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KGL: A LANGUAGE FOR LEARNING

Abstract

In real-life datamining endeavorsthe extractionof importantknowledgemay require many
trials and errors, and multiple executionsof different sequence®f datamining operations.
Such applicationsmay pose a variety of tasks, for example, determining a characteristic
descriptionor a discriminant description of given classesof entities, optimizing an initial
hypothesisaccordingto a costfunction, determiningthe most relevant attributesfor a given
task, selectingthe most representativeexamplesfrom a large example set, conceptually
clusteringcasednto classespredictingthe classmembershipf a new example,generatinga
decisionstructure automaticallydetermininga learning curve etc. The applicationof these
sequences of programs can be time-consuming, laborious, and error prone.

In response to these challenges, importantfor machinelearningto developa methodology
for integrating diverse learning strategies so that a learning system cangffesaat learning
tasks and acquire differekinds of knowledge,dependingon the problemat hand. We have
developed a high-level language, called KGL, in which a data analyptaradata-miningand
knowledge discovery experimentsusing various operators for performing learning and
discoverytasks. The presentedapproachimplementsa range of learning and knowledge
processing programss KGL operators. Using KGL, a usercanspecifya planfor applying
these operators in a flexible and interdependsartnerin pursuitof a desirablesolution. The
methodology and language are illustrated by a problem of detelgimggraphia@andeconomic
patterns from a database 10 countries. The resultsshow a greatpotentialof the proposed
approach for data mining.
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1 INTRODUCTION

One of machinelearning’s modernchallengess to integrate many different strategiesin a
single system so that the system can pudsifierent learningtasksand acquiredifferent types
of knowledge dependingon the problem at hand. This calls for the developmentof
multistrategy systemsthat can call upon diverse learning methods and/or representation
strategies in the processlearning(Michalski and Tecuci, 1991, 1993; Michalski and Wnek,
1996). The idea of multistrategylearningis particularly interestingfor the task-oriented
exploration of large data bases in real-world applications.

Among the tasksthat may be called upon by these applicationsare such processesas
determining aharacteristic descriptiomf a single classof entities,determininga discriminant
descriptionof several classes of entities in the context of other classeditsgs,optimizingan
initial hypothesis accordintp an objectivefunction (that may seek,for example,a maximally
simple or minimum cost description), determining niestrelevantattributesfor a given task,
selecting the most representativeexamplesfrom a very large example set, conceptually
clusteringcasesdnto classespredictingthe classmembershipf a new example,generatinga
decision structurée.g., a tree), and automaticatkgtermining a learning curve

The central problenm developinga multistrategylearningsystemis how to integrateand use
the different strategies itme pursuitof giventasks. In the caseof applyingsucha systemto

data exploration ankinowledgediscovery,the issueis whatkind of strategiedo applyto the

dataunderwhich conditions,and in which order. One major difficulty in building sucha

multistrategy system is how to apply individsélategiesand knowledgeprocessingperators
in a flexible and mutually dependent wa, that a desiredsolution canbe obtained. Another
difficulty is to determine which newly generated results should be regarded as useful.

In the lastfew yearswe havebeendevelopingthe INLEN systemfor multistrategylearning
and data explorationbasedprimarily on the methodsand techniquesdevelopedin machine
learning. INLEN (Michalski et al, 1992) integrates a rangenofvledge generatiooperators
many of which representdifferent programs originally developedfor use in stand-alone
machine learning applications. These operatorscan be viewed as different knowledge
transmutationsas defined in the Inferential Theory of Learning (Michalski, 199)e useof
these operators allows a user to discover general patterns, trends or exaeplabathat may
not be apparent through simple observatidihe resultsof applyingtheseoperatoramay also
suggestthe selectionof a subsequenset of experimentshat may otherwisenot have been
noticed.

INLEN makesit easyfor the userto apply various operators,but the application requires
explicit decisionsby the userat every step. The disadvantagef this approachis that the
analyst may need to inspect the resulteaifhstepof the processn orderto determinewhich
operator to apply next. This process can be laborious and time-consuming, and thevdihalyst
be very prone to errors.

There may exist rules abontrol suitably generalthat they can be appliedto a large proportion
of knowledgediscoverydomains,and henceembeddedwithin a discovery system. Other
control rules may be momomain-andtask-dependentindividual usersmay havetheir own
collection ofnecessaryepeatingtasksto performon the data. It is thereforeimportantthata
user can articulate desiresand expertiseto such a multistrategy system, beyond serial
invocations of the basic operators, in such a way that the system can pedependentiyfor
lengthy sequences of actions.

In responsewe have developedKGL-1, a prototype high-level languagefor knowledge
discovery that has been implemented in the INLEN-3 version. The languagethkayserto
createplans for guiding the systemthrough various contingencies. Such a language, if



versatileenough,will allow the userto write simple programsto accomplishvery complex
tasks. These programs may be executed once, periodically or on the occurrenceesfestme
such as an infusion of new information into a databasieequerceptionof somepatternin the
data or discovered knowledge.

This research attempts to identify metaknowledge for operator control that carfaéakesuch
as “If a certaircondition is satisfiedby a datasebr the currentassociatedypothesesapply
the following sequencef oper ator s with the following parameters.” For example,in a
domain inwhich the databaseés continuouslybeing updated a rule may be usedsuchas, “If

more than 3% of the recordsin the databasehave been modified or addedsince the last
application of this rule, test the knowledge b#secontinuedapplicability to the new data. If

its degreeof matchfalls below a 90% threshold,apply incrementallearningto improve the
knowledge, and analyze the records that do not match the original rakssftdhey shareany
interesting common bonds.”

In general, the requirements of such a high-level language for learning include:

* Invoking different types of programs for learniagd knowledgediscoveryas
single operators.

» Looping and branching abilities similar to those found in programming
languages.

» Discrimination among the different attributesthe database.The usershould
be able to classify the attributes into groups based on importancentypeer
of legal values,etc. With sucha feature,the usermay specify “partial grand
tours” of the database, such as “Use the Set Differentiation operaenerate
afull setof classificationrules usingall nominal attributeswith fewer than 5
legal values as decision variables.”

 Discrimination among the different rules, rulesets, decistacturesgetc. that
make up a domain’s knowledge base. For instaheajsershouldbe ableto
select rules based on complexity, strength, typicality, etc.

» Data-drivencontrol strategiesfriggeredby changeso a databasebeyond a
given threshold level Among the patternsthat mustbe detectableare missing
values and conflicts with the existing knowledge base.

» Knowledge-driven control strategigsiggered,for example by the discovery
of especiallystrong patternsor exceptions. The program must be able to
examine a piece of discovered knowledge and identify sortie attributesof
the knowledge itself.

2 KNOWLEDGE GENERATION OPERATORS IN INLEN

The generaldesign of the INLEN-3 version of the systemfor multistrategylearning and
discoveryis shownin Figure 1. The systemconsistsof a relational databasefor storing
known facts about a domain, aadknowledgebasefor storingrules, constraintshierarchies,
decision trees, equations accompaniedwith preconditions,and enabling conditions for

performingvariousactionson the databaseand/orknowledgebase. To be able to perform
operationsthat require both data and knowledgewith ease,the conceptof a knowledge
segmenthas beenintroduced (Kaufman, Michalski and Kerschberg,1991). Knowledge
segmentsare usedfor passingresultsfrom one operatorto anotherand to the user. One
research issue addressed in INLEN'’s development has been hoplémentand utilize such
knowledge segments.

The structure of the knowledgebase and its relationship with the KGL-1 languageare
discussed in the following section.
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The purposefor integratingthe abovecapabilitiesis to provide a userwith a set of advanced
toolsto searchfor and extractusefulknowledgefrom a databaseto organizethat knowledge
from different viewpoints, to test this knowledgeon a set of facts, and to facilitate its

integration within the original knowledge base. Thesetools in INLEN are known as
knowledge generation operatqisGOs), which aralesignedo complemenbne another,and

to be capable of performing many typedearning. Theseoperatorsallow a userto discover
general patterns,trends or exceptionsin data that may not be apparentthrough simple
observation. The resultsof applying these operatorsmay also suggestthe selectionof a

subsequent set of experiments that may otherwise not have been nStiseeimswith similar

integrated multi-operatorarchitecturesnclude KEPLER (Wrobel et al, 1996) and DBMiner

(Han et al, 1996).

Knowledge
Management
Operators

Manggéiwent D B > K B

Operators

Knowledge

Generation
Operators

Figure 1. High-level architecture of INLEN

INLEN-3 is a prototypesystem,whosefocusis on tool integrationcapabilitiesand testing of
the design. As aresult,someof the knowledgegeneratioroperatordMichalski et al, 1992)
have yet to be implemented within INLEN. Below are listed the classgseoatorsnvhich are
part of INLEN-3, organized by category:

GENRULE: Generate Rules

Operators irthe GENRULE classtake someform of dataand/orknowledgeas an input, and
returna rulesetconsistingof facts inducedfrom the input examples. They differ from one
another in the type of rules generated (characteristic or discriminant).

GENSTRUCT: Generate Decision Structures

Operatoran the GENSTRUCTclasstake someform of dataand/orknowledge(i.e., either
training examplesor a ruleset)as an input, andreturna decisionstructure(possibly, but not
necessarilya decisiontree; Michalski and Imam, 1994; 1997) outlining the procedurefor
discriminating between classes.

GENHIER: Generate Conceptual Hierarchies

The GENHIER operator creates hierarchies of objects through conceptual clustering.

GENEQ: Generate Equations
The GENEQ operator creates equations characterizing sets of qualitative and quantitative data.



TRANSFORM:  Transform Knowledge

The TRANSFORM operators perform basic inferential transformatarisrowledge, suchas
abstraction/concretizatiowith respectto structuredattributes (attributes whose values are
explicitly organized into an abstraction hierarchy; see Kaufman and MichHE®€6) and (real-
valued) numeric attributes, and optimization of preliminary hypotheses.

GENATR: Generate Attributes

The GENATR operators map relational tablesdiationaltableswhoserows are the samebut
whose columns have been changed,either by the addition of new attributes (through
constructive induction) or by the removal of old ones (through selection).

GENEVE: Generate Events

The GENEVE class covers a wide varietyopkeratorghat generatea setof tuples,eitherasa
subsetof an existingrelationaltable,or from the entire eventspaceto which a table’s tuples
belong.

TEST: Test Knowledge

The TEST operator determines the performance of a rulesesetof exampledy testingthe
input knowledgefor consistencyand completenessvith regardto a set of classified input
examples. The output analysis includes numerical weights indicative qiidhty of the input
knowledge. The primary output table is in the form obafusionmatrix, i.e. a matrix whose

(i,j)th element shows how well thid example matched the rules for clpss

Prior versionsof INLEN madeit easyfor the userto apply the different operators,but their
applicationrequiredexplicit decisionsby the userat everystep. Most of theseoperatorsare
based on complex machine learning programs that may require the speciotaionmberof
parameters to reflect accurately the nature and constraints of the probignadafor complex
andlarge databasegheir executionmight take a considerablemountof time, and generatea
considerable amount of output for analysiherefore the risks of errorsandinefficiency are
augmented for such tasks.

To addressthis problem, the idea of developinga very high-level languagefor planning
experimentsn INLEN hasbeenproposed. This paperbriefly introducesto the language,
called KGL, that has been implementedNLEN, and presentexamplesof its applicationto
the problem of demographic pattern discovery.

3 KNOWLEDGE BASE ORGANIZATION AND ACCESS IN INLEN AND
KGL

Generated knowledge ideakgrvesmany purposes. It may containdeclarativeor procedural
knowledgeon which decision-makingcanbe based. It may contain equationsfor reference
and deductivereasoning. It may contain organizationalbackgroundknowledgeto define
relationshipsamong different concepts. And it may contain referencesto examplesof

concepts, whether as representative, exception@the basisfor the generatiorof someother
knowledge.

In orderthatthe input and outputinformationrequirement®of INLEN’s knowledgebaseand
the programsthat makeup its knowledgegeneratioroperatoranay be met, the designof the
knowledgesegmentis critical. The knowledge base must be able to integrate knowledge
representedh the different forms describedabove. Structuresneedto be designedthat can
representthe information stored by each of these knowledge types, support interactions
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between them, and allow the various operators, including the meta-operators takingntbe
a KGL program, to extract what they need from the knowledge base.

As a result, the rules in INLEN’s knowledge base have evolved the following syntactic

structure:

Referent :

Relation SymbolRe!):
Reference:

Condition:
Condition Weights:

Weighted Condition:

(Weighted) Description:

Rule Weights:

Example Keys:
Rule:

Class Ruleset:
Ruleset:

Session:

An attribute, or several attributes linked by (internal)
conjunction or disjunction

=, <>, >, <, >, 0 <=

A legal value of the attribute(s) comprising the
associated Referent, an (internal) disjunction, or a
range of such Values

[<Referent> Rel> <Reference>]

Numerical information indicating the number of
datapoints (training examples) of the positive and
negative classes satisfying a given relation

<Condition> <Condition Weights>

a conjunction of (Weighted) Conditions

Numerical information characterizing a Description,
e.g., number of training examples satisfying the
Description

Identifiers of individual training examples satisfying an
associated Description

An implication, <Description> => <Condition>,
annotated by Rule Weights and Example Keys

a set of Rules with the same consequent Condition

a set of Class Rulesets, whose consequent Conditions
share the same Referent attribute

A learning session, defined by a timestamp, input
dataset, and output Ruleset

An exampleof arule in this schemajs shownin Figure 2, extractedfrom a rulesetderived
from the 1993 CentralintelligenceAgencyWorld Factbook. The countriesof the world had
beendivided into classedasedon their fertility rate,with the lowest classdescribingthe 42
countrieswith fertility rateslessthan 2 per 1000 population. One of the discoveredrules
characterizinghis classand also differentiatingit from countrieswith higher fertility rates
described16 countries,including Andorra and Antigua. It consistedof eight conditions
including one,'Birth Rateis betweenl0 and20,” thatdescribedall 42 low-fertility countries
and only 20 others.

Fertility < 2 per 1000 population if: (42 examples)

Pos Neg

A.1. [Birth Rate is 10..20] 42 20
2. [Religion is R. Catholic or Orthodox or Anglican or Shintd}4 31

3. [Infant Mortality Rate <= 40] 41 54

4. [Population Growth Rate is 3..4 or <= 1] 32 56

5. [Literacy >= 70] 35 71

6. [Life Expectancy = 60..80] 41 92

7 [Death Rate = 5..15] 42 102

8. [Net Migration Rate >= -10] 42 140

16 Examples covered: Keys = Andorra, Antigua, Austria, Belgium, .

Figure 2. A rule in INLEN’s knowledge base, as presented to the user
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The presentedruleis madeup of a consequenCondition [Fertility < 2], the Rule Weights
indicating 16 examplessatisfyingthe rule’s Description out of 42 training examplesin the
Fertility < 2 class,the ExampleKeysof the 16 countriesthat satisfy the Description andthe
Descriptionconsistingof eight WeightedConditions The first of the WeightedConditions
consistsof the ReferentBirth Rate, the Relational Symbol=, the Referencerange 10..20,
positiveWeight42, and negativé/eight20.

The structureof the rulesandrulesetsdescribedabovecanrepresentvery complexfunctions
and conditions without difficulty andt the sametime, canbe easily interpretedconceptually.
Consequentlythis descriptionlanguage which is basedon the ideasof the variable-valued
logic languagevLl (Michalski, 1973) and AnnotatedPredicateCalculus (Michalski, 1983),
has a very high descriptive power as well as cognitive simplicity.

This schema leads to a natural division of a rule base into subunits, each describagtolby
pertinent statistics (Ribeiro, Kaufman and Kerschberg, 19858)exampleof this structureis
shown in Figure 3. The applicationof an operator (an individual learning Sessioh is
associatedvith an input dataset, the time at which it was run, and a set of output Class
Rulesets Each of these Class Rulesets can be associatetheittassof objectsit describes,
statistics on the training sets associated with it, and the indiiRilliesthat makeup the Class
Ruleset. The Rules aessociatedvith the training exampleghat satisfiedthemthroughRule
Weightsand ExampleKeys and also with the individual WeightedConditions within the
Rules. The knowledge segmentscorrespondingto these Weighted Conditions can be
associateavith the Condition statementind the variouspertinentCondition Weights,suchas
the number of positive and negative training examghlassatisfyit. In this format, INLEN’s
knowledge base stores a set of decision rules.

Figure 4 shows an instantiation of this architecture - a knowlsegeentrom which the rule
shown in Figure 2 was derived.

Session Class Ruleset Rule Condition
| | |
Timestamp Class Name Conditions 1 gtor;dltlont
%%?:ig) nt Rules — # Examples # Igoesrirt]if/g
cl asseslk | # Examples Example Keyp # Negative
Figure 3. Knowledge organization for a decision ruleset.
Session Class Ruleset Rule Condition
| | |
970115 11:32 Pty =2 per Conditions BR = 10 .. 20
Fertility Rate 1000 population 16 Examples 42 Positive
Classes = | Rules —] Andorra, 20 Negative
42 Examples Antigua, ...

Figure 4. Exemplary instantiation of the schema presented in Figure 3

The KGL interpreter is abl® extractdetailsfrom the knowledgebaseasrequestedso that it
may respond to queries for elements in the knowledge base such as:

» The conditionsin rules for the class Fertility < 2 whose positive example
coverage outnumber their negative example coverage by at least a 2 to 1 ratio.

* Rules for any concept (not only Fertility) that are satisfied botArmorraand
Antigua.



* Rules that include the condition Birth Rate = 10 .. 20.

4 DESIGN OF THE KNOWLEDGE GENERATION LANGUAGE KGL

4.1 Basic Structure of KGL

The primary goal in the designof the knowledgegenerationlanguageKGL is the ability to
interactwith INLEN dataand knowledgebasesto a degreeat leastequivalentto INLEN'’s
capabilities in interactive modeSimplicity of implementationwas often chosenover elegance
of the language. As such, the first versionof KGL is a command-basethnguagewhose
constructs take on the form <verb> <object> <parameters>.

The conceptuponwhich the languages basedinclude the condition-rulestructuredescribed
in the previous section. Other data structures utilized by KGL include:

Datatable: A tablewhosefirst row consistsof a list of attributesand whosesubsequentows
correspond to object descriptions in terms of these attributes, edemeow describes
one object.

Classifieddatatable: A datatabledivided to threesetsof columns:one setis associatedvith
independentttributes,anotherwith dependentattributes,and the third with object
identifiers.

Objectdescription: A setof attribute-valuepairs characterizinga given object or situation; a
row in the datatable containing values of independent attributes.

Example: An ordered triple consisting of a unique identifiekéy), an objectdescription,and
the name of the class to which example belongs; a row in a classified datatable.

Knowledge generation operatoA learningor otherform of knowledgeprocessingorogram
that, given a datatableand a parameterset, generatesan output that representshe
desired knowledge (in the form of a ruleset, a datatablepr a combinationof both)
with characteristics defined by the parameter set.

Parameterset (Params) of an operator: A set of parameterghat specify how to run a
knowledgegeneratioroperator. Eachoperatorhasa default set of parametersyhen
Paramsis not includedin the argumentist of the operatoror a particularparameters
omitted from the parameter set, the operator will apply the default parameters.

Among the knowledge structures utilized by KGL are:

Characteristicdescription(of a class): A characterizatiof the examplesof a given classin
terms of the defined attributesand the values presentin the class examples. The
description takes the form of a Class Ruleset.

Discriminant description(of a classagainsta given set of examplesor classes): A Class
Ruleset such that each example of the target class satidBastone of its component
Rules, while none of the examplesto be discriminatedagainstsatisfy any of those
Rules. Thus, it is a set of Rules to distinguish one set of examples from another.

Conceptualclustering (of a datatable): A transformationof an unclassifieddatatableinto a
classified datatable (through the creation of a new attribute representing the
classificationand a collectionof ClassRulesetsgachClassRulesetis a characteristic
description of the examples of one of the created classes.



4.2 Knowledge Processing Operators supported by KGL

This section describes the knowledge processing operators thaenmwpked by KGL calls.
It should be noted that thesedescriptionsare functional ones; the KGL syntax will differ
slightly. For example,in the operatorCHAR(Datatable Class, Params),Datatabledoesnot
need to be specified; KGL automatically uses the one currently in use.

CHAR(DatatableClass,Params) Characterizea setof entitiesof a given classin the given
datatablg(i.e., build a characteristiadescription),usingthe given parametergo guide
the characterization process.

DIFF(Datatable, Class, Negative Examples, Parani3ifferentiate entities of the given claiss
the given datatabldrom the setof negativeexampledtypically but not necessarilyall
examplesof other classesn the datatable)using the given parameterdo guide the
differentiation process.

SELECT(Entities, Datatable, Params3elect components, specifiby entities(an expression
defining the entitiesto be selectedsuchasexamplegrows), attributes(columns),or
both), of the given datatable to be selected according to the criteria spegiffedams,
andthusform a smallerdatatablehatis a subsetof the original one. The parameters
may be deterministic(e.g., “selectthe first 50 rows”) or basedon the result of some
dataanalysis(e.qg., “selectthe 5 columnscorrespondingo the attributesthat will be
most useful in differentiating between the values of a given dependent attribute).

TEST(Datatable, Ruleset, Param3)est the knowledge contained in the givelesetagainsta
set of testing examplesprovided in the given datatable,using the given testing
parameters. Report on the ruleset’s consistency and completeness.

PREDICT(Ruleset-xample,Params) Predictthe classof the given examplebasedon the
given rules and inference parameters.

Currentlyunderdevelopmentor KGL arethe following operatorsfor generatingconceptual
clusters and for generating decision structures.

STRUCT(Input, Params)Generatea decisionstructurefor classificationbasedon the input,
which may be a classifieddatatableor a ruleset,anda set of parametergo guide the
operator’s search.

CLUSTER(DatatableRParams) Conceptuallyclusterthe rows of the datatableinto classes,

guided by the parameter set. Return the clasgil@atableand characterizationsf the
created classes.

4.3 Commands Supported by KGL

The following commands are supported in KGL-1:

assign:  Assignment operator - can take either of two forms: assign <variable>
<expression>or <variable> = <expression> In either form it assignsto the
variablethe result of the evaluationof the specifiedexpression. The expression
may be a string, a constant, the name of a variable, @x@ressiorcombiningany
of those forms with numerical, relational, logical, or functional operators.

begin/end:Delineators of a block of commands

display: Taking the form display <expressionlist>, this command writes the values
specified by the expression list upon the screen.
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do: Taking the form do <operator>(<argument list>), this command invokes a
knowledge generation operator, using the given set of arguments.

for: Performsa block of commandsa certainnumberof times. It takesthe form: for
<variable> = <min> to <max> followed by the block to be repeated.

forall: Performsa block of commandsupon each referencedobject (e.g., a rule or
condition) that satisfiesthe given criteria. It takesthe form: forall <object_type>
(<criteria>) followed by the block to be performed.

if: Teststhe condition following the if for veracity. If it is true, perform the next
block. Optionally, that block may be followed by an else commandto indicate a
block to be performed if the condition is not true.

open: Selects the active data table.
print: Identical to the display command, except output is written to an output file.
while: Teststhe conditionfollowing the while for veracity, and repeatedlyperformsthe

next block as long as the condition remains true.

5 EXEMPLARY PROBLEM: LEARNING DESCRIPTIONS AND
PATTERNS IN A LARGE DATABASE OF COUNTRIES

5.1. A KGL Program for Analyzing the PEOPLE Database

This problem is concerned with searchindedabas@f 190 countriesfor patternsyegularities
andexceptions. The datasetwas extractedfrom the World Factbook’sPEOPLE datatable.
This data table consists of characteristics of d@@htriesin termsof nine attribute-valuepairs
per country. The attributesrepresenthe country’s populationgrowth rate (PGR), birth rate
(BR), deathrate (DR), infant mortality rate (IMR), net migration rate (NMR), fertility rate
(Fert), life expectancyLE), literacy percentag€Lit), and predominantreligion (Rel). Each
attributehasbetween5 and 7 values,with the exceptionof predominantreligion, which has
31.

The following samplesof KGL codeillustrate someof the language’scapabilities. The code
describes a plan for determining the relationships between the diff¢t@dmtites. Specifically,
it searchegor strongrelationshipsin the characterizationsf the different concepts tries to
improve knowledgethat doesnot meetdesiredquality standardsanalyzesthe makeupof a
ruleset, and explores the relationship between two records in the database.

The first section of codéSamplel) generatesn initial rule baseby characterizinghe classes

of each attribute in terms of the other attributes, and then chantsnany PopulationGrowth
Ratecharacterizationare “strong” basedon three metrics: rules that are satisfiedby at least

60% of the training examples of their target class, rihlaare satisfiedby at least25 training
examples of their target class, and rules that contain at least three conditions that arebgatisfied
at least 10 positive example§ the targetclass,and by fewer negativeexampleghan positive
examples.

Sampl e 1
open PEOPLE {Select the PEOPLE database}
do CHAR(decision=all, pfile=peoplel.Irn) {Characterize all concepts
using parameters specified
in file peoplel.lrn}
strongPGrulesl = #rules(PGR, %covd >= 60) {Count the strong PGR rules}
strongPGrules2 = #rules(PGR, num_covd >= 25) {based on three metrics}
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strongPGrules3 = #rules(PGR,
num_conds(supp >= 50 and pos > 10) > 2)
print “Number of strong PGR rules: Type 1 =",
strongPGrulesl, “, Type 2 =,
strongPGrules2, “, Type 3 =, strongPGrules3

The learning stageof the above code’s executionproduceda set of characterizationsf the
relationships between each concept (attribute clageeiREOPLEdatabasendthe remaining
attributes. Each condition in the characterizations is assoeigted weights:the numbersof
positive and negative examples that satisfy the conditiorgahéition’s supportlevel (defined
by Pos/ (Pos+ Neg)), andthe condition’s commonalitylevel, defined as the percentageof
examples of the targetassthat satisfythe rule. Two examplesof the hundredsof generated
characteristic descriptions are presented below:

(1) Countries with 1993 Population Growth Rate < 1%: (55 Examples)
Pos Neg Supp Comm
1. Birth Rate <= 30 per 1000 population 53 52 50 96
2. Death Rate = 10 .. 15 per 1000 population 21 21 50 38
3. Life Expectancy = 60 .. 80 years 54 79 40 98

Number of Examples Covered: 21

Examples:  Antigua, Austria, Barbados, Belgium, Croatia, Czech Republic,
Denmark, Estonia, Germany, Hungary, Latvia, Lithuania,
Moldova, Monaco, Norway, Romania, Russia, St. Kitts, Sweden,
Ukraine, United Kingdom

(2) Countries with 1993 Population Growth Rate > 4%: (4 Examples)

Pos Neg Supp Comm
1. Net Migration Rate >= 10 per 1000 population 4 5 44 100
2. Predominant Religion = Muslim or Buddhist or Indigenou$é 34 10 100
3. Life Expectancy = 60 .. 80 years 4 117 3 100

Number of Examples Covered: 4
Examples: Cambodia, Kuwait, Mozambique, United Arab Emirates

The firstrule doesnot qualify asa strongPopulationGrowth rule by any of the threecriteria
defined in the program, while the second rule qualifies under the first criterion— it desdiribes
four of the countries witlPopulationGrowth Rateover 4 per 1000 population. The program
reports to the user the number of strong Population Growth Rate rules it found of each type:

Number of Strong PGR rules: Type 1 =1, Type 2=1, Type 3 =7

Sample2 determinesvhetherthe characterizatiorof Fertility Rateis too complex, basedon
how many conditionsare present. If it is too complex,the programwill selectthe four best
attributes for characterizing Fertilifgate (basedon maximumdiscrimination),projectthe data
table on these attributes into data table PEOPLEZ2, and generate new characterizationly from
these attributes.

Sanmple 2
if #conditions(Fert) > 150 {Is Fert ruleset too}
begin {complex?}
do SELECT (attributes, decision=Fert, {find 4 best independent}
thresh=4, out=PEOPLEZ2, criterion=max) {attributes}
do CHAR(pfile=peoplel.Irn, decision=Fert) {recharacterize}

end

The programdeterminedthat the rulesetfor Fertility Rate was too complex basedon the
specified criterion (the total number of conditions present was 157 in the initial
characterization), so the besattributesfor learningFertility Rateconceptsvere selectedand
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new characterizations were built. The system repdhiedesultsof this selectionof attributes
to the user:

Selection of best attributes from PEOPLE for concept Fert --
Attributes chosen:

Birth Rate

Predominant Religion

Life Expectancy

Death Rate

After the new rulesetwas learnedbasedonly on theseattributes,the numberof conditionsin
the characterization of Fertility Rate had been reduced to 120.

In Sample3 the KGL programinspectsthe Infant Mortality Rate rulesetfor spuriousrules
(defined as rules covering fewer than 10% of the training examples in their class). thamore
10 suchrules exist, relearnthe rulesetin discriminant mode with a more stringent search
(scope=5) and report the change in the number of values referenced in the IMR ruleset.

Sanple 3
spuriousIMrules = #rules(IMR, %covd < 10) {Check for spurious Infant
Mortality rules}
if spuriousIMrules > 10 {If too many exist}
begin
print “Relearning IMR in Discriminant
mode”
print “Old # of references:”, {note prior number of}
#references(IMR) {references in the ruleset}
do DIFF(decision=IMR, scope=5) {learn discriminant rules}
print “New # of references:”, {update number of}
#references(IMR) {references}

end
else print “Characteristic rules
adequate for IMR”

{otherwise inform user}

The programfound an unacceptablewumberof spuriousrules for Infant Mortality Rate. It
reported this fact and then relearned the rules as as requested:

Relearning Infant Mortality in Discriminant mode
Old number of references: 591
New Number of References: 326

In Sample4, the KGL programis askedto analyzethe Life Expectancyrulesetin two
regards—the number of conditiomsthe individual rules and the numberof conditionsin the
ruleset with positive/negative coverage ratios exceeding various given thresholds.

Sanmple 4
fori=1to06 {For each value of i from 1}

begin {to 6}

print “Number of LE rules with”, i, {count and display humber}
“conditions =", {of rules with that many}
#rules(LE, num_conds() = i) {conditions}

print “Number of LE conditions with P/N {and number of conditions}
ratio of at least”, i, “:1 =", {with a pos/neg ratio}
#conditions(LE, supp = 100 or {exceeding i:1}
pos / neg >=i) {The support=100 condition}

end {avoids divide-by-0 trouble}

The analysisof the Life Expectancy(LE) rules indicatesthat most have between3 and 5
conditions, and that the drop in numieérconditionsexceedinga given positive/negativeatio
appears to approximate a smooth curve:
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Number of LE Rules with 1 conditions = 0

Number of LE Conditions with P/N ratio of at least 1:1 = 25
Number of LE Rules with 2 conditions = 1

Number of LE Conditions with P/N ratio of at least 2:1 = 10
Number of LE Rules with 3 conditions = 10

Number of LE Conditions with P/N ratio of at least 3:1 =5
Number of LE Rules with 4 conditions = 5

Number of LE Conditions with P/N ratio of at least 4:1 =1
Number of LE Rules with 5 conditions = 7

Number of LE Conditions with P/N ratio of at least 5:1 = 1
Number of LE Rules with 6 conditions = 2

Number of LE Conditions with P/N ratio of at least 6:1 = 1

Sample 5 is based on an earlier experiment with INLEN (Kaufman, 1994), in whichvarkes
learned from countries selected as representative of their regions, anthéraountrieswere
testedagainstthoserulesto seehow well theyfit the patternsfound for their region,and for
otherregions. Oneof the reportedresultswas that Canadaseemedo resemblemore closely
the developed countries of East Asia than it did the United States.

One effect of a ruleset for a class consisting of multiple rules iswlagxampleghat satisfy a
particularrule arelikely to have more in commonthan two examplesin the sameclassthat
requiredifferent rulesto characterizéhem (the partition of the elementsf a classby a setof
rules can be seenas a form of clustering). Thus, one way of measuringwhether the
similarities between two countries such as Canada and Japan (who slsareg¢bkassin 6 of
the 9 PEOPLE rulesets, i.e., they share the satuefor 6 of the 9 attributes)are superficial
or very significantwould be to count the rules that cover both countries,as opposedto the
rules that onlycoverone of them. This is very easyto do in KGL; the samplebelow counts
the rules satisfiedby both Canadaand Japan,andthe rules satisfiedby both Canadaand the
Republic of Korea (with whom Canada shares the same class in 8 of the 9 PEOPLE rulesets).

Sanple 5
total Canada=0 {initialize counters}
num_match_Japan =0
num_match_Korea =0
fori=0to 8 {For each decision}
begin {attribute ...}
forall rules(i, covers(“Canada”)) {... For each rule covering}
begin {Canada}
total_Canada = total_Canada + 1 {update total counter}
if covers(“Japan”) {if Japan is also covered}
begin
num_match_Japan = num_match_Japan + 1 {update match counter}
print var_name(i), “matches Japan” {report to user}
end
if covers(“Republic_Korea”) {if South Korea is also}
begin {covered}
num_match_Korea = num_match_Korea + 1 {update match counter}
print var_name(i), “matches Korea” {report to user}
end
end
end
print (“Total matching: Japan =*,
num_match_Japan, “, Korea = “,
num_match_Korea {summarize}

The output from Sample 5 is summarized by this line:
Total matching: Japan = 1, Korea =7
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It is surprising that out of all the generatedrules satisfied by Canada,only one (a
characterizatiorof countrieswith birth ratesbetweenl0 and 20 per 1000 population)is also
satisfied by Japan. Meanwhile, only once when Canada and the Republic ofucoeéa the
same class did the rule generation operatoclassify themtogetherundera singlerule. The
result indicatesthat the demographiccommonalitiesbetweenthose two countriesare very
strong in spite of their geographic differences.

6 SUMMARY AND FUTURE WORK

The presentedhethodologysupportsthe planningof learningexperimentsnvolving a variety
of learning and knowledge processingprograms. This is accomplishedthrough the
employmentof a high-level language KGL, which can accessoperatorscorrespondingto
these programs. KGL allows the user to write simple progthatsanexecutevery complex
learning and knowledge processing tasks.

KGL is modeledin part after commonprogramminglanguagesand in part after database
guery languagessuchas SQL. A KGL usercan accesgools for such tasks as inductive
learningfrom examplesfeatureselection knowledgetesting,and prediction of missing data
basedon providedor discoverecknowledge. The languageenablesboth the presentatiorof
results tothe userandthe useof theseresultsas a springboardo further discoverytasks. It
allows the usereasyinteractionand communicatiorwith the programof the needsrelating to
the current applicationlt is not difficult to enhancehe languageby addingnew operatorsor
functions, and that is being done as new needs are recognized.

The KGL methodology takes a middle road in teohevel of systemautonomy—itdoesnot
fully automatethe processnor doesit requirethe individual invocationof every operatorby
the user (as is commonly the casenachinelearningpractice,including in earlierversionsof
INLEN). Instead,the high-level languageallows the userto passgeneralguidelinesto the
programwhich canthenexecutethe appropriateoperators. Hence,this approachproducesa
real synergy between the user and the system in generating knowledge.

In its current form, KGL has several limitations. The presented version is a vergmestil
unpolished solution, designed less for elegance than for the chance to prove its fealiislity.
planned that the implementation of this methodology will be refined and advanced in the future.

The greatesstrengthof the methodologyis its ability to integrateandinvoke diverselearning

and knowledgeprocessingoperatorsand createa powerful environmentfor experimentsin
searchingor solutionsto practicallearninganddiscoverytasks. It is designedo serveas a

novel and useful solution for implementing multistrategy learning capabilities. The
experiments done so far are very promising, and indicate that the proposed methodolegy can
of very high practical utility.
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