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ABSTRACT

AN APPROXIMATE DYNAMIC PROGRAMMING APPROACH TO FINANCIAL
EXECUTION FOR WEAPON SYSTEM PROGRAMS

Erich D. Morman, Ph.D.
George Mason University, 2013

Dissertation Director: Dr. Rajesh Ganesan

During each twelve month fiscal year (FY) cycle weapon system programs across
the Department of Defense (DoD) are expected to execute their allocated budgets in an
expedient and timely manner. As the FY progresses, a weapon system’s cash flow state
at any given moment is primarily measured by the cumulative amounts of their budget
that are either committed, obligated, accrued, or expended. Regulatory and oversight
initiatives such as midyear financial execution reviews and published monthly execution
goals serve as measures that are designed to ensure that there is in fact high utilization of
a weapon system’s allocated yearly budget. The challenge of finding an ideal monthly
commitment cash flow policy that achieves a high level of utilization can be expressed as
a sequential decision making problem over time. The mathematical area known as
Markovian analysis is dedicated to modeling and finding solution methods that focus on

such problems with emphasis on understanding how the system moves from state to state



throughout the decision process. The complexity of the problem examined in this
research stems from the size of the multimillion dollar budgets in question and the
numerous projects they fund. In turn, weapon system offices must make hundreds of
commitment action determinations over any given fiscal year in an environment of
uncertainty. This intricate decision system necessitates that decision makers have good
mathematical tools that can assist them with determining an optimal commitment policy.

The research described in this thesis uses approximate dynamic programming
(ADP) techniques as a solution method to the financial execution commitment problem
for DoD weapon system programs. ADP ideas and concepts are extensions of Markovian
analysis principles. The modeling effort uses a simulation based optimization method
specifically geared towards solving sequential decision making problems. The more
traditional dynamic programming (DP) approaches are variants on the implementation of
Bellman’s recursive optimality equation. Unfortunately, as a result of the “curse of
dimensionality” and the “curse of modeling” these classical methods tend to breakdown
when applied within the more complex problem structure scenarios. The ADP approach
expands upon the original recursive idea embedded in Bellman’s optimality equation and
addresses the difficulties associated with the “curse of dimensionality” and the “curse of
modeling”.

As part of this research, two types of ADP models were built around the use of a
post decision state (PDS) variable. The application of the models was tested against a
collection of theoretical financial execution project scenarios. The initial model

leveraged a Q-learning design, while the second model used value function learning. In



each approach, the formulation of an optimal policy was dependent upon three modeling
phases. The three phases are referred to as exploration, exploitation (learning), and
learnt. The exploration phase of the model relaxes the driving optimality conditions
while simulating the execution decision system. The exploitation or learning phase
incorporates the optimality conditions within the simulation environment. Lastly, the
learnt phase leverages the outputs produced by exploration and exploitation to provide
the recommended optimal policy. Additionally, the learnt phase of the models was
designed to provide a means for conducting various sensitivity analysis and financial
execution drill excursions.

The research resulted in a unique application of ADP as a simulation and problem
solving method for generating financial execution commitment policies. The generated
ADP polices or commitment plans were compared against an alternative myopic policy
approach referred to as a stubby pencil policy. The learnt modeling phase examined and
tested the reaction of both the ADP and stubby pencil policies under various expenditure
conditions. The analysis showed that the ADP commitment strategy was often either
equal or less than that of the myopic stubby pencil strategy. These results suggest that a
decision maker following an ADP strategy would either reach full commitment of the
budget at a later date or would not reach full commitment of the budget prior to the end
of the FY. In the latter case, the remaining uncommitted dollars serve as an indication
that improved cash utilization could be obtained by incorporating more work or projects

into the budget.



CHAPTER ONE - THE PROBLEM

1.1 Problem Statement
Military acquisition programs within the Department of Defense (DoD) are

currently confronting difficult challenges that are caused by a decreasing budget line that
IS receiving greater scrutiny from various oversight authorities. In turn, program
directors (PD) that are responsible for these weapon system programs are under
considerable pressure to ensure that their allocated budgets are executed in a timely and
judicious manner. As such, PDs need good tools to assist them with executing and
implementing good cash flow policies.

There are a number of nuances involved when attempting to define exactly what
is considered effective cash flow management. DoD budgets are executed on a fiscal
year bases that starts on 1 October and ends on 30 September. In general, weapon system
programs are expected to cover the majority of costs that occur in a fiscal year with the
funding appropriated for that year. However, given the complexities of weapon system
acquisition, the Office of the Secretary of Defense (OSD) publishes different yearly
obligation and expenditure benchmarks for various appropriation categories. Table 1
provides the OSD published benchmarks for Operations & Maintenance (O&M),
Research, Development, Test & Evaluation (RDT&E), and Procurement funding

(Defense Acquisition University (DAU)).



Table 1: OSD Benchmarks for Obligations and Expenditures

Cumulative for Cumulative for
Appropriation Furst Year Available Second Year Third Year
Category Obligation Expenditure Obligation Expenditure Obligation Expenditure

0&M 100% 75% 1002 100% 100% 100%
RDT&E 90% 55% 100% 90% 100% 100%
Procurement 80% N/A 90% N/A 100% N/A

Initial Spares 92% N/A 96% N/A 100% N/A

Advance Proc 100% N/A 1002 N/A 100% N/A

The different goal benchmarks for the various funding appropriations do alleviate
some of the pressure on PDs to fully expend their budgets within the first year of
availability. However, unless spending is driven by a contractual structure that
necessitates delayed multiyear payments, there is little incentive to deliberately not utilize
or expend appropriated funding prior to year’s end. The opportunity cost of doing so is
the possibility of accomplishing more work in the current year. An additional nuance is
that the use of end year spending goals as a performance metric may incentivize
excessive and unnecessary late in the year spending. As such, effective cash
management as defined for this research attempts to utilize as much of the fiscal year
budget as possible within the year appropriated without engaging in year-end frivolous
spending.

Counterintuitive organizational incentives and institutionalized factors often
contribute to inefficient cash flow management. Several reasons that may cause wasteful
accelerated spending include the threat of budget cuts due to low expenditures, the

practice of setting a future year’s funding level on the current end of year expenditure



position, and the pressure to meet established spending metrics. In contrast some of the
pressures that lead to under executing are to avoid the danger of exhausting a budget too
early, holding excessive management reserve to cover unplanned expenses, and the
tendency of industry to over promise on the amount of cash that is necessary for the
initial start of a project. All these factors contribute to creating an environment that
necessitates the need for mathematical programming tools that can assist with making

unbiased dynamic cash flow commitment policy determinations.

1.2 Execution Definitions
There are four critical definitions that help define the status of funds as it moves

through the spending process. These four financial execution parameters are referred to
as commitments, obligation, accruals, and expenditures. A commitment of dollars will
reserve or set aside funding for a given project. While committed, funding cannot be
used or aligned to any other project. After commitments, funding is obligated on a
contract. At this point, the government has a contractual obligation to pay for work
performed by industry. Once the work is performed the contractor accrues expenses that
are billed to the government. After the government pays for the services or materials the
contractor provided, the funding is said to be expended. The below formal definitions of

these four terms are taken from the DoD financial management regulation glossary:

Commitment - An administrative reservation of funds based on firm procurement
requests, unaccepted customer orders, Directives, and equivalent instruments.



Obligation - Amount representing orders place, contracts awarded, services
received, and similar transactions during an accounting period that will require
payment during the same, or a future, period.

Accrual (Accrued Expenditure) - The term used for the credits entered into the
budgetary accounts to recognize liabilities incurred for (1) services performed by
employees, contractors, other Government accounting entities, vendors, carriers,
grantees, lessors, etc.: (2) goods and other tangible property received; and (3)
items such as annuities or insurance claims for which no current service is
required.

Expenditures — An actual disbursement of funds in return for goods or services.

These parameters comprise the vernacular used to articulate the progress of cash
flow as it may relate to programmed funding for an individual project, a collection of

projects, or a total weapon system budget in its entirety.

1.3 State-Space Vector
The four definitions combined with the concept of programmed dollars define a

multi-attribute vector of financial execution parameters. The vector whether applied to
an individual project, a collection of projects, or an entire weapon system budget serves
as a means for quantifying the existing state of a cash flow system. The vector syntax for
programmed dollars, commitments, obligations, accruals, and expenditures is captured by
[P C O A E]. Atdifferent points within the fiscal year, the status of spending is reflected
in the values given to each of these attributes within the vector. A point of contention
among the stakeholders vested in cash management relates to how future actions and
uncertain events will impact the performance and predicted status of this vector. As such,

the study and examination of the behavior of the [P C O A E] vector serves as a solid



basis for designing mathematical optimization tools to assist with the problem of efficient

cash management.

1.4 Problem Environment
The types of programs that require the most assistance are large scale complex

weapon system acquisition efforts. These programs have yearly budgets that run in the
hundreds of millions of dollars. Their budgets involve many funding projects that may
easily number well above sixty. The execution of these projects requires hundreds of
financial transactions that occur at various points throughout the fiscal year.
Furthermore, the weapon system acquisition environment often contains many elements
of uncertainty. The magnitude and complexity of these efforts makes it impossible to
effectively manage without the incorporation of sophisticated computational tools.

There are many stakeholders that have a particular position and vested interest in
cash flow decisions. However, it is primarily two conflicting points of view that
dominate the discussions over the true nature of a program’s financial execution position
as it progresses throughout the year. The two perspectives are between the program
office and the agency comptroller office. Three critical stakeholders for the weapon
system program office include the Program Director (PD), Business Financial Manager
(BFM), and the execution analysts. The PD oversees all operations necessary for
effective development, acquisition, and fielding of the weapon system. The BFM is
responsible for all financial and cost related activities associated with the weapon system.
The execution analyst performs the day-to-day activities necessary to initiate and monitor

the movement of cash as it pertains to projects related to the weapon system. In contrast,



the comptroller is concerned with the overall effectiveness of cash flow as it relates to the
agency or military service as a whole. In addition to the program office and comptroller
office other stakeholders that have an active interest in DoD cash flow management
include Congressional oversight committees, the General Accountability Office (GAO),
the Inspector General (1G), Office of the Secretary of Defense (OSD), as well as the
weapon system’s contracted industry teams. Regardless of the stakeholders, the
fundamental positions and arguments of cash flow management are about the
predictability of the [P C O A E] vector and the implications that has on the potential
unutilized budget that will exist at the end of the year.

The debate is often centered on the program office’s spend plan that is put
forward at the start of the year. A spend plan usually consists of a month-by-month
predictive cash flow status for the weapon system’s yearly budget and the individual
projects it comprises. An extensive spend plan will include the status of all five financial
parameters; programmed amount, commitments, obligations, accruals, and expenditures.
However, simplified versions are often used as part of formal end of month or midyear
reviews conducted with the comptroller office. Figure 1 shows a consolidated example
of a program office’s month-end April financial execution status for a Missile Defense
Agency (MDA) weapon system program. The charted lines and boxed color codes are
indicators that highlight the statistics and trends on how the cash flow has progressed
against both the OSD benchmarks as well as the program office’s own initial spend plan

from the start of the fiscal year (FY) up to the end of April.
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Program ($M) 364.1 364.1 364.1 363.1 363.1 363.1 363.1 363.1 363.1 363.1 363.1 363.1 363.1
BA Released ($M) 40.9 41.4 108.2 325.9 325.9 343.1 343.1 343.1 343.1 343.1 343.1 343.1 343.1
Obligation Plan ($M) 29.4 54.2 177.2 143.4 210.2 250.5 294.9 313.4 328.4 349.3 360.1 363.1 363.1
Obligation Actuals ($M) 1.0 19.1 64.5 169.5 189.5 240.2 265.2
OSD Obligation Goals ($M) 27.2 54.5 81.7 108.9 136.2 163.4 190.6 217.9 245.1 272.3 299.6 326.8 363.1
Obligation Actuals % Status 0.3% 5.3% 17.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Expenditures Planned ($M) 0.1 0.3 2.7 9.3 18.6 72.3 90.8 114.9 141.9 166.3 183.8 210.6 363.1
Expenditures Actuals ($M) 0.6 2.0 4.5 13.1 24.3 72.3 83.7
OSD Expenditures Goals ($M) 16.6 33.3 49.9 66.6 83.2 99.9 116.5 133.1 149.8 166.4 183.1 199.7 363.1
Expenditures Actuals % Status 0.2% 0.6% 19.9% 23.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Average Actual Burn Rate (Current Month -N ovember)/Number of months from N ovember 16.3
Highest Month Burn Rate Highest actual one month of ex penditures for the y ear 48.0
Highest 4 Months Burn Rate Average of highest four months of actual burn rates 19.8
Portfolio BFM Projected Burn Rate  Average of Portfolio BFM projected burn rates for remainder of FY 24.0
Most Favorable Actual Projected Unexpended at EOM Oct 2012 based on highest of FY 2012 monthly burn rate 0.0
Average Highest Actuals Projected Unexpended at EOM Dec 2012 based on average of highest 4 months FY 2012 121.0
Based On Portfolio BFM Projections Projected Unexpended at EOM Dec 2012 based on Portfolio BFM projections 80.6

Figure 1: Example Obligation and Expenditure End-Month April Status

During execution review sessions, contentious debates and energy is often
centered on the amount of unexpended budget that will likely exist on 30-September at
the end of the FY and how far into the successive FY this money will last. The issue is
whether or not the expenses covered by these carryover dollars represent an acceptable
amount of forward funding or an excessive and unnecessary level of forward funding. As
is shown on Figure 1, the bottom half of the chart reflects various comptroller projections
of what could be considered as excessive budget. These predictions use different burn
rate variables that were derived from the recorded actual burn rates accrued between the
start of the FY to the current end of April. Program offices tend to counter this evidence
with direct insight on the programmatic nuances and nature of how the program is

progressing at the time. The responses and arguments put forward are late in the FY



initiatives that have yet to start or initial projects that are going through ramp-up and have
yet to reach their maximum burn rate levels. Additional disconnects could also stem
from invoices that have yet to post in the accounting system. The core basis of the
counter argument is that the presented historical trend is not an accurate depiction of the
future activity. However, if the assumptions of the program office predictions are not
correct, the realization of this fact may occur too late in the year and the opportunity to
have either spent the money on other projects related to the weapon system or within the

agency as a whole will be lost.

1.5 Markov Decision Process
The DoD cash flow management problem is best described as a sequential

decision making problem over time in an environment of uncertainty. These types of
problems stem from a mathematical area known as Markovian analysis. A wide array of
applied problems falls into this categorization including resource allocation, inventory
control, and network flow. The field of dynamic programming (DP) includes a number
of concepts and special features designed to address the specific complexities that arise
from the Markovian problem structure. Puterman (1994) offers a good overview of
Markov decision analysis and its relationship with stochastic dynamic programming
methods.

The Markov decision problem or Markov decision process (MDP) used to model
the sequential decision making problem contains a number of specific characteristics.
For this problem structure framework, the decision maker attempts to take a series of

ideal actions over a finite or infinite planning horizon. The planning horizon may be



discrete points of time or simply delineations between required successive actions. These
separate decision points are referred to as stages or epochs. At each stage the decision
maker exists in a state. The attributes of the various states are captured by the variables
or vector of variables describing the state. The decision maker takes an action that moves
them from state to state over successive stages. Each time an action is taken the decision
maker receives either an immediate reward or penalty. The MDP captures the
fundamental problem of having to balance between the immediate reward or penalty
acquired in the current stage with rewards or penalties resulting from future actions taken
during the successive stages.

A critical feature of the MDP is the memoryless property. There is a level of
uncertainty that exists in states arrived at and visited as a result of the decision makers
selected actions. However, the probability of arriving at any given state is dependent
only upon the preceding state and not any of the earlier states that were already visited.
For a set of finite states S = {So, S1, S, ..., Sn} this notion is expressed as shown in

Equation 1.

Equation 1: Memoryless Property
PT{St+1 = St+1|St = S5tSt-1 = St—1, 0, S0 = 50} = Pr{St+1 = Se+1/Se = st}
Each time a decision is made in the Markov process that moves the system
through consecutive states a cost or reward is incurred. The term r(i,X,]j) is defined as the
reward for making a decision x at time period t that causes the system to move from state

i to state j. Furthermore, the probability of reaching state j from state i given decision x is



P:(li,x). As shown in Equation 2, these terms can be combined together to express the

expected reward for decision x while in state i given the set of all possible states S.

Equation 2: Expected Reward

(i, x) = Zjesrt(i: x, j)Pe (i, x)

The objective of the MDP is to determine an optimal policy that maps the best
decision xeX to take for each state seS in the decision system. Any feasible mapping of
actions to states is considered a policy. The best or optimal policy is the one that will
either maximize or minimize the total overall long run reward or cost for the system. The
expression Py(j|i,x) is taken from a one-step transition probability matrix (TPM) which
dictates the behavior of a particular policy. The element in the i row and j™ column of
the TPM, expressed as Pj;, is the probability of moving from state i to state j under a
particular policy.

The overall expected reward obtained by implementing a policy can be
determined through calculating the limiting probabilities of the TPM. This is achieved by

solving the following system of equations for all ;:

Equations 3: Limiting Probabilities
_ VS :
T[j = Zi:OT[iPij A Ji €S
S —
j=om =1

These limiting probabilities are then used to determine the total expected reward

of the policies under consideration. For a given policy, this total expected reward is
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>3 o m;7(i,x). Similar total expected rewards are easily calculated for other feasible
policies that each have a unique TPM which governs the policy’s behavior. An optimal
solution is obtained by calculating the total expected rewards among all possible policies
and selecting the maximum.

This approach to finding the ideal policy for a MDP is only practical for relatively
simple problems. Consider a basic MDP that contains four states and at each state one of
three possible decisions is allowed. As such, this means that for this MDP there exists 3*
= 81 potential policies. In order to find the optimal solution the limiting probabilities for
each policy is calculated from 81 different sets of systems of equations. Additionally, it
is readily observed that the number of calculations required to solve the problem grows

exponentially should either an additional state or decision variable be added.

1.6 Dynamic Programming (DP) Introduction
DP attempts to alleviate the computational burden imposed on a MDP that occurs

as a result of the direct enumeration of all policy possibilities. The DP approach is
attempting to find the ideal state and decision pairing that is described by theorem 1

(Gosavi 2009), (Bertsekas 1995).

Theorem 1: For a discounted reward MDP in which all Markov chains are regular, there
exists a vector j* = {J*(1),/*(2), ...,J*(I9])} such that the following system of linear
equations is satisfied:
J' () = maxgean G a) +y I p(i,a, )" ()] foralli € 9
DP examines the solution approach for finding this optimal vector through
capitalizing on the inherent recursive structure embedded in the system of linear

equations. In the simplest of forms the objective function value for any state i can be

expressed by Equation 4.
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Equation 4: DP Recursive Objective Function

fe()) = minj/max;{c;; + frr1()}

Here, the objective function states that the best value of being in state i at time or
stage t is obtained by determining the action that provides either the maximum or
minimum of the cost c;; incurred by moving from state i to state j plus the value of being
in state j at the next unit of time or stage t+1. The objective function structure requires
the consideration of all the successive decisions that occur beyond just the imminent
timeframe t. The concern is that outside of very straight forward problems the use of
recursion will present computational challenges. Fortunately, there are advanced
concepts in the field of DP that are specifically designed to address these challenges. In
an effort to provide context for the advanced DP concepts, it is worth taking a closer look
at a specific solution approach which uses this basic recursive objective function
formulation.

The recursive concept is easily demonstrated by examining a simple resource
allocation problem (Winston 94). In this example, a company is considering how to
allocate $6,000 in $1,000 increments across three potential investment opportunities. The
individual net present value (NPV) returns for each investment along with a network flow

diagram are provided below:
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Equations 5: NPV for Resource Allocation Problem
r(dy)=7dy+2 (d1>0)

r(d;) =3d,+7  (dy>0)

r3(ds) =4d;+5 (dz>0)

r1(0) = rz(O) = r3(0) =0

Figure 2: Backward Recursion Network

The nuances of the problem are best explained by examining the stage-space and
state-space design. In this sequential decision making problem each stage represents one
of the three individual investment choices. The nodes at each stage show the various
states representing the balance on the $6,000. The final and fourth stage is added as a
sink node that is arrived at once the funding is completely distributed across all three
investments. At a given stage, the state arrived at is dependent on the choices made in
the prior stages. If the choice in stage one is to allocate x; = $2,000, then the state arrived
at in stage two is $4,000 or (2, 4). Although the problem is characterized by how the
action choices move one forward through the network, the solution method actually
evaluates the stage-spaces in reverse through the use of a technique called backward

recursion.
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Backward recursion systematically calculates the value of each stage-space in
reverse order. Starting with investment three, one examines the NPV obtained for all of
the investment allocation possibilities. These values along with the corresponding

allocation choice are as follows:

Table 2: Investment Three NPV

f3(0) =0 x3(0) =0
f(1) =9 X3(1) =1
f3(2) =13 X3(2) =2
f3(3) =17 X3(3) =3
f3(4) =21 X3(4) =4
f3(5) =25 X3(5) =5
f3(6) =29 X3(6) =6

Once known, the stage three values are then utilized to calculate the stage two
values. If d; is the amount of dollars available for investment two, then the total NPV
obtained by the investment action x; is the sum of both the immediate return of
investment two ry(x2) plus investment three f3(d,-x2). In short, at stage two the solution

approach is now looking to maximize the following:

Equation 6: Stage 2 Maximization Formulation

fa(dz) = max {ra(xz) + fa(d2 - x2)}

In a similar manner, the backward recursion algorithm continues such that the
various stage one values are calculated using the stage two values. At stage one, the net

present value obtained from an investment action x; is the sum of the initial investment
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return ri(x;) plus the cumulated returns of investments two and three fy(6-x;). The
following table shows the NPV calculations and corresponding actions for both stage two

and stage one.

Table 3: Investment One and Two NPV

X %) faldoxo) ra(xs) +faldrxs) d % nx) faldhxs) () +fa(dsx,
0 0 0 0 0 5 0 0 25 25
1 0 0 9 9 5 1 10 21 31
1 1 10 0 10 5 2 13 17 30 d ox nbo) f(6-x1) nla)+fi(6-x
2 0 0 13 13 5 3 16 13 29 6 0 0 35 35
2 1 10 9 19 5 4 19 9 28 6 1 9 31 40
2 2 13 0 13 5 5 22 0 22 6 2 16 27 43
3 0 0 17 17 6 0 0 29 29 6 3 3 23 16
3 1 10 13 23 6 1 10 25 35 6 4 30 19 49+
3 2 13 9 22 6 2 13 21 34 6 5 37 10 47
3 3 16 0 16 6 3 16 17 33 6 6 44 0 44
4 0 0 21 21 6 4 19 13 32
2 1 10 17 27 6 5 2 9 31 NPV from Investments 1-3
4 2 13 13 26 6 6 25 0 25
4 3 16 9 25
4 4 19 0 19

NPV from Investments 2,3

The stage one calculations provide the optimal solution which is a total NPV of
49 for all three investments. Although this optimal value was obtained through backward
recursion, the actual decision policy is now realized by stepping forward back through the
decision problem. At stage one, the optimal value is obtained by taking action x;(6) =
$4,000. This leaves a balance available for investment two of d, = $6,000 - $4,000 =
$2,000. In turn, the optimal action for stage two is x»(2) = $1,000. This leaves a balance
of d3 = $1,000 for investment three along with the associated optimal action x3(1) =
$1,000. In summary, the optimal NPV value of 49 is obtained with a decision policy of

[X1=$4,000 x,=$1,000 x3=$1,000] and resulting returns [r1(x1)=30 ra(x2)=10 r3(x3)=9].
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This algorithmic approach is only viable for relatively simple well defined
problems. In this example, the decision problem contains no stochastic or probabilistic
components. Additionally, the state-space size was relatively small making it viable to
calculate all possible action and outcome state pairings. Once the decision maker had
access to all aggregate NPV outcome possibilities, the problem of determining an optimal
policy was rather straight forward. Furthermore, the implementation of the DP approach
ensures that the decision maker does not make a myopic allocation. For example, using a
pure greedy heuristic an individual may place all $6,000 in investment one because as a
stand-alone option this does in fact produce the highest NPV. Unfortunately, when
applied to more complex and sophisticated problems backward recursion and other
classical DP solution methods quickly breakdown. Solution approaches to more
challenging problem structures incorporate advance DP techniques that are described
within a simulation based area known as adaptive dynamic programming or approximate
dynamic programming (ADP). This thesis examines the development of some of these
advance DP tools and theoretically tests them within the context of determining optimal

commitment decision policies for financial execution.

1.7 Allocation Parameter
The initial consideration in the ADP design was to determine the discrete funding

increment of a project with which to track the execution status. Each project has an
assigned [P C O A E] multiattribute vector that expresses the financial execution status of
a project at any point in the ADP simulation. In theory, each of these five variables can

take on any dollar amount between zero and the maximum allowable budget for the
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project in question. However, for projects ranging in value from hundreds of thousands
to multimillion dollar amounts there was little added value in tracking the [P C O A E]
vector to the nearest single dollar amount. Therefore, restrictions were put on each
project such that any of the P, C, O, A, or E values could only take on and be expressed
in multiples of the assigned allocation parameter.

Consider a $5.0M project with an assigned $0.250M allocation parameter. This
means that any of the five financial execution variables can take on only one of the 21
different multiple values of $0.250M that range between zero and $5.0M. Obviously,
this assumes that through the course of the simulated fiscal year the project’s
programmed amount does not receive a plus-up or reduction. If the project does receive a
programmed amount plus-up or reduction, the number of possible allowable values
increases or decreases accordingly. Nonetheless, as a basis the 21 different allowable
values means that the number of state-space possibilities that exist for the entire [P C O A
E] vector is 21* = 194,481,

The ADP model was designed with the flexibility to select different allocation
parameters based on the size of the project. The various allocation parameter options
were $0.100, $0.250M, $0.500M, $1.000M, $2.000M, and $5.000M. The actual
allocation assignment to a given project was based on the magnitude of the programmed

dollars for that project.

1.8 Why Use Approximate Dynamic Programming (ADP)
ADP has a number of features that make it an appealing solution method for this

particular problem vice the available alternative existing mathematical programming
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approaches. As pointed out by Das et al. (1999), “Well known algorithms, such as value
iteration, policy iteration, and linear programming find optimal solutions (i.e., optimal
policies) of MDPs. However, the main drawback of these classical algorithms is that
they require, for every decision, computation of the corresponding one step transition
probability matrix and the one step transition reward matrix using the distributions of the
random variables that govern the stochastic processes underlying the system.” The
argument is that the alternative methods to ADP are dependent on transition probability
matrices (TPM) to articulate the nature of the uncertainty and randomness that exists in
the decision system. In many real world problems there is no easily available TPM for a
given MDP. The computational complexities in generating a TPM along with the
potential burden of storage may cause these alternative approaches to be intractable. The
ADP solution approach includes a method for incorporating the stochastic component of
the decision system without the need for an explicit TPM.

Additional arguments for using ADP are related to methodology differences.
Many alternative methods to solving sequential decision making problems are burdened
by the requirement to satisfy the modeling constraints from all time periods of the
problem at the same time (Denardo 2003). Since the alternative solution methods need to
consider many of the facets of the problem simultaneously, even the formulation of
problems that are evaluated over a moderate number of time periods are large-scale. In
reference to a transportation application, Powell (2007) states, “formulated as a single,
large linear (or integer) program (over 50 time periods), we obtain mathematical

programs with hundreds of thousands of rows and upwards of millions of columns”. The
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example is taken from a discussion that suggests the use of ADP as a decomposition
technique for these types of large-scale math problems. The advantage of ADP under
these large-scale problem conditions is that at any given moment in the solution process
the methodology only evaluates data from two consecutive time periods vice having to

evaluate data from all time periods simultaneously.

1.9 Contributions and Structure of Dissertation
The contributions of this thesis are threefold. The first research objective is to

build an ADP model that can examine and mimic the sequential decision making
problems associated with financial execution as it relates to weapon system acquisition
within the MDA and possibly within the DoD as a whole. Second, the ADP will be used
to generate and recommend commitment strategies. The commitment strategies will be
unbiased to the organizational pressures to either over execute or under execute a budget.
Ideally, they represent a commitment policy that can move the decision maker from one
good state-space to the next good state-space as a project or group of projects moves
through the execution process. Lastly, the commitment strategies generated by the ADP
will be compared against an alternative commitment strategy referred to as stubby pencil.
As the name suggests, the stubby pencil strategy attempts to mimic real world behaviors
that allocate dollars based on standard linear projections. These approaches tend to
exhibit a myopic decision strategy that provides positive short-run benefits but, do not
take into account the downstream impacts of decisions on the system as a whole. A

specific theoretical portfolio of projects is evaluated as a basis of comparison between the
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ADP and stubby pencil approaches. Various sensitivity analysis drills are performed to
further evaluate the responses of these two perspectives.

The structure of this thesis is as follows. Chapter one defines the problem and
provides an overview of financial execution as well as basic Markovian and DP concepts.
Chapter two expands on some of the critical mathematical tools and developments in the
field of ADP. Additionally, this chapter provides an overview of the relevant authors and
their associated publications. Chapter three provides a walk-through of the development
hurdles and functionality of the financial execution ADP model. In chapter four, the
learnt phase of the model is discussed and the results of sensitivity analysis drills are
shown. Chapter five provides some summary remarks, observations, and opportunities

for further research.
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CHAPTER TWO - ADP CONCEPTS AND LITERATURE OVERVIEW

2.1 Dynamic Programming Background
During the 1950s and early 1960s, DP began developing prominence as a

mathematical tool for modeling and solving MDP. There are a number of publications
during this timeframe that significantly helped define and advance the field of DP. Some
of these seminal works include Bellman (1954, 1957), Howard (1960), and Bellman &
Dreyfus (1962). At that time, these publications helped articulate the core principles of
DP and its utility as a tool for solving Markov decision and other stochastic control
problems. The DP approach is designed to specifically address the inherent structure of
sequential decision making problems which encompasses a vast diversity of problem
classifications. A few of these areas include inventory management, resource allocation,
job shop scheduling, shortest path problems, technology switching, and maintenance/
repair scheduling. Over the last few decades, the DP field has evolved into a rich array of
techniques designed to respond to the inherent difficulties with using traditional DP
solution approaches and the complexities of real world problem structures. The
following provides a short overview of the different lexicon used to refer to advance
dynamic programming concepts as well as some of the published authors in the field.
Powell (2009) points out that different academic communities have a fundamental
need to examine the solution capabilities and driving theories behind DP. A problem that

developed was that as these sub-communities worked to further advance solution
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techniques for MDPs each community simultaneously built their own vernacular and
notional symbols to essentially express the same basic ideas. Powell (2007, 2009)
references that these different communities include control theory (engineering/
economics), artificial intelligence (Al) (computer science), and operations research. As
articulated below, there are significant drawbacks to using traditional DP approaches for
solving a MDP. In response to these shortcomings, an iterative solution approach within
the field of operations research was adopted know as adaptive/approximate dynamic
programming (ADP). In control theory, Bertsekas and Tsitsiklis (1996) refer to this
similar approach as neuro-dynamic programming. Furthermore, Sutton and Barto (1998)
refer to this as reinforcement learning (RL) within the context of Al. Both Powell (2010)
and Tsitsiklis (2010) offer perspectives and elaborate on the relationship that exists
between the ADP and Al communities. Additional context behind the evolution of ADP
is mentioned in Gosavi (2009) which states that “the modern science of RL has emerged
from a synthesis of notions from four different fields: classical DP, Al (temporal
differences), stochastic approximation (simulation), and function approximation
(regression, Bellman error, and neural networks).”

In regards to this thesis, two algorithmic approaches in the form of Q-learning and
value function learning are provided which served as the design framework for solving
the financial execution commitment policy problem and providing good cash flow
policies to the decision maker. The remainder of this chapter is dedicated to the

rationality and pedagogical development of the ADP approach.
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2.2 Problems with Dynamic Programming
As expressed in Ivengar (2005), “Dynamic programming (DP) is the

mathematical framework that allows the decision maker to efficiently compute a good
overall strategy by succinctly encoding the evolving information state.” The DP
approach is concerned with finding optimal policies to sequential decision making
problems that are often expressed as a MDP. The previous chapter outlined two classical
DP solution approaches related to finding optimal policies within these types of decision
problem frameworks. Unfortunately, these two solution methods and other classical DP
approaches often breakdown when applied beyond relatively simple problems.

The first solution approach attempted to find an optimal solution by computing
the expected value of the objective function for all viable policy alternatives. This is
considered a strict enumeration approach and involved finding limiting probabilities
through solving a system of linear equations as expressed by each policy’s TPM. The
difficulty with this approach is that the calculations require a well defined TPM that
reveals how one state moves to the next in the decision process. However, in practicality
most real world problems do not have well defined probabilities that indicate how the
decision process will transition from state to state. Instead, in a complex problem
environment the movement from one state to the next is dictated by a combination of the
decision maker’s action and realized exogenous or random information that impacts the
decision sequence at each stage. The dependency of traditional DP solution approaches
to require a TPM is referred to in the literature as “the curse of modeling”.

The second approach utilized a backward recursion method to calculate a system

value for each state-space possibility in the sequential decision making system.
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However, this approach becomes quickly problematic in that the computational burden
grows exponentially for each variable element added to the problem. When
implementing the backward recursion solution method, the expansion of the decision
problem by adding just a single state-space or action possibility will easily result in the
need for a sizable amount of additional calculation requirements. This exponential
growth in computational demands for even relatively small problems is referred to as “the
curse of dimensionality”.

The curse of dimensionality and the curse of modeling are of critical importance
to the limitations of traditional DP approaches and thus the need to develop ADP

techniques that both issues are worth further examination.

2.3 “Curse of Modeling”
One of the major drawbacks of traditional approaches to solving a MDP is that

they all assume access to the TPM. However, one positive aspect of having access to the
TPM is that the value function expression used in many of these solution approaches can
be calculated explicitly and as such obtain exact optimum solutions. Yet, most real
world problems do not have a well defined TPM that can capture the probabilistic
nuances of how a state action pairing will move the decision maker into the next state.
Solution methods such as ADP that attempt to solve and mimic problems that do not have
a readily available TPM structure are referred to as model-free. In these cases, the
information necessary to move a decision maker from state to state will need to be
generated artificially. The standard approach for doing this is to use a Monte Carlo

simulation technique. As with the real world problem examined in this thesis the
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sequential decision making process of determining what amount of money to commit at
the start of each month in support of weapon system acquisition does not contain an

easily definable TPM matrix.

2.4 “Curse of Dimensionality”
A second concern with the traditional methods of solving a sequential decision

making problem is that the computational requirement grows exponentially as the
dimensionality and state-space size of the problem increases. As a result of the curse of
dimensionality the strict enumeration and backward recursion methods in chapter one
would be intractable for any large scale problems. Also, other classical methods such as
value iteration which requires performing a synchronous value update for all states in the
decision system at each iteration in the solution process quickly becomes unmanageable
as problem size increases.

Powell (2007) references the state-space, action space, and outcome space as the
three main curses of dimensionality. As articulated, a decision problem with | state-space
dimensions each of which can take on any of L possible values may have as many as L'
true state-space possibilities. This same exponential representation holds for an outcome
space of size M’ that has M possibilities over J dimensions and an action space of size N¥
that has N possibilities over K dimensions. Expressed in this fashion it is readily visible
how any traditional DP approach which requires accounting of all possible state-space,
action space, and outcome space possibilities is quickly overwhelmed by the curse of

dimensionality.
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An important concept to the ADP design is to delineate between a problem having
a large state-space and a problem having large dimensionality. For the financial
execution problem the size of the state-space is determined by the allocation factor
assignment against a given project. A $5.0M project with an allocation parameter of
$1.0M has in theory six possible programmed value states ranging from $0.0M through
$5.0M. By decreasing the allocation parameter by one-half to $0.5M, this increases the
number of possible programmed value state-spaces from six to eleven. Regardless of the
allocation parameter the dimensionality of the problem does not change. The defining
problem vector [P C O A E] has five dimensions and still only has five dimensions even
if there is a change to the allocation parameter. The dimensionality of the problem is
based on the number of attributes assigned to define a state-space. Nonetheless, the
dimensionality of a problem and the state-space number of a problem are both factors that
contribute directly to the curse of dimensionality.

Later in this thesis, the dimensionality of the problem vector is reduced from five
to two. There are two reasons for this. The first was as a natural progression of the
problem definition. The second was to reduce the state-space size as a means to mitigate
the impacts from the curse of dimensionality and improve the algorithm performance

time.

2.5 The Need for Approximate Dynamic Programming (ADP)
ADRP is a direct response to the inherent problem nuances brought on by both the

Curse of Modeling and the Curse of Dimensionality. Figure 3 shows the natural

progression and rationality for examining sequential decision making solution methods
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beyond what is provided by classical DP. The following sections of Chapter 2 are
dedicated to the mathematical syntax and theories of the ADP concept. The equations
and algorithms are expressed in terms of a finite horizon minimization problem to be
consistent with the described research problem for this thesis. However, all the
formulations are easily convertible to either a maximization or infinite horizon

expression.

Standard Methods and Classical DP
Approaches to Solving MDP

—_

1)  Strict Enumeration Drawbacks
2)  Backward Recursion “Curse of Modeling”
. . - Requires TPM Adaptive/
%) Linear Programming >| “Curseof Dimensionality” Approximate Dynamic Programming
4)  Policy Iteration - Exponential State-Space Gr_owth Reinforcement_ Learning _
Solve for System of Linear Equations Neuro-Dynamic Programming

5)  Value lteration Synchronous Value Function Updates

Figure 3: The Need for ADP

2.6 Transition Function
The ADP approach makes use of the idea of a transition function to model the

behavior of how a decision making process moves from one state to the next. In light of
no longer having a TPM, surrogate symbolism is instead used to describe the rules of
how a decision system transitions between states. The expression S™(-) taken from
Powell (2007) is recognized as a generic modeling syntax in which the state-space is a
model of the variables contained within the parenthetical (-). As described in the resource

allocation problem from chapter one, the recursive expression fi(i) = min;{cij+f+1(J)}
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showed how the value of a given state i is dependent upon a cost or reward for an action
plus the value of the state j arrived at by that action. In terms of the transition function
notation, this same flow of events is expressed as Si+1 = SM(Si,x:). Here, the future state
Sw+1 1s dependent upon the current state S; and the action x; taken at that time. However,
an additional variable that impacts the future state-space and what was before expressed
by the values contained in the TPM is the randomness that occurs between successive
states. In order to capture the embedded uncertainty within the system, the variable Wi,
is added to the transition function which expands this modeling expression to what is
shown in Equation 7. The variable Wy, represent the randomness or exogenous

information that occurs in the system at the start of every time period t greater than one.

Equation 7: Transition Function

St = SM (S, xe, Wes1)

Another concept that is often used to model the evolving information state of the
system is the post decision state (PDS) variable which is expressed as S*. The PDS
captures the state of the system just after an action x; is determined but, before
randomness or exogenous information is introduced into the system. Through the use of
the PDS variable the transition function is now broken into the two different parts
captured by Equation 8 and Equation 9 below. The two equations capture the idea that
the system decision process is moving successively from a pre-decision state into a PDS

and then into a new pre-decision state. The first expression, Equation 8, takes the
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decision system from the pre-decision state and into the PDS. The second expression,

Equation 9, moves the system form the PDS into the next successive pre-decision state.

Equation 8: PDS Transition Function

SF = SM*(Sy, x¢)
Equation 9: Pre-Decision State Transition Function
Str1 = SM'W(Stx; Wit1)

Assuming the possible actions x; are all well defined variables, the selection of
an action and the subsequent movement from a pre-decision state S; to a PDS S7as
expressed in Equation 8 is a deterministic process. However, the expression in Equation
9 is considered a stochastic process since it represents when the system moves from the
PDS Sf into the next pre-decision state S+ and randomness in the form of Wy, is
introduced into the system. Utilizing transition function notation, the sequential decision
making system can be considered as a successive series of back-to-back deterministic and

stochastic events. Figure 4 below captures this idea.

Xt- X W X WJr
| St l Sty | at S ; St | at 18”1

A

<—determinsitic—>| <— stochastic —> < determinsitic>| <—stochastic —>

Figure 4: Transition Function Timeline
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2.7 Bellman’s Equation
The transition function syntax provides a compact method for expressing the

objective of the sequential decision making problem. The goal is still to find the best
policy that trades-off both immediate and long term costs to produce the minimum
overall expense across the problem horizon. This idea is captured by the objective
function expression in the following Equation 10. The variable C(S;, X;) is the cost
incurred for taking action x; while in state S;. The y* term is a discount factor for each

time period t.

Equation 10: DP Objective Function Formulation

Mingen Xi—o ¥ C (S, %)

The objective as expressed by Equation 10 is to find the policy = € IT, such that
the cost for taking all actions x; across time period T is minimal. The nature of the
problem can be further reduced to evaluate only the necessary requirements to select the
optimal action x; at any state in the system vice all states simultaneously. At any given
state t in the sequential decision making process the optimal action for that state x; (S;)
will satisfy Equation 11. In this expression, the optimal action to take is dependent upon
an initial immediate or myopic cost Ci(S;,x;) plus the value of the next state in the system
V:+1(St+1). As it relates back to the transition function, the initial costs Ci(St,Xt)
represents the deterministic event in the decision process and the future value of the next
state V;,;(S:+1) captures the stochastic component of the process. The new challenge

that is presented by this formulation is to determine the value of the Vi+1(St+1) expression.
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Equation 11: Optimal Action (Powell 2007)

x¢ (Sp) = argminy,cx, (Ce(Se, ) +YVir1(Se41))

In most problems there is no readily available value for the Vi.1(St+1) term or a
simple approach for calculating this value for a given time period t. The backward
recursion algorithm presented in Chapter 1 showed a method for calculating state-space
values V,(S;) for a purely deterministic problem. However, determining this value
becomes far more problematic once probabilistic or stochastic variables are introduced
into the decision logic. Attempting to find this value is an exercise in solving for

Equation 12 which is referred to as the standard form of Bellman’s equation.

Equation 12: Standard Form of Bellman’s Equation

Ve (Se) = minxteXt(Ct(St; Xe) TV 2sres P(Ses1 = S'ISe, x) Vs (S)

Bellman and Dreyfus (1962) put forward that there is an optimal policy that
satisfies the standard form of Bellman’s equation. Furthermore, if one is able to model
the state transitions with a well defined TPM, the value of each state-space V(S;) can be
calculated explicitly. However, as a result of the curse of modeling most problems do not
have a TPM. As such, Bellman’s equation cannot be solved explicitly and the value
function at each state in the decision space will need to be estimated. This idea of now
having to find an estimated or expectation as a means to calculating the value function is

more eloquently recognized by the expectation form of Bellman’s equation shown below.
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Equation 13: Expectation Form of Bellman’s Equation

Ve(Se) = ming,ex, (Ce(Se, X ) YVE{Viy1 (Se+1)15¢)

Equation 13 shows how the current state-space value is directly dependent upon
the estimated expectation of the next state-space in the system. It is the methodologies
and science behind ADP that attempts to tackle the problem of determining an intelligent

approach to estimating this expectation.

2.8 Sampling the Value Function
The ADP algorithm works by collecting observed or sampled values ¥ of the

value function V(S;) through simulating the decision process as it steps forward in time.
For each additional simulation run n, the ADP algorithm collects more and more ¥
observations for a given state-space. Extrapolating from the expectation form of
Bellman’s equation, one could collect a sample value through Equations 14 from Powell
(2007). Both equations are essentially equivalent and are expressing the same idea. The
only difference between the two is the use of the transition function notation for the latter

expression.

Equations 14: Sample Realization of Value Function (Powell 2007) B
vl = Miny exn [C.(S¢xe) +y Zaeﬁtﬂ Pes1 (@) VI (Sea1)
vl = miny exp [Ce(Stxe) +y Z@eﬁtﬂ Pes1 (@) VET (SM(SE, xe, Wes1 (D)))]

During simulation n, a sample realization 9* at time period t is equivalent to the

minimal sum of the immediate cost plus the discounted value of the pre-decision state at
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time period t+1. The expression V27 (S.,1) is the recognized or estimated value of this
pre-decision state that currently exists after n-1 simulation runs. Using this formulation,
the approach is to randomly generate a set of outcomes Q. for the exogenous variable
W1 and assign an associated probability for each outcome @ . The summations are then

across the probabilities of each @ € O, 1.

2.9 Value Function Update
As the simulation progresses, each value ¥* that is collected contributes to

finalizing an expectation of the PDS variable V (5*). Various stochastic approximation
techniques can be used to smooth a collection of sampled values to calculate an
expectation for a population. A common approach as suggested by Robbins & Monro

(1951) and interpreted by Gosavi (2003) is to use the expression in Equation 15.

Equation 15: Smoothing Algorithm
VR(SE) = (1 =0t VPSP +ocuq () Where o,y =~

Within the literature, the «,,_,term is referred to as either the step-size, alpha-
decay parameter, or learning rate. There is extensive discussion in the ADP literature as
to what step-size to use. Although, the ultimate step-size choice is often unique to the

decision problem at hand and the particular ADP approach utilized to find a solution.

2.10 Q-Learning on the Pre-Decision State
The initial ADP approach examined in this thesis was a Q-learning algorithm.

Instead of generating estimated values associated with each individual pre-decision state,

the Q-learning algorithm generates values in the form of Q-factors for each augmented
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state-space and action pairing. Equation 16 and Equation 17 from Gosavi (2003)
describe the basic structure of the Q-learning approach. They present a method for
calculating the estimate of a Q-factor around the pre-decision state variable and then
using the Robbins-Monro methodology to update the expectation. Using this
formulation, the expression Q(i,a) represents the Q-factor value for the augmented state i
and action a pairing. As is consistent with Bellman’s formulation the Q-factor is a
combination of an immediate cost C(i,a,j) incurred from taking action a which moves the
decision system from state i to state j plus the minimum viable Q-factor Q(j,b) value from

the set of all actions b € A(j).

Equation 16: Estimations of Q-Factors
QG,a) = I p(i,a,)c(af) + Aminyeay Q. b)]

= E[c(i,a,j) + Amingye,Q(, b)]
= E[SAMPLE]

Equation 17: Robbins-Monro Q-Learning
Q™ (ha) = (1 —a™hHE™({ a) + a™[r(i, a,j) + AminyeaQ"(, b)]

The presumption of Gosavi (2003) is that a simulation process is used to generate
the sample random variables of Equation 16. This explains the expectation that
encompasses the entire right-hand side of the expression. The Robbins-Monro update
then provides the latest evaluation of the Q-factor. For a step size term a™*?! that is set to
1/(n + 1) the Q-factors become the averages of the observed random variables.

The following algorithm taken from Powell (2007) provides the method for

implementing Q-learning around the pre-decision state variable.
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Algorithm 1 (Pre-Decision State Q-Learning).
Step O: Initialization
Step Oa: Initialize the approximation for the value function Q2 (S,, x;)
for all seS, xeX teT
Step Ob: Initialize S3
Step Oc: Set n=1
Step 1: Choose a sample path w™
Step2: Fort=1,2,..., T,
Step 2a: Find the decision using the current Q-factors
x{ = argminy exp QF 1 (ST, x¢)
Step 2b: Compute
Gte1= (Ce (S xe) + Y VAT (SM(SE 28, Werr (0™)))
Step2c: Update Q"1 and V/*~1
QF (ST x1) = (1 = 1) QL (ST, xF) +o_1 (GT41)
VI(SE) = min,, Q1 (SE, 1)
Step 2c: Find the next pre-decision state
Sth1 = SM(SE, xl' Wepq (@™)
Step 3: n=n+1. Ifn <N, go to Step 1.

Step 4: Return the Q-factors (Q/)T_;
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Credit is given to Watkins (1989) as the first recognized publication of the Q-
learning algorithm. A formal narrative on the proof of convergence for the Q-learning
design is given by Watkins & Dayan (1992). The proof of convergence assumes that
actions are repeatedly sampled in all states where the action-values are discrete.
Tsitsiklis (1994) provides an alternative perspective on the proof of convergence in Q-
learning that parallels asynchronous stochastic approximation methods. In regards to Q-
learning, Gosavi (2005) emphasizes that “an attractive feature of the algorithm is its
stability which is partly due to the fact that the iterates remain bounded.” Furthermore,
Gosavi (2005) provides another alternative Q-learning proof of convergence from

Watkins & Dayan (1992) using mathematical induction.

2.11 Arguments for Using the Post Decision State (PDS)
Powell (2007) argues that a better approach to implementing the algorithmic

design to Bellman’s equation is to use the post decision state (PDS) vice pre-decision
state. Although the approach to finding Q-factors or value function estimates around the
pre-decision state is fundamentally consistent with Bellman’s optimality equation, the
actual implementation of collecting observed g;* or ¥ in this manner may be
problematic. The issue is that at time t, the state S, is a random variable. The
simulation process that generates W, ;(w™) is stochastic by nature. The selection of w™
directly impacts which S is in fact the next state. Furthermore, as expressed in
Equations 14 the current estimated value of this next state factors directly on the

calculations for the observed sample ©f*. However, one does not know which
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VA1 (Se41) value from all possible future S, states that might occur will serve as the
best estimate for the expectation E{V;,,(S;+1)|S:} expressed in Bellman’s formulation.
Given the stochastic complexities involved with estimating this embedded
expectation, Powell (2007) argues the case for building the value update process around
the PDS. His first step is to recognize the critical relationship that exists between the
PDS and pre-decision states which are shown in Equations 18 below. The first and third
equations express an intuitive relationship between the expectation of different state-
spaces and their equivalency to post decision states (PDS) between separate time periods.
The second equation expresses the relationship that exists between the pre-decision state
and PDS within the same time period. It should be highlighted that the relationships
captured in equations 1) and 3) are stochastic and that the expression in 2) is purely

deterministic.

Equations 18: Pre-Decision State and PDS Values (Powell 2007)

1) VE(SEq) = E{Vi(S)ISE 4}

2) Ve(Sp) = maxxteXt(Ct(StJ xe) + thx(Stx))

3) VE(SE) = E{Ver1(Ses)ISE}

The significance of these equations is recognizing the correlating relationship
between using ¥ as a sampling value for V/*(S{*) and as a measure for the value of the
earlier time period’s PDS value VX (S™). As expressed in 1) from Equations 18 the
expected value of the current pre-decision state value V;(S;) is equivalent to the PDS of

the earlier time period V;_, (S%). As stated by Powell (2007), “while ©* is a sample of

the value of being in state S7, it is also a sample of the value of the decision that put us in
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state S;”}.” Using this philosophy the sampling formulations for ©f* presented in
Equations 14 can be adjusted to what is reflected in Equation 19. Again, both equations
are essentially equivalent with the transition function notion being used in the later

equation.

Equation 19: Sample Realization of the VValue Function using the PDS Variable
SN— n pn—1ccxn
Of'=ming exp[Ce (ST, xe) +yVe (5]

D= minexp [Ce (ST, %) + YV (S (SF, %))

This approach provides a sampling structure for ¥ around the PDS variable. The
realized sample values ¥ are now a sum of the initial cost function C;(S;, x;) plus the
discounted value of the estimated PDS position after n-1 iterations. The advantage of this
formulation is that the stochastic component has been removed from the equation. The
calculations involved in determining ¥ are purely deterministic. However, the
outstanding issue is the mechanics involved for actually determining the best expectation
or estimated value of the PDS position V*~1(S"™).

In response to this dilemma, Powell (2007) modifies the implementation of the
Robbins-Monro algorithm to reflect Equation 20. Unlike Equation 15, Equation 20
centers the smoothing process or value update function on the PDS variable. Using this
formulation, Powell (2007) is taking advantage of the fact that at time t, the previous PDS
S, is already known and not a random variable. In this manner, emphasizing the PDS
variable has reduced the stochastic complexities of the earlier pre-decision state

approach. The difference between using the pre-decision state and PDS can best be
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characterized by either using an update process that is looking forward or an update

process that is looking backwards.

Equation 30: Smoothing Algorithm on PD_S Variable
V(S = (1 =0 VM (SE™) +oc,_q (BF)

2.12 Q-Learning on the Post Decision State (PDS)
The initial model built to examine the financial commitment problem was a Q-

learning algorithm that used a PDS value update process. A simulation process generated

and collected Q-factor observations g;* based on Equation 21.

Equation 21: Sample Realization g-Values

4= mincxp[Ce(ST, X + yminyexn (QF (ST, %))

The sample Gy values were calculated based on estimated PDS Q-factors
QI (S, xv) vice the pre-decision state Q-factors QP (S, x,). As before, whether using a
pre-decision state or PDS update, the syntax for the Q-factor always includes the action
variable x;. This highlights the special state-action relationship pairing captured by Q-
factors. Another feature of Equation 21 is that the Q-factor used in the calculation of the
sample realization Gy is the minimum Q-factor associated with that PDS regardless of the
action taken to reach that PDS. This explains the minimization operand embedded within
the overarching minimization problem. It is possible that the x; value that solves the

inner minimization expression is different from the one that solves the outer minimization

39



expression. A second and perhaps clearer expression that explains how g;* are now
collected is to break Equation 21 apart into the two steps shown in Equation 22 and

Equation 23.

Equation 22: Sample Realization g-Values
AN — . i7yn—1 x,n
g =miny,exn[Ce (St x0) + vV (S¢ )]

Equation 23: Estimate of the PDS Value Function

VETH(SEM) = Miny exp [QF (S, x0)]

The expression V*~1(S;™) is the current estimate of the value function for PDS
S¥. The estimated value function position is the minimum of the set of current estimated
Q-factors values across all (S, x;) pairings that exists after n-1 iterations. As before, the
individually collected gf* observations serve as a basis for learning or approximating Q-
factor values. The expression in Equation 24 adopts the Robins-Monro update for Q-

learning on the PDS variable.

Equation 2_4: Q-Factor Learning 3
Q?—l(stx—,q'xt) =(1 —Mn-l)Q?‘l(Sf’"’xt) +,_1 (G1)

The algorithm presented on the following page outlines the structure that was

used to build the PDS Q-learning model.
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Algorithm 2 (Post Decision State (PDS) Q-Learning). Step O: Initialization
Step Oa: Initialize the approximation for the value function Q2 (S, x;)
for all seS, xeX
Step Ob: Initialize S3, Set n=1
Step 1: Choose a sample path w™
Step2a: Fort=1,2, ..., T, Solve
4s'= minxtexg”‘(ct(stn’ xe) + )/Vt”_l(Sf;’i))
where V7'~ (S7™) = miny,exp QR (SE™, x,)]
let X" be the value of x that solves the minimization problem
Step2b: For t >1, update Q* ; and V/*,
Q-1 (S xe) = (1 —0¢, ) QP (S, Xe—1) +u—y (G1)
VNS = Miny, exn| QL (S72, %e-1)]
Step 2c: Find the next pre-decision state
St = SM'W(Stx'n' Wip1(@™))
Step 3: n=n+1. If n <N, go to Step 1.

Step 4: Return the Q-factors Q(S*, x) and value function approximations V/ (S*)

2.13 Value Function Learning Algorithm
The Q-learning algorithm presented in the previous section produces both Q-

factor values and estimates on the value function for the PDS variable. The Q-factors are
stored in a 2-dimensional matrix with dimensions |S| |X|. The horizontal rows of the

matrix each represent a viable PDS S*and the columns each represent an action

41



possibility x. The advantage of the Q-learning results is that the data provides a visual
graphic pattern indicating which actions were selected or visited during the simulation
that led to arriving at a particular PDS. In this manner, the Q-learning output serves as a
logic test for the algorithm. If an action choice can not possibly lead to a PDS and the Q-
factor value associated with this PDS-action pairing is positive and thus was visited
during the simulation then it is clear that there is a problem with the implementation or
code that is interpreting this algorithmic design.

Although the verification aspect of Q-learning makes it an ideal prototype
approach for an ADP design, it is not practical for large scale sequential decision making
problems. The matrix data requirement that is necessary to maintain Q-factor values
tracking both the state and action pairing creates sizable storage and computational
demands. Once again, as a result of the curse of dimensionality the Q-learning approach
may become intractable for large scale complex problems.

An alternative approach is to compute the estimate of the value function directly
without the use of Q-factors. The following value function learning algorithm adjusts the
Q-learning algorithm in a way that allows for the value function updates to be calculated
directly. The result of this design approach is to produce a single vector with dimension
|S| that provides estimates for each PDS value function. Although this approach relieves
some of the storage and computational demands of the Q-learning algorithm, it
unfortunately provides no indication of exactly which actions were selected as part of

learning or estimating the PDS value functions.
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Algorithm 3 (Value Function Learning).
Step O: Initialization
Step Oa: Initalize V°(5*9), S°
Step Ob: Set n=1
Step 1: Choose a sample path w™
Step2a:Fort=1,2,....,T
Solve U= miny exn (Cc(S¢', x¢) + YVETHSM*(SE, x0))
And let X" be the value of x that solves the minimization problem
Step2b: Update the value function for t >1
VEL(SED) = (1 = )V (S +%nq (OF)
Step 2c: Find the next pre-decision state
St = SM'W(Stx'n' Wip1(@™))
Step 3: n=n+1. If n <N, go to Step 1.

Step 4: Return the PDS value function approximations V*(S*) for each state S

2.14 Q-Learning and Value Function Learning Design Summary
The implementation of these algorithms and the continual smoothing or feedback

process used to obtain convergence of the state values is referred to as learning. Once it
is determined that sufficient learning has occurred and that the estimates of the value
function have converged, these values are then used to solve Bellman’s optimality
equation in what is known as the learnt phase of the model. This learnt phase is what

ultimately produces a recommended optimal solution policy or state-action pairing.
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CHAPTER THREE - THE MODEL DESIGN

3.1 Perspectives on Data Structures
The initial modeling design hurdle was determining an input data structure

approach for the ADP. In order to make the model more user-friendly and easily
explainable, it was important that the data inputs mimicked formats already utilized by
the financial community and were easily understood by the involved decision makers. A
quick study of the standard charts, tracking graphics, and outputs currently used as well
as familiarization with the organization’s financial database systems and tools all helped
to define the ADP model’s inputs. Much of the financial information examined tended to
feature a month-to-month snapshot that captured the current status of the common five
execution parameters: programmed amount, commitments, obligations, accruals, and
expenditures. Figure 5 shows three common approaches consistently used to monitor and

display financial tracking and planning data.

SM Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sept
Program 5.000
Commitment 0.500 0.500 0.500 0.500 3.000
Obligation 0.500 0.500 0.500 0.500 3.000
Accruals 0.250 0.250 0.250 0.250 0.500 0.500 1.000 1.000 1.000
Expenditures 0.250 0.250 0.250 0.250 0.500 0.500 1.000 1.000 1.000

A) Incremental Plan
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SM Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sept
Program 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Commitment 0.500 1.000 1.500 2.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Obligation 0.500 1.000 1.500 2.000 5.000 5.000 5.000 5.000 5.000 5.000
Accruals 0.250 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 5.000
Expenditures 0.250 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000

B) Cumulative Plan

SM Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sept
Program 5.000 4.500 4.000 3.500 3.000
Commitment 0.500 0.500 0.500 0.500 3.000
Obligation 0.250 0.500 0.750 1.000 3.500 3.000 2.000 1.000
Accruals 0.250 0.250 0.250 0.250 0.500 0.500 1.000 1.000 1.000
Expenditures 0.250 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000
C) Audit Plan

Figure 5: Funding Planning Matrices

Each of the three planning pictorials provides a slightly different depiction of the
same spend plan for a five million dollar project, $5.000M. Conducting a closer
evaluation of the anticipated February position reveals nuanced differences emphasized
in each plan. As indicated by the incremental plan A, it is expected that $0.500M is
committed in February. In actuality, since individual commitment increments of
$0.500M are planned each month from November through February, this brings the
predicted month-end February total commitment amount to $2.0M. This total
commitment amount is called out in the cumulative plan B. The audit plan C reveals that
of the total $2.0M committed by February, only $0.500M will be remaining as
unobligated. Similarly, for the $1.5M cumulative obligation amount called out in plan B,
the audit plan C reveals that by February there will be a balance of $0.750M remaining to

be accrued. The imposed naming conventions of incremental, cumulative, and audit
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attempt to qualify the unique point of view that each of these three planning input
structures provides.

These three approaches used to monitor execution planning each have unique
appeal depending upon the daily concerns that arise due to one’s particular job role. The
incremental plan is ideal for the working level execution analyst who prepares funding
documents and needs data points on a month-to-month basis regarding the incremental
funding amount each document must incorporate. Additionally, this view is helpful for
the working level analyst that wants to compare the predicted accruals and expenditures
against those that are actually billed each month by a contractor. The cumulative plan
has more appeal to those concerned with understanding the larger overarching strategic
situation. For example, program directors and business financial managers often want to
know if their programs and projects are meeting aggregate month-end expenditure goals.
If there is evidence that a project is either over executing or under executing, these
decision makers can take corrective actions in an attempt to better align cash allocations
to actual needs. A critical aspect of this thesis is to compare the commitment decision
policies produced by a myopic stubby pencil approach against that of an ADP model.
The intent is to have the ADP model create good commitment decision policies that
attempt to avoid over-execution or under-execution scenarios. Lastly, the audit plan
provides a snapshot that tends to be preferred by comptrollers and auditors. The audit
plan quickly recognizes unutilized funding balances and highlights those dollars which
could be swept from the program and reallocated to other prioritize across the service or

agency.
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3.2 Immediate Cost Function and the ADP Network
The simulation aspect of the ADP design reiterates and calculates responses to the

objective function hundreds of thousands of times until a convergence point is reached
forming the ADP action policy vector. Through simulation, the ADP model is attempting
to learn an action policy that can move the decision maker from one good state to another
good state. Qualitatively the objective is to determine an efficient use of cash whereby
the actual allocation of funding matches the true cost needs. The decision maker is
essentially attempting to avoid the negative consequences that result from either over-
committing or under-committing funding. The recommended commitment policy
generated by ADP is a direct result from repeated exposure to Bellman’s optimality
equation and the embedded model’s immediate or myopic cost function at each stage
within the sequential decision making network.

The immediate cost function used for this thesis was constructed in an effort to
determine the best commitment action to take at the start of each month that could pay
the cash needs for three months. The model attempts to commit funding in a manner to
ensure expenditure coverage for the current month as well as two more additional months
or for what is required from time period t through the end of time period t+2. In this
case, the decision maker is looking to take an action x; that will minimize the absolute
value between the cumulative commitment position at state S.; plus any new
commitments or de-commitments from action x; minus the cumulative actual
expenditures at state S+, In short, at each stage in the simulation the model incurs the

following immediate or myopic cost due to taking action Xi:
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Equation 25: Immediate (Myopic) Cost Function

n Cumulative Predicted
C.(S", x)=— ABS| commitments N Cumulative
t( t t) S from S, + % Expenditures at S,

The rationale for using a three month time period was due to cash flow lag times.
The three month window tends to provide a sufficient lag time to allow for a commitment
action to become obligated on a contract vehicle where it is available for payout against
invoices.

In this simplified form, the immediate cost penalty does not incorporate certain
peculiarities. As stated, there is no preference between an action that causes over funding
and an action that causes under funding. In reality, a decision maker is likely to possess a
bias towards whether he or she wants to risk arriving at an under-commitment state that
momentarily delays payment to a contractor or an over-commitment state that generates
an opportunity cost trapping funds that could otherwise be used towards a different
project. A second nuance of the stated cost function is that it assumes there is no cost
associated with taking the actual commitment action. Given the labor hours involved, a
commitment or de-commitment action does cost time and money. A decision maker may
want to minimize the number of commitment actions taken over a year. As such, the cost
or penalty function could be implemented in a manner where instead of making a
commitment action every month, it is made once every other month or once a quarter.
Nonetheless, the current from of the cost function does serve the immediate purpose of

designing an ADP model that can emulate the DoD financial execution process.
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Due to the construct of the immediate cost function the ADP model design will
need to utilize, update, and maintain the data structures as depicted in the incremental
plan A and cumulative plan B matrices. Since the cost function does not incorporate
unutilized balances, the ADP model design will not require the data from the audit
planning matrix C. Figure 6 shows the ADP model financial execution input data
requirements of a $5.0M twelve month project for the five execution parameters of

programmed, committed, obligated, accrued, and expended.

I [o [o] A E e c (o] A E

t=1 Oct 5.000 Oct 5.000
t=2 Nov 0.250 Nov 5.000 0.250
t=3 Dec 0.250 0.500 0.250 Dec 5.000 0.500 0.500 0.250
t=4 Jan 0.250 0.250 0.250 0.250 Jan 5.000 0.750 0.750 0.500 0.250
t=5 Feb 0.250 0.250 0.250 Feb 5.000 1.000 0.750 0.750 0.500
t=6 Mar 0.500 0.500 0.250 0.250 Mar 5.000 1.500 1.250 1.000 0.750
t=7 Apr 0.500 0.500 0.250 Apr 5.000 2.000 1.250 1.500 1.000
t=8 May 1.000 1.000 0.500 0.500 May 5.000 3.000 2.250 2.000 1.500
t=9 Jun 1.000 1.500 1.000 0.500 Jun 5.000 4.000 3.750 3.000 2.000
t=10 Jul 1.000 1.250 1.000 1.000 Jul 5.000 5.000 5.000 4.000 3.000
t=11 Aug 1.000 1.000 Aug 5.000 5.000 5.000 5.000 4.000
t=12 Sept 1.000 Sept 5.000 5.000 5.000 5.000 5.000

Incremental Planning Matrix A Cumulative Planning Matrix B

Figure 6: Initial Planning $5.0M Project

The mechanics of the ADP model are easily represented pictorially by a
sequential decision making network. Figure 7 shows the step-by-step flow of the ADP
algorithm. A single iteration of the model will simulate month-to-month execution
activity for time periods t = 1 through t = T, where T is the total number of months. The

first step is to recognize the execution parameters of the current state-space or pre-
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decision state Si.; in a given t-1 time period. Next, an action x.; is taken based on the
implementation of Bellman’s optimality equation. The action x;; then moves the model
into a post decision state (PDS) S ;. At this point the model enters into the next time
period t where realized exogenous information W, is incorporated into the system. The
execution parameters are updated based on the revealed exogenous information and a
new current pre-decision state S;is defined. Once again, an action X; is taken and moves
the model into an updated PDS S#. The model continues to step forward through the
decision network for T months and then repeats itself for a total of N simulation

iterations.

Month Start Stage
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Joeimormeans | '
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— 7 5
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Expenditures
%
- t1it ti ot
I S H S S S S
F > > g > > > >
X1 =C=+2.0 i ExogenousShock x,=C=+1.0
Se1= g = H Sy= Sx= :
[5.0 2.0 1.0 0.5 0.5] [5.0 4.0 1.0 0.5 0.5] [5.0 4.0 4.0 2.0 1.0] [5.0 6.0 4.0 2.0 1.0]

Figure 7: ADP Network Model of Commitment Cash Flow Problem
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Figure 7 also shows how the values of the $5M project’s state-space problem
vector changes as the ADP model moves through the decision network. The state-space
vector is defined by the current values of programmed amount, commitments,
obligations, accruals, and expenditures [P C O A E]. In the initial pre-decision state, the
values of these state-space execution parameters are shown as Si.; = [5.0 2.0 1.0 0.5 0.5].
During month t-1, an action is taken to commit an additional X, = $2.0M dollars. The
state-space vector is then updated to reflect the $2.0M action as shown in the PDS S¥ =
[5.04.0 1.0 0.5 0.5]. In the next successive time period t, exogenous information reveals
that during the prior month $3.0M was obligated, $1.5M was accrued, and $0.5M was
expended. This realized information is incorporated into the new pre-decision state-space
vector which now takes on values of S; = [5.0 4.0 4.0 2.0 1.0]. Lastly, during time
period t the action taken is to commit an additional x; = $1.0M. As such, the new PDS
vector is updated accordingly to S¥ =[5.0 4.0 1.0 0.5 0.5]. This action selection and
state-space vector update process will repeat itself hundreds of thousands of times during

the ADP model’s simulation process.

3.3 Subroutines of the ADP Model
The ADP model uses four Matlab subroutines to simulate the process of moving

from one pre-decision state to the next. These four subroutines are best described as 1)
selecting a commitment action, 2) updating the Q-factors or value function estimate, 3)
incorporating the exogenous information, and 4) updating the incremental planning
matrix A and cumulative planning matrix B data. These subroutines are the basis of the

ADP approach and are designed to incorporate the flow of the sequential decision making
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network, the application of Bellman’s optimality equation, and the behavior of a DoD
financial execution process.

The first subroutine selects a commitment action. At the start of each month, the
set of all viable commitment actions is initially restricted by two factors. First, a
commitment action is not allowed if it results in a total commitment level that is beyond
the project’s current programmed amount. Second, all commitment action possibilities
are in multiples of a project’s assigned allocation parameter. Figure 8 shows the model

making a commitment action at the start of January or time period t = 4.

A(4,2) = planned B(3,2) = cumulative B(6,5) = planned cumulative
commitment action at S; commitments at S.q expenditures at S+,
P C [0} A E P C o A E

t=1 Oct 5000 Oct  5.000
t=2  Nov 0.250 Nov  5.000\0.250
t=3 Dec ____ 0.250 0500 0250 _ __ L Dec _ 5.000 0.500 02501 _ __
t=4 Jan [0:250]0:250 0.250 0250 Jan 5000 0.750 0.750 0.500 |0.250
t=5 Feb 0.250 0.250 0.250 Feb 5.000 1.000 0.750 0.750 '0.500
t=6 Mar 0.500 0.500 0.250 0.250 Mar 5000 1.500 1250 1.000 [0.750]
t=7  Apr 0.500 0.500 0.250 Apr  5.000 2.000 1.250 1.500 1.000
t=8 May 1.000 1.000 0.500 0.500 May 5.000 3.000 2.250 2.000 1.500
t=9 Jun 1.000 1.500 1.000 0.500 Jun  5.000 4.000 3.750 3.000 2.000
t=10 Jul 1.000 1.250 1.000 1.000 Jul  5.000 5.000 5.000 4.000 3.000
t=11 Aug 1.000 1.000 Aug  5.000 5.000 5.000 5.000 4.000
t=12 Sept 1.000 Sept 5.000 5.000 5.000 5.000 5.000

Incremental Planning Matrix A Cumulative Planning Matrix B

Figure 8: Matrix A & B Commitment Action Selection

The months October through December represent the simulated historical or
actual data. The months from January forward represent the latest predicted values of the

system. At this point, the total programmed funding level is $5.000M and the month-end
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December t-1 commitment total is $0.500M. Also at this point, there are no realized
expenditures. This means that the set of all possible actions x; ranges from a de-
commitment of $0.500M to a positive commitment of at most $4.500M. Given an
allocation parameter of $0.250M for the $5.000M project, the set of all viable

commitment actions is as follows:

(50.500M)  $1.250M  $3.000M
(S0.250M)  $1.500M  $3.250M
$0.000M $1.750M $3.500M
X; =4 s0.250m $2.000M $3.750M
$0.500M $2.250M $4.000M
$0.750M $2.500M $4.250M
$1.000M $2.750M $4.500M

After the subroutine makes an action determination, the planned incremental A
commitment amount highlighted in Figure 8 is updated accordingly. This simulated
actual commitment action may or may not be the same as the planned amount and is
highly dependent upon the decision system’s current value function estimate.

The Q-factor or value function update section integrates the use of Bellman’s
optimality equation and serves as the critical aspect of the ADP design. Depending upon
the approach, realized § or ¥ observations are calculated from the minimum commitment

action resulting from the Equation 26 and Equation 27 expressions.

Equation 26: Sample Realization g-Values

/q\?: minxtexgl [Ct(st,nr xt) + yminxtEXp [é?—l(sgc‘n’ xt)]
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Equation 27: Sample Realization v-Values
SN— n pn—1ccxn
Of'=ming exn[Ce (ST, xe) +yVe (5]

The expression C.(S{, x;) represents the immediate or myopic cost from
committing x; dollars. As mentioned earlier, this cost is the absolute value between the
resulting cumulative commitment position by taking action x; and the predicted
expenditure position at state Si.,. These values are highlighted in the cumulative
planning matrix B shown in Figure 8. In this example, the action x; that minimizes the
expression C.(SE, x;) is X; = $0.250M. Here, the immediate cost from taking a
commitment action of $0.250M is C, (S, x;) = | $0.500M + $0.250M - $0.750M | = 0.
However, this commitment action may or may not be the same action that minimizes the
objective function expressions for Q-learning and value function learning. These realized
sample g and ¥ values are calculated as the minimum of the sum of this immediate cost
C:(SE, x,) plus the current value function estimate associated with the PDS arrived at
after taking action x;. Sections 3.6 and 3.7 discus in depth the different ADP approaches
of Q-learning and value function learning as applied to the financial execution
commitment problem. These sections will elaborate on the specific details for how the
Q-factors and value function estimates are ‘learnt” and actually updated as the simulation
model progresses.

The subroutine that generates exogenous information serves as a mechanism to
incorporate randomness and uncertainty into the model. Once the ADP algorithm selects
a commitment action X, the incremental commitment parameter in matrix A and the

cumulative commitment parameter in matrix B are updated accordingly. However, it is
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not until the start of the following month or stage that exogenous information is realized
regarding what occurred to the other execution parameters. At the start of each month, an
update process reveals what happened to the programmed amount, obligations, accruals,
and expenditures during the prior month.

In the ADP model, rules were developed to generate random data dictating the
possible ranges of values for each parameter. A unique set of rules was designed for the
initial $5.0M twelve-month scenario. At each stage or month in the simulation the
programmed amount had a 2% chance of receiving a plus-up equal to $0.250M and a 5%
chance it would incur a cut of $0.500M. If there was no plus-up or reduction the
programmed amount would remain the same. The model assigned a 20% chance that the
obligation associated with a commitment action would be delayed into the next month. A
rule was created that only allowed obligations to be delayed for at most two months.

A plus-minus factor was created to generate variability around the planned
accruals and expenditure figures. The plus-minus factor sets upper and lower bounds on
the month-to-month simulated accruals and expenditures. Given a plus-minus factor of
$0.500M, if the predicted accrual amount for the month was $1.000M then the range for
the simulated accrual would be from a low of $0.500M to a high of $1.500M.

Figure 9 shows how realized exogenous information impacts the status of the
incremental matrix A and cumulative matrix B data. Here, the program amount was cut
by $0.500M, the anticipated obligation of $0.250M was delayed, and the accrual and

expenditure positions came in at $0.500M vice the anticipated $0.250M. During
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successive model runs, the exogenous subroutine’s rules were adjusted and tested as part

of conducting various modeling sensitivity analysis and data drills.

Exogenous Information

Oct  5.000

t=1

t=2 Nov 0.250

t=3  Dec 0.250 ﬁm—mﬁ—]
t=4  Jan_(0500_0250 0000 0500 0500
t=5 Feb 0.250 0.250 0.250
t=6 Mar 0.500 0.500 0.250 0.250
t=7 Apr 0.500 0.500 0.250
t=8 May 1.000 1.000 0.500 0.500
t=9 Jun 1.000 1.500 1.000 0.500
t=10 Jul 1.000 1.250 1.000 1.000
t=11 Aug 1.000 1.000
t=12 Sept 1.000

Incremental Planning Matrix A

Cumulative Planning Matrix B

Figure 9: Matrix A & B Exogenous Updates

At the start of the new time period t+1 and before a new action decision is made,

the incremental planning matrix A and B data is updated. The results of the commitment

action and the exogenous information subroutines have a cascading impact on the

prediction of future time period’s financial execution. This impact needs to be properly

captured so that the next commitment action determination is based on the best available

prediction of the future state-space positions of the system.

Figure 10 shows changes made to the matrix A and B planning data due to the

results produced by the prior subroutines. The reduction of $0.500M, resulted in a new



predicted cumulative planning amount of only $4.500M for the months of February
through September. Also, given that the January accruals and expenditures were higher
than anticipated, the future year planning for accruals and expenditures now exhibits an
accelerated spending trend. The updated accrual and expenditure planning is governed
by the assumption that accelerated spending will continue but, eventually slow to fit

within the constraints of the new programmed amount.

Update Matrix A& B Planning Information

P C (0] A E P C o
t=1 Oct 5.000 Oct  5.000
t=2 Nov 0.250 Nov 5.000 0.250
t=3 Dec 0.500 0.500 0.250 Dec 5.000 0.750 0.500
t=4  Jan__ (0.500) 0500 _ __ 0500 0.500 _ [ Jan__4.500 1.250 0.500 0.750
t=5 Feb 0.500 0.500 0.500 0.500 Feb 4500 1.750 1.000
t=6 Mar 0.250 0.250 0.500 Mar 4.500 2.000 1.000
t=7 Apr 0.250 0.750 0.250 0.250 Apr  4.500 2.250 1.750
t=8 May 0.500 0.750 0.500 0.250 May 4.500 2.750 2.500
t=9 Jun 0.750 1.000 0.500 0.250 Jun 4.500 3.500 3.500
t=10 Jul 1.000 1.000 0.750 0.500 Jul 4.500 4.500 4.500
t=11 Aug 1.000 0.750 Aug 4.500 4.500 4.500
t=12 Sept 1.000 Sept 4.500 4.500 4.500
Incremental Planning Matrix A Cumulative Planning Matrix B

Figure 10: Matrix A & B Planning Updates

The matrix A and B update subroutine adjusts accruals and expenditures based on
how the previous time period’s actuals compare to expectations. If the actual was larger
than the expectation, accrual and expenditure predictions are pulled forward in

anticipation that the trend will continue. In a similar manner, if the actual was less than
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the expectation, accruals and expenditure predictions are pushed into future time periods.
In both cases, the assumption is that the full programmed amount is eventually exhausted
and as such the updated cumulative amount will at some point always reach the
programmed amount. The matrix A and B update subroutine ensures that the ADP
algorithm design of the model is consistent with a Markov process in that the next

decision is only based on the current state of the system and not the earlier prior states.

3.4 Complexities Due to Adding Multiple Projects
A number of complex issues arose once the ADP modeling process was expanded

from modeling a single project scenario to modeling multiple projects simultaneously.
As a result of adding projects, the size of the state-space, outcome space, and action space
grew exponentially. This is consistent with the well know curse of dimensionality. In an
effort to reduce the memory and run-time requirements of the model the state-space
definition was limited to only those critical attributes absolutely necessary for
determining a commitment action. Given that the cost of taking an action was defined as
a function of just commitments and expenditures, it was no longer helpful to continue to
track either the obligation or accrual status of a project. Additionally, the state-space
definition was further constrained by removing the programmed plus-ups and reductions
variability from the exogenous subroutine. This had the effect of fixing a project’s
funding amount at a static level throughout the decision making process. Once the
project’s programmed amount was defined as a static variable, it was no longer necessary
to include it as part of the state-space vector. Therefore, the state-space definition of a

project was simplified to just commitments and expenditures [C E].
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These adjustments significantly reduced the size of the state-space and respective
outcome space vectors. Prior to any adjustments a $5.0M project with an allocation
parameter of $0.250M had 3,200,000 state-space and outcome space possibilities.
Additionally, if at any time throughout the simulation process the $5.0M project received
a programming plus-up the number of state-space and outcome space possibilities would
grow considerably. After restricting the state-space definition to just commitments and
expenditures, the number of state-space and outcome space possibilities for the $5.0M
project dropped to only 400.

In this form, the model was now structured around examining the behavior
between a single system predictive parameter and an associated action parameter. Here,
the expenditure level serves as the predictive measure and the commitment choice serves
as the action parameter for the system. In order to incorporate the multiple projects, the
incremental and cumulative planning information is now loaded as an array. Figure 11
shows the updated multiple project state-space array input structure required to run the
model.

In order to further improve run-time and memory requirements, additional
adjustments were made to the viable action space possibilities. The range of all actions
during each time period t was limited to reflect a more realistic commitment decision
policy. If the current total expenditure amount was above the current total commitment
amount, the commitment action must at a minimum bring the total commitment amount
up to a level that is equal to the current total expenditure amount. Similarly, a de-

commitment action was not allowed if it dropped the total commitment level below the

59



current total expenditure amount. These limitations not only reduced the size of the
action state but, had the added affect of further reducing the size of the outcome space.
Under these circumstances, the model could never arrive at a PDS in which expenditures
were larger than commitments. In the case of the $5.0M project, the outcome space

possibilities were further reduced from 400 to 231.

Project 3 [c €]

Project 3 [c g] Project 2 [c 6]

Praoject 2 [c g]

Project 1 [c &] LMDT Project 1 [C’e]_l_a_mTooo
t Month FaWaYa¥al a000 888 0 000 .000 000
2 e 0000 0000 PO 000 5005 0005 pooo |20
2 Nov 0.000 0.000 poo 000 0-000 0.000 D.DDD 000
3 Dec 0.000 0.000 poo 000 0-000 0.000 O.OOO 000
s Fon 2000 ooy PO pooo 1000 0,000 P.000 |9e0
5 Feb 1.000 0.000 {poo 250 9 2-000 0.000 D.DDD 250
6 Mar 1.000 0.000 jpoo | 250 3-000 1.000 0.500 500
. 5000 1500 E20 paso 3000 3000 [1.500 |00
9 Jun 0.000 1.000 oo | goo 3-000 3.000 2.000 000
10 Jul 0.000 0.000 500 000 3-000 3.000 2.000 000
11 Aug 0.000  0.000 ppoo . . .
12 Sept 0.000  0.000 3.000 3.000

Incremental Planning Array A Cumulative Planning Array B

Figure 11: Updated Matrix A & B Planning Data for Multiple Projects

The inclusion of multiple projects into the ADP also added new challenges to the
design of the commitment action subroutine. At each time period t, it was now not only
necessary to select a commitment action for the aggregate system, it was also necessary
to understand how that commitment action was allocated across each project. As such,
the commitment action subroutine was modified to include a number of features that are

best described with an example. Consider a three-project scenario in which the
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individual budgetary programmed amounts and allocation parameters are as shown in

Table 4.

Table 4: Multiple Projects Allocation Parameter

Programmed Allocation
Amount Parameter

Project 1 $5.000M $0.500M
Project 2 $2.000M $0.250M
Project 3 $1.500M $0.100M

Once multiple projects are incorporated, the model needs to calculate a
programmed amount and allocation parameter for the decision system as a whole. The
programmed amount for the system is merely the sum of the individual project’s
programmed amounts and in this case is equal to $8.500M. The allocation parameter for
the system is the greatest common denominator (GCD) among the set of individual
project’s allocation parameters. Since the model design restricts the individual allocation
parameters for each project to the following set [$5.0M $2.0M $1.0M $0.500M
$0.250M $0.100M], the system allocation parameter is necessarily restricted to the same
set with the addition of a $0.050M allocation parameter possibility [$5.0M $2.0M
$1.0M $0.500M $0.250M $0.100M $0.050M]. In the above example, the system
allocation parameter for the three given project’s is in fact $0.050M, the GCD for the
three projects.

As the model moves through successive stages, the incremental planning matrix A
and cumulative planning matrix B information is continually maintained and updated for

all three projects as well as for the total system. For the provided example, Figure 12
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shows the ADP reaching time period t = 7, the start of April. The figure shows the
current status of the cumulative planning B data for each of the three projects at this
point. The information above the dashed line represents actual commitment and
expenditures produced by the ADP while the information below the dashed line
represents the planning or predictive commitment and expenditure position for the

remaining time periods.

c E [ E (o E
t=1 Oct 0.500 0.000 0.750 0.250 0.200 0.000
t=2 Nov 1.000 0.000 1.000 0.500 0.300 0.100
t=3 Dec 1.500 0.500 1.250 0.750 0.400 0.200
t=4 Jan 2.000 1.000 1.500 1.000 0.500 0.300
t=5 Feb 3.000 1.500 1.500 1.250 0.500 0.400
t=6  Mar___ 350 _ 2000 1750 _ 150 = _0500__ 0500
t=7 Apr 4.000 3.000 2.000 1.750 1.200 0.800
t=8 May 4.500 3.500 2.000 2.000 1.300 1.000
t=9 Jun 5.000 4.000 2.000 2.000 1.400 1.200
t=10  Jul 5.000 4.500 2.000 2.000 1.500 1.300
t=11 Aug 5.000 5.000 2.000 2.000 1.500 1.400
t=12 Sep 5.000 5.000 2.000 2.000 1.500 1.500

Figure 12: Multiple Projects Matrix B Data

The current aggregate commitment and expenditure state-space vector for the
system as a whole is [$5.750M $4.000M]. This is the sum of the individual project’s
state-space vectors shown at time period t = 6. Given a total programmed amount of
$8.500M, this means that the range of commitment possibilities for the system is from a
de-commitment action of $1.750M to a total positive commitment action of $2.750M.
Since the system allocation parameter is $0.050M, the set of all viable system
commitment actions includes all the amounts between negative $1.750M and positive

$2.750M that are evenly divisible by $0.050M. This means that at time period t = 7 there
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are 91 possible commitment options. However, what still remains unknown is how any
of the viable 91 system commitment actions is allocated across each of the three projects.

At this point, it was necessary to create an internal decision algorithm that
indicated how all 91 commitment options are allocated across the three projects. The
choice was to design a demand rules algorithm that systematically apportioned each of
the system commitment choices to the projects with the greatest demand or immediate
need for funding. However, any funding allotment scheme still needed to fit the
allocation parameters of the individual projects. A possible system commitment action
was removed from consideration if it could not be evenly distributed within the allocation
parameters of the individual projects while at the same time satisfying the priority order
of meeting projects with the highest immediate demand first.

The logic here is twofold. First, at any time period t, a decision maker would not
deliberately choose a commitment action that left an undistributed balance. Second, there
always exists a viable allocation option that evenly distributes across the individual
projects in priority order which will take precedent over any other evenly distributed
allocation option that does not distribute according to a priority order. In this manner,
common sense criterion was incorporated as part of determining which commitment
action to ultimately pick.

The demand rules algorithm separately evaluated each of the 91 commitment
options and either produced an allocation profile for that option or eliminated it from
consideration. For example, given a possible commitment action of $1.900M, the

demand rules algorithm assessed each project’s month-to-month expenditure demand in
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order to ultimately produce an apportionment plan. Using Figure 12, it is determined that
at t = 7 project three has the greatest immediate forecasted expenditure demand. At this
point, the current month’s expenditures are forecasted to be $0.800M and the actual
commitment level at this point is only $0.500M. Project three’s immediate one month
need for funding is $0.300M which is higher than the immediate one month demand for
either project one and project two. As such, the demand rules algorithm allocates
$0.300M of the $1.900M to project three, leaving a balance of $1.600M remaining to be
allocated.

For the next month t = 8, there is a zero sum predicted demand for project one
funding given the current project one commitment level, a predicted demand of $0.250M
for project two, and an additional predicted demand of $0.200M for project three.
Meeting the forecasted demand requirements for project two and three means that project
two receives $0.250M of the remaining balance and project three receives an additional
$0.200M of the balance, bringing the total allocation of funding for project three to
$0.500M. The updated remaining allocation balance drops from $1.600M to $1.150M.

Att =9, the forecasted expenditure demand for project one is $0.500M, for
project two it is zero, and for project three it is $0.200M. Making these additional
allocations means that to date project one receives $0.500M, project two $0.250M, and
project three $0.700M. The updated remaining balance allocation has now dropped even
further from $1.150M to $0.450M.

At this point when the demand rules algorithm is evaluating funding requirements

beyond a month t+2 time period, it starts to compare the aggregate funding needs for all
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the remaining time periods in the model vice for each successive month. In this example,
for t = 10 and beyond the remaining demand for project one is $0.500M, for project two
it is zero, and for project three it is $0.300M. Since there is insufficient funding
remaining to meet neither the demand nor the minimum allocation parameter for project
one, the demand rules algorithm defaults to allocating an additional $0.300M to project
three. This brings the total allocation for project three up to $1.0M and further reduces
the remaining allocation balance to just $0.150M.

Now, the only remaining forecasted project demand is $0.500M for project one.
However, since the project one allocation parameter is also $0.500M, the remaining
$0.150M balance cannot be evenly allocated. As such, the demand rules algorithm now
eliminates the original $1.900M as a viable choice and moves in increments of $0.050M
to the next viable commitment action of $1.950M.

Repeating the same the process but, this time with $1.950M produces an even
allocation of $1.00M, $0.250, and $0.700M across the three projects respectively. Table
5 shows the results of the demand rules algorithm given the commitment options existing
at time period t = 7. Of the original 91 commitment possibilities, 63 were eliminated
leaving 28 options that fit evenly with the individual allocation parameters while meeting
immediate demand in priority order. Table 5 provides the final individual commitment
allocations across the three projects for each of the 28 acceptable system level

commitment actions.
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Table 5: Example Viable Commitment Allocations for Multiple Projects

Commitment Individual Project Individual Project Ci(S"
Action xt CommitmentActions Immediate Costs t( t ’Xt)
| * A |
[ \
Comm. Total Proj. One Proj. Two  Proj. Three {Proj. One Proj. Two Proj. Three Total
Action# Comm. Comm. Comm. Comm. Myopic Cost Myopic Cost Myopic Cost Myopic Cos
1 (1.750) (1.500) (0.250) 0.000 2.000 0.500 0.700 3.200
2 (1.500) (1.500) 0.000 0.000 2.000 0.250 0.700 2.950
3 (1.000) (1.000) 0.000 0.000 1.500 0.250 0.700 2.450
4 (0.500) (0.500) 0.000 0.000 1.000 0.250 0.700 1.950
5 0.000 0.000 0.000 0.000 0.500 0.250 0.700 1.450
6 0.100 0.000 0.000 0.100 0.500 0.250 0.600 1.350
7 0.200 0.000 0.000 0.200 0.500 0.250 0.500 1.250
8 0.250 0.000 0.250 0.000 0.500 0.000 0.700 1.200
9 0.350 0.000 0.250 0.100 0.500 0.000 0.600 1.100
10 0.450 0.000 0.250 0.200 0.500 0.000 0.500 1.000
11 0.550 0.000 0.250 0.300 0.500 0.000 0.400 0.900
12 0.650 0.000 0.250 0.400 0.500 0.000 0.300 0.800
13 0.750 0.000 0.250 0.500 0.500 0.000 0.200 0.700
14 0.850 0.000 0.250 0.600 0.500 0.000 0.100 0.600
15 0.950 0.000 0.250 0.700 0.500 0.000 0.000 0.500
16 1.250 0.500 0.250 0.500 0.000 0.000 0.200 0.200
17 1.350 0.500 0.250 0.600 0.000 0.000 0.100 0.100
18 1.450 0.500 0.250 0.700 0.000 0.000 0.000 0.000
19 1.550 0.500 0.250 0.800 0.000 0.000 0.100 0.100
20 1.650 0.500 0.250 0.900 0.000 0.000 0.200 0.200
21 1.750 0.500 0.250 1.000 0.000 0.000 0.300 0.300
22 1.950 1.000 0.250 0.700 0.500 0.000 0.000 0.500
23 2.050 1.000 0.250 0.800 0.500 0.000 0.100 0.600
24 2.150 1.000 0.250 0.900 0.500 0.000 0.200 0.700
25 2.250 1.000 0.250 1.000 0.500 0.000 0.300 0.800
26 2.550 1.500 0.250 0.800 1.000 0.000 0.100 1.100
27 2.650 1.500 0.250 0.900 1.000 0.000 0.200 1.200
28 2.750 1.500 0.250 1.000 1.000 0.000 0.300 1.300

The next step after the demand rules algorithm determines the final allocation
allotments is for the ADP to calculate a respective system level immediate or myopic cost
C:(SE, x,) for each of the 28 commitment actions. The overall myopic system cost is the
sum of the individual project myopic costs given the separate allocation allotments. The
individual project’s C.(S{, x;) costs remains as the absolute value difference between the
current aggregate commitment level as a result of the action taken minus the next three

month anticipated expenditure requirement. Table 5 also shows these respective
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individual myopic costs attributed to the individual projects. The last column sums the
individual project’s myopic costs and provides the total myopic cost for the 28

commitment possibilities.

3.5 Q-Learning and Value Function Learning Designs
The initial ADP model used a Q-learning design. Through the use of simulation,

the Q-modeling approach continually refines and smoothes Q-factors until they have
reached a point of reasonable convergence. The Q-learning algorithm maintains and
updates the Q-factors for all commitment action and PDS pairings in a Q-matrix. Figure
13 diagrams the simulation of the sequential decision process and steps involved in

updating the Q-matrix and calculating the Q-factor information.

° D ¢
Pre-DS PDS Pre-DS e PDS Pre-DS oo PDS
0.0 00,001 i (00,2) ﬁz (0.0 ,3) (0.0,3) ﬁg; 0.0 ,3)
0.5 (0.5,0.0 (0.5,b) 0.5 (0.5, b) (0.5, b) (0.5) (0.5, b) H
(0,00 > [10|>| (10,00 |> i wi=>] (o, 0> ]00| >|(10,0|—> 10,0 => ool > [@o,q =>
Se1 15 (1.5,0.0) (1.5,d) s (1.5,d) (1.5,d) s (1.5,d)
20 (2.0,0.0) (20,e) s (20,e) I (20,¢) 15 (20, ¢)
------ 2.0 X : i 2.0
Xi1 S!x_ . St X‘_ S[ St XH: S til
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—n-1
Actions: D ¢ \L AN n n H n n
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H H — €
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b
[(ce)l I I
‘[(C.E)] i i
K ilcell Raf * "o xn S e xn an
((ce)] Q. (5" ) =(1- an—l)Qt. (S, x) +a, 404
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Figure 13: Q-Learning Diagram
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The matrix is populated through an iterative process of observing a realized
g value for a given state and using it to smooth the previous time periods PDS Q-factor.
As depicted in Figure 13, an important aspect of the ADP design is that the value update
process only requires data from the current stage and the previous stage of the sequential
decision making problem. Since information from any prior stages is not needed, the
ADP approach shares some commonality with the memoryless property used in a Markov
decision system. All Q-factors are initialized at zero to start the algorithm. A sample
d:+1 Value is taken by combining the myopic cost of taking an action X1 plus the
discounted value function estimate associated with the PDS arrived at from taking that
action. The estimated value function is the minimum of the set of Q-factors associated
with the PDS at time t+1. Once a g, IS obtained, it is then used to smooth the stored Q-
factors associated with the previous time period t. An alpha-decay parameter oc,,_; is
used to smooth the Q-factor.

The ultimate Q-matrix result is a data set similar to the one depicted in Figure 14.
The top row of the Q-matrix represents the commitment action choice used to reach the
PDS commitment and expenditure position listed in the first two columns on the left.
The data pattern assures us that the simulation model is in fact visiting the anticipated
action and PDS pairings. A concern however is that the complexities of Q-factor
calculations and storage requirements for the Q-matrix make Q-learning an inefficient

approach for large scale problems.
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Comm __ Exp (500 (45 _(40) (35  (30) (25 (200 (15 _ (1.0) _ (05) 00 05 1.0 15 20 25 3.0 35 4.0 45 5.0
0 0 14593105 3.240517 3.942909 2506222 2713528 2.8977 4.342192 3.155769 2.039053 1238259 4399158 0 0 0 ) 0 0 0 0 0 )
05 0 0 4182829 1.820157 4.442513 2.603491 1876836 2.584721 3.301983 2.200308 0.316237 3.121326 0.256951 0 0 [ 0 0 0 0 0 [
05 05 0 2978315 219727 2.535189 1667643 2.360228 1.903759 2404394 290757 4.813437 1407338 2783722 0 o 0 [ 0 0 0 o 0
1 0 0 0 2446311 3.014853 1720142 3218167 3.87171 4.355842 3.404336 0.235118 2.769361 0.522621 1420244 0 [ 0 0 0 0 0 [
1 05 0 0 1746253 2.231379 4.760294 2149056 3.146523 2.44335 1897579 2.022749 0.662734 2.109432 2264098 0 0 [ 0 [ 0 0 0
1 1 0 0 1.263345 3.454174 2.079029 1.840341 1.588968 3.092034 2.992489 2.265497 2.444747 1.879282 2.800189 0 0 ) 0 0 0 0 0
15 o 0 0 0 162069 2055022 4.351505 2.022041 2.411808 2.532145 3.135027 2.239712 0.660561 2.799926 1.726016 O 0 0 0 0 0 0
15 05 o 0 0 4314988 1663595 1.682072 2.363636 1569646 1.992463 1.826735 0.355203 1853347 0.830416 2.059368 O [ 0 0 0 0 0
15 1 0 [ 0 1492676 1368906 2.319119 1.660449 3498979 1.876675 0.972091 1470205 2.032333 1.870047 2.128677 O 0 0 0 0 0 [
15 15 0 0 0 2116797 1630707 1.308034 1.334396 3.208789 0.467402 2.443047 1217063 2.504269 3.272062 0.965751 O [ 0 0 0 o 0
2 0 0 [ 0 0 2.285307 2338855 3.35987 4.615637 3.258500 2.994544 3.635513 1407253 0317822 3.976046 3.059694 O 0 0 0 0 [
2 05 0 0 [ 0 2320516 1778747 180124 1284532 138232 034586 0.260081 2673415 0.02597 0.027527 106126 0 [ 0 0 0 0
2 1 0 0 ) 0 1.343074 2.162401 2.946712 2.586787 1.576827 2.800488 2.608973 0.317857 3.497271 1.518783 2.934368 ) 0 0 0 0 0
2 15 0 0 0 0 1331283 1200556 1.450437 2.303498 2.066809 1.782557 0.547623 3.179604 1394261 2.071729 1492124 O 0 0 0 0 0
2 2 0 0 0 0 1818528 1049782 1.10884 1945241 0.544543 0.716931 0.850127 2.117909 1.849248 0.741475 0 0 0 0 0 0 0
25 0 [} [ 0 0 0 2920025 3.07924 2.728074 4.397483 3.35777 2.153177 1.795837 3.181114 2.628892 3.102666 2.240804 O 0 0 0 0
25 05 0 0 [ 0 0 3368114 3300087 1701658 2.987257 3.075026 1.794605 2.934653 0.017414 0.017554 3.038411 1724059 0 0 0 o 0
25 1 0 [ 0 0 0 2509793 1967639 1288183 1194157 1914613 0.038399 0.034709 1442583 0.853858 1274971 1429999 0 0 0 0 [
25 15 0 0 0 [ 0 2228385 0.776239 1.314933 1530243 0930553 1.428295 1.249322 1895467 2.802327 2.034466 1826942 0 0 o 0 0
25 2 0 0 0 0 0 225336 0933223 1432997 1885266 2.243655 1.393963 1517107 0.692764 2.048173 0451052 0O 0 0 0 0 0
25 25 0 0 0 0 0 0949605 0.470348 0.379902 1831057 1.172308 0.367475 154609 1716537 0.482119 O 0 0 0 0 0 0
3 0 0 0 [ 0 0 0 3149052 2.967441 1.644242 4.577967 1967207 2.197378 1.863188 2.801777 3.490615 2.583073 2654369 0 0 0 0
3 05 0 0 0 0 0 0 3069655 263204 2.5366 1945799 263465 1.841423 1.652242 0.076903 0.072731 1875528 2.884137 0 0 0 [
3 1 0 0 [ 0 0 0 2677918 3.173489 2.768683 2.934666 2730004 0.080055 2.317524 0.248332 0.146261 1108611 1328518 0 0 0 0
3 15 0 0 0 0 0 0 1191406 2527674 163037 1942176 1199113 0.016674 0.016728 0.016793 1.988132 3.116973 1738701 0 0 0 [
3 2 0 0 [ [ 0 0 1027168 2.841133 2.366059 2037856 1.154233 2.926934 1844707 0.016295 1291345 1.52436 0 0 o 0 0
3 25 0 0 0 0 0 0 156042 0750052 1127166 2.003189 0.445673 0.627824 1129074 1501873 1204346 O 0 0 0 0 [
3 3 0 0 0 0 0 0 0604309 086695 0.701165 0271282 0.567113 0.411723 0.108271 1559428 O 4 0 0 o 0 0
35 0 0 [ [ 0 0 0 0 1863006 2.355526 2.318502 2957 2765366 2.893568 2.550316 3.294804 3.112401 4.398045 4.893306 0 0 0
35 05 [} 0 0 0 0 0 0 3524906 2.360812 2.028675 1643420 1.867633 3.698398 1383996 2.191923 1.053271 2.765881 3.7494 0 0 0
35 1 0 [ [ 0 0 0 0 0749138 1302747 1521823 1718323 2.648074 2.367437 133171 0.017008 0.282158 1.358296 2502928 0 0 0
35 15 [ 0 0 0 0 0 0 2283783 1330461 1418729 2445431 0.016433 0.016516 0.016541 0.016344 3.117331 1059731 0.969224 0 0 [
35 2 0 0 [ 0 0 0 0 1592784 0.599008 0.803637 2.038322 0.865072 0.015969 0.016122 0.958269 2.768699 2271091 0O 0 0 0
35 25 0 ) 0 0 0 0 0 0.328137 1.017807 0.572215 2.166552 1.044566 1.01797 1.261174 1.107751 2.191004 0 0 0 0 0
35 3 0 0 0 0 0 0 0 0491123 0.290359 0.499027 0.541447 0.440648 1.118863 0.351439 0.063733 0 0 0 0 0 0
35 35 0 [ 0 0 0 0 0 0337134 0754151 0.042837 0.704714 0.085515 0.208794 0.019131 0 [ 0 0 0 0 0
4 0 [ 0 0 0 0 0 0 0 4315004 2322459 2.196213 3.244404 2.808249 2.298483 0.109498 4.146659 2.577183 3.213183 1718718 0 [
4 05 0 [ [ 0 0 0 0 0 2427396 2.56899 2.902206 1783043 3.643825 2.078255 1555369 2.670643 3.330069 2.133228 1499013 0 0
4 1 [ 0 0 0 0 0 0 0 3034836 18732 1964737 1494175 2.183134 1409583 1429607 253048 1.682277 2.391575 1520064 0O [
4 15 0 [ 0 0 0 0 0 0 1778178 2.923229 2.478399 0482843 1.401054 2.080638 1335151 1.320966 0.016362 1697827 1606884 0O 0
4 2 0 [ [ 0 0 0 0 0 1210115 2.876774 0.847329 0.016167 0.016097 0.016007 0.780615 0.016123 3.12254 0.830024 0 0 0
4 25 0 0 0 0 0 o 0 0 0663556 0.511806 0.015442 1664434 1.464394 0.015452 0015715 1289731 025377 0 o 0 0
4 3 0 [ 0 0 0 0 0 0 0237587 0.750948 0.445712 0.491764 0.926025 0.825486 0.711645 1426235 O 0 0 0 0
4 35 [ 0 0 0 0 0 0 0 0021583 0.151247 0.588819 0.08161 0.088372 0.722349 0077202 0 0 0 0 0 [
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5 05 0 [ [ 0 0 0 0 0 0 0 001714 1780656 0.017094 2.609909 0.017195 0.017475 0.017542 2429628 2.767272 1711176 1647942
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Figure 14: Example Q-Matrix

Value function learning is an extension of the Q-learning approach which

alleviates the need to store and maintain the Q-matrix. Instead of producing a matrix of

Q-factors, the value function learning approach stores and maintains a vector of PDS

value function estimates. Each value is only associated with a particular PDS position

vice a given PDS and action pairing. The algorithm does remain consistent with the Q-
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learning approach in that it still only requires data from two successive stages to perform
the value update process. For each time period t+1, a sample ¥ observation is obtained in
the same fashion as §. However, in value learning the ¥ observation is used with the
alpha-decay parameter to directly smooth the estimated value function vice Q-factors.
Figure 15 diagrams the more simplified value learning approach and provides a partial
snapshot of the single vector output of PDS value function estimates. The problem with
the value learning approach is that the final vector does not provide a visual data pattern
which can confirm that the model is in fact visiting a wide array of possible commitment
actions. It is only through visiting a wide array of commitment actions and PDS
possibilities that the model is able to properly learn. The visual confirmation provided by
the Q-learning is the primary reason why that approach is used to initially test the

effectiveness of the ADP model prior to implementing the value function learning

method.
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Figure 15: Value Function Learning Diagram and Output Vector
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3.6 Convergence: Alpha-Decay
The ultimate choice of the alpha-decay or step size parameter is critical to the

model’s success of reaching a convergence point after tens of thousands of simulation
iterations. Since the value update calculation requires data from two successive stages or
months, the number of Q-factor or value function updates that occur in a single iteration
is one less than the total number of months in the sequential decision system being
modeled. For example, a one year twelve-month system will have eleven updates for one
simulation iteration. Regardless of whether the ADP model is using Q-learning or value
function learning, the stochastic approximation update process takes the form shown in

Equation 28

Equation 28: Value Update Process (Powell 2007)
9" = (1 - an_l)en_l + an_len

In this form, 8™ represents sample observations that are similar to the §™ and o™
sample values that are taken during the Q-learning and value function learning ADP
algorithms. Additionally, the 8™ term which is similar to the Q™(S*™, x) and V" (S*")
terms, represent what is considered either the signal, mean, or expectation value for the
dataset or population from which the 8™ observations are taken. As the simulation
progresses the alpha-decay value systematically changes with the objective of ultimately
obtaining a converged value for the ™ term and thus providing a reasonable estimated
expectation. The following three alpha-decay properties are the necessary conditions for

convergence.

71



a,.1=20, n=1.2,..

co

n=1

co
D @) <o
n=1

These conditions ensure that the alpha parameter will always decline or decay
during each successive simulation iteration. Since the calculation of the observed sample
6™ is dependent upon the very parameter 8™ that is being estimated, 8™ is considered a
biased proxy or estimate for the true 8™ value. The nature of this bias and the
relationship that exists between the observation term 8™ and the signal term ™ as they
evolve over time will have significant impact on the ideal step-size to use and the number
of iterations that are required to obtain convergence. In the ADP literature, there is an
emphasis placed on the alpha-decay decision. However, the alpha-decay choice is
problem dependent and often discovered through a matter of trial and error. Powell
(2007), provides an extensive discussion on various alpha-decay possibilities.

Some of the characteristics that impact the performance of the alpha-decay
parameter include issues on whether the true data is stationary or non-stationary, the
amount of “noise” that may exist in the sampling process, and whether or not the true
data exhibits a consistent trend or projection over time. Larger or slower decaying step-

sizes tend to perform better with non-stationary data since the weight of the smoothing
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process will emphasize the latest observations 8™ vice the historical or earlier obtained
6™ observations.

An error term can be used as a measure on the amount of noise that exists in the
system as well as a gauge on whether or not the data is exhibiting a trend or projection.
Equation 29, shows the expression for the amount of error that exists between the

observation term ™ and current estimate 6™:

Equation 29: Estimate Error
En — 071—1 _ Hn

The behavior of the error term €™ can provide indications on a better performing
alpha-decay option. If the true data is either monotonically increasing or decreasing such
that the error term €™ is always the same sign, then once again a larger step-size or one
that favors the latest observation terms 8™ will perform better. However, if the data is
relatively stationary but, continues to exhibit a lot of noise or variability between each
6™observation without trending in a specific direction then a step-size that decreases
quickly will likely perform better. Unfortunately, the inherent problem with using a step-
size that decreases too quickly is the possibility of observing data that has only appeared
to converge, when in reality the ADP algorithm has not achieved the best possible
estimate of the signal term ™. This argument is the primary reason why the sample
average alpha-decay parameter of a,, = 1/n is normally not a good step-size choice in

spite of the fact that it does satisfy the conditions for convergence.
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Alpha-decay parameters can either be deterministic or stochastic. Deterministic
alpha-decay parameters are usually correlated to the iteration number n and tend to be
easier to program and maintain throughout the simulation processes. A stochastic step-
size is correlated to the sample observation 8™. Since the observations 8™ are random
variables, a stochastic step-size is essentially also a random variable. Stochastic step-
sizes tend to be more complicated to program and incorporate into the ADP design.
However, they may have some advantages when working with data-sets that are either
monotonically increasing or decreasing. Furthermore, a stochastic step-size has appeal if
the various states of the decision system each converge at different rates.

The ADP algorithms presented in this thesis used an adapted deterministic
harmonic alpha-decay parameter as suggested by both Darken et al. (1992) and Gosavi

(2003). Equation 30 captures this particular alpha-decay parameter update process.

Equation 30: ADP Alpha-Decay Parameter

The attractive feature of this alpha-decay parameter is its ability to decay slowly
during the early iterations and then accelerate before ultimately slowing again and
tapering during the final iterations. This structure helps the ADP algorithm avoid two
critical concerns. The first concern is that the alpha-decay parameter will decrease too

slowly causing the algorithm to stall-out before reaching convergence. The second is that
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the alpha-decay parameter will decrease too quickly and give the false impression of
convergence. By having an alpha-decay parameter that remains relatively high early on,
the value update process will initially favor the sample g™ and ©™ values. This emphasis
helps ensure that sufficient learning is occurring as part of the algorithmic process.
Additionally, the deterministic properties as well as the simple structure of this alpha-
decay parameter make it relatively easy to code and incorporate into either the Q-learning
or value function learning ADP structures. Only the constant term f required tuning
when experimenting with the number of iterations to perform as part of each simulation

run.

3.7 Convergence: Mean Square Error (MSE)
The initial method used to confirm convergence was to evaluate the progression

of a select sample of PDS values. Figure 16 provides an example of the value changes in
two PDS positions for a twelve-month value function learning model across 80,000
simulation iterations. There are a number of problems with this depiction. First,
although it appears that the variability in the estimated PDS values is decreasing towards
the end of the simulation, there is no definitive reassurance that the algorithm is in fact
reaching a point of convergence. Furthermore, the two sample data patterns selected may
not necessarily serve as accurate surrogates for all the PDS possibilities encompassed in
the decision system. Since a typical financial execution commitment problem will have
hundreds of thousands of viable PDS, the memory requirement necessary to produce the
Figure 16 graphic for all the PDS values makes this an inefficient approach for verifying

convergence.
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Figure 16: PDS Value Function Estimates Convergence Patterns

A Dbetter approach is to track the Mean Square Error (MSE) of the decision
system. Instead of checking for convergence by maintaining the changing expectations
for each PDS value, the MSE serves as single reference point for how quickly or slowly
the expected PDS values are converging for the whole system. The MSE calculation is

provided in Equation 31:

Equation 31: Mean Square Error (MSE) Calculation 3
MSE = (1 — ap_)MSE™ ' + a,,_y (VF1(SF™) — DR 1)?
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Figure 17 shows an example MSE convergence plot for a twelve-month 50,000
iteration decision model. If at the end of all simulation iterations the MSE term still
remains relatively high, this may serve as an indication that further learning is required
and that the model will need to run additional iterations. If that is the case, the rate of
alpha-decay will likely need to be slower so that it does not time out or reach zero prior to

the model’s final iteration.
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Figure 17: Mean Square Error (MSE) Plot

3.8 Exploration Vs. Exploitation (Learning)
Another sensitivity variable to consider in an ADP model design is the balance

between the amount of exploration and exploitation iterations to conduct in a simulation
run. The exploration iterations relax the minimization requirement when determining

which action to take at a particular stage in the model. The exploration phase changes the
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formulation for obtaining sample § and ¥ observations to the following approaches

shown in Equation 32 and Equation 33.

Equation 32: g-value Exploration
AN — . An—1,cxn
4= Randomy, cxn[Co (S, x¢) + yming exp[QF (S, x¢)]

Equation 33: v-value Exploration
01'= Random,, exn[C(SE, x;) + vV (S{™)]

Using exploration, the actual action taken is allowed to float and incorporates
potential commitment choices that are ‘good’ and might deserve attention but, would
otherwise not be visited using an absolute minimization policy. Exploration gives the
model a chance to visit and learn the values for a broader range of action and PDS
possibilities. The exploitation or learning phase of the model re-introduces the
minimization operand as part of the commitment action criterion. Figure 18 shows an
alpha-decay pattern where the first 5,000 iterations of the simulation used exploration
while the successive 75,000 iterations used exploitation or learning. The benefit of using
exploration is that it may incorporate potentially good solutions into the simulation
process which deserve further investigation. However, a potential drawback is that it
may take longer for the learning phase of the model to reach a point of sufficient
convergence. Any ADP solution approach to a particular decision model design will
need to strike a balance between the amount of exploration to conduct and the demands it

will put on the run-time costs of the model.
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. } 5,000 iterations of exploration:
alpha-decay dropsfrom 0.8 to ~0.6

L 75,000 iterations of exploitation/learning:
alpha-decay drops from ~0.6 to near zero

Figure 18: Alpha-Decay for Exploration and Exploitation
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CHAPTER FOUR - RESULTS AND ANALYSIS

4.1 Learnt Phase
The ADP model is built around the three separate phases of exploration,

exploitation (learning), and learnt. During the exploration phase, the minimization
operand in Bellman’s optimality equation is relaxed allowing x; to be randomly chosen
from the set of viable actions at time t. The algorithm is allowed to explore and gather
information on good action and PDS combinations that would otherwise not be
considered during learning. Once the exploration phase is complete, the learning phase is
used to find the actual minimum x; that satisfies Bellman’s optimality equation at each
time period t. The exploitation or learning portion of the ADP continues until a point of
sufficient convergence is reached on the value function estimates for each of the PDS.
The result of the learning phase is a stored single vector ‘look-up’ table containing the
model’s estimated values on each PDS. It is at last, in the learnt phase of the ADP
approach where these value function estimates are used to create a decision policy.
During this final learnt phase, the decision maker is now provided a recommended
commitment policy of what action to take for a given pre-decision state position.

Unlike the exploration and learning phases, the learnt phase of the ADP algorithm
is a stand-alone simulation process. The exploration and learning phases of the model
work jointly to generate the value function estimates. If n < N simulation runs were

designated for exploration, then N-n were dedicated to learning. However, during the
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learnt phase a separate set of N simulations are performed. The results of the N learnt
simulation runs are used not only to provide a policy recommendation but, they are also
used to conduct various types of sensitivity analysis and financial execution excursions.
The subroutines for the learnt phase of the model are similar to those used for the
exploration and learning phase with the exception that it is no longer necessary to have
either a Q-factor or value function update subroutine. At each time period t, the
subroutines for the learnt portion of the model now only include 1) selecting a
commitment action, 2) incorporating exogenous information, and 3) updating the
incremental planning matrix A and cumulative planning matrix B information.

The learnt phase of the model has three critical objectives. The first objective is
to provide an optimal commitment strategy policy for the execution of a weapon system’s
monthly fiscal year budget or the budget of a collection of individual projects given a
baseline forecasted position. The second objective is to provide a comparison between
the recommended commitment policies provided by the ADP and that of the stubby
pencil or myopic policy approach. The third objective of the learnt phase is to conduct
sensitivity analysis and financial execution drills. This allows one to compare and
contrast how the ADP and stubby pencil approaches each react to different modeling
assumptions and various financial execution environments.

The input data structures used for the exploration and learning phases will need to
be slightly modified in order to accomplish the stated objectives of the learnt phase. As
before, a data set array is used to load each of the individual project’s initial forecasted

commitment and expenditure information in an incremental planning A and cumulative
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planning B matrix format. However, this time a duplicate set of the same A and B
planning data is loaded. As the simulation progresses, the first set of A and B matrices
will be dedicated to tracking how the ADP responds within the decision system and the
second set of A and B matrices will be dedicated to tracking how the stubby pencil policy
responds. Figure 19 provides an example snapshot of the updated input structure used for

the learnt phase of the ADP model.

Project3]c e] oroi Project3[ce] _
Project2[c €] . roject2[ce]
Project1 [c €] Projectl [c €] 000
t Month anna__nn0Q "888 0000 0.000 |ggo
LS| mTom [ [om om e s
2 Nov 0.000  0.000 oo | o000 0.000  0.000 p.0%0 000
3 Dec 0000 0000 po0 - \.0oo 0000 0000 D000 [oom
4 Jan 0.000 0.000 poo |.000 1-000 0-000 )-000 .000 - ADP
5 Feb 1000 0.000 000 1250 | 3 | 000 0000 oo [ inputdata set
6 Mar L0 0-999 oo - )250 3000 1,000 D500 oy
7 Apr 1.000  1.000 Boo |50 3000 1000 D500 frso
8 May 0:000 1000 500 250 3000 3000 L500 oo
9 Jun OO0y 909 oo 000 3000 3000 2000 oy
10 Jul 0.000  0.000 0o |o00 3000 2000 p-000 oo
11 Aug 0000 0000 poo 3000 3000 F
12 Sept 0.000  0.000 - : _
t Month faWaYaYal n :)00 888 0000 P]OOO 888
1 Oct 0.000  0.000 phoo ) oo0 8-888 8-888 g-ggg .000
2 Nov 9000 0000 Poo - ).000 0000 0000 D000 |oos
3 Dec 0.000  0.000 poo }ooo 0.000 .00 p.0%0 000
4 Jan 9-000°9.009 poo )00 1000 0,000 P.000 '228
> e o0 9900 0% 1250 | = | 2000 0000 P000 o | L StubbyPencil
1.000  1.000 f 250 3.000  1.000 P.500 750 input data set
7 A P00 ).250 3.000  2.000 [L.000
8 May 0.000  1.000 Boo ) 2sg 3000 2000 1000 oo
9 Jun 0.000  1.000 500 )00 3000 3000 1000 poo
10 Jul 0.000  0.000 0o ) o000 3000 3.000 pO%0 oo
11 Aug 0.000  0.000 boo : 000 p.
12 Sept 0.000 0.000 3.000 3.000
Incremental Planning Array A Cumulative Planning Array B __J

Figure 19: Learnt Phase Inputs
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4.2 Comparative Results
The learnt phase utilizes N = 100 simulation iterations to collect the data

necessary for conducting the comparative analysis between the ADP and stubby pencil
approaches. Each iteration n € N simulates a financial execution experience fromt=1
up to t = T months. Each simulation iteration n cycles through the three learnt phase
subroutines T times. At each stage t, the learnt phase performs a unique commitment
action selection x; for both the ADP and stubby pencil policies, generates simulated
exogenous information, and updates the financial execution incremental A and
cumulative B planning arrays for both the ADP and stubby pencil. The exogenous
impacts for each time period t still represent the simulated realizations of actual
expenditures for that time period. This realized actual expenditure amount will be the
exact same for both the ADP and stubby pencil data set arrays. As such, once there is a
realized expenditure actual for time period t, the respective updated predicted
expenditures for time period t+1 and beyond will also be the exact same for the stubby
pencil data set arrays. As the 100 simulated iterations of the learnt phase progress, only
the commitment attribute of the state-space variable will be different between the ADP
and stubby pencil approaches. In this manner, the model can observe the different
responses of ADP and stubby pencil to the same simulated expenditure event.

The critical data points collected during the 100 simulation iterations of the learnt
phase are the different commitment actions taken each month by the two different ADP
and stubby pencil approaches. During the exploration and learning phases of the model,
the simulated action choice was a direct result of the application of Bellman’s equation as

part of the selecting a commitment action subroutine. The learnt phase of the model
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determines an action choice in a similar manner except that two separate optimality
equations are utilized during the selecting a commitment action subroutine. One
optimality equation generates the ADP commitment actions and the other optimality
equation generates the stubby pencil commitment actions.

The two optimality equations used in the learnt phase of the model are shown by
Equation 34 and Equation 35. Equation 34 shows the optimality equation for the ADP
approach. In this case, the optimal action x; (S;) is driven by the familiar structure of
Bellman’s equation. The choice of commitment action at each time period t is the
minimal sum of the immediate cost incurred by that action C; (S, x;) plus the discounted
estimate of the value function V,(S¥). In contrast, the optimality equation for the stubby
pencil or myopic approach is provided by Equation 35. What is readily visible is that for
the stubby pencil approach the optimal action x;(S;) is driven exclusively by the
immediate cost function C,(S;, x;) without any consideration of the impact from the

values of the successive state-spaces.

Equation 34: Learnt Phase ADP Optimality Equation
x¢ (S¢) = arg MiNy, ex, (Ce(Se, xe) + ¥V (5F))

Equation 35: Learnt Phase Stubby Pencil (Myopic) Optimality Equation
x¢(S¢) = arg miny, ex, (Ce(Se,xp))

The fact that the stubby pencil approach only takes into consideration the

immediate cost function C,(S;, x;) without regard to how this decision may impact future
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decisions is why this is considered a myopic decision policy. As with the learning and
exploration phases of the ADP model, the cost function C,(S;, x;) still remains the
absolute value difference between the cumulative commitment position obtained after the
incremental commitment action x; and the predicted month-end expenditure position at
time period t+2. As such, under the stubby pencil approach the optimal choice

x£ (S;) will always be selected such that the associated immediate cost function value
Ci(St,x¢) is equal to zero. The Equation 35 formulation reflects the stubby pencil’s
myopic preference to take the greedy commitment action. This commitment selection
will always provide the lowest immediate cost without regard to the impact current

decisions may have on the future costs in the system.

4.3 Collected Data
The output generated by the learnt phase of the ADP model is a series of graphic

pictorials. These pictorials contain various trend lines depicting the expenditure and
commitment activities from timet=1tot=T. In order to create these graphics, the
learnt phase needed to generate and store a number of data sets containing the results of
the 100 learnt phase simulation iterations. The following is a list of the seperate data sets
produced by the learnt phase and leveraged to build the graphics provided in this chapter.
1) ADP Commitments — A 100 x T matrix that maintains the month-end
cumulative ADP totals for the aggregate sum of all projects
2) Stubby Pencil Commitments — A 100 x T matrix that maintains the month-end
cumulative stubby pencil commitment totals for the aggregate sum of all

projects
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3)

4)

5)

6)

7)

8)

Expenditures — A 100 x T matrix that maintains the month-end cumulative
actual expenditure positions aggregated across all projects

Three-Month Actual Expenditures — A 100 x T matrix that provides the
cumulative actual expenditure position at the end of month t+2 for time period
t. Recall that the immediate or myopic cost function C(S;, X;) is the absolute
value delta difference between the cumulative commitment position after
action x; and the predicted expenditure amount for month-end t+2. This three-
month actual expenditure matrix provides the actual month-end t+2
cumulative expenditure amount at time period t. Obviously, this data point
can not be calculated at the point t in the simulation iteration. Rather, the
model must go back and provide this expenditure position once the simulation
iteration completes time t+2.

Three-Month Predicted Expenditures — A 100 x T matrix that provides at time
t the predicted cumulative expenditure totals for month-end t+2.

One-Month Predicted Expenditures — A 100 x T matrix that provides the
predicted month-end cumulative expenditures for time period t.

ADP and Stubby Pencil Commitment Decision — A 100 x T x 2 array that
maintains the individual commitment action/choice made each month by the
ADP and stubby pencil policies. The commitment choice is the sum of the
individual commitment actions made for each project.

ADP and Stubby Pencil VValue Array — A 100 x T x 2 array that reports for

each simulation run n and month t the value function estimates V*(S¥) used
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in the optimality equation for the ADP approach and the myopic cost value
Ci(St, x¢) for the stubby pencil approach. As mentioned earlier the optimality
function Cy(St,x;) for the stubby pencil approach will always equal zero. As
such, the stubby pencil portion of this array will merely be a 100 x T matrix of
zero value entries.

9) Project Expenditures — A 100 x T x number of projects array that maintains

each project’s individual realized expenditure for each month.

4.4 Model Input Examples
Figure 20 provides the input parameters for a typical modeling scenario, referred

to here as Test Case #2 - Trial #1. As described in Chapter 3, the ADP modeling inputs
required for each project include the planned funding level, the allocation parameter, and
the assigned plus-minus factor. Also, the ADP simulation requires the number of T =
months that are modeled in the decision system. Lastly, as shown Figure 20, the ADP
model requires the initial incremental A forecasted commitment and expenditure matrix
data for each month t € T in the planning horizon. Once this A matrix data is loaded, the
ADP model code will generate and store the respective cumulative B forecasted
commitment and expenditure matrix information for each project. As the model
progresses through each time period t, the information contained in both the incremental
A and cumulative B matrices will be updated and replaced.

The initial Test Case #2 - Trial #1 scenario examined the behavior of a three-
project system over twelve months. The three projects each had individual budgets of

$5.0M, $2.0M, and $15.0M giving the system a total budget amount of $22.0M.
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Additionally, the individual allocation parameters were $0.500M, $0.250M, and

$1.000M. The overarching allocation parameter for the decision system was $0.250M.

This value is the GCD across the allocation parameters of each of the three projects.

Modeling Allocation
Input Parameters Funding Level Parameter PlusMinus Months

Project #1 5.000 0.500 1.000 12

Project #2 2.000 0.250 0.750 12

Project #3 15.000 1.000 2.000 12

Project #1 Project #2 Project #3
month Comm Exp Comm Exp Comm Exp
Oct 0.000 0.000 1.500 0.000 0.000 0.000
Nov 0.000 0.000 0.250 1.000 0.000 0.000
Dec 0.000 0.000 0.250 0.500 1.000 0.000
Jan 0.000 0.000 0.000 0.250 1.000 0.000
Feb 0.500 0.000 0.000 0.250 2.000 1.000
Mar 1.000 0.000 0.000 0.000 4.000 1.000
Apr 1.500 0.500 0.000 0.000 4.000 2.000
May 1.000 1.000 0.000 0.000 2.000 4.000
Jun 0.500 1.500 0.000 0.000 1.000 4.000
Jul 0.500 1.000 0.000 0.000 0.000 2.000
Aug 0.000 0.500 0.000 0.000 0.000 1.000
Sept 0.000 0.500 0.000 0.000 0.000 0.000
5.000 5.000 2.000 2.000 15.000 15.000

Figure 20: Test Case #2 — Trial #1 Input Parameters

Besides the initial input parameters and incremental A planning information, the

modeling input information also requires assignments for the number of exploration

iterations and number of learning iterations the model will perform. For Test Case #2 -

Trial #1, the initial model run used 5,000 iterations of exploration and 50,000 iterations
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of learning. The actual Matlab structure used to load all the relevant input parameters is

provided below in Figure 21.

proj i

budget [ 5.000 2.000 15.000 ];
iner [ 0.500 0.250 1.000 ]:
months = 12;

PlusMinus = [ 1.000 0.750 2.000 ];

expite = 5000;
learningite = 50000;

dfactor 0.9;

%z = zeros(months,2,proj);

Z(:,:,1) = xlsread('InputF MultiPz t=s.xlsx', '"Matrixd', "ACET:1 B
Z(:,:,2) = xlsread('Input MultiPz t=.xlsx', "Mat XA', "AF6T:AG I
lz,:,3) ®xlsread('Input MultiPrz ts.xlsx', '"Matrixd®, 'AI67:AJ78");

Figure 21: Test Case #2 — Trial #1 Matlab Structure

4.5 Model Output Examples
In order to produce the graphic pictorials of the learnt phase of the model, the

exploration and learning phases must first generate the value function estimates. One of
the challenges with using the ADP approach is determining the number of iterations
necessary to obtain sufficient convergence on the value function estimates. The MSE
chart was the standard graphic used to judge the progress of overall convergence. Figure
22 provides the original input parameters for Test Case #2 — Trial #1 along with the MSE
chart generated by the 50,000 iterations of learning. Recall that each simulation n will
produce T-1 MSE data points. Therefore, the Test Case #2 — Trial #1 MSE graphic was
generated using 50,000 X 11 = 550,000 data points. The blowup portion of the graph

shows that for the last 10,000 observations the MSE was consistently beneath twenty.
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Modeling Allocation

Input Parameters Funding Level Parameter PlusMinus Months

Project #1 5.000 0.500 1.000 12

Project #2 2.000 0.250 0.750 12

Project #3 15.000 1.000 2.000 12

Load Incremental Planning Data - Array A Number of state-spaces: 4,005
Number of Months: 12
Project #1 Project #2 Project #3 Total Budget = $22.000M
t month | Comm  Exp Comm __ Exp Comm __ Exp 5,000 iterations Exploration
1 Oct 0.00 0.00 150 0.00 0.00 0.00 50,000 iterations Learning
2 Nov 0.00 0.00 0.25 1.00 0.00 0.00
Z :)ec g'gg g'gg g'(z)z g-i(s) 1% gg RunTime: 11hrs 18Minutes
an . . X X . . ®
5 Feb 0.50 0.00 0.00 0.25 2.00 1.00 2.33 GHz Intel® Xeon
6 Mar 1.00 0.00 0.00 0.00 4.00 1.00 3.00GBRAM
7 Apr 1.50 0.50 0.00 0.00 4.00 2.00
8 May 1.00 1.00 0.00 0.00 2.00 4.00
9 Jun 0.50 1.50 0.00 0.00 1.00 4.00
10 July 0.50 1.00 0.00 0.00 0.00 2.00
11 Aug 0.00 0.50 0.00 0.00 0.00 1.00
12 Sept 0.00 0.50 0.00 0.00 0.00 0.00
5.00 5.00 2.00 2.00 15.00 15.00

\ ] I
\ MSE Last 10,000 /
\\ Values ) ,’
/
{
\ A
\ /
\ /
N 1
U
/
l Wh‘f 8
g sl
4 5 6

Figure 22: Test Case #2 — Trial #1 Mean Square Error (MSE)
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After the exploration and learning phases of the ADP algorithm produces value
function estimates for each PDS, N = 100 simulations of learnt phase analysis are then
used to produce the graphics shown in Figure 23 and Figure 24. These graphics are the
default commitment and expenditure outputs of the learnt phase. The top box in Figure
23 shows three different expenditure trend lines. The black line shows the original
planned cumulative expenditures. The red line provides the average predicted
expenditures. Unlike the initial black line that provides the predicted expenditures for all
months at the start of October and remains static throughout the course of the simulation,
the red line provides the predicted expenditure amount for time t given what is known at
t-1. As such, the red line represents the continual updates to the forecasts on
expenditures at a point in time just one month before the actual is realized. And lastly,
the green line represents the average expenditures that actually occurred that month.

Additional trend patterns shown in Figure 23 are captured by the maximum and
minimum asterisks. During the exogenous information subroutine, a strand of
information w™ is generated to simulate the actual expenditures that occur each month.
This is the manner in which uncertainty or randomness is injected into the model. The
maximum and minimum asterisks represent the upper and lower limits that are possible
for the individual w™ values. Therefore, the blue asterisks that are inside the top box in
Figure 23 represent the month-to-month expenditure pattern if the maximum allowable
actual expenditure occurred each month. Likewise, the purple asterisks represent the
month-to-month expenditure pattern if the minimum allowable expenditure occurred each

month.
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Figure 23: Test Case #2 — Trial #1 Output Graphic 1
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Figure 24: Test Case #2 — Trial #1 Output Graphic 2
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The bottom box in Figure 23 provides trend lines that represent the commitment
patterns associated with the expenditure results for Test Case #2 — Trial #1. This bottom
graphic shows three different commitment trend line outputs. The black line depicts the
baseline cumulative plan outlined at the start of October. The red line and the blue line
respectively represent the results of the ADP cumulative commitment choices and the
stubby pencil cumulative commitment choices.

The picture in Figure 24 is the second standard graphic that is produced by the
learnt phase of the ADP model. This graphic combines both the commitment and
expenditure information onto the same grid. The ADP and stubby pencil commitment
trend lines used in Figure 23 are replicated here. However, they are now superimposed

with a gray prior month expenditure trend line.

4.6 Learnt Phase Observations from Test Case #2 - Trial #1
There are a number of observations one can make from these output graphics.

The first observation taken from the top box in Figure 23, is that there is little variability
between the three expenditure trend lines. This low variability may be due to a number
of factors which could include the small total budget size used in this scenario of only
$22M or it may be due to the small plus-minus assignments for each of the projects. As
such, the use of this particular scenario may make it difficult to understand the impacts of
randomness on the different ADP and stubby pencil approaches.

There are two additional observations associated with the commitment trends in
the bottom graph on Figure 23 and in the graphic shown in Figure 24. The first issue is

the sharp up and down movements of the ADP commitment actions. Although this
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commitment strategy at first may seem erratic, upon further investigation this pattern
appears to be a direct response to the individual planned monthly expenditures. In
November, total planned expenditures jump to $1.000M and then tapers to $0.500M and
further to $0.250M for December and January. Furthermore, once the model moves
beyond January, the individual expenditure totals increase substantially from month-to-
month. The bar chart at the bottom of Figure 24 plots the original by month incremental
expenditure amounts. When compared against the two different commitment trend lines,
the dramatic up and down movements seem to suggest that ADP is more sensitive to
these same up and down expenditure patterns that existed in the initial plans.

The second observation is that as a whole the ADP policy for the most part was
consistently beneath the stubby pencil policy. Except for the months of December and
March the red ADP commitment strategy remained under that of the stubby pencil
commitment strategy. This may suggest that the ADP strategy is recommending a more
conservative approach when making commitment decisions. Even after the model
reaches the end of the time period in September, ADP has not committed the full $22.0M
budget. Lastly, it should be noted that neither the ADP nor the stubby pencil
commitment polices ever move into the undesirable state where the cumulative
commitment amount has dropped below last month’s expenditure amount. The gray
prior month expenditure trend line provided in Figure 24 serves as a cross-check that
neither policy allowed projects to expend more funding that what has been received to

date.
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4.7 Exploration Vs. Exploitation (Learning) Revisited
One aspect of the ADP approach is examining the impacts that occur to a

modeling scenario as a result of altering the number of iteration runs dedicated to either
exploration or exploitation (learning). The following Test Case #2 -Trial #3 scenario
examines what happens to the Test Case #2 - Trial #1 baseline case when the exploration
iterations are increased from 5,000 to 10,000 and the learning iterations are increased
from 50,000 to 100,000. The results of the Test Case #2 - Trial #3 scenario are shown in
Figure 25, Figure 26, and Figure 27. The immediate observation is that the MSE statistic
starts at an initial higher level and as such takes longer to reach the same convergence
point that was obtained in Test Case #2 — Trial #1. As mentioned before, since there are
twelve months in the modeling scenario each iteration n produces eleven MSE data
points. For the Test Case #2 — Trial #3 scenario, the 100,000 iterations of learning will
provide 1,100,000 MSE measurements.

Figure 25 highlights the last 10,000 MSE data points produced by this excursion.
This graphic shows how it took nearly twice as many learning iterations for the model to
reach roughly the same MSE values that existed in Test Case #2 —Trial #1. It appears
that the doubling of the exploration iterations required the number of learning iterations
also be doubled in order to obtain a MSE point that was consistently under twenty for the
final iterations of the model. Although the exploration phase provides an opportunity for
the ADP simulation to learn information regarding the values of potentially ‘good’ action
and PDS combinations it has the undesirable consequence of also incorporating ‘bad’
action and PDS combinations. A possible conjecture is that it was necessary to perform

more learning iterations to reach an acceptable convergence point. The ADP literature
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discusses the pros and cons of incorporating exploration into the model design along with
alternative implementation schemes that limit exploration from being completely random
and to focus more on just an exclusive subset of ‘good’ states. An exploration scheme
that can focus the ADP model to visit a better subset of only ‘good’ state space positions
will likely obtain improved convergence results during the learning phase of the

simulation.

4.8 Learnt Phase Observations from Test Case #2 - Trial #3
The Test Case #2 — Trial #3 scenario was exclusively a modeling excursion that

examined the impact of incorporating more exploration iterations into the model design.
The graphics in Figure 26 and Figure 27 provide the expenditure and commitment trend
line results for this particular modeling excursion. When comparing the results to the
initial Test Case #2 — Trial #1 case, it is observed that the overall results are similar. The
one nuance is that the ADP commitment choice does not exhibit the same dramatic up
and down commitment pattern. However, although this initial commitment action is
slightly smoother than in the initial case, the overall ADP commitment choice has still
remained beneath that of the stubby pencil. Again, it appears that ADP still prefers a
more conservative allocation approach over the simulated duration from time periodt=1

to time period t = T when compared against the stubby pencil approach.

97



Modeling Allocation

Input Parameters Funding Level Parameter PlusMinus

Project #1 5.000 0.500 1.000

Project #2 2.000 0.250 0.750

Project #3 15.000 1.000 2.000 Number of state-spaces: 4,005

Number of Months: 12
Load Incremental Planning Data - Array A Total Budget = $22.000M
10,000 iterations Exploration
Project #1 Project #2 Project #3 100,000 iterations Learning
t month Comm Exp Comm Exp Comm Exp
1 Oct 0.00 0.00 1.50 0.00 0.00 0.00 RunTime: 31hrs 10Minutes
2 Nov 0.00 0.00 0.25 1.00 0.00 0.00 2.33 GHz Intel® Xeon
4 Jan 0.00 0.00 0.00 0.25 1.00 0.00
5 Feb 0.50 0.00 0.00 0.25 2.00 1.00
6 Mar 1.00 0.00 0.00 0.00 4.00 1.00
7 Apr 1.50 0.50 0.00 0.00 4.00 2.00
8 May 1.00 1.00 0.00 0.00 2.00 4.00
9 Jun 0.50 1.50 0.00 0.00 1.00 4.00
10 July 0.50 1.00 0.00 0.00 0.00 2.00
11 Aug 0.00 0.50 0.00 0.00 0.00 1.00
12 Sept 0.00 0.50 0.00 0.00 0.00 0.00
5.00 5.00 2.00 2.00 15.00 15.00

5
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K

5

m

=

N

18— —
1
1
1 1 1 1 1 1 1 1 1
1.092 1.093 1.094 1.095 1.096 1.097 1.098 1.099 11 1.101

x10°

. MSE Last 10,000
Values

Figure 25: Test Case #2 — Trial #3 Input Parameters and MSE
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Figure 26: Test Case #2 — Trial #3 Output Graphic 1
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4.9 Learnt Phase Sensitivity Analysis
The learnt phase of the model contains unique sensitivity toggles that allow an

analyst to consider how the ADP and stubby pencil commitment choices react under
various execution modeling excursions. The sensitivity toggles are designed to alter the
manner in which expenditures occur each month throughout the modeling horizon. The
variable “‘exog’, short for exogenous information, was used in the Matlab code to
establish the type of expenditure randomness used during that particular learnt phase
excursion. The various settings for the ‘exog’ variable are ‘“all’, ‘high’, ‘low’, or ‘mix’.
The setting for the “‘exog’ variable establishes the nature of how the plus-minus factor for
each project is used to simulate the monthly actual expenditures.

The *“all’ setting is the default setting. In this case, each month’s actual
expenditures occur as a random uniform variable in which the predicted amount for a
given month is the mean. While using the “all’ setting, the minimum and maximum
values for the distribution are a positive or negative plus-minus value either above or
below the anticipated mean. The “all’ setting establishes that all values within this range
are equally-likely to occur as the expended amount for the month. The *high’ setting
throws out the bottom half of the uniform distribution such that the new minimum value
of the distribution is the original mean while the maximum possible value remains the
same. Under the *high’ setting only the high values of the original distribution are
equally-likely to occur as the actual expenditure for the month. The ‘low’ setting flips
the distribution such that the maximum possible value is now the original mean, while the

minimum value is the same as it was under the ‘all’ setting. In contrast, under the ‘low’
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setting only the low values of the original distribution are equally-likely to occur as the
actual expenditure for the month.

The last possible sensitivity setting for the ‘exog’ parameter is the *‘mix’ setting.
The ‘mix’ setting switches the exogenous uncertainty or randomness of the actual
expenditure variable at a point halfway through the simulated time period. For each
month from t =1 to t = T/2, the ‘exog’ assignment will either be *high’ or ‘low’, then for
each month after t = T/2 up to t = T the ‘exog’ assignment will switch over to the
opposite setting either ‘low’ or ‘high’. When the ‘mix’ setting is in use, another Matlab
variable called “fiftyfifty’ is set to either ‘LowToHigh’ or ‘HighToLow’. The “fiftyfifty’
designation determines whether the ‘exog’ variable shifts from *low’ to ‘high’ or from
‘high’ to ‘low’ during each simulation run n.

The different ‘exog’ settings provide the ADP model an opportunity to emulate
the various real world expenditure behaviors that may occur over an observed time period
or spending horizon. Essentially, the model now mimics four possible expenditure
scenarios that could occur. One scenario is when contractors are consistently
overrunning and expending funds at a pace faster than anticipated. The second scenario
is when the contractor is consistently underrunning and expending funding at a pace
slower than anticipated. The third scenario is when the contractor starts slow and is
initially underrunning then accelerates spending to a point where they are later
overrunning and expending dollars at a much faster rate. The fourth and final alternative
is when the contractor starts out hot and is initially overrunning and then must pull back

later to expend dollars at a much slower rate.
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The following Figure 28 provides a snapshot of the Matlab input screen for the
learnt phase of the ADP model. The inputs include the same original project parameter
requirements used for the exploration and learning phases of the model. Additionally, the
example snapshot shows the assignments of the ‘exog’ and “fiftyfifty’ variable. Lastly,
the final read command loads the ‘look-up’ table data containing the value function

estimates that were produced during exploration and learning.

%% Projects Parameters %

proj 3 % Number of projects in model

budget = [ 5.000 2.000 15.000 1: % Mazimum allowable budget for each individual project

incr = [ 0.500 0,250 1.000 1: % The incremn 2al allocation parameter for each project

months = 12: % Numb £ Planning Monthsz

PlusMinus = [ 1.000 0.750 Z2.000 ]: % Pluz-Minuz factor to be used in the exogenous information sub-routine

$% Simulation Parameters %%
exog = "all': % Inputs are 'mix','high', "low', or 'all® -->
% Allows the expenditures to be cover either 'high', 'low', or cover "all' poszsihilities

fittytitty 'OffT; % Inputs are "LowToHigh', HighTolow', "Off" -->
% Switches the exog shocks half-way through cycle from either
% low-to-high or from high-to-low

learntite 100;

ReadWriteTab 'Learning-MinV-TC2Triald’;

%% Chart Parameters

TestCaze = 1: $TestCase Number and Trial Number for chart Titles
Trial = 2:

startDate = datenum('10-01-2011"):

endDate = datenum(*09-30-2012%);

#Data = linspace(startDate,endDate, months)

% Load Incremental Planning Data - Matrix A
= zero=zimonths,Z,proj):;
1) #lsread ("InputFileMultiProjects.x

b, 2) 2 A A", 1
(:,1,3) "Matrixh', 'AI6T )i

% Load the PDS states and associated Q-Matriz
Learnt = xlzsread('V-LearningOutputMultiProjec
RowLearnt = length{Learnt):

1e function approximate learned values
", ReadWriteTab ,'AZ:C4008");

Figure 28: Learnt Phase Matlab Inputs

4.10 Learnt Phase Observations from Test Case #3 - Trial #2
An alternative approach to conducting sensitivity analysis during the learnt phase

is to consider the impact from adjusting the initial phase of the predicted expenditures for

each of the projects. This type of sensitivity drill keeps static the number of projects, the
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budget size of each project, and the number of months simulated. The changes are to the
phasing of each project’s initial planned expenditures and consequently planned monthly
commitment actions with the intent to observe how these changes impact the separate
ADP and stubby pencil policy recommendations. The following Test Case #3 — Trial #2
results consider this type of sensitivity drill. This exercise takes the same three projects
from the earlier Test Case #2 — Trial #1 and Test Case #2 — Trial #3 scenarios and alters
the original expenditure phasing. The updated expenditure planning figures are
deliberately set to avoid the situation where the aggregate expenditures for the three
projects have an initial spike in the early months, then taper off only to increase quickly
in the later months. Figure 29 provides the input parameters for this modeling scenario
along with the MSE statistics that resulted from using a 5,000 exploration iteration setting
and a 75,000 exploitation iteration setting.

In addition to examining the impact from re-phasing the original expenditures, the
Test Case #3 — Trial #2 scenario was used as a basis to test the reaction of the model to
the various built in sensitivity toggles that are part of the learnt phase of the model. The
sequence of charts shown from Figure 30 through Figure 39 provides the standard two
pictorial graphics for each sensitivity drill considered. In all, fives separate excursions
were performed. These included 1) the default case, 2) exogenous information ‘exog’ set
to high, 3) exogenous information ‘exog’ set to low, 4) exogenous information ‘exog’ set
to ‘mix’ with the “fiftyfifty’ variable set to ‘LowToHigh’, and 5) exogenous information

‘exog’ set to ‘mix’ with the “fiftyfifty’ variable set to ‘HighTo Low’.
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Modeling Allocation
Input Parameters Funding Level Parameter PlusMinus

Project #1 5.000 0.500 1.000

Project #2 2.000 0.250 0.750

Project #3 15.000 1.000 2.000

Load Incremental Planning Data - Array A
Project #1 Project #2 Project #3
t month Comm Exp Comm Exp Comm Exp
1 Oct 0.000 0.000 1.000 0.000 1.000 0.000
2 Nov 0.500 0.000 0.500 0.500 1.000 0.000
3 Dec 0.500 0.000 0.250 0.500 1.000 1.000
4 Jan 0.500 0.500 0.250 0.500 2.000 1.000
5 Feb 1.000 0.500 0.000 0.250 2.000 1.000
6 Mar 1.000 0.500 0.000 0.250 3.000 2.000
7 Apr 1.000 1.000 0.000 0.000 3.000 2.000
8 May 0.500 1.000 0.000 0.000 2.000 3.000
9 Jun 0.000 1.000 0.000 0.000 0.000 3.000
10  July 0.000 0.500 0.000 0.000 0.000 2.000
11 Aug 0.000 0.000 0.000 0.000 0.000 0.000
12 Sept 0.000 0.000 0.000 0.000 0.000 0.000
5.000 5.000 2.000 2.000 15.000 15.000

Number of state-spaces: 4,005
Number of months: 12

Total Budget = $22.000M
5,000 iterations Exploration
75,000 iterations Learning

RunTime: 17hrs 31Minutes
2.33 GHz Intel® Xeon
3.00 GBRAM

8.18

8.19 82

AY
\

8.21

8.22 8.23

1
1
MSE Last 10,000
Values N
Il
1
L
1
1
1
1
8 9
x 10

Figure 29: Test Case #3 — Trial #2 Input Parameters and MSE
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Figure 30: Test Case #3 — Trial #2 Output Graphic 1/ ‘exog’ = All
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107



1das Sny Inr unf Aely aidy JelN

924

uer

23Q

190

UE|d [B1HU| cmmomm

(‘wwo) a1doAN)
119U d AQQNIS e

TWWO) dQY e

1das any nr unr Aey ady Je

PO

UN &

UB|d [ENIU] e
P121P3.d "SAY e

1EN1DY “SAY et

Xe|A &

0T

ST

0¢

St

ot

ST

0t

14

N$

N$

High

Figure 32: Test Case #3 — Trial #2 Output Graphic 1/ ‘exog’
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Figure 33: Test Case #3 — Trial #2 Output Graphic 2/ ‘exog’
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Figure 34: Test Case #3 — Trial #2 Output Graphic 1/ ‘exog’ = Low
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Figure 36: Test Case #3 — Trial #2 Output Graphic 1/ ‘exog’ = Low to High
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Figure 37: Test Case #3 — Trial #2 Output Graphic 2/ ‘exog’

113



Ue|d [EINU] e

(‘wwo) aidoA)
119U3d AQQNIS e

WD) QY e

UN &
UE|d [BU| e
P312IP34d "SAY cmpun
1EN1DY “SAY cmgpm

Xew &

0T

ST

0c

St

0T

ST

0¢

14

s
114

N$
Figure 38: Test Case #3 — Trial #2 Output Graphic 1/ ‘exog’ = High to Low



Wy'o$
panes dAav

1das Sny Inf unr Aey ady Jep qa4 uer pETd] AON 100
. . . . . . o .
.
. %
.
.
.
.
dx3 aAne|nwn)y (‘wwo) 21doA)
YIUON JOd —w [19U3d AQQNIG e WWIOD) QY e

0T

ST

0c

St

N$

Figure 39: Test Case #3 — Trial #2 Output Graphic 2/ ‘exog’ = High to Low

115



The various sensitivity analysis drills were conducted to help isolate a narrative
on either the potential advantage offered by the ADP approach or what might be missed
by using a purely stubby pencil approach for making commitment action determinations.
The sensitivity analysis drills were centered on the value function estimates produced
using the updated expenditure and commitment planning profiles in the Test Case #3 —
Trial #2 scenario. Each drill examined the average results from 100 iterations of learnt
phase simulations. A total of five possible sensitivity analysis scenarios were considered.

The first execution sensitivity analysis drill used the default setting to calculate
and determine the exogenous information or actual expenditures for each month or
simulated time period t. Figure 30 and Figure 31 provide the graphic pictorials
associated with this excursion. The results show both similarities and differences to those
provided in Test Case #2 — Trial #1 and Test Case #2 — Trial #3. As shown in the top box
in Figure 30, there is once again little observed variability between the average actual
expenditures, average predicted expenditures, and the initial expenditure plan. Also, as
shown in the bottom box in Figure 30 and in the graphic shown in Figure 31, the ADP
commitment strategy is consistently below that of the recommended stubby pencil
strategy. Furthermore, one observes that the ADP commitment policy no longer contains
those initial up and down spikes that occurred during the Test Case #2 — Trial #1
scenario. Again, for comparison purposes a bar chart of the original incremental planned
monthly expenditures is provided at the bottom of Figure 31. Upon closer examination, it
appears that the recommended ADP commitment policy has in fact adjusted accordingly

to a smoother per month expenditure profile. This observation is consistent with the
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theory that the ADP commitment perturbations associated with Test Case #2 — Trial
#1were correlated to the initial expenditure planning profile and the fact that there was
noticeable up and down incremental phasing of the planned expenditures during the early
months of the modeling scenario. The final observation, shown in Figure 31, is that at no
point did either the ADP or stubby pencil commitment policy move below the actual
expenditures that had occurred up to one month prior to the current commitment decision
point.

The second sensitivity analysis drill examined the results of setting the
randomness of the actual expenditures or the exogenous variable to ‘high’. The graphic
pictorials for this scenario are provided in Figure 32 and Figure 33. As expected, the top
graph of Figure 32 now shows a wider discrepancy between the average actual
expenditures, average predicted expenditures, and initial plan. With an actual
expenditure setting of “high’, both the average predicted expenditures and the average
actual expenditures are above the initial expenditure plan. Once again, with the
exception of January, the ADP commitment policy was consistently below that of the
stubby pencil commitment policy. Additionally, as to be expected with ‘high’
expenditures both the ADP and stubby pencil approaches committed the full $22M at a
point much earlier in time as compared with the default “all’ sensitivity analysis
excursion.

The third drill examined the behavior of the model when the ‘exog’ variable was
set to ‘low’. This time as shown in the top box in Figure 34, the average actual

expenditures and average predicted expenditures have shifted below the initial planning
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line. The ADP-recommended commitment policy still remained below that of the stubby
pencil policy. Furthermore, a significant observation is that in this case the stubby pencil
commitment policy approach reached the full $22M commitment policy during the
month of July while the ADP policy never committed the full $22M. Figure 35
highlights the potential savings obtained by following an ADP commitment strategy
while operating in a ‘low’ expenditure environment. These ADP savings represent
additional work opportunities or projects that a decision maker could incorporate into the
weapon system program.

The fourth excursion evaluated impacts to the ADP and stubby pencil policies
based on using a ‘mix’ of simulated actual expenditures that initially started low and
moved to high. Figure 36 and Figure 37 show the two pictorial graphics associated with
this learnt phase execution drill. In this case, the ADP commitment policy still remained
beneath that of the stubby pencil commitment policy. Additionally, the ADP approach
never committed the full $22M whereas the stubby pencil approach was completely
committed by July. Figure 37 highlights the savings obtained by following an ADP
commitment strategy while operating in an expenditure environment that moved from
‘low’ to ‘high’.

The fifth and final excursion evaluated the impacts of switching the mix
simulation of actual expenditures to ‘high’ to ‘low’. The final two graphics, Figure 38
and Figure 39 provide the results for this last excursion scenario. As is consistent with

the other drills the ADP approach committed funding at a slower pace as compared with
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the stubby pencil approach. Once again, the ADP approach did not commit the full
$22M by year’s end and the realized savings are captured in Figure 39.

After evaluating the five sensitivity analysis cases, there are some critical
observations that seem to suggest general ideas or inferences on the tendencies of
commitment actions. In all five cases, the ADP model consistently suggested a
commitment allocation plan that was more conservative than the stubby pencil
recommended commitment plan. Figure 40 shows the end of year commitment levels of
both the stubby pencil and ADP policies for all of the five test case scenarios. In each of
the stubby pencil cases the recommended strategy was to commitment the full $22M
prior to the last month T. However, in three of the five cases using the ADP approach the
model recommended not committing the full $22M prior to the end of the FY. In regards

to these three cases, noted in Figure 40 are the ADP-reported savings.

M Stubby Pencil - myopic HADP

$M

22

215

21

20

195

(Default) High Low Low-to-High High-to-Low

Figure 40: End of Fiscal Year Commitment Amounts
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An issue for the decision maker is to determine a point in the fiscal year in which
the anticipated ADP savings can be allocated to new work initiatives. Figure 41 provides
a snapshot status of the end of month May commitment levels for all five Test Case #3 —
Trial #2 sensitivity analysis scenarios. Although the myopic stubby pencil policy was
able to adjust its” commitment strategy from the initial plan during the various sensitivity
scenarios, Figure 41 however shows that for the three cases in which ADP saved dollars
the stubby pencil policy already committed more funding in May than what the projects
will expend by the end of the fiscal year. In contrast, for these same scenarios the ADP
commitment levels in May are beneath the end of fiscal year expenditure levels

indicating that there is budget available to incorporate additional work.

*
Actual expenditures at end Sep
not known in May

Initial Plan M Stubby Pencil - myopic ~ MADP

23

21

20

19 +—

18 +——

17 +—

16 +—

15 +——

14

(Default) High Low-to-High High-to-Low

Figure 41: End of Month May Commitment Levels
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4.11 Additional Test Cases and Analysis
The development of the two ADP models involved the analysis of numerous test

case scenarios. Table 6 and Table 7 provide a summary list of various test cases
examined. The summary indicates whether a test case used Q-learning or value function
learning. Also, the tables provide additional test case information including number of
projects, total budget, number of iterations, MSE observations, size of state-space, model
run-times, and the properties for each of the individual projects.

The Q-learning test cases provided confirmation that the execution simulation
design was in fact visiting only viable action and state-space combinations. For these
five test cases, the Q-matrix output resulted in a data pattern showing that the model was
not selecting any erroneous action possibilities. However, one observation was the
increased sparsity in the Q-matrix given the larger state-space test case scenarios. The
addition of exploration iterations will likely reduce some of the sparsity. However, given
the current ADP design this may cause the ADP model to visit some bad action and state-
space combinations. As a result, the model will likely require more learning iterations
before converging. A second observation from the Q-learning test cases was the increase
in run-time between the Q-learning Test Case #2 - Trial #1 and Test Case #3 - Trial #1.
Although Test Case #3 - Trial #1 contained fewer state-spaces, this scenario did involve
twice the number of months as well as one additional project. This seems to indicate that
the number of months in a test case scenario is a significant driver of the modeling run-

times.
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Once the Q-matrix results provided reassurance that the simulation code was
implementing the algorithm as expected, value function learning became the primary
analysis tool. The studies numbered 6 through 17 from Table 6 and Table 7 were
dedicated to value function learning. An initial interesting observation was that the value
function learning Test Case #1 - Trial #1 provided similar MSE results as the Q-learning
Test Case #1 - Trial #1 in nearly half the time. This result is not too surprising since
some algorithmic efficiency was expected due to the fact that value function learning no
longer requires the update and storage of a Q-matrix. As mentioned earlier, the Test Case
#2 - Trial #3 scenario doubled the number of exploration iterations used from the Test
Case #2 - Trial #1 scenario. The impact appeared to be higher initial MSE statistics for
Test Case #2 - Trial #3 at the start of the learning phase. One possibility for this anomaly
is the inclusion of some additional bad state-spaces along with potentially good ones as a
result of performing more exploration iterations. The various test case 2 trials and test
case 3 trials examined the same $22M three-project scenario. However, the test case 3
trials re-phased the original commitment and expenditure planning. As highlighted
earlier the re-phasing of the initial commitment and expenditure planning figures
produced a smoother ADP recommended commitment policy.

One difficult challenge with using the ADP approach is determining a stopping
criterion for the algorithm. The Test Case #3 - Trials #1 through #4 scenarios were
attempts at determining if the modeling MSE statistics could be improved by performing
more iterations of learning. The trials were conducted in hopes that the MSE statistic

could reach a small and stable value indicating that the model was no longer learning and
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had reached a convergence point. During these trials, the MSE statistics showed
marginal improvement when learning iterations were increase from 50,000 to 75,000
iterations. However, further increases in learning iterations did not produce sizable
increases in the final MSE statistics. The 100,000 and 150,000 iterations of learning
conducted in Test Case #3 - Trials #3 and #4 appeared to end with nearly the same MSE
values.

In an effort to assist with the MSE analysis, a new chart was constructed that
tracked MSE variance. This new graphic evaluated the progression of the MSE statistics
in blocks of 500 data points. For each successive block of 500, a sample average MSE
and sample variance MSE statistic was plotted. Figure 42 and Figure 43 show the
standard MSE and new MSE variance charts for the Test Case #3 - Trial #2 and Test
Case #3 -Trial #3 scenarios.

The middle graphic shows the relationship between the sample average MSE and
a sample variance for the MSE. The blue line in the middle graph provides the average
MSE statistic in blocks of 500. The green and red lines are plotted at three standard
deviations above and below the MSE. The last graphic adjusts the y-axis scale to provide
a blowup of the blue line in the middle chart. The downward trend depicted in the
bottom graphic seems to suggest that the MSE statistics are continually improving and
thus the model is still continuing to learn even at the point when the simulation was
stopped. However, the extra learning iterations conducted in Test Case #3- trial #3, did
not appear to improve the final MSE values. The Test Case #3 - Trial #4 scenario which

involved 150,000 learning iterations produced similar results.
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126




| I |
Too N root 1092 1,003 1,094 1.095 1096 Loo7

Figure 43: Test Case #3 — Trial #3 MSE and Variance Graphics

127

oo 0% 11 Tl
/o
MSE 7
o7
Last 10,000 ’
¥
Values P
/ —
\ ~
il h i ‘u\thh“h‘\m‘mMuu\U L uM
10 12
\_/
x 10
50 | MSE
+3 Sigma
pry | -3 Sigma
30 —
20 —
10 VYRS BRI ]
of A —
10k -
20+ -
30 -
L V
I 1 1 1
0 500 1000 1500 2000 2500
12
MSE
+3 Sigma
11 - -3 Sigma
10 —
9 -
8 -
7 -
6 -
5 -
4 | I ! |
0 500 1000 1500 2000 2500




Test Case #3 - Trial #5 examined an alternative strategy which was to use a
different alpha-decay design. This test case used all the same input information as Test
Cases #3 — Trials #1 through #4 except for the new alpha-decay rule and for an increase
in the number of learning iterations to 175,000. Figure 44 provides summary graphic
information related to this test case scenario. The Test Case #3 - Trial #5 simulation used
a deterministic alpha-decay process referenced in Powell (2007) and expressed by
Equation 36. The top chart in Figure 44 provides the resulting alpha-decay pattern for the
5,000 iterations of exploration and the 175,000 iterations of learning. The middle graphic
shows MSE statistics with the last 10,000 values highlighted. The bottom chart provides

the sample MSE variance in blocks of 500 values.

Equation 36: Alternative Alpha-Decay (Powell 2007)
b/ 4+
a
o Ot

oK. =
O(b/n+a+n'8)

n-—1

Initially, the results from Test Case #3 — Trial #5 seem to exhibit promising
behavior. The middle chart in Figure 44 shows a MSE that appears relatively stable for
an extended amount of time. However, the final MSE values were not much improved
over those obtained in trials #1 through #4. In this instance, since the step-size decreases
rapidly during the early iterations, there is a danger of apparent convergence. Therefore,
the concern with using this approach is that the model was unable to learn sufficiently

from the collected ¥ sample observations.
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A final test case examined in this series was Test Case #3 - Trial #6. In order to
avoid the dangers of apparent convergence, this scenario returned to utilizing the original
alpha-decay process. However, for this trial alpha-decay was allowed to drop to a near
zero value. In the earlier trials, the simulations were designed to stop once the alpha-
decay process reached 0.1. When conducting test cases that involved more learning
iterations, the alpha-decay process was slowed so that it would still equal approximately
0.1 during the final iteration of the simulation. Allowing alpha-decay to reach a near zero
value resulted in the output graphics provided by Figure 45. The final MSE statistics
during the last 10,000 iterations were bounded between two and six. Furthermore, the
bottom graphic in Figure 45 shows that the average MSE for each block of 500
observations is flattening out. The combination of a steadily decreasing MSE trend that
eventually flattens out is a positive sign that the simulation had ample number of
iterations too learn and has reached a point where further iterations will not provide any
new information.

The final scenario examined was to consider if a larger budget size would still
produce a conservative ADP policy when compared to the stubby pencil policy. Test
Case #4 — Trial #1 simulated a four-project, $44M dollar decision system. The problem
inputs are provided in Figure 46. Output Graphics of the learnt phase under various
expenditure sensitivity settings are provided in Figure 47, Figure 48, and Figure 49. In
all cases the ADP commitment policy strategy was still more conservative than that of the

stubby pencil policy.

129



o1 ] 5,000 Iterations of exploration:
08r 1 alpha-decay drops from 1.0 t0 0.8
0.7f B
0.6 B
0.5f b
04l E L 175,000 Iterations of exploitation/learning:
o3l i alpha-decay drops from 0.8 to 0.1
0.2} B
o1 . . . . . X ; ]
0 2 6 8 10 12 14 16 18
X 104
200 To® -
- l ﬁ :
160 N i
140 HH Tow o Tom Tow T To o v Tosr Tors
N py | ,
/7
N N w 1
HH Sso Last 10,000 | ,
’ HH TR Values 7
60 S - 7
~So V2
) - ) ,4
LUERAL —y
ol LA LR M\Hm IR bl MM e A H\‘m\h“"w\‘h‘\\\\l\“\u\‘m“ i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10°
50 ‘ ” . MSE
+3 Sigma
a0l | -3 Sigma
30 —

o
-10—

-20—

-30—
-40

20 —
10 '“J bt ot " k N
i W p g FPRR B " n vl I .

" YR " i ATy rae————
L Tl e A |t R

0

| | | |
500 1000 1500 2000 2500 3000 3500 4000

Figure 44: Test Case #3 — Trial #5 Alpha-Decay, MSE, and Variance Graphics

130



50

40

301~

11 V

10

TR

1.007 1.008

MSE
Last 10,000
Values

Prom|

EW YN P9 TP
TP Wy

b

ﬂ"']"'“ ww

|

MSE
+3 Sigma
-3 Sigma

500

1000

2000

2500

MSE
+3 Sigma
-3 Sigma

500

1000

1500

2000

Figure 45: Test Case #3 — Trial #6 MSE and Variance Graphics

131

2500




Input Parameters _Funding Level Parameter PlusMinus

W o0 NOOULEAE WNER I+

B oR e
N = O

Number of state-spaces: 4,005
. . Number of Months: 12
Modeling Allocation Total Budget = $44.000M

5,000 iterations Exploration

PrOJ.ect #1 12.000 1.000 2.000 50,000 iterations Learning

PI"OJECt #2 7.000 0.500 1.500 RunTime: 16hrs 30Minutes

Project #3 15.000 1.000 2.000 2.70 GHz Intel® Core®

Project #4 10.000 0.500 2.000 8.00 GB RAM

Project #1 Project #2 Project #3 Project #4
month Comm Exp Comm Exp Comm Exp Comm Exp
Oct 0.000 0.000 0.000 0.000 1.000 0.000 3.500 1.000
Nov 0.000 0.000 0.000 0.000 1.000 0.000 2.000 1.000
Dec 0.000 0.000 0.000 0.000 1.000 1.000 2.000 1.500
Jan 1.000 0.000 0.500 0.000 2.000 1.000 1.500 2.000
Feb 1.000 0.000 0.500 0.000 2.000 1.000 1.000 2.000
Mar 3.000 1.000 1.000 0.500 3.000 2.000 0.000 1.500
Apr 3.000 1.000 1.000 0.500 3.000 2.000 0.000 1.000
May 2.000 3.000 2.000 1.000 2.000 3.000 0.000 0.000
Jun 2.000 3.000 2.000 1.000 0.000 3.000 0.000 0.000
July 0.000 2.000 0.000 2.000 0.000 2.000 0.000 0.000
Aug 0.000 2.000 0.000 2.000 0.000 0.000 0.000 0.000
Sept 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12.000 12.000 7.000 7.000 15.000 15.000 10.000 10.000

30 — — 7”\””’ - —— T

=
o
1

=
1)
1

[
1

L L L L
5.47 5.48 5.49 5.5 5.51

1kl M

E Last 10,0007 7
alues ,’
1
ay
1
I_
| 1
1
, .|' ( ]
1 2 3 4 5 6

Figure 46: Test Case #4 — Trial #1 Input Parameters and MSE

132



1das 8ny Inr unp Aen

ady Je

qo4 uer Ll NON PO

-dx3 aAne|nwn)
YIUOIA| JOLId =t

(‘wwo) a1doAN)
119U AQQN]S e

WWOD) QY s

0T

ST

0C

St

0€

S€

ov

St

0s

N$

Figure 47: Test Case #4 — Trial #1 Output Graphic 2 / ‘exog’ = All

133



1das

Sny

Inf

unr Aein

ady JeN

go4 uer

*dx3 aAne|nwn)
YIUOIA] JO1 et

(‘wwo) a1doAy)
[19UBd AQQNIS e

W0 dQ Y e

[0

ST

0¢

S¢

013

S€

oy

14

0s

N$

High

Figure 48: Test Case #4 — Trial #1 Output Graphic 2 / ‘exog’

134



dag

Sny nf ung Aey

ady Je

AON

*dx3 anne|INWND
YIUOIN] Ol d wtpe

(‘wwo) a1doAn)
119U d AQQNIS e

WWOD) QY e

0T

ST

0¢

14

o€

S€

ov

St

0S

N$

Figure 49: Test Case #4 — Trial #1 Output Graphic 2 / ‘exog’ = Low

135



CHAPTER FIVE - CONCLUSIONS, CONTRIBUTIONS, FUTURE RESEARCH,
AND NEXT STEPS

5.1 Conclusions
During each fiscal year, weapon system programs across the DoD are tasked with

the challenge of how to efficiently allocate their appropriated budgets. Due to the
realities that many weapon system programs spend millions of dollars each year on
numerous projects in an environment of uncertainty makes this a complex problem.
However, improved commitment polices to this allocation problem may help alleviate the
considerable amount of manpower dedicated to tracking the progress of weapon system
cash flow as well as the energy exhausted on year-end financial close-out activities.
Furthermore, commitment policy improvements may also help mitigate some of the
contentious debates that exist between a weapon system program office and an agency
comptroller office regarding cash flow. These potential advantages serve as incentives
for continued research on models and tools that can assist with finding good policies for
the financial execution commitment problem.

The challenge of finding the ideal or optimal commitment cash flow policy can be
described as a sequential decision making problem over time. Although the use of DP as
a tool for solving sequential decision problems that are structured as Markov decision
processes has existed for many years, the more advanced methodologies that are found in

the field referred to as approximate dynamic programming are relatively new. This
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community provides a new approach to the application of Bellman’s equation in an effort
to mitigate the problems caused by “the curse of modeling” and “the curse of
dimensionality” that plague the traditional DP solution methods. This thesis specifically
examined the nature and complications that are involved in applying the ADP approach
as a unique alternative to the problem of finding the best financial execution commitment
strategy in an acquisition environment for weapon system programs.

Initial findings of this research suggest that ADP is an approach that can be used
to simulate and mimic the financial execution environment of weapons system programs.
Furthermore, the simulation results and graphical outputs provide a degree of verification
that traditional stubby pencil and myopic commitment behaviors are more aggressive
than those using an ADP approach. Recommended ADP commitment policies were
consistently lower than the recommended stubby pencil plan regardless of the sensitivity
settings used on the various expenditure excursions. In several of the scenarios, the ADP
model did not fully commit the entire budget prior to the end of the FY. Thus, this
indirectly implies that under certain expenditure conditions there is room within
appropriated budgets for program managers and decision makers to initiate more work or

projects at the onset of the FY.

5.2 Contributions
The initial objectives of this research were captured by three primary goals. The

first was to build an ADP simulation model that could mimic the financial execution
environment of a weapon system program. The second was to utilize the model to

provide decision makers with recommended commitment policy strategies. Part of
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developing these commitment policy strategies would entail conducting comparative
analysis between the policy actions resulting from using an ADP approach and those that
a stubby pencil methodology would provide given the same modeling conditions and
assumptions. Lastly, the ADP execution modeling tool would be built to allow for
various types of sensitivity analysis and execution excursions. This last feature would
provide decision makers with a sense of how the recommended ADP commitment polices
would be altered under presumed execution environments.

In an effort to accomplish the established objectives as related to the financial
execution commitment problem, this thesis specifically examined two types of ADP
model designs. The first model used a Q-learning approach. The Q-learning model
creates and learns the values of Q-factors which represent a viable state-action pairing
within the decision system. The main advantage of Q-learning is that the output consists
of a visual |S]| - |X| Q-matrix. The data pattern of the Q-matrix serves as an indication as
to whether or not the logic of the model is structured properly in that the simulation is in
fact visiting state-action combinations that are feasible. However, given the storage and
computational demands of maintaining the Q-matrix throughout the simulation process
makes using this approach for larger problems intractable. Nonetheless, Q-learning
served as a solid foundation with which to build the second ADP model which is referred
to as value function learning. The value function learning model was able to produce
expectations of the value function in the form of Bellman’s equation that were easier to

manage and took the form of a single vector of dimension [S|.
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Both models incorporated the use of several ADP techniques. One feature was to
integrate the use of exploration and exploitation (learning). In both models, a certain
number of simulation iterations were dedicated exclusively to exploration. While
conducting exploration, the model is allowed to visit states and state-action pairings that
might be good but, would otherwise not be visited if Bellman’s equation were
implemented using a strict minimum operand. As such, the model is allowed to learn
information regarding the values of states or state-action pairings that a decision maker
may wish to visit. Additionally, both the Q-learning and value function learning models
were built around the post decision state variable as described in Powell (2007). This
approach theoretically simplifies the value update process by separating the deterministic
and stochastic components of the simulation as described by the transition function. As
part of determining a stopping criterion for the simulation, mean square error (MSE)
statistics and graphics were used as a method for gauging the convergence of Q-factors
and expectations on the value function.

During the learnt phase, both the Q-model and value function model were able to
provide ADP-recommended commitment policy strategies. These strategies are able to
serve as cross-checks and alternatives to the stubby pencil approach. The comparative
analysis between ADP and stubby pencil showed that the more conservative ADP policy
could potentially improve cash flow efficiency. When compared against stubby pencil,
ADP committed fewer dollars while still meeting the expenditure demands that occurred
during the FY. Furthermore, the ADP policy continued to remain relatively conservative

to the stubby pencil policy regardless of the simulated FY expenditure conditions.
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The test cases simulated in this thesis involved scenarios that included only a
small collection of projects. The protracted run times incurred precluded any extensive
analysis of test case scenarios involving a sizable collection of projects simultaneously.
However, based on the initial findings one can infer that there exists the possibility of an
ADP policy recognizing significant cash flow efficiencies once the algorithm is scaled to
simultaneously analyze the large numbers of projects that are often contained in a
standard weapon system budget. Under these conditions, the ADP approach possesses
the potential to provide decision makers with a rationale for starting additional projects at
the onset of the FY. Additionally, the decision to fund more projects can be made
without having to take on an unacceptable level of risk that the program will exhaust its

budget prior to the end of the FY.

5.3 Future Research
One of the biggest concerns with the ADP model for financial execution is the

extensive run times required to obtain a reasonable convergence on the Q-factors and
estimates on the expectation of the value function. One method to improve run times that
was used in this research was to reduce the number of attributes within the problem
vector that defined a state-space from [P C O A E] to just [C E]. Nonetheless, this
simplification of the state-space definition still noticeable suffered from excessively long
run-times and the curse of dimensionality. Model run-times increased exponentially for
each additive project that was incorporated into the simulation scenario. Although the
ADP approach does offer improvements on the curse of dimensionality compared to

traditional DP solution methods, the scalability of ADP models for real world problems
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still remains as a recognized area of ongoing research. ADP techniques referred to as
value function approximations encompass current methodologies that are examining
approaches to address scalability and run-time issues.

Aggregation and function fitting are two types of value function approximation
techniques that are receiving attention as opportunities for further research in the field of
ADP. Aggregation works by lumping together a collection of similar outcome state-
space possibilities into a single state-space result. George et al. (2008) provides a good
overview of the use of aggregation for multi-attribute resource management problems.
Through the use of an allocation parameter to define and narrow the outcome states, the
ADP models presented in this thesis already included a type of aggregation method. The
aggregation method utilized for the ADP financial execution models operates by
effectively rounding the dollar values within the problem vector to the nearest factor of
the assigned allocation parameter.

Function fitting or basis functions are ADP value function approximation
approaches that remove the need to produce “look-up” table results for the state-space
position that was presented in the Q-learning and value function learning models. Using
this method the retained estimated value of the PDS V"*(S*) is expressed as a basis
function such as the ones shown by Equation 37. Instead of learning estimated values of
the PDS position, through function fitting the algorithm will learn the estimated values of
the coefficient variables captured by the vector 8™. The algorithm proceeds by first
obtaining an initial estimate of all viable state-spaces possibilities. Then, during the

successive iterations the algorithm learns the values of 8™ by obtaining a least squares
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solution from 8™ = [(X)TX]L[X]TV™(S¥). Here, the variable X represents the matrix

form of the basis function.

Equation 37: Basis Function Examples
V(S*) = 6y + 6,5 + 6,5**
V(S*) =0, + 0,675 +6,5%~5"
V(s*) =6, + 6,5
V(§*) =6y + 0,5

In addition to scalability, there are several assumptions regarding the ADP model
design that are worth re-examining and offer areas for further research. The first is to
consider the implications of having a myopic cost function C(S;, x;) definition that is
dependent upon the current simulated month in question. Regardless of the current value
t, the myopic or immediate cost is defined as the delta difference between the cumulative
commitment allocation and the predicted cumulative expenditure needs over a three
month window from time period t until time period t+2. However, due to the common
occurrence of a continuing resolution authority (CRA) most programs are not in a
position to fund three months worth of effort at the initial start of the fiscal year.

A CRA restricts the amount of funding available to weapon system programs
during the earlier months of a fiscal year. These conditions may necessitate the need to
redefine the myopic cost function C(S;, X;) such that it measures the delta difference
between cumulative commitments and cumulative predicted expenditures over just a
single month t vice a three month window from t to t+2. This reflects the reality that in

the earlier part of the fiscal year a weapon system program is likely to only have
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sufficient funding available to cover one month worth of expenses at a time. However, at
some point during the fiscal year the CRA conditions will no longer be in place. At this
point, the definition of the myopic cost function C(S;, X;) should switch back to its
original three month designation or for a time period that is consistent with the decision
maker’s priorities. Although an evolving myopic cost function design may not alter the
relationship between the ADP and stubby pencil recommended commitment policies, it is
likely to alter the specific ADP commitment policy produced by the model.

Another opportunity for further research is the manner in which the exploration
phase of the simulation is conducted. As currently designed, the exploration iterations
randomly pick a viable commitment action during each time period t on an equally-likely
basis. The intent of the exploration phase is to allow the model to learn and explore
reasonably good state-space possibilities that otherwise would not be visited using a strict
minimization operand as part of the value update process. The trade-off is that the model
may require longer run times for convergence since the randomness of the exploration
process results in visiting both reasonable good state-spaces as well as some bad state-
spaces. The exploration phase of the ADP model can be more efficient by investigating
alternative exploration designs that use a level of selective randomness so that the
simulation process is only visiting reasonably good state-space possibilities and avoiding
the bad state-space options all together. The study of effective exploration designs offers
a rich opportunity for further research within the field of ADP.

Lastly, finding good solution methods to determining effective commitment

policies does extend beyond the realm of purely mathematical modeling. In order to
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understand this problem holistically, it would be imperative to further examine the
organizational behavior, agency processes, and the various incentive structures that are
all related to making financial commitment determinations. Some of the unresolved
issues in this area include insight on how long it takes a committed amount of funding to
move through the process and translate into expended dollars for any given project. The
ADP model currently assumes that dollars committed in a given month are in fact readily
available for billing and theoretically could be expended that same month. In reality,
there is lag time involved as committed dollars become obligated, accrued, and finally
expended. The amount of lag time is often associated with the specific project in
question or to the unique circumstances of that particular transaction. Additionally, as
described earlier, there are a number of incentive structures at work within the
organization that are antithesis to the objective of overall efficient cash flow for the
agency. The successful implementation of the ADP financial execution model within a
weapon system program office is highly dependent on a thorough understanding of the

organizational processes and institutionalized incentive structures.

5.4 Next Steps
There are a number of specific modeling enhancement considerations for the next

phase of development work on the ADP financial execution simulation tool presented in
this thesis. The realized exogenous information produced by the ADP model is the
simulated actual expenditure amount for month t and the respective updated expenditure
planning figures for month t+1 until the end of the fiscal year. During the simulation

process, the realized actual expenditures are based on the plus-minus parameter assigned
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to a project. At each individual month, this plus-minus parameter establishes the upper
and lower bounds of a uniform distribution from which the actual expenditure is
randomly selected. However, an alternative method for modeling uncertainty is to
consider the possibility of assigning unique probability distributions to the various
projects. Repetitive projects that are executed each year may have historical expenditure
patterns that can be fitted to a probability distribution function. For those projects that
are new and do not have historical expenditure patterns, one approach would be to work
jointly with industry and contractors to build consensus on realistic expenditure forecasts
and the associated distribution functions that could represent these planning figures.
Another modeling enhancement would include the incorporation of a penalty
factor for each time the ADP recommends a commitment action that involves a new
transaction. In some of the case studies examined, the recommended ADP commitment
policy involved making an additive commitment action one month that was followed by a
corrective de-commitment action the following month. Although this policy may appear
superior since these adjustments reflect a greater sensitivity to the dynamics of the
expenditure requirements, the reality is that program offices tend to want to minimize the
number of de-commitment actions. A simple enhancement to the model would be to
replace any ADP-recommended de-commitment actions with a commitment action of
zero dollars. In general, each de-commitment as well as commitment action involves a
cost associated with the manpower and coordination necessary to complete the
transaction. The bottom line is to adjust the optimization function so that it more

accurately reflects the realities that a commitment policy which achieves the same
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objectives with fewer transactions is superior to a commitment policy that requires more
transactions.

Lastly, in addition to the research areas mentioned earlier there are a number of
next step techniques and enhancements that may prove beneficial to improve the run-
times of the ADP financial execution model. Currently, the code does not take advantage
of any parallel processing opportunities. Given the resources for parallel processing, a
possible model implementation strategy that may improve run-times would be to separate
the simulation of the financial execution process from the value update process. Here,
the model first simulates an entire twelve-month FY execution cycle from a set
Q,containing exogenous information for all time periods t = 1 through t = 12. Then the
model performs the value update process for each of the PDS positions visited during the
twelve month cycle simultaneously. In theory, this update approach is plausible as long
as the simulation process never visited the same PDS twice during a single iteration.
Furthermore, removing de-commitments as an action choice from the model will greatly
improve the odds of satisfying this conditional.

Lastly, there are some relatively simple Matlab code adjustments that may
provide further improvements on run-times. The first adjustment would be to switch out
several of the matrix update and storage subroutines from a sequential search design to a
binary search design. Although the impacts on problems with small state-space sizes
could be negligible, there may be noticeable differences when applied to larger scale
problems. Another simple modification would include the consistent use of pre-

allocation commands that are used to set aside the memory requirements for any of the
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matrices used in the ADP algorithm. Finally, one can further improve run-time
performance through the use of vectorization of the for loop statements within the Matlab
platform.

The research presented in this thesis provides an initial first step to considering
the problem of finding efficient cash flow commitment policies for weapon system
programs using a new and untested approach. First hand exposure to the processes and
experiences within the Missile Defense Agency (MDA) served as the framework and
motivation for constructing the ADP commitment policy model. It is the intention of the
author to provide an overview of the modeling concept and initial findings to
representatives within the Operations Directorate at MDA. The hope is to gain continued
support for further refinement of the ADP model as well as the opportunity to implement
the concept in parallel within a program office’s current execution commitment planning

and forecasting methodologies.
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