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ABSTRACT 

DIGITAL TWIN ANALYTICS; LIFE-CYCLE MODELING OF STRUCTURES FOR 

PRESENT AND FUTURE CONDITION ASSESSMENT 

Sara Mohamadi, Ph.D. 

George Mason University, 2021 

Dissertation Director: Dr. David Lattanzi 

 

 

The evaluation of structural systems is a necessary task in order to maintain the integrity 

of structures over time. These assessments are designed to detect damages of structures 

and ideally help inspectors to estimate the remaining life of structures. Current 

methodologies for monitoring structural systems, while providing useful information about 

the current state of the structures, are limited in the monitoring of structural defects over 

time and linking them to predictive simulation. A digital twin (DT), as defined here, 

integrates monitoring observations and geometric survey data with numerical simulations 

in order to provide depictions of life-cycle performance. The objective of this research is 

to propose an integrated framework that supports digital twin modeling of structures. Two 

main aspects of DT model are studied in this dissertation. First, tracking the evolution of 

remotely sensed defects, along with linking them to numerical simulation is studied in 

order to provide structural performance characteristics over time. Second, integrating 
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survey information from various data sources is investigated. In the first section, remotely 

sensed defects are parametrized using feature extraction techniques, and a stochastic 

dynamic model is then adapted to features to model their evolution over time. Then the 

future state of defects is predicted through the dynamic model. Later, the Finite Element 

Model of structural components is linked to the future state of defect for predictive 

simulation. In the second section, results from multiple non-destructive evaluation (NDE) 

techniques are integrated and used as input in a machine learning classifier to provide a 

feature-level data fusion of NDE measurements. This integrated framework supporting the 

life-cycle modeling of structural defects provides more reliable forecasting capabilities and 

a more comprehensive understanding of structural performance, which improves decision-

making processes for asset management. The accuracy, effectiveness, adaptability, and 

feasibility of the presented framework was evaluated with sets of synthetic and laboratory 

scale data. 
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CHAPTER ONE: INTRODUCTION 

Motivation 

Structural systems evolve over time and permanent damages can occur. These 

changes could be due to changes in material property, geometry shape and boundary 

conditions, all of which affect the performance of structural systems and possibly cause 

system failure. Unpredicted structural failure can lead to catastrophic, economic, and 

human loss of life. Structures must therefore undergo assessments to evaluate their 

condition and integrity. There have been significant studies in recent decades on improving 

Structural Health Monitoring (SHM) techniques and methods (Sartor Richard R., Culmo 

Michael P., and DeWolf John T. 1999; Shull 2002). The focus of these studies was on non-

destructive structural changes and damage identification, as well as on the reliability and 

safety of monitored structures (Catbas, Gokce, and Gul 2012; Sohn et al. 2002). These 

assessments are based either on visual inspection with the combination of advanced sensors 

to identify global changes in structural properties (Comisu et al. 2017; Klikowicz, Salamak, 

and Poprawa 2016) or on advanced non-destructive evaluation (NDE) techniques to 

identify local damages in structures (Clifton and Carino 1982; Hellier 2001; Chang Peter 

C. and Liu S. Chi 2003). These NDE methods are becoming more popular among 

researchers and engineers for the rapid evaluation of structures through the development 

of software technologies (Verma, Bhadauria, and Akhtar 2013). In addition to immediate 
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structural evaluation, these assessments are designed to detect damage in structures and 

provide information on their safety and reliability, and ideally help engineers to estimate 

the remaining life of structures.  In the current practices, engineers collect a lot of data 

during the structural life cycle. The diversity of data collected through these assessments 

is not easily correlated and there are uncertainties about damage identification or 

quantification in the NDE results. Most survey data are not structured in a way that explains 

the structure's life cycle performance and the data sources are usually not consistent during 

the structure's life cycle. As a result, it is challenging to quantitatively evaluate how survey 

information evolves over time and perform predictive analysis regarding the future 

condition of the structure. Developments in life-cycle modeling would provide more 

accurate and robust information about the condition of structures. This would eventually 

lead to improved decision-making processes for system asset management, which has 

apparent safety and financial advantages.  

In a variety of fields, the Digital Twin (DT) concept has been studied as means of 

addressing these challenges, especially in the field of aerospace engineering(Glaessgen and 

Stargel n.d.; Cerrone et al. 2014; Tuegel et al. 2011). A digital twin of a structure, as defined 

here, is a virtual model of a structure that incorporates monitoring observations and 

geometric inspection data with numerical simulations to characterize life-cycle 

performance. Through digital twin modeling, observed damage patterns such as section 

loss and cracking could be quantitatively parameterized, so that their evolution can be 

tracked over time and future states can be predicted. This approach not only provides an 
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assessment of the current state of the structure, but also evaluates its integrity and improves 

resilience in the future. 

 The aim of this research is to develop an integrated framework to support the DT 

modeling of structures. This dissertation considers two aspects of DT systems: 1) dynamic 

modeling of defects and predictive finite element modeling (FEM) and 2) fusion of 

multiple data sources. These two aspects of modeling are simplified and shown in Figure 

1.1. First life cycle modeling of remotely sensed defects, which are presented as point cloud 

data, is studied. Point cloud data that are geometric representation of defects are used 

because they can serve as a consistent record of the state of a structure at a given inspection 

interval and provide a basis for finite element analysis, among other uses (Khaloo and 

Lattanzi 2019; Ghahremani Kasra et al. 2018). These defects are parametrized using feature 

extraction techniques, and then stochastic dynamic models are adapted to model their 

evolution over time. The future state of defects is then predicted through the dynamic 

model. Consequently, a predictive analysis with regard to the future condition of the 

structure can be carried out by linking the evolution of defects to a numerical simulation, 

which ultimately helps to provide a complete representation of structural performance and 

integrity over time. 
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Figure 1.1. The proposed framework for DT modeling: a) life cycle modeling of defect and predictive FE 

modeling and b) fusion of multiple NDE results. 

 

 In the second part, fusion of multiple NDE results are studied. Results from various 

advanced NDE techniques are fused first to make a combined result, and then the fused 

results are an input to machine learning algorithm for defect detection.  

There are many potential advantages in this integrated framework that support DT 

modeling. First, it provides engineers with an intuitive and consistent representation of 

survey information over the life cycle of structures. Remotely sensed defects are 

numerically parameterized, their evolution are modeled and linked to the remaining 

structural life cycle. Tracking the evolution of damage in structural performance results in 
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more reliable forecasting capabilities and a more complete understanding of structural 

performance, compared to existing NDE techniques, which often do not quantify damage 

evolution over time. And, by linking the DT model to numerical structural models, the 

effect of current damage on future conditions and capabilities can be better understood. In 

addition, fusion of multiple data sources can lead to more accurate defect detection. 

Features from multiple data sources are extracted and integrated into a combined data set. 

This combined data set is then an input to machine learning classifier to perform feature 

fusion and defect detection. Overall, data fusion has a measurable and positive impact on 

defect detection performance for both corrosion assessment and generalized defect 

detection in digital twin systems.  

 

Dissertation Organization 

Each chapter starts with an introduction and contains some common sections: 

literature review and research gap, proposed algorithms and methodology, experiments, 

results and conclusions. It is worth mentioning that the majority of the dissertation contents 

were peer-reviewed and published in the form of technical journal papers before 

dissertation submission (Mohamadi and Lattanzi 2019; Mohamadi, Lattanzi, and Azari 

2020). The content is as follows: 

Chapter Two 

Chapter Two begins with a discussion about the current state of structural systems 

monitoring. It provides a background to modern approaches for evaluating structural 

integrity and introduces some of the limitations and unaddressed questions in this field. It 
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presents the research overview and the proposed approach to address the introduced 

limitations. It also provides the authors contribution to this field.  

Chapter Three 

Chapter three is a self-contained paper which presents a novel methodology to 

parameterize remotely sensed defects and model the evolution of such defects over their 

life cycle. The convex hull parametrization is proposed for characterization of geometrical 

defects and time-series models are applied for modeling purpose. Through modeling the 

evolution of defects, their future state is forecasted. The accuracy, completeness, 

adaptability, and feasibility of the developed method were thoroughly tested through 

synthetic and laboratory experimental data.  

Chapter Four 

Chapter four is the draft of self-contained paper which introduces finite element 

model updating of structural components with regard to their future state of defects. This 

chapter specifically studies finite element model updating of structural components with 

regard to their existing crack under fatigue load. An existing crack is identified and its 

propagation under fatigue load is modeled using the proposed approach in chapter three. 

Then the future state of crack extension is predicted. The predicted crack extension is then 

linked to the solid model of component and the numerical model is updated consequently. 

A core component of the methodology is an approach to evaluate performance of the 

structural component in the future through linking its finite element model to the crack’s 

evolution. The developed methodology was experimentally validated on experimental 

fatigue test data and may expand to real-world infrastructure systems in the future. 
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Chapter Five 

Chapter five is a self-contained paper which provides a data fusion of multiple NDE 

data sources. A wavelet-based approach is used to extract statistically relevant features 

from NDE Waveforms, and a non-parametric machine learning approach is applied to the 

fusion of NDE data features. Also, a novel visualization schema is proposed for 

representing the fused results and measurement uncertainty. The accuracy, adaptability, 

and feasibility of the developed method were tested using a laboratory experimental dataset 

from FHWA. 

Chapter Six 

Chapter six summarizes and outlines the findings and results of the developed 

frameworks explained. Contributions to the body of knowledge are also identified. 

Additionally, this chapter provides limitations of the overall research and potential research 

avenues for future work. 

 

 

 



8 

 

CHAPTER TWO: BACKGROUND AND RESEARCH OVERVIEW 

Current Civil Structures Monitoring and Evaluation Challenges 

In order to maintain the safety and integrity of structures, it is necessary to develop 

a reliable and effective non-destructive damage identification techniques. This fact has led 

researchers to investigate a wide range of NDE techniques and to develop methodologies 

for evaluating their results in a way that supports decision-making strategies on the 

integrity of structures. Currently, a wide range of NDE techniques are used for in-situ 

evaluation of structures and damage identification. Some of these techniques (e.g. sonic 

testing and magnetic particles) require in field assessments or cannot provide quantitative 

results (Ryan et al. 2012). 

Beside those techniques, survey data can be stored for later analysis and 

interpretation (e.g. acoustic wave emission, ultrasonic testing). In addition to the 

development of NDE techniques, there is a growing number of studies on the use of 

geospatial imaging technologies such as LiDAR or photogrammetry to provide new 

sources of survey information. These remote sensing technologies have enabled the 

generation of highly accurate 3D point cloud models, which can be used to measure defects 

(Khaloo and Lattanzi 2019; Jafari, Khaloo, and Lattanzi 2016; Cabaleiro et al. 2014; 

Colomina and Molina 2014). Regardless of the monitoring technique, these data must be 

interpreted for immediate evaluation, characterizing structural defects and eventually 

helping engineers to estimate the structure’s remaining life. While current practices 
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provide safe operating conditions and immediate assessment of structures, they have a 

limitation in contributing to the long-term monitoring of structures.  

Using state-of-the-art NDE methods, crack can be identified and located using 

vibration-based methods (Fan and Qiao 2011; Doebling et al. 1996; Gudmundson 1982), 

large cracks and voids in concrete and corrosion and cracks in steel can be identified and 

located using ultrasonic tests(Sharma Shruti and Mukherjee Abhijit 2011; Aranguren et al. 

2013; Rens Kevin L. and Greimann Lowell F. 1997). Acoustic wave techniques can also 

be used to identify and locate imperfections such as the initiation of crack and the growth 

rate of fatigue cracks and corrosion (Sagar and Prasad 2012), to classify crack modes in 

concrete(Aggelis 2011; Ohno and Ohtsu 2010; Ohtsu et al. 2002) and to quantify the 

severity of damage(Zaki et al. 2015; Yoon Dong-Jin, Weiss W. Jason, and Shah Surendra 

P. 2000; Behnia, Chai, and Shiotani 2014). Furthermore, it is possible to detect and locate 

hidden and subsurface defects using radiographic tests(Nassr Amr A. and El-Dakhakhni 

Wael W. 2009; McCann and Forde 2001) and electromechanical method such as ground 

penetration radar(Chen Dar Hao and Wimsatt Andrew 2010). Finally, using remote sensing 

technologies (i.e. photogrammetry), crack identification and localization(Tsao Stephen et 

al. 1994; Kaseko Mohamed S., Lo Zhen‐Ping, and Ritchie Stephen G. 1994), detected crack 

quantification(Jahanshahi et al. 2013),(Khaloo and Lattanzi 2019) and surface corrosion 

detection(Siegel and Gunatilake 1998) are feasible. While these studies have 

demonstrated the ability to identify damages and to assess the condition of structures, 

they are limited in their long-term contribution to structural assessment. They focus 

mainly on improving the accuracy of defect measurement from a single survey 
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technique, rather than linking it to complete system assessment. To date, efforts have not 

been made to model these measured changes/defects as time-dependent phenomena. 

Another limitation is that there is usually uncertainty in the detection of damage. 

For example, cracks detected using inspection videos are usually based on one single 

images (video frame). The detection of cracks in these videos is challenging because there 

are a large number of small cracks with low contrast and different brightness on the 

surfaces, and if there is no other data source supporting the existence of cracks in the 

structure, the result may be inaccurate due to falsely detected cracks (F.-C. Chen et al. 

2017). Or for the evaluation of concrete strength by ultrasonic pulse, which is the most 

commonly used technique, there are intrinsic factors that can interfere with the NDE test 

results(Jain et al. 2013) such as the concrete mixture of four materials. This complexity 

highly irregularizes the behavior of ultrasonic waves in concrete, which in turn hinders 

non-destructive testing. 

To address this, recent studies of data fusion techniques for NDE results have been 

conducted as a tool to reduce uncertainty. Multisource data fusion, which is the integration 

of the data from various survey sources, can be used to provide a better interpretation of 

the observed information by reducing the uncertainty present in individual source 

data(David Lee Hall and McMullen 2004; Klein 1999). Different techniques such as 

Bayesian probabilistic approaches, Dempster–Shafer (DS) evidence approach and fuzzy 

reasoning have been most commonly applied to SHM (R.-T. Wu and Jahanshahi 2018). 

These methods have been used for damage identification, quantification, and system 

response estimates (D. L. Hall and Llinas 1997; Chair and Varshney 1986; Faouzi, Leung, 
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and Kurian 2011; Liu et al. 1999; Vanik M. W., Beck J. L., and Au S. K. 2000). For 

example, a recursive Bayesian framework was used to update the parameters of a crack 

growth model, as well as the probability distribution of the crack size and crack growth 

rate (Rabiei and Modarres 2013), and neural network and fuzzy inference were combined 

to evaluate the structural condition of a cable bridge (Sun, Lee, and Lu 2016). Most of 

these studies used data fusion techniques to investigate whether the captured changes in 

structures parameters reflect the existence of damage in the structure rather than its 

application in damage quantification. To the best of the author’s knowledge, no effort 

has been made to integrate the dynamics of survey information sources together to 

support the modeling of defect evolution and to predict its future status.  

In addition, recent studies have linked survey observations to Finite Element (FE) 

simulation of structures. The FE model is important for parameter identification, damage 

detection and structural condition assessment (Hou, Jankowski, and Ou 2015). The theory 

and application of structural FE model updating have been studied (S. Zhang et al. 2013; 

W. Wang et al. 2011). The area known as model updating mainly involves updating 

components of element properties such as stiffness, mass and damping(KABE 1985; S. W. 

Smith and Beattie 1991) or correction of parameters such as geometry, material and 

boundary conditions (Modak, Kundra, and Nakra 2002; Q. W. Zhang, Chang, and Chang 

2000; Ghahremani Kasra et al. 2018). These studies focus mainly on improving the 

accuracy of updated models, however, are limited in predictive analysis for future 

structural performance. With tracking defects evolution over time and updating the FE 
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model with regard to future state of defects, the future condition of structure and its 

capability can be better understood. 

As summary, the following challenges remain unaddressed: 

- Tracking the evolution of geometric changes/defects over the life-cycles of 

structures  

- Integrating different information sources to reduce their uncertainty  

- Linking time-dependent survey observations to structural performance 

 The aim of this research is to develop a framework to support DT modeling of 

structures that includes life cycle modeling of defects over time and links time-dependent 

survey information to numerical simulation of structures. The life cycle dynamics of 

remotely sensed defects detected through photogrammetry techniques is modeled, various 

information sources are integrated using data fusion techniques to improve the accuracy 

and robustness of the results and their evolution can be tracked over time. Eventually, these 

times dependent survey information are linked to numerical simulation of the structure to 

perform predictive simulation to provide better understanding of structural performance. 

The following research questions are addressed to investigate the feasibility of the 

objectives of this research: 

1. How to parameterize geometric defects in a way that illustrates their life-cycle 

dynamics?  

 2. How to use a stochastic model, such as an autoregressive model, to analyze local 

defects over time? 
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 3. How to link survey observations to a numerical simulation for structure 

performance forecasting? 

4. How to fuse different survey data to reduce the uncertainty of the DT model? 

Answering questions 1 and 2 addressed the first mentioned limitation, which is 

tracking the evolution of geometric changes/defects over life-cycle of structure. These two 

questions were examined in chapter three of this dissertation. Question 3 focuses on the 

third limitation which is linking time-dependent survey observations to structural 

performance and was studied in chapter four of this document. Finally, question 4 

addressed the second current limitation, which is integrating dynamic of survey 

information sources together to support the modeling of the evolution of defects was 

investigated in chapter four of this study.  

Research Approach 

To develop the proposed framework, the methodology presented here consists of 

several steps (Figure 2.1 & 2.2). For life cycle modeling of remote sensed defects, once 

they are identified, the defect must be parameterized in a way that can support dynamic 

modeling of defect evolution over time. Parameterization is done with feature extraction 

or feature engineering of the defect. Once parameterized, a dynamic model is adapted to 

the evolution of numerical features to understand the underlying process of evolution and 

estimate the future state of the defect through out-sample forecasting. In order to model the 

dynamics of defect evolution, multiple stages of the defect are identified and 

parameterized, and a process is fit for modeling the spatial movement of features over time. 

The future state of damage is forecasted using the adapted stochastic model. Then defect 
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shape is reconstructed by reversing the descriptor vector back to the original variables. 

Finally, the finite element model of the structure is updated based on the predicted damage 

shape and performance of the structure is investigated using finite element simulation. 

These steps are shown in Figure 2.1. 

 

 

 

Figure 2.1. Schematic overview of the proposed methodology for life cycle modeling of remote sensed 

defects and predictive FEM (chapter three and four). 

 

 

For the fusion of multiple NDE results, various survey information are integrated 

to make a single combined result and their evolution modeled and tracked over time. For 

feature-level fusion features, from NDE results are extracted and features are fused to a 

single feature vector. The probability score of damage in the structural component can be 

modeled as stochastic process and tracked over time and using time series modeling their 
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future states can be predicted. Later a dynamic model can be adapted to the evolution of 

detected defects over time and its future state are forecasted. 

 

 

 

Figure 0.2. Feature-level data fusion (chapter five). 

 

 

For the study of life cycle modeling of remotely sensed data (i.e. point cloud) in 

chapter three, synthetic point cloud data with different distribution characteristics 

representing different flaw shape were generated.  Also, different evolution topologies 

were generated for each flaw shape. Furthermore, fatigue laboratory scale data was used 

for evaluation of crack propagation modeling. Later, this experimental data was used for 

evaluation of linking the evolution of time dependent defects to numerical simulation and 
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performing predictive analysis in chapter four.  To investigate NDE data fusion in chapter 

five, experimental prototype system was created and tested, using FHWA experimental 

record as a data set.   
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CHAPTER THREE: LIFE-CYCLE MODELING OF STRUCTURAL DEFECTS 

VIA COMPUTATIONAL GEOMETRY AND TIME-SERIES FORECASTING 

Introduction 

 

This paper presents a method for modeling the time-history evolution of defects 

quantified through remote sensing technologies such as laser scanning, photogrammetry, 

or digital imaging. The goal is to expand the use of structural assessment information 

commonly collected during routine inspections and improve the structural life-cycle 

assessment process. Conventional structural assessments are typically based on visual 

inspections, embedded sensor systems, nondestructive evaluation (NDE) techniques, or 

some combination thereof (Sartor Richard R., Culmo Michael P., and DeWolf John T. 

1999; Shull 2002; Comisu et al. 2017; Klikowicz, Salamak, and Poprawa 2016; Clifton 

and Carino 1982; Hellier 2001; Chang Peter C. and Liu S. Chi 2003). In almost all cases, 

the goal is the nondestructive detection and identification of structural performance 

changes and damage, as well as to assess the reliability and safety of monitored structures 

(Catbas, Gokce, and Gul 2012; Sohn et al. 2002). In addition to immediate structural 

evaluation, these assessments ideally help engineers to estimate the remaining life of 

structures. This is commonly done by reviewing historical performance records and 

holistically identifying temporal trends from the assessment data. However, most 

assessment data are not structured in a way that explicitly captures the life-cycle 

performance of a structure, and it is, therefore, challenging to quantitatively evaluate the 

evolution of inspection data over time and carry out a predictive analysis of the future state 
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of the structure. Life-cycle data modeling advancements could provide more precise and 

robust structural information, leading to better system asset management decision making, 

with apparent safety and financial benefits. 

Prior Work 

Damage identification, localization, and quantification were extensively studied in 

the last few decades. Using state-of-the-art NDE methods, cracks can be identified and 

located using vibration-based methods (Fan and Qiao 2011; Doebling et al. 1996; 

Gudmundson 1982). These damage identification techniques can be categorized into four 

main categories based on vibration characteristics: natural frequency-based, mode shape-

based, mode shape curvature-based, and techniques using both mode shapes and 

frequencies. Fan et al. (Fan and Qiao 2011) presented a comprehensive review on these 

parameter-based methods and discussed their advantages and drawbacks. They also 

conducted a comparative study of five widely used damage detection algorithms for beam-

type structures to assess the validity and effectiveness of the signal processing algorithms. 

While effective, these methods only focus on damage identification and localization, 

whereas the development of quantification techniques for damage magnitude is limited. 

Large cracks and voids in concrete, as well as corrosion and cracks in steel, can be 

identified and located using ultrasonic tests (Sharma Shruti and Mukherjee Abhijit 2011; 

Aranguren et al. 2013; Rens Kevin L. and Greimann Lowell F. 1997). Sharma et al. 

(Sharma Shruti and Mukherjee Abhijit 2011) used ultrasonic guided waves to monitor 

beams undergoing accelerated impressed current corrosion in the presence of two corrosion 

mechanism (chloride and oxide). It was found that ultrasonic can successfully detect 



19 

 

corrosion and identify the specific corrosion mechanism. Rens et al. (Rens Kevin L. and 

Greimann Lowell F. 1997) presented the concept and application of a new indirect 

inspection technique using ultrasonic spread-spectrum methods to test structural objects. 

Their laboratory findings show that this new method may be feasible for monitoring and 

evaluating existing large or complicated structural members. Acoustic wave techniques can 

also be used to identify and locate imperfections such as the initiation of crack and the 

growth rate of fatigue cracks and corrosion (Sagar and Prasad 2012), to classify crack 

modes in concrete (Aggelis 2011; Ohno and Ohtsu 2010; Ohtsu et al. 2002), and to quantify 

the severity of damage (Zaki et al. 2015; Behnia, Chai, and Shiotani 2014). Ohno and Ohtsu 

(Ohno and Ohtsu 2010) conducted two crack classification methods and showed that 

tensile and shear cracks can be distinguished using their criteria. Sagar and Prasad (Sagar 

and Prasad 2012) used acoustic emission parameterizations to classify the severity of 

damage into minor, intermediate, and severe damage categories. These prior works show 

that the acoustic emission techniques are often capable of detecting damage in their early 

stages, so that an early warning can be given to allow for repair work before a structural 

element is seriously damaged. Furthermore, it is possible to detect and localize hidden and 

subsurface defects using radiographic tests (Nassr Amr A. and El-Dakhakhni Wael W. 

2009; McCann and Forde 2001) and electromechanical methods such as ground penetration 

radar (Chen Dar Hao and Wimsatt Andrew 2010). Chen et al. (Chen Dar Hao and Wimsatt 

Andrew 2010) used ground-coupled penetrating radar (GCPR) to characterize the 

subsurface conditions of three roadway pavements. The extents of the anomalies in the 
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horizontal and vertical direction were visible in GCPR images, and this study successfully 

demonstrated that GCPR is able to identify anomalies and voids. 

While these prior studies created the capacity to identify and quantify damage to 

structures, the emphasis was on improving the accuracy of the detection and measurement 

of defects. To date, significant efforts were not made to model these measured 

changes/defects as time-dependent phenomena. Advancements in understanding and 

modeling of temporal defects will lead to improved decision-making 

capabilities, as well as expanded use of sensing and monitoring technologies. In addition 

to the development of NDE and structural health monitoring (SHM) techniques, there are 

increasing studies on the use of remote sensing and imaging technologies such as LiDAR 

or photogrammetry to provide new sources of inspection information. These remote 

sensing technologies provide high-resolution two-dimensional (2D) images or three-

dimensional (3D) point cloud models of structures, and can capture the small-scale defects 

that are critical to understanding structural performance (Khaloo and Lattanzi 2019; Jafari, 

Khaloo, and Lattanzi 2016; Cabaleiro et al. 2014; Colomina and Molina 2014; Cabaleiro 

et al. 2015). In complement to the expanding use of these technologies, there are now a 

variety of methods for isolating and extracting defects from 2D or 3D images (Fleming, 

Holtmann-Rice, and Bülthoff 2011; Pal and Pal 1993), and advancements in deep machine 

learning methods portend future improvements (Kalogerakis et al. 2017; Su et al. 2015). A 

key advantage of these data sources is the direct link between quantified geometric changes 

and changes in the underlying mechanical performance that can be captured in finite 

element analysis, as evidenced by a variety of prior work (Ghahremani Kasra et al. 2018; 
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Fathi, Dai, and Lourakis 2015; Y. Yan, Guldur, and Hajjar 2017). While such capabilities 

provide valuable tools for structural assessment, they do not explicitly quantify life-cycle 

dynamics and forecasts of future defect conditions. 

The question of the reliability of an engineered system led researchers to investigate 

the growth of defects such as fatigue cracks and corrosion over the life cycle of the systems. 

To study fatigue crack growth, model-based estimation methods such as Bayesian methods 

(Doucet 1998), extended Kalman filtering (Myötyri, Pulkkinen, and Simola 2006), and 

Monte Carlo sampling (Cadini, Zio, and Avram 2009) were used for quantification of the 

estimation uncertainty. For corrosion, theoretical models and simulation tools were 

developed for a better understanding of the nature of the pitting corrosion process, to allow 

prediction of the temporal evolution of maximum pit depth in corroding structures. In 

recent studies, stochastic approaches were also applied to simulate corrosion (Valor et al. 

2007; Hong 1999; Caleyo et al. 2009; B. H. Zhou and Zhai 2010). All these efforts 

primarily focus on estimating the reliability of a system given estimates of the current state 

of a defect, rather than quantifying the future state of the defect in a way that provides 

support for predictive capacity assessments. 

Contribution of This Research 

As stated, a critical aspect of long-term structural monitoring is an understanding 

of detected defects as time-dependent phenomena, and this remains a major outstanding 

research need. Enhanced temporal modeling of defects would lead to the ability to predict 

future defect states and, thus, predict the future condition of the structure. While prior 

studies investigated the temporal behavior of defects from an empirical perspective (Mi, 
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Michaels, and Michaels 2006; Vu, Stewart, and Mullard 2005), efforts to quantify the 

dynamics of defect observations captured in remote sensing were, to date, limited. The 

main objective of this study is to address these limitations for life-cycle modeling of 

remotely sensed defects using a computational geometry approach to defect 

parametrization combined with time-series modeling. 

Presented in this paper is a novel algorithm to model the life cycle of defects 

manifested as either 2D or 3D point clouds. Point cloud data are geometric representations 

of defects that can serve as a consistent record of the state of a structure at a given 

inspection interval and provide a basis for finite element analysis, among other uses 

(Khaloo and Lattanzi 2019; Ghahremani Kasra et al. 2018) This algorithm extracts latent 

features from these defect point clouds through computational geometry, fits a time-series 

process model to the evolution of those features, and uses a stochastic forecasting model 

to predict the future state of the defect. Consequently, a predictive analysis with regard to 

the future condition of the structure could be carried out by linking the modeled evolution 

of defects to a numerical simulation, ultimately helping to provide a complete 

representation of structural performance and integrity over time. This paper does not 

consider the predictive simulation aspect of this process, and the readers are referred to 

References (Ghahremani Kasra et al. 2018; Fathi, Dai, and Lourakis 2015; Fernandez, 

Bairán, and Marí 2016) for potential applications in this domain. 

The remainder of this paper is structured as follows: firstly, the complete analytical 

methodology is presented. This is followed by a presentation of synthetic experimental 

results designed to illustrate the key behavioral aspects of the algorithm. This is followed 
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by experimental evaluation using fatigue crack propagation data. The paper concludes with 

an overall assessment of the algorithm and avenues for future work. 

 

Methodology 

The methodology presented here consists of several steps (Figure 3.1). Once a 

defect in the structure is detected, the defect must be parametrized in a way that can support 

a dynamic modeling of defect evolution over time. Parameterization is achieved with 

feature extraction from the point cloud through computational geometric modeling of the 

convex hull of the cloud, resulting in a combination of hull simplexes and vertices. These 

parameterizations are computed for multiple time steps over the life cycle of the structure. 

Once parameterized, a time-series model is fit to the sequence of parameterizations in order 

to capture the underlying process of evolution. This model fitting also enables the estimate 

the future state of the defect via out-sample forecasting. The defect shape is then 

reconstructed by reversing the parameterizations back to a geometric point set. While not 

considered in this work, the methodology presented here can then be used to update a finite 

element model of the structural component based on the predicted future defect topology, 

leading to predictive structural assessment. 
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Figure 3.1. Schematic overview of the proposed methodology for life-cycle modeling of remotely sensed 

defects. 

 

 

Defect Parameterization 

Once a remotely sensed defect in a structural component is detected through 

computer vision (Ghahremani Kasra et al. 2018), the first step in the modeling process is 

to parameterize it so that a stochastic dynamic model can be reliably fit the extracted 

parameters, or a “feature vector” to track the defect evolution over time. The complex 

nature of point cloud data necessitates this low-dimensional parameterization, as tracking 

each individual point in a cloud would lead to an intractably high number of time-series 

model coefficients.  
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Figure 3.2. Convex hull of a point set in R2. 

 

 

Here, we propose that the feature extraction can be done using the concept of a 

geometric convex hull. The convex hull of a point set is a unique representation of a point 

set in Rn, defined as the smallest convex polygon that surrounds all points in the point set 

(Figure 3.2) (Berg 2008). In R3 or higher-dimensional data spaces, the convex hull is 

similarly defined as the minimum convex polyhedron of the point set. It should be noted 

that, while this parameterization reduces the information complexity of the point cloud, the 

use of a convex hull serves to maintain the dimensionality of the underlying geometric 

object under observation. This is critical for reconstructing predicted defect states. 

The determination of the convex hull is a geometric computation that is useful for 

many analyses and was successfully applied in domains such as image processing 

(Rosenfeld 1969) and pattern recognition (Akl and Toussaint 1979). Although a number of 

alternative feature extraction approaches were considered in this study (Daniels et al. 2007; 

Pauly, Keiser, and Gross 2003), hull parameterization was used because of its inherent 

advantages. The description of a defect in terms of its parameterized hull allows for 
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consistent temporal tracking for predictive purposes, while also reducing the dimension 

and complexity of the data implicitly. In addition, the convex hull concept 

can be extended to high-dimensional spaces to support the fusion of multiple sensors and 

data types, a longer-term goal of this work. 

The convex hull of point cloud P is a uniquely defined convex polygon. A natural 

way to represent a generalized polygon is by listing its vertices in clockwise order, starting 

with an arbitrary starting point. As such, the problem to be solved is as follows: given a 

point set P = {p1, p2, … , pm} in Rn, compute a list that contains those points from P that 

are the vertices of the convex hull, CH(P). To find those vertices, the algorithm sorts all 

points through a “divide and conquer” approach (Barber et al. 1996). The convex hull 

algorithm finds two points with maximum and minimum spatial coordinates in a single 

dimension and computes a line joining these two points. This line divides the whole set 

into two halves. For a given half it finds the points with a maximum distance from the 

dividing line, forming a triangle defined by minimum and maximum point distances. Those 

points inside the triangle are determined to not be part of convex hull. Then, these steps are 

iteratively repeated to search for points with maximum distance from the separating line, 

until there is no point left outside of the computed triangles. The points selected at this step 

constitutes the convex hull. The convex hull results in a vector containing the Cartesian 

coordinates of the hull vertices. This extracted vector of vertices is the numerical descriptor 

that is later fit to a stochastic process model (Figure 3.3). 
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Figure 3.3. Feature extraction of convex hull vertices from a three-dimensional (3D) point cloud. 

 

 

Hull Registration and Structuring for Time-Series Modeling 

Once the hull vertices are extracted, the data must be structured and compiled for 

time history modeling. Firstly, point clouds from each time step are aligned and registered 

in a common reference frame. In this work, manual registration was sufficient; however, 

automatic registration approaches such as the iterative closest point (ICP) algorithm, or by 

determining the 2D or 3D homography between point sets via feature-based computer 

vision methods, may be necessary (Figure 3.4) (Besl and McKay 1992; Z. Zhang 1994). 

The registered defect point clouds are then parameterized using the convex hull 

computation, resulting in individual 2 × n arrays of vertex coordinates. Each vertex at t = 

t1 is then spatially tracked across the temporal sequence of vertex arrays. The vertices of a 

hull in stage 1 (hull1) are matched to their nearest neighbor (NN) vertices in hull2 and, 

likewise, those are matched to their NN vertices in hull3, and so on (Kleinberg 1997). The 

assumed movement of one of the vertices is shown in Figure 3.5. The nearest neighbor is 

found based on the smallest Euclidean distance between vertex sets. Equation (3.1) shows 
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the nearest neighbor search in  1 2( ) : , ,.., nHull Q q q q  from p1 ∊   1 2( ) : , ,.., mHull P p p p  

in 2D space (Hull(Q) and Hull(P) are two consecutive descriptor vectors).  

Equation 3.1     

2 2
1 1 1( , ) ( ) ( )i ix x iy yd p q q p q p= − + −

 

At each time step, the NN of vertices in two time-steps are determined, and the 

change in magnitude and orientation between matched vertices is computed and compiled 

for the complete temporal sequence (Figure 3.5). This resulting dataset consists of the 

distances and orientations of vertex changes between subsequent hull stages throughout a 

time series. This dataset is illustrated for the identified and aligned multiple stage of a 

defect with a polygon shape in Figures 3.4 and 3.5. 

 

 

 Figure 3.4. Aligning and registering hulls/clouds into a common spatial reference frame. 
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Figure 3.5. Dataset representing the extracted vertices for a time-series evolution of an arbitrary polygonal 

defect. 

 

 

Time-Series Modeling 

The overall approach to time-series modeling is illustrated in Figure 3.6 and 

presented here. Once the dataset representing the evolution of defects is constructed, a 

stochastic model can be fit to the dataset to model the dynamics of defect evolution. Each 

column of this dataset is a time series that represents the evolution of each feature over 

time. Time-series forecasting is performed in order to capture the underlying long-term 

life-cycle trends in inspection data. The model can then be used to extrapolate the time 

series into the future. This modeling approach is particularly useful when the temporal 

behavior is stochastic, as opposed to understood deterministic evolution, and where the 

relationship between parameterization variables is not well understood (G. P. Zhang 2003). 
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For example, in the problem presented later in this paper, there is no knowledge available 

on the boundary conditions (i.e., applied load and support reactions) of the tested structural 

component, and there is no established deterministic model for the propagation of fatigue 

cracks. 

 

 

 

Figure 3.6. Overall time-series modeling methodology. 

 

 

There are several common approaches to time-series modeling, including 

autoregression, moving average, exponential smoothing, autoregressive integrated moving 

average (ARIMA), and multivariate time-series vectorized autoregression (VAR). All of 

these models are linear, meaning that their predictions of the future values are constrained 

to be linear functions of past observations. Because of their effectiveness and ease of 

implementation, linear models are the main research focus for time-series modelers, as is 

the case in this study. Nonlinear modeling approaches such as recurrent neural networks 

were not considered here due to the limited training data available for observing defect 

evolution.  
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From the available time-series models, ARIMA and VAR models were selected for 

this study, and their performances were compared against each other. The autoregressive 

integrated moving average model (ARIMA) methodology developed by Box and Jenkins 

(George E. P. Box and Jenkins 1976) is able to handle non-stationary time series, in other 

words, scenarios where the statistical properties of the time series measurements do not 

remain constant over time. As such, it relaxes the requirement that time-series data be 

covariance-stationary prior to modeling, and it is well suited to the challenging variations 

in field conditions that impact remote sensing-based inspection practices (George Edward 

Pelham Box and Jenkins 1990). With ARIMA, the future value of a variable is assumed to 

be a linear function of several past observations and random errors. An ARIMA model 

contains two sub-processes (autoregressive, moving average process) and explicitly 

includes differencing in the formulation to account for the non-stationarity of the data. 

ARIMA gained enormous popularity in many areas, and research practice confirmed its 

power and flexibility (Pankratz 1983; McDowall 1980; Vandaele 1983). A generalized 

form of the ARIMA time-series model is shown in Equation (3.2).  

Equation 3.2 

1 ( 1)

2 ( 2) ( )

( ) 1 ( 1) 2 ( 2) ( )
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t q t q
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   

−

− −

− − −  −

 − − 

= +  +  + +  + +0

 

Where ( )tY  and t  are the actual value and random error at time t, respectively. i

(i=1, 2, …, p) and 
j  (j=0,1,2, …, q) are the vectorized model coefficients. p and q are 

integers and often referred to as orders of the model. 
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As an alternative, vector autoregressive (VAR) models are effective for 

multivariant time-series data where there is a potential dependency between model 

variables. Therefore, unlike an ARIMA model that estimates the present value of a variable 

based only on its past values, VAR models consider past values of other variables as well. 

This model was used here to study the dependency and effect of the movement of convex 

hull vertices on other vertices. The VAR model (Lütkepohl 2005) was used for damage 

detection studies previously (Yao and Pakzad 2012; Figueiredo et al. 2010), but there was 

no effort to model the life cycle of a defect to date. The general form of the autoregressive 

model is shown in Equation (3.3). Similar to ARIMA, the VAR model relates the current 

value of a variable to its past values. 

Equation 3.3 

( ) 1 ( 1) 2 ( 2) ...t t t tY Y Y   − −= +  +  + +0  

Where t  is random error (random shock) and 
i  are constants. And similarly, 

VAR model relates current value of a vector to its past values and each variable depends 

not only on its own past values but on these of other variables as well in which is K×1 

random vector, 
i  are fixed (K×K) coefficient matrices and 1( , ..., )kt t t  = is K-dimensional 

random error (Lütkepohl 2005). To summarize, the power of ARIMA modeling stems from 

its ability to handle non-stationary time series with non-constant statistical properties over 

time. On the other hand, VAR is suitable for analyzing stationary multivariant time series 

with constant statistical properties and dependency among variables. 
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Model Parameter Identification 

Prior to fitting the coefficients of the time-series model, the model order must be 

optimized. The ARIMA model contains three components for which an order must be 

determined: autoregressive (AR), integrated (I), and moving average (MA) (Equation 

(3.2)). The AR component uses the dependent relationship between an observation and 

some number of lagged observations. The order of the AR component (p) is the number of 

lag observation included in the model. The integrated component (I) employs differencing 

of raw observation data in order to make the time series stationary, and 

its order (d) is the number of times that the raw observation is differenced. The MA 

component uses the dependency between an observation and a residual error, and its order 

(q) is the size of the moving average window. In this study, ARIMA model orders (p, d, 

and q) were evaluated based on a mean squared error. A prototyping dataset was divided 

into train and test sets, and the optimized combination of model orders was chosen such 

that they produced the least mean squared error in the test set. For the VAR model, the 

model order, p, was selected based on Hannan–Quinn information criterion (HQIC) 

(Hannan and Quinn 1979). This criterion was applied because this is used to consistently 

estimate the order under fairly general conditions (Hamilton 1994). The criterion is shown 

in Equation (3.4). 

Equation 3.4 

max2ln( ) 2 ln(ln( ))HQIC L k n= − +  

where n is the number of observations, k is the number of parameters to be estimated 

(e.g. the Normal distribution has mu and sigma) and Lmax is the maximized value of the log-
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Likelihood for the estimated model. The coefficients for k indicate the level to which the 

number of model parameters is being penalized. The objective is to find the model order 

of the selected information criterion with the lowest value HQIC value. 

Forecasting and Defect Reconstruction 

Once a model is fitted to a sequence of defect observations, the future state of the 

convex hull parameterizations can be predicted by the forecasting model. Once predicted, 

the future defect shape can then be reconstructed by converting the feature vector into a 

hull shape. A complication is that the number of extracted features may be inconsistent at 

different time steps, and this discrepancy in the length of the vectors in some cases leads 

to an inaccurate defect prediction. This case will happen when the number of features 

extracted by convex hull computation at early time steps is significantly smaller than that 

in the later time steps. To handle this issue, a statistical assumption is employed. 

For features that were not fit to a model and, therefore, their values were not predicted by 

dynamic modeling, the arithmetic mean of other features can be used as their expected 

value.  

The pseudocode for the complete algorithmic methodology is shown in Figure 3.7. 

Upon reconstruction of the predicted geometric configuration of a defect, it is then possible 

to update a numerical simulation to account for the predicted change in the structure’s 

geometry due to the defect. This updating process is not tested here, but such capabilities 

were developed in prior related work, including efforts by the authors (Ghahremani Kasra 

et al. 2018; Fathi, Dai, and Lourakis 2015; Y. Yan, Guldur, and Hajjar 2017). 
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Figure 3.7. Pseudocode for the proposed methodology. 

 

 

Experimental Validation 

This section presents and discusses the results of experiments designed to evaluate 

the developed methodology. Two series of tests are presented. The first tests involve a set 

of experiments performed on synthetic datasets. These datasets were designed to highlight 

key aspects of the modeling approach and provide insight into algorithm behaviors. The 

second tests are derived from laboratory-scale tests of fatigue crack propagation in 

aluminum tensile specimens, in order to illustrate the behavior of the modeling approach 

in a realistic use case. 

Synthetic Dataset 

To initially test the accuracy and robustness of the presented methodology, 

synthetic 2D point clouds analogous to data derived from remote sensing (e.g., laser 

scanning or photogrammetry) were generated over simulated defect life cycles. Synthetic 

point clouds with distribution characteristics representing different flaw topologies (e.g., 
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rectangle, circle, and generalized polygon) were generated. Additionally, varying evolution 

time histories were generated synthetically, representing a variety of stochastic processes 

(e.g., linear, quadratic, random Gaussian, and random uniform). For every combination of 

defect shape and stochastic process, a set of 20 defect time steps was generated. White 

noise was also introduced into the point clouds for each time step, in order to simulate more 

realistic measurements. Finally, uniform and non-uniform feature evolution were 

considered. Uniform feature evolution refers to a case where all vertices of the convex hull 

(features in the extracted descriptor vector) have the same expansion magnitude regardless 

of the trend of evolution. Cases where vertices were allowed to expand at varying 

magnitudes over a life-cycle simulation were considered non-uniform. 

Time-Series Stationarity Assessment 

Time series are stationary if the statistics calculated on the time series (e.g., the mean 

or variance of the observations) are consistent over time. Most statistical modeling methods 

assume, or require, the time series to be stationary to be effective. There are many methods 

to check whether a time series is stationary or non-stationary, such as reviewing a time-

series plot, reviewing the summary statistics for time series, or using statistical tests. The 

augmented Dickey–Fuller test (Dickey and Fuller 1981), one of the more widely used, was 

used in this study. It uses an autoregressive model and optimizes an information criterion 

across multiple different lag values. The null hypothesis (H0) of the test is that the time 

series can be represented by a unit root that it is not stationary (i.e., it has some time-

dependent structure). The alternate hypothesis (rejecting the null hypothesis) is that the 

time series is stationary. 
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Table 3.1. The p-values from Augmented Dickey-Fuller test stationary test. 

Defect Shape 
Triangle Rectangle Circle Polygon 

Defect Evolution 

Uniform   

Linear 0.002 0.002 0.020 0.030 

Quadratic 1.000 1.000 1.000 1.000 

Random Uniform 0.950 0.950 0.390 0.940 

Random Gauss 0.960 0.960 0.990 0.950 

Non-uniform   

Random Uniform 0.950 0.950 0.96 0.990 

 

Table 3.1 shows the average p-values of each generated time series, which is used 

in the augmented Dickey–Fuller test to evaluate stationarity for various defect shapes and 

evolutions. A p-value above 0.05 suggests that a test fails to reject the null hypothesis (H0), 

and it is concluded that such time-series models are non-stationary. This analysis shows 

that all of the generated time-series simulations, with the exception of the simplest linear 

evolution process, are non-stationary. As such, it was anticipated that the ARIMA approach 

would perform better than the VAR approach for the synthetic datasets. 

Time-series modeling 

After the synthetic datasets were generated, ARIMA and VAR model orders were 

selected prior to fitting to time series. For the VAR models, all extracted feature vectors 

were input as a matrix at once, and the model order (p) was set as the same for all features, 

whereas, for the ARIMA model, each feature vector was considered individually, and 

model orders suitable to each time series were chosen based on least mean squared error. 

Models were then fit to the time series. 
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Metrics 

The key metric for evaluating the time-series model behavior was defect 

reconstruction accuracy. To evaluate the results, the predicted defect shape for a future 

time step was compared against an established ground truth for each scenario. Two 

geometric metrics were computed: the percentage difference between the area of two 

shapes and their overlap area percentage. These two metrics were necessary in order to 

identify scenarios where the predicted and ground truth defect sizes were similar, but where 

there was a divergence in the geometric topology. Measuring point clouds directly on a 

point-wise basis using the raw data was not considered, as the randomly sampled nature of 

point cloud data inhibits such measurements, and the focus of this effort was on the 

accuracy of the predicted convex hulls. 

Results and discussion 

Table 3.2 and 3.3 show the comparison of predicted defect shapes for both the ARIMA 

and VAR models against the ground truth. The time series generated from linear, quadratic 

expansion models are defined as deterministic time series, as their future value can be 

exactly computed by a mathematical function. These mathematical functions are 0

ty t=   

for linear expansion, and ( 1)t

ty d −=  for quadratic expansion (  and d  are both 

constants).  As expected, the predicted feature state from both models completely matched 

with the ground truth, regardless of the defect shape. The ability to forecast such a simple 

deterministic process is inherent to both ARIMA and VAR modeling approaches and was 

used to validate basic model performance.  
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Table 3.2. Comparison of predicted defect shape using ARIMA model against ground truth. 

Defect 

Shape 
Triangle Rectangle Circle Polygon 

Defect 

Evolution 

 Metrics Overlap (%) Area_Diff (%) 
Overlap 

(%) 

Area_Diff 

(%) 

Overlap 

(%) 

Area_Diff 

(%) 

Overlap 

(%) 

Area_Diff 

(%) 

Uniform   

Linear 100 0 100 0 100 0 100 0 

Quadratic 100 0 100 0 100 0 100 0 

Random 

Uniform 
100 15 100 10 100 19 89 15 

Random 

Gauss 
100 4 100 5 100 8 92 11 

Non-

uniform 
  

Random 

Uniform 
95 7 96 5 98 4.5 87 17 

 

Table 3.3. Comparison of predicted defect shape using VAR model against ground truth. 

Defect Shape 
Triangle Rectangle Circle Polygon 

Defect Evolution 

Metrics 
Overlap 

(%) 

Area_Diff 

(%) 

Overlap 

(%) 

Area_Diff 

(%) 

Overlap 

(%) 

Area_

Diff 

(%) 

Overlap 

(%) 

Area_Diff 

(%) 

Uniform 

Linear 100 0 100 0 100 0 100 0 

Quadratic 100 0 100 0 100 0 100 0 

Random 

Uniform 
100 16 100 19 100 19 87 16.5 

Random 

Gauss 
100 6 100 7.5 100 9 91 19 

Non-

Uniform 

Random 

Uniform 
92 8 94 21 95 9 85 25 

 

More interesting results can be seen for the Gaussian and uniform random 

stochastic time series, which are more realistic representations of defect life-cycle 

dynamics in practical problems. Such stochastic processes are more challenging for any 

predictive model. As can be seen, ARIMA models provide relatively better prediction, 

although the results show many similarities. The reason for the difference in predictive 

accuracy is the capability of ARIMA in handling nonstationary time series, as well as the 

assumptions of variable dependencies in VAR. Also, results show that both models can 
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predict a defect with a Gaussian underlying process better than those with a uniform 

random evolution. The reason lies in the difference between the statistical properties of the 

two processes. Gaussian processes have a single most likely value in the distribution (the 

mean), whereas, in uniform distributions, every allowable value is equally likely, degrading 

predictive capabilities. Overall, the results of these synthetic experiments 

indicated that the convex hull parameterization approach and time-series modeling 

provides reliable and accurate representations of defect evolution across a range of defect 

topologies and is reasonably robust to noisy measurements. As anticipated, ARIMA 

provided higher prediction accuracy as stationarity assumptions became increasingly 

unrealistic. 

Experimental Dataset 

To further evaluate the methodology under more realistic conditions, a dataset from 

prior experimental testing was repurposed. In these laboratory tests, aluminum tensile 

coupons were tested to observe fatigue crack growth under cyclic fatigue loading. Marine-

grade aluminum 5052-H32 with a nominal thickness of 2.29 mm was used. The specimen 

had a machined elliptical flaw in the center, and increasing load caused initiation and 

growth of cracks on both the right and left sides of this notch. Cycling tension loading was 

performed over 80,000 cycles, and the state of crack growth was captured at 30 

intermediate intervals during the test, using an inspection microscope connected to a digital 

camera. The captured images were then segmented to isolate the crack, and the crack 

patterns were transformed from pixels into point clouds through binarization and spatial 
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point sampling (Figure 3.8). This resulted in 2D point clouds with between 6000 and 

12,000 points, depending on the size of the crack. 

The convex hulls of these point clouds were computed, and feature evolutions were 

exported as time series, as per the methodology delineated in methodology section. An 

analysis of the datasets yielded an average p-value of 0.35, indicating that the statistical 

uncertainty of the experimental measurements was non-stationary. Three different tests are 

presented in this section to evaluate the performance of the proposed methodology 

including single-step prediction, multiple-step prediction, and prediction during nonlinear 

system dynamical behavior. 

 

 

 

Figure 3.8. Extracted point cloud from the captured image. 
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Single-step prediction 

Performance of the proposed algorithm for predicting a single future step is 

evaluated in this section. Both ARIMA and VAR model were used to find the pattern of 

crack growth and predict the future state of crack. The convex hulls of the right and left 

cracks at a load of 80,000 cycles were computed and held out as the ground truth for one 

single-step prediction. Results are shown in Table 3.4 and Figure 3.9. Since the 

performance of the ARIMA and VAR model was almost identical, the predicted shape 

from both models had overlap, and only the ARIMA model can be seen in the Figure 9. 

Table 3.4. Comparison of predicted crack shape from ARIMA and VAR against ground truth. 

  ARIMA VAR 

Metric  Overlap (%) Area_Diff (%) Overlap (%) Area_Diff (%) 

Right Crack  100.0 7.0 100.0 7.0 

Left Crack  99.0 5.0 96.0 5.0 

 

 

 

Figure 3.9. Comparison of the predicted crack shape against the ground truth for (a) right and (b) 

left cracks. 
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Multiple-step prediction 

To evaluate the capability of the proposed algorithm for prediction of multiple steps, 

20 steps of the right-side crack, corresponding to approximately 40,000 loading intervals, 

were used to fit to the ARIMA and VAR models based on the HQIC criterion. The true 

convex hulls of the crack at time steps 21–30 were then computed and held out as the 

ground truth. Then, prediction of 1–10 time steps into the future were computed and 

evaluated. Table 3.5 shows the results from the ARIMA model. Since the performance of 

ARIMA and VAR was very similar for this specific problem, only ARIMA is shown here. 

What these results reflect is, in part, the sensitivity of the time-series modeling process to 

the number of time-series data points or lags, used in predictive computation. For the 

results shown using 20 lags, predictive accuracy begins to degrade at future time steps 

approximately 25% the length of the total lag, in this case, five steps. Similar results were 

observed for models with varying numbers of lags. When fewer than 10 lags were used to 

fit the model, predictive accuracy was deemed unacceptable. 

Table 3.5. Comparison of predicted crack shape from ARIMA against ground truth. 
 1-step 2-steps 3-steps 4-steps 5-steps 

Overlap (%) 100 100 99 98 96 
Area_Diff (%) 1 1 4 3 4 
 6-steps 7-steps 8-steps 9-steps 10-steps 

Overlap (%) 95 94 93 92 91 
Area_Diff (%) 3 6 5 3 3 
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Prediction during nonlinear system behavior 

The goal of this study was to evaluate the performance of the model during a 

geometric nonlinearity in the evolution of a defect over time. For the crack fatigue problem 

studied here, there was a sudden change in the direction of crack growth after 48,000 load 

cycles. Of course, the predictive time-series models could not accurately forecast the 

convex hull immediately after this event. Rather, the question here was how long it would 

take the time-series models to correct for this nonlinearity in the dynamic evolution. The 

results for both ARIMA and VAR models are shown in Tables 3.6 and 3.7. As can be seen, 

the ARIMA model quickly adapted after only two load steps (at 50,000 load cycles). The 

VAR model struggled to adjust for far longer, only regaining consistent predictive accuracy 

after 60,000 load cycles, equivalent to an additional four model time steps. 

 

Table 3.6. Comparison of the predicted crack shape from ARIMA model against ground truth. 

Load 48k 50k 52k 54k 58k 

Overlap (%) 83 96 95 99 95 
Area_Diff (%) 8 14 17 15 3 

 
 

Table 3.7. Comparison of predicted crack shape from VAR model against ground truth. 

Load 48k 50k 52k 54k 58k 60k 62k 64k 

Overlap (%) 63 70 66 92 70 95 87 97 
Area_Diff (%) 8 14 17 15 16 5 2 6 

 

Results and discussion 

Table 3.4 shows the comparison of predicted crack shape from the ARIMA and 

VAR models against the ground truth for cracks at the left- and right-hand sides of the 

notch. Figure 3.7 shows the predicted hull shape from both models against ground truth. 
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Results reflect that ARIMA and VAR models both provide an accurate prediction of the 

future state of the crack, and the presented method is able to match the convex hull of the 

ground truth with high accuracy. Also, the results shown in Table 3.5 suggest that ARIMA 

and VAR models are able to predict hull shape of the crack even 10 times steps ahead with 

reasonable, although slightly degraded, accuracy. However, the approach is not able to 

mimic the true shape of the crack. Unlike the analysis performed on synthetic point clouds 

in the prior section, the crack shape cannot be reasonably defined by a convex polygon 

and, therefore, convex hull parametrization cannot represent the true shape of this polygon. 

However, it does predict the extremis of the visible crack tip. The evaluation of the 

nonlinear system dynamic prediction (Tables 3.6 and 3.7) shows that the ARIMA model 

has much better performance in adapting to a nonlinear change in defect 

evolution and suggests that ARIMA approaches are more robust compared to VAR 

methods. 

Limitations of the method 

While the developed approach was shown to be effective under the experimental 

conditions described here, it is important to recognize the limitations of this approach. 

These tests were performed under controlled laboratory conditions and were not subject to 

the distortions and increased measurement uncertainty that arise due to environmental 

variations. How this measurement approach performs under unpredictable, and likely 

nonlinear, loading and thermal conditions remains an unstudied problem, but such 

conditions will undoubtedly have a negative impact on predictive performance. Field 

conditions are likely to degrade both the quality of generated point clouds and the 
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predictive accuracy of any autoregressive tracking method. Furthermore, more complex 

material behavior, for example, highly random cracking in heterogeneous materials such 

as concrete, will degrade the accuracy of the autoregressive model. In general, increases in 

the stochasticity and nonlinearity of the underlying degradation process will result in a 

significant reduction in algorithm accuracy. 

 

Conclusions and Future Work 

In this work, a methodology to parametrize and model the dynamics of defect 

evolution based on convex hull parametrization and time-series modeling was introduced. 

Using convex hull parametrization, 2D synthetic and experimental point clouds 

representing various defect shapes and stochastic evolutions were parametrized, and their 

evolutions were modeled using time-series forecasting models. The future state of defects 

was then forecasted and evaluated against ground truth. The results indicate that this 

convex hull approach provides consistent and accurate representations of defect evolution 

across a range of defect topologies and is reasonably robust to noisy measurements; 

however, the behavior of the underlying dynamical process plays a significant role in 

predictive accuracy. Predictive accuracy degrades for both ARIMA and VAR models as 

defect evolution becomes increasingly nonlinear, although ARIMA is slightly more robust 

under such conditions. 

The proposed methodology has a number of advantages over current practices. 

Firstly, it provides engineers with an intuitive and consistent representation of remotely 

sensed information over a structure’s life cycle through the reduced-dimension convex hull 
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representation. Tracking the evolution of damages and their connections to structural 

performance also results in more reliable forecasting capabilities and a more complete 

understanding of structural performance, particularly compared to existing NDE 

techniques that often do not quantify damage evolution through time. This process also 

does not require extrapolation from other datasets for prediction; rather, it builds up a time-

series representation based solely on the observed evolution of a given defect. 

This study was part of an ongoing research program, and various parts of the 

presented methodology are being considered for further improvement. The limitations 

discussed in limitation section highlight potential avenues for future work. The behavior 

of the algorithm under higher degrees of statistical uncertainty and material variability 

should be investigated. More datasets from other crack scenarios should also be considered, 

for instance, concrete cracking in civil infrastructure. Such studies 

may provide insight into how particular algorithmic aspects, such as the nearest neighbor 

matching aspects of hull tracking, behave under complex material phenomena such as 

crazing or alkali–silica reactions in concrete. In such cases, the cracks may branch and 

split, creating unforeseen modeling challenges. 

The parametrizations and hull modeling are being studied for temporal tracking of 

non-geometric changes such as color change in structures. The hull parametrization method 

is also being extended to high-dimensional feature space analyses, supporting the fusion of 

multiple sensors and survey information for holistic life-cycle modeling. As was presented 

in the methodology description, the results of this work will ultimately be used to support 

finite element model updating for predictive analysis of structural capacity. One notable 
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avenue for future work is to adapt the algorithm to more 

realistically parameterize defect shapes using a combination of a convex and concave hull 

algorithm (Ebert, Belz, and Nelles 2014). Such an approach would allow for more accurate 

depiction of complex geometric topologies similar to the fatigue cracks evaluated in this 

work. In addition, nonlinear time-series modeling methods such as recurrent neural 

networks may be studied for more complex defect evolutions; however, such machine-

learning-driven approaches need much larger datasets to be employed. 
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CHAPTER FOUR: PREDICTIVE FINITE ELEMENT MODEL OF FATIGUE 

CRACK SIMULATION FOR STRUCTURE PERFORMANCE FORECASTING 

VIA COMPUTER VISION TECHNIQUE 

Introduction 

 

 This paper presents a method for updating the Finite Element (FE) model of 

structural components under fatigue load based on the future state of existing crack. The 

goal is to conduct a predictive analysis for structure capacity and evaluate the integrity of 

such structures under cyclic loading. Cyclic loading can initiate a crack in a structurally 

weak area of a component and the crack can then grow due to fatigue. The growth of a 

crack throughout the volume of a component can result in catastrophic fracture. Many 

structures are exposed to repeated loading over their life cycles, and fatigue may lead to 

the failure of various types of structures, including bridges. Therefore, it is essential to 

accurately predict the crack extension over its life cycle and make decisions about effective 

maintenance and retrofitting. There are, however, different types of uncertainty factors 

such as material properties, geometric properties, boundary conditions and load conditions 

that contribute to the modeling of a structure (Aghagholizadeh and Catbas 2015). 

 The FE model updating method emerged in the 1990s as an important subject for 

mechanical and aerospace structures (He, Yu, and Chen 2008; D. L. Hall and Llinas 1997). 

FE model updating is a procedure that provides an effective way to obtain a precise model 

whose numerical predictions agree with the measured results from a real structure. Model 

updating can provide a consistent and reliable benchmark corresponding to the real 

structure (Mottershead and Friswell 1993; S. Zhang et al. 2013). Theory and application of 
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structural FE model updating have been extensively studied (Ding et al. 2012; Y. Wang et 

al. 2013; S. Zhang et al. 2013). Most of these studies mainly focus on identification, 

localization and quantification of structural damage through a model-updating procedure 

and are limited in predictive analysis for future structural performance. Evaluation of 

structural integrity in the future could provide more precise and robust structural 

information, leading to better system asset management decision-making, with apparent 

safety and financial benefits.  

Prior Studies 

There are mainly two procedures involved in FE model updating: matrix updating 

and parameter correction. Matrix updating involves directly updating the components of 

element matrices such as stiffness, mass, and damping (KABE 1985, 198; S. W. Smith and 

Beattie 1991). Parameter correction (Modak, Kundra, and Nakra 2002; Q. W. Zhang, 

Chang, and Chang 2000; Ren and De Roeck 2002) corrects the structural design parameters 

such as geometry, materials, and boundary conditions. Parameter updating is widely 

applied in practice, since the explicit physical meaning of the parameters is clear (Teughels 

and De Roeck 2005).  The purpose of these methods is to update the parameters of a finite 

element model corresponding to the undamaged structure in order to match the measured 

data from the damaged structure. In this way, identification, localization and quantification 

of structural damage can be achieved (Perera, Fang, and Huerta 2009). Most of the 

approaches use the modal data of a structure before damage occurs as baseline data, and 

all subsequent tests are compared to it. Any deviation in the modal properties from this 
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baseline data is used to estimate the crack size and location (Mottershead and Friswell 

1993). 

Along with FE model updating studies, extensive research has been done on FE 

simulation of fracture mechanics as the presence of cracks can significantly decrease 

structural strength and reliability. Fracture mechanics is divided into two main categories: 

linear elastic fracture mechanics (LEFM) in which it is assumed that materials show only 

linear elastic behavior under operating conditions and elastic plastic fracture mechanics 

(EPFM). LEFM has been extensively studied and successfully used to model the fatigue 

crack growth behavior (X. Yan 2007; Banks-Sills 1991; Atkinson 1977; Pak 1992; Pan 

1997). However, it was found that many engineering materials show some inelastic 

behavior under operating conditions and EPFM has been studied to address LEFM 

limitations. Cohesive zone model originally proposed by Barenblatt (Barenblatt 1962) 

and Dugdale (Dugdale 1960) to investigate materials exhibiting plasticity. Since then 

cohesive fracture modeling was applied in several areas, such as concrete (Mosalam and 

Paulino 1997; S. H. Song, Paulino, and Buttlar 2006; S. Song, Paulino, and Buttlar 2008), 

dynamic crack growth (Siegmund, Fleck, and Needleman 1997; G. Ruiz, Pandolfi, and 

Ortiz 2001) and viscoelasticity (Rahulkumar et al. 2000). 

To reduce the shortcomings of the FE method for modeling the propagation of 

various discontinuities such as cracks ,the extended finite element method (XFEM) was 

presented by Belytschko and Black  (Belytschko and Black 1999). The main goal was 

enriching finite element approximations to solve the crack growth problems with minimal 

re-meshing. The technique allows modeling the entire crack geometry independent of the 
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mesh and completely avoids the need to re-mesh as the crack grows. The XFEM was 

applied in various aspects of crack problems, including LEFM crack growth (Tarancón et 

al. 2009), crack growth with frictional contact (X.-P. Zhou, Chen, and Berto 2020), 

cohesive crack propagation (Grogan, Ó Brádaigh, and Leen 2015; Feng and Gray 2019), 

quasi-static crack growth (Sukumar and Prévost 2003), fatigue crack propagation 

(Golewski, Golewski, and Sadowski 2012; Irani, Mehri, and Seifollahi 2014), stationary 

and growing cracks (Lee and Martin 2016) and three-dimensional crack propagation 

(Baydoun and Fries 2012). 

These studies mainly focus on improving the accuracy of numerical models, 

however, are limited in predictive analysis for future structural performance. With linking 

the FE model with the future state of cracks, the future condition of structure and its 

capability can be better understood. 

There has been an increasing interest in studies about the use of remote sensing and 

imaging technologies to develop methods and techniques to reliably identify different 

visual defects, including concrete cracks, fatigue cracks, and asphalt cracks.(Spencer, 

Hoskere, and Narazaki 2019; Jahanshahi and Masri 2012; Jahanshahi et al. 2009; Tsao 

Stephen et al. 1994; Kaseko Mohamed S., Lo Zhen‐Ping, and Ritchie Stephen G. 1994; 

Abdel-Qader Ikhlas, Abudayyeh Osama, and Kelly Michael E. 2003; F. Chen and 

Jahanshahi 2018). In complement to the expanding use of these methods, there are now a 

variety of methods for isolating and extracting cracks from 2D or 3D images as three-

dimensional point cloud models(Jafari, Khaloo, and Lattanzi 2016; Khaloo and Lattanzi 
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2019; Cabaleiro et al. 2015; Colomina and Molina 2014; Fleming, Holtmann-Rice, and 

Bülthoff 2011; Pal and Pal 1993). 

A key advantage of these data sources is the direct link between quantified 

geometric changes and changes in the underlying mechanical performance that can be 

captured in finite element analysis, as evidenced by a variety of prior work (Ghahremani 

Kasra et al. 2018; Fathi, Dai, and Lourakis 2015; X. Yan 2007). However, to the best of 

authors’ knowledge, there is no study to use these identified cracks for FE model updating. 

Linking the identified and quantified cracks to the FE models of structures is 

computationally cost effective for capability of locally updating the model rather than 

global updating. Also, unlike the common crack modeling approaches, which simulates the 

crack in the element by reducing local stiffness, this method involves the crack size and 

location directly to the model (Friswell and Penny 2002; Dimarogonas 1996; Ostachowicz 

and Krawczuk 2001; Brandon 1998; Kisa and JA 2000).  

 

Contribution of This Research 

The authors developed an approach for damage detection and FE model updating 

of structural components through computer vision techniques (Ghahremani Kasra et al. 

2018). They studied the proposed approach on section loss damages and the results showed 

that the proposed approach will enable engineers to use the updated structural model to 

determine the reserve capacity and remaining service life of structural elements. The 

authors also in another study (Mohamadi and Lattanzi 2019) developed an approach to 

parameterize and model the dynamic evolution of the remotely sensed damages (e.g. 

cracks) in structures and successfully predicted their future state.  
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The main objective of this study is to link the numerical model of structures to the 

future state of crack extension and conduct a predictive analysis for structures capacity. 

Updating the numerical model involves the solid model updating for which the authors’ 

previously developed approach is applied (Ghahremani Kasra et al. 2018). To compute the 

future state of the crack, above mentioned parameterization and modeling approach is 

used(Mohamadi and Lattanzi 2019). Here, to address some limitations of previous work in 

reconstructing the crack shape (see Methodology section), the authors proposed an 

additional step to update the structural components’ solid model. First, the point cloud of 

an identified crack at one of the primary loading cycles is used to update the solid model 

of the structural component via a computer vision technique.  Then point clouds at various 

load cycles are parameterized, and the future crack extension is forecasted via stochastic 

modeling.  Once again, the solid model is updated with regard to the predicted crack 

extension and fracture simulation is conducted. As a result, the crack propagation can be 

modeled, and the future capacity of the structure can be predicted.  

A new approach presented here overcomes the shortcoming of the convex hull 

representation in the previous study and enables to update the solid model based on the 

predicted crack extension while mimicking the crack shape. 

To the best of the authors’ knowledge, no research has studied FE model updating 

based on the future state of crack or linked the FE model to remotely sensed cracks. A 

predictive analysis with regard to the future condition of the remotely sensed cracks 

through linking the modeled evolution of cracks to a numerical simulation ultimately helps 
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provide a complete representation of structural performance and integrity over time. It also 

results in more reliable forecasting capabilities. 

The remainder of this paper is structured as follows: First, the complete analytical 

methodology is presented. This is followed by experimental evaluation of the proposed 

approach using fatigue crack propagation data. Sources of error and limitation of the 

proposed approach are discussed in the next section. The paper concludes with an overall 

assessment of the FE model updating approach and avenues for future work.   

Methodology 

The overall methodology (Figure 4.1) consists of two main steps: First extension 

of the crack in the future load cycle is predicted and second, FE model is updated with 

regard to the predicted crack extension for predictive simulation. In the first step, once 

cracks in the structure are identified and represented as point clouds, the cracks are 

parametrized in a way that can support a dynamic modeling of defect evolution over time. 

Convex hull computation is an approach to parameterization and feature extraction that is 

proposed by the authors in their previous study (Mohamadi and Lattanzi 2019). Convex 

hull computation is used to parameterize the cracks and hull vertices are extracted as unique 

features which their evolution over time is modeled. Once features are extracted, a time-

series model is fit to the sequence of features in order to capture the underlying process of 

the crack evolution. This model fitting also enables the estimation of the future state of the 

crack via out-sample forecasting. The crack shape is then reconstructed by reversing the 

extracted features back to a geometric point set. Once the crack shape is reconstructed, the 

crack extension (i.e. length and orientation) can subsequently be computed by calculating 
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the distance and angle between the predicted crack extremes. The next step is to update the 

FE model with regard to the predicted crack extension. The authors’ previous study showed 

that the proposed hull parameterization method while has good accuracy of crack length 

prediction has some limitations for mimicking the crack shape. Therefore, the predicted 

hull cannot be used to update the solid model. To overcome the hull parameterization 

limitation the FE model updating includes two steps: First the solid model is updated with 

regard to the identified crack at one of the primary loading cycles which mimic the actual 

crack shape. In this step, the identified crack represented as a point cloud is converted to a 

solid model and subtracted from the baseline or uncracked component. Second, the 

predicted crack extension is used to update the geometry of the model once again. In this 

step the only parameter to update is the crack tip location which is predicted through time-

series forecasting model. Crack size and consequently the solid model is updated with 

changing the crack tip location.  

Once the solid model is updated, it is imported into the FE program and fatigue 

simulation is conducted. The integrity of the structural component is evaluated under 

cyclic loading. The complete FE model updating process is evaluated through an 

experimental fatigue tensile test.  
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Figure 4.1. Proposed framework for finite element model updating of the structural component based on 

the future state of its existing crack. 

 

 

 

Prediction of the Crack Extension 

Remotely sensed cracks, once detected, are parametrized to model their dynamic 

evolution (Mohamadi and Lattanzi 2019). Parameterization is achieved with feature 

extraction from the point cloud through computational geometric modeling of the convex 

hull of the cloud, resulting in a combination of hull simplexes and vertices.  These 

parameterizations are computed for multiple load steps over the life cycle of the structure. 

The evolution of features then is tracked over time by nearest neighbor search based on 

Euclidean distance and the resulting change in magnitude and orientation is used to 
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construct a dataset. Readers can refer to the authors’ prior study (Mohamadi and Lattanzi 

2019) for more detailed information. 

Once the dataset representing the evolution of crack is constructed, a stochastic 

model can be fit to the dataset to model the dynamics of crack evolution and forecasting 

the future state of crack. Autoregressive integrated moving average (ARIMA) time series 

model is used in this study as a stochastic model. ARIMA model is used for capability of 

handling the non-stationary dataset and arbitrary defect evolution such as crack 

propagation problem (Mohamadi and Lattanzi 2019). 

Once ARIMA is fitted to the crack evolution, the convex hull of the crack in the 

future load cycle is predicted. Once predicted, the future state of the crack can then be 

reconstructed by converting the feature vector into a hull shape. Subsequently the crack 

length is computed by calculating the distance between the predicted hull’s extremes. 

Finite Element Model Updating for Predictive Analysis 

The focus of this step is to update the FE model of structures (structural component) 

with regard to the future state of remotely sensed cracks. The overall approach to FE model 

updating is composed of two main steps :1) updating the solid model, and 2) predictive 

simulation. Figure 4.2 illustrates the overall approach of solid model updating and FE 

meshing for predictive simulation. 
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Figure 4.2. The overall approach of meshing the extracted point cloud and FE meshing for predictive 

simulation. 

 

 

 

The identified crack represented as point cloud is meshed via surface reconstruction 

algorithm and 3D watertight surfaces of the crack is generated. Once generated, the 3D 

surface is used to update the solid model. Then the solid model is imported to a FE program 

and fatigue simulation is conducted. Crack propagation under cyclic loading can be studied 

for structure’s performance forecasting. 

Solid model updating 

Solid models of structures can be updated with regard to the current state or future 

state of an identified crack. To do so, the solid model of the identified crack must be 

subtracted from an initial uncracked model (Ghahremani Kasra et al. 2018). In order to 

have more accurate solid model updating, the shape of the crack must be similar to the 

actual crack. The authors’ previous study revealed that the predicted hull crack and ground 
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truth convex hull are more than 95% similar, however the reconstructed crack shape from 

the prediction algorithm does not mimic the actual crack shape (Figure 4.3), due to the 

process of parameterization (Mohamadi and Lattanzi 2019). In order to overcome the 

shortcoming of the parameterization method, a novel approach is presented here for model 

updating. Overall solid model updating consists of two steps: 1) reconstruction of the actual 

crack shape and 2) updating the crack extension. 

 

 

 

Figure 4.3. Comparison of the actual crack shape and the reconstructed crack shape. 

 

Reconstruction of the actual crack shape  

At this step, in order to capture the actual shape of the crack, the solid model of the 

structural component is updated with regard to an identified crack at one of the primary 

loading cycles. The identified crack is represented by a 3D point cloud. The point cloud is 

meshed and converted to watertight solid model (Ghahremani Kasra et al. 2018). The 

screened Poisson surface reconstruction developed by Kazhdan and Hoppe (Kazhdan and 
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Hoppe 2013) is used to generate 3D watertight surfaces of the crack. The created meshes 

are then converted into a solid model. 

The baseline solid model is updated at this step. The initial or baseline solid model 

of the component is built from prior modeling experiences and provides a reference for the 

overall modeling strategy. In this case the initial model is the solid model of the structural 

component without any crack. The solid model of the quantified crack is then used to 

update the baseline solid model of the component via subtraction from initial model 

(Hoffmann 1989). 

Updating the crack extension 

As stated earlier, the previous study showed that though the predicted crack hull is 

very similar to the hull of ground truth crack, the reconstructed crack shape from the 

prediction algorithm is not mimicking the actual shape. While not discussed in the previous 

work, once the crack hull is predicted, the crack length and orientation can be computed 

from the prediction result. The distance between crack extremes representing the crack 

length can then be used to update the solid model of structural components once more. An 

assumption has been made in this study that the width of crack is constant under increasing 

loading cycles and crack propagation.  

The other parameter that is taken into consideration is the orientation of the crack 

extension (aka the crack path). The orientation of the crack may change smoothly or 

suddenly under loading conditions and in order to compute crack propagation more 

accurately this fact should be taken into consideration. The crack orientation also can be 

computed from the dynamic modeling of the crack using the horizontal and vertical 
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distance between crack extremes as shown in Figure 4.4. Once the crack length and 

orientation are determined from the ARIMA model prediction, the extension of the crack 

length and change of the orientation is used to project a new crack tip location (Figure 

4.5).   

 

 

Figure 4.4. Computation of crack orientation. 

 

 

 

Figure 4.5. Projection of new crack tip location using extension of the crack and its orientation. 
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The updated solid model is then exported a FE analysis program for mesh 

generation and predictive analysis.  

 

 

 

Figure 4.6. The overall approach of solid model updating and FE meshing for predictive simulation. 

 

 

Predictive simulation 

Once the solid model is updated with regards to the predicted crack topography, the 

model is meshed for FE fracture simulation. Once imported into the FE software program, 

the model is meshed using tetrahedral mesh elements as shown in Figure 4.6. Tetrahedral 

elements generally can fit better complex geometry such as curved geometry and acute 

angles and this makes it better fit for meshing the geometry of crack (Khoei et al. 2013). 

Consistent global element size is used for meshing the model except for around the crack 

tip for which a finer mesh is used to capture the induced stress concentration and crack 
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propagation effects.  The mesh around the crack tip is refined using the sphere of influence 

method around the geometric edge going through thickness. This has the desired result of 

improving numerical accuracy in crack regions while maintaining computational 

efficiency and scalability for the overall model (Agathos, Chatzi, and Bordas 2018). 

Unstructured meshing method (UMM) is applied in this study for meshing process. UMM 

is more versatile and easier to use than any previous fracture simulation technology (Ayhan 

2011) and has been used by many researchers mostly to determine the stress intensity factor 

(SIFs) for different kinds of crack shapes (Jones and Peng 2002; Kuang and Chen 2000; 

Broek 1972; R. A. Smith and Miller 1977; Tanaka and Akiniwa 1988). Applying the UMM 

and generating all-tetrahedral mesh for crack fronts, the same accurate results are achieved 

as simulation is run with the ideal hexahedron mesh configuration while this will reduce 

meshing time to a few minutes. Once the model is meshed then the fracture study is 

conducted.   

After meshing the solid model, boundary conditions and loads are defined 

simulating the boundary conditions of the experimental fatigue test. To model crack 

propagation the linear elastic fracture mechanics (LEFM) is applied in this study. LEFM 

has been successfully used to model the fatigue crack growth behavior (Mach, Nelson, and 

Denny 2007; Alshoaibi and Fageehi 2020; Lesiuk et al. 2020). LEFM is the basic theory 

of fracture, originally developed by Griffith (Griffith and Taylor 1921) and completed in 

its essential form by Irwin (Irwin 1957) and Rice (Rice 1968). LEFM is a simplified, yet 

sophisticated, theory that deals with sharp cracks in elastic bodies. Based on experimental 

results, figure 4.7 shows schematically crack growth rate versus the stress intensity range. 

https://www-sciencedirect-com.mutex.gmu.edu/topics/engineering/fatigue-crack-growth
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Fatigue life can be divided into an initiation period (region I) and a crack growth period 

(region II, region III) (Schijve 1977). 

 

 

 

Figure 4.7. Crack growth rate versus the stress intensity range. The Paris' equation fits the central linear 

region (region II). 

 

 Crack growth equations are used to predict the crack size starting from a given 

initial crack and are typically based on experimental data obtained from fatigue tests. 

Region II representing the stable crack propagation region, suggests that the crack growth 

rate da/dN is a function of the stress intensity factor range ΔK in a log–log scale. The 

fatigue crack propagation can be modeled using Paris’ law equation (Paris and Erdogan 

1963): 

 

https://www-sciencedirect-com.mutex.gmu.edu/topics/engineering/crack-growth-rate
https://www-sciencedirect-com.mutex.gmu.edu/topics/engineering/crack-growth-rate
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Equation 4.1  

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 

Where C and m are material dependent constants (aka Paris constant), Δk is the 

Stress intensity factor range (based on maximum stress and minimum stress). Once the 

fracture analysis is conducted the crack growth rate and life cycle of the specimen can be 

computed under loading conditions.  

 

Experimental Validation 

This section presents and discusses an experimental study designed to demonstrate 

the potential capabilities of the proposed approach for accurate predictive simulation. The 

presented test in this section is derived from laboratory-scale test of fatigue crack 

propagation in aluminum tensile specimen. The experimental data has been used 

previously to evaluate the crack extension prediction by the authors and the results are 

reported and discussed in detail (Mohamadi and Lattanzi 2019). In this study as the 

continuation of the study, the proposed approach for finite element model updating is 

evaluated using the experimental data. 

Experimental Dataset 

Prior to this study, researchers at University of Maryland constructed a fatigue 

crack propagation experiment and assessed the result using microscopic images and DIC 

to capture strain fields around the crack tip (Lara, Bruck, and Fillafer 2020). Experiment 

set up and specimen dimension is shown in the Figure 4.8 and Figure 4.9 respectively. 
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Figure 4.8. Fatigue experiment set up. 

 

 

 

Figure 4.9. Specimen dimension. 

 

In these laboratory tests, aluminum tensile coupons were tested to observe fatigue 

crack growth under cyclic fatigue loading. Marine-grade aluminum 5052-H32 with a 

nominal thickness of 2.29 mm was used. The specimen had a machined elliptical flaw in 
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the center, and increasing load caused initiation and growth of cracks on both the right and 

left sides of this notch. Cycling tension loading was performed over 80000 cycles. The 

state of the crack growth was captured at 30 intermediate intervals during the test, using an 

inspection microscope connected to a digital camera.  

The captured images from the inspection microscope were then segmented to 

isolate the crack, and the crack patterns were transformed from pixels into point clouds 

through binarization and spatial point sampling. This resulted in 2D point clouds with 

between 6000 and 12,000 points, depending on the size of the crack. The point cloud data 

extracted from microscopic images were used to prototype and test crack prediction 

algorithms and updating finite element models discussed in the methodology (see 

methodology section).   

The convex hulls of these point clouds were computed, then features evolution were 

exported as time series and future state of crack was predicted, per the methodology 

delineated in Section 2.1. The solid model was then updated with regard to the predicted 

crack extension. Two different tests are presented in this section to evaluate the proposed 

FE model updating methodology including single-step prediction and multiple-step 

prediction. For single-step prediction, ARIMA model was used to find the crack 

propagation and prediction of the future state of the crack. On the other hand, for multiple-

step prediction, after cracks at multiple loading cycles were fit to ARIMA, prediction of a 

four time-steps into the future was computed. The solid model was then updated with 

regard to both predicted cracks and the updated finite element model was evaluated as 

results were compared against those from the experiment. 
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Metrics 

The key metric for evaluating the FE model updating methodology was the crack 

extension. Once the fracture simulation was conducted, the crack extension during 

increasing loading cycles were compared against those from the experiment (aka ground 

truth). The crack growth rate (aka da/dn) also was evaluated through comparing the results 

against the ground truth. In addition, strain along the cross section and strain field at 

specific loading cycles were extracted from the simulation and were compared against the 

experimental data. Strain results from the experiment were computed using the DIC system 

which has been applied to the field measurement of displacement and strain of civil 

structures in the recent years (McCormick and Lord 2010; Yoneyama et al. 2007; Helfrick 

et al. 2011; Reagan, Sabato, and Niezrecki 2017). 

Crack Propagation Modeling 

As stated in the methodology section, in order to update the geometry of the model, 

first the solid model was updated based on the identified crack in one of the primary loading 

cycles (i.e. 30k cycles). To do so the solid model of defect must be subtracted from baseline 

model in an intermediate solid modeling software. Autodesk Inventor was used in this 

study for modeling purpose. Then the predicted crack length and orientation from the 

ARIMA forecasting model were used to update the crack tip location. Once the solid model 

was updated, the model was imported into ANSYS FE software program for meshing and 

crack propagation study. 
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Single-step prediction 

Performance of the proposed FE model updating methodology based on the single-

step prediction is evaluated in this section. 15 steps of the right and left cracks, 

corresponding to approximately 48k loading intervals were used to predict the crack length 

at 52k loading cycles. The true crack extension at time steps 16 corresponding to the 52k 

loading cycle was then held out as the ground truth. The crack extension was predicted 

using the ARIMA model. The predicted crack extension (length and orientation) was then 

used to update the solid model as explained earlier. Once the solid model was imported 

into ANSYS, the model was meshed with tetrahedron elements. Global element size was 

set to 3mm and around the crack tip on both sides 1/10 finer mesh was used in 0.5 mm 

circle and through thickness of the model. As cracks grew, the crack geometry changed, 

and the mesh was updated accordingly. Separating Morphing and Adaptive Remeshing 

Technology (SMART) in ANSYS software program which relies on the UMM process is 

applied for crack propagation study. Remeshing with tetrahedron elements was done 

automatically at a critical region around the crack tip at each iteration of the simulation 

process using Separating Morphing and Adaptive Remeshing Technology (SMART) crack 

growth simulation in ANSYS. Linear elastic behavior was assumed for aluminum and Paris 

constants C and m were set equal to 8.87E-08 and 3.14 respectively for modeling the crack 

propagation. The Paris constants were taken from the literature (Moreto et al. 2015). Once 

the loading and boundary condition were defined the fatigue crack simulation was 

conducted. Extension of the right and left side cracks, crack growth rate, strain at crack tip 
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under increasing loading cycles, the strain along the cross section at specific loading cycles 

were computed and compared against the ground truth.  

Multiple step prediction 

To further evaluate the capability of the proposed approach, the FE model was 

updated based on multiple step prediction. To do so, once ARIMA model fit to series of 

crack extension at multiple load cycle, rather than predicting the state of crack in the 

following load cycle, the crack extension at four load cycles into future was forecasted. 

Seven load steps of the right and left sides crack, corresponding to approximately 38k 

loading intervals used to predict the crack length at four load steps into the future 

corresponding to 46k loading cycles. The true convex hulls of the crack at 12th load step 

corresponding to the 46k load cycle were then computed and held out as the ground truth. 

Previous study showed that the multiple step prediction has lower accuracy and there is 

also a sudden change in the direction of crack growth after 48k load cycles. It is expected 

that the predictive time-series models could not accurately forecast the length and 

orientation of the crack immediately after this event. This affects the crack propagation 

result as well. Once the crack at four load steps into the future was computed, the solid 

model was updated with regard to the predicted crack extension. Meshing and fracture 

simulation steps then were done similar to the previous section. 

Results and Discussion 

From the single step prediction algorithm, the right and left crack extensions were 

predicted with 5% and 3% relative error respectively and in both cases the predicted lengths 

were smaller than the ground truth.  
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Comparison of crack length vs number of load cycles for single step prediction is 

shown in Figure 4.10 for the right and the left crack from experiment and FE simulation. 

Also, crack propagation with increasing load cycle were computed from fatigue simulation 

and were compared against ground truth crack propagation. The relative error of crack 

extension is shown in Table 4.1. It can be observed that there is a slight difference between 

growth of the right and left crack in both experiment and simulation. However, in the 

experiment the extension of cracks on both sides of the notch converge as load cycles 

increases, where from the fracture simulation these two numbers do not converge. The 

predicted crack length on the left side differs less from the ground truth compared to the 

right crack as the left crack predicted from the ARIMA model had lower relative error 

initially. Table 4.1 shows that overall, the crack extension can be predicted with a relatively 

small relative error with minimum of 0.34% and maximum of 12%. Average relative error 

for the right and left side cracks were 6.25% and 5% respectively. 
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Figure 4.10. Comparison of crack length vs number of load cycles for the right and left crack from 

experiment and FE simulation through single step prediction. 

 

Table 4.1. Relative error (%) of the right and left crack extension estimation. 

 

 

Number of 

Cycles 

Right Crack Error (%) Left Crack Error (%) 

56k -12.61 -10.27 

60k -8.01 -3.30 

64k -6.16 -0.34 

68k -0.68 8.06 

72k -5.30 -0.67 

76k -0.54 6.56 

80k -10.45 -5.82 
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In addition, the comparison of the crack growth rate is shown in Figure 4.11. 

Results indicate that there is a large variation between crack growth rate from the 

experiment and FE simulation and at some cycles this error is about 50%. The error may 

come from the fracture simulation assumption. LEFM simulation directly affects the crack 

growth rate as it follows the Paris law, however in the experiment, the specimen may have 

entered the plastic zone in which the Paris equation is invalid. 

 

 

 

Figure 4.11. Comparison of crack growth rate vs number of load cycles for the right and left crack from 

experiment and FE simulation through single step prediction. 

 

 



75 

 

From multiple step prediction, the right and the left crack at 46k load cycles were 

predicted with 17% and 13% relative error respectively. Both the right and the left cracks 

were smaller than the ground truth. As mentioned earlier this hull estimation error comes 

from multiple step prediction. In addition, a nonlinear system behavior and sudden change 

of crack direction is another source of hull estimation error. Comparison of crack length vs 

number of load cycles for multiple steps ahead (4 steps) prediction is shown for the right 

and the left crack from experiment and FE simulation (Figure 4.12). Also, relative error of 

crack propagation from the simulation is shown in Table 4.2. It can be observed that the 

extension of cracks on the both sides of the notch unlike the experimental data diverge as 

the load cycle increases.   

Also, it can be observed from both Figure 4.12 and Table 4.2 that the difference 

between experimental and simulation results reduces as the loading cycle increases. The 

relative error of the left crack extension at the beginning of the simulation is approximately 

35% and after three loading intervals this error reduced to approximately 3%. 
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Figure 4.12. Comparison of crack length vs number of load cycles for the right and left crack from 

experiment and FE simulation through multiple step prediction. 

 

Table 4.2. Relative error (%) of the right and left crack extension estimation. 

 

 

. 

 

 

Number of Cycles Right Crack Error (%) Left Crack Error (%) 

48k -32.56 -34.02 

52k -26.77 -21.6 

56k -17.07 -11.23 

60k -5.43 -2.26 

64k -2.98 4.38 

68k 7.29 13.31 

72k 0.43 8.89 

76k 9.78 18.19 

80k -6.73 3.15 
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Figure 4.13. Comparison of Von Mises strain along the cross section of the specimen under 1100 N load 

from experiment and FE simulation. 

 

 

Figure 4.13 shows the comparison of Von Mises strain along the cross section of 

the specimen under 1100 N load from experiment and FE simulation. The cross section is 

defined on the left side of the notch from the crack tip till the edge of the specimen and 

strain results were extracted from both experiment (DIC) and FE simulation. The predicted 

strain at the crack tip is very close to the experiment however, from the crack tip up until 

1.5 mm away from it, discrepancies from the experiment measurements are apparent. This 

is due to localized plasticity and generating the plastic zone around the crack tip which was 

not captured in FE simulation.  The strain field during increasing loading cycles shown in 
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Figure 4.14 for visualization purpose. It can be observed that strain around the crack tip 

expands in the circular region as loading cycle increases. 

 

 

Figure 4.14. Strain field during increasing loading cycles. 

 

Sources of error 

There are several potential sources of error in this FE model updating methodology. 

Some errors stem from the crack identification and Poisson meshing process itself and also 

the crack extension prediction which tended to underpredict crack length and resulted in 

systematic underprediction of crack length in the FE fracture models consequently. Second, 

the linear behavior assumption used in the fracture simulation may have resulted in 

producing some error in strain computation. Finally, the Paris constants were taken from 
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the literature and it should be noted that the specification of the aluminum alloy, the 

processing condition such as temperature and air humidity, all affect the fatigue growth 

rate. In order to have more accurate constants, the fatigue crack growth rate (FCGR) 

experiments must be conducted following the ASTM E647 standard (ASTM, E08 

Committee n.d.), the crack growth rate (da/dN) vs stress intensity factor range (ΔK) must 

be plotted to calculate the Paris constants.  

Limitation of the method 

While the developed FE model updating approach was shown to be effective under 

the experimental conditions described here, it is important to recognize the limitations of 

this approach. The presented fatigue test was performed under controlled laboratory 

conditions and was not subject to environmental variations which increase measurement 

uncertainty. How the fracture simulation approach performs under unpredictable loading 

such as varying amplitude cyclic loading and thermal conditions remains an unstudied 

problem. Also, more complex materials such as concrete cause highly random crack 

propagation and will degrade the accuracy of the crack identification and prediction 

consequently. Undoubtedly, field conditions are likely to degrade both the crack prediction 

and the FE model updating performance.  

 

Conclusion and Future Work 

In this work, a methodology to update the finite element model of structural 

components with regard to the future state of the crack based on the computer vision 

technique is introduced.  Solid model of the structural component was updated in two steps 

to overcome the limitation of parameterization approach. 2D experimental point clouds 
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representing crack growth with increasing loading cycles were used to predict the crack 

extension in the future cycle. The future crack extension (i.e. length and orientation) was 

predicted via time-series model. The solid model of structural components was updated 

once again based on the predicted crack extension. Once updated, the solid model was 

meshed and LEFM was conducted.  

The results indicate that linking the future state of the crack to FE model of 

structures provides a basis for future predictive simulation. The proposed methodology has 

several advantages over current practices. Firstly, it provides engineers a basis to study the 

crack propagation involving the geometry and location of crack. Secondly, it is capable of 

linking the FE model of structures to the future state of the crack and capturing the actual 

shape of the crack. Linking the FE model to the evolution of crack and evaluating the 

structural performance also results in more reliable forecasting capabilities and a more 

complete understanding of structural performance. This will lead to better system asset 

management decision-making, with apparent safety and financial benefits.  

This study was part of an ongoing research program, and various parts of the presented 

methodology is being considered for further improvement. 

 The limitations discussed in section Sources of error highlight potential avenues 

for future work. The performance of the FE model updating approach under environment 

uncertainty and material variability should be investigated. More datasets from other crack 

scenarios should also be considered, for instance, concrete or asphalt cracking in civil 

infrastructure. Such studies may provide insight into how particular algorithmic aspects, 

such as crack identification, prediction and projection (see methodology section), behave 
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under complex material phenomena. Effect of varying amplitude cyclic loading also must 

be evaluated as it reflects the real-world scenarios. One notable avenue for future work is 

to adapt the algorithm to more complex fracture mechanics study such as Elastic Plastic 

Fracture Mechanics (EPFM) to estimate the crack growth rate. 

 

 

 

 

 

 

 

 

 

 



82 

 

CHAPTER FIVE: FUSION AND VISUALIZATION OF BRIDGE DECK 

NONDESTRUCTIVE EVALUATION DATA VIA MACHINE LEARNING 

Introduction 

To preserve infrastructure safety and integrity, reliable and effective damage 

detection techniques need to be established. Increasingly, nondestructive evaluation (NDE) 

technologies are used for the detection of surface and subsurface defects, evaluation of the 

extent of defects, and as a critical aspect of holistic asset management. A key challenge 

with NDE is that the accuracy of the data from a single source is dependent on operator 

training and environmental conditions that can add considerable uncertainty to defect 

detection and quantification (McCann and Forde 2001). From a practical standpoint, this 

measurement uncertainty has inhibited the adoption of NDE 

across many application domains. 

To reduce measurement uncertainty, researchers have explored the concept of using 

multiple NDE methods in conjunction with data fusion algorithms. Recent advances in 

sensing and data analytics have led to the adoption of data fusion in fields such as computer 

vision and image analysis (F.-C. Chen et al. 2017), transportation systems (Faouzi, Leung, 

and Kurian 2011; Faouzi and Klein 2016), biometrics (Haghighat, Abdel-Mottaleb, and 

Alhalabi 2016), and structural health monitoring (Sun, Lee, and Lu 2016; R.-T. Wu and 

Jahanshahi 2018; Ramos et al. 2015; F.-C. Chen et al. 2017; Habib et al. 2016; Kralovec 

and Schagerl 2020). In these cases, the use of data fusion was shown to provide a better 

interpretation of observed information by decreasing the measurement uncertainty present 

in individual source data (Faouzi and Klein 2016). 
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Data fusion encompasses a vast array of analytical methods ranging from Bayesian 

probabilistic approaches, Dempster–Shafer (DS) evidence approaches, fuzzy reasoning, 

and machine learning (R.-T. Wu and Jahanshahi 2018; Khan and Anwar 2019). These 

methods have been used for damage identification, quantification, and system response 

estimates (D. Hall and Llinas 2001; Chair and Varshney 1986; Liu et al. 1999; Vanik M. 

W., Beck J. L., and Au S. K. 2000). For example, a recursive Bayesian framework was 

used to update the parameters of a crack growth model, as well as the probability 

distribution of the crack size and crack growth rate (Rabiei and Modarres 2013), and a 

neural network and fuzzy inference were combined to evaluate the structural condition of 

a cable bridge (Sun, Lee, and Lu 2016).  

Data fusion can generally be carried out at various “levels” of data processing 

ranging from combinations of raw data to a fusion of individual operational decisions 

(Steinberg and Bowman 2017). Data-level fusion refers to combining raw data directly and 

it is possible only if the sensors measure the same physical quantities. On the other hand, 

if the survey observations are heterogeneous, then the data must be fused at 

the feature-level or decision-level. For feature-level fusion, a vector of data descriptors is 

extracted from the raw measurements of individual NDE results and the features are then 

combined together into a single concatenated descriptor vector (S.-L. Chen and Jen 2000). 

This combined vector can be further processed through machine learning techniques based 

on neural networks or clustering algorithms (Kittler 1975; Sun, Lee, and Lu 2016). Once 

features are fused through machine learning, the resulting output reflects the correlations 

in data content and reduces the uncertainty of results. Decision-level fusion is the blending 
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of operational decisions derived from individual data streams considered in isolation. 

Decision-level fusion naturally leads to loss of performance, but this type of fusion 

represents a feasible fusion approach when fusion at lower levels is not practical or 

advisable. 

Frequently applied fusion methods in structural health monitoring include: 

Bayesian probabilistic approaches including techniques such as Kalman filtering (Vanik 

M. W., Beck J. L., and Au S. K. 2000; Rabiei and Modarres 2013; Ramos et al. 2015), 

Dempster–Shafer (DS) evidential reasoning (H. Wu 2004; Huang, Liu, and Sun 2014), and 

machine learning algorithms such as artificial neural networks (ANN) (F. Chen and 

Jahanshahi 2018; Jiang, Zhang, and Zhang 2011) or support vector machines (SVM) (Q. 

Zhou et al. 2015). SHM applications tend to focus on the fusion of time-series sensor data, 

such as from accelerometers, to reduce measurement and state-estimation uncertainty. 

In this work, the application of machine learning driven data fusion to the NDE 

assessment of concrete bridge decks is considered. Bridge deck deterioration plays a 

critical role in highway asset management due to the costs and traffic disruptions associated 

with deck repair and replacement. While pattern analysis and machine learning have been 

studied for use with individual concrete NDE methods, they have not been considered as a 

basis for data fusion. Furthermore, how the results of NDE data fusion can be intuitively 

visualized and assessed holistically by engineers remains an under-studied problem. 

The primary contributions of this work are: 

• A wavelet-based approach to extracting statistically relevant features from NDE  

Waveforms 
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• A non-parametric machine learning approach to the fusion of NDE data features 

• A novel visualization schema for representing the fused results and measurement 

uncertainty 

In order to best illustrate the benefits of NDE fusion, the machine learning models 

developed in this work were trained and evaluated for the detection of single defect classes 

(binary classification). As such, they do not provide defect diagnosis across a range of 

observed defects. Such considerations may lead to different conclusions regarding fusion 

efficacy and are an avenue for future work. 

The remainder of this paper is structured as follows. First, the overall 

methodological framework is presented. This is followed by an experimental case study to 

illustrate the behavior and performance of the approach, based on laboratory scale data 

collected at the Turner-Fairbank Highway Research Center (TFHRC). The NDE data for 

this case study was captured in a manner that mimicked the NDE systems available 

onboard an inspection robot developed at TFHRC, illustrating a potential practical 

application for the proposed framework. The following NDE methods were considered (see 

Experimental Validation for more details): ultrasonic surface waves (USW), impact echo 

(IE), ground penetrating radar (GPR), electrical resistivity (ER), ultrasonic tomography 

(UT), half-cell potential (HCP), infrared thermography (IRT), and impulse response (IR). 

The paper concludes with a discussion of outstanding research efforts 

that must be considered prior to practical implementation. 
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Figure 5.1. Schematic overview of the proposed methodology for multiple NDE feature fusion. 

 

Methodology 

The primary focus of this study was on the development of a feature-level fusion 

approach (Figure 5.1). A decision-level fusion approach was also developed for 

comparative purposes and is discussed in Decision Fusion. First, data from multiple NDE 

sources are preprocessed for spatial registration and salient numerical features are extracted 

from each NDE data source. Feature extraction is achieved through the discrete wavelet 

transform (DWT). Once extracted, features are combined into a concatenated feature 

(descriptor) vector. This feature vector then serves as input to a supervised machine 

learning classifier trained to detect subsurface defects in the concrete specimen. For model 

training, features extracted from test data were manually labeled to generate a ground truth. 
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Once the machine learning model assesses the likelihood of a defect at each location along 

a bridge deck, the probability of occurrence of damage across the 

deck is visualized as a red-blue heatmap. 

Data Preprocessing 

Data preprocessing encompasses a range of tasks such as data cleaning, data 

transformation, and feature extraction (Nantasenamat et al. 2009). In this work, the 

emphasis for data preprocessing is on making heterogeneous NDE datasets spatially 

compatible followed by feature extraction. Even for robotic multi-NDE systems, 

discrepancies in the location of measurements is inevitable. To accommodate, 

measurements are linearly interpolated onto a consistent 2D grid spacing. Incomplete data 

is also an inevitable problem in handling most real-world data sources and is interpolated 

as well. 

 

 

Figure 5.2. Combining scalar and waveform responses of interpolated data. 
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Some NDE techniques provide scalar valued measurements at each test point 

(e.g., HCP or ER) while others produce a waveform result (e.g., IE or GPR). This data 

heterogeneity necessitates fusion at either the feature or decision-level. To fuse at the 

feature-level, numerical feature must first be extracted from waveform measurements. 

These descriptors are then concatenated with scalar response data (Figure 5.2). 

Waveform feature extraction 

Feature extraction refers to the process of extracting statistically salient numerical 

descriptors from the original data. In most conventional approaches to NDE data analysis, 

feature extraction has focused on reducing an NDE waveform measurement to a single 

scalar-valued representation. For data fusion, such approaches dramatically reduce the 

amount of relevant information. The wavelet transform is a time-frequency analysis 

technique that is commonly used for advanced signal processing (Daubechies 1992). It was 

developed as an alternative to the short time Fourier (S. G. Mallat 1989; Nouri Shirazi, 

Mollamahmoudi, and Seyedpoor 2014) to overcome problems related to the simultaneous 

representation of frequency and time resolution properties. Compared to a traditional 

Fourier analysis, a wavelet transformation has the ability to simultaneously reproduce 

temporal and scale data, making it better suited for analyzing signals that are periodic, 

transient (or nonstationary), and noisy. As a result, wavelet transforms are increasingly 

employed in numerous applications for feature extraction (Epinat et al. 2001; Ghazali et al. 

2007; Luk et al. 2008; Al Ghayab et al. 2019). In particular, wavelet transforms have 

recently seen use in SHM and NDE analysis, for instance in the assessment of acoustic IE 
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measurements of concrete slabs (Saadat et al. 2004; Khatam et al. 2007; Yeh and Liu 2008; 

Hou, Jankowski, and Ou 2015). 

 

 

Figure 5.3. Schematic discrete wavelet transforms for the four-level Symlet wavelet decomposition used in 

this work. 

 

Wavelets can be considered as a family of functions constructed from translations 

and dilations of a single function called the “mother wavelet” 𝜓(𝑡) (S. Mallat 2009). They 

are defined by the following equation: 

Equation 5.1 

𝛹𝑎,𝑏(𝑡) =
1

√|𝑎|
 𝛹 (

𝑡 − 𝑏

𝑎
)        𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0 

The parameter a is the scale, and it measures the degree of compression. The 

parameter b is the translation parameter that determines the time location of the wavelet 

and t is time (Debnath and Shah 2014). For a signal 𝑠(𝑡), the transformed wavelet 

representation of the signal, Ws ,  at scale a, position b is defined as an inner product: 
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Equation 5.2 

𝑊𝑠(𝑏, 𝑎) = ∫ 𝑠(𝑡)
∞

−∞

1

√|𝑎|
 𝛹 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡   

The wavelet transform can be implemented in either a continuous or discrete form. 

The widely used DWT is employed in this study. DWT is an adaptive decomposition which 

decomposes a signal with high- and low-pass filters and increases the frequency resolution 

in lower frequency bands (G. Zhang et al. 2018). The DWT decomposes a signal onto a set 

of bases that correspond to different time and frequency scales or resolutions (Figure 5.3). 

At the first stage of decomposition, the initial signal is decomposed into approximation and 

detail coefficients. The first level approximation coefficients are further decomposed into 

second-level approximation and detail coefficients, and the process is repeated, resulting 

in levels of approximation and detail that capture both frequency and time domain 

information about a signal (J.-K. Zhang, Yan, and Cui 2016). The approximations are the 

high-scale, low-frequency components of the signal, while the details are low-scale, high 

frequency. This wavelet decomposition also suppresses signal noise, effectively serving to 

denoise the signals prior to data fusion. 

In this work, a fourth order variant of the Daubechies wavelet, known as the Symlet 

wavelet, is used in conjunction with the DWT. This particular wavelet feature extraction 

approach was first developed in (J.-K. Zhang, Yan, and Cui 2016) for the analysis of IE 

data. In this study, this wavelet extraction approach is applied to both IE and GPR signals. 

Both IE and GPR signals are considered transient in nature with nonstationary noise 

characteristics, indicating that they are well suited for wavelet representation (X. Zhang et 

al. 2018). 
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Figure 5.4. A) Original IE signal; (B–E) reconstructed detail coefficients at level 1(B), level 2 (C), level 

3(D), level 4(E); (F) reconstructed approximation coefficients at level 4. 

 

 

Based on prior studies and empirical analysis by the authors, a four-level 

decomposition is adopted for both IE and GPR signals and decomposition, as illustrated in 

Figure 5.4. After decomposition and reconstruction of sub-signals, four features are 

extracted from each wavelet basis. The root mean square (i.e., average power of signal), 

standard deviation (i.e., Second spectral moment), kurtosis (i.e., Third spectral moment) 

and skewness (i.e., Fourth spectral moment). Overall, this results in 20 features for each 

original measurement signal. These features extracted from IE and GPR signals are later 
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combined into a vector as an input to a given statistical model. The functions for feature 

calculation are defined as follows: Let xn, n =1, 2, . . ., N be the time domain signals and 

[pi, fi], i = 1, 2, . . ., M be its corresponding spectrum, where pi and fi are the amplitude and 

the frequency at ith frequency bin, respectively. 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 ∶ 𝑇𝑃 = ∑ 𝑝𝑖
𝑀
𝑖=1  ,  𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑: 𝑀1 =  ∑ 𝑝𝑖

𝑀
𝑖=1 . 𝑓𝑖/𝑇𝑃 

 

Equation 5.3 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 = √1/𝑀 ∑ 𝑝𝑖
2

𝑀

𝑖=1

 

Equation 5.4 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛: 𝑀2 = √∑(𝑓𝑖

𝑀

𝑖=1

− 𝑀1)2. 𝑝𝑖/𝑇𝑃 

Equation 5.5 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠: 𝑀3 =  
∑ (𝑓𝑀

𝑖=1 𝑖
− 𝑀1)3. 𝑝𝑖

𝑀2
3. 𝑇𝑃

 

 

Equation 5.6 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 ∶  𝑀4 =  
∑ (𝑓𝑀

𝑖=1 𝑖
− 𝑀1)4. 𝑝𝑖

𝑀2
4. 𝑇𝑃

 

 

Data interpolation 

In a multi-NDE assessment scenario, the goal is to capture measurements at 

identical locations across an assessment area. However, the practicalities of NDE mean 

that it is typically not possible to achieve this goal. For instance, in the experimental study 

of this work, NDE measurement spacing was not consistent across NDE techniques and 
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there were intermittent missing measurements. Prior to data fusion, NDE values must be 

interpolated onto a consistent grid spacing. In the example shown in Figure 5.5, the grid 

spacings of measurements NDE 1 and NDE 2 are different. Features from NDE 2 are 

measured at grid points x0, x, and x1, resulting in measurements u0, u, and u1. Features 

extracted from NDE 1 are only measured at grid points x0 and x1 (measurements f0 and f1). 

The features f at location x is linearly interpolated via first order polynomial. The 

relationship between spatially distributed NDE measurements is not well-defined, and 

more complex interpolation approaches could prove more suitable. This is 

one potential avenue for future study. 

 

 

Figure 5.5. Linear interpolation of NDE data. 

 

 

Data Fusion 

As discussed previously, feature and decision-level fusion are considered in this 

study because the heterogeneity of bridge deck NDE data prohibits the use of data level 
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fusion. In general, the “higher up” in the fusion ontology from data to decision-level, the 

greater the loss of information. As such, it is generally advisable to fuse data at the lowest 

possible level, motivating the focus on feature-level fusion in this work.  

The general concept is to take the concatenated set of wavelet features extracted 

from each NDE measurement (Waveform Feature Extraction) at each location and use the 

combined vector of features as the inputs into a statistical model that associates the vector 

with a statistical assessment of material condition. Here this statistical model takes the form 

of a statistical classification problem, one that classifies a feature vector as being a member 

of either a “detected defect” or “sound concrete” assessment class. Multiclass 

classifications are also possible, though they were not extensively studied here due to 

limited data availability (see Experimental Validation for more details). Ultimately, the end 

result is that the raw data from each NDE source is effectively fused together to provide an 

enhanced assessment. 

There are a broad range of classification algorithms that can be used such purposes. 

Generally, they can be divided into parametric and nonparametric methods. Parametric 

techniques make assumptions about the underlying statistical distribution or the 

measurement uncertainty of observations in order to enable inference. Implicitly, such 

techniques often require statistical stationarity, as well as consistent and quantifiable 

measurement uncertainty. The alternative are nonparametric fusion methods. 

Nonparametric methods relax assumptions regarding underlying statistical distributions 

and instead construct a model of measurement states from sets of existing data (Tsiliki and 

Kossida 2011). Such approaches have the advantage of being applicable to highly complex 
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and nonlinear statistical problems. Machine learning approaches have become the 

dominant paradigm for nonparametric data fusion, with ANN and SVM as the most widely 

used approaches. ANN have the advantage of being more flexible with respect to data input 

and can be highly tuned for optimization to a specific problem domain. SVM have fewer 

user parameters (hyperparameters), making them more suitable for rapid prototyping and 

problems with less data available for model training (Dong et al. 2009). Given the limited 

size of the available data sets for prototyping, the focus here is on the use of SVM. The 

behavior of several other methods are presented as well for comparative purposes. These 

methods included: logistic regression, decision tree-based models and ANN. The weighted 

decision-level fusion is also studied and is briefly discussed (Lu and Michaels 2009; 

Heideklang and Shokouhi 2013). 

Conventional machine learning performance metrics are used to assess data fusion 

capabilities, including confusion matrices, ROC curves and F1 scores (Fawcett 2006). 

While classifiers typically produce a discrete classification, statistical probabilities are used 

for class separation. This statistical probability provides a more nuanced representation of 

classifier performance and can be used for holistic assessment and visualization purposes 

(see Holistic Visualization for details). 

Feature fusion – SVM 

SVM are a group of algorithms that were originally designed for binary 

classification and gained popularity due to promising performance in a wide range of 

applications (Cortes and Vapnik 1995; Cristianini and Shawe-Taylor 2000; A. Ruiz and 

Lopez-de-Teruel 2001). SVMs attempt to discriminate between classes of data by finding 
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the optimal high-dimensional hyperplanes that bisect the data, and then combining these 

hyperplane bi-sections to enable more complex reasoning. The original data points from 

an input feature vector is projected by a kernel function into a higher dimension feature 

space (Figure 5.6). In this space, SVM tends to find the hyperplane that separates the data 

with the largest margin. The method places class-separating hyperplanes in the original or 

transformed feature space, and the new sample is labeled with the class label that 

maximizes the decision function—the distance between support vectors (Boser, Guyon, 

and Vapnik 1992, 199; Vapnik 2000). 

 

 

Figure 5.6. Support Vector Machine illustration of projection of 2D data into a higher dimension through 

kernel function projection. 

 

 

The SVM is especially suited for scenarios with smaller sample sizes, as is the case 

for many NDE assessment scenarios (Luts et al. 2012). In contrast to other algorithms, 

SVM tends to use all available features, even if they are not of real statistical 
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importance, and therefore requires more care regarding cleaning and preprocessing of the 

input data. 

SVM standardization 

Standardization (i.e., feature scaling) refers to the process of rescaling the values of 

the input variables so that they share a common scale, in order to reduce classifier biasing. 

Standardization is an important step for SVM classifiers. For instance, many elements used 

in the RBF kernel of Support Vector Machines assume that all features are centered around 

0 and have variance in the same order. If a feature has a variance that is orders of magnitude 

larger than others, it can potentially dominate the objective function and make the estimator 

unable to learn from other features. Data standardization also can speed up training time of 

SVM by starting the training process for each feature within the same scale (Kotsiantis, 

Zaharakis, and Pintelas 2006). Here, features are standardized by removing the mean and 

scaling to a unit variance. The standard score of a sample x is calculated as: 

Equation 5.7 

𝑍 =  
(𝑥 − 𝑢)

𝑠
 

where u is the mean of the training samples and s is the standard deviation of the 

training samples (Shanker, Hu, and Hung 1996). Centering and scaling happen 

independently on each feature by computing the relevant statistics from samples in the 

training set. These scaling parameters are then applied to the test data. 
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Hyperparameter identification 

Prior to model training and fitting, the model hyperparameters must be optimized 

(T. Wang et al. 2010). Good model selection is the key to getting good performance from 

any machine learning algorithm. Also, if the hyperparameters are not selected 

appropriately, an SVM may take an unduly long time to train (Nalepa, Kawulok, and 

Dudzik 2018). The SVM model contains two main parameters that must be optimized: the 

kernel function used for dimensional reprojection, and the regularization parameter (c). 

SVM algorithms can use different types of kernel functions such as linear, polynomial, 

sigmoid, and radial basis functions (RBF). The regularization parameter (c) is used to 

prevent overfitting. In this study, a hyperparameter search (grid search) is performed across 

combinations of different kernel functions and regularization parameters. The performance 

of the selected hyperparameters and resulting trained model is then measured on a 

dedicated evaluation set that was not used during formal model selection and training. 

Different combinations of hyperparameters are compared against each other based on 

model predictive performance. For the experimental data set discussed in Experimental 

Validation, a combination of the Radial Based Function and regularization parameter, c, 

equal to unity showed the best performance among all combinations. 

Other considered classifiers 

To provide a point of comparison with SVM data fusion, logistic regression, 

decision trees, and ANN are presented and evaluated here as well. Logistic regression is a 

simple, parametric machine learning algorithm which assumes a linear mapping function 

between input data and output classification and has been used extensively in the data 
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fusion literature (Pigeon, Druyts, and Verlinde 2000). Generally, this function is a linear 

combination of the input variables. The benefit of the algorithm is that it does not require 

as much training data as methods such as methods such as SVM and ANN, however it is 

constrained to the specified logistic functional form, which may or may not be sufficiently 

accurate. As will be shown in Experimental Validation, since logistic regression is only 

suitable for linear problems, its performance was strongly biased to one of the technique’s 

results and did not provide a true fusion of information for NDE data. 

Tree-based learning models such as the Decision tree (DT) classifier are 

nonparametric algorithms that first select the best feature for an initial separation of the 

data (root node) using the concept of information gain ratio. It then builds subtrees and 

nodes in a recursive manner that splits the data into classes based on an evaluation of each 

feature in an input vector (Demirbas 1989). Decision trees generally work better for larger 

datasets and are prone to overfitting. 

An ANN employs a complex network of nonlinear response functions, with the 

value of each function in the network weighted based on an optimized fitting to training 

data (A. Zhang et al. 2017). The input “layer” of the network can range from combinations 

of raw data to a set of extracted data features to a numerical representation of a set of 

decisions. The output can be a layer of the same size and type as the input, or smaller. 

Increasing the complexity of an ANN architecture allows for more nonlinear and 

sophisticated representations and fusions and is the basis for modern deep learning 

strategies. However, such increases in complexity typically require even larger increases 

in the amount of training data used to find network weights. Similarly, SVM outperformed 
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the ANN in the preliminary analysis. The reason is that unlike ANNs, the computational 

complexity of SVMs does not depend on the dimensionality of the input space. ANNs use 

empirical risk minimization, while SVMs use structural risk minimization. The reason that 

SVMs often outperform ANNs in practice, particularly for smaller data sets, is that SVMs 

are less prone to overfitting (Olson and Delen 2008). In recent years, deep learning–based 

approaches have become popular across research fields due to their ability to automatically 

learn meaningful feature representations from the raw data (Hinton, Osindero, and Teh 

2006, 200; Najafabadi et al. 2015). However, for smaller dataset sizes, such as those in this 

study, deep learning algorithms do not perform well and become prone to overfitting 

(Brownlee 2017). 

Decision fusion 

Decision-level fusion combines information after each sensor source has been 

independently processed to make a preliminary determination of the existence of damage. 

Such fusions are valuable when an effective workflow for using a single data source in 

decision making already exists. Decision-level fusion then allows those existing workflows 

to be integrated and combined. As a point of comparison, the weighted decision algorithm 

(D. Hall and Llinas 2001) was used in this study. 

 Weighted decision makes assumption that each individual assessment has its own 

weight with respect to accuracy or validity. These weights can be assumed equal for 

simplicity, however usually the decision from a data source with less precision and 

confidence is assigned a smaller weight contribution prior to the fusion. For classification 

tasks, the selection of appropriate thresholds is needed to assign the predicted damage 
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pattern. This method therefore requires a priori assumptions regarding statistical 

distributions or the uncertainty of any given measurement.  

It should be noted that many data fusion techniques can be used for decision-level 

fusion as easily as they can for feature or data-level fusions. What differs across these levels 

is the simplicity of the inputs to the algorithms, with data-level fusion requiring 

the largest and most complex inputs and decision-level requiring the simplest, with 

correlated requirements for the size of the data necessary for training and testing. Feature-

level stands as a flexible compromise between the two extremes. 

Holistic Visualization 

 

 

Figure 5.7. Heat map showing confidence of defect prediction. 

 

The developed approach to visualization stemmed from a series of interviews the 

authors performed with NDE end-users, as well as recent advances in data visualization 

(Rangwala, Kauffman, and Karypis 2009; Choo et al. 2012). Rather than present the 

discrete output classification of the machine learner at each measurement location, the 

model’s statistical confidence in its prediction is presented (Figure 5.7). To accomplish 
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this, the aggregated detection results across the deck slab are shown as a contour heat map, 

as is common practice. But rather than indicate a discretized detection, what is shown is in 

fact the machine learning model’s classification confidence at each location, represented 

by a probability score ranging from 0.0 (confident in no defect) to 1.0 (confident in a 

detected defect). Once the probability of a defect’s existence is estimated by the fusion 

algorithm for each measurement grid location, the grids with the same probability value 

range are then connected through polygonization. Further polygons are filled with varying 

shades of color corresponding to their probability score (Figure 5.8). The heat map uses a 

two-color diverging heat map scale, with varying shades of blue if no defect is more likely, 

and varying shades of red for a likely detected defect (Moreland 2009). Lighter color 

intensity indicates lower model confidence, with a white midpoint suggesting no 

confidence in an assessment. The resulting heatmap provides end users with a data product 

that is familiar to them while presenting nuanced information in an intuitive and 

comprehensible format. Moreover, the confidence thresholds can potentially be tuned and 

controlled by the end user, as several interview participants requested. 
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Figure 5.8. Flowchart of the process for generating fusion confidence visualizations.   

 

Experimental Validation 

This section presents an experimental study designed to illustrate the potential 

capabilities of a machine-learning approach to data fusion. Prior to this study, researchers 

at Turner-Fairbank Highway Research Center (TFHRC) constructed a series of laboratory-

scale bridge decks and performed a set of NDE assessments on those decks. Overall, eight 

NDE techniques were used to collect synchronous data from the specimens. Four of these 

NDE measurements simulate measurements from the Federal Highway Administration 

(FHWA) Robotics Assisted Bridge Inspection Tool (RABIT), a robot designed to perform 

synchronous multi-NDE assessments of bridge decks (Gucunski et al. 2017; Gibb et al. 
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2018; Ahmed, La, and Gucunski 2020; La et al. 2017). The other four are commonly used 

techniques for bridge deck NDE. 

The data from these NDE assessments was used to prototype and test the data fusion 

algorithms discussed in Methodology. The performance of the data fusion algorithm was 

tested for two different types of defects and NDE methods. The first set of tests focused on 

deck corrosion detection, while the second sets of tests explored algorithm performance 

for sub-surface delamination detection. 

 

 

Figure 5.9. Laboratory-scale bridge deck specimen design. Section (A-A) shows the location for each 

defect type with respect to slab depth. Section (B-B) shows defect placement for shallow delaminations. 

The placement of other defects in the cross-section is similar, accounting for variations in depth.    
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It is important to note that these experiments were all performed under idealized 

laboratory conditions. While the test specimens and data are representative of real-world 

scenarios, environmental conditions and the practicalities of full-scale field assessments 

will inevitably degrade algorithm behavior. Still, the results of these experiments illustrate 

the potential benefits of data fusion and serve as motivation for larger-scale testing under 

field conditions. 

Table 5.1. Details of NDE measurements used for data fusion. 

 

Nondestructive Evaluation Data Generation 

Researchers at TFHRC constructed eight geometrically identical concrete decks 

with a series of controlled subsurface defects (Figure 5.9). These defects included deep and 

shallow delamination, honeycombing, voids and vertical cracks and accelerated corrosion. 

The 12 × 8 inch artificial delamination were built using plexiglass and plastic gutter guards. 

Two plexiglass sheets with a thickness of 0.093 inches were cut to size, and two layers of 

Method 
Measurement spacing 

Number of 

samples 

prior to 

interpolation 

IE 4 inches - data was not collected at centerline vertical crack 2016 

GPR (A- scan) 

9 longitudinal scan lines at 4 inches spacing–GPR was set 

to 36 scans/foot 

2898 

HCP 4 inches 2088 

ER 4 inches 2088 
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plastic gutter guard were placed between the sheets to create an air gap, then the edges 

were sealed with duct tape. This artificial delamination was used to simulate shallow and 

deep delaminations at the top and bottom rebar levels. The artificial honeycombing was 

simulated with a bag of loose aggregates. For each honeycomb defect, 12 lbs of aggregate 

were placed into mesh bags and the edges were stitched with wire. The mesh bags were 

then placed in wood molds and secured to the rebar cage. The 23 × 8 × 2 inch voids were 

simulated with Styrofoam boards, Corrugated plastic sheets with a height of either 6 inches 

or 2.5 inches, a thickness of 0.16 inch, and a length 

of 10 inches were used to simulate vertical cracks within the concrete structure. Then the 

RC decks were then constructed using normal-weight concrete mix with a water-to-cement 

ratio of 0.37. 

 After the RC decks were fully cured, prior to data collection, accelerated corrosion 

was employed to create a corrosive environment with elevated chloride content in the 

concrete and active corrosion in the pre-corroded rebar. Different levels and uneven 

distribution of chloride content were introduced by a sponge saturated with NaCl solution. 

The reader should consult (Meng, Lin, and Azari 2020) for more details on deck 

construction and the development of the corrosive environment. Of the eight specimens, 

four also had an overlay. After construction of the test specimens, 8 NDE techniques were 

used to collect synchronous data from the specimens. Employed technologies included 

ultrasonic surface waves (USW), IE, GPR, ER (RABIT-based techniques), ultrasonic 

tomography (UT), HCP, infrared thermography (IRT) and impulse response (IR). 
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Of all eight NDE techniques, HCP, ER and GPR A-scan data were used in this 

research for corrosion detection: HCP for detection of corrosion activity, ER for detection 

of corrosive environment, and GPR for condition assessment. Previous nondestructive 

testing (NDT) applications on RC decks have demonstrated that ER and GPR can detect 

corrosive environments in concrete (elevated chloride content in this study), and HCP can 

detect active corrosion in the reinforcement (Gucunski et al. 2011; 2012). For delamination 

detection, GPR, IE and ER were used for condition assessment. For each specimen, nine 

gridlines were established with a spacing of 4 inches in the transverse direction, and 29 

gridlines with a spacing of 4 inches were set in the longitudinal direction. For all 

techniques, data was collected on a specific grid spacing across the deck surface, though 

that spacing varied based on the specific NDE method used. ER, HCP and IE data were 

collected at grid points, and GPR A-scans were collected along each gridline. The GPR 

was set to 36 scan/foot, resulting 322 scans along the longitudinal direction. As discussed 

in Data Interpolation, the data from each NDE method was linearly interpolated to generate 

approximate measurements on a consistent grid spacing. The specifics of the data set are 

shown in Table 5.1. 

Data Fusion for Corrosion Detection 

There are various electrochemical and physical methods for the detection of 

corrosion in concrete and the advantages and disadvantages of each respective method is 

well explained in the literature (Alonso, Andrade, and González 1988). The study 

concludes that there is no optimal method, and usually a combination of several techniques 

is used. For this study, three different NDE methods were chosen for corrosion detection: 
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HCP, GPR, and ER. The HCP technique is a generally accepted method for identifying 

active corrosion in reinforced concrete bridge decks. The method is supported by an 

American Society for Testing Materials C876–09 standard (ASTM C876–09, 1999) with 

well-defined thresholds distinguishing actively corroded and non-corroded areas. GPR data 

has been shown to correlate reasonably well with HCP data on bridge decks (Martino et al. 

2014). ER probes are also frequently used in corrosion monitoring systems in various 

industrial fields, especially in the Petro-chemical industry (Legat 2007). In previous study 

(Legat, Leban, and Bajt 2004) it was shown that measurements with ER probes are efficient 

for measuring the corrosion of steel in concrete. 

The HCP and ER data sources provided scalar values (voltage and resistivity value 

respectively) at each measurement location, whereas the GPR data was a waveform. 

Wavelet features were extracted from the GPR signal (including mean power of 

reconstructed waveform and second, third, and fourth spectral moment of spectrum of 

reconstructed waveform from each wavelet basis, see Waveform Feature Extraction) 

and combined with the scalar-valued HCP and ER data for model training and testing. All 

the values were standardized and hyperparameters were identified prior to training, as 

discussed in Methodology. Classifiers were then trained using 70% of the data and tested 

on the remaining 30%. Using the training dataset, the classifier automatically determines 

an optimal decision boundary, a hypersurface that partitions data into defect and no defect 

classes. The classifier then classifies all the points on one side of the decision boundary as 

belonging to one class and all those on the other side as belonging to the other class. 
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Unfortunately, direct interpretation of this hypersurface is challenging, and is a significant 

downside to machine learning driven analysis. 

Corrosion detection: results and discussion 

Once the scalar values from ER and HCP data sources and extracted features from 

GPR waveform are combined into a concatenated vector, this vector is then an input to a 

statistical model. In this study, as explained in Feature fusion – SVM (Other Considered 

Classifiers), ANN, decision tree, and logistic regression algorithms are considered to 

provide a point of comparison to SVM fusion. The performance of all mentioned 

algorithms are shown in Table 5.2. The results of this comparative analysis show that the 

SVM and ANN fusion algorithms produced relatively similar results. Accuracy for the 

decision tree model was slightly degraded, mostly due to a loss of precision. The logistic 

regression approach yielded by far the worst results, indicating that the statistical 

relationships between NDE measurements and corrosion are sufficiently nonlinear in 

nature to warrant more sophisticated machine learning approaches. Given the comparably 

performance of the SVM and ANN classifiers, the SVM approach is preferable due to the 

fewer hyperparameters and reduced risk of model overfitting. 

 

Table 5.2. Comparison of fusion algorithm performance for corrosion detection. 

Fusion Algorithm Accuracy Precision Recall F1- score 

SVM 0.96 0.92 0.91 0.91 

ANN 0.95 0.92 0.89 0.90 

Decision tree 0.91 0.89 0.89 0.89 

Logistic regression 0.89 0.82 0.82 0.82 
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Decision fusion for corrosion detection 

As a point of comparison, a decision-level fusion approach was also developed. 

This approach combined the independent detection assessments of various different NDE 

methods, weighting them based on their statistical significance, a technique referred to as 

a Weighted-Sum Model (D. Hall and Llinas 2001). Each NDE technique was used to 

generate an independent decision based on its own features and an SVM classifier, with a 

binary declaration of either “corrosion” or “no corrosion.” The weight of each decision was 

then determined. Several metrics for weighting were considered, including false positive 

rate, probability of detection (recall), and precision (Lu and Michaels 2009). Using 

precision as the criterion, the order of weights was GPR > HCP > ER. Considering recall, 

the order of weights changed to HCP > GPR > ER. For the false positive rate, the resulting 

weight order was GPR > HCP > ER. The resulting weighted decisions were then combined 

and compared against the SVM classifier (Table 5.3). As is shown, the accuracy never 

reached the level of feature-level fusion via SVM. Similar results were found for decision 

fusion of delamination defects. 

Table 5.3. Comparison of weighted decision combination with various weight order in corrosion detection. 

Techniques HCP>GPR>ER GPR>ER>HCP GPR>HCP>ER SVM 

Overall accuracy (%) 94.0 88.5 85.65 96.0 
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SVM fusion analysis 

Once SVM was identified as the preferred machine learning method for corrosion 

detection, a more in-depth analysis of SVM model behavior was performed. In addition to 

a fusion of all the techniques, different fusion combinations were studied. The goal was to 

understand the effect of adding an NDE data source to fusion models and identify the best 

combination of techniques for deck assessment. The following data fusion 

combinations were tested: ER + HCP, ER + GPR, HCP + GPR, and ER + HCP + GPR. 

SVM classifiers were also constructed for each NDE type separately. For scalar-valued 

HCP and ER data a linear function was fit to the data, whereas for the waveform GPR data, 

wavelet-based features were fit to an SVM model with a RBF function, similar to the model 

used for the fused case. 
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Figure 5.10. Receiver Operating Characteristic curve of Support Vector Machine for corrosion detection. 

 

Some of these algorithms didn’t increase the corrosion detection accuracy in 

compare with individual techniques, also their underperformance in comparison with SVM 

was more for delamination detection.  

The resulting Receiver-Operator-Characteristic (ROC) curves from each fusion 

combination for corrosion detection is shown in Figure 5.10. The area under a ROC curve 

is an effective measure of the sensitivity of a classifier to variations in classification 

thresholds, with a larger area indicating a more robust classifier. What can clearly be seen 

is that HCP on its own is a highly effective method of quantifying corrosion, whereas ER 

and GPR perform relatively poorly in isolation. In fact, GPR serves to degrade classifier 
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accuracy when fused with HCP data. This behavior is due to the nature of laboratory 

conditions for the HCP measurements that were idealized and may not be representative 

of performance under field conditions. After the RC decks were fully cured, accelerated 

corrosion was employed with elevated chloride content in the concrete and active 

corrosion in the pre-corroded rebar. This caused corrosion to occur much faster compared 

to natural conditions (Meng, Lin, and Azari 2020). This type of accelerated corrosion is 

ideal for HCP measurements and led to high detection accuracy for HCP (Yuan, Ji, and 

Shah 2007). Such a result reflects the potential for model biasing that can occur in 

machine learning. The fusion of all three data sources is slightly better than for HCP or 

HCP + ER, but these differences are statistically negligible. The most notable result is 

that the fusion of ER + GPR is measurably better than either measurement on its own and 

highlights the value of statistical data fusion. 

 

 

Figure 5.11. Fusion heat map based on Support Vector Machine indicating existence of corrosion in slab. 
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A visualization heat map for the complete fusion (HCP + ER + GPR) is shown in 

Figure 5.11. An analysis of the visualization shows that the certainty of corrosion was 

degraded near the upper left corner of the slab. Again, the reasons for this loss in detection 

certainty are likely due to experimental testing conditions. 

Data Fusion for Delamination and Crack Detection 

To evaluate the impact of data fusion for detecting subsurface delamination and 

cracks, three NDE methods were considered: GPR, ER and IE. Similar to the procedure 

for corrosion detection, data from these techniques were combined into a unified dataset. 

Like GPR, IE produces a waveform signal at each grid location, and wavelet features were 

extracted from IE and GPR (Waveform Feature Extraction). Once salient features were 

extracted using wavelet transform, a series of classifiers were prototyped. As with the 

corrosion tests, the SVM classifier produced the most accurate and robust classifications. 

Results for the ANN, decision tree, and logistic regression classifiers, as 

well as the decision-level fusions were similar to the corrosion tests and are not reported 

here. 

Delamination detection: results and discussion 

The resulting ROC curves for SVM classifiers for delamination and crack detection 

are shown in Figure 5.12, and the resulting heat map is shown in Figure 5.13. For this set 

of tests, no single NDE method dominated classifier performance and single source NDE 

assessments were consistently poor performers. In all cases, fusions produced substantially 

improved assessments, and the complete data fusion was substantially better than any other 

combination. These results not only show that the fusion algorithm significantly improve 



115 

 

delamination detection capabilities on their own, but the fusion of any combination of 

techniques results in a substantial improvement in detection accuracy compared individual 

techniques. This was most notable for IE data. For example, IE + GPR fusion improved 

detection accuracy by +50% compared to IE and GPR detection. These results show the 

most dramatic improvements from data fusion observed in this study and should be the 

focus of future data fusion efforts.  

 

Figure 5.12. Receiver Operating Characteristic curve of Support Vector Machine classifiers for 

delamination detection. 
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The results for the ER data warrant additional discussion. ER measurements are not 

designed to explicitly detect delamination in concrete, but rather the associated rebar 

corrosion, and the artificial delamination of this test were not corroded to simulate 

this relationship. Yet adding ER data to the fusion of IR and GPR had a measurable 

beneficial impact on detection accuracy and served to reduce measurement uncertainty 

across the slab. An analysis of the results indicates that this benefit is not isolated to 

the corroded left-hand portion of the slab or any particular type of defect within the slab. 

While not conclusive, the authors believe that this result may be related to how the artificial 

defects are installed within the test slabs and may not be representative of 

field conditions. Further investigation is warranted and highlights the need for physics-

driven understanding of machine learning analysis. 
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Figure 5.13. Support Vector Machine fusion heat map indicating the existence and extents of delamination 

and cracking. 

 

While not shown here for clarity, an initial series of tests utilized scalar-valued 

measurements extracted from the IE waveform results, as was done in (Hsiao et al. 2008). 

Single source classifications were comparable between waveform and scalar valued NDE 

data. The benefits of data fusion without the complete waveform response were negligible. 

What this suggests is that components of an NDE signal that are not relevant for single-

source assessments can be of high value for a data fusion scenario. 

The behavior of the fused SVM classifier is more clearly seen in the heatmap 

visualization of Figure 5.12. The upper and lower part of the crack in the middle of the slab 

was detected while the middle part was not detected because of the shallower crack depth 

(2” vs. 6”). While not every defect was perfectly identified, a large portion of each of the 

eight defects was classified as a delamination by the SVM. The worst performance was 

seen for the honeycombing defect, where a smaller portion of the defect was detected. The 

other six defects were more clearly detected. For a holistic assessment, this kind of 

visualization goes beyond defect detection and illustrates both the extents of a defect 

and NDE detection confidence in an intuitive context that is familiar to engineers and 

inspectors. 

Conclusion and Future Work 

 

 In this work, a methodology to process and fuse multiple NDE data sources for 

bridge deck defect detection is developed. This approach leverages a wavelet transform 
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(DWT) to extract numerical features from waveform NDE responses. Using the DWT 

provides consistent feature extraction that is well suited to signals that are periodic, 

transient (or nonstationary), and noisy. In conjunction with scalar-valued NDE 

measurements, these data sources are used as input in a machine learning classifier to 

provide a feature-level data fusion of NDE measurements. Support vector machine 

methods showed demonstrably better detection accuracy than other machine learning 

algorithms, most noticeably when compared to linear classification methods that more 

closely mirror conventional assessment methods. The benefits of data fusion were most 

significant for the detection of delaminations and cracks, while the results from the 

corrosion analysis were likely biased by how HCP data was collected in the laboratory and 

may not be representative of realistic field performance. Overall, the findings of this study 

show that data fusion has a measurable and positive impact on defect detection 

performance for both corrosion assessment and generalized defect detection. The 

visualization approach developed in this study is capable of intuitively representing the 

classifiers detection confidence—a key criterion for inspectors and engineers managed as 

part of this study—and provides a more nuanced representation of NDE assessments that 

help to quantify the geometric extents of a defect. As stated before, the laboratory 

conditions for the test data likely overestimate classifier accuracy under field conditions, 

but they do reflect the relative benefits of data fusion over single-source NDE assessments. 

It is also important to emphasize that the data fusion processes developed in this work do 

not allow direct insight into the capabilities of any single NDE method to detect defects 
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such as delaminations. Creating fusion approaches that provide such insights is a 

compelling avenue for future work.  

 This study was part of an on-going research program and various part of the 

presented methodology are being considered for further improvement. The goal of this 

study was to fundamentally explore fusion viability, leveraging NDE data relevant to the 

FHWA RABIT inspection system. While the results show the promise of data fusion, there 

are many unanswered questions. For instance, this study only considered a small subset of 

possible data fusion combinations and defect classes, and the results showed that data 

fusion was more beneficial for delamination detection than corrosion. This 

suggests the need for additional studies that consider a broader range of NDE methods and 

defect types, and that the benefits of fusion for any given scenario cannot be easily 

generalized to other scenarios. However, the framework and evaluative methodology 

presented here are generalizable enough to be effective for a diverse range of experimental 

scenarios. As stated earlier, the statistical learning models developed here are not capable 

of distinguishing between defect classes, a simplification that aided illustration of the 

impact of NDE fusion. Future work could include expanding the work to include defect 

diagnosis, rather than detection, for instance the distinction between shallow and deep 

defects for a given data fusion. Based on these initial findings, additional studies on the 

wavelet decomposition-based feature extraction methods are warranted as well. There is 

also a need to evaluate these approaches under realistic field conditions. Lastly, the 

probability score of damage in the structural component can be 

modeled as stochastic process and tracked over time and using time series modeling their 
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future states can be predicted. Tracking the fused data for prognostic purposes would be 

highly beneficial to engineers and managers attempting to do portfolio-level asset 

management. 
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CHAPTER SIX: CONCLUSIONS AND AVENUES FOR FUTURE RESEARCH 

Conclusions 

The primary outcome of this doctoral dissertation is a framework to support digital 

twin modeling of structures that addresses two main problems of digital twin modeling : 1. 

life cycle modeling of time-dependent defects and linking such defects’ evolution to the 

numerical model of structures and 2. fusion of multiple data sources to increase accuracy 

of defect detection in digital twin systems.  

A methodology to parametrize and model the dynamics of defect evolution based 

on convex hull parametrization and time-series modeling is introduced in the first part of 

study. Using convex hull parametrization, 2D synthetic and experimental point clouds 

representing various defect shapes and stochastic evolutions were parametrized, and their 

evolutions were modeled using time-series forecasting models. The future state of defects 

was then forecasted and evaluated against ground truth. The results indicated that this 

convex hull approach provides consistent and accurate representations of defect evolution 

across a range of defect topologies and is reasonably robust to noisy measurements.  

Next, a study was conducted to link the time dependent defects to numerical 

simulation of structure to perform predictive simulation. A methodology to update the 

finite element model of structural components with regard to the future state of the crack 

based on the computer vision technique was introduced.  2D experimental point clouds 

representing crack growth with increasing loading cycles were used to predict the crack 

extension in the future cycle. The future crack extension (i.e. length and orientation) was 
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predicted via time-series models. The solid model of structural components was updated 

first based on an identified crack at one of the primary loading cycles and once again was 

updated based on the predicted crack extension. Once updated, the solid model was meshed 

and LEFM was conducted. The results indicated that linking the future state of the crack 

to the FE model of structures provides a basis for future predictive simulation. While the 

proposed methodology for FE model updating was applied for fatigue crack propagation, 

this study can be expanded to other time dependent defects with different dynamics of 

evolution.  

Finally, to improve the accuracy and robustness of the NDE results in digital twin 

systems, a methodology to process and fuse multiple NDE data sources for bridge deck 

defect detection was developed. This approach leveraged a wavelet transform (DWT) to 

extract numerical features from waveform NDE responses. In conjunction with scalar-

valued NDE measurements, these data sources were used as input in a machine learning 

classifier to provide a feature-level data fusion of NDE measurements. A novel 

visualization approach was introduced which provides inspectors and engineer with an 

intuitive representing of confidence of detected defect. Overall, the findings of this study 

showed that data fusion has a measurable and positive impact on defect detection 

performance for both corrosion assessment and generalized defect detection in digital twin 

systems. 

Overall, the presented methods will lead to a new structural assessment framework 

that supports decision-making on the necessary maintenance of the structure. 

The main contributions of the developed framework include: 
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• Providing engineers with an intuitive and consistent representation of remotely sensed 

information over a structure’s life cycle. 

• Providing more reliable forecasting capabilities and a more complete understanding of 

structural performance. 

• Providing a more nuanced representation of NDE assessments that help to quantify the 

geometric extents of a defect.  

• Improvements in how engineers and inspectors interact with detected defect data 

through a visualization approach. 

Due to the complex and challenging nature of each of the developed algorithms, 

further research exists for extending and expanding different steps within the introduced 

computational framework. The following future avenues can be investigated for each of 

the presented studies. 

 

Future Work In Life Cycle Modeling of Structural Defects 

Study showed that the behavior of the underlying dynamical process plays a 

significant role in predictive accuracy and predictive accuracy degrades as defect evolution 

becomes increasingly nonlinear.  

The behavior of the algorithm under higher degrees of statistical uncertainty and 

material variability should be investigated. More datasets from other crack scenarios 

should also be considered, for instance, concrete cracking in civil infrastructure. Such 

studies may provide insight into how particular algorithmic aspects, such as the nearest 

neighbor matching aspects of hull tracking, behave under complex material phenomena 
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such as crazing or alkali–silica reactions in concrete. In such cases, the cracks may branch 

and split, creating unforeseen modeling challenges. 

The parametrizations and hull modeling are being studied for temporal tracking of 

non-geometric changes such as color change in structures. The hull parametrization method 

is also being extended to high-dimensional feature space analyses, supporting the fusion of 

multiple sensors and survey information for holistic life-cycle modeling. One notable 

avenue for future work is to adapt the algorithm to parameterize defect shapes using a 

combination of a convex and concave hull algorithm more realistically [68]. Such an 

approach would allow for more accurate depiction of complex geometric topologies similar 

to the fatigue cracks evaluated in this work. In addition, nonlinear time-series modeling 

methods such as recurrent neural networks may be studied for more complex defect 

evolutions; however, such machine-learning-driven approaches need much larger datasets 

to be employed. 

Future Work in Finite Element Model Updating 

The performance of the FE model updating approach under environment 

uncertainty and material variability should be investigated. More datasets from other crack 

scenarios should also be considered, for instance, concrete or asphalt cracking in civil 

infrastructure. Such studies may provide insight into how particular algorithmic aspects, 

such as crack identification, prediction and projection (Section 2), behave under complex 

material phenomena. The effect of varying amplitude cyclic loading also must be evaluated 

as it reflects the real-world scenarios. One notable avenue for future work is to adapt the 
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algorithm to more complex fracture mechanic studies such as Elastic Plastic Fracture 

Mechanics (EPFM) to estimate the crack growth rate. 

 

 

 

Future Work In Data Fusion 

The proposed approach reflected the relative benefits of data fusion over single-

source NDE assessments, however the laboratory conditions for the test data likely 

overestimate classifier accuracy under field conditions. It is also important to emphasize 

that the data fusion processes developed in this work do not allow direct insight into the 

capabilities of any single NDE method to detect defects such as delamination. Creating 

fusion approaches that provide such insights is a compelling avenue for future work.  

While the results show the promise of data fusion, there are many unanswered 

questions. For instance, this study only considered a small subset of possible data fusion 

combinations and defect classes, and the results showed that data fusion was more 

beneficial for delamination detection than corrosion. This suggests the need for additional 

studies that consider a broader range of NDE methods and defect types, and that the 

benefits of fusion for any given scenario cannot be easily generalized to other scenarios. 

However, the framework and evaluative methodology presented here are generalizable 

enough to be effective for a diverse range of experimental scenarios. As stated earlier, the 

statistical learning models developed here are not capable of distinguishing between defect 

classes, a simplification that aided illustration of the impact of NDE fusion. Future work 

could include expanding the work to include defect diagnosis, rather than detection, for 

instance the distinction between shallow and deep defects for a given data fusion. Based 
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on these initial findings, additional studies on the wavelet decomposition-based feature 

extraction methods are warranted as well. There is also a need to evaluate these approaches 

under realistic field conditions. Lastly, the probability score of damage in the structural 

component can be modeled as stochastic process and tracked over time and using time 

series modeling their future states can be predicted. Tracking the fused data for prognostic 

purposes would be highly beneficial to engineers and managers attempting to do portfolio-

level asset management. 

 

 

 

 



127 

 

REFERENCES 

Abdel-Qader Ikhlas, Abudayyeh Osama, and Kelly Michael E. 2003. “Analysis of Edge-

Detection Techniques for Crack Identification in Bridges.” Journal of Computing 

in Civil Engineering 17 (4): 255–63. https://doi.org/10.1061/(ASCE)0887-

3801(2003)17:4(255). 

Agathos, Konstantinos, Eleni Chatzi, and Stéphane P.  A. Bordas. 2018. “Multiple Crack 

Detection in 3D Using a Stable XFEM and Global Optimization.” Computational 

Mechanics 62 (4): 835–52. https://doi.org/10.1007/s00466-017-1532-y. 

Aggelis, Dimitrios G. 2011. “Classification of Cracking Mode in Concrete by Acoustic 

Emission Parameters.” Mechanics Research Communications 38 (3): 153–57. 

https://doi.org/10.1016/j.mechrescom.2011.03.007. 

Aghagholizadeh, Mehrdad, and Necati Catbas. 2015. “A Review of Model Updating 

Methods for Civil Infrastructure Systems.” In , 83–99. 

https://doi.org/10.4203/csets.38.4. 

Ahmed, Habib, Hung Manh La, and Nenad Gucunski. 2020. “Review of Non-Destructive 

Civil Infrastructure Evaluation for Bridges: State-of-the-Art Robotic Platforms, 

Sensors and Algorithms.” Sensors 20 (14): 3954. 

https://doi.org/10.3390/s20143954. 

Akl, Selim G., and Godfried T. Toussaint. 1979. “EFFICIENT CONVEX HULL 

ALGORITHMS FOR PATTERN RECOGNITION APPLICATIONS.” In . 

https://nyu-staging.pure.elsevier.com/en/publications/efficient-convex-hull-

algorithms-for-pattern-recognition-applicat. 

Al Ghayab, Hadi Ratham, Yan Li, S. Siuly, and Shahab Abdulla. 2019. “A Feature 

Extraction Technique Based on Tunable Q-Factor Wavelet Transform for Brain 

Signal Classification.” Journal of Neuroscience Methods 312 (January): 43–52. 

https://doi.org/10.1016/j.jneumeth.2018.11.014. 

Alonso, C., C. Andrade, and J. A. González. 1988. “Relation between Resistivity and 

Corrosion Rate of Reinforcements in Carbonated Mortar Made with Several 

Cement Types.” Cement and Concrete Research 18 (5): 687–98. 

https://doi.org/10.1016/0008-8846(88)90091-9. 

Alshoaibi, Abdulnaser M., and Yahya Ali Fageehi. 2020. “Numerical Analysis of Fatigue 

Crack Growth Path and Life Predictions for Linear Elastic Material.” Materials 

13 (15). https://doi.org/10.3390/ma13153380. 

ASTM C876-09 (1999). Standard test method for half cell potentials of reinforcing steel 

in concrete. West Conshohocken, PA: ASTM 

ASTM. (2014) Measurement of fatigue crack growth rates. ASTM E647-13a, USA.  

https://doi.org/10.1520/E0647-15E01 

Aranguren, G., P. M. Monje, Valerijan Cokonaj, Eduardo Barrera, and Mariano Ruiz. 

2013. “Ultrasonic Wave-Based Structural Health Monitoring Embedded 

Instrument.” Review of Scientific Instruments 84 (12): 125106. 

https://doi.org/10.1063/1.4834175. 



128 

 

Atkinson, C. 1977. “On Stress Singularities and Interfaces in Linear Elastic Fracture 

Mechanics.” International Journal of Fracture 13 (6): 807–20. 

https://doi.org/10.1007/BF00034324. 

Ayhan, Ali O. 2011. “Three-Dimensional Fracture Analysis Using Tetrahedral Enriched 

Elements and Fully Unstructured Mesh.” International Journal of Solids and 

Structures 48 (3): 492–505. https://doi.org/10.1016/j.ijsolstr.2010.10.012. 

Banks-Sills, Leslie. 1991. “Application of the Finite Element Method to Linear Elastic 

Fracture Mechanics.” Applied Mechanics Reviews 44 (10): 447–61. 

https://doi.org/10.1115/1.3119488. 

Barber, C. Bradford, David P. Dobkin, David P. Dobkin, and Hannu Huhdanpaa. 1996. 

“The Quickhull Algorithm for Convex Hulls.” ACM Trans. Math. Softw. 22 (4): 

469–83. https://doi.org/10.1145/235815.235821. 

Barenblatt, G. I. 1962. “The Mathematical Theory of Equilibrium Cracks in Brittle 

Fracture.” In Advances in Applied Mechanics, edited by H. L. Dryden, Th. von 

Kármán, G. Kuerti, F. H. van den Dungen, and L. Howarth, 7:55–129. Elsevier. 

https://doi.org/10.1016/S0065-2156(08)70121-2. 

Baydoun, M., and T. P. Fries. 2012. “Crack Propagation Criteria in Three Dimensions 

Using the XFEM and an Explicit–Implicit Crack Description.” International 

Journal of Fracture 178 (1): 51–70. https://doi.org/10.1007/s10704-012-9762-7. 

Behnia, Arash, Hwa Kian Chai, and Tomoki Shiotani. 2014. “Advanced Structural Health 

Monitoring of Concrete Structures with the Aid of Acoustic Emission.” 

Construction and Building Materials 65 (August): 282–302. 

https://doi.org/10.1016/j.conbuildmat.2014.04.103. 

Belytschko, T., and T. Black. 1999. “Elastic Crack Growth in Finite Elements with 

Minimal Remeshing.” International Journal for Numerical Methods in 

Engineering 45 (5): 601–20. https://doi.org/10.1002/(SICI)1097-

0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S. 

Berg, Mark de, ed. 2008. Computational Geometry: Algorithms and Applications. 3rd ed. 

Berlin: Springer. 

Besl, P. J., and N. D. McKay. 1992. “A Method for Registration of 3-D Shapes.” IEEE 

Transactions on Pattern Analysis and Machine Intelligence 14 (2): 239–56. 

https://doi.org/10.1109/34.121791. 

Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. “A Training 

Algorithm for Optimal Margin Classifiers.” In Proceedings of the Fifth Annual 

Workshop on Computational Learning Theory, 144–52. COLT ’92. Pittsburgh, 

Pennsylvania, USA: Association for Computing Machinery. 

https://doi.org/10.1145/130385.130401. 

Box, George E. P., and Gwilym M. Jenkins. 1976. Time Series Analysis: Forecasting and 

Control. Holden-Day. 

Box, George Edward Pelham, and Gwilym Jenkins. 1990. Time Series Analysis, 

Forecasting and Control. San Francisco, CA, USA: Holden-Day, Inc. 

Brandon, J A. 1998. “Some Insights into the Dynamics of Defective Structures.” 

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 



129 

 

Mechanical Engineering Science 212 (6): 441–54. 

https://doi.org/10.1243/0954406981521358. 

Broek, D. 1972. “The Propagation of Fatigue Cracks Emanating from Holes.” NLR-TR 

72134 U. https://repository.tudelft.nl/islandora/object/uuid%3A471ede30-ca26-

4419-a0ae-3497c214d465. 

Brownlee, Jason. 2017. “Autoregression Models for Time Series Forecasting With 

Python.” Machine Learning Mastery (blog). January 2, 2017. 

https://machinelearningmastery.com/autoregression-models-time-series-

forecasting-python/. 

Cabaleiro, M., B. Riveiro, P. Arias, and J. C. Caamaño. 2015. “Algorithm for the 

Analysis of Deformations and Stresses Due to Torsion in a Metal Beam from 

LIDAR Data.” Structural Control and Health Monitoring, January, n/a-n/a. 

https://doi.org/10.1002/stc.1824. 

Cabaleiro, M., B. Riveiro, P. Arias, J. C. Caamaño, and J. A. Vilán. 2014. “Automatic 3D 

Modelling of Metal Frame Connections from LiDAR Data for Structural 

Engineering Purposes.” ISPRS Journal of Photogrammetry and Remote Sensing 

96 (October): 47–56. https://doi.org/10.1016/j.isprsjprs.2014.07.006. 

Cadini, F., E. Zio, and D. Avram. 2009. “Monte Carlo-Based Filtering for Fatigue Crack 

Growth Estimation.” Probabilistic Engineering Mechanics 24 (3): 367–73. 

https://doi.org/10.1016/j.probengmech.2008.10.002. 

Caleyo, F., J.C. Velázquez, A. Valor, and J.M. Hallen. 2009. “Markov Chain Modelling 

of Pitting Corrosion in Underground Pipelines.” Corrosion Science 51 (9): 2197–

2207. https://doi.org/10.1016/j.corsci.2009.06.014. 

Catbas, F Necati, Hasan B Gokce, and Mustafa Gul. 2012. “Nonparametric Analysis of 

Structural Health Monitoring Data for Identification and Localization of Changes: 

Concept, Lab, and Real-Life Studies.” Structural Health Monitoring 11 (5): 613–

26. https://doi.org/10.1177/1475921712451955. 

Cerrone, Albert, Jacob Hochhalter, Gerd Heber, and Anthony Ingraffea. 2014. “On the 

Effects of Modeling As-Manufactured Geometry: Toward Digital Twin.” 

Research article. International Journal of Aerospace Engineering. 2014. 

https://doi.org/10.1155/2014/439278. 

Chair, Z., and P. K. Varshney. 1986. “Optimal Data Fusion in Multiple Sensor Detection 

Systems.” IEEE Transactions on Aerospace and Electronic Systems AES-22 (1): 

98–101. https://doi.org/10.1109/TAES.1986.310699. 

Chang Peter C. and Liu S. Chi. 2003. “Recent Research in Nondestructive Evaluation of 

Civil Infrastructures.” Journal of Materials in Civil Engineering 15 (3): 298–304. 

https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(298). 

Chen Dar Hao and Wimsatt Andrew. 2010. “Inspection and Condition Assessment Using 

Ground Penetrating Radar.” Journal of Geotechnical and Geoenvironmental 

Engineering 136 (1): 207–14. https://doi.org/10.1061/(ASCE)GT.1943-

5606.0000190. 

Chen, F., and M. R. Jahanshahi. 2018. “NB-CNN: Deep Learning-Based Crack Detection 

Using Convolutional Neural Network and Naïve Bayes Data Fusion.” IEEE 



130 

 

Transactions on Industrial Electronics 65 (5): 4392–4400. 

https://doi.org/10.1109/TIE.2017.2764844. 

Chen, Fu-Chen, Mohammad R. Jahanshahi, Rih-Teng Wu, and Chris Joffe. 2017. “A 

Texture-Based Video Processing Methodology Using Bayesian Data Fusion for 

Autonomous Crack Detection on Metallic Surfaces.” Computer-Aided Civil and 

Infrastructure Engineering 32 (4): 271–87. https://doi.org/10.1111/mice.12256. 

Chen, Shang-Liang, and Y. W. Jen. 2000. “Data Fusion Neural Network for Tool 

Condition Monitoring in CNC Milling Machining.” International Journal of 

Machine Tools and Manufacture 40 (3): 381–400. https://doi.org/10.1016/S0890-

6955(99)00066-8. 

Choo, Jaegul, Fuxin Li, Keehyoung Joo, and Haesun Park. 2012. “A Visual Analytics 

Approach for Protein Disorder Prediction.” In Expanding the Frontiers of Visual 

Analytics and Visualization, edited by John Dill, Rae Earnshaw, David Kasik, 

John Vince, and Pak Chung Wong, 163–74. London: Springer London. 

https://doi.org/10.1007/978-1-4471-2804-5_10. 

Clifton, J. R., and N. J. Carino. 1982. Nondestructive Evaluation Methods for  Quality 

Acceptance of  Installed Building Materials. National Institute of Standards and 

Technology. http://archive.org/details/jresv87n5p407_A1b. 

Colomina, I., and P. Molina. 2014. “Unmanned Aerial Systems for Photogrammetry and 

Remote Sensing: A Review.” ISPRS Journal of Photogrammetry and Remote 

Sensing 92 (June): 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013. 

Comisu, Cristian-Claudiu, Nicolae Taranu, Gheorghita Boaca, and Maria-Cristina 

Scutaru. 2017. “Structural Health Monitoring System of Bridges.” Procedia 

Engineering 199: 2054–59. https://doi.org/10.1016/j.proeng.2017.09.472. 

Cortes, Corinna, and Vladimir Vapnik. 1995. “Support-Vector Networks.” Machine 

Learning 20 (3): 273–97. https://doi.org/10.1007/BF00994018. 

Cristianini, Nello, and John Shawe-Taylor. 2000. “An Introduction to Support Vector 

Machines and Other Kernel-Based Learning Methods.” Cambridge Core. 

Cambridge University Press. March 2000. 

https://doi.org/10.1017/CBO9780511801389. 

Daniels, J. I., L. K. Ha, T. Ochotta, and C. T. Silva. 2007. “Robust Smooth Feature 

Extraction from Point Clouds.” In IEEE International Conference on Shape 

Modeling and Applications 2007 (SMI ’07), 123–36. 

https://doi.org/10.1109/SMI.2007.32. 

Daubechies, I. 1992. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series 

in Applied Mathematics. Society for Industrial and Applied Mathematics. 

https://doi.org/10.1137/1.9781611970104. 

Debnath, Lokenath, and Firdous Ahmad Shah. 2014. Wavelet Transforms and Their 

Applications. Springer. 

Demirbas, K. 1989. “Distributed Sensor Data Fusion with Binary Decision Trees.” IEEE 

Transactions on Aerospace and Electronic Systems 25 (5): 643–49. 

https://doi.org/10.1109/7.42081. 



131 

 

Dickey, David A., and Wayne A. Fuller. 1981. “Likelihood Ratio Statistics for 

Autoregressive Time Series with a Unit Root.” Econometrica 49 (4): 1057–72. 

https://doi.org/10.2307/1912517. 

Dimarogonas, Andrew D. 1996. “Vibration of Cracked Structures: A State of the Art 

Review.” Engineering Fracture Mechanics 55 (5): 831–57. 

https://doi.org/10.1016/0013-7944(94)00175-8. 

Ding, Lina, Hong Hao, Yong Xia, and Andrew J. Deeks. 2012. “Evaluation of Bridge 

Load Carrying Capacity Using Updated Finite Element Model and Nonlinear 

Analysis.” Advances in Structural Engineering 15 (10): 1739–50. 

https://doi.org/10.1260/1369-4332.15.10.1739. 

Doebling, S. W., C. R. Farrar, M. B. Prime, and D. W. Shevitz. 1996. “Damage 

Identification and Health Monitoring of Structural and Mechanical Systems from 

Changes in Their Vibration Characteristics: A Literature Review.” Report. Other 

Information: PBD: May 1996. May 1, 1996. https://doi.org/10.2172/249299. 

Dong, Jiang, Dafang Zhuang, Yaohuan Huang, and Jingying Fu. 2009. “Advances in 

Multi-Sensor Data Fusion: Algorithms and Applications.” Sensors; Basel 9 (10): 

7771–84. http://dx.doi.org.mutex.gmu.edu/10.3390/s91007771. 

Doucet, Arnaud. 1998. “On Sequential Simulation-Based Methods for Bayesian 

Filtering.” 

Dugdale, D. S. 1960. “Yielding of Steel Sheets Containing Slits.” Journal of the 

Mechanics and Physics of Solids 8 (2): 100–104. https://doi.org/10.1016/0022-

5096(60)90013-2. 

Ebert, T., J. Belz, and O. Nelles. 2014. “Interpolation and Extrapolation: Comparison of 

Definitions and Survey of Algorithms for Convex and Concave Hulls.” In 2014 

IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 310–

14. https://doi.org/10.1109/CIDM.2014.7008683. 

Epinat, Virginie, Alfred Stein, Steven M de Jong, and Johan Bouma. 2001. “A Wavelet 

Characterization of High-Resolution NDVI Patterns for Precision Agriculture.” 

International Journal of Applied Earth Observation and Geoinformation 3 (2): 

121–32. https://doi.org/10.1016/S0303-2434(01)85003-0. 

Fan, Wei, and Pizhong Qiao. 2011. “Vibration-Based Damage Identification Methods: A 

Review and Comparative Study.” Structural Health Monitoring 10 (1): 83–111. 

https://doi.org/10.1177/1475921710365419. 

Faouzi, Nour-Eddin El, and Lawrence A. Klein. 2016. “Data Fusion for ITS: Techniques 

and Research Needs.” Transportation Research Procedia, International 

Symposium on Enhancing Highway Performance (ISEHP), June 14-16, 2016, 

Berlin, 15 (January): 495–512. https://doi.org/10.1016/j.trpro.2016.06.042. 

Faouzi, Nour-Eddin El, Henry Leung, and Ajeesh Kurian. 2011. “Data Fusion in 

Intelligent Transportation Systems: Progress and Challenges – A Survey.” 

Information Fusion, Special Issue on Intelligent Transportation Systems, 12 (1): 

4–10. https://doi.org/10.1016/j.inffus.2010.06.001. 

Fathi, Habib, Fei Dai, and Manolis Lourakis. 2015. “Automated As-Built 3D 

Reconstruction of Civil Infrastructure Using Computer Vision: Achievements, 

Opportunities, and Challenges.” Advanced Engineering Informatics, 



132 

 

Infrastructure Computer Vision, 29 (2): 149–61. 

https://doi.org/10.1016/j.aei.2015.01.012. 

Fawcett, Tom. 2006. “An Introduction to ROC Analysis.” Pattern Recognition Letters, 

ROC Analysis in Pattern Recognition, 27 (8): 861–74. 

https://doi.org/10.1016/j.patrec.2005.10.010. 

Feng, Yongcun, and K. E. Gray. 2019. “XFEM-Based Cohesive Zone Approach for 

Modeling near-Wellbore Hydraulic Fracture Complexity.” Acta Geotechnica 14 

(2): 377–402. https://doi.org/10.1007/s11440-018-0645-6. 

Fernandez, Ignasi, Jesús Miguel Bairán, and Antonio R. Marí. 2016. “3D FEM Model 

Development from 3D Optical Measurement Technique Applied to Corroded 

Steel Bars.” Construction and Building Materials 124 (October): 519–32. 

https://doi.org/10.1016/j.conbuildmat.2016.07.133. 

Figueiredo, E., M. D. Todd, C. R. Farrar, and E. Flynn. 2010. “Autoregressive Modeling 

with State-Space Embedding Vectors for Damage Detection under Operational 

Variability.” International Journal of Engineering Science, Structural Health 

Monitoring in the Light of Inverse Problems of Mechanics, 48 (10): 822–34. 

https://doi.org/10.1016/j.ijengsci.2010.05.005. 

Fleming, Roland W., Daniel Holtmann-Rice, and Heinrich H. Bülthoff. 2011. 

“Estimation of 3D Shape from Image Orientations.” Proceedings of the National 

Academy of Sciences 108 (51): 20438–43. 

https://doi.org/10.1073/pnas.1114619109. 

Friswell, M. I., and J. E. T. Penny. 2002. “Crack Modeling for Structural Health 

Monitoring.” Structural Health Monitoring 1 (2): 139–48. 

https://doi.org/10.1177/1475921702001002002. 

Ghahremani Kasra, Khaloo Ali, Mohamadi Sara, and Lattanzi David. 2018. “Damage 

Detection and Finite-Element Model Updating of Structural Components through 

Point Cloud Analysis.” Journal of Aerospace Engineering 31 (5): 04018068. 

https://doi.org/10.1061/(ASCE)AS.1943-5525.0000885. 

Ghazali, K. H., M. F. Mansor, M. M. Mustafa, and A. Hussain. 2007. “Feature Extraction 

Technique Using Discrete Wavelet Transform for Image Classification.” In 2007 

5th Student Conference on Research and Development, 1–4. 

https://doi.org/10.1109/SCORED.2007.4451366. 

Gibb, Spencer, Hung Manh La, Tuan Le, Luan Nguyen, Ryan Schmid, and Huy Pham. 

2018. “Nondestructive Evaluation Sensor Fusion with Autonomous Robotic 

System for Civil Infrastructure Inspection.” Journal of Field Robotics 35 (6): 

988–1004. https://doi.org/10.1002/rob.21791. 

Glaessgen, Edward, and David Stargel. n.d. “The Digital Twin Paradigm for Future 

NASA and U.S. Air Force Vehicles.” In 53rd AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics and Materials Conference. American Institute of 

Aeronautics and Astronautics. Accessed January 24, 2018. 

https://doi.org/10.2514/6.2012-1818. 

Golewski, G. L., P. Golewski, and T. Sadowski. 2012. “Numerical Modelling Crack 

Propagation under Mode II Fracture in Plain Concretes Containing Siliceous Fly-



133 

 

Ash Additive Using XFEM Method.” Computational Materials Science 62 

(September): 75–78. https://doi.org/10.1016/j.commatsci.2012.05.009. 

Griffith, Alan Arnold, and Geoffrey Ingram Taylor. 1921. “VI. The Phenomena of 

Rupture and Flow in Solids.” Philosophical Transactions of the Royal Society of 

London. Series A, Containing Papers of a Mathematical or Physical Character 

221 (582–593): 163–98. https://doi.org/10.1098/rsta.1921.0006. 

Grogan, D. M., C. M. Ó Brádaigh, and S. B. Leen. 2015. “A Combined XFEM and 

Cohesive Zone Model for Composite Laminate Microcracking and Permeability.” 

Composite Structures 120 (February): 246–61. 

https://doi.org/10.1016/j.compstruct.2014.09.068. 

Gucunski, Nenad, Basily Basily, Jinyoung Kim, Jingang Yi, Trung Duong, Kien Dinh, 

Seong-Hoon Kee, and Ali Maher. 2017. “RABIT: Implementation, Performance 

Validation and Integration with Other Robotic Platforms for Improved 

Management of Bridge Decks.” International Journal of Intelligent Robotics and 

Applications 1 (3): 271–86. https://doi.org/10.1007/s41315-017-0027-5. 

Gucunski, Nenad, Arezoo Imani, Francisco Romero, Soheil Nazarian, Deren Yuan, 

Herbert Wiggenhauser, Parisa Shokouhi, et al. 2012. Nondestructive Testing to 

Identify Concrete Bridge Deck Deterioration. Washington, D.C.: Transportation 

Research Board. https://doi.org/10.17226/22771. 

Gucunski, Nenad, Francisco Romero, Sabine Kruschwitz, Ruediger Feldmann, and 

Hooman Parvardeh. 2011. “Comprehensive Bridge Deck Deterioration Mapping 

of Nine Bridges by Nondestructive Evaluation Technologies,” January. 

https://trid.trb.org/view/1147508. 

Gudmundson, P. 1982. “Eigenfrequency Changes of Structures Due to Cracks, Notches 

or Other Geometrical Changes.” Journal of the Mechanics and Physics of Solids 

30 (5): 339–53. https://doi.org/10.1016/0022-5096(82)90004-7. 

Habib, Carol, Abdallah Makhoul, Rony Darazi, and Christian Salim. 2016. “Self-

Adaptive Data Collection and Fusion for Health Monitoring Based on Body 

Sensor Networks.” IEEE Transactions on Industrial Informatics 12 (6): 2342–52. 

https://doi.org/10.1109/TII.2016.2575800. 

Haghighat, M., M. Abdel-Mottaleb, and W. Alhalabi. 2016. “Discriminant Correlation 

Analysis: Real-Time Feature Level Fusion for Multimodal Biometric 

Recognition.” IEEE Transactions on Information Forensics and Security 11 (9): 

1984–96. https://doi.org/10.1109/TIFS.2016.2569061. 

Hall, D. L., and J. Llinas. 1997. “An Introduction to Multisensor Data Fusion.” 

Proceedings of the IEEE 85 (1): 6–23. https://doi.org/10.1109/5.554205. 

Hall, David Lee, and Sonya A. H. McMullen. 2004. Mathematical Techniques in 

Multisensor Data Fusion. Artech House. 

Hall, David, and James Llinas. 2001. Multisensor Data Fusion. CRC press. 

Hamilton, James Douglas. 1994. Time Series Analysis. Princeton University Press. 

Hannan, E. J., and B. G. Quinn. 1979. “The Determination of the Order of an 

Autoregression.” Journal of the Royal Statistical Society. Series B 

(Methodological) 41 (2): 190–95. 



134 

 

He, Xu-hui, Zhi-wu Yu, and Zheng-qing Chen. 2008. “Finite Element Model Updating of 

Existing Steel Bridge Based on Structural Health Monitoring.” Journal of Central 

South University of Technology 15 (3): 399–403. https://doi.org/10.1007/s11771-

008-0075-y. 

Heideklang, Rene, and Parisa Shokouhi. 2013. “Application of Data Fusion in 

Nondestructive Testing (NDT).” In Proceedings of the 16th International 

Conference on Information Fusion, FUSION 2013, 835–41. 

https://pennstate.pure.elsevier.com/en/publications/application-of-data-fusion-in-

nondestructive-testing-ndt. 

Helfrick, Mark, Christopher Niezrecki, Peter Avitabile, and Timothy Schmidt. 2011. “3D 

Digital Image Correlation Methods for Full-Field Vibration Measurement.” 

Mechanical Systems and Signal Processing 25 (April): 917–27. 

https://doi.org/10.1016/j.ymssp.2010.08.013. 

Hellier, Charles. 2001. Handbook of Nondestructive Evaluation. McGraw-Hill. 

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. 2006. “A Fast Learning 

Algorithm for Deep Belief Nets.” Neural Computation 18 (7): 1527–54. 

https://doi.org/10.1162/neco.2006.18.7.1527. 

Hoffmann, C. M. 1989. “The Problems of Accuracy and Robustness in Geometric 

Computation.” Computer 22 (3): 31–39. https://doi.org/10.1109/2.16223. 

Hong, H. P. 1999. “Application of the Stochastic Process to Pitting Corrosion.” 

Corrosion; Houston 55 (1): 10. 

Hou, Jilin, Łukasz Jankowski, and Jinping Ou. 2015. “Frequency-Domain Substructure 

Isolation for Local Damage Identification.” Advances in Structural Engineering 

18 (1): 137–53. https://doi.org/10.1260/1369-4332.18.1.137. 

Hsiao, Chiamen, Chia-Chi Cheng, Tzunghao Liou, and Yuanting Juang. 2008. “Detecting 

Flaws in Concrete Blocks Using the Impact-Echo Method.” NDT and E 

International 41 (2): 98–107. https://doi.org/10.1016/j.ndteint.2007.08.008. 

Huang, Jianping, Wanyu Liu, and Xiaoming Sun. 2014. “A Pavement Crack Detection 

Method Combining 2D with 3D Information Based on Dempster-Shafer Theory.” 

Computer-Aided Civil and Infrastructure Engineering 29 (4): 299–313. 

https://doi.org/10.1111/mice.12041. 

Irani, S., M. Mehri, and Z. Seifollahi. 2014. “CRACK GROWTH XFEM ANALYSIS 

USING PARALLEL PROCESSING AND OPTIMUM NUMERICAL 

METHODS.” Undefined. 2014. /paper/CRACK-GROWTH-XFEM-ANALYSIS-

USING-PARALLEL-AND-Irani-

Mehri/c9ef3c90e382bab079e91afb4e0d10360c81c4bd. 

Irwin, G. R. 1957. “ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A 

CRACK TRAVERSING A PLATE.” Undefined. 1957. /paper/ANALYSIS-OF-

STRESS-AND-STRAINS-NEAR-THE-END-OF-A-A-

Irwin/efe3290a3a750547e71269ea328d66ea8cb8e525. 

Jafari, Bahman, Ali Khaloo, and David Lattanzi. 2016. “Long-Term Monitoring of 

Structures through Point Cloud Analysis.” In , 9805:98052K-98052K – 8. 

https://doi.org/10.1117/12.2217586. 



135 

 

Jahanshahi, Mohammad R., Jonathan S. Kelly, Sami F. Masri, and Gaurav S. Sukhatme. 

2009. “A Survey and Evaluation of Promising Approaches for Automatic Image-

Based Defect Detection of Bridge Structures.” Structure and Infrastructure 

Engineering 5 (6): 455–86. https://doi.org/10.1080/15732470801945930. 

Jahanshahi, Mohammad R., and Sami F. Masri. 2012. “Adaptive Vision-Based Crack 

Detection Using 3D Scene Reconstruction for Condition Assessment of 

Structures.” Automation in Construction 22 (March): 567–76. 

https://doi.org/10.1016/j.autcon.2011.11.018. 

Jahanshahi, Mohammad R., Sami F. Masri, Curtis W. Padgett, and Gaurav S. Sukhatme. 

2013. “An Innovative Methodology for Detection and Quantification of Cracks 

through Incorporation of Depth Perception.” Machine Vision and Applications 24 

(2): 227–41. https://doi.org/10.1007/s00138-011-0394-0. 

Jain, Akash, Ankit Kathuria, Adarsh Kumar, Yogesh Verma, and Krishna Murari. 2013. 

“Combined Use of Non-Destructive Tests for Assessment of Strength of Concrete 

in Structure.” Procedia Engineering, The 2nd International Conference on 

Rehabilitation and Maintenance in Civil Engineering (ICRMCE), 54 (January): 

241–51. https://doi.org/10.1016/j.proeng.2013.03.022. 

Jiang, Shao-Fei, Chun-Ming Zhang, and Shuai Zhang. 2011. “Two-Stage Structural 

Damage Detection Using Fuzzy Neural Networks and Data Fusion Techniques.” 

Expert Systems with Applications 38 (1): 511–19. 

https://doi.org/10.1016/j.eswa.2010.06.093. 

Jones, R., and D. Peng. 2002. “A Simple Method for Computing the Stress Intensity 

Factors for Cracks at Notches.” Engineering Failure Analysis 9 (6): 683–702. 

https://doi.org/10.1016/S1350-6307(02)00007-9. 

KABE, A. M. 1985. “Stiffness Matrix Adjustment Using Mode Data.” AIAA Journal 23 

(9): 1431–36. https://doi.org/10.2514/3.9103. 

Kalogerakis, Evangelos, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 

2017. “3D Shape Segmentation With Projective Convolutional Networks.” In , 

3779–88. 

http://openaccess.thecvf.com/content_cvpr_2017/html/Kalogerakis_3D_Shape_Se

gmentation_CVPR_2017_paper.html. 

Kaseko Mohamed S., Lo Zhen‐Ping, and Ritchie Stephen G. 1994. “Comparison of 

Traditional and Neural Classifiers for Pavement‐Crack Detection.” Journal of 

Transportation Engineering 120 (4): 552–69. 

https://doi.org/10.1061/(ASCE)0733-947X(1994)120:4(552). 

Kazhdan, Michael, and Hugues Hoppe. 2013. “Screened Poisson Surface 

Reconstruction.” ACM Trans. Graph. 32 (3): 29:1-29:13. 

https://doi.org/10.1145/2487228.2487237. 

Khaloo, Ali, and David Lattanzi. 2019. “Automatic Detection of Structural Deficiencies 

Using 4D Hue-Assisted Analysis of Color Point Clouds.” In Dynamics of Civil 

Structures, Volume 2, edited by Shamim Pakzad, 197–205. Conference 

Proceedings of the Society for Experimental Mechanics Series. Springer 

International Publishing. 



136 

 

Khan, Md Nazmuzzaman, and Sohel Anwar. 2019. “Time-Domain Data Fusion Using 

Weighted Evidence and Dempster–Shafer Combination Rule: Application in 

Object Classification.” Sensors 19 (23): 5187. https://doi.org/10.3390/s19235187. 

Khatam, Hamed, Ali Akbar Golafshani, S. B. Beheshti-Aval, and Mohammad Noori. 

2007. “Harmonic Class Loading for Damage Identification in Beams Using 

Wavelet Analysis.” Structural Health Monitoring 6 (1): 67–80. 

https://doi.org/10.1177/1475921707072064. 

Khoei, A. R., M. Eghbalian, H. Moslemi, and H. Azadi. 2013. “Crack Growth Modeling 

via 3D Automatic Adaptive Mesh Refinement Based on Modified-SPR 

Technique.” Applied Mathematical Modelling 37 (1): 357–83. 

https://doi.org/10.1016/j.apm.2012.02.040. 

Kisa, Murat, and Brandon JA. 2000. “The Effects of Closure of Cracks on the Dynamics 

of a Cracked Cantilever Beam.” Journal of Sound and Vibration 238 (November): 

1–18. https://doi.org/10.1006/jsvi.2000.3099. 

Kittler, J. 1975. “Mathematical Methods of Feature Selection in Pattern Recognition.” 

International Journal of Man-Machine Studies. 

Klein, Lawrence A. 1999. Sensor and Data Fusion Concepts and Applications. SPIE. 

Kleinberg, Jon M. 1997. “Two Algorithms for Nearest-Neighbor Search in High 

Dimensions.” In Proceedings of the Twenty-Ninth Annual ACM Symposium on 

Theory of Computing  - STOC ’97, 599–608. El Paso, Texas, United States: ACM 

Press. https://doi.org/10.1145/258533.258653. 

Klikowicz, Piotr, Marek Salamak, and Grzegorz Poprawa. 2016. “Structural Health 

Monitoring of Urban Structures.” Procedia Engineering 161: 958–62. 

https://doi.org/10.1016/j.proeng.2016.08.833. 

Kotsiantis, S. B., I. D. Zaharakis, and P. E. Pintelas. 2006. “Machine Learning: A Review 

of Classification and Combining Techniques.” Artificial Intelligence Review 26 

(3): 159–90. https://doi.org/10.1007/s10462-007-9052-3. 

Kralovec, Christoph, and Martin Schagerl. 2020. “Review of Structural Health 

Monitoring Methods Regarding a Multi-Sensor Approach for Damage 

Assessment of Metal and Composite Structures.” Sensors 20 (3): 826. 

https://doi.org/10.3390/s20030826. 

Kuang, J. H., and C. K. Chen. 2000. “Use of Strip Yield Approach for Multiple-Site 

Damage Failure Scenarios.” Journal of Aircraft 37 (5): 887–91. 

https://doi.org/10.2514/2.2686. 

La, Hung M., Nenad Gucunski, Kristin Dana, and Seong-Hoon Kee. 2017. “Development 

of an Autonomous Bridge Deck Inspection Robotic System.” Journal of Field 

Robotics 34 (8): 1489–1504. https://doi.org/10.1002/rob.21725. 

Lara, Paul A., Hugh A. Bruck, and Felix J. Fillafer. 2020. “Experimental Measurements 

of Overload and Underloads on Fatigue Crack Growth Using Digital Image 

Correlation.” In Challenges in Mechanics of Time Dependent Materials, Fracture, 

Fatigue, Failure and Damage Evolution, Volume 2, edited by Meredith 

Silberstein, Alireza Amirkhizi, Xia Shuman, Allison Beese, Ryan B. Berke, and 

Garrett Pataky, 29–40. Conference Proceedings of the Society for Experimental 



137 

 

Mechanics Series. Cham: Springer International Publishing. 

https://doi.org/10.1007/978-3-030-29986-6_5. 

Lee, Sam (Kwok Lun), and David Martin. 2016. “Application of XFEM to Model 

Stationary Crack and Crack Propagation for Pressure Containing Subsea 

Equipment.” In . American Society of Mechanical Engineers Digital Collection. 

https://doi.org/10.1115/PVP2016-63199. 

Legat, A. 2007. “Monitoring of Steel Corrosion in Concrete by Electrode Arrays and 

Electrical Resistance Probes.” Electrochimica Acta, ELECTROCHEMICAL 

METHODS IN CORROSION RESEARCH Selection of papers from the 9th 

International Symposium (EMCR 2006) 18-23 June 2006, Dourdan, France, 52 

(27): 7590–98. https://doi.org/10.1016/j.electacta.2007.06.060. 

Legat, A, M Leban, and Ž Bajt. 2004. “Corrosion Processes of Steel in Concrete 

Characterized by Means of Electrochemical Noise.” Electrochimica Acta, 

Electrochemical Methods in Corrosion Research, 49 (17): 2741–51. 

https://doi.org/10.1016/j.electacta.2004.01.036. 

Lesiuk, Grzegorz, Michał Smolnicki, Dariusz Rozumek, Halyna Krechkovska, 

Oleksandra Student, José Correia, Rafał Mech, and Abílio De Jesus. 2020. “Study 

of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-

Mode (I + II, I + III) Loading Conditions.” Materials 13 (1). 

https://doi.org/10.3390/ma13010160. 

Liu, Z., K. Tsukada, K. Hanasaki, and M. Kurisu. 1999. “Two-Dimensional Eddy Current 

Signal Enhancement via Multifrequency Data Fusion.” Research in 

Nondestructive Evaluation 11 (3): 165–77. https://doi.org/10.1007/PL00003919. 

Lu, Y., and J. E. Michaels. 2009. “Feature Extraction and Sensor Fusion for Ultrasonic 

Structural Health Monitoring Under Changing Environmental Conditions.” IEEE 

Sensors Journal 9 (11): 1462–71. https://doi.org/10.1109/JSEN.2009.2019339. 

Luk, Bing L, Z D Jiang, Louis K P Liu, and F Tong. 2008. “Impact Acoustic Non-

Destructive Evaluation in Noisy Environment Based on Wavelet Packet 

Decomposition.” Hong Kong, 4. 

Lütkepohl, Helmut. 2005. New Introduction to Multiple Time Series Analysis. Berlin: 

New York : Springer. 

Luts, Jan, Geert Molenberghs, Geert Verbeke, Sabine Van Huffel, and Johan A. K. 

Suykens. 2012. “A Mixed Effects Least Squares Support Vector Machine Model 

for Classification of Longitudinal Data.” Computational Statistics and Data 

Analysis 56 (3): 611–28. https://doi.org/10.1016/j.csda.2011.09.008. 

Mach, Katharine J., Drew V. Nelson, and Mark W. Denny. 2007. “Techniques for 

Predicting the Lifetimes of Wave-Swept Macroalgae: A Primer on Fracture 

Mechanics and Crack Growth.” Journal of Experimental Biology 210 (13): 2213–

30. https://doi.org/10.1242/jeb.001560. 

Mallat, S.G. 1989. “A Theory for Multiresolution Signal Decomposition: The Wavelet 

Representation.” IEEE Transactions on Pattern Analysis and Machine 

Intelligence 11 (7): 674–93. https://doi.org/10.1109/34.192463. 

Mallat, Stéphane. 2009. A Wavelet Tour of Signal Processing: The Sparse Way. Vol. xx. 



138 

 

Martino, Nicole, Ralf Birken, Kenneth Maser, and Ming Wang. 2014. “Developing a 

Deterioration Threshold Model for the Assessment of Concrete Bridge Decks 

Using Ground Penetrating Radar.” In . https://trid.trb.org/view/1289060. 

McCann, D. M, and M. C Forde. 2001. “Review of NDT Methods in the Assessment of 

Concrete and Masonry Structures.” NDT & E International 34 (2): 71–84. 

https://doi.org/10.1016/S0963-8695(00)00032-3. 

McCormick, Nick, and Jerry Lord. 2010. “Digital Image Correlation.” Materials Today 

13 (12): 52–54. https://doi.org/10.1016/S1369-7021(10)70235-2. 

McDowall, David. 1980. Interrupted Time Series Analysis. SAGE. 

Meng, Dewei, Shibin Lin, and Hoda Azari. 2020. “Nondestructive Corrosion Evaluation 

of Reinforced Concrete Bridge Decks with Overlays: An Experimental Study.” 

Journal of Testing and Evaluation 48 (1): 20180388. 

https://doi.org/10.1520/JTE20180388. 

Mi, Bao, Jennifer E. Michaels, and Thomas E. Michaels. 2006. “An Ultrasonic Method 

for Dynamic Monitoring of Fatigue Crack Initiation and Growth.” The Journal of 

the Acoustical Society of America 119 (1): 74–85. 

https://doi.org/10.1121/1.2139647. 

Modak, S. V., T. K. Kundra, and B. C. Nakra. 2002. “Comparative Study of Model 

Updating Methods Using Simulated Experimental Data.” Computers & Structures 

80 (5): 437–47. https://doi.org/10.1016/S0045-7949(02)00017-2. 

Mohamadi, Sara, and David Lattanzi. 2019. “Life-Cycle Modeling of Structural Defects 

via Computational Geometry and Time-Series Forecasting.” Sensors 19 (20): 

4571. https://doi.org/10.3390/s19204571. 

Mohamadi, Sara, David Lattanzi, and Hoda Azari. 2020. “Fusion and Visualization of 

Bridge Deck Nondestructive Evaluation Data via Machine Learning.” Frontiers in 

Materials 7. https://doi.org/10.3389/fmats.2020.576918. 

Moreland, Kenneth. 2009. “Diverging Color Maps for Scientific Visualization.” In 

Advances in Visual Computing, edited by George Bebis, Richard Boyle, Bahram 

Parvin, Darko Koracin, Yoshinori Kuno, Junxian Wang, Renato Pajarola, et al., 

92–103. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. 

https://doi.org/10.1007/978-3-642-10520-3_9. 

Moreto, J., Fernando Júnior, Carla Maciel, Luís Bonazzi, José Júnior, Cassius Ruchert, 

and Waldek Filho. 2015. “Environmentally-Assisted Fatigue Crack Growth in 

AA7050-T73511 al Alloy and AA2050-T84 Al-Cu-Li Alloy.” Materials 

Research 18 (November). https://doi.org/10.1590/1516-1439.018915. 

Mosalam, Khalid M., and Glaucio H. Paulino. 1997. “Evolutionary Characteristic Length 

Method for Smeared Cracking Finite Element Models.” Finite Elements in 

Analysis and Design 27 (1): 99–108. https://doi.org/10.1016/S0168-

874X(97)00007-3. 

Mottershead, J. E., and M. I. Friswell. 1993. “Model Updating In Structural Dynamics: A 

Survey.” Journal of Sound and Vibration 167 (2): 347–75. 

https://doi.org/10.1006/jsvi.1993.1340. 



139 

 

Myötyri, E., U. Pulkkinen, and K. Simola. 2006. “Application of Stochastic Filtering for 

Lifetime Prediction.” Reliability Engineering & System Safety 91 (2): 200–208. 

https://doi.org/10.1016/j.ress.2005.01.002. 

Najafabadi, Maryam M., Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya, 

Randall Wald, and Edin Muharemagic. 2015. “Deep Learning Applications and 

Challenges in Big Data Analytics.” Journal of Big Data 2 (1): 1. 

https://doi.org/10.1186/s40537-014-0007-7. 

Nalepa, Jakub, Michal Kawulok, and Wojciech Dudzik. 2018. “Tuning and Evolving 

Support Vector Machine Models.” In Man-Machine Interactions 5, edited by 

Aleksandra Gruca, Tadeusz Czachórski, Katarzyna Harezlak, Stanisław 

Kozielski, and Agnieszka Piotrowska, 418–28. Advances in Intelligent Systems 

and Computing. Cham: Springer International Publishing. 

https://doi.org/10.1007/978-3-319-67792-7_41. 

Nantasenamat, Chanin, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, and 

Virapong Prachayasittikul. 2009. “A Practical Overview of Quantitative 

Structure-Activity Relationship.” EXCLI Journal 8 (May): 74–88. 

https://doi.org/10.17877/DE290R-690. 

Nassr Amr A. and El-Dakhakhni Wael W. 2009. “Damage Detection of FRP-

Strengthened Concrete Structures Using Capacitance Measurements.” Journal of 

Composites for Construction 13 (6): 486–97. 

https://doi.org/10.1061/(ASCE)CC.1943-5614.0000042. 

Nouri Shirazi, M., H. Mollamahmoudi, and S. Seyedpoor. 2014. “Structural Damage 

Identification Using an Adaptive Multi-Stage Optimization Method Based on a 

Modified Particle Swarm Algorithm.” Journal of Optimization Theory and 

Applications 160 (3): 1009–19. https://doi.org/10.1007/s10957-013-0316-6. 

Ohno, Kentaro, and Masayasu Ohtsu. 2010. “Crack Classification in Concrete Based on 

Acoustic Emission.” Construction and Building Materials, Special Issue on 

Fracture, Acoustic Emission and NDE in Concrete (KIFA-5), 24 (12): 2339–46. 

https://doi.org/10.1016/j.conbuildmat.2010.05.004. 

Ohtsu, Masayasu, Masakatsu Uchida, Takahisa Okamoto, and Shigenori Yuyama. 2002. 

“Damage Assessment of Reinforced Concrete Beams Qualified by Acoustic 

Emission.” Structural Journal 99 (4): 411–17. https://doi.org/10.14359/12109. 

Olson, David L., and Dursun Delen. 2008. Advanced Data Mining Techniques. Springer 

Science & Business Media. 

Ostachowicz, Wiesław M., and Marek Krawczuk. 2001. “On Modelling of Structural 

Stiffness Loss Due to Damage.” Key Engineering Materials. Trans Tech 

Publications Ltd. 2001. https://doi.org/10.4028/www.scientific.net/KEM.204-

205.185. 

Pak, Y. E. 1992. “Linear Electro-Elastic Fracture Mechanics of Piezoelectric Materials.” 

International Journal of Fracture 54 (1): 79–100. 

https://doi.org/10.1007/BF00040857. 

Pal, Nikhil R, and Sankar K Pal. 1993. “A Review on Image Segmentation Techniques.” 

Pattern Recognition 26 (9): 1277–94. https://doi.org/10.1016/0031-

3203(93)90135-J. 



140 

 

Pan, Ernian. 1997. “A General Boundary Element Analysis of 2-D Linear Elastic 

Fracture Mechanics.” International Journal of Fracture 88 (1): 41–59. 

https://doi.org/10.1023/A:1007462319811. 

Pankratz, Alan, ed. 1983. Forecasting with Univariate Box-Jenkins Models. Wiley Series 

in Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc. 

https://doi.org/10.1002/9780470316566. 

Paris, P., and F. Erdogan. 1963. “A Critical Analysis of Crack Propagation Laws.” 

Journal of Basic Engineering 85 (4): 528–33. https://doi.org/10.1115/1.3656900. 

Pauly, Mark, Richard Keiser, and Markus Gross. 2003. “Multi-Scale Feature Extraction 

on Point-Sampled Surfaces.” Computer Graphics Forum 22 (3): 281–89. 

https://doi.org/10.1111/1467-8659.00675. 

Perera, Ricardo, Sheng-En Fang, and C. Huerta. 2009. “Structural Crack Detection 

without Updated Baseline Model by Single and Multiobjective Optimization.” 

Mechanical Systems and Signal Processing 23 (3): 752–68. 

https://doi.org/10.1016/j.ymssp.2008.06.010. 

Pigeon, Stéphane, Pascal Druyts, and Patrick Verlinde. 2000. “Applying Logistic 

Regression to the Fusion of the NIST’99 1-Speaker Submissions.” Digital Signal 

Processing 10 (1): 237–48. https://doi.org/10.1006/dspr.1999.0358. 

Rabiei, Masoud, and Mohammad Modarres. 2013. “A Recursive Bayesian Framework 

for Structural Health Management Using Online Monitoring and Periodic 

Inspections.” Reliability Engineering & System Safety 112 (April): 154–64. 

https://doi.org/10.1016/j.ress.2012.11.020. 

Rahulkumar, P., Anand Jagota, S.J. Bennison, and Sunil Saigal. 2000. “Cohesive Element 

Modeling of Viscoelastic Fracture: Application to Peel Testing of Polymers.” 

International Journal of Solids and Structures 37 (March): 1873–97. 

https://doi.org/10.1016/S0020-7683(98)00339-4. 

Ramos, Luís F., Tiago Miranda, Mayank Mishra, Francisco M. Fernandes, and Elizabeth 

Manning. 2015. “A Bayesian Approach for NDT Data Fusion: The Saint Torcato 

Church Case Study.” Engineering Structures 84 (February): 120–29. 

https://doi.org/10.1016/j.engstruct.2014.11.015. 

Rangwala, Huzefa, Christopher Kauffman, and George Karypis. 2009. “SvmPRAT: 

SVM-Based Protein Residue Annotation Toolkit.” BMC Bioinformatics 10 

(December): 439. https://doi.org/10.1186/1471-2105-10-439. 

Reagan, Daniel, Alessandro Sabato, and Christopher Niezrecki. 2017. “Unmanned Aerial 

Vehicle Acquisition of Three-Dimensional Digital Image Correlation 

Measurements for Structural Health Monitoring of Bridges.” In Nondestructive 

Characterization and Monitoring of Advanced Materials, Aerospace, and Civil 

Infrastructure 2017, 10169:1016909. International Society for Optics and 

Photonics. https://doi.org/10.1117/12.2259985. 

Ren, Wei-Xin, and Guido De Roeck. 2002. “Structural Damage Identification Using 

Modal Data. II: Test Verification.” Journal of Structural Engineering 128 (1): 

96–104. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(96). 



141 

 

Rens Kevin L. and Greimann Lowell F. 1997. “Ultrasonic Approach for Nondestructive 

Testing of Civil Infrastructure.” Journal of Performance of Constructed Facilities 

11 (3): 97–104. https://doi.org/10.1061/(ASCE)0887-3828(1997)11:3(97). 

Rice, J. R. 1968. “A Path Independent Integral and the Approximate Analysis of Strain 

Concentration by Notches and Cracks.” Journal of Applied Mechanics 35 (2): 

379–86. https://doi.org/10.1115/1.3601206. 

Rosenfeld, Azriel. 1969. “Picture Processing by Computer.” ACM Comput. Surv. 1 (3): 

147–76. https://doi.org/10.1145/356551.356554. 

Ruiz, A., and P.E. Lopez-de-Teruel. 2001. “Nonlinear Kernel-Based Statistical Pattern 

Analysis.” IEEE Transactions on Neural Networks 12 (1): 16–32. 

https://doi.org/10.1109/72.896793. 

Ruiz, Gonzalo, Anna Pandolfi, and Michael Ortiz. 2001. “Three-dimensional cohesive 

modeling of dynamic mixed-mode fracture.” International Journal for Numerical 

Methods in Engineering 52 (1–2): 97–120. https://doi.org/10.1002/nme.273. 

Ryan, Thomas W, Raymond A Hartle, United States, Federal Highway Administration, 

National Highway Institute (U.S.), Michael Baker Jr, and Inc. 2012. Bridge 

Inspector’s Reference Manual: BIRM. Washington, D.C.]; [Arlington, Va.]; 

[Springfield, VA: U.S. Federal Highway Administration ; National Highway 

Institute ; [Available through the National Technical Information Service. 

Saadat, Soheil, Mohammad N Noori, Gregory D Buckner, Tadatoshi Furukawa, and 

Yoshiyuki Suzuki. 2004. “Structural Health Monitoring and Damage Detection 

Using an Intelligent Parameter Varying (IPV) Technique.” International Journal 

of Non-Linear Mechanics 39 (10): 1687–97. 

https://doi.org/10.1016/j.ijnonlinmec.2004.03.001. 

Sagar, R. Vidya, and B. K. Raghu Prasad. 2012. “A Review of Recent Developments in 

Parametric Based Acoustic Emission Techniques Applied to Concrete 

Structures.” Nondestructive Testing and Evaluation 27 (1): 47–68. 

https://doi.org/10.1080/10589759.2011.589029. 

Sartor Richard R., Culmo Michael P., and DeWolf John T. 1999. “Short-Term Strain 

Monitoring of Bridge Structures.” Journal of Bridge Engineering 4 (3): 157–64. 

https://doi.org/10.1061/(ASCE)1084-0702(1999)4:3(157). 

Schijve, J. 1977. “Four Lectures on Fatigue Crack Growth.” Delft University of 

Technology, Department of Aerospace Engineering, Report LR-254. 

https://repository.tudelft.nl/islandora/object/uuid%3A704226c6-658f-46b8-8cf4-

68eeb56fb45a. 

Shanker, M., M. Y. Hu, and M. S. Hung. 1996. “Effect of Data Standardization on Neural 

Network Training.” Omega 24 (4): 385–97. https://doi.org/10.1016/0305-

0483(96)00010-2. 

Sharma Shruti and Mukherjee Abhijit. 2011. “Monitoring Corrosion in Oxide and 

Chloride Environments Using Ultrasonic Guided Waves.” Journal of Materials in 

Civil Engineering 23 (2): 207–11. https://doi.org/10.1061/(ASCE)MT.1943-

5533.0000144. 



142 

 

Shull, Peter. 2002. Nondestructive Evaluation: Theory, Techniques, and Applications. 

Dekker Mechanical Engineering. CRC Press. 

https://doi.org/10.1201/9780203911068. 

Siegel, Mel, and Priyan Gunatilake. 1998. Remote Enhanced Visual Inspection of Aircraft 

by a Mobile Robot. 

Siegmund, T., N.A. Fleck, and A. Needleman. 1997. “Dynamic Crack Growth across an 

Interface.” International Journal of Fracture 85 (4): 381–402. 

https://doi.org/10.1023/A:1007460509387. 

Smith, R. A., and K. J. Miller. 1977. “Fatigue Cracks at Notches.” International Journal 

of Mechanical Sciences 19 (1): 11–22. https://doi.org/10.1016/0020-

7403(77)90011-X. 

Smith, Suzanne Weaver, and Christopher A. Beattie. 1991. “Secant-Method Adjustment 

for Structural Models.” AIAA Journal 29 (1): 119–26. 

https://doi.org/10.2514/3.10553. 

Sohn, H. (Hoon), C. R. (Charles R. ) Farrar, F. M. (François M. ) Hemez, and J. J. (Jerry 

J. ) Czarnecki. 2002. “A Review of Structural Health Review of Structural Health 

Monitoring Literature 1996-2001.” Article. Submitted to: Third World 

Conference on Structural Control, Como, Italy, April 7-12, 2002. January 1, 2002. 

https://digital.library.unt.edu/ark:/67531/metadc927238/. 

Song, Seong Hyeok, Glaucio H. Paulino, and William G. Buttlar. 2006. “Simulation of 

Crack Propagation in Asphalt Concrete Using an Intrinsic Cohesive Zone Model.” 

Journal of Engineering Mechanics 132 (11): 1215–23. 

https://doi.org/10.1061/(ASCE)0733-9399(2006)132:11(1215). 

Song, Seong, Glaucio Paulino, and William Buttlar. 2008. “Influence of the Cohesive 

Zone Model Shape Parameter on Asphalt Concrete Fracture Behavior.” AIP 

Conference Proceedings 973 (February). https://doi.org/10.1063/1.2896872. 

Spencer, Billie F., Vedhus Hoskere, and Yasutaka Narazaki. 2019. “Advances in 

Computer Vision-Based Civil Infrastructure Inspection and Monitoring.” 

Engineering 5 (2): 199–222. https://doi.org/10.1016/j.eng.2018.11.030. 

Steinberg, Alan N., and Christopher L. Bowman. 2017. “Revisions to the JDL Data 

Fusion Model.” Handbook of Multisensor Data Fusion. January 6, 2017. 

https://doi.org/10.1201/9781420053098-8. 

Su, Hang, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. 

“Multi-View Convolutional Neural Networks for 3D Shape Recognition.” In , 

945–53. https://www.cv-

foundation.org/openaccess/content_iccv_2015/html/Su_Multi-

View_Convolutional_Neural_ICCV_2015_paper.html. 

Sukumar, N., and J. -H. Prévost. 2003. “Modeling Quasi-Static Crack Growth with the 

Extended Finite Element Method Part I: Computer Implementation.” 

International Journal of Solids and Structures 40 (26): 7513–37. 

https://doi.org/10.1016/j.ijsolstr.2003.08.002. 

Sun, D., V. C. S. Lee, and Y. Lu. 2016. “An Intelligent Data Fusion Framework for 

Structural Health Monitoring.” In 2016 IEEE 11th Conference on Industrial 



143 

 

Electronics and Applications (ICIEA), 49–54. 

https://doi.org/10.1109/ICIEA.2016.7603550. 

Tanaka, K., and Y. Akiniwa. 1988. “Resistance-Curve Method for Predicting Propagation 

Threshold of Short Fatigue Cracks at Notches.” Engineering Fracture Mechanics 

30 (6): 863–76. https://doi.org/10.1016/0013-7944(88)90146-4. 

Tarancón, J. E., A. Vercher, E. Giner, and F. J. Fuenmayor. 2009. “Enhanced blending 

elements for XFEM applied to linear elastic fracture mechanics.” International 

Journal for Numerical Methods in Engineering 77 (1): 126–48. 

https://doi.org/10.1002/nme.2402. 

Teughels, Anne, and Guido De Roeck. 2005. “Damage Detection and Parameter 

Identification by Finite Element Model Updating.” Archives of Computational 

Methods in Engineering 12 (2): 123–64. https://doi.org/10.1007/BF03044517. 

Tsao Stephen, Kehtarnavaz Nasser, Chan Paul, and Lytton Robert. 1994. “Image‐Based 

Expert‐System Approach to Distress Detection on CRC Pavement.” Journal of 

Transportation Engineering 120 (1): 52–64. https://doi.org/10.1061/(ASCE)0733-

947X(1994)120:1(52). 

Tsiliki, Georgia, and Sophia Kossida. 2011. “Fusion Methodologies for Biomedical 

Data.” Journal of Proteomics 74 (12): 2774–85. 

https://doi.org/10.1016/j.jprot.2011.07.001. 

Tuegel, Eric J., Anthony R. Ingraffea, Thomas G. Eason, and S. Michael Spottswood. 

2011. “Reengineering Aircraft Structural Life Prediction Using a Digital Twin.” 

Research article. International Journal of Aerospace Engineering. 2011. 

https://doi.org/10.1155/2011/154798. 

Valor, A., F. Caleyo, L. Alfonso, D. Rivas, and J. M. Hallen. 2007. “Stochastic Modeling 

of Pitting Corrosion: A New Model for Initiation and Growth of Multiple 

Corrosion Pits.” Corrosion Science 49 (2): 559–79. 

https://doi.org/10.1016/j.corsci.2006.05.049. 

Vandaele, Walter. 1983. Applied Time Series and Box-Jenkins Models. Academic Press. 

Vanik M. W., Beck J. L., and Au S. K. 2000. “Bayesian Probabilistic Approach to 

Structural Health Monitoring.” Journal of Engineering Mechanics 126 (7): 738–

45. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(738). 

Vapnik, Vladimir. 2000. The Nature of Statistical Learning Theory. 2nd ed. Information 

Science and Statistics. New York: Springer-Verlag. https://doi.org/10.1007/978-1-

4757-3264-1. 

Verma, Sanjeev Kumar, Sudhir Singh Bhadauria, and Saleem Akhtar. 2013. “Review of 

Nondestructive Testing Methods for Condition Monitoring of Concrete 

Structures.” Research article. Journal of Construction Engineering. 2013. 

https://doi.org/10.1155/2013/834572. 

Vu, Kim, Mark G. Stewart, and John Mullard. 2005. “Corrosion-Induced Cracking: 

Experimental Data and Predictive Models.” ACI Structural Journal; Farmington 

Hills 102 (5): 719–26. 

Wang, Tinghua, Houkuan Huang, Shengfeng Tian, and Jianfeng Xu. 2010. “Feature 

Selection for SVM via Optimization of Kernel Polarization with Gaussian ARD 



144 

 

Kernels.” Expert Systems with Applications 37 (9): 6663–68. 

https://doi.org/10.1016/j.eswa.2010.03.054. 

Wang, Weizhuo, John E. Mottershead, Alexander Ihle, Thorsten Siebert, and Hans 

Reinhard Schubach. 2011. “Finite Element Model Updating from Full-Field 

Vibration Measurement Using Digital Image Correlation.” Journal of Sound and 

Vibration 330 (8): 1599–1620. https://doi.org/10.1016/j.jsv.2010.10.036. 

Wang, Ying, Suiyang Khoo, An-jui Li, and Hong Hao. 2013. “FEM Calibrated ARMAX 

Model Updating Method for Time Domain Damage Identification.” Advances in 

Structural Engineering 16 (1): 51–60. https://doi.org/10.1260/1369-4332.16.1.51. 

Wu, Huadong. 2004. “Sensor Data Fusion for Context -Aware Computing Using 

Dempster -Shafer Theory.” Ph.D., United States -- Pennsylvania: Carnegie 

Mellon University. 

http://search.proquest.com/docview/305207449/abstract/D39940116B7F47EEPQ/

1. 

Wu, Rih-Teng, and Mohammad Reza Jahanshahi. 2018. “Data Fusion Approaches for 

Structural Health Monitoring and System Identification: Past, Present, and 

Future.” Structural Health Monitoring, September, 1475921718798769. 

https://doi.org/10.1177/1475921718798769. 

Yan, Xiangqiao. 2007. “Automated Simulation of Fatigue Crack Propagation for Two-

Dimensional Linear Elastic Fracture Mechanics Problems by Boundary Element 

Method.” Engineering Fracture Mechanics 74 (14): 2225–46. 

https://doi.org/10.1016/j.engfracmech.2006.10.020. 

Yan, Yujie, Burcu Guldur, and Jerome F. Hajjar. 2017. “Automated Structural Modelling 

of Bridges from Laser Scanning,” April, 457–68. 

https://doi.org/10.1061/9780784480403.039. 

Yao, Ruigen, and Shamim N. Pakzad. 2012. “Autoregressive Statistical Pattern 

Recognition Algorithms for Damage Detection in Civil Structures.” Mechanical 

Systems and Signal Processing 31 (August): 355–68. 

https://doi.org/10.1016/j.ymssp.2012.02.014. 

Yeh, Po-Liang, and Pei-Ling Liu. 2008. “Application of the Wavelet Transform and the 

Enhanced Fourier Spectrum in the Impact Echo Test.” NDT & E International 41 

(5): 382–94. https://doi.org/10.1016/j.ndteint.2008.01.002. 

Yoneyama, S., A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta. 2007. “Bridge Deflection 

Measurement Using Digital Image Correlation.” Experimental Techniques 31 (1): 

34–40. https://doi.org/10.1111/j.1747-1567.2006.00132.x. 

Yoon Dong-Jin, Weiss W. Jason, and Shah Surendra P. 2000. “Assessing Damage in 

Corroded Reinforced Concrete Using Acoustic Emission.” Journal of 

Engineering Mechanics 126 (3): 273–83. https://doi.org/10.1061/(ASCE)0733-

9399(2000)126:3(273). 

Yuan, Yingshu, Yongsheng Ji, and Surendra P. Shah. 2007. “Comparison of Two 

Accelerated Corrosion Techniques for Concrete Structures.” ACI Structural 

Journal; Farmington Hills 104 (3): 344–47. 

Zaki, Ahmad, Hwa Kian Chai, Dimitrios G. Aggelis, and Ninel Alver. 2015. “Non-

Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and 



145 

 

Capability of Acoustic Emission Technique.” Sensors 15 (8): 19069–101. 

https://doi.org/10.3390/s150819069. 

Zhang, Allen, Kelvin C. P. Wang, Baoxian Li, Enhui Yang, Xianxing Dai, Yi Peng, Yue 

Fei, Yang Liu, Joshua Q. Li, and Cheng Chen. 2017. “Automated Pixel‐Level 

Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep‐Learning 

Network.” Computer‐Aided Civil and Infrastructure Engineering 32 (10): 805–

19. https://doi.org/10.1111/mice.12297. 

Zhang, G. Peter. 2003. “Time Series Forecasting Using a Hybrid ARIMA and Neural 

Network Model.” Neurocomputing 50 (January): 159–75. 

https://doi.org/10.1016/S0925-2312(01)00702-0. 

Zhang, Guicai, Changle Li, Haitao Zhou, and Timothy Wagner. 2018. “Punching Process 

Monitoring Using Wavelet Transform Based Feature Extraction and Semi-

Supervised Clustering.” Procedia Manufacturing 26: 1204–12. 

https://doi.org/10.1016/j.promfg.2018.07.156. 

Zhang, Jing-Kui, Weizhong Yan, and De-Mi Cui. 2016. “Concrete Condition Assessment 

Using Impact-Echo Method and Extreme Learning Machines.” Sensors 16 (4): 

447. https://doi.org/10.3390/s16040447. 

Zhang, Q. W., C. C. Chang, and T. Y. P. Chang. 2000. “Finite Element Model Updating 

for Structures with Parametric Constraints.” Earthquake Engineering & 

Structural Dynamics 29 (7): 927–44. https://doi.org/10.1002/1096-

9845(200007)29:7<927::AID-EQE955>3.0.CO;2-4. 

Zhang, Shilei, Shaofeng Chen, Huanding Wang, Wei Wang, and Zaixian Chen. 2013. 

“Model Updating with a Neural Network Method Based on Uniform Design.” 

Advances in Structural Engineering 16 (7): 1207–21. 

https://doi.org/10.1260/1369-4332.16.7.1207. 

Zhang, Xuebing, Enhedelihai Nilot, Xuan Feng, Qianci Ren, and Zhijia Zhang. 2018. 

“IMF-Slices for GPR Data Processing Using Variational Mode Decomposition 

Method.” Remote Sensing 10 (3): 476. https://doi.org/10.3390/rs10030476. 

Zhang, Zhengyou. 1994. “Iterative Point Matching for Registration of Free-Form Curves 

and Surfaces.” International Journal of Computer Vision 13 (2): 119–52. 

https://doi.org/10.1007/BF01427149. 

Zhou, Bing Hai, and Zi Qing Zhai. 2010. “Lifetime Distribution Model of Port Facilities 

with Pitting Corrosion of Stochastic Processes.” Applied Mechanics and 

Materials; Zurich 44–47 (December): 46. 

http://dx.doi.org.mutex.gmu.edu/10.4028/www.scientific.net/AMM.44-47.46. 

Zhou, Qifeng, Hao Zhou, Qingqing Zhou, Fan Yang, Linkai Luo, and Tao Li. 2015. 

“Structural Damage Detection Based on Posteriori Probability Support Vector 

Machine and Dempster-Shafer Evidence Theory.” Appl. Soft Comput. 36 (C): 

368–74. https://doi.org/10.1016/j.asoc.2015.06.057. 

Zhou, Xiao-Ping, Jun-Wei Chen, and Filippo Berto. 2020. “XFEM Based Node Scheme 

for the Frictional Contact Crack Problem.” Computers & Structures 231 (April): 

106221. https://doi.org/10.1016/j.compstruc.2020.106221. 

 



146 

 

BIOGRAPHY 

Sara Mohamadi graduated from Fairfax High School, Fairfax, Virginia, in 1983. She 

received her Bachelor of Arts from George Mason University in 1987. She was employed 

as a teacher in Fairfax County for two years and received her Master of Arts in English 

from George Mason University in 1987. 


