
Proceedings of the Fourth Int’ l Conference on Flexible Query Answering Systems,
FQAS 2000, Warsaw, Poland, pp. 485-496, October, 2000.

A Knowledge Scout for Discovering Medical
Patterns: Methodology and System SCAMP

Kenneth A. Kaufman1 and Ryszard S. Michalski11,2

1 Machine Learning and Inference Laboratory, George Mason University, Fairfax VA

22030, USA
2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. Knowledge scouts are software agents that autonomously synthesize
knowledge of interest to a given user (target knowledge) by applying inductive
database operators to a local or distributed dataset. This paper describes briefly a
method and a scripting language for developing knowledge scouts, and then
reports on experiments with a knowledge scout, SCAMP, for discovering patterns
characterizing relationships among lifestyles, symptoms and diseases in a large
medical database. Discovered patterns are presented in two forms: (1) attributional
rules, which are expressions in attributional calculus, and (2) association graphs,
which graphically and abstractly represent relations expressed by the rules.
Preliminary results indicate a high potential utility of the presented methodology
for deriving useful and understandable knowledge.

1 Introduction

When applying data mining tools to a large database, a user may have to perform
many repetitions and trials of various operations before desired knowledge is
discovered. This process can be difficult and time-consuming. Such a situation
occurs, for example, in the PC-based multistrategy data mining and knowledge
discovery system, INLEN [8][16][18] Researchers have been addressing this
problem by adding new operators to existing query languages (e.g., [7][12][22]),
or by building a meta-language that integrates a query language with various
knowledge discovery operators (e.g., [9][19]).

Another challenge in data mining is how to specify target knowledge, that is,
knowledge that is likely to be of interest to a given user. Obviously, such
knowledge cannot be defined precisely, as the whole purpose of the search is to
find something new and unexpected. Furthermore, the target knowledge may be
changing over time, as it depends on the current goals and knowledge of the user.
This indicates a need for a mechanism to acquire and monitor a profile of the
user’ s interests, and apply this profile in the search for target knowledge.

To address the problems outlined above, the idea of a knowledge scout has been
proposed. A knowledge scout is a software agent that employs resources of an
inductive database, in order to search for and synthesize target knowledge. The
concept of an inductive database does not have one commonly agreed meaning
(e.g., [3][11][14][19]). Here, by an inductive database we mean a system that

integrates a database with inductive inference capabilities [14], allowing answers
to queries asking for plausible knowledge, (knowledge not directly or deductively
obtainable from the database, but hypothesizable through inductive inference
[19]). This knowledge can be in the form of hypotheses about future datapoints,
expected consequences, generalized data summaries, emerging global patterns,
exceptions from hypothesized patterns, suspected errors and implied
inconsistencies, hypothetical plans synthesized from the data, etc. [6][7][15][17].

A general diagram of an inductive database is presented in Figure 1.

Database

Target
Knowledge
Specification

Fig. 1. A general diagram of an inductive database.

An inductive database implements database operators based on inference
methods developed in the fields of machine learning, statistics, and uncertain
reasoning. These operators are integrated with conventional database operators
through a knowledge generation language (KGL). In addition, an inductive
database includes a knowledge base that contains meta-knowledge, domain
constraints, models of users’ interests, etc. Using KGL, one can implement
multiple knowledge scouts, dedicated to pursuing different target knowledge. A
KGL script that defines a knowledge scout includes a plan of operations to be
performed on the database and an abstract definition of the target knowledge.

The target knowledge for a knowledge scout is defined abstractly by specifying
properties of pieces of knowledge that are likely to be of interest to the given user
(or a group of users). For example, a target knowledge may be defined as “patterns
that relate variables from the set T to those in the set S” , or “patterns that achieve
the highest score on a given pattern quality measure” (e.g., [10]), or “a data
classification scheme that maximizes a criterion of clustering quality” (e.g., [20]).

In order to synthesize target knowledge, a knowledge scout may execute long
sequences of operations involving data, intermediate results, and background

Inductive Database
Operators

Knowledge Base

knowledge. At every step, an operator’s application may depend on previous
results. The user’s interests and relevant knowledge are partially defined a priori,
and partially updated during the scout’s lifetime. As inductively derived
knowledge generally has lower certainty than directly or deductively obtained
knowledge, results of inductive queries are annotated by certainty measures.

In this paper, we focus on a medical application of knowledge scout
technology. The following sections present briefly a methodology for building
knowledge scouts, and then concentrate on the application of the methodology to
the development of a knowledge scout, called SCAMP (Scout for Acquiring
Medical Patterns). SCAMP searches for multidimensional patterns characterizing
medical conditions, manifestations, lifestyles, and therapies. Such patterns may
capture multi-argument relations, in which a confluence of several medical factors
indicates a given disease, while the presence of any single one may not.

For testing these ideas, we used a database representing facts about diseases
and lifestyles, developed by the American Cancer Society’s Second Cancer
Prevention Study (CPS-II). In the experiments described here, we used a set of
73,553 records that pertain to male non-smokers, age 50-65. Patients are
characterized by attributes such as “rotundity” (a function of height and weight),
the amount of exercise, the number of hours of sleep, the education level, the use
of mouthwash, etc. Together with these characteristics, there is information
indicating whether or not the patient had any of 25 types of disease.

The following sections describe two knowledge representation systems used for
representing patterns and multidimensional relationships by a knowledge scout.
The first, attributional calculus, is a rule-based representation language for a rich,
but simple, expression of knowledge. The second, association graphs, allows for
the easy visualization of relationships among concepts, including multi-argument
ones. We then present KGL-1, a prototype language for defining knowledge
scouts, and describe SCAMP, along with the preliminary results it has achieved.

2 Attributional Rules

The language in which patterns of interest are to be expressed is essential to the
ability to discover them. If the language is too restricted, patterns will have
complex expressions, making their discovery difficult. If the language is too rich,
the pattern search space may become computationally prohibitive. In addition, for
many applications it is important that patterns are easy to understand and interpret
(the comprehensibility postulate [15]). Guided by such considerations, we employ
attributional calculus rules for expressing patterns or knowledge of interest [17].

The attributional calculus is an extension of propositional calculus in which
literals are replaced by attributional conditions. Such conditions represent
relational statements that bind attributes to a set of their values or other attributes
(see below). Each attribute has a domain and a type; the former defining its set of
legal values, and the latter characterizing an ordering relationship among the
values. Attributional calculus is based on variable-valued logic system VL1 [13].

An attributional condition is expressed in the form: [L rel R], where L is an
attribute, or one or more attributes with the same domain joined by “&” or “ v” ; R
is a value or a list of values joined by internal disjunction, a pair of values joined

by range, or an attribute with the same domain as the attribute(s) in L; and rel is a
relational symbol. For il lustration, the following are examples and explanations of
attributional conditions. Note that these conditions are simple to interpret and
translate into equivalent natural language expressions.
[blood-pressure = normal] (the blood pressure is normal)
[income = 20K..30K] (the income is between 20K and 30K)
[color = red v blue] (the color is red or blue)
[width & length > depth] (the width and length are both greater than the depth)

Attributional rules used in this study are in the form <decision> if
<conditions>, where <decision> is an attributional condition, and <conditions>
is a conjunction of one or more attributional conditions. These rules are a special
case of the parameterized association rules (PARs) [17]. The association rules
presented in [1] could be viewed as a specialized form of PARs. Attributional
rules that characterize a pattern in a database can be determined using an inductive
operator based on the AQ-18 rule learning program [9]. Such an operator
generates rules with annotations specifying the support, disparity, completeness
and consistency for each condition in the rule, and for each rule as a whole.

The support of a condition (or, a rule), denoted by p, is defined as the number
of tuples representing a given relationship (“positive examples”) that satisfy the
condition (rule). The disparity, denoted by n, is defined as the number of
“negative examples” that satisfy the condition (rule). Given that the training
dataset has P positive and N negative examples, we make these definitions:

The completeness of a condition or rule, denoted compl, is equal to p / P.
The consistency of a condition or rule, denoted cons, is equal to p / (p + n).
The consistency of randomly guessing, denoted cguess, is P / (P + N).
The program also generates other annotations, such as exceptions, ambiguity,

and description quality (e.g., [10]), which are beyond the scope of this paper.
To illustrate, Figure 2 presents an attributional rule generated by SCAMP from

a dataset consisting of 7351 examples, of which P=2063 represented individuals
who suffered from high blood pressure, and N=5288 represented those who didn’ t.
The rule states that patients with high blood pressure are characterized by having
high or very high rotundity, an educational level that includes high school and
possibly some college, and exercise at a medium level or less.

High_Blood_Pressure is present if: p n compl cons
[Rotundity

�
 high] 689 1058 33% 39%

[Education_Level is hs_grad..some_college] 1055 2213 51% 32%
[Exercise � medium] 1838 4473 89% 29%
 Rule Total (all conditions): 303 332 15% 48%

Fig. 2. Example of an attributional rule with annotations

Note that in this rule, each condition separately has a relatively low consistency
(between 29% and 39%). When all three conditions are combined, the
consistency jumps to 48%, which is significantly higher than randomly guessing
the positive class (cguess = 28%).

3 Association Graphs

Attributional rules characterize relationships among attributes (or concepts)
through a logic-style expression, which can be easily translated to natural
language. To provide a user with a simpler, more abstract way of representing
such relationships, we have developed a visualization method called association
graphs, whose nodes represent attributes or concepts, and inter-node links
characterize relationships among nodes. The links are directed, weighted and
annotated. The direction indicates the direction of the relationship. The weight
(represented by the thickness of the link) indicates the strength of the relationship
(based on the consistency of the attributional condition). Links are annotated by
symbols indicating the type of relationship between connected nodes. A
monotonically growing (decreasing) functional relationship between variables is
indicated by the symbol “+” (“–“) attached to the link between corresponding
nodes. A functional relationship that has its maximum (minimum) in the middle
of the range of the independent attribute is indicated by the symbol “ ^” (“v”).

A rule relating several attributional conditions to another condition is
represented by an arc linking the involved conditions. For example, Figure 3
shows an association graph representing the rule from Figure 2.

Fig. 3. An association graph representing the attributional rule from Figure 2.

Association graphs can represent complex multivariate relationships in a simple
fashion. They provide an advanced tool for knowledge visualization that differs
from some used in data mining systems (e.g., in CLEMENTINE, a data mining
toolkit commercially developed by Integral Systems, Ltd.). One major difference
is that the presented association graphs can represent multi-argument relations, not
only binary relations. Another difference is that they are representations at a
higher abstraction level. Specifically, their nodes represent attributes, rather than

High Blood
Pressure

Rotundity
Education

Exercise

+–^

individual attribute values, and links represent composite conditions employed in
attributional calculus, rather than only attribute-value conditions.

4 A Metalanguage for Defining Knowledge Scouts:
KGL-1

Knowledge scouts are defined by creating scripts in the knowledge generation
language. Below is a brief description of our first version of such a language,
KGL-1 [9]. KGL-1 has been designed according to the following requirements:
1. The language integrates database operators, knowledge base operators, and

knowledge generation operators in a single representational system.
2. Inductive inference programs, as well as other knowledge processing programs

integrated in the inductive database can be invoked by single KGL-1 operators.
3. Results from any KGL-1 operator can be used as inputs to any operator for

which they are semantically applicable.
4. Parameters to be used in running any knowledge-generating program can be

specified as arguments to the corresponding KGL-1 operator.
5. KGL-1 statements can refer to various properties of the data in the database.
6. KGL-1 statements can refer to various properties of generated knowledge or the

background knowledge, in particular, to attribute values, to the type and the
domain of any attribute, the attributional rules and their components, to the
groups of rules (rulesets), to any component of the annotations of the rules, etc.

7. Looping and branching are implemented, as in many programming languages.
8. The language can invoke data management, knowledge management and

knowledge generation operators that may be involved in the extraction,
manipulation, generation and display of any data or knowledge in the system
The KGL-1 metalanguage presented above provides a unique combination of

features not present in other languages for automated knowledge discovery. Many
current languages use a Prolog-based approach, and have quite limited types of
knowledge generation operators available. Most exceptions to the Prolog-based
approach are SQL-oriented, extending the data query language by adding an
ability to query for certain types of rules and invoke association rule generation
(e.g., [7][12]). KGL-1 differs from these in that one may define complex data
mining plans that involve many types of knowledge generation operators; it more
closely resembles a programming language than a query language.

A language somewhat related to KGL-1 is KQML, which provides means by
which agents may communicate among themselves and exchange task-relevant
information [4]. Another related language is used in CLEMENTINE, which
allows a user to specify a plan for a sequence of actions by a simple interface.

A prototype version of KGL-1 has been implemented in the INLEN-3 system
[9]. Each operator manipulates the database and/or knowledge base, and contains
arguments that identify its input, output, and the parameters that deviate from the
defaults. These parameters make it possible to specialize an operator to multiple
forms; each operator thus corresponds to a set of data/knowledge transformations.

The following operators have been integrated into KGL-1, or are in the process
of integration through the adaptation of already implemented programs:

− CHAR(Datatable, Class, Params): Characterize the entities in the Datatable
that belong to the Class, by inducing their characteristic description [15].

− DIFF(Datatable, Class1, Class2, Params): Differentiate entities in Class1 from
Class2 in the Datatable, by inducing a discriminant description [15].

− SELECT(Target, Datatable, Params): Select components from the Datatable,
whose type is defined by Target according to the method specified in Params.
The Target determines whether attributes or examples are to be selected.

− TEST(Datatable, Ruleset, Params): Test the Ruleset’s knowledge against a set
of testing examples in the Datatable. Each testing example is classified based
on the rule it best matches, using a strict or a flexible matching method [2][21].
The operator generates a report on the ruleset’ s predictive accuracy.

− CLASSIFY(Examples, Ruleset, Params): Assign the Examples to classes
using the Ruleset. This operator invokes an inference procedure that applies
rules in the Ruleset to Examples. The output of this operator includes a list of
Examples, their classification and a measure of certainty that that classification.

− CLUSTER(Datatable, Params): Split records in the Datatable into a set of
conceptual clusters. The operator is based on the conceptual clustering program
CLUSTER2 [5][20], It defines clusters by attaching a column to the Datatable
whose indices indicate clusters, and describes each one by an attributional rule.

− GENSTAT(Datatable, Params): Determine and report statistical
characteristics of the Datatable, such as means, modes and variances for
attributes in subsets of data associated with different target variables. It can also
generate covariances and correlation coefficients between numerical attributes.

− VISUALIZE(Input, Params): Visualize the items specified in the Input, using
an association graph or diagrammatic visualization method [23].
To illustrate how KGL-1 is used for building knowledge scouts, Figure 4

presents a script for a simple knowledge scout that creates and examines a
knowledge base of relationships among attributes in a medical database. Each
such relationship is expressed by a set of attributional rules, generated by the
CHAR operator. One of these rules was illustrated in Figure 2.

The log file output from the above script is shown in Figure 5. The first part of
the output shows the number of strong attributional rules, as determined by three
different criteria imposed on the rule strength. No rules satisfied the first (50%
completeness) or third (two conditions with both 50% consistency and 300
example support) criteria. The second criterion (rules with support greater than 25)
was met by two of the six generated rules. Because the High Blood Pressure
ruleset was not found to be too complex (having fewer than 50 conditions), the
specified simplification-through-relearning process was not applied. The last part
of the output presents numbers of conditions in the ruleset for Asthma that exceed
different thresholds regarding the p / n ratio (that is, support divided by disparity).
The last output indicates that there was only one condition with p/n ratio greater or
equal to 1:3 in the Asthma ruleset, and one other with a ratio of at least 1:5.

Summarizing, KGL-1 supports a powerful knowledge representation, employs
a wide range of learning and inference operators, operates on components of the
knowledge base and the database, and provides mechanisms for implementing
advanced knowledge scouts. The attributional rules allow the system to
compactly and understandably represent complex multidimensional relationships.

open ACSDATA {Select ASCDATA database}
do CHAR(decision=all, pfile=ACS1.lrn) {Characterize concepts

 representing values
of all attributes using
parameters specified in
file ACS1.lrn}

strongArtRules1 = #rules(Arth, compl >= 50){Count rules for}
strongArtRules2 = #rules(Arth, supp >= 25) {Arthritis that satisfy}
strongArtRules3 = #rules(Arth, {3 different conditions}
 num_conds(cons >= 50% and supp > 300) > 1){for threshold of

strength}
print "Number of strong Arthritis rules:
 Type 1 = ", strongArthRules1, ",
 Type 2 = ", strongArthRules2, ",
 Type 3 = ", strongArthRules3
if #conditions(HBP) > 50 {Is High Blood Pressure}
 begin {ruleset too complex?}
 do SELECT(attributes, decision=HBP,
 thresh=15, out=ACS2, criterion=max) {If so, find "thresh"}

do CHAR(pfile=ACSimplify.lrn, {best independent}
 decision=HBP) {attributes, then}
 end {recharacterize}
else
 print "HBP Ruleset sufficiently simple"
for i = 1 to 6
begin {For each value of i from}
print "Number of Asthma conditions with {1 to 6, count and show}
 p/n ratio of at least 1: ", i, " =", {number of Asthma}
 #conditions(Asth, cons >= 1/(i+1)) {conditions with}
end {consistency ≥ 1/(i+1).}

Fig. 4. A KGL-1 script for defining a knowledge scout exploring the medical database.

Number of Strong Asthma rules: Type 1 = 0, Type 2 = 2, Type 3 = 0
HBP Ruleset sufficiently simple
Number of Asthma Conditions with p/n ratio of at least 1:1 = 0
Number of Asthma Conditions with p/n ratio of at least 1:2 = 0
Number of Asthma Conditions with p/n ratio of at least 1:3 = 1
Number of Asthma Conditions with p/n ratio of at least 1:4 = 1
Number of Asthma Conditions with p/n ratio of at least 1:5 = 2
Number of Asthma Conditions with p/n ratio of at least 1:6 = 2

Fig. 5. Output from the KGL fragment from Figure 4.

5 SCAMP--A Knowledge Scout for Discovering
Medical Patterns

This section describes briefly SCAMP, a medical knowledge scout for exploring
the ACS dataset. Our experiments were done with SCAMP specified by the
following script:

For each disease attribute in the dataset:
Select randomly, about 10% of the data for training.

 Determine a ruleset consisting of strong patterns discriminating
cases in which the disease is present from other cases

From the generated rulesets, maintain only rules whose support
levels are within 40% of the strongest one in the ruleset.

In total, during the course of these experiments, over 10,000 patterns were
generated, some strong, and many spurious. To illustrate the interaction among
these patterns, seven of the stronger rules were combined into an association graph
(Figure 6). Shaded nodes represent diseases, and unshaded ones represent other
factors provided in the data. Differences in line thicknesses, indicating the relative
informational significance of individual conditions, are evident.

High Blood
Pressure

Hay Fever
Rule 5

Years in
Neighborhood

Diverticulosis
Rule 4

SleepRotundity

Asthma
Rule 2

Arthritis
Rule 1

Colon Polyps
Rule 3

Stomach Ulcer
Rule 7

Prostate

Rectal Polyps
Rule 6

Exercise Mouthwash

Stroke

Education

+

+

+

+
+

+

+

+

+

+

+
+

–

–

–

–

v

v

^

^

v

^

+

+

+

v

Fig. 6. An association graph linking a group of diseases with patient characteristics, as
determined by SCAMP from a subset of the ACS Second Cancer Prevention Study

database.

This association graph is an illustrative presentation of the relationships among
attributes characterizing patients’ lifestyles and diseases. One can easily see the
lifestyle characteristics associated with different diseases, and the type of
influence of each characteristic on various diseases. This is, however, only a
preliminary result that does not intend to serve as a contribution to medical
science. Nevertheless, it indicates a strong potential of the presented methodology
for discovering and modeling useful and novel medical patterns.

6 Summary and Future Research

This paper described briefly a methodology for integrating machine learning and
inference methods with database operators for the purpose of automatically
conducting complex data mining and knowledge discovery operations. The
central idea in this methodology is a knowledge scout, defined as a software agent
that utilizes resources of an inductive database to search for and synthesize target
knowledge. A knowledge scout is defined by a script in a knowledge generation
language. An initial version of such a language, KGL-1, implemented in the
INLEN-3 inductive database system, has been briefly described.

A knowledge scout, SCAMP, has been developed for conducting large-scale
experiments in a medical database. Two knowledge representations, attributional
rules and association graphs, were described and illustrated by selected discovered
patterns from this dataset. Association graphs can provide insights into
relationships between diseases and lifestyles, and assist doctors in the disease
diagnosis and treatment. They can also serve as guides to patients for disease
prevention. The preliminary results achieved by SCAMP indicate a high potential
utility of this methodology.

Acknowledgments

The authors thank Jim Logan for providing the American Cancer Society database
and discussing experiments done in Study 1. This research was conducted in the
Machine Learning and Inference Laboratory at George Mason University under
partial support from the National Science Foundation under Grants No. IIS-
0012121, IIS-9904078 and IRI-9510644.

References

1. Agrawal, R., Imielinski, T. and Swami, A. (1993) Mining Association Rules between
Sets of Items in Large Databases. Proceedings of the ACM SIGMOD Conference on
Management of Data, 207-216.

2. Bergadano, F., Matwin S., Michalski, R.S. and Zhang, J. (1992) Learning Two-tiered
Descriptions of Flexible Concepts: The POSEJDON System. Machine Learning 8, 5-43.

3. Boulicaut, J., Klemettinen, M. and Mannila, H. (1998) Querying Inductive Databases: A
Case Study on the MINE RULE Operator. Proceedings of the Second European
Symposium on Principles of Data Mining and Knowledge Discovery (PKDD’98).

4. Finin, T., Fritzson, R., McKay, D. and McEntire, R. (1994) KQML as an Agent
Communication Language. Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM’94), ACM Press.

5. Fischthal, S. (1997) A Description and User's Guide for CLUSTER/2C++ A Program
for Conjunctive Conceptual Clustering. Reports of the Machine Learning and Inference
Laboratory, MLI 97-10, George Mason University, Fairfax, VA.

6. Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan,
A., Stefanovic, N., Xia, B. and Zaiane, O.R. (1996) DBMiner: A System for Mining

Knowledge in Large Relational Databases. Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, 250-255.

7. Imielinski, T., Virmani, A. and Abdulghani, A. (1996) DataMine: Application
Programming Interface and Query Language for Database Mining. Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, 256-261.

8. Kaufman, K. (1997) INLEN: A Methodology and Integrated System for Knowledge
Discovery in Databases. Ph.D. dissertation, George Mason University, Fairfax, VA.

9. Kaufman, K. and Michalski, R.S. (1998) Discovery Planning: Multistrategy Learning in
Data Mining. Proceedings of the Fourth International Workshop on Multistrategy
Learning, 14-20.

10. Kaufman, K. and Michalski, R.S. (1999) Learning From Inconsistent and Noisy Data:
The AQ18 Approach. Proceedings of the Eleventh International Symposium on
Methodologies for Intelligent Systems.

11. Mannila, H. (1997) Inductive Databases and Condensed Representations for Data
Mining. in Maluszynski, J. (ed.), Proceedings of the International Logic Programming
Symposium, MIT Press, Cambridge.

12. Meo, R., Psaila, G. and Ceri, S. (1996) A New SQL-like Operator for Mining
Association Rules. Proceedings of the 22nd VLDB Conference.

13. Michalski, R. S. (1975) Synthesis of Optimal and Quasi-Optimal Variable-Valued
Logic Formulas. Proceedings of the 1975 International Symposium on Multiple-Valued
Logic, 76-87.

14. Michalski, R. S. (1976) Class notes for the course on Databases, Computer Science
Department, University of Illinois at Champaign-Urbana.

15. Michalski, R. S. (1983) A Theory and Methodology of Inductive Learning. In
Michalski, R.S. Carbonell, J.G. and Mitchell, T.M. (eds.), Machine Learning: An
Artificial Intelligence Approach, Tioga Publishing, Palo Alto, 83-129.

16. Michalski, R.S. (1997) Seeking Knowledge in the Deluge of Facts. Fundamenta
Informaticae 30, 283-297.

17. Michalski, R.S. (2000) NATURAL INDUCTION: Theory, Methodology and
Applications to Machine Learning and Knowledge Mining. Reports of the Machine
Learning and Inference Laboratory, George Mason University, Fairfax, VA (to appear).

18. Michalski R. S. and Kaufman, K. (1998) Data Mining and Knowledge Discovery: A
Review of Issues and Multistrategy Methodology. In Michalski, R.S., Bratko, I. and
Kubat, M. (eds.), Machine Learning and Data Mining: Methods and Applications, John
Wiley & Sons, London, 71-112.

19. Michalski, R.S. and Kaufman, K. (2000) Building Knowledge Scouts Using KGL
Metalanguage. Fundamenta Informaticae 40, 433-447.

20. Michalski, R.S. and Stepp, R. (1983) Automated Construction of Classifications:
Conceptual Clustering versus Numerical Taxonomy. IEEE Trans. on Pattern Analysis
and Machine Intelligence 5, 396-410.

21. Reinke, R.E. (1984) Knowledge Acquisition and Refinement Tools for the ADVISE
Meta-Expert System. Master’s Thesis, Department of Computer Science, University of
Illinois, Urbana, IL.

22. Sarawagi, S., Thomas, S. and Agrawal, R. (1998) Integrating Association Rule Mining
with Relational Database Systems: Alternatives and Implications. Proceedings of the
ACM SIGMOD International Conference on Management of Data.

23. Zhang, Q. and Michalski, R.S. (2000) KV: A Knowledge Visualization System
Employing General Logic Diagrams. Reports of the Machine Learning and Inference
Laboratory, George Mason University, Fairfax, VA (to appear).

