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Abstract

3D MODEL-ASSISTED LEARNING FOR OBJECT DETECTION AND
POSE ESTIMATION

Georgios Georgakis, PhD

George Mason University, 2020

Dissertation Director: Dr. Jana Košecká

Supervised learning paradigm for training Deep Convolutional Neural Networks (DCNN)

rests on the availability of large amounts of manually annotated images, which are necessary

for training deep models with millions of parameters. In this thesis, we present novel tech-

niques for mitigating the required manual annotation, by generating large object instance

datasets through compositing textured 3D models onto commonly encountered background

scenes to synthesize training images. The generated training data augmented with real

world annotations outperforms models trained only on real data. Non-textured 3D models

are subsequently used for keypoint learning and matching, and 3D object pose estimation

from RGB images. The proposed methods showcase promising results with regards to gen-

eralization on new and standard benchmark datasets. In the final part of the thesis, we

investigate how these perception capabilities can be leveraged and encoded in a spatial map,

in order to enable an agent to successfully navigate towards a target object.



Chapter 1: Introduction

Powerful deep learning methods now perform almost as good as humans on certain bench-

marks [8], a fact that was unthinkable until recently. These methods demonstrated signif-

icant performance improvements on core computer vision problems such as object detec-

tion [9–11], and pose estimation on objects [12–14], and humans [15–17]. However, as these

methods have considerable amounts of parameters, the improvements are contingent on the

existence of large annotated training sets, sometimes containing millions of examples. The

annotation is often performed by humans, an extremely time-consuming procedure.

This thesis explores alternative approaches for training deep convolutional neural net-

works with large number of parameters, which do not require manual annotations. The

core ideas suggest creative ways of using 3D object models to tackle the problems of object

instance detection, keypoint detection and descriptor learning, and object pose estimation.

Furthermore, we investigate the usefulness of object detection in the context of target driven

navigation.

In summary, the topics discussed in this thesis are the following:

1. Object Instance Detection in Indoor Scenes, which involves both the localiza-

tion and recognition of object instances of interest in an image.

2. Keypoint Detection and Descriptor Learning, where the objective is to establish

correspondences between two depth images.

3. Object Pose Estimation, where given an RGB image and object bounding box,

the goal is to estimate the 3D pose of the object.

4. Target driven Navigation, where the objective is to learn a policy that successfully

navigates to a given semantic target and simultaneously constructs a partial map of

the environment with semantic information.
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Figure 1.1: Annotations for object instance detection in the GMU-Kitchens [2] dataset.

In the following sections we provide more details about the problems considered, along with

our contributions.

Object Instance Detection in Indoor Scenes. Given an image, the goal of object

detection is to localize all bounding boxes of objects of interest along with identifying the

class of each object from a predefined set of classes C = {c1, c2, ..., cK}. Each bounding

box is represented by the image space parameters x, y, w, h, which correspond to the left

x-coordinate, the upper y-coordinate, the width, and the height of the box respectively.

Examples of ground-truth bounding boxes for object instances are shown in Figure 1.1. We

focus on the problem of object instance detection, and consider smaller objects that afford

manipulation.

For object category detection, current state-of-the-art methods such as Faster R-CNN [9]

and SSD [11] employ deep Convolutional Neural Network (CNN) approaches that have large

amounts of parameters and require large annotated datasets for training. For everyday ob-

ject instances found in indoor environments such datasets are not readily available. In order

to address this problem, we have developed (Chapter 2) a novel automated approach for

generating synthesized training sets that can be utilized to train CNN-based object detec-

tors [9, 11]. Existing works that make use of synthetic data either render 3D CAD models

on simple backgrounds using a randomized procedure [18, 19], or collect image data from
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Figure 1.2: Examples of retrieved matches in noisy depth images by our method from the
MSR-7 [1] dataset (left) and the Stanford 3D scanning repository [3] (right). For each pair,
the query image is to the left, and the image to the right illustrates a retrieved match from
a repository of keypoints.

video game engines [20]. In contrast, our approach superimposes real cropped object im-

ages in background scenes in an informative manner that respects semantic and geometric

constraints in the scene. Specifically, the objects are placed in contextually meaningful

positions in the images which improves the overall final performance of the detector. This

is demonstrated by comparing different superimposition strategies that range from simple

randomized procedures to our informed positioning on the GMU-Kitchens [2] and Wash-

ington RGB-D [21] datasets. Additionally, we investigate the augmentation of a small set

of real annotated images with our synthesized data and show their superior performance to

using only real annotations. This work was published in [22].

Keypoint Detection and Descriptor Learning. This is the task of detecting salient

keypoints and their feature representations with the objective of establishing correspon-

dences between pairs of images taken from different poses or between images and 3D models,

and can be used for image retrieval, registration, and pose estimation. An example related

to our work is shown in Figure 1.2. Traditional methods relied on hand-engineered features

such as Harris3D [23], SIFT [24], and FPFH [25]. Deep learning based methods in recent
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literature attempt to tackle this problem in the RGB domain and require keypoint annota-

tions that are either collected by humans or by traditional methods [26, 27]. This strategy

implicitly pre-defines which points in an image should be considered discriminative, which

is ambiguous by nature. In contrast, our method presented in Chapter 3, avoids these prob-

lems by taking advantage of readily available CAD models and generates the appropriate

ground-truth on-the-fly during training from pairs of rendered noisy depth images. The

optimization of the keypoint detector and descriptors is performed jointly and ensures key-

point repeatability and feature representations that are robust to viewpoint variations. The

approach is validated on multiple publicly available 3D datasets [1, 3], showing improved

performance over the matching objective and was published in [28].

Object Pose Estimation. The third task in this thesis is object pose estimation. This

entails the estimation of the 3D rotation and translation (R, T ) ∈ SE(3) of an object of

interest. Rotation R is usually parametrized by the Euler angles azimuth, elevation, and in-

plane rotation. An example of a ground-truth pose for a “bed” object is shown in Figure 1.3.

Given 2D-3D correspondences between the image and a 3D textured instance model, this

problem can be solved using the Perspective-n-Point algorithm. Traditionally, interest point

detectors and hand-engineered descriptors such as SIFT [24] were used during the matching

procedure. More recently, end-to-end CNN-based approaches have been in the forefront of

object pose estimation demonstrating superior performance using as input a single cropped

RGB image of an object [14, 29–31]. These approaches are very data-hungry and require

accurate 3D pose annotations on real RGB images. Currently, the largest dataset that offers

precise alignments between images and 3D models is the Pix3D [4] which contains the rela-

tively small amount of 10069 images and 395 3D shapes of 9 object categories. In response

to this problem, we present (Chapter 4) a novel approach for 3D object pose estimation

which does not make use of either 3D texture models or expensive 3D pose annotations.

Instead, it requires only textureless CAD models and aligned RGB-D frames of a subset of
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Figure 1.3: Rendered image (right) using the provided ground-truth pose for the bed cate-
gory (left). Images are from the Pix3D [4] dataset.

object instances in order to learn to infer the 3D pose. This is achieved through a series

of constraints that enforce viewpoint and modality invariance for local features, and learn

how to select keypoints consistently across the RGB and depth modalities. The selection

of the keypoints is also learned without any keypoints annotations, through a relative pose

estimation objective. During testing, keypoints are extracted from a query RGB image

and matched to keypoints extracted from rendered depth images. The approach is demon-

strated on the Pix3D [4] dataset for object pose estimation, as well as generalization to

object instances not seen during training. The proposed method was published in [32].

Target Driven Navigation. Finally, target driven navigation seeks to learn a policy

π(a|o; c) that maps the current observation o of an agent to the best possible action a such

that it can approach the semantic target c. Figure 1.4 illustrates an instance of the task.

Traditional methods focused on constructing a 3D metric map of the environment [33]

followed by path planning and control. This requires building the 3D metric map when

a novel scene is encountered and it is unable to bring prior knowledge, such as common
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Figure 1.4: A bird-eye view of a scene from the AVD [5] dataset with initial (red) and target
(green) poses of the agent and their corresponding views. The target object here is the tv.
Best viewed in color.

spatial patterns, when planning in new environments. These priors can be crucial when a

target object is not initially visible and the agent needs to make informed decisions about

its whereabouts. Recently, several learning based approaches attempt to learn navigation

strategies by mapping pixels directly to actions [34, 35]. While these models are able to

bring some useful priors during navigation, they do not have a mechanism to encode the

spatial patterns in the environment. In Chapter 5, we present a novel method that learns

a navigation policy on top of a semantically informed map that does not assume perfect

localization. The method consists of a modular architecture for simultaneous mapping and

target driven navigation in novel indoor environments. Deep convolutional neural networks

are used to extract semantic and appearance representation from RGB images, semantic

segmentation and object detection masks, which is then stored in a 2.5D map. Given this

representation, the mapping module learns to localize the agent and register consecutive

observations in the map. Then, the navigation module learns a policy for reaching semantic

targets using the current observations and the up-to-date map. We demonstrate that the

use of semantic information improves localization accuracy and the ability of storing spatial
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semantic map aids the target driven navigation policy. The two modules are evaluated

separately and jointly on Active Vision Dataset [5] and Matterport3D environments [36],

demonstrating improved performance on both localization and navigation tasks.
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Chapter 2: Synthesizing Training Data for Object Detection

in Indoor Scenes

The capability of detecting and searching for common household objects in indoor envi-

ronments is the key component of the ‘fetch-and-delivery’ task commonly considered one

of the main functionalities of service robots. Existing approaches for object detection are

dominated by machine learning techniques focusing on learning suitable representations of

object instances. This is especially the case when the objects of interest are to be localized

in environments with large amounts of clutter, variations in lighting, and a range of poses.

While the problem of detecting object instances in simpler table top settings has been tack-

led previously using local features, these methods are often not effective in the presence of

large amounts of clutter or when the scale of the objects is small.

Current leading object detectors exploit convolutional neural networks (CNNs) and are

either trained end-to-end [11] for sliding-window detection or follow the region proposal

approach which is jointly fine-tuned for accurate detection and classification [37] [9]. In

both approaches, the training and evaluation of object detectors requires labeling of a large

number of training images with objects in various backgrounds and poses with the bounding

boxes or even segmentations of objects from background.

Often in robotics, object detection is a prerequisite for tasks such as pose estimation,

grasping, and manipulation. Notable efforts have been made to collect 3D models for ob-

ject instances with and without textures, assuming that objects of interest are in proximity,

typically on a table top. Existing approaches to these challenges often use either 3D CAD

models [38] or texture mapped models of object instances obtained using traditional recon-

struction pipelines [39,40].
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Figure 2.1: Given cropped object images and background scenes we propose an automated
approach for generating synthetic training sets that can be used to train current state-of-
the-art object detectors, which can then be applied to real test images. The generation
procedure takes advantage of scene understanding methods in order to place the objects in
meaningful positions in the images. We also explore using a combination of synthetic and
real images for training and demonstrate higher detection accuracy compared to training
with only real data. Best viewed in color.

In this work we explore the feasibility of using such existing datasets of standalone ob-

jects on uniform backgrounds for training object detectors [9, 11] that can be applied in

real-world cluttered scenes. We create “synthetic” training images by superimposing the

objects into images of real scenes. We investigate effects of different superimposition strate-

gies ranging from purely image-based blending all the way to using depth and semantics

to inform positioning of the objects. Toward this end we exploit the geometry and the se-

mantic segmentation of a scene obtained using the state of the art method of [6] to restrict

the locations and size of the superimposed object model. We demonstrate that, in the con-

text of robotics applications in indoor environments, these positioning strategies improve

the final performance of the detector. This is in contrast with previous approaches [18, 19]

which used large synthetic datasets with mostly randomized placement. In summary, our

contributions are the following:
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1. We propose an automated approach to generate synthetic training data for the task

of object detection, which takes into consideration the geometry and semantic infor-

mation of the scene.

2. Based on our results and observations, we offer insights regarding the superimposition

design choices, that could potentially affect the way training sets for object detection

are generated in the future.

3. We provide an extensive evaluation of current state-of-the-art object detectors and

demonstrate their behavior under different training regimes.

2.1 Related Work

We first briefly review related works in object detection to motivate our choice of detec-

tors, then discuss previous attempts to use synthetic data as well as different datasets and

evaluation methodologies.

Object Detection Traditional methods for object detection in cluttered scenes follow the

sliding window based pipeline with hand designed flat feature representations (e.g. HOG)

along with discriminative classifiers, such as linear or latent SVMs. Examples include

DPMs [41] which exploit efficient methods for feature computation and classifier evalua-

tion. These models have been used successfully in robotics for detection in the table top

setting [42]. Other effectively used strategies for object detection used local features and

correspondences between a model reference image and the scene. These approaches [43,44]

worked well with textured household objects, taking advantage of the discriminative nature

of the local descriptors. In an attempt to reduce the search space of the sliding window

techniques, alternative approaches concentrated on generating category-independent ob-

ject proposals [45, 46] using bottom up segmenation techniques followed by classification

using traditional features. The flat engineered features have been recently superseded by
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approaches based on Convolutional Neural Networks (CNN), which learn features with in-

creased amount of invariance by repeated layering of convolutional and pooling layers. While

these methods have been intially introduced for image classification task [47], extensions

to object detection include [48] [49]. The R-CNN approach [48] relied on finding object

proposals and extracting features from each crop using a pre-trained network, making the

proposal generating module independent from the classification module. Recent state of

the art object detectors such as Faster R-CNN [9] and SSD [11] are trained jointly in a so

called end-to-end fashion to both find object proposals and also classify them.

Synthetic Data There are several previous attempts to use synthetic data for training

CNNs. The work of [18] used existing 3D CAD models, both with and without texture,

to generate 2D images by varying the projections and orientations of the objects. The

approach was evaluated on 20 categories in PASCAL VOC2007 dataset. That work used

earlier CNN models [48] where the proposal generation module was independent from fine-

tuning the CNN classifier, hence making the dependence on the context and background less

prominent than in current models. In the work of [19] the authors used the rendered models

and their 2D projections on varying backgrounds to train a deep CNN for pose estimation.

In these representative works, objects typically appeared on simpler backgrounds and were

combined with the object detection strategies that rely on the proposal generation stage.

Our work differs in that we perform informed compositing on the background scenes, instead

of placing object-centric synthetic images at random locations. This allows us to train

the CNN object detectors to produce higher quality object proposals, rather than relying

on unsupervised bottom-up techniques. In [20], a Grand Theft Auto video game engine

was used to collect scenes with realistic appearance and their associated category pixel

level labels for the problem of semantic segmentation. Authors showed that using these

high realism renderings can significantly reduce the effort for annotation. They used a

combination of synthetic data and real images to train models for semantic segmentation.

Perhaps the closest work to ours is [50], which also generates a synthetic training set by
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Figure 2.2: Overview of the procedure for blending an object in a background scene. We
take advantage of estimated support surfaces (g) and predictions for counters and tables
(c) in order to find regions for object placement (d). The semantic segmentation of the
scene [6], and the plane extraction are shown in (b) and (f) respectively. (h) presents an
example of an object’s RGB, depth, and mask images, while (i) shows the final blending
result. RGB and depth images of the background scene are in (a) and (e) respectively. Best
viewed in color.

taking advantage of scene segmentation to create synthetic training examples, however the

task is that of text localization instead of object detection.

2.2 Approach

2.2.1 Synthetic Set Generation

CNN-based object detectors require large amounts of annotated data for training, due to

the large number of parameters that need to be learned. For object instance detection the

training data should also cover the variations in the object’s viewpoint and other nuisance

parameters such as lighting, occlusion and clutter. Manually collecting and annotating

scenes with the aforementioned properties is time-consuming and costly. Another factor in

annotation is the sometimes low generalization capability of trained models across different

environments and backgrounds. The work of [51] addressed this problem by building a

map of an environment including objects of interest and using Amazon Mechanical Turk

for annotation and subsequent training of object detectors in each particular environment.
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The authors demonstrated this approach on commonly encountered categories (≈ 20) of

household objects. This approach uses human labeling effort for each new each scene and

object combination, potentially limiting scalability.

Our approach focuses on object instances and their superimposition into real scenes at

different positions, scales, while reducing the difference in lighting conditions and exploiting

proper context. To this end, we use cropped images from existing object recognition datasets

such as BigBird [39] rather than using 3D CAD models [18,19]. This allows us to have real

colors and textures for our training instances as opposed to rendering them with randomly

chosen or artificial samples. The BigBird dataset captures 120 azimuth angles from 5

different elevations for a total of 600 views per object. It contains a total of 125 object

instances with a variety of textures and shapes. In our experiments we use the 11 object

instances that can be found in the GMU-Kitchens dataset.

The process of generating a composite image with superimposed objects can be summa-

rized in the following steps. First, we choose a background scene and estimate the positions

of any support surfaces. This is further augmented by semantic segmentation of the scene,

used to verify the support surfaces found by plane fitting. The objects of interest are placed

on support surfaces, ensuring their location in areas with appropriate context and back-

grounds. The next step is to randomly choose an object and its pose, followed by choosing

a position in the image. The object scale is then determined by the depth value of the

chosen position and finally the object is blended into the scene. An example of this process

is shown in Figure 2.2. We next describe these steps in more detail.

Selective Positioning In natural images, small hand-held objects are usually found on

supporting surfaces such as counters, tables, and desks. These planar surfaces are extracted

using the method described in [52], which applies RANSAC to fit planes to regions after an

initial over-segmentation of the image. Given the extracted planar surfaces’s orientations,

we select the planes with large extent, which are aligned with the gravity direction as

candidate support surfaces. To ensure that the candidate support surfaces belong to a

desired semantic category, a support surface is considered valid if it overlaps in the image
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with semantic categories of counters, tables and desks obtained by semantic segmentation

of the RGB-D image.

Semantic Segmentation To determine the semantic categories in the scene, we use the

semantic segmentation CNN of [6], which is pre-trained on MS-COCO and PASCAL-VOC

datasets, and fine-tuned on NYU Depth v2 dataset for 40 semantic categories. The model

is jointly trained for semantic segmentation and depth estimation, which allows the scene

geometry to be exploited for better discrimination between some of the categories. We do

not rely solely on the semantic segmentation for object positioning, since it rarely covers

the entire support surface, as can be seen in Figure 2.2(c). The combination of the support

surface detection and semantic segmentation produces more accurate regions for placing

the objects. The aforementioned regions that belong to valid support surfaces are then

randomly chosen for object positioning. Finally, occlusion levels are regulated by allowing

a maximum of 40% overlap between positioned object instances in the image.

Selective Scaling and Blending The size of the object is determined by using the depth

of the selected position and scaling the width w and height h accordingly:

ŵ =
wz̄

z
ĥ =

hz̄

z

where z̄ is the median depth of the object’s training images, z is the depth at the selected

position in the background image, and ŵ, ĥ are the scaled width and height respectively.

The last step in our process is to blend the object with the background image in order to

mitigate the effects of changes in illumination and contrast. We use the implementation from

Fast Seamless Cloning [53] with a minor modification. Instead of blending a rectangular

patch of the object, we provide a masked object to the fast seamless cloning algorithm which

produces a cleaner result. Figure 2.3 illustrates examples of scenes with multiple blended

objects.
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Figure 2.3: Examples of blending object instances from the BigBird dataset into scenes
from the NYU Depth V2 dataset. The blended objects are marked with a red bounding
box. Best viewed in color.

2.2.2 Object Detectors

For our experiments we employ two state-of-the-art object detectors, Faster R-CNN [9] and

Single-Shot Multibox Detector (SSD) [11]. Both Faster R-CNN and SSD are trained end-

to-end but their architectures are different. Faster R-CNN consists of two modules. The

first module is the Region Proposal Network (RPN) which is a fully convolutional network

that outputs object proposals and also an objectness score for each proposal reflecting the

probability of having an object inside the region. The second detection network module

resizes the feature maps, corresponding to each object proposal to a fixed size, classifies it

to an object category and refines the location and the height and width of the bounding

box associated with each proposal. The advantage of Faster R-CNN is the modularity of

the model; one module that finds object proposals and the second module which classifies

each of the proposals. The downside of Faster R-CNN is that it uses the same feature map
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Figure 2.4: Comparison between masks from BigBird (top row), and masks after refinement
with Graph-cut (bottom row).

to find objects of different sizes which causes problems for small objects. SSD tackles this

problem by creating feature maps of different resolutions. Each cell of the coarser feature

maps captures larger area of the image for detecting large objects whereas the finer feature

maps are detecting smaller objects. These multiple feature maps allow higher accuracy

for a given input resolution, providing SSD’s speed advantage for similar accuracy. Both

detectors have difficulties for objects with small size in pixels, making input resolution an

important factor.

2.3 Experiments

In order to evaluate the object detectors trained on composited images, we have conducted

three sets of experiments on two publicly available datasets, the GMU-Kitchen Scenes [2]

and the Washington RGB-D Scenes v2 dataset [21]. In the first experiment, training im-

ages are generated by choosing different compositing strategies to determine the effect of

positioning, scaling, and blending on the performance. The object detectors are trained

on composited images and evaluated on real scenes. In the second set of experiments we

examine the effect of varying proportion of synthetic/composited images and real training

images. Finally we use synthetic data for both training and testing in order to show the
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Table 2.1: Average precision results for the Faster R-CNN detector for all experiments on
the GMU-Kitchens dataset. The Synthetic+Real to Real experiments were performed using
the SP-BL-SS set plus the percentage of real data shown in the table.
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Real to Real

1. 3-Fold 78.9 92.0 91.9 81.8 74.7 93.4 85.9 76.6 90.7 86.4 54.6 82.5

Synthetic to Real

2. RP-SI-RS 37.2 68.3 72.5 26.1 32.3 70.2 57.2 29.0 46.9 2.9 20.4 42.1

3. RP-BL-RS 62.4 69.3 58.2 32.4 4.3 51.7 47.1 39.3 32.2 59.2 30.0 44.2

4. SP-SI-SS 45.2 71.7 66.6 26.0 45.5 80.5 78.4 37.8 46.1 27.1 9.7 48.6

5. SP-BL-SS 55.5 67.9 71.2 34.6 30.6 82.9 66.2 33.1 54.3 54.8 17.7 51.7

Synthetic+Real to Real

6. 1% real 65.1 85.8 85.7 62.3 51.6 90.4 85.6 54.3 79.4 70.6 32.2 69.3

7. 10% real 70.5 91.5 89.6 82.2 62.8 94.6 87.4 66.3 89.5 87.4 49.5 79.2

8. 50% real 79.3 92.5 91.1 77.3 86.2 95.4 87.9 77.8 91.6 90.1 52.2 83.8

9. 100% real 82.6 92.9 91.4 85.5 81.9 95.5 88.6 78.5 93.6 90.2 54.1 85.0

Synthetic to Synthetic

10. RP-SI-RS 99.6 100 99.7 99.6 99.6 99.8 99.7 98.9 99.7 99.4 98.7 99.5

11. SP-BL-SS 79.2 84.4 94.8 79.3 94.6 92.6 89.5 79.9 93.1 89.1 65.8 85.7

reduction of over-fitting to superimposition artifacts during training when the proposed

approach of data generation is employed.

2.3.1 Datasets and Backgrounds

For our experiments, we utilized the following datasets:

GMU Kitchen Scenes dataset [2] The GMU-Kitchens dataset includes 9 RGB-D

videos of kitchen scenes with 11 object instances from the BigBird dataset. We also used

all 71 raw kitchen videos from the NYU Depth Dataset V2 [54] with a total of around

7000 frames as background images. For each image we generate four synthetic images with

different variations in objects that are added to the scene, pose, scale, and the location that

the objects are put. The object identities and their poses are randomly sampled from the

BigBird dataset, from 360 examples per object with 3 elevations and 120 azimuths.

17



Table 2.2: Average precision results for the SSD detector for all experiments on the GMU-
Kitchens dataset. The Synthetic+Real to Real experiments were performed using the SP-
BL-SS set plus the percentage of real data shown in the table.
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Real to Real

1. 3-Fold 46.7 73.7 81.8 64.5 62.9 83.9 70.3 69.8 76.1 64.8 27.7 65.6

Synthetic to Real

2. RP-SI-RS 9.1 15.9 49.4 9.8 13.5 61.6 42.2 15.5 36.9 1.0 0.8 23.2

3. RP-BL-RS 9.1 15.7 41.4 10.7 9.9 41.2 39.0 28.7 36.2 11.5 0.7 22.2

4. SP-SI-SS 10.5 17.5 47.2 0.1 9.1 44.9 36.5 24.0 9.1 5.5 10.3 19.5

5. SP-BL-SS 18.3 22.1 58.9 9.5 11.1 75.7 65.5 23.8 59.4 14.6 9.1 33.5

Synthetic+Real to Real

6. 1% real 39.4 71.8 80.4 50.2 45.2 82.6 74.9 57.8 78.1 54.2 28.5 60.3

7. 10% real 59.4 83.8 83.7 66.2 60.7 87.3 79.8 72.6 83.4 77.6 33.0 71.6

8. 50% real 64.6 84.2 87.6 70.4 67.1 89.2 79.7 75.4 80.1 79.3 37.6 74.1

9. 100% real 59.0 84.5 85.1 74.2 67.5 87.4 78.9 71.3 85.2 79.9 37.6 73.7

Synthetic to Synthetic

10. RP-SI-RS 90.8 90.9 90.8 90.8 90.9 90.9 90.8 90.7 90.9 90.8 90.6 90.8

11. SP-BL-SS 84.3 86.7 88.1 81.7 88.9 83.5 80.8 83.1 84.5 86.4 74.0 83.8

The images where the support surfaces were not detected are removed from the train-

ing set, making our effective set around 5000 background images. Cropped object images

from BigBird dataset of the 11 instances contained in GMU-Kitchens were used for super-

impositioning. We refine the provided object masks with GraphCut [55], in order to get

cleaner outlines for the objects. This helps with the jagged and incomplete boundaries of

certain objects (e.g. coke bottle), which are due to imperfect masks obtained from the depth

channel of RGB-D data caused by reflective materials. Figure 2.4 illustrates a comparison

between masks from BigBird and masks refined with GraphCut algorithm. For comparison

with the rest of the experiments we also provide the performance of the object detectors

(row 1 of Tables 2.1 and 2.2) trained and tested on the real data. The train-test split follows

the division of the dataset into three different folds. In each fold six scenes are used for

training and three are used for testing, as shown in [2].
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Table 2.3: Average precision results for the Faster R-CNN detector for all experiments on
the WRGB-D dataset. The Synthetic+Real to Real experiments were performed using the
SP-BL-SS set plus the percentage of real data shown in the table.
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Real to Real

1.Scenes 1-7 99.7 95.5 99.6 96.7 96.7 97.9

Synthetic to Real

2. RP-SI-RS 65.2 39.4 69.2 57.0 29.4 52.0

3. RP-BL-RS 82.6 47.3 93.0 74.9 52.7 70.1

4. SP-SI-SS 86.6 62.4 93.6 68.6 55.5 73.4

5. SP-BL-SS 82.3 70.9 96.8 74.2 66.3 78.1

Synthetic+Real to Real

6. 1% real 98.3 92.7 98.6 96.6 94.9 96.2

7. 10% real 99.6 96.0 99.6 96.9 97.1 97.8

8. 50% real 99.5 96.5 99.9 97.3 97.8 98.2

9. 100% real 99.4 97.0 99.3 97.2 98.1 98.2

Synthetic to Synthetic

10. RP-SI-RS 98.5 99.5 99.5 96.9 92.6 97.4

11. SP-BL-SS 97.4 97.5 97.3 95.1 93.5 96.2

Washington RGB-D Scenes v2 dataset (WRGB-D) [21] The WRGB-D dataset

includes 14 RGB-D videos of indoor table-top scenes containing instances of objects from

five object categories: bowl, cap, cereal box, coffee mug, and soda can. The synthetic

training data is generated using the provided background scenes (around 3000 images) and

cropped object images for the present object categories in the WRGB-D v1 dataset [42].

For each background image we generate five synthetic images to get a total of around 4600

images. As mentioned earlier, images without a support surface are discarded. The images

that belong to seven of these scenes are used for training and the rest is used for testing.

Line 1 in Tables 2.3 and 2.4 shows the performance of the two object detectors with this

split of the real training data.
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Table 2.4: Average precision results for the SSD detector for all experiments on the WRGB-
D dataset. The Synthetic+Real to Real experiments were performed using the SP-BL-SS
set plus the percentage of real data shown in the table.
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Real to Real

1.Scenes 1-7 90.8 90.2 90.9 89.9 89.3 90.2

Synthetic to Real

2. RP-SI-RS 77.2 78.5 90.9 74.1 70.1 78.2

3. RP-BL-RS 71.5 62.9 90.3 73.1 65.2 72.6

4. SP-SI-SS 77.8 79.8 90.8 73.4 75.5 79.5

5. SP-BL-SS 71.9 75.9 90.7 74.3 75.0 77.5

Synthetic+Real to Real

6. 1% real 87.7 88.3 90.8 88.1 89.5 88.9

7. 10% real 90.8 89.5 90.8 90.4 90.8 90.5

8. 50% real 90.9 90.6 90.9 90.3 90.6 90.7

9. 100% real 90.9 90.5 90.9 90.8 90.8 90.8

Synthetic to Synthetic

10. RP-SI-RS 90.5 90.9 90.9 90.2 90.0 90.5

11. SP-BL-SS 90.7 90.7 90.4 89.5 89.2 90.1

2.3.2 Synthetic to Real

In this experiment we use the synthetic training sets generated with different combinations

of generation parameters for training, and test on real data. The generation parameters

that we vary are: Random Positioning (RP) / Selective Positioning (SP), Simple Super-

imposition (SI) / Blending (BL), and Random Scale (RS) / Selective Scale (SS), where

SP, SS, and BL are explained in Section 2.2.1. For RP we randomly sample the position

for the object in the entire image, for RS the scale of the object is randomly sampled from

the range of 0.2 to 1 with a step of 0.1, and for SI we do not use blending but instead we

superimpose the masked object directly on the background.

The objective of this experiment is to investigate the effect of the generation parameters

on the detection accuracy. For example, if a detector is trained on a set generated with
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Figure 2.5: Detection examples for the SSD and Faster R-CNN object detectors on the
GMU-Kitchens dataset. Rows 1 and 3 show results when only the real training data were
used, while rows 2 and 4 present results after the detectors were trained with the synthetic
set SP-BL-SS and 50% of the real training data. The green bounding boxes depict correct
detections, while the red represent false classifications and missed detections. Training with
a combination of synthetic and real data proves beneficial for the detection task, as the
detectors are more robust to small objects and viewpoint variation. Best viewed in color.

selective positioning, with blending, and selective scale, how does it compare to another

detector which is trained on a completely randomly generated set with blending? If the

former demonstrates higher performance than the latter, then we can assume that selective

positioning and scaling are important and superior to random positioning. For each trained

detector, a combination of the generation parameters (e.g. SP-BL-SS) is chosen, and then

the synthetic set is generated using our proposed approach along with its bounding box

annotations for each object instance. The detector is trained only on the synthetic data

and then tested on the real data.
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The results are shown on lines 2-5 in Tables 2.1 (Faster R-CNN) and 2.2 (SSD) for the

GMU-Kitchens dataset and in Tables 2.3 (Faster R-CNN) and 2.4 (SSD) for the WRGB-D

dataset. Note that for the GMU-Kitchens dataset, all frames from 9 scenes videos were

used for testing. We report detection accuracy on four combinations of generation param-

eters, RP-SI-RS, RP-BL-RS, SP-SI-SS, and SP-BL-SS. Other combinations such as

SP-BL-RS and RP-BL-SS have also been tried, however we noticed that applying se-

lective positioning without selective scaling and vice-versa, does not yield any significant

improvements.

For both datasets, we first notice that using only synthetic data for training consid-

erably lowers the detection accuracy compared to using real training data. Nevertheless,

when training with synthetic data, the SP-BL-SS generation approach produced an im-

provement of 10.3% and 9.6% for SSD and Faster R-CNN respectively over the randomized

generation approach, RP-SI-RS, on the GMU-Kitchens dataset. This suggests that selec-

tive positioning and scaling are important factors when generating the training set.

In the case of the WRGB-D dataset, different blending strategies work better for SSD

and Faster R-CNN, SP-SI-SS and SP-BL-SS respectively. The right choice of blending

strategy seems to improve Faster R-CNN somewhat more, while the overall performance

of the two detectors is comparable. The positioning strategy, SP vs RP, affects the two

detectors differently on this dataset. SSD achieves higher performance with the random

positioning RP-SI-RS, while Faster R-CNN shows a large improvement of 26.1% when it

is trained with SP-BL-SS. This can be explained by the fact that Faster R-CNN is trained

on proposals from the Region Proposal Network (RPN), which under-performs when objects

are placed randomly in the image (as in RP-SI-RS). On the other hand, SSD does not have

any prior knowledge about the location of the objects so it learns to regress the bounding

boxes from scratch. The bounding boxes in the beginning of the training are generated

randomly until the SSD learns to localize the objects. This trend is not observed for the

GMU-Kitchens dataset since it has more clutter in the scenes and higher variability of

backgrounds, which makes the localization of the objects harder. To justify this argument,
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Table 2.5: Recall (%) results for the RPN on the GMU-Kitchens and WRGB-D datasets
on two different Intersection over Union (IoU) thresholds. In all cases, RPN generated 3000
proposals per image.

IoU GMU-Kitchens WRGB-D

0.5 76.6 98.0

0.7 28.6 60.8

we performed a side-experiment where we run the pre-trained RPN on both WRGB-D and

GMU-Kitchens dataset and evaluated in terms or recall. Results can be seen in Table 2.5,

where RPN performs much better on the WRGB-D dataset than on GMU-Kitchens.

2.3.3 Synthetic+Real to Real

We are interested to see how effective our synthetic training set is when combined with real

training data. Towards this end the two detectors are trained using the synthetic set with

selective positions and blending SP-BL-SS with certain percentage of the real training

data: 1%, 10%, 50%, and 100%. For the real training data, besides the case of 100%, the

images are chosen randomly.

Results are shown in lines 6-9 in Tables 2.1 (Faster R-CNN) and 2.2 (SSD) for the

GMU-Kitchens dataset and in Tables 2.3 (Faster R-CNN) and 2.4 (SSD) for the WRGB-D

dataset. What is surprising in these results is that when synthetic training data is combined

with only 10% of the real training data, we achieve higher or comparable detection accuracy

than when the training set is only comprised with real data (see line 1 in both tables). In the

case of SSD in the GMU-Kitchens dataset, we observe an increase of 6%. Only exception

is Faster R-CNN on the GMU-Kitchens dataset which achieves a 2.3% lower performance,

however, when we use 50% of the real training data we get a better performance of 1.3%.

In all cases, when the synthetic set is combined with 50% and 100% of the real data, it

outperforms the training with the real training set.

The results suggest that our synthetic training data can effectively augment existing
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Table 2.6: Comparison in performance of SSD / Faster R-CNN between training with only
real to training with real+synthetic, with varying amounts of real data. The amount of
synthetic data is constant.

GMU-Kitchens

Percentage of Real Only Real Real+Synthetic

1% 57.4 / 70.8 60.3 / 69.3

10% 61.5 / 81.1 71.6 / 79.2

50% 66.4 / 82.4 74.1 / 83.8

100% 65.6 / 82.5 73.7 / 85.0

WRGB-D

Percentage of Real Only Real Real+Synthetic

1% 89.1 / 95.6 88.9 / 96.2

10% 89.4 / 97.5 90.5 / 97.8

50% 90.2 / 97.6 90.7 / 98.2

100% 90.2 / 97.9 90.8 / 98.2

datasets even when the actual number of real training examples is small. This is particularly

useful when only a small subset of the data is annotated. Specifically, in our settings, the

10% of real training data refers to around 400 images in the GMU-Kitchens dataset, and

around 600 in the WRGB-D dataset. Figure 2.5 presents examples for which the detectors

were unable to detect objects when they were trained with only real data, but succeeded

when the training set was augmented with our synthetic data.

We further support our argument by comparing the performance of the detectors trained

only on varying percentages of the real data to being trained by real+synthetic in Table 2.6.

The synthetic set here is also generated using SP-BL-SS. Note that for most of the cases

the accuracy increases when the detectors are trained with both real and synthetic data,

and the largest gain is observed for SSD.

Finally, we present results for the GMU-Kitchens dataset when the percentage of syn-

thetic data (SP-BL-SS) is varied, while the real training data remains constant, in Ta-

ble 2.7. Again, SSD shows a large and continuing improvement as the amount of the

synthetic data increases, while Faster R-CNN achieves top performance when half of the

synthetic data are used for training.
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Table 2.7: Comparison in performance of SSD / Faster R-CNN on the GMU-Kitchens
dataset for increasing amounts of the synthetic data, while all real data are used.

Training Set Accuracy

Real 65.6 / 82.5

Real+Synth(10%) 69.0 / 84.5

Real+Synth(50%) 72.7 / 85.7

Real+Synth(100%) 73.7 / 85.0

2.3.4 Synthetic to Synthetic

In this experiment, the object detectors are trained and tested on synthetic sets. The ob-

jective is to show the reduction of over-fitting on the training data when using our approach

to generate the synthetic images, instead of creating them randomly. We used the synthetic

sets of RP-SI-RS and SP-BL-SS and split them in half in order to create the train-test

sets.

The results are presented on lines 10 and 11 in Tables 2.1 (Faster R-CNN) and 2.2

(SSD) for the GMU-Kitchens dataset and in Tables 2.3 (Faster R-CNN) and 2.4 (SSD) for

the WRGB-D dataset. For GMU-Kitchens, we observe that RP-SI-RS achieves results of

over 90%, and in the case of Faster R-CNN almost 100%, while at the same time it is the

least performing synthetic set in the synthetic to real experiment (see line 2 in table 2.1)

described in Section 2.3.2. This is because the detectors over-fit on the synthetic data and

cannot generalize to an unseen set of real test data. While the detectors still seem to over-fit

on SP-BL-SS, the gap between the accuracy on the synthetic testing and real testing data

is much smaller, at the order of 17.3% for SSD, and 23.4% for Faster R-CNN (see line 5 in

tables 2.1 and 2.2).

On the other hand, for the WRGB-D dataset both synthetic training sets achieve similar

results on their synthetic test sets. This is not surprising as the complexity of the scenes

is much lower in WRGB-D than in the GMU-Kitchens dataset. Please see section 2.3.2 for

more details.
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2.3.5 Additional Discussion

We have seen in the results of section 2.3.2, that when a detector is trained on synthetic

data and then applied on real data, the performance is consistently lower that training on

real data. While this can be attributed to artifacts introduced during the blending process,

one other factor is the large difference of backgrounds between the NYU V2 dataset and the

GMU-Kitchens. We investigated this through a simple object recognition experiment. We

trained the VGG [56] network on the BigBird dataset on the cropped images with elevation

angles from cameras 1, 3, and 5, tested on the images with elevation angles from cameras

2 and 4, and achieved recognition accuracy of 98.2%. For comparison, when the VGG is

trained on all images from BigBird, and tested on cropped images from the GMU-Kitchens,

which contain real background scenes, the accuracy drops down to 79.0%.

2.4 Conclusion

One of the advantages of our method is that it is scalable both with the number of objects

of interest and with the set of the possible backgrounds, which makes our method suitable

for robotics application. For example, the object detectors can be trained with significantly

less annotated data using our proposed training data augmentation. We also showed that

our method is more effective when the object placements are based on semantic and ge-

ometric context of the scene. This is due to the fact that CNNs implicitly consider the

surrounding context of the objects and when superimposition is informed by semantic and

geometric factors, the gain in accuracy is larger. Another related observation is that for

SSD, accuracy increases more than for Faster R-CNN when training data is augmented by

synthetic composite images.

While we showed it is possible to train an object detector with fewer annotated images

using synthetically generated images, alternative domain adaptation approaches can be also

explored towards the goal of reducing the amount of human annotation required.
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In conclusion, we have presented an automated procedure for generating synthetic train-

ing data for deep CNN object detectors. The generation procedure takes into consideration

geometry and semantic segmentation of the scene in order to make informed decisions re-

garding the positions and scales of the objects. We have employed two state-of-the-art

object detectors and demonstrated an increase in their performance when they are trained

with an augmented training set. In addition, we also investigated the effect of different gen-

eration parameters and provided some insight that could prove useful in future attempts to

generate synthetic data for training object detectors.
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Chapter 3: End-to-end Learning of Keypoint Detector and

Descriptor for Pose Invariant 3D Matching

Keypoint representations have been a central component of matching, retrieval, pose esti-

mation, and registration pipelines. With the advent of approaches based on deep neural

networks, global representations became pervasive in solving these type of problems as they

can be trained in a straightforward way in an end-to-end fashion. Their shortcomings are

caused by occlusions, partial views or scenes that contain large amount of clutter. In case

of local feature representations, deep learning has been also applied to the different stages

of the matching pipeline, considering detection, description, or metric learning objectives.

Most of the frameworks considered the above objectives separately, used image data, and

required a large number of training examples. In order to mitigate these issues, we propose

to use deep convolutional networks for learning keypoint representations and a keypoint

detector for 3D matching jointly without the need for separate annotations. The costly

annotation stage can be avoided due to the availability of large repositories of 3D models

and the capability of obtaining depth images from different viewpoints.

For the problem of jointly learning keypoint detectors and descriptors, we define a

Siamese network architecture that receives as input a pair of depth images and their pose

annotations. Each branch of the architecture is a proposal generation network used to

generate patches in the two depth images. The branches share weights and lead to a

sampling layer which selects pairs of patches. The pairs are labeled as positive or negative

depending on the proximity of their 3D re-projection calculated from the pose labels. In

other words, the sampling layer is used to create ground truth data on-the-fly by taking

advantage of the initial pose annotations. For training the network, we use the contrastive

loss which attempts to minimize the distance in the feature space between positive pairs,

and maximize the distance between negative pairs. Therefore, for patches that are very
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Figure 3.1: We propose a new method for jointly learning keypoint detection and patch-
based representations in depth images towards the keypoint matching objective.

close in the 3D space, but sampled from different images, we are learning a representation

that has minimal distance in the feature space. In order to learn where to select patches

from, we define a score loss to gauge the performance of the target task. For example,

for pose estimation the score loss should consider the number of positive matches between

two images from different viewpoints. To summarize, the key contributions of this method

include the following:

• We propose the first end-to-end framework for joint learning of keypoint detector and

local feature representations for 3D matching,

• We propose a novel sampling layer that can generate labels for local patch correspon-

dence on-the-fly, and

• We design a score loss encapsulating task specific objectives that can implicitly provide

supervision for joint learning of keypoint detector and its feature representation.

We evaluate the matching accuracy of the proposed approach on multiple benchmark

datasets and demonstrate improvements over state-of-the-art methods.

29



RPN

conv5_3

Lscore

Lcontr

Lscore

RoI Pooling

RoIs

Sampling

1x1conv

conv5_3

RoI Pooling

RoIs

RPN

1x1conv

I0

I1

S1

S0

g0D1 Cg1D0, , , ,

l0

l1

w

x0,f0

x1,f1

F',l'

Figure 3.2: Overview of our Siamese architecture. Each branch is a modified Faster R-CNN
which receives as an input a depth image and uses VGG-16 as the base representation
network. Features from conv5 3 are fed into both the Region Proposal network (RPN) and
the Region of Interest (RoI) pooling layer. Given a set of proposals from RPN, we pass
their scores to the score loss, while their RoIs are fed to the RoI pooling layer and a fully
connected layer to extract the feature vectors. The RoI centroids and the features from
both branches are then passed to the sampling layer which organizes them into pairs used
by the contrastive loss. Note that the weights between the two branches are shared. For
more details on the notations please see section 3.2.2.
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3.1 Related Work

There is a large body of work on keypoint detectors and descriptors for both images and 3D

depth maps. For images, features such as SIFT [24], FAST [57], BRISK [58], and ORB [59]

have been used effectively for various matching tasks. Detectors and descriptors specifically

designed for 3D data, including feature histograms [60] and geometry histograms [61] are

already included in the Point Cloud Library (PCL) along with many others [62]. These

representations were hand-engineered with specific keypoint matching accuracy and/or ef-

ficiency goals. A comprehensive review of 3D descriptors can be found in [63].

Advances in convolutional networks led to works in learning descriptors and distance

metrics for various matching tasks. The descriptor learning problem has been extensively

tackled in case of images and was typically formulated as a supervised learning problem.

Given positive and negative examples of pairs of descriptors, the goal is to learn represen-

tations where the positive examples are nearby and negative examples are far apart. The

methods vary between those which use fixed descriptors and learn a discriminative metric to

approaches which take raw patches and learn new representations, or both. 3D reconstruc-

tions are often used to obtain large amounts of training data. A comprehensive evaluation

of existing approaches can be found in [64].

Most relevant to our task are the descriptor learning methods of Zagoruyko et al. [65],

Han et al. [66], and Wohlhart et al. [67], where patch representations are learned discrimina-

tively by means of Siamese or Triplet networks, considering pairs or triplets of descriptors.

Similar approaches have been proposed for learning feature representations for matching 3D

data [68–70]. Both in case of images and depth maps, the feature descriptors were typically

computed at fixed sized patches or patches determined by sampling both spatial locations

and scale.

The problem of learning the detector was addressed by Salti et al. [71], where a descrip-

tor specific keypoint detector was proposed by casting the problem of selecting keypoint

locations and spatial support as a binary classification task. Savinov et al. [72] formulates
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the keypoint detection problem as the problem of learning how to rank points consistently

over various image transformations. Other methods such as [27,73,74] rely on hand-crafted

interest point detectors to collect training data, which is done separately from the training

process, affecting the learning of the keypoint detector. In contrast to these approaches,

we formulate the problem of selecting keypoints (locations and spatial support) and their

feature representations in a single, unified framework, enabling joint optimization of the

parameters for both.

3.2 Approach

We are interested in jointly learning a keypoint detector and a view-invariant descriptor

using depth data. In contrast to other approaches ([73], [71]), our work does not use hand-

crafted keypoint detectors or descriptors as initialization for the learning procedure. Since

it is unclear in case of 3D data which keypoint locations should be labeled as “interesting”,

we do not rely on any hand-labeled datasets with keypoint annotations. Instead, we use a

modified Faster R-CNN [9] as the head of our architecture to bootstrap the learning process.

Specifically, given two depth images with some pose perturbation, we first generate two sets

of proposals, one for each image. Then, we project the proposals in 3D using the known

image poses in order to establish positive and negative pairs. Proposals with a small distance

in 3D are considered correspondences and are therefore labeled as positives. The pairs are

then passed to a contrastive loss in an attempt to minimize feature distance between positive

pairs and maximize the distance between negative pairs. Additionally, we introduce a new

score loss, which finetunes the parameters of the Region Proposal Network (RPN) of the

Faster R-CNN [9] to generate high-scoring proposals in regions of the depth maps for which

we can consistently find correspondences. To the best of our knowledge, this is the first

work that attempts to jointly optimize the keypoint detection and representation learning

process in a purely self-supervised fashion.
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3.2.1 Architecture

We choose to use Faster R-CNN [9] as the basis for our architecture because of its modularity.

Even though it is initially trained for the task of object detection, its components can provide

us with patch-based representations and a trainable mechanism for selecting those patches.

We use Faster R-CNN as part of a Siamese model with shared weights. Both branches

are connected to a layer responsible for finding correspondences which we call the sampling

layer. A contrastive loss is used to train the representation and each branch has a score

loss for training the keypoint detection stage. An overview of the architecture with more

details can be seen in Figure 3.2.

3.2.2 Training

In order to train our model, we require pairs of depth images {I0, I1} each with its camera

pose information {g0, g1} and the intrinsic camera parameters C. These can be obtained

by rendering a 3D model from multiple viewpoints or using RGB-D video sequences with

registered frames ([75], [76]). To pass the depth images {I0, I1} through our network, we

first normalize their depth values in the RGB range and replicate the single channel into a

3-channel image. The rest of the inputs g0, g1, C, and the depth images with their values

in meters D0, D1 are passed directly to the sampling layer.

For each depth image, the Region Proposal Network (RPN) generates a set of scores,

and regions of interest (RoIs) for which we use their centroids as the keypoint locations.

Each RoI also determines the spatial extent used for feature computation for the current

keypoint and after RoI pooling layer, we obtain the representation for each keypoint. We

keep the top t keypoints based on their scores and establish our set of keypoints, Km =

{(xm0 , sm0 , fm0 ), ..., (xmt , s
m
t , f

m
t )}, where m = {0, 1} corresponds to the pair of depth images,

xmt = (xt, yt) are 2D coordinates on the image plane, smt is the score which signifies the

saliency level of the keypoint, and fmt is the corresponding feature vector.

The sampling layer then receives the sets of keypoint centroids and their features from
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Figure 3.3: Gradient backpropagation during training of our network. The figure only shows
one branch. The purple and red arrows show the path of the gradients from the score and
the contrastive loss respectively. Notice that no gradients are passed in the 1x1 conv bbox
layer, since we are not optimizing towards bounding box regression.

both images, {x0,x1, f0, f1}. To determine the correspondences between the keypoints

of the two images, the centroids are first projected in 3D space. For each keypoint x0
i ,

we find the closest x1
j in 3D space based on Euclidean distance and form the nth pair of

features F ′n = (f0i , f
1
j ). If the distance is less than a small threshold, we label it as positive

(l′n = l0i = l1j = 1), otherwise it is considered as a negative pair (l′n = l0i = l1j = 0). This can

possibly lead to one class vastly outnumbering the other. However, this can be advantageous

for learning the keypoints, as the number of positive pairs indicates how many keypoints

were generated consistently between the two input depth images. This is different from the

correspondence layer used in [77], which performed dense sampling of correspondences, and

had no notion of keypoints or their repeatability.

Joint Optimization: As mentioned earlier, we are interested in jointly learning a view-

invariant representation along with a keypoint detector. Towards this end we introduce the

following multi-task loss:

L(
{
K0
}
,
{
K1
}

) = λcLc(F
′, l′)+

λsL
0
s(s

0, l0) + λsL
1
s(s

1, l1)

(3.1)
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where, Lc is a slightly modified contrastive loss which operates on the pairs of the keypoints

and optimizes over the representation, Lms , are the score loss components which use the

keypoint scores in order to optimize the detector, l′ is the set of labels of the set of feature

pairs F ′, and λc and λs are the weight parameters. Note that since we formed the features

into the set of pairs F ′, we use the notation n to signify the nth feature pair (f0n, f
1
n). The

contrastive loss is defined as:

Lc(F
′, l′) =

∑N
n=1 l

′
n||f0n − f1n||2

2Npos
+

∑N
n=1(1− l′n)max(0, v − ||f0n − f1n||)2

2Nneg

(3.2)

where v is the margin, and Npos, Nneg are the number of positive and negative pairs re-

spectively (N = Npos +Nneg). Each class contribution to the loss was normalized based on

its population to account for the imbalance between the positive and negative pairs. The

score loss is defined as:

Lms (sm, lm) =
1

1 +Npos
−
γ
∑N

i=1 l
m
i log smi

1 +Npos
(3.3)

where lmi is the label for the ith keypoint from image Im whose value depends whether the

keypoint belongs to a positive or negative pair, and γ is a regularization parameter. Note

that since the pairs are formed by picking a keypoint from each image and each keypoint

can belong to only one pair, then |l0| = |l1| = N .

The objective of the score loss is to maximize the number of correspondences between

two views. We specifically avoid looking for discriminative keypoints as that would entail

defining the meaning of a discriminative keypoint. This is ambiguous by nature as dis-

criminativeness can be subjective, depended also on the task at hand. Instead, we consider
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“interesting” keypoints as those for which we can find correspondences between two view-

points, and ideally we want RPN to rank them higher than others. Therefore, we optimize

towards generating as many positive keypoints as we can, in addition to maximizing their

scores. We consider only the positive pairs and penalize them if their generated score is low.

The loss is normalized by the number of positives, however, γ can be utilized to regulate the

trade-off between optimizing for the number of keypoints versus optimizing for the scores.

Furthermore, our framework allows regulating the trade-off between number of matches

and localization accuracy during training, by adjusting the 3D distance threshold in the

sampling layer. For example, with a small threshold, the model will learn to associate few

keypoints with high accuracy as opposed to a large number with a more relaxed threshold.

Since we are generating annotations on-the-fly, this enables us to train systems with varying

trade-off between matching likelihood and accuracy to address application needs.

During backpropagation, we pass the gradient for each keypoint at the appropriate

location in the gradient maps, by storing their locations during the forward pass and im-

plementing the backwards functionality in the region proposal layer. For the score loss, the

gradients are passed through the convolutional layers that are responsible for predicting the

scores. In contrast to the traditional Faster R-CNN, we do not finetune the bounding box

regressor as there are no ground-truth boxes available for our task. However, our training

scheme implicitly affects the bounding box generation, as all preceding layers are trained.

An illustration of how the gradients are backpropagated for both losses in one branch of

our network can be seen in Figure 3.3.

3.3 Experiments

In order to validate our approach, we compare its matching capabilities to hand-crafted

features, the keypoint learning method KPL [71], and the state-of-the-art 3DMatch [68]

which learns 3D local geometric descriptors using a siamese deep learning architecture. For

the hand-crafted features we form 4 baselines from the combinations of the 3D keypoint

detectors Harris3D [23] and ISS [78] and the 3D descriptors FPFH [25] and SHOT [79] found
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Figure 3.4: A training pair for the Engine model shown here both noise-free (top row) and
noisy (bottom row) created using DepthSynth [7].

in the Point Cloud Library (PCL) [62]. KPL [71] is a descriptor-specific keypoint learning

approach for which we use the provided trained model. We combine it with the SHOT

descriptor as it was proposed by the authors of [71]. Similarly, since 3DMatch is a local 3D

descriptor, we combine it with Harris3D keypoint detector and use the model trained for

keypoint matching provided by the authors. In addition, we add one more baseline which

is a variation of our method, where we train using only the contrastive loss. We refer to

this baseline as Ours-No-Score.

Two main experiments are performed. First, we test on a set of 3D models, both with

clean and noisy data, and second, we evaluate on two datasets captured by a real depth

sensor. Our motivation for choosing these datasets is to compare the performance of our

work with the baselines when dealing with noise from a depth sensor. Other works [80]

usually apply Gaussian noise on the 3D models to simulate the noise, however, this does
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Figure 3.5: Overview of the evaluation pipeline used in our experiments. The top row
describes the repository creation, while the bottom shows the test procedure.

not sufficiently represent realistic scenarios. Therefore, for the first experiment, we use

DepthSynth [7], which synthetically generates realistic depth data from 3D CAD models

by modeling vital factors such as sensor noise, material reflectance, and surface geometry

that affect the scanning process. The synthetic noisy images produced by DepthSynth are

thus much closer to the real depth images output from structured light depth sensors.

3.3.1 3D Models

For this experiment, we use a set of five 3D models, four taken from the Stanford 3D

scanning repository [3] (Armadillo, Bunny, Dragon, Buddha) and the Honda CBX1000

engine CAD model, from now on referred to simply as Engine. Initially, for each 3D model

we randomly generate a large number of noise-free views as rendered from the model. The

views are grouped into pairs by first simulating a camera from a certain viewpoint, and then
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Table 3.1: Keypoint matching accuracies (%) comparison on both noise-free and noisy views
from the Engine 3D model.

Method Noise-Free Noisy

ISS [78]+SHOT [79] 47.9 0.5

KPL [71]+SHOT [79] 57.2 2.8

ISS [78]+FPFH [25] 61.1 2.9

Harris3D [23]+SHOT [79] 60.1 5.9

Harris3D [23]+FPFH [25] 79.1 12.8

Harris3D [23]+3DMatch [68] 66.2 20.7

Ours-Rnd 29.8 7.3

Ours-No-Score 40.7 11.1

Ours-Transfer - 17.8

Ours 67.4 23.8

by adding some pose perturbation in order to generate a pair image with some overlap to

the first. We use around 10000 image pairs and sample 50 keypoints per image for training

each model. For each view, we add simulated depth sensor noise using DepthSynth [7].

The resulting depth images offer much more challenges as noise is present not only on the

parts of the 3D model but on its background as well. An example of a pair of views, both

noise-free and noisy, can be seen in Figure 3.4.

Testing protocol. First, separate training and testing sets of views are generated. After

we train our model, a subset of the training set (500 views) is used to generate a repository

of descriptors, each assigned to a 3D coordinate. Specifically, we pass each view through

our model, collect the descriptors at the predicted keypoint locations, and then project

those locations in world coordinates. Then, we apply our model on each view from the test

set and match the collected descriptors to the repository. For each descriptor, its nearest

neighbour is retrieved. When deciding whether this is a true match, we use a small 3D

distance threshold (5 cm) on the distance between the 3D location of the descriptor and

its retrieval, and increment the number of true matches accordingly. The reported number

is the number of true matches towards the total number of matches. An overview of this

procedure is shown in Figure 3.5. Note that we do not use any threshold on the descriptor
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Figure 3.6: Qualitative demonstration of the contribution of the score loss on matching
examples on the noise-free views from the Engine model. The examples where the model
was trained without the score loss (left column) contain smaller number and less accurate
matches in comparison to the examples with the model trained with the score loss (right
column). Best viewed in color.

distance to obtain the set of matches. The same testing procedure is also used for the

baselines. For fairness, we tried to keep roughly the same number of generated keypoints

per method and per view.

Engine 3D model. We investigate the performance of the baselines and our approach on

both noise-free and noisy views from the Engine model. For this particular experiment we

add two more baselines, Ours-Transfer and Ours-Rnd. For Ours-Transfer we train a model

on noise-free views, and then test it on the noisy data with the purpose of investigating

how well our model can transfer between the noise-free and noisy domains. Ours-Rnd

randomly selects keypoints instead of using those with the highest scores during the testing

procedure. Table 3.1 presents the matching accuracies. For the noise-free case, Ours is

outperformed only from the combination of Harris3D+FPFH, which outperforms the deep

learning based method of Harris3D+3DMatch as well. This is not surprising as these

approaches are specifically designed to operate in clean point clouds, however, that is not

a realistic setting. Even so, Ours demonstrates higher matching accuracy than all the rest

of the baselines.
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Table 3.2: Keypoint matching accuracies (%) comparison on noisy data from the Stanford
3D models.

Method Armadillo Bunny Dragon Buddha Average

ISS [78]+SHOT [79] 0.8 0.5 0.6 0.4 0.6

ISS [78]+FPFH [25] 2.0 1.7 2.4 1.4 1.9

Harris3D [23]+SHOT [79] 8.0 11.4 6.9 6.7 8.3

KPL [71]+SHOT [79] 18.0 12.8 15.4 9.1 13.8

Harris3D [23]+FPFH [25] 14.5 16.0 16.4 10.5 14.4

Harris3D [23]+3DMatch [68] 14.9 17.7 27.8 15.1 18.8

Ours-No-Score 10.0 18.3 25.2 12.5 16.5

Ours 25.2 31.9 45.7 27.7 32.6

For the noisy case, we first notice a significant drop in performance from all approaches

compared to the noise-free evaluation. Ours is the best performing approach, with a

difference of 3.1%, 6% and 11% towards Harris3D+3DMatch, Ours-Transfer and Har-

ris3D+FPFH respectively. The relatively small gap between Ours and Ours-Transfer sug-

gests that our model learns to generate good keypoints regardless of the domain it is applied.

It is also important to note the large difference between the Ours-Rnd and Ours-No-Score

baselines to Ours, which suggests the importance of the score loss during training. Ad-

ditional qualitative examples are presented in Figure 3.6 to support our argument, where

matching examples are compared between the two methods. After visually examining the

examples, we notice that Ours produces higher quality matches, most likely due to the

consistency of the generated keypoints learned by the score loss.

Simulated depth sensor noisy views. Here, we use the 3D models from the Stanford

repository and evaluate on their noisy depth images. The testing protocol described earlier

is followed, except that we change the 3D distance threshold to 10 cm to account for the

errors in the projections of the points. Results shown in Table 3.2 follow the same trend

as in the Engine-noisy evaluation. Ours is the top performing method, outperforming the

next-best baselines Harris3D+3DMatch by 13.8% and Harris3D+FPFH by 18.2%. Both
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Table 3.3: Keypoint matching accuracies (%) on the MSR-7 [1] dataset.

Method Accuracy

ISS [78]+SHOT [79] 23.0

ISS [78]+FPFH [25] 24.3

Harris3D [23]+FPFH [25] 37.4

Harris3D [23]+SHOT [79] 37.9

Harris3D [23]+3DMatch [68] 38.2

Ours 41.2

combinations with ISS fail to retrieve almost any true matches, as ISS seems to be the key-

point detector most affected by the simulated sensor noise. This is a particularly challenging

setting for approaches that do not have mechanisms to avoid background noise when gen-

erating the keypoints. A qualitative evaluation of the keypoints shown in Figure 3.7 reveals

the tendency of the other methods to generate keypoints on noise, while Ours focuses on

the object. This demonstrates that our method is much less susceptible to the depth sensor

noise, and validates our claim for learning the keypoint generation process jointly with the

representation.

Computational cost. Our end-to-end method requires only 0.14s per image to perform

a forward pass of the network and generate keypoints and descriptors. For comparison,

LIFT [73] takes 2.78s per image on the same machine. During training our method needs

0.4s per iteration. All times reported are on a Titan X GPU for the honda engine noisy

data with 50 keypoints generated per image.

3.3.2 Real Depth Sensor

MSR-7. For this experiment, we use the publicly available MSR-7 scenes dataset [1],

which offers RGB-D sequences captured with Kinect and reconstructions of indoor scenes.

We followed the train-test sequence split provided, and trained a model for each scene on

10-frame-apart pairs of the depth images. The same testing protocol of keypoint matching

as in the previous experiments is employed. We do not use the baseline Ours-No-Score as
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it consistently underperformed in the previous experiments, nor the KPL because it was

trained on a very different dataset.

Table 3.3 shows the average matching accuracy over all scenes. Again, our method

seems to have the edge over the baselines, with a 3% improvement over the second-best

Harris3D+3DMatch. This result suggests that our approach can be successfully applied on

sequences captured by a real sensor, besides 3D models with simulated noise. In Figure 3.8

we present some retrieval examples from different scenes in the dataset. We make a similar

observation as in the noise-free experiment, where true matches were retrieved from larger

viewpoint variations than the ones provided during training. Note that the training pairs,

10-frames-apart, have small pose differences.

GMU-Kitchens In this experiment we qualitatively investigate the performance of our

method on objects captured by Kinect-v2. We use the publicly available GMU-Kitchens [2]

dataset which contains 9 RGB-D videos of kitchen scenes with 11 object instances from the

BigBIRD [39] dataset. Unlike the previous experiment where we generate keypoints in the

scenes, here we focus on matching keypoints generated inside the bounding boxes of objects.

In particular, we use the train-test split of fold 1 as defined in [2], and for each object we

create a repository of descriptors. Then, the descriptors collected from the bounding boxes

in the test scenes are matched to the appropriate object repository (see Figure 3.9). Note

that the model was trained by sampling keypoints from the depth maps in the scenes,

similar to the MSR-7 experiment, and not specifically from the object bounding boxes.

3.4 Conclusions

We presented a unified, end-to-end, framework to simultaneously learn a keypoint detec-

tor and view-invariant representations of keypoints for 3D keypoint matching. To learn

view-invariant representations, we presented a novel sampling layer that creates ground-

truth data on-the-fly, generating pairs of keypoint proposals that we use to optimize a

constrastive loss objective function. Furthermore, to learn to generate the right keypoint

proposals from a keypoint matching perspective, we introduced a new score loss objective
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that maximizes the number of positive matches between images from two viewpoints. We

conducted keypoint matching experiments on multiple 3D benchmark datasets and demon-

strated qualitative and quantitative improvements over the existing state-of-the-art.
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Figure 3.7: Qualitative evaluation of keypoint generation on the noisy views. Each column
represents a different approach. From left to right we have ISS, Harris3D, KPL, and Ours.
Notice that the first three methods frequently generate keypoints on background noise, in
contrast to our method which generates keypoints mostly on the object. Best viewed in
color.
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Figure 3.8: Keypoint matching examples on the MSR-7 scenes. Columns 1 and 3 show test
images and columns 2 and 4 show their retrievals from the repository of descriptors.
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Figure 3.9: Matching examples from GMU-Kitchens. First column shows queries and re-
trieved points are color-coded (zoomed-in for clarity). Note that we use the depth map for
our experiments but we show the retrievals in RGB for the sake of clarity.
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Chapter 4: Learning Local RGB-to-CAD Correspondences

for Object Pose Estimation

Estimating the 3D pose of objects is an important capability for enabling robots’ interaction

with real environments and objects as well as augmented reality applications. While several

approaches to this problem assume RGB-D data [81,82], most mobile and wearable cameras

are not paired with a depth sensor, prompting recent research focus on the RGB domain.

Furthermore, even though several methods have shown promising results on 3D object pose

estimation with real RGB images, they either require accurate 3D annotations [14,29–31,83]

or 3D object models with realistic textures [81, 84–86] in the training stage. Currently

available datasets [87, 88] are not large enough to capture real world diversity, limiting the

potential of these methods in generalizing to a variety of applications. In addition, capturing

real RGB data and manual pose annotation is an arduous procedure.

The problem of object pose estimation is an inherently 3D problem; it is the shape of

the object which gives away its pose regardless of its appearance. Instead of attempting to

learn an intrinsic decomposition of images [89], we focus on finding the association of parts

of objects depicted in RGB images with their counterparts in 3D depth images. Ideally, we

would like to learn this association in order to establish correspondences between a query

RGB image and a rendered depth image from a CAD model, without requiring any existing

3D annotations. This, however, requires us to address the problem of the large appearance

gap between these two modalities.

In this chapter, we propose a new framework for estimating the 3D pose of objects

in RGB images, using only 3D textureless CAD models of objects instances. The easily

available CAD models can generate a large number of synthetically rendered depth images

from multiple viewpoints. In order to address the aforementioned problems, we define
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Figure 4.1: We present a new method that matches RGB images to depth renderings of CAD
models for object pose estimation. It does not require either textured CAD models or 3D
pose annotations for RGB images during training. This is achieved by enforcing viewpoint
and modality invariance for local features, and learning consistent keypoint selection across
modalities.

a quadruplet convolutional neural network to jointly learn keypoints and their associated

descriptors for robust matching between different modalities and changes in viewpoint. The

general idea is to learn the keypoint locations using a pair of rendered depth images from a

CAD model from two different poses, followed by learning how to match keypoints across

modalities using an aligned RGB-D image pair. Figure 5.1 outlines our training constraints.

At test time, given a query RGB image, we extract keypoints and their representations and

match them with a database of keypoints and their associated descriptors extracted from

rendered depth images. These are used to establish 2D-3D correspondences, followed by a

RANSAC and PnP algorithm for pose estimation.

To summarize, our key contributions include: 1) A new framework for 3D object pose

estimation using only textureless CAD models and aligned RGB-D frames in the training

stage, without explicitly requiring 3D pose annotations for the RGB images. 2) An end-

to-end learning approach for keypoint selection optimized for the relative pose estimation

objective, and transfer of keypoint predictions and their representations from rendered

depth to RGB images. 3) Demonstration of the generalization capability of our method to

new (unseen during training) instances of the same object category.
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4.1 Related Work

There is a large body of work on 3D object pose estimation. Here, we review existing

methods based on the type and the amount of used training data and its modalities.

Using 3D textured instance models. Notable effort was devoted to the problem of

pose estimation for object instances from images, where 3D textured instance models were

available during the training stage [84, 85, 90]. Early isolated approaches led to the devel-

opment of more recent benchmarks for this problem [91]. Traditional approaches of this

type included template matching [90, 92], where the target pose is retrieved from the best

matched model in a database, and local descriptor matching [84,85], where hand-engineered

descriptors such as SIFT [24] are used to establish 2D-3D correspondences with a 3D object

model followed by the PnP algorithm for 6-DoF pose. Additionally, some works employed

a patch-based dense voting scheme [81,86,93,94], where a function is learned to map local

representations to 3D coordinates or to pose space. However, these approaches assume

that the 3D object models were created from real images and contain realistic textures. In

contrast, our work uses only textureless CAD models of object instances.

2D-to-3D alignment with CAD models. Other work has sought to solve 3D object pose

estimation as a 2D-to-3D alignment problem by utilizing object CAD models [82,87,95–98].

For example, Aubry et al. [95] learned part-based exemplar classifiers from textured CAD

models and applied them on real images to establish 2D-3D correspondences. In a similar

fashion, Lim et al. [87] trained a patch detector from edge maps for each interest point.

The work of Massa et al. [96] learned how to match view-dependent exemplar features by

adapting the representations extracted from real images to their CAD model counterparts.

The closest work to ours in this area is Rad et al. [82], which attempts to bridge the do-

main gap between real and synthetic depth images, by learning to map color features to

real depth features and subsequently to synthetic depth features. In their attempt to bridge

the gap between the two modalities, these approaches were required to either learn a huge

number of exemplar classifiers, or learn how to adapt features for each specific category and
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viewpoint. We avoid this problem by simply adapting keypoint predictions and descriptors

between the two modalities.

Pose estimation paired with object detection. With the recent success of deep con-

volutional neural networks (CNN) on object recognition and detection, many works ex-

tended 3D object instance pose estimation to object categories, from an input RGB im-

age [12,14,29–31,83,99–101]. In Mahendran et al. [30] a 3D pose regressor was learned for

each object category. In Mousavian et al. [14], a discrete-continuous formulation for the

pose prediction was introduced, which first classified the orientation to a discrete set of bins

and then regressed the exact angle within the bin. Poirson et al. [31] and Kehl et al. [83]

both extended the SSD [11] object detector to predict azimuth and elevation or the 6-DoF

pose respectively. In Kundu et al. [12], an analysis-by-synthesis approach was introduced,

in which, given predicted pose and shape, the object was rendered and compared to 2D

instance segmentation annotations. All of these approaches require 3D pose annotations

for the RGB images during training, as opposed to our work, which only needs the CAD

models of the objects.

Keypoint-based methods. Another popular direction in the pose estimation literature is

learning how to estimate keypoints, which can be used to infer the pose. These methods are

usually motivated by the presence of occlusions [102,103] and require keypoint annotations.

For example, Wu et al. [104] trained a model for 2D keypoint prediction on real images and

estimated the 3D wireframes of objects using a model trained on synthetic shapes. The 3D

wireframe is then projected to real images labeled with 2D keypoints to enforce consistency.

In Li et al. [105], the authors manually annotated 3D keypoints on textured CAD models

and generated a synthetic dataset which provides multiple layers of supervision during

training, while Tekin et al. [106] learned to predict the 2D image locations of the projected

vertices of an object’s 3D bounding box before using the PnP algorithm for pose estimation.

Furthermore, Tulsiani et al. [13] exploited the relationship between viewpoint and visible

keypoints and refined an existing coarse pose estimation using keypoint predictions. Our

work, rather than relying on existing keypoint annotations, optimizes the keypoint selection
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Figure 4.2: Outline of the proposed architecture depicting the four branches, their inputs,
and the training objectives. The color coding of the CNNs signifies weight sharing.

based on a relative pose estimation objective. Related approaches also learn keypoints

[26, 28, 107, 108], but either rely on hand-crafted detectors to collect training data [26], or

do not extend to real RGB pose estimation [28,107,108].

Synthetic data generation. In an attempt to address the scarcity of annotated data,

some approaches rely on the generation of large amounts of synthetic data for training [4,

109, 110]. A common technique is to render textured CAD models and superimpose them

on real backgrounds. In order to ensure diversity in the training data, rendering parameters

such as pose, shape deformations, and illumination are randomly chosen. However, training

exclusively on synthetic data has shown to be detrimental to the learned representations as

the underlying statistics of real RGB images are usually very different.
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4.2 Approach

We are interested in estimating the 3D pose of objects in RGB images by matching key-

points to the object’s CAD model. Our work does not make use of pose annotations, but

instead relies on CAD model renderings of different poses that are easily obtained with an

off-the-shelf renderer, such as Blender [111]. These rendered depth images are used to learn

keypoints and their representations optimized for the task of pose estimation. The learned

representations are then transferred to the RGB domain. In summary, our work can be di-

vided into four objectives: keypoint learning, view-invariant descriptors, modality-invariant

descriptors, and modality consistent keypoints.

Specifically, each training input is provided as a quadruplet of images, consisting of a

pair of rendered depth images sampled from the object’s view sphere and a pair of aligned

depth and RGB images (see Figure 4.2). For each image, we predict a set of keypoints and

their local representations, but the optimization objectives differ for the various branches.

For the first two branches A and B, Lrel pose loss enforces the pose consistency of the

keypoints selection and the similarity of keypoint descriptors for their matching is enforced

using a triplet loss Ltriplet. The two bottom branches C and D are utilized to enforce

consistent keypoint prediction between the depth and the RGB modalities Lconsistency and

for matching their local representations across the modalities Llocal l2. The general idea of

our approach is to learn informative keypoints and their associated local descriptors from

abundant rendered depth images and transfer this knowledge to the RGB data.

Architecture. Our proposed architecture is a Quadruplet convolutional neural network

(CNN), where each branch has a backbone CNN (e.g., VGG) to learn feature representations

and a keypoint proposal network (KPN) comprised of two convolutional layers. The output

feature maps from the backbone’s last convolutional layer are fed as input to the KPN.

KPN produces a score map of dimensions H
s ×

W
s × D, where H and W are the input

image’s height and width respectively, s is the network stride, and D = 2 is a score whether

the particular location is a keypoint or not. Softmax is then applied on D such that each
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location on the KPN output map has a 2-D probability distribution. This output map

can be seen as a keypoint confidence score for a grid-based set of keypoint locations over

the 2D image. The density of the keypoint sampling depends on the network stride s,

which in our case was 16 (i.e. a keypoint proposal every 16 pixels). In order to extract

a descriptor (dim-2048) for each keypoint, the backbone’s feature maps are passed to the

region-of-interest (RoI) pooling layer along with a set of bounding boxes each centered at

a keypoint location. The first pair of branches (A, B) of the network are trained with a

triplet loss applied to local features, while a relative pose loss is applied to the keypoint

predictions. Branch D is trained using a Euclidean loss on the local features and with a

consistency loss that attempts to align its keypoint predictions and local representations

to those of branch C. Note that branches A, B, and C share their weights, while branch D

is a different network. Since branch D receives as input a different modality than the rest

and we desire branches C and D to produce the same outputs, their weights during training

must be independent. In the following sections, we describe the details of the loss functions

and training.

4.2.1 Keypoint Learning by Relative Pose Estimation

The overall idea behind learning keypoint predictions is to select keypoints that can be

used for relative pose estimation between the input depth images in branches A and B.

Specifically, given the two sets of keypoints, we establish correspondences in 3D space,

estimate the rotation R and translation t, and project the keypoints from depth image A

to depth image B. Any misalignment (re-projection error) between the projected keypoints

is used to penalize the initial keypoint selections. A pictorial representation of the relative

pose objective is shown in Figure 4.3a.

The relative pose objective is formulated as a least squares problem, which finds the

rotation R and translation t for which the error of the weighted correspondences is minimal.

Formally, for two sets of corresponding points: P = {p1, p2, . . . , pn} , Q = {q1, q2, . . . , qn}
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Figure 4.3: Relative pose and triplet losses.

we wish to estimate R and t such that:

(R, t) = arg min
R∈SO(3),t∈R3

n∑
i=1

wi||(Rpi + t)− qi||2 (4.1)

where wi = sAi + sBi is the weight of correspondence i and sAi and sBi are the predicted

keypoint probabilities, as given by KPN followed by a Softmax layer, that belong to cor-

respondence i from branches A and B respectively. Given a set of correspondences and

their weights, an SVD-based closed-form solution for estimating R and t that depends on

w can be found in [112]. The idea behind this formulation is that correspondences with

high re-projection error should have low weights, therefore a low predicted keypoint score,

while correspondences with low re-projection error should have high weights, therefore high
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Figure 4.4: Local Euclidean and keypoint consistency losses.

predicted keypoint score. With this intuition, we formulate the relative pose loss as:

Lrel pose =
1

n

n∑
i=1

wig(wi) (4.2)

where g(wi) = ||(Rpi + t) − qi||2. Since our objective is to optimize the loss function

with respect to estimated keypoint scores, we penalize each keypoint score separately by

estimating the gradients for each correspondence and backpropagating them accordingly.

4.2.2 Learning Keypoint Descriptors

In order to match keypoint descriptors across viewpoints, we apply a triplet loss on local

features extracted from branches A and B. This involves using the known camera poses

of the rendered pairs of depth images and sampling of training keypoint triplets (anchor-

positive-negative). Specifically, for a randomly selected keypoint as an anchor from the first

image, we find the closest keypoint in 3D from the paired image and use it as a positive,
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and also select a further away point in 3D to serve as the negative. The triplet loss then

optimizes the representation such that the feature distance between the anchor and the

positive points is smaller than the feature distance between the anchor and the negative

points plus a certain margin, and is defined as follows:

Ltriplet =
1

N

N∑
i

max(0, ||fai − f
p
i ||

2 − ||fai − fni ||2 +m) (4.3)

where fai , fpi , and fni are the local features for the anchor, positive, and negative corre-

spondingly of the ith triplet example and m is the margin. Traditionally, the margin hyper-

parameter is manually defined as a constant throughout the training procedure; however, we

take advantage of the 3D information and define the margin to be equal to Dn−Dp, where

Dn is the 3D distance between the anchor and negative, and Dp is the 3D distance between

the anchor and positive. Ideally, Dp should be 0, but practically due to the sampling of

the keypoints in the image space it is usually a small number close to 0. Essentially this

ensures that the learned feature distances are proportional to the 3D distances between the

examples and assumes that the features and 3D coordinates are normalized to unit vectors.

Note that the triplet loss only affects the backbone CNN during training and not the KPN.

A pictorial representation of the triplet objective is shown in Figure 4.3b.

4.2.3 Cross-modality Representation Learning

Finally, we can transfer the learned features and keypoint proposals from branches (A, B) to

branch D, using branch C as a bridge, similar to knowledge distillation techniques [113]. To

accomplish this, network parameters in branches A, B, and C are shared, and the outputs

of branches C and D are compared and penalized according to any misalignment. The core

idea is to enforce both the backbone and KPN in branches C and D to generate as similar

outputs as possible. This objective can be accomplished by means of two key components

that are described next.
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Local Feature Alignment. In order to align local feature representations in branches

C and D (see Figure 4.4a), we consider the predicted keypoints in branch C and compute

each keypoint’s feature representation, fi, i = 1, . . . , k. Keypoint features at corresponding

spatial locations from branch D are represented as f̂i, i = 1, . . . , k,. Formally, we optimize

the following objective function:

Llocal l2 =
1

k

k∑
i=1

‖f̂i − fi‖ (4.4)

Since we want to align f̂i with fi, during backpropagation, we fix fi as ground-truth and

backpropagate gradients of Llocal l2 only to the appropriate locations in branch D.

Keypoint Consistency. Enforcement of the keypoint consistency constraint requires the

KPN from branch D to produce the same keypoint predictions as the KPN from branch C.

It can be achieved using a cross-entropy loss, which is equivalent to a log loss with binary

labels: L = − 1
n

∑n
i=1 y

∗
i log yi, where y∗i is the ground-truth label and yi is the prediction.

This in our case becomes:

Lconsistency = − 1

n

n∑
i=1

yCi log yDi (4.5)

where yCi are the keypoint predictions from branch C, which serve as the ground-truth,

and yDi are the keypoint predictions from branch D. This loss penalizes any misalignment

between the keypoint predictions of the two branches and forces branch D to imitate the

outputs of branch C. Figure 4.4b illustrates inputs to Lconsistency.
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Overall objective. Our overall training objective is the combination of the losses de-

scribed above:

Lall = λ1Ltriplet + λ2Lrel pose

+λ3Llocal l2 + λ4Lconsistency

(4.6)

where each λ is the weight for the corresponding loss.

4.3 Experiments

In order to validate our approach, we perform experiments on the Pascal3D+ [88] dataset

and the newly introduced Pix3D [4] dataset.We conduct four key experiments. First, we

compare to supervised state-of-the-art methods by training on Pix3D and testing on Pas-

cal3D+ (sec. 4.3.1); second, we perform an ablation study on Pix3D and evaluate the

performance of different parts of our approach (sec. 4.3.2); third, we test how our model

generalizes to new object instances by training only on a subset of provided instances and

testing on unseen ones (sec. 4.3.3); and finally, data from an external dataset, such as

NYUv2 [54] is used to train and test on Pix3D (sec. 4.3.4). The motivation for the fourth

experiment is to demonstrate that our framework can utilize RGB-D pairs from another

realistic dataset, where the alignment between the RGB and the depth is provided by the

sensor. We use the geodesic distance for evaluation: ∆(R1, R2) =
|| log(RT1 R2)||F√

2
, reporting

percentage of predictions within π
6 of the ground-truth Accπ

6
and MedErr. Additionally,

we show the individual accuracy of the three Euler angles, where the distance is the small-

est difference between two angles: ∆(θ1, θ2) = min(2π − ||θ1 − θ2||, ||θ1 − θ2||). For the last

metric we also use a threshold of π
6 .

Implementation details. We use VGGNet as each branch’s backbone and start from

ImageNet pretrained weights, while KPN is trained from scratch. We set the learning rate

to 0.001 and all λ weights to 1. In order to regularize the relative pose loss such that it
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Figure 4.5: Keypoint prediction examples on test images from the Pix3D dataset. Top,
middle, and bottom rows show results from experiments of sections 4.3.2, 4.3.3, and 4.3.4
respectively. Note that we applied non-maximum suppression (NMS) on the keypoint pre-
dictions in order to select the highest scoring keypoint from each region.

predicts keypoints inside objects, we add a mask term, realized as a multinomial logistic

loss. The ground-truth is a binary mask of the object in the rendered depth. This loss is

only applied on branches A and B with a smaller weight of 0.25. Finally, the bounding box

dimensions for the RoI layer are set to 32× 32.

Training data. All our experiments require a set of quadruplet inputs. For the first two

inputs, we first sample from each object’s viewsphere and render a view every 15 degrees

in azimuth and elevation for three different distances. Then, we sample rendered pairs

such that their pose difference is between π
12 and π

3 . For the last two inputs, we require

aligned depth and RGB image pair. In order to demonstrate our approach on the Pix3D

dataset, we generate these alignments using the dataset’s annotations, however, we do not

use annotations during training in any other capacity. As we show in sec. 4.3.4, alternatively

the aligned depth and RGB images can be sampled from an existing RGB-D dataset or

through hand-alignment [98]. Note that for each quadruplet, the selection of the first pair

of inputs is agnostic to the pose of the object in the last two inputs. We further note that,

given sufficient viewsphere sampling, what is important is how the quadruplet training data

is generated (particularly pairs for branches A & B). If the pairs have a small pose difference
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(e.g., ≤ π
12), the model does not adequately learn view-invariant representations. On the

other hand, with larger pose differences (e.g., π
2 ), overlapping areas between the two views

are small, so finding correspondences across views is harder. We found sampling pairs with

a maximum pose difference of π
3 provides a good balance. A possible future extension can

be to incorporate “interesting” viewpoints [114], which are typically task-dependent, into

our pipeline for further improvements (e.g., reduced data requirements or training time).

Testing protocol. For every CAD model instance used in our experiments, we first create

a repository of descriptors each assigned to a 3D coordinate. To do so, 20 rendered views

are sampled from the viewing sphere of each object, similarly to how the training data

are generated, and keypoints are extracted from each view. Note that for this procedure,

we use the trained network that corresponds to branch A of our architecture. Then we

pass a query RGB image through the network of branch D, generate keypoints and their

descriptors and match them to the repository of the corresponding object instance. Finally,

the established correspondences are passed to RANSAC and PnP algorithm to estimate the

pose of the object. For every keypoint generation step we use the keypoints with the top

100 scores during database creation and top 200 scores for the testing RGB images. When

testing on Pix3D, we have defined a test set which contains untruncated and unoccluded

examples of all category instances, with 179, 1451, and 152 images in total for bed, chair,

and desk category respectively. For Pascal3D+ we follow the provided test sets and make

use of the ground-truth bounding boxes.

4.3.1 Comparison with supervised approaches

Given our approach does not use any pose annotations during training, it is challenging

to evaluate it against existing state-of-the-art methods, which use pose annotations during

training. In addition, our method cannot be trained on Pascal3D+ because it requires

paired RGB and depth images, which cannot be generated from the dataset’s annotations.

Therefore, we designed the following experiment for a fair comparison: we train all meth-

ods on Pix3D and test on Pascal3D+. We compare to the state-of-the-art methods of
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Table 4.1: Comparison with supervised approaches when trained on Pix3D and tested on
Pascal3D+ on Accπ

6
(%) and MedErr (radians).

Category Chair Sofa

Metric Accπ
6
↑ MedErr ↓ Accπ

6
↑ MedErr ↓

Render for CNN [109] 4.3 2.1 11.6 1.2

Vps & Kps [13] 10.3 1.7 23.3 1.2

Deep3DBox [14] 10.8 1.9 25.6 1.0

Proposed 13.4 1.6 30.2 1.1

Deep3DBox [14], Render for CNN [109], and Viewpoints & Keypoints [13], all of which

require pose annotations for RGB images. Other approaches, such as Pavlakos et al. [102],

were considered for comparison but unfortunately they require semantic keypoint annota-

tions during training which Pix3D does not provide. We conduct this evaluation on the

common categories between Pix3D and Pascal3D+ (chair and sofa) and report results in

Table 4.1.

As expected, all approaches generally underperform when applied on a new dataset.

Our method demonstrates better generalization and achieves higher Accπ
6

for both objects,

even though it does not explicitly require 3D pose annotations during training. This is due

to fundamental conceptual differences between these approaches and ours. These methods

formulate viewpoint estimation as a classification problem where a large number of param-

eters in fully-connected layers are to be learned. This increases the demand for data and

annotations and confines the methods mostly to data distributions that were trained on.

On the other hand, we exploit CAD models to densely sample from the object’s viewsphere,

and explicitly bridge the gap between the synthetic data and real images, thereby reducing

the demand for annotations. Furthermore, the learned local correspondences allow more

flexibility in understanding the geometry of unseen objects, as we also show in sec. 4.3.3.
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Table 4.2: Results for Accπ
6

(%) and MedErr (radians) for the sec 4.3.2 experiment.

Category Bed Chair Desk

Metric Accπ
6
↑ MedErr ↓ Accπ

6
↑ MedErr ↓ Accπ

6
↑ MedErr ↓

Baseline-A 7.3 1.7 3.3 2.0 2.6 2.2

Baseline-ZDDA 21.8 1.5 11.5 1.7 3.9 2.0

Proposed - joint 31.3 1.0 31.1 0.9 25.0 1.1

Proposed - alternate 50.8 0.5 31.2 1.0 34.9 0.9

Table 4.3: Results for azimuth, elevation, and in-plane rotation accuracy for the sec 4.3.2
experiment.

Category Bed Chair Desk

Metric Az. El. Pl. Az. El. Pl. Az. El. Pl.

Baseline-A 51.4 39.1 35.2 30.2 43.2 20.0 28.9 30.9 20.4

Baseline-ZDDA 48.6 50.3 41.9 35.3 48.3 26.6 24.3 23.7 21.1

Proposed - joint 69.8 51.9 58.1 55.3 62.7 44.7 57.2 48.7 51.0

Proposed - alternate 83.2 67.0 70.4 54.7 60.1 47.0 65.1 55.3 58.6

Figure 4.6: Illustration of rendered estimated poses on test RGB images from the Pix3D
dataset for the sec. 4.3.2 experiment.

4.3.2 Ablation study

To understand each objective’s contribution, we have carefully designed a set of baselines,

which we train and test on Pix3D, and compare them on the task of pose estimation for

the bed, chair, and desk categories.
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Table 4.4: Results for Accπ
6

(%) and MedErr (radians) for the sec. 4.3.3 experiment.

Category Bed Chair Desk

Metric Accπ
6
↑ MedErr ↓ Accπ

6
↑ MedErr ↓ Accπ

6
↑ MedErr ↓

Baseline-A 9.7 1.9 3.7 1.9 5.6 2.0

Baseline-ZDDA 4.9 2.3 7.6 1.9 13.6 1.7

Proposed - joint 29.2 0.9 15.1 1.4 13.6 1.3

Proposed - alternate 45.1 0.6 21.2 1.2 18.4 1.2

Table 4.5: Results for azimuth (%), elevation (%), and in-plane rotation (%) accuracy for
the sec. 4.3.3 experiment.

Category Bed Chair Desk

Metric Az. El. Pl. Az. El. Pl. Az. El. Pl.

Baseline-A 38.2 39.6 30.6 28.6 41.4 20.3 37.6 34.4 28.8

Baseline-ZDDA 29.9 39.6 22.2 30.1 44.6 21.5 36.8 43.2 30.4

Proposed - joint 66.7 50.0 62.5 43.7 50.4 31.3 59.2 44.0 41.6

Proposed - alternate 75.7 61.1 74.3 52.0 57.4 38.0 62.4 44.0 53.6

Baseline-A. In order to assess the importance of the cross-modality representation learning

(sec. 4.2.3), we learn view-invariant depth representations and depth keypoints and simply

use these keypoints and representations during testing. In practice, this corresponds to

removing the local euclidean and keypoint consistency losses, and using only the triplet and

relative pose losses during training. Consequently this baseline is utilizing only depth data

during training, but is applied on RGB images during testing.

Baseline-ZDDA. Another baseline would be to only learn RGB-D modality invariant

representations, i.e., similar features for RGB and depth images, which can then be used

to match RGB images to depth renderings from CAD models. In practice, this would

correspond to training our proposed approach with only the local feature alignment objective

by sampling all possible keypoint locations. This is similar in spirit to and an improved

version of ZDDA [115], a domain adaptation approach that maps RGB and depth modalities

to the same point in the latent space.
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Joint and alternate training. Finally we use all objectives in our approach and investi-

gate two different training strategies. First we try training all objectives jointly in a single

optimization session and report this baseline as Proposed-joint. Second, we define a three-

step alternating training, where we initially optimize using only the triplet and relative pose

losses (i.e. branches A, B, C), then we optimize only with the local euclidean and keypoint

consistency losses (i.e. branch D), and in the last step all objectives are jointly optimized

together. This baseline is reported as Proposed-alternate. Note that also experiments in

sec. 4.3.1 and 4.3.4 follow this training paradigm.

Results. We first show, in Figure 4.5 (top row), qualitative keypoint prediction results

on test images, where we see keypoint predictions that generally satisfy our intuition of

good keypoints. We then adopt the testing protocol described above to report quantitative

pose estimation results for test RGB images. Performance analysis is shown in Tables 4.2

and 4.3 for the three object categories. As can be noted from the results, our proposed

model generally achieves higher accuracy when compared to the baseline approaches. In

particular, the improvements over Baseline-A suggests that keypoint and representation

modality adaptation enforced in our model is critical. Furthermore, the improvements over

Baseline-ZDDA suggests that simply performing modality adaptation for the RGB and

depth features is not sufficient, and learning keypoints and view-invariant representations,

as is done in our method, is important to achieve good performance. Finally, we observe

that alternating training outperforms the joint strategy, demonstrating the importance of

learning good keypoints and representations first, before transferring to the RGB modality.

4.3.3 Model transferability

In this section, we demonstrate the transfer capability, where the goal is for a model,

trained according to the proposed approach, to generalize well to category instances not

seen during training. This is key to practical usability of the approach since we cannot

possibly have relevant CAD models of all instances of interest during training. To this end,

the baselines introduced in sec. 4.3.2 are re-used with the following experimental protocol:
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during training, quadruplets are sampled from a subset of the available instances for each

category, and test on RGB images corresponding to all other instances. For instance, for

the bed category, we use 10 instances for training and 9 instances for testing. Similarly,

for chair and desk, we use 111 and 12 instances respectively for training and the rest for

testing. During testing, we use the same protocol as above. We present qualitative keypoint

predictions in Figure 4.5 (middle row) and report quantitative performance in Tables 4.4

and 4.5. We see our model shows good transferability, providing (a) a similar level of detail

in the predicted keypoints as before, (b) improved accuracy when compared to the baselines,

and (c) absolute accuracies that are not too far from those in Tables 4.2 and 4.3.

4.3.4 Framework flexibility

While the results above use RGB-D pairs from Pix3D for model training, in principle, our

approach can be used in conjunction with other datasets that provide aligned RGB-D pairs

as well. Such capability will naturally make it easier to train models with our framework,

leading to improved framework flexibility. To demonstrate this aspect, we train our model

as before, but now for input to branches C and D, we use aligned RGB-D pairs from the

NYUv2 [54] dataset. Since these pairs contain noisy depth images from a real depth sensor,

we synthetically apply realistic noise on the clean rendered depth images, used for branches

A and B, using DepthSynth [116]. This ensures branches A, B, and C still receive the same

modality as input. Note that we do not test on NYUv2, but rather we use it to collect

auxiliary training data and perform testing on Pix3D. Similarly to all other experiments,

we do not use any pose annotations for the RGB images as part of training our model and

we follow the previous testing protocol. Figure 4.5 (bottom row), shows some keypoint

prediction results on test data from Pix3D. In Table 4.6, we report quantitative results. We

can make several observations- while the numbers are lower than those with the proposed

method, which is expected, they are higher than all the baselines reported in Tables 4.2

and 4.3. Please note that the baselines were trained with alignment from Pix3D, whereas

our model here was trained with alignment from NYUv2. These results, along with those
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Table 4.6: Results for sec. 4.3.4 experiment. All numbers are % except MedErr (radians).

Metric Az. El. Pl. Accπ
6
↑ MedErr ↓

Bed 65.9 54.1 44.0 24.0 1.0

Chair 44.3 51.0 31.0 15.2 1.6

Desk 50.0 45.4 31.6 7.2 1.9

in the previous section, show the potential of our approach in learning generalizable models

for estimating object pose, while not explicitly requiring pose annotations during training.

4.4 Conclusions

We proposed a new framework for 3D object pose estimation in RGB images, which does not

require either textured CAD models or 3D pose annotations for RGB images during training.

We achieve this by means of a novel end-to-end learning pipeline that guides our model to

discover keypoints in rendered depth images optimized for relative pose estimation as well

as transfer the keypoints and representations to the RGB modality. Our experiments have

demonstrated the effectiveness of the proposed method on unseen testing data compared to

supervised approaches, suggesting that it is possible to learn generalizable models without

depending on pose annotations.
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Chapter 5: Simultaneous Mapping and Target Driven

Navigation

Navigation is one of the fundamental capabilities of autonomous agents. In recent years

there was a surge of novel approaches, which study the problem of goal or target driven navi-

gation using end-to-end learning strategies [34,117–119]. These approaches use data-driven

techniques for learning navigation policies deployable in previously unseen environments

without constructing an explicit spatial representation of the environment. These models

exploit the power of recurrent neural networks for learning predictions from sequences of

observations.

The approaches that address the navigation and planning by learning spatial represen-

tations of the environment often assume perfect localization both in the training and testing

stage [120, 121]. The problem of localization and mapping is challenging on its own and

existing approaches for learning spatial representations which are optimized for localization

tasks [122] have been shown to outperform traditional simultaneous localization and map-

ping methods (SLAM) on the localization task [33].

The presented work investigates the problem of simultaneous mapping and target driven

navigation in previously unseen environments. The problem of target driven navigation

is a problem of an agent finding its way through a complex environment to a target (e.g.

go to the couch). The goal of our work is to exploit mapping and localization module to

guide navigation strategies and relax the assumption of perfect localization and at the same

time endow the map representation with richer semantic information. Towards this end we

propose to build and use spatial allocentric 2.5D map, which will facilitate both localization

and semantic target navigation. Instead of using map representation derived directly from
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Figure 5.1: We present a new method for target driven navigation that leverages an 2.5D
allocentric map with learned semantic representations suitable for both localization and
semantic target driven navigation.

pixel values, we propose to learn suitable task related embeddings from outputs of an object

detector and semantic segmentation.

The proposed method consists of two modules. First, a semantic map inspired by Map-

Net architecture [122] is responsible for continuous localization and registration of agent’s

observations in the map. Second, is a navigation module that uses the partial map, pre-

dicted pose of the agent along with current observations for learning a target reaching policy.

In summary our contributions are as follows:

• We extend the MapNet [122] approach and endow 2.5D memory with semantically

informed features and demonstrate its improvement on the localization task.
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• We show the effectiveness of spatial mapping for target driven navigation and learn

the navigation policies for the task.

• We evaluate both localization and target driven navigation tasks on real Active Vision

Dataset [5] and Matterport3D [36] environment, demonstrating superior performance

compared to previous methods.

5.1 Related Work

Traditional approaches for mapping and navigation problem focus on 3D metric and seman-

tic mapping of the environment [33] followed by path planning and control. They require

building a 2D or 3D map ahead of time before planning, and do not exploit general seman-

tics and contextual cues in the planning and decision stage. In recent years there was a

surge of novel approaches, which study the problem of goal or target driven navigation using

end-to-end deep reinforcement learning and vary in the proposed architectures and reward

structure to train the models [34, 117–119, 123] These methods use variations of Recurrent

Neural networks (i.e. LSTM) with the memory implicitly represented by the hidden state

of the model. Majority of the above mentioned methods do not have explicit notion of the

map or spatial representation of the environment.

The methods which explicitly learn a spatial representation of the environment, proposed

task-dependent differentiable spatial memories to represent the environment [120–122,124–

126] and typically focus on goal or target driven navigation, localization or exploration tasks.

For example, Henriques et al. [122] proposed an architecture that dynamically updates

an agent’s allocentric representation for the task of localization. In Gupta et al. [120] a

mapping module fused information from learned image embeddings across multiple views

in an egocentric top-view map of the environment. The mapping module was trained for

goal point and semantic target based navigation tasks and assumed accurate localization

both in training and testing stage. Authors in [124] train a policy that takes as input a

predicted egocentric map and outputs long-term goal for a planner, while Gordon et al. [125]
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uses a GRU to perform egocentric updates to a local window within a spatial memory given

the agent’s current location and viewpoint. The spatial memory contains object confidences

at each location of a 2D grid, but it does not encode the 3D spatial capacity of the objects

in the environment and thus cannot take advantage of multi-view information to deal with

occlusions. The work of Chen et al. [127] considers the exploration task and constructs the

top-view occupancy map by unprojecting 3D points observed in the depth images. The

egocentric map is then passed to an exploration policy. With the exception of [125], the

learned maps do not consider semantic and contextual information which has been shown

to be important in learning generalizable navigation policies [35,118].

The effectiveness of semantic component, semantic segmentation and object detection

has been in approaches which use recurrent neural networks [119,128]. For example, Fang et

al. [119] uses a scene memory comprised of separately embedded observations at different

time steps. While this scene memory encodes semantic information, the lack of structure

neglects the spatial configurations of the objects and other semantic categories in the scene.

Our work is also related to large body of work on target driven navigation. The ex-

isting approaches differ in the level of supervision, model architectures and tasks. [34,

35, 117, 118, 123, 129–132]. For instance, Mousavian et al. [35] and Ye et al. [131] learn

effective representations for navigation using the outputs of object detectors and semantic

segmentations in order to enable better generalization to novel environments and consider

navigation policies, with state modelled by LSTM. Sadeghi et al. [129] focuses on collision

avoidance for the goal reaching task and relies on convolutional LSTM to keep track of

the goal’s position with respect to the agent. The works of Ye et al. [130] and Zhu et

al. [34] use deep reinforcement learning to train room-type specific navigation policies using

feed-forward architectures, where the goal is provided as an image cropped from the scene.

Finally, Das et al. [118] uses embeddings of a feed-forward model pre-trained on various

tasks (i.e. semantic segmentation, depth prediction) as input observation for training the

policy. Even though these methods usually include semantic information as an input, they

do not explicitely store in a spatial memory and use LSTM modules to retain the history
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Figure 5.2: Overview of our simultaneous target driven navigation and mapping approach
for a single timestep. We use as inputs the egocentric observations RGB image It, the
detection masks Dt, and semantic segmentation St. Each input is first projected to a
ground grid before extracting a feature embedding from each grid location. The grids are
stacked and passed through a recurrent map registration and update module (see text for
more details) which provides the updated map mt and localization prediction pt. These,
along with the egocentric observations ot are passed to a navigation module that extracts
and concatenates their embeddings with the semantic target. Finally, the embeddings are
passed to an LSTM that predicts the values for the next actions. Orange color signifies
convolutional blocks, while other colors in the figure denote other feature representations.

of observations and actions.

5.2 Approach

Here we present the two modules of our method. First, we describe in detail the spatial map

and how it is endowed with semantic information. Then, we outline the navigation policy

and explain how the map is used in its training. An overview of the proposed architecture

is in Figure 5.2.

5.2.1 Learned Semantic Map

We are interested in building an allocentric spatial map that encodes the agent’s experiences

during navigation episodes. Following MapNet [122] formulation, the map at time t is

represented as a grid mt ∈ Ru×v×n of spatial dimensions u×v with feature embedding of size

n at each grid location. Besides an RGB image representation, we also extend the map to
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include the semantic information from object detection masks and semantic segmentation.

The inputs are initially projected to an egocentric ground grid gt ∈ Ru′×v′×n. For the

projection we use the available depth image and the camera intrinsic parameters to obtain

a 3D point cloud from the image points. Each 3D point is then mapped to one of the u′×v′

grid coordinates: xg = b xxb c+ u′−1
2 , zg = b zzb c+ v′−1

2 , where xg, zg are the grid coordinates,

xb, zb are the dimensions of each bin in the grid, and x, z are coordinates of the 3D point.

The y coordinate corresponding to the height of the point is neglected in this version of

our work. Since multiple 3D points project to the same grid cell, the projected inputs are

pooled to form a single vector. Specifically for each input type we get a grid as follows:

RGB image. Given an input image It, we obtain a feature map xt ∈ Rh×w×n′
from any

backbone CNN (e.g. VGG-16, ResNet50). In order to aggregate the features from different

image regions we perform max-pooling over all features vectors projected to the same grid

cell to yield the final grid gIt ∈ Ru′×v′×n′
.

Detection mask. We run Faster R-CNN [9] which is pre-trained on COCO [133] and

convert the detections to h×w×cd binary bounding box masks. Each channel has detection

masks of a particular class from COCO, where cd is the number of available classes. We get

the grid gDt ∈ Ru′×v′×cd by averaging over the occurrences of each detected class in a bin.

Semantic segmentation. We use the model of [6] trained on NYUv2 dataset [54] that

outputs a h × w semantic segmentation of an image. Each pixel takes a value between

0 and cs − 1 where cs is the number of classes in the NYUv2 dataset. The grid gSt ∈

Ru′×v′×cs for this observation holds a probability distribution over the semantic labels in

each bin. Different inputs create separate grids, which are then passed through a small

CNNs, comprised of two convolutional layers providing per grid cell feature embedding for

each input. This step is deliberately applied on the grids rather than the images directly,

such that the learned embeddings can capture spatial dependencies present in the map grid.
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We then stack the outputs of the small CNNs to form the egocentric 2D grid gt at time t:

gt =
[
φI(g

I
t ), φD(gDt ), φS(gSt )

]
(5.1)

where φI , φD, and φS denote small CNNs applied to embeddings of RGB image, detection

masks, and semantic segmentation. The details about choices of individual parameters are

described in the experimental sections.

Given this semantically informed representation, we follow the strategy of [122] for

localization and registration stage. In order to register gt in the current map mt−1 we

densely match gt with mt−1 over all possible locations u× v and over multiple orientations

r. This operation is carried out through cross-correlation (equivalent to convolution in

deep learning literature) and produces a tensor pt ∈ Ru×v×r of scores which denotes the

likelihood of the agent’s position and orientation in the map at time t. In practice, multiple

rotated copies of gt are stacked together to obtain a g′t ∈ Ru′×v′×n×r tensor. After the cross-

correlation, the output is passed through a softmax activation function to get pt. Before

inserting gt in the map, we need to rotate it and translate it according to its localization

prediction pt. This is achieved through a deconvolution operation between g′t and pt that

can be seen as a linear combination of g′t weighted by pt. The result is a tensor that contains

the egocentric grid observations at time t, and is aligned to and has the same dimensions

as mt−1.

Finally, localized egocentric map gt is used to update the current map mt−1 using a

long short-term memory unit (LSTM). Each location’s feature embedding is passed through

LSTM and updated independently. We have also experimented with other update methods,

such as averaging the features, but found the informed updating due to LSTM’s trainable

parameters to be superior. This can be also attributed to the fact that the LSTM learns

how to combine the embeddings of different modalities that comprise gt in order to be more

effective during localization. The model is trained using localization loss.
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Localization loss. We use cross-entropy loss to supervise the prediction of pt:

Lloc = − 1

T

T∑
t

K∑
k

p̂tk log ptk (5.2)

where p̂t is a one-hot vector representing the ground-truth pose, T is the length of an

episode, and K = u × v × r is the number of classes corresponding to the discreet spatial

locations and orientations in the map. We assume p0 to be at the center of the map facing

to the right, and all subsequent ground-truth poses are relative to p0.

5.2.2 Navigation Policy

Our task involves navigation to a semantic target within unknown environment. There-

fore, it can be formulated as a partially observable Markov decision process (POMDP)

(S,A,O, P (s′|s, a), R(s, a)), where the state space S consists of the agent’s pose, action

space A consists of a discrete set of actions, and observation space O is comprised of the

egocentric RGB images. The reward R(s, a) = d(s, c) − d(s′, c) is defined as the progress

towards the semantic target c when at state s the action a is executed that leads to state

s′, where d(., .) is the number of steps required on the shortest path between a state and

the semantic target. Finally, P (s′|s, a) represents the transition probabilities.

We are interested in learning a policy that can leverage the rich semantic and structured

information in the map. To this end, the input to our policy is the allocentric spatial map

mt which holds all past experiences of the agent during the episode. Since we do not assume

perfect localization, the map is accompanied by the pose prediction pt in order to help the

policy to pay attention to the relevant parts of the map.

The learned policy π(a|ot,mt, pt; c) outputs a distribution over the action space given

both egocentric observations ot ∈ O and the map (that can be thought as a spatial memory).

Since our focus is to navigate in novel environments, the map is being build as the agent

moves along and the policy uses as input the accumulated map up to time t. The semantic
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target c is represented as a one-hot vector over the set of classes. Finally, a collision indicator

represented as a single bit is concatenated to the rest of the inputs in order to encourage

the policy to recover after a collision.

Training. Following the work of Mousavian et al [35], we train our policy model to predict

the cost of each action a at a certain state s and a given target c using an L1 loss:

Lnav =
1

T |A|

T∑
t

∑
a∈A

∣∣y(ot,mt, pt, a; c)− ŷ(s, a; c)
∣∣ (5.3)

where ŷ(s, a; c) = −R(s, a) is the ground-truth cost and y(ot,mt, pt, a; c) is the predicted

cost. Given the definition of R(s, a), ŷ(s, a; c) can only take one of three values; −1 if the

action takes the agent one step closer to target, 1 if it takes the agent one step further from

the target, or 0 if the distance remains unchanged. The last case is possible since there

can be multiple target poses in an episode. If an action leads to a collision, then we assign

ŷ(s, a; c) = 1 even though the agent has not moved, while if an action leads to a goal we

assign ŷ(s, a; c) = −2.

The policy model is trained in a supervised fashion using an online variant of DAg-

ger [134]. In particular, we first generate training episodes by sampling a random starting

point and target in a scene and selecting the actions along the shortest path (expert policy).

At this stage we also sample trajectories along randomly chosen paths in order to increase

the coverage of the observation space O in the scenes. During training we sample the next

minibatch either from the initially generated episodes (expert and random), or by unrolling

the current policy to select new episodes. We start with a high probability of selecting from

the initial episodes and gradually decrease this probability with exponential decay.

To accommodate this training paradigm, the environment is represented by a graph,

where the nodes are discrete poses of the agent and edges represent possible actions. Each

pose has corresponding RGB and depth images and the absence of edges between two nodes

is treated as collision. In this setting, the shortest path between two nodes can be easily
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Table 5.1: Localization results on the AVD and Matterport3D dataset using map models
trained with different combinations of input modalities. The Average Position Error (APE)
is reported in millimeters for episodes of length 5 and 20.

Dataset AVD Matterport3D

Map Model APE-5 APE-20 APE-20

RGB 285 800 993

RGB-SSeg-Det 215 692 803

SSeg-Det 179 647 655

computed and used as supervision.

Model architecture. The policy π(a|ot,mt, pt; c) is modeled by a convolutional NN. The

image observations are first passed through a separate network that computes a 128 dimen-

sional embedding. The map mt and pose estimation pt are passed through a convolutional

layer of 3×3×8 followed by batch normalization and max-pooling of kernel size 2 and stride

2. The outputs are flattened and passed though a fully connected layer followed by dropout

to get the embedding. For the egocentric observation ot we stack any available images (i.e.

RGB, detection masks, or semantic segmentation) and use a pretrained ResNet18 (without

the last layer) to extract 512 dimensional features, prior to computing the embedding. The

one-hot vector that denotes the semantic target is also encoded to a 128 dimensional em-

bedding. Then, all embeddings are concatenated and used as input to an LSTM layer of

512 units. Finally, a fully connected layer predicts the cost of each action y(ot,mt, pt, a; c).

Controller. During inference, instead of directly choosing the action with the lowest cost,

we sample from the predicted probability distribution over the actions by applying soft-max

on the negated predicted costs. This still assigns the highest probability to the action with

the predicted lowest cost, however it allows for some flexibility during decision making to

avoid getting stuck in limited space situations.
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Figure 5.3: Example inputs from the AVD (top row) and Matterport3D (bottom row)
datasets. From left to right we show the RGB image, detection masks and semantic seg-
mentations.

5.3 Experiments

We perform two main experiments, evaluation of the localization accuracy in the trained

spatial map (sec. 5.3.1) and evaluation of the learned navigation policy on unknown en-

vironments (sec. 5.3.2). The proposed method is demonstrated on two publicly available

datasets, Active vision dataset (AVD) [5] and Matterport3D [36]. We illustrate input ex-

amples from the two datasets in Figure 5.3.

AVD. This dataset contains around 20,000 real RGB-D images from typical indoor

scenes densely captured by a robot on a 2D grid every 30cm. Each location on the grid

offers multiple views at 30◦ intervals. The data for each scene are organized as a graph

where the edges are defined over a discrete set of actions. This provides with the ability to

78



Figure 5.4: Visualizations of graphs along with target locations from an AVD scene (left)
and a Matterport3D scene (right). The different shapes and colors denote different target
objects.

simulate the movement of an agent in a scene but with the luxury of having real images as

observations.

Matterport3D. This dataset contains visually realistic reconstructions of indoor scenes

with varying appearance and layout. We endow the dataset with the same structure as AVD

by densely sampling navigable positions at 30cm intervals on the occupancy map of each

scene. At each navigable position, we render RGB images, semantic segmentations and

depth images from 12 different orientations at 30◦ intervals through Habitat-Sim [135]. The

images are connected through actions based on their spatial neighborhood and orientations.

The built dataset contains more than 10, 000 images for each scene, which is considerably
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larger than AVD. We use 17 scenes for training and 5 for testing.

5.3.1 Localization

To validate the effectiveness of using the semantic information for mapping, we present

localization results for allocentric maps that were trained with different input combinations

and episode lengths of 5 and 20 steps. For both datasets an agent is simulated through

random walks in order to collect 33, 000 and 88, 000 training episodes for AVD and Matter-

port3D respectively. The trained models are applied on episodes not seen during training

and are evaluated on Average Position Error (APE), which measures the average Euclidean

distance between the ground-truth pose and the predicted pose.

Implementation details. RGB image is passed through a pretrained truncated ResNet50

using only the first 11 layers. The small CNNs for each input grid modality (φI , φD, φS)

are realized with two convolutional layers of 3×3×64 and 3×3× l, where l = 32 for φI , and

l = 16 for both φD and φS . The number of units n for the LSTM corresponds to the sum-

mation of the embedding dimensions of the modalities used for the particular experiment.

Regarding the hyper-parameters of the map, we define the map dimensions u = v = 29, the

egocentric observation grid dimensions u′ = v′ = 21, the number of rotations r = 12, and

the grid cell size xb = zb = 300mm.

Results and discussion. The results are illustrated in Table 5.1, where semantic seg-

mentation is denoted as SSeg and detection masks as Det. There is no direct comparison

to the results from [122] since the exact train and test sets are not provided, however our

map model trained only with RGB can be considered analogous to the MapNet trained

in [122]. We observe that the model with the lowest localization error in both 5 and 20

step cases is SSeg-Det, which is not using RGB information. This can be attributed to the

fact that the RGB image representation needs to capture view-invariant properties, which

is difficult to achieve, such that the egocentric ground grid can be accurately matched to

the allocentric map. On the other hand, this is not necessary in the case of SSeg-Det, since
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Table 5.2: Results of semantic target navigation in novel scenes in AVD and Matterport3D.

Dataset AVD Matterport3D

Method Succ. (%) Path Len. Rat. Succ. (%) Path Len. Rat.

Random Walk 24.3 4.4 13.6 10.7

Non-learning 35.3 9.3 42.8 3.6

No-Map-AVD [35] 48.0 - - -

No-Map-SUNCG [35] 54.0 - - -

Ours 64.6 1.9 69.5 2.3

it operates on recognition outputs. This is also highlighted on the Matterport3D results,

where the images are synthetically generated and the average position error difference is

more in favour of SSeg-Det. This effectively demonstrates that a scene can be memorized

with respect to only semantic information such that it is useful for re-localization. In fact,

when the RGB images are added then the error slightly increases. It is also important to

note that the authors of [122] demonstrated superior performance of their approach with

respect to traditional ORB-SLAM [136] on AVD using only RGB images. We exhibit that

additional semantic information further improves the localization ability of the agent.

5.3.2 Navigation to semantic target

Here we investigate the effectiveness of the proposed target driven navigation policy. Our

objective in this experiment is twofold. First, we would like to demonstrate the effect of

using a spatial map in comparison to LSTM policies that do not use a map, and second,

investigate navigation policies that are learned with spatial maps of different modalities.

The training procedure is as follows. First, the spatial map model is trained with the

localization objective. The training of the navigation policy uses the frozen mapping module

to update the map and predict the agent’s pose at each step. During this procedure, the

mapping module is fine-tuned through the navigation objective. Note that at the beginning

of each episode the map contains no information. Unless otherwise specified, we train the

navigation policy using the SSeg-Det map model for AVD, while the RGB-SSeg-Det map
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Figure 5.5: Qualitative navigation results on the AVD dataset. Each row corresponds to a
different episode. From top to bottom, the target object is the fridge, dining table, and TV.
For each step of an episode we present the map with the agent’s trajectory up to that time,
the agent’s orientation, RGB image and detection masks. Notice that in all three episodes
the agent moves quickly towards the target once it is detected and placed in the map.

model is utilized when learning the policy on Matterport3D.

For both AVD and Matterport3D five semantic targets are identified: {dining table,

refrigerator, tv, couch, microwave}. Figure 5.4 presents examples of scene graphs with

marked target objects. In the case of AVD we compare our approach to [35], therefore

we follow their train/test split of different environments (11 scenes for training and 3 for

testing), and use the target locations of object categories they provide. As mentioned in

sec. 5.2.2 the training data are generated using DAGGER with 55,000 and 88,000 initial

training episodes for AVD and Matterport3D respectively. For evaluation, the percentage

of successful episodes is reported along with the average path length ratio. The episode is

successful when the agent is at least 5 steps away from a target pose. The path length ratio

is the ratio between the predicted path and the shortest path length and is calculated only

for successful episodes. The maximum number of steps for each episode is 100.
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Comparison to other policies. To demonstrate our method’s superiority to policies

which do not use a spatial map we have defined three baselines:

Random walk. The agent chooses random actions until it reaches the target.

Non-learning baseline. Similarly to [35], the agent chooses random actions until the target

object is detected, in which case the agent computes the shortest path to the target. Note

that for this baseline, the agent has full knowledge of the environment and its graph once

it detects the target.

Learned LSTM policy without a map. The method proposed in [35]. The policy is learned

using only egocentric observations without any spatial memory. We compare to a policy

trained on AVD that uses detection masks denoted as No-Map-AVD and policy trained

on both AVD and the large synthetic dataset SUNCG [137] that uses detection masks and

semantic segmentations, here referred to as No-Map-SUNCG. This is the best performing

method reported in [35] as it leverages the vast amounts of data offered in SUNCG’s 200

synthetic environments.

Results are shown in Table 5.2. On AVD dataset the presented approach outperforms

the second best method by 10.6%, without any use of complementary synthetic data during

training. The biggest advantage of our method compared to the other learned baselines

is that our agent has access to semantic information stored in a structured memory that

corresponds to the history of observations. This reduces the amount of information that

LSTM retains and helps during the optimization of the policy. Furthermore, the lower

average path length ratio than the Non-learning baseline, in both datasets, suggests that

our navigation model learns contextual cues from the semantic map that reduce the time

spent searching for the target. In addition, as demonstrated in Figure 5.5, the agent learns

to quickly move towards the target upon detection. Note that the baseline uses an optimal

path when the target is detected. Note that the average path length ratio result is not

directly comparable to the other learned baselines since they require a stop action to end

an episode, which we do not use.
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Table 5.3: Results of our ablation study on AVD, illustrating the performance of navigation
models trained with different map models, without fine-tuning the map (NF), or without
using any egocentric observations (NE).

Model Success Rate (%)

1. Nav-RGB 60.1

2. Nav-RGB-Det 61.1

3. Nav-RGB-SSeg-Det 63.2

4. Nav-SSeg-Det 64.6

5. Nav-RGB-NF 58.2

6. Nav-SSeg-Det-NF 60.4

7. Nav-RGB-NF-NE 53.9

8. Nav-SSeg-Det-NF-NE 56.9

Table 5.4: Results of our ablation study on Matterport3D, illustrating the performance
of navigation models trained with different map models and without fine-tuning the map
(NF).

Model Success Rate (%)

1. Nav-SSeg-Det 62.9

2. Nav-RGB 66.7

3. Nav-RGB-SSeg-Det 69.5

4. Nav-SSeg-Det-NF 59.7

5. Nav-RGB-NF 64.2

Ablation Study In this section we attempt to get a better understanding of how certain

components of our method contribute to the overall performance.

Variations of spatial map modalities. Here we pose the question of which are the most

suitable map feature representations when learning to navigate. To this end, we trained

multiple navigation models using spatial maps that were learned with different modality

inputs. Results are presented in lines 1-4 of Table 5.3 for AVD, and lines 1-3 of Table 5.4

for Matterport3D. In the case of AVD, we notice that the Nav-SSeg-Det outperforms Nav-

RGB by 4.5%. This validates our assumption that navigating to a semantic target can be
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successful using a map with purely semantic features. Note also that the map model SSeg-

Det demonstrated the lowest localization error (see Table 5.1). However, for Matterport3D

we observe that Nav-RGB outperforms Nav-SSeg-Det, while the best model is the one using

all modalities (Nav-RGB-SSeg-Det). This can be explained by the fact that the detections

are very noisy due to the artifacts in Matterport3D’s images. Hence, they are not as reliable

when training the policy. Another reason could be that Matterport3D has larger scenes and

object encounters are sparser, therefore providing less useful information in the map.

Joint training. To see the effect of fine-tuning the mapping module we re-trained selected

navigation policies but kept the map network parameters frozen. The results are in lines 5, 6

of Table 5.3 for AVD and lines 4, 5 of Table 5.4 for Matterport3D, where the models trained

without fine-tuning are denoted as NF . There is a consistent reduction of performance when

fine-tuning is not performed in both datasets. This shows that the map embeddings learned

during the initial training of the map module are not immediately applicable for navigation

and further adjustment is required.

Effect of egocentric observation. We rely mainly on the allocentric map and pose pre-

diction to decide future actions, which requires a depth sensor during the ground projection

step. However, in cases where the agent is very close to an object and therefore outside of

the effective range of the depth sensor, the projection is unreliable. We argue that using

complementary egocentric observations as input to the navigation policy can help mitigate

this problem. Results of models trained with and without egocentric observations are re-

ported in lines 7, 8 of Table 5.3 for AVD. We observe that there is a rough 4% degradation in

the performance compared to lines 5, 6 in the same table, which validates our assumption.

5.4 Conclusions

We have presented a new method for simultaneous mapping and target driven navigation

in novel environments. The mapping component leverages the outputs of object detection

and semantic segmentation to construct a spatial representation of a scene which contains

some semantic information. This representation is then used to optimize a navigation policy
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that takes advantage of the agent’s experiences during an episode encoded in the allocentric

spatial map. The experiments on AVD and Matterport3D environments demonstrate that

our approach outperforms only RGB baselines for the task of localization, and non-mapping

baselines for the target-driven navigation.
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Chapter 6: Conclusions and Future Work

We have proposed several techniques to mitigate the need for manual image annotation

in multiple tasks. Our contributions include the development of new architectures and

objective functions for object instance detection, object pose estimation, and target driven

navigation.

In Chapter 2 we have presented a novel automated approach for generating synthesized

datasets that can be used to train state-of-the-art deep CNN object detectors. The approach

leverages geometric and semantic cues in order to informatively place and scale cropped

object masks in meaningful locations in a scene. Furthermore, a blending technique ensures

that the composited object masks do not carry any artifacts. Our method is attractive

because it is scalable with both the number of objects of interest and with a variety of

indoor scenes.

Chapters 3 and 4 present methods for 3D object pose estimation through keypoint

learning and matching. In Chapter 3 a method is proposed that jointly optimizes the

keypoint locations and representation learning for 3D keypoint matching in depth images.

The main contribution of this work is that the optimization is performed without attempting

to define apriori “discriminative” keypoints. The approach is evaluated on depth data from

a structured light sensor, such as Kinect, where robust matching is demonstrated under

large viewpoint variations. The method in Chapter 4 extends the work of Chapter 3 and

proposes a new method for pose estimation in the RGB domain, where a new keypoint

learning objective is introduced that takes into consideration the downstream task of pose

estimation. The key contribution is that the method does not require explicit 3D pose

annotations for the RGB images, rather it takes advantage of abundant data, rendered from

CAD models to learn the keypoint detector and descriptor representation. The method is

demonstrated on object instances not seen during training.
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Finally, the last part of this thesis (Chapter 5) introduces a new method for target driven

navigation that leverages a semantically informed spatial map during policy optimization

without assuming perfect localization. Two key ingredients of our method are the use of

an allocentric map that learns how to encode the past experiences of the agent, and the

exploitation of semantic information, such as object detection masks, while learning the

map representation.

6.1 Future Work

A possible extension of this work would be to scale the current methods on larger sets

of objects. For example, our object instance synthesization method was demonstrated on

11 object instances and only in kitchen scenes. This can be scaled up by collecting more

scans of objects and RGB-D images of background scenes, without any annotation required.

Similarly, the object pose estimation method presented in Chapter 4 can benefit from further

collection of RGB-D images of objects. As explained in Section 4.3.4, where we investigate

the flexibility of our framework, the approach can be trained with any available auxiliary

data. Unfortunately, suitable large-scale datasets do not exist, so the experiment was carried

out on limited amounts of data from the NYUv2 dataset and showed low performance. We

believe that with the proper amounts of data, the model can perform at least on par with

the rest of the results shown in the experiments.

Including more auxiliary objectives during optimization would be another direction for

improving the current methods. For example, the keypoints and descriptors learned in

Chapter 3 could be informed by the 3D structure encoded by learning novel view synthesis

in depth images. Currently, the proposed approach does not have a specific structure-aware

mechanism. In addition, enforcing cyclic viewpoint consistency on multiple frames can

provide stronger constraints in generating repeatable keypoints and learning view-invariant

representations, than the current training image pairs.

In learning based target driven navigation there are still many unanswered questions,

especially regarding the representation of the environment. The work presented in Chapter
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5 uses a 2D grid and shows promising results for relatively shorter episodes (on average 20

steps), but it is not clear how well it would scale to longer trajectories. Perhaps a future

direction for this work would be to investigate graph-based environment representations

which are more concise when summarizing the information in a scene.

While this thesis has contributed several methods in relieving the dependence on man-

ual annotations, in the long term, we aspire to develop techniques that are purely self-

supervised. An example involves embodied agents that can actively gather their own data

by moving and interacting with their environment. Self-supervision could be a first step in

the overarching problem of artificial intelligence of building systems that can understand

their environment and continuously learn from past behaviors. While we still have a long

way to go, the recent progress in the field is allowing our imagination to be informed by

our expertise and perhaps be put to the test by the right tools. I am greatly excited by our

potential under these conditions.
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