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ABSTRACT 
 
 
 

COMPUTATIONAL METHODS FOR HAPLOTYPE INFERENCE WITH 
APPLICATION TO HAPLOTYPE BLOCK CHARACTERIZATION IN CATTLE 
 
 
Rafael Villa Angulo, PhD  
 
George Mason University, 2009 
 
Dissertation Director: Prof. John J Grefenstette 
 
 
 

Genetic haplotype analysis is important in the identification of DNA variations 

relevant to several common and complex human diseases, and for the identification of 

Quantitative Trait Loci genes in animal models. Haplotype analysis is now considered 

one of the most promising methods for studying gene-disease and gene-phenotype 

association studies. In this dissertation, we address the problem of haplotype inference 

from cattle genotypes, which has significant differences with human genotype data. 

Using data derived by the International Bovine HapMap Consortium, we provide the first 

high-resolution haplotype block characterization in the cattle genome. In addition, a new 

genetic algorithm method for haplotype inference in large and complex pedigrees was 

developed. 

Novel results indicate that cattle and humans share high similarity in linkage 

disequilibrium and haplotype block structure in the scale of 1-100 kb. Effective 



populations size estimated from linkage disequilibrium reflects the period of 

domestication ~12,000 years ago, and the current bottleneck in breeds during the last 

~700 years. Analysis of haplotype block density correlation, block boundary 

discordances, and haplotype sharing show clear differentiation between indicus, African, 

and composite breed subgroups, but not between dairy and beef subgoups. Our results 

support the hypothesis that historic geographic ancestry plays a stronger role in 

explaining genotypic variation, and haplotype block structure in cattle, than does the 

more recent selection into breeds with specific agriculture function. 

Another significant contribution from this dissertation is the development of new method 

for haplotype inference in large and complex cattle pedigrees. A new representation of 

the search space for valid haplotype configurations was developed, and a genetic 

algorithm was used to optimize features of the haplotype assignments. The genetic 

algorithm includes a novel population initialization method, new crossover and mutation 

operators, and a fitness function that minimizes the inferred recombinations in the 

pedigree. The new method outperformed the current available methods capable of 

handling large and complex pedigrees, and has the advantage of being scalable to larger 

datasets.   
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1 Introduction and motivation 
 
 
 
 

1.1  Introduction 

Sequencing the human genome provided the starting point for understanding the genetic 

complexity of man and how genetic variation contributes to diverse phenotypes and 

diseases. In concert with the rapid expansion of detailed genomic information, a 

technological revolution for capturing genetic information from DNA samples emerged. 

High-throughput genotyping technologies (HTGTs) are one of such technologies that 

have played an invaluable role in capturing genetic diversity and heritable variations 

among individuals. The availability of HTGTs have permitted the resequencing and 

genotyping of additional species serving as model organisms for resolving the genetic 

complexity of human evolution and to effectively extrapolate genetic information from 

comparative medicine (veterinary) to human medicine. 

 The bovine genome sequencing project represents a significant new application for 

HTGTs in breed characterization and genomic selection [1, 2]. In addition to serving as 

disease model organism, the bovine genome sequencing project has different goals from 

other model species (mouse/rat/dog/chimp) sequencing projects; it is the first livestock 

animal to be sequenced with goals that are particular relevant for agriculture, i.e., 

increasing food productivity and improving animal health by application of genome-
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based approaches [3]. HTGTs offer the potential to be used for detecting genes 

underlying economically important traits (i.e., quantity and quality of milk production) 

and improve the current dairy cattle breeding schemes which rely on progeny testing to 

assess the genetic value of bulls [4]. Progeny testing would not be necessary if markers 

were available that explained a substantial fraction of the genetic variance [5].  

 The importance of cattle genome sequencing relays in the strong relationship of 

coexistence they have hold with humans through the history of modern civilization. 

Cattle have served as valuable sources of food, draft power, dung for fertilizer and fuel, 

and leather hides [6]. In recent history, with the emergence of genomic era, genetic and 

genomic analyses are making possible the characterization of cattle genetic structure, 

permitting high resolution mapping for Quantitative Trait Loci and gene-disease 

associations [7-11]. Perhaps the most remarkable and promising applications of genomic 

information analysis in livestock is genomic prediction and selection [12, 13], by which 

individual animals are evaluated and selected for specific uses (i.e., crossing for 

reproduction). The accuracy of all mentioned analyses depends strongly on the existence 

of accurate haplotype information from the individuals being analyzed. These reasons 

make haplotype inference a very important factor for cattle products improvement. 

In 2004, an international Bovine HapMap project was initiated as a component of the 

whole genome sequencing effort. The main objectives of this international initiative 

were: (1) to discover single nucleotide polymorphisms (SNP); (2) validate at least 20,000 

SNP by genotyping a panel representing diverse Bos taurus and Bos indicus breeds; (3) 

use the genotypic data to infer common haplotypes; (4) estimate linkage disequilibrium; 
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and (5) examine diversity among breeds [14]. By the beginning of this dissertation 

project, objectives one and two were accomplished resulting in 118,000 putative SNPs 

discovered from the alignment of a reference sequence (Hereford Dominette) with 

shotgun sequences generated from other six cows (Angus, Brahman, Holstein, Jersey, 

Limousin, and Norwegian Red breeds). In addition, genotype panels had been obtained 

from 20-50 individuals from each of 19 different breeds. It was the pertinent time to 

proceed with the remaining objectives since the genotypic data were available for all 

participants in the international Hapmap initiative, and the third whole genome sequence 

assembly was already completed. 

 

1.2 Problem statement 

The general objective of this work is to identify the most appropriate methods to infer 

haplotypes from the available genotype data from cattle, and to characterize the 

haplotype block structure based on patterns of linkage disequilibrium within different 

cattle breeds. 

For achieving this goal, two important aspects need to be analyzed. First, the majority of 

the software tools for inferring haplotypes and analyzing patterns of linkage 

disequilibrium have been developed based on the specific genetic structure of humans. 

Second, these tools have been implemented to manage small or moderate amounts of 

data. There are several significant differences between bovine and human genotype data. 

The effective population size in bovine (particularly in dairy breeds) is very limited due 

to extensive selection and the widespread use of a few historic sires. Cattle have complex 
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pedigrees due to artificial insemination (AI) with few selected bulls that have their 

offspring extended over several generations. Furthermore, the distribution of human 

genotype data is considerably different from the bovine genotype data due to differences 

in marker density and number of animals genotyped. In the human HapMap project, 

genotyping was performed on a small number of individuals from each geographical 

region, but the number of SNPs genotyped includes over one million sites. In sharp 

contrast, the bovine genotype data will be from a 50K chip, covering from 250 to 2500 

animals in a breed. Hence the algorithmic optimizations performed in analyzing the 

human data may not be applicable to the bovine dataset. These differences in the nature 

of data suggest an urgent need to evaluate, adapt and develop new computational tools 

for handling large data sets of bovine genotypes, and to provide haplotype inference tools 

specific to the needs of bovine data characteristics. 

 

1.3 Review of computational methods for haplotype analysis 

HTGTs have proliferated mostly because the low cost and short operation time, 

compared to several bio-molecular methods when used for genotyping large-scale DNA 

samples, and their ability for dense polymorphism discovery in variation studies [15, 16]. 

However, due to intrinsic characteristics, HTGTs cannot distinguish the source 

chromosome of each allele. They simply associate the two alleles to the SNP position, 

producing genotypes. For that reason a complementary process is necessary to elucidate 

the haplotypes (DNA strings inherited by each parent). The interest in haplotypes 

analysis in variation studies has been increasing in recent time. They have been 
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successfully applied to the identification of DNA variations relevant to several common 

and complex human diseases [7-11], for the identification of Quantitative Trait Loci 

genes in animal models [17], and recently for genomic prediction in livestock animals 

[12, 13]. Haplotype anaysis is now considered one of the most promising methods for 

studying gene-disease and gene-phenotype association studies [18-21]. 

Haplotype phasing refers to the computational process of deducing haplotypes from 

genotypes data. Numerous computational and statistical algorithms have been developed 

for addressing the haplotype phasing problem. We can categorize them into five different 

approaches: (1) parsimony; (2) phylogeny; (3) maximum-likelihood; (4) Bayesian 

inference; and (5) Genetic Algorithms based methods. The first two are combinatorial 

methods; they generally state an explicit objective function that one tries to optimize in 

order to obtain a solution to the inference problem. The next two are statistical methods; 

they are usually based on an explicit model of haplotype evolution, and the inference 

problem is then cast as a maximum-likelihood or Bayesian inference problem [22, 23]. 

The last is an emergent approach adopted from Artificial Intelligence. It is similar to 

parsimony approaches in that it attempts to optimize an objective function, but it differs 

in that it is mainly focused in applying a directed stochastic search in a landscape of 

candidate configurations and produces a set of feasible solutions. In the next section, we 

introduce each of the five major Haplotype Phasing Approaches. 
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1.3.1 Parsimony methods 

Parsimony-based approaches assume that a target population shares a relatively small 

number of common haplotypes due to linkage disequilibrium. Thus, they try to resolve 

ambiguous genotypes using already identified haplotypes. 

The first implemented algorithm was proposed by Clark [23]. The algorithm starts by 

identifying any genotype vectors with zero or one ambiguous site, since this vectors can 

be resolved in only one way. These haplotypes are called the initial resolved haplotypes. 

For resolving the remaining ambiguous genotypes, Clark proposed the following rule that 

infers a new resolved vector NR from an ambiguous vector A and an already resolved 

genotype vector R: 

Suppose A is an ambiguous genotype vector with h ambiguous sites and R is a 

resolved vector that is a haplotype in one of the 2h-1 potential resolutions of vector 

A. Then infer that A as the conflation of one copy of resolved vector R and 

another (uniquely determined) resolved vector NR. All of the ambiguous positions 

in A are set in NR to the opposite of the entry in R. Once inferred, vector NR is 

added to the set of known resolved vectors, and vector A is removed from the set 

of ambiguous vectors. 

 Clark’s algorithm for resolving the set of genotypes is to first identify the initial resolved 

set, and then repeatedly apply the Inference Rule until either all of the genotypes have 

been resolved, or no further genotypes can be resolved. 
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Figure 1.1 Application of Clark’s inference rule. The picture shown the initial set, the 
initial resolved, and the initial ambiguous subsets. 

 
 
 

Figure 1.1 shows an example of the application of Clark’s rule. At the top of the figure is 

the initial set from which the initial resolved and ambiguous subsets are elucidated. In the 

bottom, one member from the resolved and one from the ambiguous subsets are 

compared in order to elucidate a new haplotype.  

Clark’s algorithm is simple, intuitive, and has been known to work well in practice [23]. 

However, it has several limitations: (1) it requires at least one unambiguous genotype, 

otherwise the algorithm does not start, (2) genotypes may remain unresolved at the end of 

the procedure; and (3) a different order of iteration may yield a different set of 

haplotypes. Clark demonstrated through simulation samples that the two first limitations 

can be overcome if the size of the initial genotype set is large enough. To address the 

third limitation, he proposed to run the algorithm several times and select the solution 
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that resolves the largest number of genotypes. This criterion is referred as maximum-

resolution.  

The maximum-resolution criterion has been extensively analyzed by Gusfield [24] who 

proved that it is an NP-hard problem. In addition, several other groups have analyzed the 

problem from the perspective of finding the minimum set of haplotypes that can resolve 

all genotypes in a data set [25-28], calling the problem as maximum-parsimony (MP) or 

pure-parsimony (PP) problem. However this approach assumes that the observed number 

of distinct haplotypes in a population is much smaller than the possible number of distinct 

haplotypes under linkage disequilibrium. Therefore, when the data does not satisfy this 

condition, the performance of the parsimony-based methods becomes poor [22, 28]. 

Even with the great efforts that have been made to optimize parsimony methods, to date 

there is no complete satisfactory solution for the Clark’s rule limitations, and they remain 

as open problems. 

 

1.3.2 Phylogeny methods 

Phylogeny methods assume that haplotypes in a population evolved along the coalescent, 

a rooted tree describing the evolutionary history of a set of DNA sequences. This 

methods thus aim to find haplotypes that resolve target genotype data and follows the 

coalescent model as well. 

A coalescent is a stochastic process that provides an evolutionary history of a set of 

sampled haplotypes. This history of the haplotypes is represented as a directed, acyclic 

graph, where the lengths of the edges represent the passage of time, in number of 
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generations [22]. In the haplotyping problem we ignore time, so we are only concerned 

with the fact that the history is represented by a directed, acyclic graph. The perfect 

phylogeny assumes no recombination. Hence, if we trace back the history of a single 

haplotype H from a given individual I, we see that haplotype H is a copy of one of the 

haplotypes in one of the parents of individual I. It does not matter that I had two parents, 

or that each parent had two haplotypes. The backward history of a single haplotype in a 

single individual is a simple path, if there is no recombination. That means the histories 

of two sampled haplotypes (looking backward in time) from two individuals merge at the 

most recent common ancestor of those two individuals. 

There is an additional element of the basic coalescent model: the infinite-site mutation. 

This assumption states that, at each SNP site, a mutation only occurs once in the 

evolutionary history. Therefore, a chromosome with mutation at one SNP site must be a 

descendent of the ancestral chromosome in which the mutation originally occurred. 

Moreover, any chromosome without this mutation cannot be a descendant of a 

chromosome that has the mutation. 

A perfect phylogeny [15] is a computational term referring to a coalescent tree of 

haplotypes. Let H be a set of 2n haplotypes H = {h1, …, h2n}, where each haplotype hi 

consists of m SNPs. A perfect phylogeny is defined as a rooted tree T with 2n leaves that 

satisfies the following properties: 

 

1.  Each of the 2n haplotypes labels exactly one leaf of T.  

2.  Each of m SNPs labels exactly one edge of T. 
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3.  Every internal edge (i.e., one not connected to a leaf) is labeled by at most one  

     SNP. 

4. For any haplotype hi, SNPs labeled on the path from the root to the leaf 

specify the SNPs whose allele is mutated (i.e., minor) in hi. 

 

Figure 1.2a shows a perfect phylogeny for a set of four haplotypes. In general, the root of 

a phylogeny is always assumed to be a haplotype whose alleles are all major (i.e., all 0’s). 

A set of haplotypes has a perfect phylogeny if and only if for each pair of SNPs, there are 

no three haplotypes with values (0,1), (1,0), and (1,1) [29]. Figure 1.2b illustrates a 

violation of this condition. Haplotype 1, (1,0), has a mutation at the first SNP site, while 

haplotype 2, (0,1), has a mutation at the second SNP site. Thus, they cannot be 

descendant of each other, and the two internal edges that denote the mutations at the first 

SNP and at the second are drawn. Haplotype 3, (1,1), has mutations at both SNP sites, 

thus it should be the descendant of the subtree that either haplotype (1,0) or (0,1) belongs 

to. However, to make haplotype 3 belong to either subtree, another edge denoting the 

mutation at either the first SNP or at the second should be added to the respective subtree. 

This violates the infinite-site-mutation assumption, that is, at each SNP site, a mutation 

can occur only once. 
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Figure 1.2. Perfect and imperfect phylogeny. 
 
 
 

Different methods have been proposed to address the perfect and imperfect phylogeny 

[30-33]. However, although the performance of the perfect-phylogeny based methods has 

improved, all of them suffer from their strict conformity to the coalescent model; it is 

possible that no perfect phylogeny solution exists for a given data set. And if it exists, 

building the graph becomes a bottleneck due to excessive time required to reconstruct the 

correct tree. Actually constructing the graph in a reasonable amount of time is still an 

open problem [31]. 

Imperfect phylogeny-based methods (e.g., [32]) take a more realistic approach. In 

principle, the methods assume that most but not all haplotypes will fit the perfect 

phylogeny model. Thus, they consider a relaxed model that allows for a certain number 

of recurrent mutations and recombinations. Among multiple candidate solutions 

satisfying the relaxed model, the one with the maximum-likelihood given a genotype data 

set is chosen as the solution. However, handling the exponential number of candidate 

solutions remains an unsolved problem [15]. 
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1.3.3 Maximum-likelihood methods 

This approach is based in the idea that it is possible to use maximum likelihood to 

estimate haplotype frequencies and then to estimate haplotype pairs. It is straightforward 

to write down the likelihood function associated with any given sample of individuals if 

one makes an assumption about the process by which mating occurs within the 

population. The standard and usually reasonable assumption is that there is a process of 

random mating among individuals. Given this assumption, one can then derive an explicit 

likelihood function and the goal is to determine its maximum value [22]. 

 Formally, let D be the genotype data of n individuals, where each genotype consists of m 

SNPs, and the number of distinct genotypes in D is n’. Let gi denote the ith distinct 

genotype, and fi denote the frequency of gi in the data set D, where i = 1, …, n’. Let H be 

the set of all haplotypes consisting of the same m SNPs. The possible number of 

haplotypes in H is 2m. Let hj denote the jth distinct haplotype in H, and pj be the 

population frequency of haplotype hj, where j = 1, …, 2m. Unlike the genotype sample 

frequencies, fi, which we can directly calculate from the data set, the haplotype 

population frequencies, pj, are unknown, and we need to estimate them. 

Maximum-likelihood (ML) methods estimate the population haplotype frequencies, λ = 

{p1, p2, . . . , p2
m} based on their likelihood, L, given the genotype data D. Initially, the 

likelihood, L, can be stated as the probability of genotypes comprising D as: 

                                                    

                     Equation (1) 

 

! ! "
= = =#><$

=%=

' '

1 1 }|,{

)),(()()|(
n

i

n

i ghhhh

f

lkr

f

irr

ilklk

ii hhPgPDPL &&&



 

 13 

In brief, the likelihood of the data D is the product of the probabilities of all genotypes in 

D. Each genotype gi occurs fi times in D, and its probability Prλ(gi) can be computed by 

summing the joint probability of each haplotype pair that can resolve the genotype. Under 

the assumption of random mating (Hardy-Weinberg equilibrium assumption), the joint 

probability Prλ(hk,hl) of two haplotypes can be computed as the product of the two 

population haplotype frequencies pk and pl. When k = l, Prλ(hk,hl) =  (pk)2. Otherwise, 

Prλ(hk,hl) =  2pkpl. Thus the joint probability Prλ(hk,hl) can be substituted with the product 

of two population haplotype frequencies accordingly,  and the population frequencies that 

maximize equation (1) are computed. Using the estimated population frequencies, each 

genotype can be resolved by the haplotype pair with maximum population frequency 

among all pairs compatible with the genotype. 

For estimating the haplotype frequencies, the Expectation-Maximization algorithm (EM) 

has been the most successful approach [34-36]. The procedure is defined as follows: 

Initially, arbitrary values are assigned to the target haplotype frequencies p1, …, p2
n , 

which are referred to as p1
(0), …, p2

n
 
(0). In the expectation step, the haplotype frequencies 

are used to estimate the expected genotype frequency 

! 

ˆ P 
r"(h

k
,h

l
)

(t ) where (t) denotes the 

tth iteration. In the maximization step, the expected genotype frequency 

! 

ˆ P 
r"(h

k
,h

l
)

(t ), 

computed in the previous step, is used to re-estimate the haplotype frequencies  

! 

p
1

(t+1)
,..., pq

( t+1)
. The expectation maximization steps are repeated until the change in the 

haplotype frequency in consecutive iterations is less than some predefined value. The 
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complexity for one iteration of the EM algorithm is  

! 

O(n2
k
)  where n is the number of 

genotypes, and k is the maximum number of heterozygous SNPs in the genotypes. 

The main limitation of the EM algorithm lies in the exponential increase in the number of 

possible haplotypes as the number of heterozygous SNPs in a genotype grows. Recently, 

partition-ligation strategies and segmentation based on observed linkage disequilibrium 

patterns in natural populations have been implemented [35, 36] in order to overcome this 

problem. However, these algorithms predict haplotype configurations regarding just to 

specific block-based models, due to the partition-ligation approaches they use, and do not 

attempt to directly relate observed genetic variation to underlying demographic or 

evolutionary processes, such as population size and recombination [35]. 

 

1.3.4 Bayesian inference methods 

Bayesian haplotype reconstruction methods aim to solve the inference problem by 

regarding the unknown haplotypes as unobserved random quantities and evaluate their 

conditional distribution in light of the genotype data. They combine prior information -- 

beliefs about what sorts of patterns of haplotypes we would expect to observe in 

population samples-- with the likelihood -- the information in the observed data -- in 

order to calculate the posterior distribution -- the conditional distribution of the 

unobserved haplotypes (or haplotypes frequencies), given the observed genotype data 

[37]. 

In Bayesian approaches to complicated statistical problems, it is helpful, conceptually, to 

distinguish two separate issues. 
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I. The model or prior distribution for the quantities of interest, in this case for 

population haplotype frequencies. For a given data set, different prior 

assumptions will in general lead to different posterior distributions, and hence 

to different estimates. 

II. The computational algorithm used. For challenging problems, the posterior 

distribution cannot be calculated exactly. Instead, computational methods – 

typically Markov chain Monte Carlo (MCMC) – are used to approximate it. 

Different tricks, or different number of iterations, will change the quality of 

approximations to the Bayesian answer [37].  

 

The most successful method [38], implemented in the software PHASE, uses Gibbs 

sampling, a type of MCMC algorithm, to obtain an approximate sample from the 

posterior distribution of H given G,  Pr(H/G). The algorithm starts with an initial guess 

H(0) for H, repeatedly chooses an individual at random, and estimates that individual’s 

haplotypes under the assumption that all other haplotypes are correctly reconstructed. 

Repeating this procedure enough times results in an approximate sample from Pr(H/G). 

An improved version of PHASE including considerations of linkage disequilibrium decay 

and recombination is the most accurate method publicly available to date [35]. In [39], 

another such method (implemented in HAPLOTYPER software) uses the Dirichlet 

distribution for sampling along with a model of inheritance where parents and children 

may be independent of each other.  
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Bayesian methods are stochastic and each execution of the program may result in 

different solutions since the derivations are dependent on the initial configuration, which 

is randomly selected. There are reported situations for which the procedure implemented 

in PHASE may be under-confident in the estimated haplotypes [35]. This occurs when 

analyzing small data sets (few markers and/or few individuals), because, for such data 

sets, the method may tend to overestimate the recombination rates. Despite the better 

accuracy demonstrated by Bayesian methods, the main problem is in the time consumed 

for inferring haplotypes. They are on average 10 or more times slower than the other 

methods.  

 

1.3.5 Genetic algorithms based methods 

Genetic Algorithms (GAs) are a particular class of the Evolutionary Computation family 

of Artificial Intelligence techniques applied to optimization problem solving. GAs tries to 

mimic the Natural Selection process (survival of the fitness) and based on some genetic 

operators as selection, mutation, and crossover make a group of candidate solutions to 

evolve and converge to the real solution of a problem in an iterative way. 

The generic GA starts with a set of solutions (represented by chromosomes) called 

population. Solutions from one population are selected and used to generate a new 

population. This is motivated by the hope that the new population will be better than the 

previous one. Solutions, which are selected to form new solutions (offspring) are selected 

according the their fitness – the more suitable they are the more chance the have to 
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reproduce. This is repeated until some condition (number of iteration or improvement of 

the best solution) is satisfied [40]. We can summarize the generic GA in the next steps: 

 

1. [Start] Generate a random population of n chromosomes (candidate solutions 

for the problem). 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population. 

3. [New population] Create a new population by iterating the next steps: 

a. [Selection] Select two parent chromosomes from the population 

according to their fitness (the better fitness the bigger chance to be 

selected). 

b. [Crossover] With a crossover probability pc cross over the parents to 

form a new offspring (children). If no crossover was performed, 

offspring is an exact copy of parents. 

c. [Mutation] With a mutation probability pm mutate offspring at each 

locus (position in chromosome). 

d. [Accepting] Place new offspring in a new population. 

4. [Replace] Use new generated population for a further run of algorithm. 

5. [Test] If the ending condition is satisfied, stop, and return the best solution in 

the current population. 

6. [Loop] Go to step 2.  
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The strength of GAs in optimization problems resides in the good balance of crossover 

and mutation operators that allow the algorithm to exploit the best solutions found so far 

and at the same time to explore the solutions landscape [41]. While mutation allows the 

algorithm exploit local regions of solutions, crossover allows the algorithm to avoid 

getting stuck in a local minimum (or maximum) and explore different regions in search 

for better solutions. 

In recent years, GAs have been applied to the haplotype inference problem [17, 42, 43] 

and they have shown to be a good alternative to overcome the time and space algorithmic 

complexity affecting the other approaches. 

Tapadar et al., [42] implemented a genetic algorithm to infer haplotypes in pedigrees. 

They use as input to the algorithm: (1) the family structure, (2) the genotypes of every 

member of the family at each of L loci, and (3) the number of recombinations desired. 

The GA reconstructs the haplotypes for each individual in the pedigree aiming to obtain 

the haplotypic configuration with the minimum number of recombinations (the fitness 

function is defined as the number of recombination events required to explain a specific 

haplotypic configuration of all members of a family). 

The runtime and performance of the algorithm depends on the number of loci and the 

number of candidate pedigree conformations (population size) considered. With small 

population sizes the algorithm converges to a local minimum, and with large population 

sizes the algorithm converges to the global minimum. Some of the problems this 

implementation has are: (1) occasionally, the algorithm converges to an incorrect 

solution; (2) the algorithm finds a specific configuration based on the number of 



 

 19 

recombination desired, but for each number of recombination there exist several 

configurations satisfying the pedigree structure; (3) the algorithm does not work with 

missing data, and (4)  the time required to find each solution depends on the initialization 

of the algorithm variables, therefore, for each different initialization it requires a different 

time to find the solution. 

There are different problems that need to be overcome to make this approach generate 

more realistic solutions. First, it needs to be modified and fitted to a specific biological 

model. The fact that just recombination is taken into account, leads the algorithm to 

ignore patterns as linkage disequilibrium, mutation rate and others that make other 

approaches generate more accurate solutions. Second, the inclusion of more biological 

parameters would help the algorithms to converge to the best solution in a more 

biological-based landscape and not on a pure numerical-based landscape at it does in the 

current implementation. And third, the convergence of the algorithm needs to be more 

controlled in order to assure that it always tends to more realistic solutions. The genetic 

operators (crossover, mutation and selection) need to be modified and optimized to 

reflect a more realistic behavior. 

Another recent implementation of a GA for haplotype reconstruction takes advantage of 

the potentiality of GAs to parallelize computations and divide the algorithm in multiple 

CPUs [43].  In addition, this method includes an strategy called joint updating scheme for 

efficiently update segregation indicators (gene flow). The performance of this method 

was compared to that of SimWalk2, a method that uses simulated annealing for haplotype 

reconstruction [44]. Overall, the GA method, using 4 processors, increased the 
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computational efficiency up to ~8 times compared to SimWalk2. In summary, the results 

from this work are another promising reason for the use of GAs for haplotype 

reconstruction. 

 

1.3.6 Haplotype inference in pedigrees 

Almost all previously discussed methods for haplotype inference focus on inferring 

haplotypes in unrelated populations. Recently, given the advantages of high throughput 

genotyping technologies and the sequencing of human co-evolved species genomes, the 

analysis of pedigrees of individuals from populations has become of great interest. 

Haplotype inference based on pedigree data has two fundamental assumptions: (1) the 

given genotype data has a pedigree structure called pedigree graph. That is to say, the 

individuals in a population are genetically related; (2) the inheritance satisfies the 

Mendelian law, i.e. out of two alleles in every SNP site of the genotype of a child, one 

comes from his paternal genome and the other from his maternal genome, and there is no 

mutation to occur during the inheritance. One can then get a better estimation of 

haplotypes because the haplotypes of an offspring are constrained by their inheritance 

from its parents [45]. 

Three different models, based on the fact that few recombinations occur when the 

haplotypes of an offspring inherit from parents, have been proposed in the literature in 

order to formalize the haplotyping problem in pedigrees. We can enumerate them as 

follows: 
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1. Minimum Recombination Haplotype Configuration (MRHC). In this model, 

given a valid genotype pedigree graph G, we aim to find a realization H of G 

involving a minimum number of recombination events. 

2. Zero Recombination Haplotype Configuration (ZRHC). In this model, given a 

valid genotype pedigree graph G, we aim to find a realization H of G 

involving no recombination events or decide that such realization does not 

exist. 

3. k – minimum Recombination Haplotype Configuration (k-MRHC). In this 

model, given a valid genotype pedigree graph G, we aim to find a realization 

H of G such that the total number of recombinations is minimal and the 

number of recombinations on ach parent-offspring pair is at most k.  

 

Different strategies have been used for solving the haplotyping problem in pedigree data 

including the previous models and other searching algorithms [32, 42, 46-51]. Recently a 

review comparing the most widely used methods [45] shows that, in general, the 

incorporation of pedigree structure can improve the accuracy for haplotype frequency 

estimation and haplotype reconstruction, but the run-time of the existing programs 

increases substantially with an increased number of markers. From this study, it is not 

possible to give a general conclusion that the existing methods perform well in all cases 

since the data used in the analysis is from only one species (human) in which the genetic 

structure is substantially different from other species (e.g. cattle) and the pedigree length 

is restricted to two or three generations. Therefore, it is of great interest to perform a 
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more extensive study on larger pedigrees, and to develop more efficient and more 

accurate haplotyping methods for this challenging situation. 

 

1.3.7 Current work in cattle pedigree haplotyping 

Recently, different publications have reported analysis of linkage disequilibrium in cattle 

inferring haplotypes from genotypes using the two-site Expectation Maximization allele 

frequency estimator described by [34] or estimating LD parameters directly from 

genotypes [52-55]. The development of two different software programs based on non-

human pedigrees data and Half-Sib families are reported in the literature [51, 56]. The 

first implements a rule-based haplotype reconstruction method and is aimed specially for 

analysis of large pedigrees for small chromosomal segments, where recombination 

frequency within the chromosomal segment can be assumed to be zero. The second 

implements a Monte Carlo approach for estimation of haplotype probabilities within half-

sib (paternal) families, based on multilocus genotypes of the half sibs. None of the 

articles reports extensive validations or comparison with different approaches for support 

the results. 

Given the rapid growth of genetic information from cattle pedigrees and the lack of 

efficient methods for handling the haplotype inference, it is evident we need to develop 

new strategies and provide reference methods for comparison with existing approaches. 

 

1.3.8 Haplotype block characterization 

With the completion of the human genome sequence, a great effort was initiated by 
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different groups in order to characterize the genetic variation among individuals and 

provide a powerful foundation for gene-disease association studies [57-59]. Haplotype-

based methods are to date the most promising approach for doing gene-disease studies 

[15]. Therefore, a good characterization of haplotype structure in genes affected by 

disease and regions responsible for phenotypic traits is of relevant importance. In the case 

of cattle, the situation is not less important given that the association of genetic regions 

with animal diseases and with quantitative traits, as milk and beef quality, have a direct 

impact in human health. 

Gabriel et al., [59] demonstrated that investigating regions for evidence of recombination 

and linkage disequilibrium patterns it is possible to parse the human genome into 

haplotype blocks, and that these blocks share just a few common haplotypes. Gabriel's 

study provided a solid foundation for the construction of the haplotype map of the human 

genome. In a latter study, Guryev et al., [60] demonstrated that haplotype block structure 

is conserved across mammals. In addition, it is possible to use common approaches for 

characterizing block structure in mammal species. Next, a brief review of two basic 

concepts (linkage disequilibrium and haplotype block definition) is presented. A 

complete review can be found in [59, 61].  

 

1.3.8.1 Linkage disequilibrium 

Linkage disequilibrium refers to the nonrandom association between alleles. It happens 

when alleles at two or more loci do not segregate independently, and may indicate a 

functional interaction between loci associated with a phenotype of interest [62]. 
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Finding linkage disequilibrium patterns from the haplotypes is the base for defining 

haplotype blocks. The most widely used measure of LD is the square correlation 

coefficient between SNP pairs. It is defined as: 

    
2211

2

2

qpqp

D
r =  

where:            1111
qppD != ,  linkage disequilibrium coefficient.  

p1 =   frequency of Minor allele in SNP1, 

 q1 = frequency of Minor allele in SNP2,  

  p2 = frequency of mayor allele in SNP1, 

  q2 = frequency of mayor allele in SNP2, and 

  p11 = frequency of the observed zygote of both minor alleles among 

         all individuals. 

 

1.3.8.2  Haplotype block definition 

Given the r2 values for all possible SNP pairs in the data, we can define haplotype blocks 

in different ways. One widely used procedures for defining haplotype blocks is as follows 

[61]: 

a) Block definition based on r2 values: 

1. Begin a block by selecting the pair of adjacent SNPs with the 

highest r2 value (no less than α = 0.4) 
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2. Repeatedly extend the block if the average r2 value between an 

adjacent marker and the current block members is above β (=0.3) 

and all individual r2 values are above γ (=0.1). 

Applying the above procedure, a set of haplotype blocks for different populations 

can be found. Then, the distribution of these blocks, along with the size and other 

statistics can be computed and compared. 

 

1.4 Open problems from literature review 

From this literature review we can state that despite the great effort in solving the 

haplotyping problem, there still exist many specific details that remain unsolved, and 

even in specific cases in which some algorithms seem to perform well, they have been 

tested just with data from one species and is not possible to assume they give general 

solutions. 

Some of the specific problems that remain unsolved are: 

1. The haplotyping accuracy of all methods decreases as the linkage disequilibrium 

drops. 

2. Current algorithms do not work well for data sets with moderate amount of 

genotyping errors or missing alleles. 

3. Most haplotyping algorithms show poor phasing accuracy for rare haplotypes. 

4. All methods incorporate just one or two aspects of realistic population genetic 

models. Therefore, there is no method that takes into account most of the 

parameters that characterize the specific genetic of a population (i.e., 
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heterozygosity, mutation rate, recombination, LD decay, inbreeding, diversity, 

demographic-specific, genetic drift, migration, signature of selection, etc). 

5. Pedigree data with dense markers and deep generational genotype data is still 

unsolved in time and space algorithmic complexity. 

 

There is no doubt that as new species are being sequenced more data for validating and 

adjusting existing methods is becoming available. At the same time, better strategies for 

accurately inferring haplotypes from genotype data are required. In addition to improving 

the accuracy of existing strategies, one of the main problems to solve in the near future is 

the management of very large data sets. In this thesis, we analyze the specific case of 

cattle pedigrees, and evaluate the suitability of a genetic algorithm to solve the 

haplotyping problem, improving time and space algorithmic complexity. 

 

1.5 General and specific objectives of this thesis 

As stated previously, the general objective of this work is to identify the most appropriate 

methods to infer haplotypes from the available genotype data from cattle, and to 

characterize the haplotype block structure based on patterns of linkage disequilibrium 

within different cattle breeds. 

The methods proposed and developed in this dissertation project will be applied and 

tested in cattle data. The work is mainly focused on methods for performing the inference 

of haplotypes and characterization of haplotype block structure based on linkage 

disequilibrium patterns. The specific objectives that are addressed are: 
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1. Evaluate alternative methods for haplotype inference in related and unrelated 

individuals from cattle data. 

2. Apply haplotype inference to cattle data, inferring haplotypes and performing a 

characterization of haplotype block structure based on linkage disequilibrium 

patterns. 

3. Develop an improved method for haplotype inference for cattle. 
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2 Comparing algorithms for haplotype inference in cattle data 

 
 
 
 
2.1 Introduction 

This chapter describes a comparison of the runtime and the similarity of inferred 

haplotypes of three different algorithms applied to unrelated bovine samples, and 

provides a brief review of the capability of publicly available software for haplotype 

inference in a typical cattle pedigree. In the case of unrelated individuals, PHASE, a 

Bayesian method which implements a coalescent-based model for haplotyping, 

fastPHASE, which implements a Maximum likelihood strategy on a cluster model for 

haplotyping, and MERLIN, which implements a likelihood estimations in a phylogeny 

model for haplotyping, were used to infer haplotypes from two different datasets. One set 

consists of 157 SNPs from chromosome 5 in 32 Holstein cows, and another set consists 

of 2,465 SNPs from chromosome 6 in 27 unrelated cows from the Angus breed. In the 

case of related individuals, HAPLORE, MERLIN, and SIMWALK2 software were 

applied to a Holstein breed pedigree consisting of 79 individuals, from which 40 are 

founders. This pedigree structure was obtained from the USDA-ARS Bovine Functional 

Genomics Laboratory (Beltsville, MD, USA) and its size represents approximately the 

average size of pedigrees used by USDA in association studies. 
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2.2 Haplotyping unrelated individuals 

The PHASE algorithm [37, 38, 63] is a Bayesian approach to haplotype inference that 

uses ideas from population genetics--in particular, coalescent--based models--to improve 

accuracy of haplotype estimates for unrelated individuals sampled from a population. The 

algorithm attempts to capture the fact that, over short genome regions, sampled 

chromosomes tend to cluster together into groups of similar haplotypes. With the explicit 

incorporation of recombination in the most recent version of the algorithm [63], this 

clustering of haplotypes may change as one moves along a chromosome. The method 

uses a flexible model for the decay of LD with distance that can handle both “blocklike” 

and “nonblocklike” patterns of LD. Algorithmically, the method uses coalescent theory to 

assign prior predictions about the distribution of haplotypes. It then uses a Markov- 

Chain-Monte Carlo algorithm to estimate haplotypes from observed genotypes. 

The fastPHASE algorithm [35] is also based on the idea that, over short regions, 

haplotypes in a population tend to cluster into groups of similar haplotypes. But it differs 

from PHAES in that it defines haplotype clusters based on relative frequencies of alleles. 

It then uses a Hidden Markov Model to reflect the fact that alleles at nearby markers are 

likely to arise from the same cluster.  Algorithmically, it makes use of likelihood 

calculations to estimate frequencies and sample pairs of haplotypes from their joint 

distribution given the unphased genotype data. fastPHASE is faster than PHASE because 

its computation increases only linearly with the number of individuals and it can be 

applied directly to unphased genotype data, with unknown haplotypic phases integrated 

out analytically rather than via a time-consuming and tedious-to-implement MCMC 
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scheme, as used by PHASE.  The disadvantage is that fastPHASE is not well adapted to a 

realistic genetic model for allele clustering, so results are not guarantied to be the best 

solution. 

The MERLIN algorithm [32] is a phylogeny approach based on the idea that patterns of 

gene flow in general pedigrees can be modeled by sparse inheritance trees. 

Algorithmically, it first constructs trees describing gene flow pattern for SNP markers. 

Then it uses the Lander-Green algorithm [64] to calculate likelihoods for all gene flow 

patterns at arbitrary chromosomal locations. Finally, it finds haplotypes by finding the 

most likely path of gene flow. 

   

2.2.1 Results and evaluation of inferred haplotypes 

Haplotypes for the two datasets were inferred using the three programs, PHASE, 

fastPHASE, and MERLIN. For the purpose of this test, even when individuals share 

common ancestors several generations back, for haplotype inference we took them as 

unrelated. Three different aspects were evaluated: (1) Algorithm runtime, which is time 

taken by each program to infer haplotypes; (2) Similarity between haplotypes generated 

by the three algorithms; and (3) Agreement graphs, which consists in finding the most 

frequently predicted allele for each marker. 

  

2.2.1.1 Algorithm runtime  

The time taken by each program to infer haplotypes in both datasets was measured in 

order to make a comparison of inference speed. Table 1 summarizes the results. The 
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computer used for this work was an Mac server running OS X, with 2 x 3 GHz Dual-Core 

Intel Xeon processors, and with 4GB 667 MHz DDR2 FB-DIMM. As we can see from 

table 1, runtime from fastPHASE and MERLIN are comparable, while PHASE is much 

slower. 

 

Table 2.1 Runtime for haplotype inference from the three algorithms. 
 

Runtime Algorithm 
Set of 154 SNPs Set of 2,465 SNPs 

PHASE 2.1 ~ 228 hrs > 300 hrs (out of time) 
fastPHASE 1.14 ~ 11 minutes ~  20 minutes 
MERLIN 9.8 ~ 9 minutes ~  15 minutes 

 
 
 
 
2.2.1.2 Haplotype similarity 

For computing haplotype similarity, we took, for each individual, the results from two 

different programs, and counted, comparing marker by marker, how many markers have 

the same allele assigned. Then we divided by the total of markers. We repeated the 

comparison for the four possible combinations of haplotype comparisons (two from each 

individual). Figure 2.1 shows the percent of similarity for all individuals in the Holstein  

dataset. 
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Figure 2.1 Haplotype similarity graph from Holstein dataset 
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From figure 2.1 we observe that the similarity of inferred haplotypes between PHASE 

and fastPHASE is ~80%. Similarity between fastPHASE and MERLIN is ~70%, and 

between PHASE and MERLIN is ~65%.  

Figure 2.2 shows a graph of the percentage of haplotype similarity between fastPHASE 

and MERLIN for all individuals in the Angus set. 

 
 

 
 

Figure 2.2 Haplotype similarity graph for Angus dataset 
 

From figure 2.2 we observe that the similarity between haplotypes inferred from 

fastPHASE and MERLIN for the set of Angus is between 82% and 92%. 

 
 
2.2.1.3 Agreement graphs 

The general idea for the agreement graphs is as follows: having identified (from the 

results) the haplotypes inherited from the mother and from the father corresponding to 
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each initial genotype, find for each marker, making a consensus from the three 

algorithms, the allele that appears the most for each parent haplotype. Repeat this for all 

individuals and make a consensus with all the population haplotypes. Make a graph of 

marker against number of the most frequently predicted allele. 

In our case, since we do not know (from the inferred haplotypes) which haplotype was 

inherited from the father, and which from the mother, we compared the first haplotype 

from the inferred pair (we called them first haplotype rows), all second haplotypes (we 

called them second haplotype rows) and randomly taking either first or second  (we 

called them random haplotype rows), and we obtained three different measures which are 

plotted in the agreement graphs. An example of how we find the most predicted allele is 

as follows: 
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Figure 2.3 shows the agreement plot for the Holstein set, and figure 2.4 shows the 

disagreement plot for the first 100 SNPs in the Angus set. In both sets, even taking 

agreement or disagreement, we notice that from the algorithms analyzed, comparing the 

first row haplotypes, the second row haplotypes, and taking randomly either the first or 

second row haplotypes, the most predicted allele is very similar times predicted. 

 

 
 
Figure 2.3 Agreement plot for the Holstein set shows that the most predicted allele is very 
similar times taking either the first, the second and random haplotypes. 
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Figure 2.4 Disagreement plot for first 100 markers in the Angus set. 

 

2.3 Haplotyping pedigrees 

In the last fifty years, with the refinement of artificial insemination and inbreeding 

techniques, high selection pressure has been applied to cattle reproduction in the search 

and maintenance of meat, milk, and fat QTLs. This selection has forced cattle pedigrees 

to be complex with large inbreeding loops and multigenerational structures. A typical 

pedigree can have hundreds or thousands members with tens of generation. Due to the 

high cost and time consuming requirements of molecular methods for haplotyping, 

genotyping approaches have become the standard methods for capturing the genetic 

structure in large population samples. This has made computational methods for 

haplotyping become highly relevant in the process of genetic structure analysis. In the 
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case of cattle, algorithms need to be able to manage large samples, with a high degree of 

complexity. 

Several software programs for haplotype reconstruction in general pedigrees are publicly 

available [65], however many have been designed and tested in small or moderate-sized 

pedigrees. We evaluated three of the most widely used programs for general pedigrees 

(HAPLORE, MERLIN, and SIMWALK2) and attempted to reconstruct haplotypes for a 

cattle pedigree consisting of 79 individuals, from which 40 are founders. 

 

2.3.1 Results from cattle pedigree haplotype inference 

HAPLORE [46] implements an Expectation-Maximization algorithm to estimate 

haplotype frequencies. Previous to the application of the EM algorithm, a set of logic 

rules are applied to the initial genotypes in order to perform a linkage analysis and reduce 

genotypes and haplotypes to configurations without any recombinations. This limitation 

made our dataset unsuitable for analysis by HAPLORE, given that it contains 

recombinations. 

The second software we considered was MERLIN [32], described in subsection 2.2. 

MERLIN was not able to analyze our data either because it is limited to pedigrees 

containing  fewer than approximately 27 non-founders. The reason is that it makes use of 

the Lander-Green algorithm to calculate likelihood of feasible gene flow paths. This 

algorithm is of complexity proportional to m * 4n, where m is the number of markers, 

and n is the number of non-founders in the pedigree. For pedigrees with approximately 

27 non-founders, the algorithm becomes computationally infeasible.   
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The third software we evaluated was SIMWALK2 [44, 66, 67], which turned out to be 

the only public available software capable of handling large and complex pedigrees. It 

implements a MCMC algorithm capable of searching valid haplotype configurations in 

proportion to their likelihood. It makes use of a simulated annealing algorithm [68] in 

conjunction with a random walk approach [69] to find candidates and develop 

consecutive solutions to reach the optimal haplotypes. The analysis of performance and  

haplotypes inferred by SIMWALK2 are presented next: 

To evaluate the accuracy of Simwalk2 inferring haplotypes, we simulated a set of 50 

SNPs for the 79 individuals Holstein pedigree. We used SIMPED [70], a program to 

generate haplotype and genotype data for pedigree structures. We assumed a constant 

recombination rate of 0.005 across all the pedigree. We evaluated three different 

measures from simwalk2: (1) run time, (2) number of recombinations in the inferred 

haplotypes compared to the number of recombinations in the real (simulated) haplotypes, 

and (3) the number of switch errors, computed as the proportion of heterozygote SNPs 

whos phase is wrongly inferred relative to the previous heterozygote SNP [37]. Table 2.2 

presents the results. 

 

Table 2.2 Evaluation of simwalk2 inferring haplotypes for 50 SNPs in the Holstein  
   pedigree. 
 

Program evaluated Runtime Number of recombinations Switch errors 
Simwalk2 ~10 hrs 600 601 
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The real haplotypes contained a total of 37 recombinations. Then the difference in 

recombiantions from the inferred haplotypes compared to the real ones was 563. 

 

2.4 Summary 

For unrelated individuals, MERLIN and fastPHASE are fast and comparable while 

PHASE is very slow.  However, the literature reports that PHASE is the most accurate 

software for haplotype inference in unrelated individuals. We found that PHASE and 

fastPHASE produce the most similar haplotypes, with an average of ~80% of similarity.  

From the agreement graphs we can conclude that, regardless of the order in which 

resulting haplotypes are taken as paternal or maternal, the most frequently predicted 

allele is consistent.  As a final conclusion for the analysis of unrelated individuals, in the 

case of cattle data which generally consist of large samples in individuals and SNPs, 

fastPHASE seems to be the most adequate method to infer haplotypes. Even when 

MERLIN is faster than fastPHASE, it was designed for analysis of pedigrees and 

computes gene flow trees, which are not present in unrelated individuals. In addition to 

being fast, fastPHASE produces very similar results to those from PHASE, which has 

been reported as the most accurate software so far. Of course, when the sample is small 

and the number of SNPs is not large, PHASE would be preferred over fastPHASE. 

For related individuals, the only publicly available software capable of handling large and 

complex pedigrees typical in cattle datasets appears to be SIMWALK2. However, it is 

slow and its accuracy has not been extensively tested. For this reason, we address the 
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challenges to develop a new approach for haplotype inference capable of managing large 

and complex pedigrees with improved computational and time complexity. 
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3 High-resolution haplotype block characterization in cattle 
 
 
 
 

3.1 Introduction 

The rapid improvement in high-throughput single nucleotide polymorphism (SNP) 

discovery and genotyping technologies is making possible the availability of many 

thousands of SNP markers for genome-wide association studies [16, 71-74]. High-

resolution linkage disequilibrium (LD) maps and characterizations of haplotype block 

structure are being generated for different organisms, confirming that elucidating in the 

fine-scale the structure of LD at the population level is crucial for understanding the 

nature of the highly non-linear association between genes and phenotypic traits, such as 

complex diseases and quantitative trait loci (QTL) [17, 75, 76]. 

Initial studies in humans [57, 59] demonstrated that, by investigating regions for evidence 

of recombination and LD patterns, it was possible to parse the human genome into 

haplotype blocks, and that those blocks shared just a few common haplotypes. This result 

provided impetus for the construction of LD and haplotype maps of the human genome. 

Furthermore, haplotype block structure appears to be conserved across mammals [60]. 

Recently, high resolution LD and haplotype block maps were generated for humans using 

a set of 3.1 million SNPs genotyped in 270 individuals from four geographically diverse 

populations [77]. Overall, 98.6% of the assembled genome is within 5 kb of the nearest 
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polymorphic SNP. The analysis of these high-resolution data is helping to infer with great 

precision, information about population history, recombination and mutation rates, 

evidence of positive selection, and is providing invaluable information for gene-disease 

association studies [78].  

An initial bovine study [52] reported characterization of haplotype blocks in Holstein-

Friesian cattle using a 15K SNP chip with an average intermarker spacing of 251.8 kb. 

Another study [53] reported haplotype block structure for 14 European and African cattle 

breeds using 1536 SNPs. This study had an average resolution of 311 kb intermarker 

distance and was focused mainly on chromosome 3.  Recently, the Bovine HapMap 

Consortium [6]  generated an assay of 30K SNPs and genotyped 501 animals sampled 

from 19 worldwide taurine (Bos taurus) and indicine (Bos indicus) breeds, plus two 

outgroup species (Anoa and Water Buffalo). In this chapter we present the 

characterization of LD and haplotype block structure across 101 high-density targeted 

regions from the bovine HapMap data, spanning 7.6 Mb of the genome with an average 

intermarker distance of ~4 kb. The extent of LD is presented along with the estimation of 

ancestral population size for different generations. In a first level of analysis, haplotype 

block characterization allowed us to elucidate the breed-specific block structure and its 

variability compared with all other breeds. In a second level of analysis, haplotype block 

density correlation, haplotype block boundary comparison, and haplotype sharing 

between breeds and subgroups helped us to elucidate high-resolution similarities between 

breeds, and also permitted us to differentiate breeds by geographic separation versus 
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those related by shared ancestry. Finally, breeds were clustered given computed genetic 

distances based on haplotype block analysis. 

 

3.2 Bovine Hap Map data 

The Bovine HapMap consortium provided the data for this project. The breeds belong to 

Bos Taurus, Bos indicus, and composite (hybrid breed composed from crossing two 

different breeds) breeds. A total of 501 animals from 19 breeds form the data set. Table 

3.1 lists the breeds and show number of individuals genotyped. Around 24 animals were 

genotypes per breeds, with the exception of Holstein, Limousin, and Red Angus where 

53, 42, and 12 animals were genotyped, respectively. 

   

Table 3.1 Number of animals per breed in the initial HapMap database 

Breed No. of individuals Breed No. of individuals 

Charolais 24 Jersey 28 

Limousin 42 Norwegian Red 25 

Piedmontese 24 Gir 24 

Romagnola 24 Nelore 24 

Hereford 27 Brahman 25 

Angus 27 Beef Master 24 

Red Angus 12 Santa Gertrudis 24 

Brown Swiss 24 Sheko 20 
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Guernsay 21 N’Dame 25 

Holstein 53 Buffalo and Anoa 2 each 

 

Table 3.2 lists the chromosomes and number markers genotyped. Chromosomes 6, 14 

and 25 contain more markers than the rest. In the case of chromosomes 6 and 14 where 

selected to be denser in markers because evidences of dairy QTLs due to selection 

pressure to which some breeds have been exposed in the last years. Chromosome 25 was 

selected as control chromosome due to absence of known QTLs. 

 

Table 3.2 Initial number of markers in the HapMap data. 

Chromosome Markers Chromosome Markers Chromosome Markers 

1 1537 11 1242 21 669 

2 1512 12 879 22 698 

3 1316 13 999 23 588 

4 1320 14 2794 24 694 

5 1246 15 851 25 1208 

6 2485 16 885 26 602 

7 1101 17 828 27 498 

8 1224 18 660 28 520 

9 1018 19 690 29 479 

10 1139 20 882 X 573 

 



 

 45 

3.3 Animal samples 

All breeds in this study belong to the taurus and indicus subspecies of Bos taurus, and 

represented several different geographical regions: N'Dama and Sheko are African 

breeds; Angus, Hereford, and Red Angus are British beef breeds; Charolais, Limousin, 

Piedmontese, and Romagnola are European beef breeds; Guernsey and Jersey are British 

dairy breeds; Brown Swiss, Holstein, and Norwegian Red are European dairy breeds; 

Brahman, Nelore, and Gir are indicus breeds; Beefmaster, and Santa Gertrudis are 

composites of taurine-indicine origin. Individuals were selected to be unrelated at least 

for 4-5 ancestral generations, with the exception of 44 trios of sire, dam and offspring 

included to allow quality control of the data and to assist in the determination of allelic 

phase relationships. The DNA samples were taken from whole blood or cryopreserved 

semen. 

 

3.4 Data filtering 

For accessing the overall quality of samples and work with a consistent set of genotypes, 

some filters were applied to the initial data. It is important to mention that this quality 

control procedure was taken from the International HapMap consortium. The filters 

included removal of all genotypes that had >20% missing genotypes, that violated Hardy-

Weinberg frequency distribution, or that violated Mendelian inheritance.  Data were also 

removed for all animals with genotype completeness <98%, for markers with estimated 

genotyping error >5% and at least one breed out of Hardy-Weinberg equilibrium, as well 

as markers that were monomorphic for all breeds, markers with minor allele frequency 
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<0.05 among all breeds, markers containing >2 discordant trios, and markers assigned to 

unknown chromosome. After this QC procedure, the data set contained 31,857 markers 

from 487 animals, and excluded Anoa and Water Buffalo. 

In addition to previous QC filters, we removed monomorphic SNPs breed by breed in 

order to avoid the analysis of uninformative data. 

 

3.5 Selection of high-density regions 

In order to facilitate the study of haplotypes extended over multiple markers, we focused 

on the regions of the bovine genome that had the highest density of markers in the 

HapMap data set.  We focused exclusively on chromosomes 6, 14, and 25, which were 

selected for additional genotyping due to the presence of known QTL of interest in 

chromosomes 6 and 14, and the absence of known QTL on chromosome 25.  

Chromosome 25 therefore served as a control for studies focusing on high-density 

regions. For this study, we defined high-density regions as non-overlapping genomic 

windows of 100 kb containing 10 or more markers and a maximum gap between markers 

of 20 kb. This definition identified 101 high-density regions covering a total genomic 

distance of 10.1 Mb. The effective region (regions within markers) covered is 7.6 Mb and 

contains a total of 1,981 markers with an average of one marker each ~4 kb. The average 

markers per region were 19.61. And, the average distance between adjacent high-density 

regions on the same chromosome was 1.46 Mb, but they were not evenly spaced. There 

were 31 instances in which two adjacent high-density regions were contiguous on the 

chromosome. Table 3.3 presents the results by chromosome. 
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Table 3.3 Structural details of the 101 high-density regions selected on chromosomes 6, 
 14, and 25. 
 
 BTA 6 BTA 14 BTA 25 Summary 
High-density regions 30 57 14 101 
Markers in regions 547 1228 208 1,981 
Average markers per region 18.17 21.54 14.86 19.61 
Distance scanned 3 Mb  5.7 Mb 1.4 Mb 10.1 Mb 
Effective distance 2,276,304 4,465,915 896,479 7,638,698 
Max gap between markers (kb) 19.47 19.7 19.35 19.7 

 
 
 
3.6 SNP allele frequencies across population samples in high-density  
      regions 

In order to investigate how informative the SNPs occurring in the targeted regions were, 

we computed the allele frequency distribution and the average minor allele frequency 

(MAF) across all markers in the targeted regions. Figure 3.1 presents the average by 

breed, and figure 3.2 presents values by group. 

 

 

Figure 3.1 Average proportions of SNPs of various frequencies by breed in high-density 
regions (intervals’ upper limit inclusive). 
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The breeds Nelore, N’Dama, and Gir exhibited the lowest proportion of polymorphic 

SNPs, between 57% and 62%, compared to the remaining breeds, which exhibited 77% 

to 95%. Thus a substantial fraction of loci in the targeted regions are informative for all 

breeds. Figure 3.2 presents all SNPs (including monomorphic and polymorphic SNPs) 

but for all subsequent analyses monomorphic SNPs were removed from the study. 

In general, African and indicine breeds exhibited lower MAF values. It could be thought 

that this is due to an ascertainment bias in the SNP discovery because all targeted SNPs 

in this study were originally derived by comparison between a Hereford assembly and 

sequence reads from a series of bacterial artificial chromosomes (BACs) constructed 

from Holstein DNA. However, analysis of variation from among the major cattle breeds 

free from SNP ascertainment bias demonstrated a higher genetic diversity in indicine 

compared to taurine breeds [6]. 

 

 
 
Figure 3.2 MAF distribution in high-density regions. Average proportions of SNPs of 
various frequencies by cattle group in high-density regions (intervals’ upper limit 
inclusive). 
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As shown in table 3.4, in the targeted regions, MAF values ranged from a maximum of 

0.253 (Holstein) to 0.116 (Nelore), which is a difference of about 28% in the full scale of 

0.0 to 0.5. The average decay in MAF between breeds was 1.51%. Furthermore, we 

compared the proportion of polymorphic SNPs in the selected regions with the proportion 

of polymorphic SNPs in the entire HapMap data set and found a 20% higher proportion 

in the complete HapMap data than the selected regions. 

 

Table 3.4 Average minor allele frequencies (MAF) per breed across the high density 
regions in the study 

 
Breed Average MAF Value in the scale 

0.0 – 0.5 (%) 
Decay with respect 

to the previous 
breed (%) 

Holstein (Dairy) 0.253 50.6 0 

Hereford (Beef) 0.250 50 0.6 

Beefmaster 

(Composite) 
0.227 45.5 4.5 

Jersey (Dairy) 0.216 43.2 2.3 

Limousin (Beef) 0.215 43 0.2 

Charolais (Beef) 0.210 42 1 

Norwegian Red (Dairy) 0.210 42 0 

Santa Gertrudis 
(Composite) 

0.210 42 0 

Piedmontese (Beef) 0.209 41.8 0.2 

Guernsey (Dairy) 0.208 41.6 0.2 

Angus (Beef) 0.206 41.2 0.4 

Brown Swiss (Dairy) 0.196 39.2 2 

Red Angus (Beef) 0.193 38.6 0.6 
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Romagnola (Beef) 0.181 36.2 2.4 

Sheko (African) 0.180 36 0.2 

Brahman (Indicus) 0.140 28 8 

N’Dama (African) 0.133 26.6 1.4 

Gir (Indicus) 0.125 25 1.6 

Nelore (Indicus) 0.116 23.2 1.8 

 

 

3.7 Linkage Disequilibrium analysis 

We used the 1,981 SNPs in the high-density regions to evaluate the extent of pairwise LD 

as a function of physical distance. A pair of haplotypes was estimated for each animal in 

the sample using fastPHASE Version 1.2.3 [35]. The LD measure we adopted was the 

squared correlation coefficient between SNP pairs (r2), computed as: 
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where, p1 and p2 are the minor and major allele frequencies in SNP 1 respectively, q1 and 

q2 are the minor and major allele frequencies in SNP 2 respectively, and p11 is the 

frequency of observing both minor alleles in the same individual across all population. 

Figure 3.3 shows the average of r2 value using bins of 5 kb. Consistent with previous 

analyses in cattle [76, 79], the decline of LD as a function of distance was rapid, such that 

r2 averaged ~ 0.1 at 100 kb. Hereford, Jersey, and Brown Swiss had consistently higher r2 

values relative to the other breeds. In the case of Hereford and Jersey, this result is 

consistent with a lower resolution analysis (10 kb) previously performed using the same 

data [6]. In the case of Brown Swiss, the higher resolution inspection permitted us to 
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elucidate its similarity in LD extent with the two previous breeds. As also shown 

previously [6], at the smaller distances N’Dama had the highest r2 values while the Bos 

indicus breeds (Brahman, Nelore, and Gir) had the lowest values. In contrast, analyzing 

r2 values at longer distances, Santa Gertrudis and Sheko were the breeds with the highest 

r2 values while Angus and Beefmaster were the breeds with the smallest r2 values. Table 

3.5 shows the average r2 value for each breed, computed as the mean r2 value across all 

possible SNP pairs within each targeted region. 

 

 
 

Figure 3.3 LD in high-density regions. LD shows a rapid decline, such that r2 averages 
~0.1 at 100 kb. r2 values are averaged using bins of 5 kb. 
 

 

Table 3.5 Total average of r2 per breed across high-density reions 

Breed r2 average Breed r2 average 
Hereford 0.397 Romagnola 0.283 
Jersey 0.380 Charolais 0.278 
Brown Swiss 0.377 Limousin 0.274 
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Guernsey 0.333 Santa Gertrudis 0.246 

Angus 0.332 Sheko 0.236 
Red Angus 0.330 Beefmaster 0.234 
Norwegian Red 0.324 Brahman 0.230 
Holstein 0.323 Gir 0.218 
N’Dama 0.299 Nelore 0.204 
Piedmontese 0.284 Total r2 average 0.294 

 

 

3.8 Effective population size estimation 

We used the complete set of SNPs (31,857) to estimate the effective population size in 

the previous 10,000 generations for each breed. This estimation was based on the 

observation that in a population with constant effective population size N, the 

approximate expectation of r2 is: 

! 

E(r
2
) =

1

4Nc +1
, where N is the effective population 

size 1/(2c) generations in the past, E(r2) is the average of r2 values for all SNPs within a 

specified range, and c is the median of the range in Morgans (we assumed 1 cM ~ 1 Mb) 

[53, 80-83]. 

A correction for sampling error was made to all computed r2 values as: 
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where n is the number of sampled haplotypes [79]. 

The results show a persistent decline in effective population size through the period 

considered, but suggest two distinctive time points (Figure 3.4a). The first distinction is 
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~2,000 generations ago, at which time all population sizes seem to converge, compared to 

previous periods. The time associated with this convergence is approximately the early 

Neolithic period (~12,000 years ago) when domestication of cattle by humans began [6]. 

 

 

Figure 3.4 Estimated effective population size in previous 10,000 generations. Results 
suggest two distinct time points: the initiation of cattle domestication ~2,000 generations 
ago (a), and a population bottleneck in the most recent 100 generations (b). 
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The second distinctive point is the most recent 100 generations, which show a sharp 

decline in population size (Figure 3.4b), suggesting that all breeds in this study are 

experiencing a population bottleneck. Two events may have contributed substantially to 

this reduction in effective population size: First, approximately 100 generations ago an 

intensification of population isolation was experienced principally in Europe, starting 

with the Great Famine of 1315-1322 followed by a series of large scale crises that struck 

Europe early in the 14th century, which caused significant reductions in the human 

population due to a great dearth of all victuals, and a dramatic reduction in livestock 

population sizes mainly due to a plague of murrain [53, 84]. Second, the high selection 

pressure for specific traits and the use of artificial insemination have reduced 

dramatically the number of sires within the last ~50 years [82]. The estimated effective 

population size N for the most recent time point (10 generations ago) gave an average 

value of about 100 individuals across all populations. This result is similar to the average 

N of 116 reported in [6] in an analysis of these same samples. Table 3.6 presents the 

estimated effective population size for 10, 100, 1000, 5000, and 10000 generations ago 

for each breed in the study. We recognize that most breeds have originated more recently 

than 10,000 generations ago, but we assume that the estimates of effective population 

size in those cases should reflect the average historical population size of their ancestors. 

 

Table 3.6 Effective population size for each breed, estimated from r2. 
 

Generations Ago 10 100 1000 5000 10000 
Angus 64 275 890 2091 3042 
Beefmaster 92 432 1629 4525 7008 
Brahman 99 424 1402 4439 7095 
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Brown Swiss 68 335 1048 2430 3382 
Charolais 130 554 1478 3263 4404 
Gir 112 562 1732 4604 7460 
Guernsey 76 378 1259 2737 3693 
Hereford 83 288 974 2467 3520 
Holstein 103 510 1256 3061 4350 
Jersey 72 311 958 2523 3320 
Limousin 154 911 1671 3456 4659 
N’Dama 152 730 1336 2296 2946 
Nelore 83 444 1545 4306 7199 
Norwegian Red 89 437 1191 2808 3769 
Piedmontese 151 898 1533 3310 4495 
Red Angus 55 251 1151 2371 3303 
Romagnola 87 408 1595 3321 4649 
Santa Gertrudis 102 358 1587 4326 6562 
Sheko 120 599 1759 4731 7145 

 
 

3.9 Haplotype block structure 

We estimated haplotype blocks based on r2 using the following algorithm [61]: (i) Begin 

a block by selecting the pair of adjacent SNPs with the highest r2 value (no less than α = 

0.4); (ii) Repeatedly extend the block if the average r2 value between an adjacent marker 

and current block members is at least β (= 0.3) and all the pairwise r2 values within the 

block are at least γ (= 0.1). 

For each breed, we estimated the haplotype blocks along with some statistics as follows: 

first, we counted the number of blocks, then we computed the percentage of region 

covered in blocks by dividing the total distance within blocks over the total effective 

distance comprised in the 101 targeted regions, then we counted the number of markers 

per block and the block size mean. Finally we estimated the 95% Confidence Interval (α 



 

 56 

= 0.95) for the block mean size, assuming that block size follows a normal distribution, 

as: 
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X  denotes the sample average mean size, s denotes the sample standard deviation, 
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with n-1 degrees of freedom [85]. 

Table 3.7 summarizes the haplotpye block structure in high-density regions across all 

breeds. In summary, the average maximum number of markers per block was 27.16. 

Across all breeds, 34.7% of the high-density regions were covered by haplotype blocks. 

We found that mean block size varied from 5.7 to 15.67 kb across breeds (with a mean 

block size of 10.3 kb over all breeds) and an average of 3.8 markers per block. These 

results are similar to those in a recent study of human haplotype blocks [86], which 

reported haplotype block sizes averaging 7.3, 13.2, and 16.3 kb in three human 

populations when analysing ten 500-kilobase regions with a density of one SNP per ~5 

kb.  The human data showed a marked decline in LD over the range of 1-100 kb, again 

similar to our observed decline in cattle LD from 0.6 to 0.1 over the range 1-100 kb. 

 

Table 3.7  Haplotype block structure across high-density regions in all breeds. 
 

Breed No of 
blocks 

Regions 
in 

blocks 
(%) 

Markers 
per block 

(max) 

Markers 
per block 
(average) 

Min block 
size  (kb) 

Max 
block 

size (kb) 

Block size mean 
 (std) in kb  

Block mean 
size 95 % 

Confidence 
Interval (min, 

max) in kb 
ANG 282 41.61 38 4.21 0.25 68.08 11.28  (11.82) 9.89 , 12.66 
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BMA 299 34.86 19 3.53 0.33 57.21 8.62    (8.86) 7.61 , 9.63 
BRM 233 19.61 16 2.98 0.25 30.38 6.72    (6.53) 5.88 , 7.56 
BSW 257 35.97 41 4.04 0.09 74.71 11.39   (12.61) 9.84 , 12.94 
CHL 302 40.7 20 4.01 0.07 67.26 10.48   (11.24) 9.21 , 11.75 
GIR 191 13.88 11 2.78 0.03 20.50 5.38     (4.84) 4.69 , 6.07 
GNS 289 39.71 16 4.08 0.51 54.28 10.79    (11.18) 9.50 , 12.08 
HFD 280 54.3 41 5.01 0.65 70.64 14.13    (13.35) 12.56 , 15.70 
HOL 307 47.46 47 4.36 0.38 63.81 11.45    (11.49) 10.16 , 12.74 
JER 302 40.77 41 4.01 0.31 65.65 11.11    (11.09) 9.85 , 12.37 
LMS 296 42.85 35 4.14 0.15 65.99 10.47    (11.52) 9.15 , 11.79 
NDA 211 22.15 14 3.29 0.30 37.21 8.39      (8.05) 7.30 , 9,48 
NEL 192 14.83 7 2.73 0.10 23.54 6.51      (5.36) 5.75 , 7.27 
NRC 298 43.61 21 4.12 0.53 70.29 12.28    (11.82) 10.93 , 13.63 
PMT 288 40.32 30 4.08 0.25 52.10 10.38    (9.71) 9.25 , 11.50 
RGU 264 38.23 32 4.07 1.14 58.20 11.58    (10.22) 10.34 , 12.82 
RMG 273 31.35 30 3.67 0.13 52.62 9.40      (9.01) 8.33 , 10.47 
SGT 298 34.58 24 3.54 0.04 49.85 8.37      (8.49) 7.42 , 9.34 
SHK 225 22.35 33 3.28 0.08 55.50 7.79     (8.93) 6.62 , 8.96 

 
 
From this and the results in the previous section, if we assume that the elucidated average 

of r2 of ~0.1 in 100 kb, and that the haplotype block average size of ~10 kb with one 

informative SNP each ~5 kb are homogeneously distributed across the bovine genome, 

then, for constructing an LD map for association studies we should tag at least a SNP in 

each 100 kb. Therefore, we can estimate that it would be necessary to successfully assay 

at least 28,700 SNPs for a LD map for association studies. In the same way, it would be 

necessary to assay at least 574,000 SNPs to characterize the haplotype block structure 

across the entire bovine genome (assuming a bovine genome size of 2.87 Gb). 

 

3.9.1 Haplotype block density correlation 

To determine if the haplotype block structure in high-density regions is conserved among 

breeds, we counted the number of haplotype blocks occurring in each of the high-density 

regions for each breed, producing a 101-element haplotype block density vector for each 
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breed. Following [60], we computed Pearson product moment correlation coefficient, r, 

between each pair of breeds using the formula:   
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ri, j =
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where i and j represent two breeds, k represents a high density region, xi,k and yj,k 

represents the number of haplotype blocks found in region k for breeds i and j 

respectively, and 

! 

x
i
 and  

! 

y j  represents the mean number of haplotype blocks found 

across all regions for breeds i and j respectively. 

Figure 3.5 shows the block density correlation between breeds, and table 3.8 presents the 

block density correlation within the group and outside the group. 

 

 

Figure 3.5 Block density correlation across high-density regions shows the level of 
conservation in haplotype block structure among breeds from the same group. 
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Figure 3.5 is color-coded to highlight the correlation between pairs of breeds in the same 

subgroup. The largest observed pair-wise correlations among breeds (0.77) occurred 

among Piedmontese, Charolais and Limousin (all three continental beef breeds). The 

smallest observed correlation was 0.07 between Hereford, a beef breed, and Nelore, an 

indicus breed. 

 

Table 3.8 Average haplotype block density correlations from all breeds within the group and 
outside the group.  
 

Cattle group Within group Outside group 
Beef 0.64 0.56 
Dairy 0.61 0.54 
African 0.44 0.51 
Composite 0.74 0.57 
Bos indicus 0.67 0.41 

 

In general, indicus breeds showed small correlation with taurus breeds. For all subgroups, 

except African, the average within-group correlation was greater than the correlation with 

other subgroups. In the case of the African and composite breeds, the results may be 

biased by the sample size, having only two breeds from each subgroup. We observed a 

surprising degree of correlation between some subgroups, such as beef and dairy breeds.  

For example, Figure 3.6(a) presents the scatter plot of the density values (log10 values) of 

Holstein (a dairy breed) against Angus (a beef breed).  Figure 3.6(b) shows a scatter plot 

for the lowest-correlation pair of breeds, Hereford and Nelore. 
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Figure 3.6 Comparison of Haplotype Block Densities between high-density regions of 
Holstein-a dairy breed- against Angus-a beef breed (both taurine) shows a high degree of 
correlation (a). Comparison of Nelore-an indicus breed against Hereford-a dairy breed 
(indicus against taurus) shows a low degree of correlation (b).  The scatter plots show 
log10 of the amount of haplotype blocks for the same region in each breed pair. 
 
  

3.9.2 Haplotype block boundary discordances 

We examined the consistency in block boundaries across breeds and subgroups by 

looking at adjacent pairs of SNPs in the high-density regions. Following the strategy of 

[59]: for each breed, if the SNP pair was inside a block, we termed it NR (having no 
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evidence of recombination), and if the SNP pair was outside a block, we termed it REC 

(having evidence of recombination). Then, for a given pair of breeds or subgroups, a SNP 

pair was called concordant if the assignment was the same in both breeds (or subgroups) 

and discordant if the assignment disagreed. Results from comparing several groups of 

breeds are presented in Table 3.9 

 

Table 3.9 Proportions of block boundary discordances and concordances among cattle 
subgroups.  
 

Comparison Concordant 
NR (%) 

Concordant 
REC (%) 

Discordant 
NR – REC 
(%) 

Discordant 
REC – NR 
(%) 

Beef vs Dairy 46.71 39.94 5.78 7.57 

Beef vs Indicus 20.92 44.28 31.56 3.24 

Beef vs Composite 37.11 42.31 15.38 5.20 

Beef vs African 27.57 42.83 24.91 4.68 

Dairy vs Indicus 20.75 42.31 33.53 3.41 

Dairy vs Composite 36.47 39.88 17.80 5.84 

Dairy vs African 26.94 40.40 27.34 5.32 

Indicus vs Composite 19.88 53.41 4.28 22.43 

Indicus vd African 17.23 60.81 6.94 15.03 

Composite vs African 24.45 49.88 17.86 7.80 

 

Figure 3.7(a) shows that approximately 13% of adjacent markers have discordant 

assignment in beef and dairy breeds when analyzed as subgroups. This level of 

discordance indicates a high degree of similarity in the fine-scale haplotype block 
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structure between beef and dairy breeds, which suggests that a very detailed analysis of 

block discordance needs to be performed in order to differentiate between these two 

subgroups. On the other hand, Figure 3.7(b) shows that approximately 37% of marker 

pairs have discordant assignment when comparing the dairy subgroup against the indicus 

subgroup. This level of discordance indicates a fairly high degree of dissimilarity in 

haplotype structure between these two subgroups. 

 

 
Figure 3.7 Concordance and discordance of block assignments for adjacent SNP pairs 
(within SNP pair distance <10 kb) in high-density regions. (a) dairy against beef breeds 
(both taurine), (b) dairy against indicus breeds (indicus against taurus). 
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3.10 Haplotype sharing 

We examined the multi-marker haplotypes associated within the high-density regions to 

provide further insight into relationships among breeds. We analyzed the degree of 

sharing among the 19 breeds of phased haplotypes extending over multiple markers in the 

101 high density regions. Each high-density region defined a locus for the purpose of the 

analysis. Haplotype segments were defined as the highest-probability haplotypes inferred 

by fastPHASE for each animal at each locus. The proportion of shared haplotypes 

between two populations P1 and P2 at locus k was defined as 

! 

S(P1 ,P2 ,k) =
Sa (i, j ,k)

i , j
"

2n1n2
 

 
where i and j range over the individuals in populations P1 and P2, respectively, Sa(i, j, k) 

is the number of shared haplotypes between individuals i and j at locus k, and n1 and n2 

are the number of samples in P1 and P2.  The raw proportions were normalized to take 

into account the proportion of shared haplotypes within each of the individual 

populations, as follows: 

! 

S'(P
1
,P

2
,k) =

2* S(P
1
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1
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1
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2
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2
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S′(P1, P2, k) has value 1.0 if the proportional of shared haplotypes between populations P1 

and P2 at locus k is equal to the average of the proportional of shared haplotypes within 

the two populations P1 and P2.  If S′(P1, P2, k) << 1.0, then the proportion of shared 

haplotypes between the two populations is much less than the average within the two 

populations. 
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Table 3.10 shows the normalized proportion of shared haplotypes, averaged over all high-

density regions, between various clusters of breeds.  The most dramatic dissimilarity, as 

expected, is between all taurine and indicine populations. 

 

Table 3.10 Normalized proportion of shared haplotypes.  
 

  All regions  BTA 6  BTA 14  BTA 25 

ANG / HOL  0.47  0.59  0.40  0.48 

Beef / Dairy  0.73  0.84  0.68  0.70 

Taurus / Indicus  0.17  0.19  0.14  0.21 

 

 

  Figure 3.8 shows a dendrogram based on using the proportion of shared haplotypes 

within the high-density regions as a distance measure for clustering breeds. The 

dendrogram shows a clear differentiation for breeds of African origin (N’Dama and 

Sheko), for Bos taurus/Bos indicus composite (Beefmaster and Santa Gertrudis), and for 

indicus breeds (Gir, Nelore, and Brahman). 
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Figure 3.8 Dendrogram based on genetic distance calculated from haplotype sharing. 

 

3.11 Breeds grouping 

For each breed, we generated a discordance vector consisting of the percentage 

discordance found with all of the other breeds. Then, we used these vectors to perform a 

Principal Component Analysis (PCA) and look for differentiation between cattle 

subgroups. We used R software to perform this analysis. The central idea of PCA is to 

reduce the dimensionality of a data set which consists of a large number of interrelated 

variables, while retaining as much as possible of the variation present in the data set. This 

is achieved by transforming a new set of variables, the principal components (PCs), 

which are uncorrelated, and which are ordered so that the first few retain most of the 

variation present in all the original variables [87]. 

Formally, PCA is defined as an orthogonal linear transformation that transforms the data 

to a new coordinate system such that the greatest variance by any projection of the data 

comes to lie on the first coordinate (called the first principal component), the second 
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greatest variance on the second coordinate, and so on. PCA is theoretically the optimum 

transform for a given data in least square terms. The procedure for obtaining PCAs can be 

summarized as follows: 

Given a vector XT of n dimensions, 

! 

X = [x
1
,x

2
,...,x

n
]
T , whose mean vector M and 

covariance C are described by: 

! 

M = E(X) = [m
1
,m

2
,...,m

n
]
T  

! 

C = E[(X "M)(X "M)
T
]  

Calculate the eigenvalues λ1, λ2, …, λn, and the eigenvectors P1, P2, ..., Pn; arrange them 

according to their magnitude. 

! 

"
1
# "

2
# ...# "

n
 

Select d eigenvectors to represent the n variables, d < n. Then the P1, P2, ..., Pd are called 

the principal components. 

For the subgroups we investigated, PCA shows the best cluster separation in the subspace 

defined by the second principal component, PC2 (see Figure 3.9). For PC2, indicus, 

African, and composite breeds have negative loadings, while the beef and dairy breeds, 

all Bos taurus breeds of British and European origin, have positive loadings. Santa 

Gertrudis and Beefmaster, known to be Bos indicus/Bos taurus composites, appear as 

intermediate between the two main subgroups. This result is consistent with previous 

PCA analysis performed directly on genotypes for the complete set of markers [6]. Both 

PCA analyses define a strong axis of variation separating taurine from indicine subgroups 

and placing composites as intermediates. However, the analyses differ in the principal 
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component defining this relationship (PC1 for the genotype analysis, and PC2 for the 

block boundary discordances). 

 

 
 
Figure 3.9 Principal Component Analysis on block boundary discordance vectors shows 
how different breed subgroups as indicus, African, and Composite cluster together, but 
there is no clear separation between dairy and beef breeds. (a) Plot of PCA1 vs PCA2. (b) 
Plot of PCA2. 
 

 

In general, we consider that this analysis confirms that results obtained by analyzing the 

1,981 SNPs in the selected high-density regions are consistent with the results obtained 
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by analyzing all of the initial 30k SNPs. We further observed that dairy and beef breeds 

cannot be clearly differentiated from this analysis.  This result supports the hypothesis 

stated in the previous analysis [6] that historic geographic ancestry plays a stronger role 

in explaining genotypic variation (and haplotype block structure) in cattle than does their 

more recent selection into breeds with specific agriculture functions. 

 

3.12 Summary 

In this chapter we presented a high-resolution characterization of haplotype block 

structure in cattle. The analysis was performed on 101 targeted genomic regions spanning 

7.6 Mb with an average density of one SNP each ~4 kb, sampled from 19 worldwide 

breeds. We studied LD and elucidated the block structure for each specific breed. 

Consistent with previous analyses in cattle, and in high agreement with observation in 

humans, we observed that LD declines rapidly, such that r2 averages ~0.1 at 100 kb, and 

haplotype blocks exhibit an overall mean size of 10.3 kb (varying from 5.7 kb to 15.57 kb 

across all breeds) with an average of 3.8 markers per block. Estimation of effective 

population size in previous generations reflects the period of domestication ~12,000 years 

ago, as well as the current population bottleneck that breeds have experienced worldwide 

(last ~700 years) as a result of population isolation and selective breeding. In addition, an 

analysis of block density correlations, block boundary discordances, and haplotype 

sharing across all breeds and between subgroups were consistent in exhibiting a clear 

differentiation between indicus, African, and composite subgroups, but not between dairy 

and beef subgroups.  
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In summary, this work presents the first high-resolution analysis of haplotype block 

structure in worldwide cattle samples. First, novel results show that cattle and human 

share a high similarity in LD and haplotype block structure in the scale of 1-100 kb. 

Second, unexpected similarities in haplotype block structure between dairy and beef 

breeds make them non-differentiable. Finally, our results suggest that it would be 

necessary to successfully assay ~30,000 SNPs to construct an LD map for association 

studies, and ~580,000 SNPs to characterize the haplotype block structure across the entire 

bovine genome. 
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4 Haplotype inference in cattle pedigrees 
 
 
 
 

4.1 Modeling cattle pedigree structure 

Cattle may have complex pedigrees especially due to artificial insemination (AI) with 

few selected bulls that have their offspring extended over several generations [88]. An 

example pedigree structure is shown in Fig 4.1. 

 

 

Fig 4.1 Small portion of pedigree from Holstein population (Data courtesy Dr. Curt Van 
Tassell). 
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From Figure 4.1 we can get a sense of how complex the genetic structure of cattle 

pedigrees can be. That kind of specific genetic structure is not present in human 

pedigrees or other species that have coevolved with humans.  

The usual approach for modeling pedigrees is using descent graphs with nodes 

representing individuals and edges representing generational genetic linkage [44, 88-91]. 

Figure 4.2(a) shows a classical representation of a looped pedigree. A loop occurs when 

the graph has a cycle, defined as a path such that the start node and end node are the 

same. A pedigree can also be represented as a connected graph with nodes of two types 

(see fig 4.2(b)): the nodes or vertices that represent the individuals (the vi‘s), and the 

nodes of matings (the mi’s). As shown in figure 4.2(b), there are edges (the ei’s) that 

connect the nodes. In general, a graph G is represented under the form 

! 

G = (N,E)  where 

N is the set of nodes and E is the set of edges of G. Note that each arc ei of the second 

graph representation links an individual and a mating node. In figure 3.2(b), we can 

define a loop as a sequence of no duplicated adjacent (i.e., linked by an edge) nodes 

k
nn ...

1 , except for k
nn =

1 [88]. 
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Figure 4.2 Classical representation of pedigrees. 2(a) representation using nodes for 
individuals and edges for genetic linkage. 2(b) representation using nodes for individuals 
and matings, and edges for genetic linkage. 
 

 

The use of graphs to model pedigrees permits the development of computational methods 

for systematically estimate haplotypic information from genotypic data. But, it often can 

be quite difficult because (a) the computation involves the analysis of every possible 

underlying combination of multilocus genotypes, (b) the computational time of haplotype 

estimation grows exponentially with the number of genotypes, and (c) the presence of 

loops in the pedigree makes difficult to identify and eliminate superfluous genotypes, 

which are genotypes that are not compatible with all members in the pedigree. 

One common strategy when computing some statistics, including haplotype estimation, in 

pedigrees, is to start by eliminating superfluous genotypes and avoid the processing of 

unnecessary data. Then, perform the rest of the analysis. In the next subsections we 

describe a computational method for haplotype estimation from genotype data. The 

method starts by eliminating superfluous genotypes using a genotype elimination 
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algorithm. Then, it makes use of graphs to reduce the complexity of the pedigree and 

improve the data analysis. Next, it implements an algorithm to search for valid haplotype 

configurations, marker by marker, for the complete pedigree. Finally, it makes use of a 

machine learning algorithm in order to find highly suitable haplotype configurations for 

the complete set of markers. Figure 4.3 shows a flow chart of the steps for estimating 

haploypes from pedigrees genotypes. 

 

 

Figure 4.3 Flow chart of the steps for inferring haplotypes in pedigrees. 

 

 

4.2 Genotype elimination 

The first step in our method is to eliminate superfluous genotypes in order to avoid 

processing unnecessary data. Before we explain how we remove those genotypes let 
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make a definition: from [90]; given a connected pedigree with n individuals, a genotype 

vector ),...,,( 21 n
GGGG = , where Gi is the genotype of the ith individual, is complete if it 

is consistent with the observed phenotypes of the pedigree members. (Note that, for 

codominant markers, the observed phenotype is simply the observed genotype). A 

genotype-elimination algorithm typically aims to construct, for each member, a minimal 

genotype list that contains only genotypes that are the members of at least one compatible 

genotype vector. Genotypes that are not members of any compatible genotype vector are 

the superfluous genotypes, and need to be removed. 

For eliminating superfluous genotypes we use the automatic genotype elimination 

algorithm proposed by Lange and Goradia (1987) [91]. This algorithm is an improvement 

of that proposed by Lange and Boehnke (1983) [92], and aims, on a locus by locus basis, 

to identify those genotypes that are not consistent with the observed phenotype 

information in the pedigree and that, because they contribute no information, therefore 

can be eliminated from the computations. The steps of the algorithm are as follows: 

 

A. For each pedigree member, list only those genotypes compatible with his or her 
phenotype 

B. For each nuclear family: 
1. Consider each mother-father genotype pair. 

a. Determine which zygote genotypes can result. 
b. If each child in the nuclear family has one or more of the zygote genotypes 

among his current list of genotypes, then save the parental genotypes. Also 
save any child genotype matching one of the listed zygote genotypes. 

c. If any child has none of these zygote genotypes among his current list of 
genotypes-i.e., is incompatible with the current parental pair of genotypes-
take no action to save any genotypes. 

2. For each individual in the nuclear family, exclude any genotype not saved 
during step 1 above. 

C. Repeat part B until no more genotypes can be excluded. 
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Figure 4.4 shows an example of genotype elimination applied to a trio. In the example, 

one marker genotype is given for each member. Genotypes for the father, mother and 

offspring are AB, AC, and BA respectively. In the first step we list, for each member, all 

compatible genotypes, which result to be AB BA, AC CA, and BA AB for father, mother 

and offspring respectively. In the second step we enumerate all father-mother genotype 

pairs, which are: AB AC, AB CA, BA AC, and BA CA. Next, we compute all possible 

zygotes that can result from each father-mother genotype pair. The resultant zygotes for 

the genotype pair AB AC are: AA AC BA BC. For the genotype pair AB CA are: AC AA 

BC BA. For the genotype pair BA AC are: BA BC AA AC. And, for the genotype pair 

BA CA are: BC BA AC AA. Then, for each zygote list we check if at least one of the 

zygotes appears to be in the list of the offspring genotypes. If it is the case, we save the 

parental genotypes along with the offspring genotype. In the example, we can observe 

that the only genotype from the offspring that appears in the zygote lists is BA; therefore, 

we save both genotypes from the father and the mother, and just BA genotype from the 

offspring. This procedure is repeated iteratively until no more genotypes can be excluded. 

The resultant list of non-superfluous genotypes for the complete trio is: 

 Father  AB BA 
 Mother  AC CA 

Offspring BA 
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Figure 4.4 Example of Genotype elimination applied to a trio. 

 

As demonstrated by Lange and Goradia in [91], this algorithm is guaranteed to eliminate 

all superfluous genotypes on any connected pedigree without loops. However, it is not 

optimal because it can fail to eliminate some superfluous genotypes from pedigrees with 

loops. As shown in subsection 4.4.2.2, this problem is implicitly solved by a haplotype 

compatibility constraint imposed when searching for valid haplotype configurations in 

the pedigree. 

 

4.3 Feasible haplotype configuration by trio 

After applying genotype elimination to the data from the pedigree, we obtain for each 

SNP of each individual, a list with no superfluous genotypes in the case of pedigrees 
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without loops, and possibly a few superfluous genotypes for pedigrees with loops. The 

next step is to systematically enumerate all feasible haplotypes for each individual, and 

then, under certain optimization criteria, select the two most suitable haplotypes as the 

inferred ones. To perform the haplotype enumeration we may model the pedigree using a 

descent graph with nodes representing individuals and edges representing genetic 

linkage. Figure 4.5 shows an example of a graph modeling an 11 member pedigree, in 

which individuals 1, 2, and 3 are founders and the rest are non-founders. Allele values are 

A, B, C, and D.  The observed genotypes for one SNP are the values at the left of each 

pedigree member in the graph.  

 

 

Figure 4.5 Example of a graph modeling a pedigree with 11 members, consisting of 3 
founders and 8 non-founders. 
 

 

As mentioned in section 4.1, traversing pedigrees from the top to the bottom searching 

for all feasible haplotype configurations has been proven to be a hard problem because in 
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additions to the analysis of every possible underlying combination of feasible genotype, 

the computational time of the analysis grows exponentially with the number of 

genotypes. In addition, the problem becomes even more complicated as the size of the 

pedigree and the type and number of loops increases. Henshall et. al., [89], proposed an 

strategy using inheritance constraints to perform the search and select valid 

configurations in a random form. Abecasis et. al., [32], proposed the use of binary trees 

for representing the pedigree and performed the search in the space of sparse trees. In this 

work, we propose a new strategy that consists of enumerating all trios in the pedigree, 

then elucidating all feasible haplotype configurations (FHC) – defined as an assignment 

of haplotypes to each individual in a trio, that satisfies Mendelian inheritance - for each 

trio, and finally performing the search in the space of all compatible FHCs between trios. 

It has two important advantages: First, elucidating FHCs for each trio helps eliminate 

some superfluous genotypes from the beginning of the analysis. Second, when 

performing the search, it is necessary to examine only those FHCs in which common 

members between trios share the same haplotype, and we may ignore the remaining 

configurations. These two advantages help to improve the speed of the search and make it 

easier to elucidate haplotypes for several individuals at the same time, since they are 

grouped in trios. 

Following the example from figure 4.5, after applying genotype elimination we obtain for 

each individual the following list of feasible genotype: 

 Individual 1 A,D D,A 
 Individual 2 B,D D,B 
 Individual 3 A,C C,A 
 Individual 4 B,A 
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 Individual 5 D,C 
Individual 6 B,B 
Individual 7 C,B 
Individual 8 C,C 
Individual 9 C,B 
Individual 10 B,C 
Individual 11 C,C 

Enumerating all trios in the pedigree we have: 

   Father  Mother  Offspring 
 Trio 1     2      1         4 

Trio 2     2      3         5 
Trio 3     2       4         6 
Trio 4     5      4         7 
Trio 5     5      3         8 
Trio 6      7      6         9 
Trio 7     7      8        10 
Trio 8     10      9        11 

Then, elucidating all FHCs for each trio we have: 

Trio 1:   Father  Mother  Offpring 
FHC 1   B,D   A,D   B,A 
FHC 2  B,D  D,A   B,A 
FHC 3  D,B   A,D   B,A 
FHC 4  D,B   D,A   B,A 

Trio 2: 
FHC 1  B,D   A,C   D,C 
FHC 2  B,D   C,A   D,C 
FHC 3  D,B   A,C   D,C 
FHC 4  D,B   C,A   D,C 

Trio 3: 
FHC 1  B,D   B,A   B,B 
FHC 2  D,B   B,A   B,B 

Trio 4: 
FHC 1  D,C   B,A   C,B 

Trio 5: 
FHC 1  D,C   A,C   C,C 
FHC 2  D,C   C,A   C,C 

Trio 6: 
FHC 1  C,B   B,B   C,B 

Trio 7: 
FHC 1  C,B   C,C   B,C 
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Trio 8: 
FHC 1  B,C   C,B   C,C 

Figure 4.6 presents a trio relational graph in which nodes represent trios and edges 
represent links between common individuals between trios. 
 

 
Figure 4.6 Trio relational graph. Nodes represent trios and edges represent links between 
trios. Numbers in links represent common individuals between trios. 
 

 

This representation with trios defines a search space in which traversing the graph going 

from one node to another adjacent node is constrained by haplotype compatibility 

between common members of all trios in the pedigree. In the case of cattle pedigrees, this 

representation is advantageous because, due to artificial insemination, sires can appear in 

several trios and different generations and the graph does not take a complicated structure 

because each trio containing individuals in common with other trios just repeats the 

individual in its node. In the case of individual-based graphs, individuals appearing in 

several trios and generations generate complicated loops that make the graph very 
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complex and difficult to analyze. In the next subsection, we present a strategy for 

performing the search. 

 

4.4 Complete pedigree valid haplotype configuration 

Finding and enumerating all the complete pedigree valid haplotype configurations 

(CPVHC) in a fast and efficient way is crucial for time and space complexity of the 

algorithm. For doing this, we take advantage of the Trio Relational Graph (TRG) we have 

generated previously. In the following subsections we present the problem of 

enumerating all CPVHCs and propose a solution based on a backtracking strategy. 

 

4.4.1 Problem representation 

Given that we already have all FHCs for each trio in the pedigree, it is possible to select 

trio one, and for each of its FHCs, to perform a search dropping down trio by trio through 

the complete pedigree, looking for all paths containing compatible haplotype 

configuration between individuals linking one trio to another, and selecting one by one all 

FHCs for those trios with no liked individuals. To perform this search, we define – 

formally – compatibility between FHCs from different trios as follows: Given trios Ti and 

Tj, FHCik is compatible with FHCil if and only if for each individual h in both trios, h has 

an identical haplotype in FHCik and FHCjl. Traversing the trio relational graph with the 

constraint of FHCs compatibility produces all complete pedigree valid haplotype 

configurations (CPVHC). The search can be well-represented as a problem of searching 

for valid paths in a descent graph, as shown in figure 4.7. 
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Figure 4.7 Searching for all complete pedigree valid haplotype configurations represented 
as a problem of searching for valid paths in a descent graph. 
 

 

In the example from figure 4.7, the first trio (trio 1) contains four FHCs. For finding all 

valid CPVHCs, we select the first FHC (H1,1), then we go to the next trio (trio 2) and ask 

which of its FHCs are compatible. For each compatible FHC in the second trio, we 

perform the same search on the third trio (trio 3). We repeat this search up to the last trio 

(trio 4, the bottom of the descent graph). In order to find all valid CPVHCs, we need to 

repeat the previous steps for each FHC belonging to trio 1. 

We represent a CPVHC as a vector of integers ),...,,,( ,,3,2,1 321 njnjjj FHCFHCFHCFHCc = , 

where each 
kji

FHC
,

represents the kj th FHC of trio i , and n is the total number of trios 

in the pedigree, and all pairs of FHCs in the vector are mutually compatible. This 
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constraint of mutually compatibility between all FHCs in the vector is necessary in order 

to solve the problem of loops in the pedigree. Every time a new FHC is considered to be 

included to the CPVHC vector, it is checked if it has common members with all FHCs 

already in the vector, and it is included if and only if it shares a common haplotype with 

all common members in FHCs already in the CPVHC vector. Then the problem of 

enumerating all valid CPVHCs consists in finding the set of all cs that satisfy the 

constraint of haplotype compatibility between trio members. Figure 4.8 shows an 

example of a CPVHC. The red links show that from trio one, the first FHC is compatible 

with the second FHC in trio two and with the first FHCs in trios three and four. The set of 

all FHCs make a CPVHC. 

 

Figure 4.8 Example of a CPVHC 
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This problem is analogous to the general constraint satisfaction problem which in the 

general case has been proven to be a NP-complete problem [93]. In the next section, we 

present an implementation of a backtracking algorithm for solving the problem of 

enumerating all valid CPVHCs. 

 

4.4.2 Backtracking algorithm for enumerating all CPVHCs. 

Representing the problem of finding all CPVHCs as a problem of searching for valid 

paths in a descent graph permits the implementation of a backtracking algorithm for 

performing the search. Backtracking is a refinement of brute force approach, which 

systematically searches for solution to a problem among all variable options. It does so 

by assuming that the solutions are represented by vectors 

! 

(v
1
,...,v

m
) of values and by 

traversing, in a depth first manner, the domains of the vectors until the solutions are 

found [94, 95]. When invoked, the algorithm starts with an empty vector. At each stage it 

extends the partial vector with a new value. Upon reaching a partial vector 

! 

(v
1
,...,v

i
)  

which cannot represent a partial solution, the algorithm backtracks by removing the 

trailing value from the vector, and then proceeds by trying to extend the vector with 

alternative values. 

 

4.4.2.1 Backtracking generic procedure. 

One of the most common and efficient implementation of backtracking algorithms uses a 

recursive procedure and its pseudocode is as follows [96]: 
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procedure bt(c) 
  if reject (P,c) then return 
  if accept (P,c) then output (P,c) 
  S ------------ first (P,c) 
  While s ≠ Λ do 
   bt(s) 
    s --------- next (P,s) 
 end procedure 
 
 function first (P,c) 
  k ---------- length (c) 
  if k = n 
   then return Λ 
   else return (c[1], c[2], … , c[k], 1) 

end function 
 

 function next (P,s) 
  k -------- length (s) 
  if k[s] = m 
  then return Λ  
   else return (s[1], s[2], … , s[k-1], 1+s[k]) 

end function 

 

In this pseudocode, P is the data for the particular instance of the problem that is to be 

solved, c is a vector of values representing a partial or complete solution, n is the total 

number of variables in vector c (number of nodes in the descent graph), m is the domain 

of each variable in the solution vector c, and Λ is the null symbol. 

As we observe in the pseudocode, the procedure takes the instance data P as a parameter 

and calls five different procedures in the code. reject(P,c) is the most problem specific 

procedure, and it should return true only if the partial candidate c is not worth 

completing. accept(P,c) should return true if c is a solution of P, and false otherwise. 

first(P,c) should generate the first extension of candidate c. next(P,c) should generate the 

next alternative extension of a candidate, after the extension s. And, output(P,c) uses the 

solution c of P, as appropriate to the application. In the next subsection we describe the 
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way we implemented Backtracking algorithm to solve the problem of enumerating all 

CPVHCs. 

 

4.4.2.2 Backtracking to search for CPVHCs. 

Formally, in order to find all valid CPVHCs we need to systematically enumerate all 

vectors ),...,,,( ,,3,2,1 321 njnjjj FHCFHCFHCFHCc =  such that they satisfy the constraint of 

haplotype compatibility between common individuals between all trios. For performing 

such systematic search we are following basically the generic Backtracking algorithm but 

we put special emphasis in two procedures, reject(P,c) and next(P,s), which are the most 

problem-specific parts of the algorithm. 

We define c as a vector of values in which the first position corresponds to trio 1, the 

second position corresponds to trio 2, and so on. The values in each position corresponds 

to a pointer indicating a FHCi,j , where, i and j are the trio and haplotype configuration 

number, respectively. From this definition, if in some step of the algorithm we have a 

vector 

! 

c = (2,3,7), it means that the 2nd FHC from trio 1, the 3rd FHC from trio 2, and the 

7th FHC from trio 3 make a valid partial or complete pedigree haplotype configuration. 

Before calling bt(c) procedure, we first extract from trio 1 all FHCs, then, for each FHC 

we call bt(c) giving as input the list c with an element corresponding to a FHC from trio 

1. bt(c) procedure  starts by generating a variable called rt to which it is assigned the 

actual length of c, which corresponds to the pointer to the last value in the list (the last 

analyzed trio), as shown next: 
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 procedure bt(c) 

  rt ---------- length (c) 

 

Next, we call reject(P,c) procedure, which function is to point to the next trio (pointer 

called ct) and check for each of its FHC if common individuals share the same haplotype, 

In this way find out if previous and current trios are compatible. The reject(P,c) 

pseudocode is as follows: 

 
  Procedure reject(P,c) 
  ct = rt +1 
  if exists ct data 
   Hct = (FHCi,1, FHCi,2, FHCi,3, …) 
   l = Λ  
   for each FHCi,j in Hct do 
    if common members between rt and ct share same haplotype 
     y ------- length (l) 
     l = (l[1], l[2], l[3], …, l[y], FHCi,j) 
   if l = Λ 
    then return Λ 
    else 
     y ------- length (l) 
     m = l[y] 
      return l, m 
  else return Λ 

 

In order to explain how this procedure works, let us analyze an example. Suppose we 

have two trios, as shown in figure 4.9. Trio 1 contains two FHCs, while trio1 contains 

three FHCs. 
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Figure 4.9 Example of two trios containing two compatible FHCs from FHC1,1 to trio 2. 
Red lines indicate compatible FHCs. 
 
 

Now, suppose we call bt(c) giving 

! 

c = (FHC
1,1
) . reject(P,c) procedure will then be called 

after making rt = 1, and it will do the following: first, it will generate the pointer to the 

next trio making ct = rt +1 = 2. Then, the if exists clause will verify if trio 2 exists. In the 

case is does not exist, it will return Λ, meaning that there is no node beyond rt. Since in 

this case it exists, it will execute its internal code, generating the vector 

! 

H
ct

= (FHC
2,1
,FHC

2,2
,FHC

2,3
) = (1,2,3)  containing the pointers to all FHCs in trio 2, and 

making 

! 

l = " . Next, the for each clause will check, for each FHC in Hct , if all common 

members between trios rt and ct share the same haplotype. In the case they do, it will add 

the FHC pointer to the list l. Suppose that FHC2,1 and FHC2,3 are compatible, then l = 

(1,3). In case there is no compatible FHC, then 

! 

l = " . The last if clause checks if there 

were found no compatible FHCs between rt and ct trios. In the case 

! 

l " # , it will make m  

to get the pointer value of the last compatible FHC from trio ct, and will return l and m. 

Finally, from this example, reject(P,c) would return )3,1(=l and m = 3. 
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The accept(P,c) procedure is a straightforward procedure that asks whether length(c) is 

equal to the total number of trios in the pedigree. If it is the case, then returns c as output, 

indicating that a CPVHC has been reached. The pseudocode is as follows:  

 

  Procedure accept(P,c) 
  k ----------- length (c) 
  if k = n 

then return output (c) 

 

The procedure first(P,c) is another straightforward procedure that returns the same list c 

but including the fist pointer value from the list of compatible haplotype configurations l. 

The pseudocode is as follows: 

 

  Procedure first(P,c) 
  k --------- length (c) 
  if k = n 
   then return Λ 
   else return (c[1], c[2], c[3],…, c[k, l[1]) 

 

Finally, the next(P,s) procedure is called in order to traverse all compatible FHCs in the 

current node ct. These compatible nodes are stored in the list l. Then, the procedure needs 

to ask if the current FCH is the last in the list l (m contains the last value in l), and, if it is 

not the case, then add the next value in l to the input list s, and return the list. The 

pseudocode is as follows: 

 

 Procedure next(P,s) 
  k ---------- length (s) 
  if s[k] = m 
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   then return Λ 
   else  

for (x=1; x<=l; x++) do 
  k = l[x] 

     if k = s[k] 
      then return (s[1], s[2], s[3], …, s[k-1], l[x+1]) 
      last 

 

If we follow the previous example from figure 4.9, reject(P,c) returned )3,1(=l and m = 3. 

When next(P,s) is called, k is made to point to the last value in the input list s. Then, the if 

clause asks if the last value in the list s is equal to m. if it is the case, returns Λ indicating 

that there is no more values in l. Otherwise, executes a for loop comparing each value in l 

with the last value in s. In the example, when next(P,s) is called by the first time, s = l[1] 

= 1, whose value was updated to s through fist(P,c) procedure. Then, the for loop 

compares k = l[x] with s[k] = l[1]. In the first loop both values are equal to 1 since x = 1. 

Then, the s is updated replacing its last value by l[x+1], which corresponds to l[2] = 3. It 

is returned and the for loop is terminated. 

 

4.5 Inheritance matrix 

From the backtracking algorithm, we obtain a list of vectors indicating a CPVHC each. 

The next step is to make a representation of these vectors in such a way that it captures 

the genetic parameters we want to measure in order to search for the most suitable 

haplotype configurations. In this subsection we describe a representation which captures 

the allelic inheritance (gene flow) through the pedigree generations. 
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4.5.1 Inheritance vectors 

In general, if we consider a pedigree with f founders and n nonfounders, and, if each 

individual has either both parents or else none at all in the pedigree there will be 2n 

parent-offspring pairs. Each parent-offspring pair corresponds to a single meiotic event. 

For each chromosomal location e, we define an inheritance vector, Ve, representing gene 

flow in the pedigree through a sequence of 2n binary digits, such that the ith digit, Ve(i), is 

0 if the grand-paternal allele is transmitted in the meiosis connecting offspring Oi and 

parent Pi, and 1 if the grand-maternal allele is transmitted. Define the index of the first 

digit in any such vector to be 1 so that i ranges between 1 and 2n. Figure 4.10 shows an 

example of an inheritance vector. 

 

 

Figure 4.10 Example of an inheritance vector. 

 

 

Analyzing pedigree data could be to enumerate all possible inheritance vectors (Ve) and 

calculate likelihoods and/or linkage statistics for the pedigree conditional in each Ve. 

Next we describe the form we enumerate and accommodate inheritance vectors in order 

to capture the number of recombination by marker pairs 
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4.5.2 Inheritance matrix 

Once having all inheritance vectors, we represent the complete set of markers in the 

complete pedigree by aligning the inheritance vectors and thereby constructing a matrix, 

which we call the inheritance matrix. Figure 4.11 shows an example of an inheritance 

matrix for a pedigree with ten individuals and ten markers. 

 

 

Figure 4.11 Example of an inheritance matrix from a pedigree with ten individuals and 
ten markers. 
 

 

Inspecting the inheritance matrix, it is possible to find patterns of gene flow, and it 

permits us to compute the number of recombinations, marker by marker. 
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4.6 Number of recombinations 

The minimum recombination haplotype configuration principle states that genetic 

recombinants are rare and thus haplotypes with fewer recombinants should be preferred 

in a haplotype reconstruction [31, 50, 97]. 

From the inheritance matrix it is possible to compute the number of recombination by just 

traversing each individual and counting the transitions from 0 to 1 or vice versa. The total 

number of transitions in the complete matrix is the total number of recombinations for 

that specific haplotype configuration of the pedigree. In the example from figure 4.11, the 

total number of recombinations is 22. The following subsections present an approach 

based on genetic algorithms to infer haplotypes in pedigrees searching for CPVHCs and 

minimizing the number of recombinations. 

 

4.7 Genetic Algorithm for haplotyping 

In previous subsections we described how to generate CPVHCs and how we 

implemented a backtracking strategy for enumerating all feasible CPVHCs. Then we 

showed how to construct an inheritance matrix and compute the number of 

recombinations. One strategy to infer haplotypes for a complete pedigree would be to 

enumerate all inheritance matrices and select that with the minimum number of 

recombinations. But, the problem with this strategy is that, even when we reduced the 

complexity of the search for CPVHCs by generating trio relational graphs, the search 

space increases exponentially with number of individuals in the pedigree, and for 
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moderated size of pedigrees it becomes computationally infeasible. Therefore, it is 

necessary to perform the search in a smarter way. 

To solve this searching problem we make use of a genetic algorithm for finding sets of 

inheritance matrices and optimizing the number of recombinations. We perform this 

optimization by taking advantage of the GA evolutionary strategies for evolving 

solutions. Some advantages of using a GA for solving this search problem are that we can 

find sets of different optimal solutions, we can find optimal solutions without inspecting 

all the search space, and we are able to integrate and remove different genetic parameters 

when evaluating solutions. Figure 4.12 shows a flow chart of the genetic algorithm. 

 

 

Figure 4.12 Flow chart of the genetic algorithm used for haplotype inference. 
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The GA starts by generating randomly an initial population of candidate solutions for the 

haplotype configuration of the complete pedigree. Then, it evaluates the fitness of each 

candidate by counting the number of recombinations in each individual. From the 

resulting fitness of each individual, pairs of parents are selected to generate the next 

population generation. Next, new offspring are generated crossing over selected parents. 

Some individuals are randomly mutated in order to keep diversity in the population. 

These steps are executed in an iterative form until a stop condition is reached. The result 

is a set of candidate solutions with optimized number of recombinations. Finally, we 

select the haplotype configuration with the minimum number of recombinations as the 

final solution. In the following subsections we describe some important aspects of the 

implementation of the GA. 

 

4.7.1 Search space 

The search space corresponds to the total number of feasible solutions for the haplotype 

configuration of the complete pedigree. From the inheritance vector structure we have 

that each cell has two possible outcomes, 0 or 1, and the number of cells is 2n where n is 

the number of individuals in the pedigree. Then, the total number of inheritance vectors is 

22n. For a set of m SNPs, the total number of haplotype configurations (including 

consistent and non-consistent configurations) is m*22n. 
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4.7.2 Representation 

One of the most important factors (if not the most important) in the success of a genetic 

algorithm is how we represent (encode) a candidate solution [98-103]. In our haplotyping 

problem we have a set of SNPs that conform our data. When constructing a solution, for 

each SNP we generate a CPVHC, which is a vector of integers. Then, the set of all 

CPVHCs, one for each SNP, conform a candidate solution. To represent this in the GA 

we juxtapose all CPVHC and construct a vector. Figure 4.13 shows a representation 

example. 

 

 

Figure 4.13 Representation of a candidate solution. CPVHCs from each SNP is 
juxtaposed to construct the representative chromosome in the GA. 
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From figure 4.13 we observe that the size of the representation vector is n*m, where n is 

the number of SNPs, and m is the number of trios in the pedigree. In this representation, 

each gene in the GA corresponds to a substring of size m, which is equivalent to a 

CPVHC in its corresponding SNP. 

 

4.7.3 Fitness function 

In order to know how well a GA chromosome (a candidate solution) solves the 

hapotyping problem, we need to define a fitness function to assign scores (fitness) to each 

solution according to the genetic parameter being optimized. In our implementation we 

aim to optimize the number of recombinations. Therefore, we defined our fitness function 

according to the number of recombinations computed from the candidate solution. Figure 

4.14 shows the fitness function. 

 

 

Figure 4.14 Fitness function. The optimization consists in maximizing the fitness value. 

 

For computing the fitness of a candidate solution, we generate it’s inheritance matrix and 

compute the number of recombinations. This number if divided by the maximum number 
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of recombinations that occur in the pedigree, and subtracted to 1. The maximum number 

of recombinations is computed by multiplying the number of SNPs -1 by two times the 

number of individuals in the pedigree. The GA aims to maximize the fitness in its 

optimization process. 

 

4.7.4 Initial population 

The initial population is generated by randomly constructing a set of candidate solutions. 

For each candidate solution, a CPVHC is sampled for each SNP. These CPVHCs are 

sampled using the backtracking algorithm in a depth-first search mode to find the first 

CPVHC and stop. For randomizing the sampling we sort the order of FHCs in each trio, 

such that every time the backtracking algorithm searches for the depth-first search 

solution, it finds a different CPVHC. Figure 4.15 shows an example of a random 

CPVHC. 
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Figure 4.15 Randomized Backtracking for generating initial population. 

 

 

4.7.5 Crossover 

Crossover operator is used to generate offsprings by mating parents. It can be done by 

selecting randomly a crossover point (more than one point can be selected) and 

exchanging resulting substrings, as shown in figure 4.16. In our current implementation, 

we select two candidate solutions from the current population and generate a new 

candidate solution selecting randomly for each SNP (gene in the GA) one of both 

CPVHCs, the paternal o the maternal, and adding it to the new offspring (candidate 

solution). This operation always generates consistent haplotype configurations for the 

complete pedigree. Figure 2.16 shows an example of crossover. 
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Figure 4.16 Crossover operator to generate new candidate solutions 

In the current implementation we use a crossover rate of 1, which means that all 

individuals selected to contribute to the next generation are mated and recombined to 

generate new candidate solutions. 

 

4.7.6 Mutation 

Mutation operator is usually applied to new offspring and randomly flips some genes in a 

chromosome. Mutation can occur at each gene position in a string with some probability 

(mutation rate), usually very small. In our current implementation we use a mutation rate 

of 1/n where n is the number of SNPs. This guarantee that in average one gene is going to 

be mutated in each new candidate solution. Figure 4. 17 shows an example of mutation. 

 



 

 101 

 

Figure 4.17 Mutation operator. A CPVHC is substituted by another with a probability 
1/n. 
 

 

A selected gene for mutation corresponds to a CPVHC. The mutation is generated by 

randomly sampling another CPVHC using the randomized backtracking and substituting 

its previous value. This mutation strategy guarantees that the resulting candidate solution 

is always consistent.   

 

4.8 Analysis of performance of the developed GA-based method 

In order to analyze the performance of the GA-based method we used the same Holstein 

pedigree used for evaluating the performance of Simwalk2 in chapter 2. This pedigree 

consists of 79 individuals, from which 40 are founders. We used the same set of 50 SNP 

haplotypes and genotypes generated from the simulator SimPed. Then, we applied the 
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GA approach to infer the haplotypes. We made the GA to run 10 different times during 

100 generations with a population size of 100 individuals. From the results evaluated the 

runtime, number of recombinations, and the number switch errors and compared them 

with Simwalk2. Table 4.1 presents the results from both approaches. 

 

Table 4.1 Comparison of performance inferring haplotypes for the Holstein pedigree 
between the GA-based developed method and Simwalk2 

 
Method Runtime Number of recombinations Switch errors 

Genetic Algorithm ~ 6 hrs 500 459 
Simwalk2 ~ 10 hrs 600 601 

 

 

From the results we can see that the GA outperformed the results from Simwalk2 in all 

measured parameter.  The GA took ~6 hrs to run 100 generations and generate a set of 

haplotype configurations from which the best solution contained 500 recombinations and 

generated 459 switch errors compared to the SimPed solution, while Simwalk2 took ~100 

hrs to generate one solution containing 600 recombinations and 601 switch errors 

compared to the real solution. 

Figure 4.18 shows the decay of number of recombinations as the number of evaluated 

individuals by the GA increases. 
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Figure 4.18 Decay of number of recombinations as the number of evaluated individuals 
by the GA increases. 
 

 

The blue line shows the average number of recombinations from the 10 runs with error 

bars showing the standard deviation every 1000 individuals. We can observe that the 

average number of recombinations in the first individuals was ~800 but decreased to 

~500 recombinations after 10000 individuals evaluated. The red line in the figure 

presents the number of recombinations generated by Simwalk, and the green line shows 

the actual number of recombinations. This plot shows how the GA generated fewer 

recombinations compared to Simwalk2, in the specific case of the Holstein pedigree.  
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Figure 4.19 shows the decay in number of switch errors as the number of evaluated 

individuals increases.  

 

Figure 4.19 Decay of number of switch errors as the number of evaluated individuals 
increases. 
 

 

From figure 4.19 we can observe how the number of switch errors in the first individuals 

takes values between 600 and 650 and how it decreases to 459 after 10000 individuals 

evaluated. The green line shows the number of switch errors generated by Simwalk2.  

This plot shows clearly how the GA generated fewer switching errors compared to 

Simwalk2 in the specific case of Holstein pedigree. 
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4.9 Summary 

In this chapter we presented the design, implementation and partial evaluation of a new 

method based on genetic algorithms for haplotype inference in pedigrees. The approach 

includes the construction of trio relational graphs to search for feasible haplotype 

configurations, improving the complexity of the analysis and the speed for haplotyping 

groups of individuals, the implementation of a randomized backtracking strategy that 

permits us to solve the complexity of loops and sample complete pedigree valid 

haplotype configurations guaranteeing that we search within the space of feasible and 

consistent sets of haplotypes, 

The use of an optimized genetic algorithm and the improvements in the process of 

sampling complete pedigree valid haplotype configurations permit this new method to 

perform better than Simwalk2 in runtime, number of recombinations, and number of 

switching errors, in a test pedigree consisting of 79 individuals, form which 40 are 

founders.   

Additional tests of the new method are needed to test its performance on larger pedigrees 

and larger sets of markers. However, these preliminary results indicate that the method 

seems to be a highly suitable approach to infer haplotypes in complex pedigrees. 

The method can be extended by incorporating other strategies (besides backtracking) for 

searching for CPVHCs. In the same way, improvements can be achieved by exploring 

different parameters in the GA, such increasing the population size, trying different 

selection methods, and incorporation more genetic parameters in the fitness function (i.e., 

counting for linkage disequilibrium). Finally, the runtime can be improved by 
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parallelizing the GA and exploring different subspaces at the same time. (for example 

[43]). 
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5 Conclusions and future work 
 
 
 
 

5.1 Conclusions 

In this dissertation project we proposed as general objective to identify the most 

appropriated method to infer haplotypes from the available genotype data from cattle, and 

to characterize the haplotype block structure based on patterns of linkage disequilibrium 

within different cattle breeds. After performing a literature review and analyzing the 

structure of cattle genotype data, we established as specific aims: (1) to evaluate 

alternative methods for haplotype inference in related and unrelated individuals from 

cattle data, (2) to apply an adequate method to cattle data, inferring haplotypes and 

performing a characterization of haplotype block structure based on linkage 

disequilibrium patterns, and  (3) to develop an improved method for haplotype inference, 

based on a genetic algorithm approach. 

In order to achieve aim 1, we performed a comparison in runtime and similarity of 

inferred haplotypes of three different algorithms applied to unrelated bovine samples, and 

we did a brief review of the capability of publicly available software for haplotype 

inference in a typical pedigree. In the case of unrelated individuals, PHASE, fastPHASE, 

and MERLIN were used to infer haplotypes from two different sets. One set consisted of 

157 SNPs from chromosome 5 in 32 Holstein cows, and another set consisted of 2,465 
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SNPs from chromosome 6 in 27 unrelated cows from the Angus breed. In the case of 

related individuals, HAPLORE, MERLIN, and Simwalk2 software were applied to a 

Holstein breed pedigree consisting of 79 individuals, from which 40 were founders. 

For unrelated individuals, MERLIN and fastPHASE are fast and comparable while 

PHASE is very slow. PHASE and fastPHASE produce the most similar haplotypes, with 

an average of ~80% of similarity.  From the agreement graphs we can conclude that, 

regardless of the order in which resulting haplotypes are taken as paternal or maternal, 

the most frequently predicted allele is consistent.  As a final conclusion for the analysis of 

unrelated individuals, in the case of cattle data which generally consist of large samples 

in individuals and SNPs, fastPHASE seems to be the most adequate method to infer 

haplotypes. Even when MERLIN is faster than fastPHASE, it was designed for analysis 

of pedigrees and computes gene flow trees, which are not present in unrelated 

individuals. In addition to being fast, fastPHASE produces very similar results to those 

from PHASE, which has been reported as the most accurate software so far. Of course, 

when the sample is small and the number of SNPs is not large, PHASE would be 

preferred over fastPHASE. 

For related individuals, the only publicly available software capable of handling large and 

complex pedigrees typical in cattle datasets appears to be SIMWALK2. However, it is 

slow and its accuracy has not been extensively tested 

For achieving aim 2, we inferred haplotypes, using fastPHASE, for all individuals in the 

HapMap data set, and performed a characterization of LD and haplotype block structure 

across 101 high-density targeted regions. We estimated the extent of LD along with the 
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estimation of ancestral population size for different generations. Then, haplotype block 

characterization allowed us to elucidate the breed-specific block structure and its 

variability compared with all other breeds. And haplotype block density correlation, 

haplotype block boundary comparison, and haplotype sharing between breeds and 

subgroups helped us to elucidate high-resolution similarities between breeds, and also 

permitted us to differentiate breeds by geographic separation versus those related by 

shared ancestry. Finally, breeds were clustered given computed genetic distances based 

on haplotype block analysis. 

In conclusion, for achieving this goal we performed the first high-resolution analysis of 

haplotype block structure in worldwide cattle samples. Novel results show that cattle and 

human share a high similarity in LD and haplotype block structure in the scale of 1-100 

kb. Unexpected similarities in haplotype block structure between dairy and beef breeds 

make them non-differentiable. And, finally, our results suggest that it would be necessary 

to successfully assay ~30,000 SNPs to construct an LD map for association studies, and 

~580,000 SNPs to characterize the haplotype block structure across the entire bovine 

genome. 

For achieving aim 3, we designed and implemented a new method based on genetic 

algorithms for haplotype inference in pedigrees. The approach in this work includes the 

construction of trio relational graphs to search for feasible haplotype configuration in 

trios, improving the complexity of the analysis and the speed for haplotyping groups of 

individuals, the implementation of a randomized backtracking strategy that permits to 
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solve the complexity of loops and sample complete pedigree valid haplotype 

configurations guaranteeing to always generate consistent sets of haplotypes. 

The use of an optimized genetic algorithm and the improvements in the process of 

sampling complete pedigree valid haplotype configurations made this new method to 

perform better in runtime, number of recombinations, and number of switching errors, 

than Simwalk2, the only publicly available method capable of handling large and 

complex pedigrees, in an test pedigree consisting of 79 individuals, from which 40 are 

founders.   Additional tests of the new method are needed to test it performance on larger 

pedigrees and larger sets of markers.   However, these preliminary results indicate that 

the method seems to be a highly suitable approach to infer haplotypes in complex 

pedigrees.  

In summary, the primary contributions of this dissertation project include: 

1.  The first high-resolution characterization of haplotype block structure in the 

cattle genome, consisting in analysis of LD and block structure, which showed 

great similarity with humans, analysis of effective population size which shows 

history of breeds development, analysis of density correlation, block boundary 

discordances, and haplotype sharing which shows clear differentiation between 

indicus, African, and composite subgroups, but not between dairy and beef 

subgroups. 

2. A new approach based on genetic algorithms for haplotype inference in large and 

complex pedigrees. It includes a new representation that constrains search to 

space of feasible solutions, a new population initialization methods, crossover and 
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mutation operators, and a new fitness function that minimizes recombinations.  

The new approach outperforms SimWalk2 in accuracy and runtime, and is 

scalable for larger datasets 

 

5.2 Future work 

Different directions may be taken in order to continue expanding the results found in this 

dissertation project. First, as a scientific direction, the pipeline developed for LD and 

haplotype block characterization may be applied to the 50K Illumina chip data set 

genotyped by USDA (Dr. Curt Van Tassell). It would help to perform a high-resolution 

characterization of linkage disequilibrium and haplotype block structure in thousands 

individuals in a fast and optimized way, since the generated scripts were tested an 

improved when analyzing the HapMap data set. In the case of haplotype inference in 

cattle pedigrees, USDA Holstein populations consist of larger pedigrees than the test 

sample used for testing Simwalk2 and the GA-based approach. If the size and complexity 

of a pedigree increases from moderate to large Simwalk2 would become infeasible in 

runtime. However, the GA-based method provides the option of parallel processing. By 

initializing different populations and running a specific process for each population we 

would be able to explore different regions from the search space at the same time. It 

would improve the runtime and would make the GA-based method the only suitable 

method for handling large and complex pedigrees.     

As a technical direction for improving results from this dissertation project we propose to 

test and validate the developed method for haplotype inference with more data, including 
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small, medium, and large pedigrees. This would help to verify in a more supported way 

the statement that the developed GA approach performs better than Simwalk2 for 

haplotype inference. Another improvement would be to translate the complete 

implementation of the GA-based method to the C language in order to make it faster, and 

to be able to make it publicly available. 
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