe.crash.php.http://1
11.gosdfsdjas.com/l.php?i=16..

Reference to, definition of object

representing the ”Creator” metadata

item. This object contains a com-

pressed stream. The compressed

stream contains obfuscated javascript

that contains obfuscated shellcode.

The javascript exploits CVE-2009-

4324.

The shellcode downloads more mali-

cious content from the Internet.
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0006B0

0006D0

...

000770

.111611 0 obj<</Filter/FlateDeco
de/Length 142>>..stream..x...J.*

...

a........endstream..endobj..trai

(De-obfuscated by removing comments
to reveal javascript):

var b=this.creator;var a=unescap
e(b);eval(unescape(this.creator.
replace(/z/igm,’%’));

Compressed javascript object. This

obfuscated javascript un-escapes

and executes javascript in ”Creator”

stream above.

000790

0007B0

ler<</Info 7 0 R /Root 1 0 R /Si

ze 11>>

End of document (without %EOF
footer).
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Appendix B: PDF Feature Descriptions

Name Description

author dot Author: Count of dot characters

author lc Author: Count of lower case characters

author len Author: Count of characters

author mismatch Count of differences in author values

author num Author: Count of numeric characters

author oth Author: Count of other characters

author uc Author: Count of upper case characters

box nonother types Count of page sized (A4, letter, etc) boxes

box other only Boxes are all other sized (binary)

company mismatch Count of differences in company values

count aa Count of AA object markers

count aa obs Count of obfuscated AA object markers

count acroform Count of Acroform object markers

count acroform obs Count of obfuscated Acroform objects

count box a4 Count of A4 sized boxes

count box legal Count of legal sized boxes

count box letter Count of US letter sized boxes

count box other Count of other boxes

count box overlap Count of A4-width, letter-height boxes

count docid Count of DocumentID objects

count encrypt Count of Encrypt object markers

count encrypt obs Count of obfuscated Encrypt object markers

count endobj Count of end of object markers

count endstream Count of end of stream markers
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count eof Count of end of file markers

count filter Count of all stream filters

count filter A85 Count of A85 stream filters

count filter AHx Count of AHx stream filters

count filter ascii85 Count of ASCII85Decode filters

count filter asciihex Count of ASCIIHexDecode filters

count filter CCF Count of CCF filters

count filter ccittfax Count of CCITTFaxDecode filters

count filter crypt Count of Crypt filters

count filter dct Count of DCT filters

count filter Fl Count of FL filters

count filter flate Count of FlateDecode Filters

count filter jbig2 Count of JBIG2 Filters

count filter jpx Count of JPX filters

count filter lzw Count of LZWDecode filters

count filter LZW Count of LZW filters

count filter mult Instances streams with multiple filters

count filter obs Instances of obfuscated filter names

count filter RL Instances of RL filters

count filter runlength Instances of RunLengthDecode filters

count font Count of Font object markers

count font obs Count of obfuscated Font object markers

count image large Count of images between 786433 and 12582912

count image med Count of images between 64001 and 786432

count image small Count of images between 4097 and 64000 pixes

count image total Count of image objects

count image xlarge Count of images over 12582912 pixels
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count image xsmall Count of images between 0 and 4096 pixels

count instid Count of InstanceID metadata items

count javascript Count of JavaScript object markers

count javascript obs Count of obfuscated JavaScript object markers

count js Count of JS object markers

count js obs Count of obfuscated JS object markers

count launch Count of Launch objects

count launch obs Count of obfuscated Launch objects

count obj Count of object markers

count objstm Count of object stream markers

count objstm obs Count of obfuscated object stream markers

count openaction Count of OpenAction objects

count openaction obs Count of obfuscated OpenAction objects

count page Count of page markers

count page obs Count of obfuscated page markers

count pdfid0 Count of pdfid0 items

count pdfid1 Count of pdfid1 items

count ref Count of object references

count ref nz Count of non-zero revision object references

count richmedia Count of RichMedia objects

count richmedia obs Count of obfuscated RichMedia objects

count startxref Count of cross reference table markers

count stream Count of stream markers

count stream diff Difference of count stream and count endstream

count trailer Count of trailer markers

count xref Count cross reference table markers

createdate dot Count of dot characters in creation date
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createdate mismatch Count of differences in creation timestamp values

createdate ts Creation timestamp (seconds–unix epoch)

createdate tz Creation timezone (seconds–UTC offset)

createdate version ratio Ratio of creation date to version (days since Jan 1 1993 /
version)

creator dot Creator: Count of dot characters

creator lc Creator: Count of lower case characters

creator len Creator: Count of characters

creator mismatch Count of differences in creator values

creator num Creator: Count of numeric characters

creator oth Creator: Count of other characters

creator uc Creator: Count of upper case characters

delta ts Difference between creation and modification timestamps

delta tz Difference between creation and modification timezones

docid dot DocumentID: Count of dot characters

docid lc DocumentID: Count of lower case characters

docid len DocumentID: Count of characters

docid mismatch Count of differences in DocumentID values

docid num DocumentID: Count of numeric characters

docid oth DocumentID: Count of other characters

docid uc DocumentID: Count of upper case characters

docinstid mismatch Count of differences in DocumentID and InstanceID values

file dot File: Count of dot characters

file lc File: Count of lower case characters

file len File: Count of characters

file mismatch Count of differences in File values

file num File: Count of numeric characters
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file oth File: Count of other characters

file uc File: Count of upper case characters

image mismatch Count of differences in image dimensions

image totalpx Sum of image pixels

instid dot InstanceID: Count of dot characters

instid lc InstanceID: Count of lower case characters

instid len InstanceID: Count of characters

instid mismatch Count of differences in InstanceID values

instid num InstanceID: Count of numeric characters

instid oth InstanceID: Count of other characters

instid uc InstanceID: Count of upper case characters

keywords dot Keywords: Count of dot characters

keywords lc Keywords: Count of lower case characters

keywords len Keywords: Count of characters

keywords mismatch Count of differences in keywords values

keywords num Keywords: Count of numeric characters

keywords oth Keywords: Count of other characters

keywords uc Keywords: Count of upper case characters

len obj avg Average difference between position of obj and next endobj

markers

len obj max Maximum difference between position of obj and next en-

dobj markers

len obj min Minimum difference between position of obj and next endobj

markers

len stream avg Average difference between position of stream and next end-

stream markers
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len stream max Maximum difference between position of stream and next

endstream markers

len stream min Minimum difference between position of stream and next

endstream markers

moddate dot Count of dot characters in modification date

moddate mismatch Count of differences in modification timestamp values

moddate ts Modification timestamp (seconds–unix epoch)

moddate tz Modification timezone (seconds–UTC offset)

moddate version ratio Ratio of modification date to version (days since Jan 1 1993
/ version)

pdfid0 dot PDFid0: Count of dot characters

pdfid0 lc PDFid0: Count of lower case characters

pdfid0 len PDFid0: Count of characters

pdfid0 mismatch Count of differences in PDFid0 values

pdfid0 num PDFid0: Count of numeric characters

pdfid0 oth PDFid0: Count of other characters

pdfid0 uc PDFid0: Count of upper case characters

pdfid1 dot PDFid1: Count of dot characters

pdfid1 lc PDFid1: Count of lower case characters

pdfid1 len PDFid1: Count of characters

pdfid1 mismatch Count of differences in PDFid1 values

pdfid1 num PDFid1: Count of numeric characters

pdfid1 oth PDFid1: Count of other characters

pdfid1 uc PDFid1: Count of upper case characters

pdfid mismatch pdfid0 different from pdfid1 (binary)

pos acroform avg Average normalized positions of page markers (% of size)

pos acroform max Normalized position of last acroform marker (% of size)
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pos acroform min Normalized position of first acroform marker (% of size)

pos box avg Average normalized positions of box markers (% of size)

pos box max Normalized position of last marker (% of size)

pos box min Normalized position of first box marker (% of size)

pos eof avg Average of normalized positions of last EOF marker (% of
size)

pos eof max Normalized position of last EOF marker (% of size)

pos eof min Normalized position of first EOF marker (% of size)

pos image avg Average normalized positions of image markers (% of size)

pos image max Normalized position of last image marker (% of size)

pos image min Normalized position of first image marker (% of size)

pos page avg Average normalized positions of page markers (% of size)

pos page max Normalized position of last page marker (% of size)

pos page min Normalized position of first page marker (% of size)

pos ref avg Average of position of object references

pos ref max Position of last object reference

pos ref min Position of first object reference

producer dot Producer: Count of dot characters

producer lc Producer: Count of lower case characters

producer len Producer: Count of characters

producer mismatch Count of differences in producer values

producer num Producer: Count of numeric characters

producer oth Producer: Count of other characters

producer uc Producer: Count of upper case characters

ratio imagepx size Ratio of image totalpx to size

ratio size obj Ratio of count obj to size

ratio size page Ratio of count page to size
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ratio size stream Ratio count stream to size

ref max id Highest numerical value of object references

ref min id Lowest numerical value of object references

size Size of document (bytes)

subject dot Subject: Count of dot characters

subject lc Subject: Count of lower case characters

subject len Subject: Count of characters

subject mismatch Count of differences in subject values

subject num Subject: Count of numeric characters

subject oth Subject: Count of other characters

subject uc Subject: Count of upper case characters

title dot Title: Count of dot characters

title lc Title: Count of lower case characters

title len Title: Count of characters

title mismatch Count of differences in title values

title num Title: Count of numeric characters

title oth Title: Count of other characters

title uc Title: Count of upper case characters

url dot Title: Count of dot characters

url lc Title: Count of lower case characters

url len Title: Count of characters

url mismatch Count of differences in URL values

url num URL: Count of numeric characters

url oth URL: Count of other characters

url uc URL: Count of upper case characters

version PDF version as extracted from header
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Appendix C: Copyright

Much of the material, both text and graphics, in this dissertation was published previous to

inclusion in this work. The material appearing in previously published copyrighted works

is duplicated here by permission of the respective copyright holders denoted below.

Some of the content in this thesis, especially that in Chapter 3 was published in [101].

Copyright Springer International Publishing Switzerland 2015

http://link.springer.com/chapter/10.1007/978-3-319-26362-5 11

Some of the content in this thesis, especially that in Chapter 4 was published in [100].

Copyright 2012 ACM

http://doi.acm.org/10.1145/2420950.2420987

Some of the content in this thesis, especially that in Chapter 5 was published in [102].

Copyright 2016 Internet Society

http://dx.doi.org/10.14722/ndss.2016.23078
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Železný, editors, Machine Learning and Knowledge Discovery in Databases, number
8190 in Lecture Notes in Computer Science, pages 387–402. Springer Berlin Heidel-
berg, 2013.

[18] Battista Biggio, Igino Corona, Blaine Nelson, Benjamin I. P. Rubinstein, Davide
Maiorca, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli. Security Evaluation of
Support Vector Machines in Adversarial Environments. In Yunqian Ma and Guodong
Guo, editors, Support Vector Machines Applications, pages 105–153. Springer Inter-
national Publishing, 2014.

[19] Dionysus Blazakis. Interpreter Exploitation. In WOOT, 2010.

[20] Stevens Le Blond, Adina Uritesc, Cédric Gilbert, Zheng Leong Chua, Prateek Saxena,
and Engin Kirda. A Look at Targeted Attacks Through the Lense of an NGO. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 543–558, San Diego, CA,
2014. USENIX Association.

[21] Stephen Bradshaw. The Grey Corner: Omlette Egghunter Shellcode.
http://www.thegreycorner.com/2013/10/omlette-egghunter-shellcode.html, October
2013.

[22] D. Brumley, P. Poosankam, D. Song, and Jiang Zheng. Automatic Patch-Based
Exploit Generation is Possible: Techniques and Implications. In Security and Privacy,
2008. SP 2008. IEEE Symposium on, pages 143–157, 2008.

147



[23] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht, and Mu Zhang. Extract
Me If You Can: Abusing PDF Parsers in Malware Detectors. In 21th Annual Network
and Distributed System Security Symposium (NDSS), February 2016.

[24] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Ma-
chines. http://www.csie.ntu.edu.tw/ cjlin/libsvm/, May 2011.

[25] Xiaobo Chen. ASLR Bypass Apocalypse in Recent Zero-Day Exploits.
http://www.fireeye.com/blog/technical/cyber-exploits/2013/10/aslr-bypass-
apocalypse-in-lately-zero-day-exploits.html, October 2013.

[26] Deepak Chinavle, Pranam Kolari, Tim Oates, and Tim Finin. Ensembles in Ad-
versarial Classification for Spam. In Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM ’09, pages 2015–2018, New York,
NY, USA, 2009. ACM.

[27] Corelan Team. Exploit notes-win32 eggs-to-omelet.
https://www.corelan.be/index.php/2010/08/22/exploit-notes-win32-eggs-to-
omelet/, August 2010.

[28] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and Analysis of
Drive-by-download Attacks and Malicious JavaScript Code. In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, pages 281–290, New York,
NY, USA, 2010. ACM.

[29] G.F. Cretu, A. Stavrou, M.E. Locasto, S.J. Stolfo, and A.D. Keromytis. Casting out
Demons: Sanitizing Training Data for Anomaly Sensors. In Security and Privacy,
2008. SP 2008. IEEE Symposium on, pages 81–95, 2008.

[30] Jesse S. Cross and M. Arthur Munson. Deep PDF Parsing to Extract Features for
Detecting Embedded Malware. Technical Report SAND2011-7982, Sandia National
Laboratories, September 2011.

[31] CrowdStrike. Crowdstrike Intelligence Report: Put-
ter Panda. http://cdn0.vox-cdn.com/assets/4589853/

crowdstrike-intelligence-report-putter-panda.original.pdf, 2014.

[32] Mark Daniel, Jake Honoroff, and Charlie Miller. Engineering Heap Overflow Exploits
with JavaScript. In Proceedings of the 2Nd Conference on USENIX Workshop on
Offensive Technologies, WOOT’08, pages 1:1–1:6, Berkeley, CA, USA, 2008. USENIX
Association.

[33] Theo de Raadt. OpenBSD 3.3 Release Notes. http://www.openbsd.org/33.html, May
2003.

[34] John P. Donaldson. Source Fingerprinting in Adobe PDF Files. PhD thesis, Naval
Postgraduate Schoo, Monterey, California, USA, December 2013.

[35] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A Survey on
Automated Dynamic Malware-analysis Techniques and Tools. ACM Comput. Surv.,
44(2):6:1–6:42, March 2008.

148



[36] Manuel Egele, Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna.
COMPA: Detecting Compromised Accounts on Social Networks. In NDSS, 2013,
2013.

[37] Manuel Egele, Peter Wurzinger, Christopher Kruegel, and Engin Kirda. Defend-
ing Browsers against Drive-by Downloads: Mitigating Heap-Spraying Code Injection
Attacks. In Ulrich Flegel and Danilo Bruschi, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, number 5587 in Lecture Notes in Computer
Science, pages 88–106. Springer Berlin Heidelberg, July 2009.

[38] Jose Miguel Esparza. PDF Attack: A journey from the Exploit Kit to the shellcode,
July 2013.

[39] FBI. Update on Sony Investigation. https://www.fbi.gov/news/pressrel/press-
releases/update-on-sony-investigation, December 2014.

[40] FBI Internet Crime Complaint Center. Criminals Continue to Defraud
and Extort Funds from Victims Using CryptoWall Ransomware Schemes.
http://www.ic3.gov/media/2015/150623.aspx, June 2015.

[41] Paul Ferguson. Observations on Emerging Threats. 2012.

[42] Fireeye. APT28: A Window into Russia’s Cyber Espionage Opera-
tions? https://www.fireeye.com/blog/threat-research/2014/10/apt28-a-window-into-
russias-cyber-espionage-operations.html, October 2014.

[43] Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: formal
reasoning and practical techniques. In Proceedings of the 13th ACM Conference on
Computer and Communications Security, pages 59–68, Alexandria, Virginia, USA,
2006. ACM.

[44] Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt. Bringing Science
to Digital Forensics with Standardized Forensic Corpora. Digit. Investig., Digital
Investigation, Volume 6:S2–S11, September 2009.

[45] Alexandre Gazet. Comparative analysis of various ransomware virii. Journal in Com-
puter Virology, 6(1):77–90, July 2008.

[46] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich,
Kirill Levchenko, Panayiotis Mavrommatis, Damon McCoy, Antonio Nappa, Andreas
Pitsillidis, Niels Provos, M. Zubair Rafique, Moheeb Abu Rajab, Christian Rossow,
Kurt Thomas, Vern Paxson, Stefan Savage, and Geoffrey M. Voelker. Manufacturing
Compromise: The Emergence of Exploit-as-a-service. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages 821–832, New
York, NY, USA, 2012. ACM.

[47] Vinny Gullotto, Joe Faulhaber, Jeffrey Friedberg, Jeff Jones, Jimmy Kuo, John Lam-
bert, Ziv Mador, Mike Reavey, Adam Shostack, George Stathakopoulos, Scott Wu,
and Jeff Williams. Microsoft Security Intelligence Report volume 5. Technical report,
October 2008.

149



[48] Mark Handley, Vern Paxson, and Christian Kreibich. Network Intrusion Detection:
Evasion, Traffic Normalization, and End-to-End Protocol Semantics. In 2001 USENIX
Security Symposium, pages 115–131, 2001.

[49] Seth Hardy, Masashi Crete-Nishihata, Katharine Kleemola, Adam Senft, Byron
Sonne, Greg Wiseman, Phillipa Gill, and Ronald J Deibert. Targeted threat index:
Characterizing and quantifying politically-motivated targeted malware. In Proceed-
ings of the 23rd USENIX Security Symposium, 2014.

[50] Cormac Herley. The Plight of the Targeted Attacker in a World of Scale. In WEIS,
2010.

[51] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix Freiling. Mea-
surements and Mitigation of Peer-to-peer-based Botnets: A Case Study on Storm
Worm. In Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emer-
gent Threats, LEET’08, pages 9:1–9:9, Berkeley, CA, USA, 2008. USENIX Associa-
tion.

[52] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D.
Tygar. Adversarial machine learning. In Proceedings of the 4th ACM workshop on
Security and artificial intelligence, AISec ’11, pages 43–58, New York, NY, USA, 2011.
ACM.

[53] Mikko Hypponen. Why Antivirus Companies Like Mine Failed to Catch Flame and
Stuxnet. http://www.wired.com/2012/06/internet-security-fail/, June 2012.

[54] iSIGHT Partners. NEWSCASTER - An Iranian Threat Inside Social Media. Technical
report, May 2014.

[55] S. Jana and V. Shmatikov. Abusing File Processing in Malware Detectors for Fun
and Profit. In 2012 IEEE Symposium on Security and Privacy (SP), pages 80–94,
May 2012.

[56] Jiyong Jang, David Brumley, and Shobha Venkataraman. BitShred: feature hashing
malware for scalable triage and semantic analysis. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, pages 309–320,
New York, NY, USA, 2011. ACM.

[57] Georgios Kakavelakis, Robert Beverly, and Joel Young. Auto-learning of SMTP TCP
Transport-Layer Features for Spam and Abusive Message Detection. In LISA 2011,
25th Large Installation System Administration Conference, Boston, MA, USA, De-
cember 2011. USENIX Association.

[58] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal Shankar,
Rekha Bachwani, Anthony D. Joseph, and J. D. Tygar. Better Malware Ground Truth:
Techniques for Weighting Anti-Virus Vendor Labels. In Proceedings of the 8th ACM
Workshop on Artificial Intelligence and Security, AISec ’15, pages 45–56, New York,
NY, USA, 2015. ACM.

[59] M. Kanter and S. Taylor. Attack Mitigation through Diversity. In MILCOM 2013 -
2013 IEEE Military Communications Conference, pages 1410–1415, November 2013.

150



[60] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering Code-
injection Attacks with Instruction-set Randomization. In Proceedings of the 10th
ACM Conference on Computer and Communications Security, CCS ’03, pages 272–
280, New York, NY, USA, 2003. ACM.

[61] Jesse Kornblum. Identifying almost identical files using context triggered piecewise
hashing. Digital Investigation, Digital Investigation Volume 3, Supplement:91–97,
September 2006.

[62] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of Diversity in Classifier
Ensembles and Their Relationship with the Ensemble Accuracy. In Machine Learning,
volume 51, pages 181–207, May 2003.

[63] Pavel Laskov and Richard Lippmann. Machine learning in adversarial environments.
In Machine Learning, volume 81, pages 115–119, August 2010.

[64] Pavel Laskov and Nedim Srndic. Static detection of malicious JavaScript-bearing
PDF documents. In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC ’11, pages 373–382, New York, NY, USA, 2011. ACM.

[65] F. Li, A. Lai, and D. Ddl. Evidence of Advanced Persistent Threat: A case study of
malware for political espionage. In Malicious and Unwanted Software (MALWARE),
2011 6th International Conference on, pages 102 –109, October 2011.

[66] Haifei Li, Stanley Zhu, and Jun Xie. RTF Attack Takes Advantage of Multiple Ex-
ploits. http://blogs.mcafee.com/mcafee-labs/rtf-attack-takes-advantage-of-multiple-
exploits, April 2014.

[67] Wei-Jen Li, Salvatore Stolfo, Angelos Stavrou, Elli Androulaki, and Angelos D.
Keromytis. A Study of Malcode-Bearing Documents. In Bernhard Hämmerli and
Robin Sommer, editors, Detection of Intrusions and Malware, and Vulnerability As-
sessment 2007, volume 4579, pages 231–250. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2007.

[68] Zhichun Li, M. Sanghi, Yan Chen, Ming-Yang Kao, and B. Chavez. Hamsa: fast
signature generation for zero-day polymorphic worms with provable attack resilience.
In 2006 IEEE Symposium on Security and Privacy, pages 15 pp.–47, May 2006.

[69] Daiping Liu, Haining Wang, and A. Stavrou. Detecting Malicious Javascript in PDF
through Document Instrumentation. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 100–111, June 2014.

[70] Davide Maiorca, Davide Ariu, Igino Corona, and Giorgio Giacinto. A Structural and
Content-Based Approach for a Precise and Robust Detection of Malicious PDF Files.
In Proceedings of the 1st International Conference on Information Systems Security
and Privacy, pages 27–36. ScitePress Digital Library, 2015.

[71] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at the bag is not enough
to find the bomb: an evasion of structural methods for malicious PDF files detection.
In Proceedings of the 8th ACM SIGSAC symposium on Information, computer and

151



communications security, ASIA CCS ’13, pages 119–130, New York, NY, USA, 2013.
ACM.

[72] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A Pattern Recognition System
for Malicious PDF Files Detection. In Proceedings of the 8th International Conference
on Machine Learning and Data Mining in Pattern Recognition, MLDM’12, pages 510–
524, Berlin, Heidelberg, 2012. Springer-Verlag.

[73] William R. Marczak, John Scott-Railton, Morgan Marquis-Boire, and Vern Paxson.
When Governments Hack Opponents: A Look at Actors and Technology. In Proceed-
ings of the 23rd USENIX Security Symposium, pages 511–525, 2014.

[74] Joshua Mason, Sam Small, Fabian Monrose, and Greg MacManus. English Shell-
code. In Proceedings of the 16th ACM Conference on Computer and Communications
Security, CCS ’09, pages 524–533, New York, NY, USA, 2009. ACM.

[75] Dan Mcwhorter. APT1: Exposing One of China’s Cyber Espionage Units, 2013.

[76] Eitan Menahem, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Improving malware
detection by applying multi-inducer ensemble. In Computational Statistics & Data
Analysis, volume 53, pages 1483–1494, February 2009.

[77] Microsoft. Compound File Binary File Format. https://msdn.microsoft.com/en-
us/library/dd942138.aspx.

[78] David Moore, Colleen Shannon, and k claffy. Code-Red: A Case Study on the Spread
and Victims of an Internet Worm. In Proceedings of the 2Nd ACM SIGCOMM Work-
shop on Internet Measurment, IMW ’02, pages 273–284, New York, NY, USA, 2002.
ACM.

[79] Tyler Moore, Richard Clayton, and Ross Anderson. The Economics of Online Crime.
The Journal of Economic Perspectives, 23(3):3–20, August 2009.

[80] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin I. P.
Rubinstein, Udam Saini, Charles Sutton, J. D. Tygar, and Kai Xia. Exploiting ma-
chine learning to subvert your spam filter. In Proceedings of the 1st Usenix Workshop
on Large-Scale Exploits and Emergent Threats 2008, pages 7:1–7:9, Berkeley, CA,
USA, 2008. USENIX Association.

[81] J. Neyman. Outline of a Theory of Statistical Estimation Based on the Classical
Theory of Probability. Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 236(767):333–380, 1937.

[82] Nir Nissim, Aviad Cohen, Robert Moskovitch, Asaf Shabtai, Matan Edri, Oren
BarAd, and Yuval Elovici. Keeping pace with the creation of new malicious PDF
files using an active-learning based detection framework. Security Informatics, 5(1),
December 2016.

[83] OpenOffice.org. The Microsoft Compound Document File Format.
http://www.openoffice.org/sc/compdocfileformat.pdf.

152



[84] V. Pappas, M. Polychronakis, and AD. Keromytis. Smashing the Gadgets: Hindering
Return-Oriented Programming Using In-place Code Randomization. In 2012 IEEE
Symposium on Security and Privacy (SP), pages 601–615, May 2012.

[85] Mila Parkour. 11,355+ Malicious documents - archive for signature testing and
research. http://contagiodump.blogspot.com/2010/08/malicious-documents-archive-
for.html, April 2011.

[86] PaX Team. PaX address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[87] Niels Provos, Moheeb Abu Rajab, and Panayiotis Mavrommatis. Cybercrime 2.0:
When the Cloud Turns Dark. Commun. ACM, 52(4):42–47, April 2009.

[88] Moheeb Abu Rajab, Lucas Ballard, Noé Lutz, Panayiotis Mavrommatis, and Niels
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