
Approved for Public Release
13-MDA-7231 (5 April 13)

AN APPROXIMATE DYNAMIC PROGRAMMING APPROACH TO
FINANCIAL EXECUTION FOR WEAPON SYSTEM PROGRAMS

by

Erich D. Morman
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Systems Engineering and Operations Research

Date: 5 April 2013

Dr. Rajesh Ganesan, Dissertation Director

Dr. Karla Hoffman, Committee Member

Dr. Andrew Loerch, Committee Member

Dr. Mark Pullen, Committee Member

Dr. Ariela Sofer, Department Chair

Dr. Kenneth S. Ball, Dean
Volgenau School of Engineering

Spring Semester 2013
George Mason University
Fairfax, VA

Approved for Public Release
13-MDA-7231 (5 April 13)

An Approximate Dynamic Programming Approach to Financial Execution for Weapon
System Programs

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

by

Erich D. Morman
Master of Science

George Mason University, 2002
Bachelor of Arts

University of Dayton, 1996

Director: Rajesh Ganesan, Professor
Department of Systems Engineering and Operations Research

Spring Semester 2013
George Mason University

Fairfax, VA

ii

This work is licensed under a creative commons

attribution-noderivs 3.0 unported license.

http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/

iii

DEDICATION

For my mom, dad, and sister.

iv

ACKNOWLEDGEMENTS

I owe a tremendous amount of thanks and gratitude to all those who have assisted me
over the many years it has taken to complete this research. The ability to obtain and
complete a doctorate education was only possible due to the continual efforts,
encouragement, and wisdom provided by the faculty and staff at George Mason
University, my fellow colleagues at the Missile Defense Agency (MDA) as well as my
family and friends.

I’d like to especially acknowledge Dr. Rajesh Ganesan for serving as my advisor.
His accessibility and willingness to spend countless hours discussing mathematical
theories, modeling strategies, and interpreting results were critical to maintaining
momentum on this project. Additionally, his contagious enthusiasm for the field of
Approximate Dynamic Programming (ADP) was instrumental in keeping me motivated
and challenged. It was my pleasure to have worked with you on this endeavor.

I am also thankful to have had Dr. Karla Hoffman, Dr. Andrew Loerch, and Dr.
Mark Pullen serve on my committee. I am grateful for Dr. Hoffman’s insightful feedback
and review of both my proposal and dissertation materials. Her knowledge on financial
or resource allocation problems helped me appreciate the finer points of modeling
structure and implementation. Dr. Loerch’s perspective on weapon system modeling,
military analysis, as well as client-customer relationships was extremely beneficial and
very helpful. I’d also like to thank Dr. Pullen for his willingness to be on the committee
and providing me perhaps the best advice which was that the secret to completing a Ph.D.
is not necessarily intelligence but, persistence. Lastly, I’d like to thank Angel Manzo,
Josefine Wiecks, Sally Evans, and Lisa Nolder for their professionalism and help in
accomplishing all the necessary administrative tasks required to complete this degree.

I’d like to thank my many clients, colleagues, and friends associated with MDA
who supported this project. I owe a special thanks to Ms. Jan Bond whose early on
support and encouragement was absolutely critical to removing the roadblocks that
helped initiate this research. Also, I’d like to acknowledge Mr. Terry Little for his
willingness to review and discuss my draft materials. Lastly, I’d like to recognize Mr.
Richard Ritter, Jim Watzin, Rob Cramer, Phil Gretzkowski, Scott Hillstead, David
Lancaster, Sue Knapp, Alex Snead, Rob Cramer, Chris Szkrybalo, and Tammy Sledge
for their support at all levels in helping me obtain the resources, perform the
coordination, and navigate the administrative requirements necessary to accomplish this
work at MDA.

v

TABLE OF CONTENTS

Page
List of Tables .. vii
List of Figures .. viii
List of Equations ... x

List of Abbreviations and Symbols... xii
Abstract ... xii
Chapter One – The Problem ... 1

1.1 Problem Statement .. 1

1.2 Execution Definitions .. 3

1.3 State-Space Vector .. 4

1.4 Problem Environment ... 5

1.5 Markov Decision Process .. 8

1.6 Dynamic Programming (DP) Introduction .. 11

1.7 Allocation Parameter ... 16

1.8 Why Use Approximate Dynamic Programming (ADP) ... 17

1.9 Contributions and Structure of Dissertation .. 19

Chapter Two – ADP Concepts and Literature Overview ... 21

2.1 Dynamic Programming Background ... 21

2.2 Problems with Dynamic Programming ... 23

2.3 “Curse of Modeling” ... 24

2.4 “Curse of Dimensionality” .. 25

2.5 The Need for Approximate Dynamic Programming (ADP) 26

2.6 Transition Function ... 27

2.7 Bellman’s Equation ... 30

2.8 Sampling the Value Function .. 32

2.9 Value Function Update.. 33

2.10 Q-Learning on the Pre-Decision State .. 33

vi

2.11 Arguments for Using the Post Decision State (PDS) .. 36

2.12 Q-Learning on the Post Decision State (PDS) .. 39

2.13 Value Function Learning Algorithm ... 41

2.14 Q-Learning and Value Function Learning Design Summary 43

Chapter Three – The Model Design.. 44

3.1 Perspectives on Data Structures .. 44

3.2 Immediate Cost Function and the ADP Network.. 47

3.3 Subroutines of the ADP Model ... 51

3.4 Complexities Due to Adding Multiple Projects .. 58

3.5 Q-Learning and Value Function Learning Designs .. 67

3.6 Convergence: Alpha-Decay .. 71

3.7 Convergence: Mean Square Error (MSE) ... 75

3.8 Exploration Vs. Exploitation (Learning) ... 77

Chapter Four – Results and Analysis .. 80

4.1 Learnt Phase .. 80

4.2 Comparative Results ... 83

4.3 Collected Data ... 85

4.4 Model Input Examples .. 87

4.5 Model Output Examples.. 89

4.6 Learnt Phase Observations from Test Case #2 – Trial #1 94

4.7 Exploration Vs. Exploitation (Learning) Revisited... 96

4.8 Learnt Phase Observations from Test Case #2 – Trial #3 97

4.9 Learnt Phase Sensitivity Analysis ... 101

4.10 Learnt Phase Observations from Test Case #3 – Trial #2 103

4.11 Additional Test Cases and Analysis .. 121

Chapter Five – Conclusions, Contributions, Future Research, and Next Steps 136

5.1 Conclusions ... 136

5.2 Contributions ... 137

5.3 Future Research ... 140

5.4 Next Steps ... 144

References ... 149

vii

LIST OF TABLES

Table Page
Table 1: OSD Benchmarks for Obligations and Expenditures ... 2
Table 2: Investment Three NPV ... 14
Table 3: Investment One and Two NPV ... 15
Table 4: Multiple Projects Allocation Parameter .. 61
Table 5: Example Viable Commitment Allocations for Multiple Projects 66
Table 6: Test Case Summaries .. 122
Table 7: Test Case Summaries (Cont.) ... 123

viii

LIST OF FIGURES

Figure Page
Figure 1: Example Obligation and Expenditure End-Month April Status 7
Figure 2: Backward Recursion Network... 13
Figure 3: The Need for ADP ... 27
Figure 4: Transition Function Timeline .. 29
Figure 5: Funding Planning Matrices ... 45
Figure 6: Initial Planning $5.0M Project .. 49
Figure 7: ADP Network Model of Commitment Cash Flow Problem 50
Figure 8: Matrix A & B Commitment Action Selection... 52
Figure 9: Matrix A & B Exogenous Updates.. 56
Figure 10: Matrix A & B Planning Updates ... 57
Figure 11: Updated Matrix A & B Planning Data for Multiple Projects 60
Figure 12: Multiple Projects Matrix B Data ... 62
Figure 13: Q-Learning Diagram ... 67
Figure 14: Example Q-Matrix ... 69
Figure 15: Value Function Learning Diagram and Output Vector 70
Figure 16: PDS Value Function Estimates Convergence Patterns 76
Figure 17: Mean Square Error (MSE) Plot ... 77
Figure 18: Alpha-Decay for Exploration and Exploitation... 79
Figure 19: Learnt Phase Inputs ... 82
Figure 20: Test Case #2 – Trial #1 Input Parameters ... 88
Figure 21: Test Case #2 – Trial #1 Matlab Structure.. 89
Figure 22: Test Case #2 – Trial #1 Mean Square Error (MSE) .. 90
Figure 23: Test Case #2 – Trial #1 Output Graphic 1 ... 92
Figure 24: Test Case #2 – Trial #1 Output Graphic 2 ... 93
Figure 25: Test Case #2 – Trial #3 Input Parameters and MSE 98
Figure 26: Test Case #2 – Trial #3 Output Graphic 1 ... 99
Figure 27: Test Case #2 – Trial #3 Output Graphic 2 ... 100
Figure 28: Learnt Phase Matlab Inputs ... 103
Figure 29: Test Case #3 – Trial #2 Input Parameters and MSE 105
Figure 30: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = All 106
Figure 31: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = All 107
Figure 32: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = High 108
Figure 33: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = High 109
Figure 34: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = Low 110
Figure 35: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = Low 111

ix

Figure 36: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = Low to High 112
Figure 37: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = Low to High 113
Figure 38: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = High to Low 114
Figure 39: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = High to Low 115
Figure 40: End of Fiscal Year Commitment Amounts ... 119
Figure 41: End of Month May Commitment Levels .. 120
Figure 42: Test Case #3 – Trial #2 MSE and Variance Graphics 126
Figure 43: Test Case #3 – Trial #3 MSE and Variance Graphics 127
Figure 44: Test Case #3 – Trial #5 Alpha-Decay, MSE, and Variance Graphics 130
Figure 45: Test Case #3 – Trial #6 MSE and Variance Graphics 131
Figure 46: Test Case #4 – Trial #1 Input Parameters and MSE 132
Figure 47: Test Case #4 – Trial #1 Output Graphic 2 / ‘exog’ = All 133
Figure 48: Test Case #4 – Trial #1 Output Graphic 2 / ‘exog’ = High 134
Figure 49: Test Case #4 – Trial #1 Output Graphic 2 / ‘exog’ = Low 135

x

LIST OF EQUATIONS

Equation Page
Equation 1: Memoryless Property .. 9
Equation 2: Expected Reward ... 10
Equations 3: Limiting Probabilities .. 10
Equation 4: DP Recursive Objective Function ... 12
Equations 5: NPV for Resource Allocation Problem ... 13
Equation 6: Stage 2 Maximization Formulation ... 14
Equation 7: Transition Function ... 28
Equation 8: PDS Transition Function ... 29
Equation 9: Pre-Decision State Transition Function .. 29
Equation 10: DP Objective Function Formulation ... 30
Equation 11: Optimal Action (Powell 2007) .. 31
Equation 12: Standard Form of Bellman’s Equation .. 31
Equation 13: Expectation Form of Bellman’s Equation ... 32
Equations 14: Sample Realization of Value Function (Powell 2007) 32
Equation 15: Smoothing Algorithm .. 33
Equation 16: Estimations of Q-Factors ... 34
Equation 17: Robbins-Monro Q-Learning .. 34
Equations 18: Pre-Decision State and PDS Values (Powell 2007)................................... 37
Equation 19: Sample Realization of the Value Function using the PDS Variable 38
Equation 20: Smoothing Algorithm on PDS Variable .. 39
Equation 21: Sample Realization q-Values .. 39
Equation 22: Sample Realization q-Values .. 40
Equation 23: Estimate of the PDS Value Function ... 40
Equation 24: Q-Factor Learning ... 40
Equation 25: Immediate (Myopic) Cost Function .. 48
Equation 26: Sample Realization q-Values .. 53
Equation 27: Sample Realization v-Values .. 54
Equation 28: Value Update Process (Powell 2007) .. 71
Equation 29: Estimate Error.. 73
Equation 30: ADP Alpha-Decay Parameter ... 74
Equation 31: Mean Square Error (MSE) Calculation ... 76
Equation 32: q-value Exploration ... 78
Equation 33: v-value Exploration ... 78
Equation 34: Learnt Phase ADP Optimality Equation ... 84
Equation 35: Learnt Phase Stubby Pencil (Myopic) Optimality Equation 84

xi

Equation 36: Alternative Alpha-Decay (Powell 2007) ... 128
Equation 37: Basis Function Examples .. 142

xii

LIST OF ABBREVIATIONS AND SYMBOLS

Thousands of Dollars .. $K
Millions of Dollars ... $M
Approximate/Adaptive Dynamic Programming ..ADP
Artificial Intelligence .. AI
Business Financial Manager ... BFM
Continuing Resolution Authority .. CRA
Department of Defense .. DoD
Dynamic Programming .. DP
General Accountability Office .. GAO
Greatest Common Denominator ... GCD
Inspector General .. IG
Fiscal Year ... FY
Missile Defense Agency .. MDA
Markov Decision Process/Problem ... MDP
Mean Square Error .. MSE
Net-Present Value ..NPV
Office of the Secretary of Defense...OSD
Operations & Maintenance .. O&M
Program Director ... PD
Planning, Programming, Budgeting & Execution ... PPBE
Reinforcement Learning .. RL
Research, Development, Test, and Evaluation .. RDT&E
Transition Probability Matrix ... TPM

ABSTRACT

AN APPROXIMATE DYNAMIC PROGRAMMING APPROACH TO FINANCIAL
EXECUTION FOR WEAPON SYSTEM PROGRAMS

Erich D. Morman, Ph.D.

George Mason University, 2013

Dissertation Director: Dr. Rajesh Ganesan

During each twelve month fiscal year (FY) cycle weapon system programs across

the Department of Defense (DoD) are expected to execute their allocated budgets in an

expedient and timely manner. As the FY progresses, a weapon system’s cash flow state

at any given moment is primarily measured by the cumulative amounts of their budget

that are either committed, obligated, accrued, or expended. Regulatory and oversight

initiatives such as midyear financial execution reviews and published monthly execution

goals serve as measures that are designed to ensure that there is in fact high utilization of

a weapon system’s allocated yearly budget. The challenge of finding an ideal monthly

commitment cash flow policy that achieves a high level of utilization can be expressed as

a sequential decision making problem over time. The mathematical area known as

Markovian analysis is dedicated to modeling and finding solution methods that focus on

such problems with emphasis on understanding how the system moves from state to state

throughout the decision process. The complexity of the problem examined in this

research stems from the size of the multimillion dollar budgets in question and the

numerous projects they fund. In turn, weapon system offices must make hundreds of

commitment action determinations over any given fiscal year in an environment of

uncertainty. This intricate decision system necessitates that decision makers have good

mathematical tools that can assist them with determining an optimal commitment policy.

The research described in this thesis uses approximate dynamic programming

(ADP) techniques as a solution method to the financial execution commitment problem

for DoD weapon system programs. ADP ideas and concepts are extensions of Markovian

analysis principles. The modeling effort uses a simulation based optimization method

specifically geared towards solving sequential decision making problems. The more

traditional dynamic programming (DP) approaches are variants on the implementation of

Bellman’s recursive optimality equation. Unfortunately, as a result of the “curse of

dimensionality” and the “curse of modeling” these classical methods tend to breakdown

when applied within the more complex problem structure scenarios. The ADP approach

expands upon the original recursive idea embedded in Bellman’s optimality equation and

addresses the difficulties associated with the “curse of dimensionality” and the “curse of

modeling”.

As part of this research, two types of ADP models were built around the use of a

post decision state (PDS) variable. The application of the models was tested against a

collection of theoretical financial execution project scenarios. The initial model

leveraged a Q-learning design, while the second model used value function learning. In

each approach, the formulation of an optimal policy was dependent upon three modeling

phases. The three phases are referred to as exploration, exploitation (learning), and

learnt. The exploration phase of the model relaxes the driving optimality conditions

while simulating the execution decision system. The exploitation or learning phase

incorporates the optimality conditions within the simulation environment. Lastly, the

learnt phase leverages the outputs produced by exploration and exploitation to provide

the recommended optimal policy. Additionally, the learnt phase of the models was

designed to provide a means for conducting various sensitivity analysis and financial

execution drill excursions.

The research resulted in a unique application of ADP as a simulation and problem

solving method for generating financial execution commitment policies. The generated

ADP polices or commitment plans were compared against an alternative myopic policy

approach referred to as a stubby pencil policy. The learnt modeling phase examined and

tested the reaction of both the ADP and stubby pencil policies under various expenditure

conditions. The analysis showed that the ADP commitment strategy was often either

equal or less than that of the myopic stubby pencil strategy. These results suggest that a

decision maker following an ADP strategy would either reach full commitment of the

budget at a later date or would not reach full commitment of the budget prior to the end

of the FY. In the latter case, the remaining uncommitted dollars serve as an indication

that improved cash utilization could be obtained by incorporating more work or projects

into the budget.

1

CHAPTER ONE – THE PROBLEM

1.1 Problem Statement
Military acquisition programs within the Department of Defense (DoD) are

currently confronting difficult challenges that are caused by a decreasing budget line that

is receiving greater scrutiny from various oversight authorities. In turn, program

directors (PD) that are responsible for these weapon system programs are under

considerable pressure to ensure that their allocated budgets are executed in a timely and

judicious manner. As such, PDs need good tools to assist them with executing and

implementing good cash flow policies.

There are a number of nuances involved when attempting to define exactly what

is considered effective cash flow management. DoD budgets are executed on a fiscal

year bases that starts on 1 October and ends on 30 September. In general, weapon system

programs are expected to cover the majority of costs that occur in a fiscal year with the

funding appropriated for that year. However, given the complexities of weapon system

acquisition, the Office of the Secretary of Defense (OSD) publishes different yearly

obligation and expenditure benchmarks for various appropriation categories. Table 1

provides the OSD published benchmarks for Operations & Maintenance (O&M),

Research, Development, Test & Evaluation (RDT&E), and Procurement funding

(Defense Acquisition University (DAU)).

2

 Table 1: OSD Benchmarks for Obligations and Expenditures

The different goal benchmarks for the various funding appropriations do alleviate

some of the pressure on PDs to fully expend their budgets within the first year of

availability. However, unless spending is driven by a contractual structure that

necessitates delayed multiyear payments, there is little incentive to deliberately not utilize

or expend appropriated funding prior to year’s end. The opportunity cost of doing so is

the possibility of accomplishing more work in the current year. An additional nuance is

that the use of end year spending goals as a performance metric may incentivize

excessive and unnecessary late in the year spending. As such, effective cash

management as defined for this research attempts to utilize as much of the fiscal year

budget as possible within the year appropriated without engaging in year-end frivolous

spending.

Counterintuitive organizational incentives and institutionalized factors often

contribute to inefficient cash flow management. Several reasons that may cause wasteful

accelerated spending include the threat of budget cuts due to low expenditures, the

practice of setting a future year’s funding level on the current end of year expenditure

3

position, and the pressure to meet established spending metrics. In contrast some of the

pressures that lead to under executing are to avoid the danger of exhausting a budget too

early, holding excessive management reserve to cover unplanned expenses, and the

tendency of industry to over promise on the amount of cash that is necessary for the

initial start of a project. All these factors contribute to creating an environment that

necessitates the need for mathematical programming tools that can assist with making

unbiased dynamic cash flow commitment policy determinations.

1.2 Execution Definitions
There are four critical definitions that help define the status of funds as it moves

through the spending process. These four financial execution parameters are referred to

as commitments, obligation, accruals, and expenditures. A commitment of dollars will

reserve or set aside funding for a given project. While committed, funding cannot be

used or aligned to any other project. After commitments, funding is obligated on a

contract. At this point, the government has a contractual obligation to pay for work

performed by industry. Once the work is performed the contractor accrues expenses that

are billed to the government. After the government pays for the services or materials the

contractor provided, the funding is said to be expended. The below formal definitions of

these four terms are taken from the DoD financial management regulation glossary:

Commitment - An administrative reservation of funds based on firm procurement
requests, unaccepted customer orders, Directives, and equivalent instruments.

4

Obligation - Amount representing orders place, contracts awarded, services
received, and similar transactions during an accounting period that will require
payment during the same, or a future, period.

Accrual (Accrued Expenditure) - The term used for the credits entered into the
budgetary accounts to recognize liabilities incurred for (1) services performed by
employees, contractors, other Government accounting entities, vendors, carriers,
grantees, lessors, etc.: (2) goods and other tangible property received; and (3)
items such as annuities or insurance claims for which no current service is
required.

Expenditures – An actual disbursement of funds in return for goods or services.

These parameters comprise the vernacular used to articulate the progress of cash

flow as it may relate to programmed funding for an individual project, a collection of

projects, or a total weapon system budget in its entirety.

1.3 State-Space Vector
The four definitions combined with the concept of programmed dollars define a

multi-attribute vector of financial execution parameters. The vector whether applied to

an individual project, a collection of projects, or an entire weapon system budget serves

as a means for quantifying the existing state of a cash flow system. The vector syntax for

programmed dollars, commitments, obligations, accruals, and expenditures is captured by

[P C O A E]. At different points within the fiscal year, the status of spending is reflected

in the values given to each of these attributes within the vector. A point of contention

among the stakeholders vested in cash management relates to how future actions and

uncertain events will impact the performance and predicted status of this vector. As such,

the study and examination of the behavior of the [P C O A E] vector serves as a solid

5

basis for designing mathematical optimization tools to assist with the problem of efficient

cash management.

1.4 Problem Environment
The types of programs that require the most assistance are large scale complex

weapon system acquisition efforts. These programs have yearly budgets that run in the

hundreds of millions of dollars. Their budgets involve many funding projects that may

easily number well above sixty. The execution of these projects requires hundreds of

financial transactions that occur at various points throughout the fiscal year.

Furthermore, the weapon system acquisition environment often contains many elements

of uncertainty. The magnitude and complexity of these efforts makes it impossible to

effectively manage without the incorporation of sophisticated computational tools.

There are many stakeholders that have a particular position and vested interest in

cash flow decisions. However, it is primarily two conflicting points of view that

dominate the discussions over the true nature of a program’s financial execution position

as it progresses throughout the year. The two perspectives are between the program

office and the agency comptroller office. Three critical stakeholders for the weapon

system program office include the Program Director (PD), Business Financial Manager

(BFM), and the execution analysts. The PD oversees all operations necessary for

effective development, acquisition, and fielding of the weapon system. The BFM is

responsible for all financial and cost related activities associated with the weapon system.

The execution analyst performs the day-to-day activities necessary to initiate and monitor

the movement of cash as it pertains to projects related to the weapon system. In contrast,

6

the comptroller is concerned with the overall effectiveness of cash flow as it relates to the

agency or military service as a whole. In addition to the program office and comptroller

office other stakeholders that have an active interest in DoD cash flow management

include Congressional oversight committees, the General Accountability Office (GAO),

the Inspector General (IG), Office of the Secretary of Defense (OSD), as well as the

weapon system’s contracted industry teams. Regardless of the stakeholders, the

fundamental positions and arguments of cash flow management are about the

predictability of the [P C O A E] vector and the implications that has on the potential

unutilized budget that will exist at the end of the year.

 The debate is often centered on the program office’s spend plan that is put

forward at the start of the year. A spend plan usually consists of a month-by-month

predictive cash flow status for the weapon system’s yearly budget and the individual

projects it comprises. An extensive spend plan will include the status of all five financial

parameters; programmed amount, commitments, obligations, accruals, and expenditures.

However, simplified versions are often used as part of formal end of month or midyear

reviews conducted with the comptroller office. Figure 1 shows a consolidated example

of a program office’s month-end April financial execution status for a Missile Defense

Agency (MDA) weapon system program. The charted lines and boxed color codes are

indicators that highlight the statistics and trends on how the cash flow has progressed

against both the OSD benchmarks as well as the program office’s own initial spend plan

from the start of the fiscal year (FY) up to the end of April.

7

Figure 1: Example Obligation and Expenditure End-Month April Status

During execution review sessions, contentious debates and energy is often

centered on the amount of unexpended budget that will likely exist on 30-September at

the end of the FY and how far into the successive FY this money will last. The issue is

whether or not the expenses covered by these carryover dollars represent an acceptable

amount of forward funding or an excessive and unnecessary level of forward funding. As

is shown on Figure 1, the bottom half of the chart reflects various comptroller projections

of what could be considered as excessive budget. These predictions use different burn

rate variables that were derived from the recorded actual burn rates accrued between the

start of the FY to the current end of April. Program offices tend to counter this evidence

with direct insight on the programmatic nuances and nature of how the program is

progressing at the time. The responses and arguments put forward are late in the FY

FY2010 OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP FY13+

Program ($M) 364.1 364.1 364.1 363.1 363.1 363.1 363.1 363.1 363.1 363.1 363.1 363.1 363.1

BA Released ($M) 40.9 41.4 108.2 325.9 325.9 343.1 343.1 343.1 343.1 343.1 343.1 343.1 343.1

Obligation Plan ($M) 29.4 54.2 177.2 143.4 210.2 250.5 294.9 313.4 328.4 349.3 360.1 363.1 363.1

Obligation Actuals ($M) 1.0 19.1 64.5 169.5 189.5 240.2 265.2

OSD Obligation Goals ($M) 27.2 54.5 81.7 108.9 136.2 163.4 190.6 217.9 245.1 272.3 299.6 326.8 363.1

Obligation Actuals % Status 0.3% 5.3% 17.8% 46.7% 52.2% 66.2% 73.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Expenditures Planned ($M) 0.1 0.3 2.7 9.3 18.6 72.3 90.8 114.9 141.9 166.3 183.8 210.6 363.1

Expenditures Actuals ($M) 0.6 2.0 4.5 13.1 24.3 72.3 83.7

OSD Expenditures Goals ($M) 16.6 33.3 49.9 66.6 83.2 99.9 116.5 133.1 149.8 166.4 183.1 199.7 363.1

Expenditures Actuals % Status 0.2% 0.6% 1.2% 3.6% 6.7% 19.9% 23.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Average Actual Burn Rate (Current Month -November)/Number of months from November 16.3

Highest Month Burn Rate Highest actual one month of expenditures for the year 48.0
Highest 4 Months Burn Rate Average of highest four months of actual burn rates 19.8
Portfolio BFM Projected Burn Rate Average of Portfolio BFM projected burn rates for remainder of FY 24.0
Most Favorable Actual Projected Unexpended at EOM Oct 2012 based on highest of FY 2012 monthly burn rate 0.0
Average Highest Actuals Projected Unexpended at EOM Dec 2012 based on average of highest 4 months FY 2012 121.0
Based On Portfolio BFM Projections Projected Unexpended at EOM Dec 2012 based on Portfolio BFM projections 80.6

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP FY13+

BA Released ($M)

Program ($M)

Obligation Plan ($M)

Obligation Actuals ($M)

OSD Obligation Goals ($M)

Expenditures Planned ($M)

Expenditures Actuals ($M)

OSD Expenditures Goals ($M)

8

initiatives that have yet to start or initial projects that are going through ramp-up and have

yet to reach their maximum burn rate levels. Additional disconnects could also stem

from invoices that have yet to post in the accounting system. The core basis of the

counter argument is that the presented historical trend is not an accurate depiction of the

future activity. However, if the assumptions of the program office predictions are not

correct, the realization of this fact may occur too late in the year and the opportunity to

have either spent the money on other projects related to the weapon system or within the

agency as a whole will be lost.

1.5 Markov Decision Process
The DoD cash flow management problem is best described as a sequential

decision making problem over time in an environment of uncertainty. These types of

problems stem from a mathematical area known as Markovian analysis. A wide array of

applied problems falls into this categorization including resource allocation, inventory

control, and network flow. The field of dynamic programming (DP) includes a number

of concepts and special features designed to address the specific complexities that arise

from the Markovian problem structure. Puterman (1994) offers a good overview of

Markov decision analysis and its relationship with stochastic dynamic programming

methods.

The Markov decision problem or Markov decision process (MDP) used to model

the sequential decision making problem contains a number of specific characteristics.

For this problem structure framework, the decision maker attempts to take a series of

ideal actions over a finite or infinite planning horizon. The planning horizon may be

9

discrete points of time or simply delineations between required successive actions. These

separate decision points are referred to as stages or epochs. At each stage the decision

maker exists in a state. The attributes of the various states are captured by the variables

or vector of variables describing the state. The decision maker takes an action that moves

them from state to state over successive stages. Each time an action is taken the decision

maker receives either an immediate reward or penalty. The MDP captures the

fundamental problem of having to balance between the immediate reward or penalty

acquired in the current stage with rewards or penalties resulting from future actions taken

during the successive stages.

A critical feature of the MDP is the memoryless property. There is a level of

uncertainty that exists in states arrived at and visited as a result of the decision makers

selected actions. However, the probability of arriving at any given state is dependent

only upon the preceding state and not any of the earlier states that were already visited.

For a set of finite states S = {s0, s1, s2, …, sn} this notion is expressed as shown in

Equation 1.

Equation 1: Memoryless Property
𝑃𝑟�𝑆𝑡+1 = 𝑠𝑡+1�𝑆𝑡 = 𝑠𝑡,𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆0 = 𝑠0� = 𝑃𝑟 {𝑆𝑡+1 = 𝑠𝑡+1|𝑆𝑡 = 𝑠𝑡}

Each time a decision is made in the Markov process that moves the system

through consecutive states a cost or reward is incurred. The term rt(i,x,j) is defined as the

reward for making a decision x at time period t that causes the system to move from state

i to state j. Furthermore, the probability of reaching state j from state i given decision x is

10

Pt(j|i,x). As shown in Equation 2, these terms can be combined together to express the

expected reward for decision x while in state i given the set of all possible states S.

Equation 2: Expected Reward
�̅�𝑡(𝑖, 𝑥) = ∑ 𝑟𝑡(𝑖, 𝑥, 𝑗)𝑃𝑡𝑗∈𝑆 (𝑗|𝑖, 𝑥)

The objective of the MDP is to determine an optimal policy that maps the best

decision x∈X to take for each state s∈S in the decision system. Any feasible mapping of

actions to states is considered a policy. The best or optimal policy is the one that will

either maximize or minimize the total overall long run reward or cost for the system. The

expression Pt(j|i,x) is taken from a one-step transition probability matrix (TPM) which

dictates the behavior of a particular policy. The element in the ith row and jth column of

the TPM, expressed as Pij, is the probability of moving from state i to state j under a

particular policy.

The overall expected reward obtained by implementing a policy can be

determined through calculating the limiting probabilities of the TPM. This is achieved by

solving the following system of equations for all 𝜋j:

Equations 3: Limiting Probabilities
𝜋𝑗 = ∑ 𝜋𝑖𝑃𝑖𝑗𝑆

𝑖=0 ∀ 𝑗 ∈ 𝑆
 ∑ 𝜋𝑗𝑆

𝑗=0 = 1

These limiting probabilities are then used to determine the total expected reward

of the policies under consideration. For a given policy, this total expected reward is

11

∑ 𝜋𝑖�̅�(𝑖, 𝑥).𝑆
𝑖=0 Similar total expected rewards are easily calculated for other feasible

policies that each have a unique TPM which governs the policy’s behavior. An optimal

solution is obtained by calculating the total expected rewards among all possible policies

and selecting the maximum.

This approach to finding the ideal policy for a MDP is only practical for relatively

simple problems. Consider a basic MDP that contains four states and at each state one of

three possible decisions is allowed. As such, this means that for this MDP there exists 34

= 81 potential policies. In order to find the optimal solution the limiting probabilities for

each policy is calculated from 81 different sets of systems of equations. Additionally, it

is readily observed that the number of calculations required to solve the problem grows

exponentially should either an additional state or decision variable be added.

1.6 Dynamic Programming (DP) Introduction
DP attempts to alleviate the computational burden imposed on a MDP that occurs

as a result of the direct enumeration of all policy possibilities. The DP approach is

attempting to find the ideal state and decision pairing that is described by theorem 1

(Gosavi 2009), (Bertsekas 1995).

Theorem 1: For a discounted reward MDP in which all Markov chains are regular, there
exists a vector 𝚥∗ ≡ {𝐽∗(1), 𝐽∗(2), … , 𝐽∗(|𝜗|)} such that the following system of linear
equations is satisfied:

 𝐽∗(𝑖) = 𝑚𝑎𝑥𝑎∈𝐴(𝑖)[�̅�(𝑖, 𝑎) + 𝛾 ∑ 𝑝(𝑖, 𝑎, 𝑗)𝐽∗|𝜗|
𝑗=1 (𝑗)] for all 𝑖 ∈ 𝜗

DP examines the solution approach for finding this optimal vector through

capitalizing on the inherent recursive structure embedded in the system of linear

equations. In the simplest of forms the objective function value for any state i can be

expressed by Equation 4.

12

Equation 4: DP Recursive Objective Function
𝑓𝑡(𝑖) = 𝑚𝑖𝑛𝑗/𝑚𝑎𝑥𝑗{𝑐𝑖𝑗 + 𝑓𝑡+1(𝑗)}

Here, the objective function states that the best value of being in state i at time or

stage t is obtained by determining the action that provides either the maximum or

minimum of the cost cij incurred by moving from state i to state j plus the value of being

in state j at the next unit of time or stage t+1. The objective function structure requires

the consideration of all the successive decisions that occur beyond just the imminent

timeframe t. The concern is that outside of very straight forward problems the use of

recursion will present computational challenges. Fortunately, there are advanced

concepts in the field of DP that are specifically designed to address these challenges. In

an effort to provide context for the advanced DP concepts, it is worth taking a closer look

at a specific solution approach which uses this basic recursive objective function

formulation.

The recursive concept is easily demonstrated by examining a simple resource

allocation problem (Winston 94). In this example, a company is considering how to

allocate $6,000 in $1,000 increments across three potential investment opportunities. The

individual net present value (NPV) returns for each investment along with a network flow

diagram are provided below:

13

Equations 5: NPV for Resource Allocation Problem
r1(d1) = 7d1 + 2 (d1 > 0)
r2(d2) = 3d2 + 7 (d2 > 0)
r3(d3) = 4d3 + 5 (d3 > 0)
r1(0) = r2(0) = r3(0) = 0

Figure 2: Backward Recursion Network

The nuances of the problem are best explained by examining the stage-space and

state-space design. In this sequential decision making problem each stage represents one

of the three individual investment choices. The nodes at each stage show the various

states representing the balance on the $6,000. The final and fourth stage is added as a

sink node that is arrived at once the funding is completely distributed across all three

investments. At a given stage, the state arrived at is dependent on the choices made in

the prior stages. If the choice in stage one is to allocate x1 = $2,000, then the state arrived

at in stage two is $4,000 or (2, 4). Although the problem is characterized by how the

action choices move one forward through the network, the solution method actually

evaluates the stage-spaces in reverse through the use of a technique called backward

recursion.

14

Backward recursion systematically calculates the value of each stage-space in

reverse order. Starting with investment three, one examines the NPV obtained for all of

the investment allocation possibilities. These values along with the corresponding

allocation choice are as follows:

Table 2: Investment Three NPV
 f3(0) = 0 x3(0) = 0
 f3(1) = 9 x3(1) = 1
 f3(2) = 13 x3(2) = 2
 f3(3) = 17 x3(3) = 3
 f3(4) = 21 x3(4) = 4
 f3(5) = 25 x3(5) = 5
 f3(6) = 29 x3(6) = 6

Once known, the stage three values are then utilized to calculate the stage two

values. If d2 is the amount of dollars available for investment two, then the total NPV

obtained by the investment action x2 is the sum of both the immediate return of

investment two r2(x2) plus investment three f3(d2-x2). In short, at stage two the solution

approach is now looking to maximize the following:

Equation 6: Stage 2 Maximization Formulation
f2(d2) =

2
max

x
{r2(x2) + f3(d2 - x2)}

In a similar manner, the backward recursion algorithm continues such that the

various stage one values are calculated using the stage two values. At stage one, the net

present value obtained from an investment action x1 is the sum of the initial investment

15

return r1(x1) plus the cumulated returns of investments two and three f2(6-x1). The

following table shows the NPV calculations and corresponding actions for both stage two

and stage one.

Table 3: Investment One and Two NPV

The stage one calculations provide the optimal solution which is a total NPV of

49 for all three investments. Although this optimal value was obtained through backward

recursion, the actual decision policy is now realized by stepping forward back through the

decision problem. At stage one, the optimal value is obtained by taking action x1(6) =

$4,000. This leaves a balance available for investment two of d2 = $6,000 - $4,000 =

$2,000. In turn, the optimal action for stage two is x2(2) = $1,000. This leaves a balance

of d3 = $1,000 for investment three along with the associated optimal action x3(1) =

$1,000. In summary, the optimal NPV value of 49 is obtained with a decision policy of

[x1=$4,000 x2=$1,000 x3=$1,000] and resulting returns [r1(x1)=30 r2(x2)=10 r3(x3)=9].

16

This algorithmic approach is only viable for relatively simple well defined

problems. In this example, the decision problem contains no stochastic or probabilistic

components. Additionally, the state-space size was relatively small making it viable to

calculate all possible action and outcome state pairings. Once the decision maker had

access to all aggregate NPV outcome possibilities, the problem of determining an optimal

policy was rather straight forward. Furthermore, the implementation of the DP approach

ensures that the decision maker does not make a myopic allocation. For example, using a

pure greedy heuristic an individual may place all $6,000 in investment one because as a

stand-alone option this does in fact produce the highest NPV. Unfortunately, when

applied to more complex and sophisticated problems backward recursion and other

classical DP solution methods quickly breakdown. Solution approaches to more

challenging problem structures incorporate advance DP techniques that are described

within a simulation based area known as adaptive dynamic programming or approximate

dynamic programming (ADP). This thesis examines the development of some of these

advance DP tools and theoretically tests them within the context of determining optimal

commitment decision policies for financial execution.

1.7 Allocation Parameter
The initial consideration in the ADP design was to determine the discrete funding

increment of a project with which to track the execution status. Each project has an

assigned [P C O A E] multiattribute vector that expresses the financial execution status of

a project at any point in the ADP simulation. In theory, each of these five variables can

take on any dollar amount between zero and the maximum allowable budget for the

17

project in question. However, for projects ranging in value from hundreds of thousands

to multimillion dollar amounts there was little added value in tracking the [P C O A E]

vector to the nearest single dollar amount. Therefore, restrictions were put on each

project such that any of the P, C, O, A, or E values could only take on and be expressed

in multiples of the assigned allocation parameter.

Consider a $5.0M project with an assigned $0.250M allocation parameter. This

means that any of the five financial execution variables can take on only one of the 21

different multiple values of $0.250M that range between zero and $5.0M. Obviously,

this assumes that through the course of the simulated fiscal year the project’s

programmed amount does not receive a plus-up or reduction. If the project does receive a

programmed amount plus-up or reduction, the number of possible allowable values

increases or decreases accordingly. Nonetheless, as a basis the 21 different allowable

values means that the number of state-space possibilities that exist for the entire [P C O A

E] vector is 214 = 194,481.

The ADP model was designed with the flexibility to select different allocation

parameters based on the size of the project. The various allocation parameter options

were $0.100, $0.250M, $0.500M, $1.000M, $2.000M, and $5.000M. The actual

allocation assignment to a given project was based on the magnitude of the programmed

dollars for that project.

1.8 Why Use Approximate Dynamic Programming (ADP)
ADP has a number of features that make it an appealing solution method for this

particular problem vice the available alternative existing mathematical programming

18

approaches. As pointed out by Das et al. (1999), “Well known algorithms, such as value

iteration, policy iteration, and linear programming find optimal solutions (i.e., optimal

policies) of MDPs. However, the main drawback of these classical algorithms is that

they require, for every decision, computation of the corresponding one step transition

probability matrix and the one step transition reward matrix using the distributions of the

random variables that govern the stochastic processes underlying the system.” The

argument is that the alternative methods to ADP are dependent on transition probability

matrices (TPM) to articulate the nature of the uncertainty and randomness that exists in

the decision system. In many real world problems there is no easily available TPM for a

given MDP. The computational complexities in generating a TPM along with the

potential burden of storage may cause these alternative approaches to be intractable. The

ADP solution approach includes a method for incorporating the stochastic component of

the decision system without the need for an explicit TPM.

Additional arguments for using ADP are related to methodology differences.

Many alternative methods to solving sequential decision making problems are burdened

by the requirement to satisfy the modeling constraints from all time periods of the

problem at the same time (Denardo 2003). Since the alternative solution methods need to

consider many of the facets of the problem simultaneously, even the formulation of

problems that are evaluated over a moderate number of time periods are large-scale. In

reference to a transportation application, Powell (2007) states, “formulated as a single,

large linear (or integer) program (over 50 time periods), we obtain mathematical

programs with hundreds of thousands of rows and upwards of millions of columns”. The

19

example is taken from a discussion that suggests the use of ADP as a decomposition

technique for these types of large-scale math problems. The advantage of ADP under

these large-scale problem conditions is that at any given moment in the solution process

the methodology only evaluates data from two consecutive time periods vice having to

evaluate data from all time periods simultaneously.

1.9 Contributions and Structure of Dissertation
The contributions of this thesis are threefold. The first research objective is to

build an ADP model that can examine and mimic the sequential decision making

problems associated with financial execution as it relates to weapon system acquisition

within the MDA and possibly within the DoD as a whole. Second, the ADP will be used

to generate and recommend commitment strategies. The commitment strategies will be

unbiased to the organizational pressures to either over execute or under execute a budget.

Ideally, they represent a commitment policy that can move the decision maker from one

good state-space to the next good state-space as a project or group of projects moves

through the execution process. Lastly, the commitment strategies generated by the ADP

will be compared against an alternative commitment strategy referred to as stubby pencil.

As the name suggests, the stubby pencil strategy attempts to mimic real world behaviors

that allocate dollars based on standard linear projections. These approaches tend to

exhibit a myopic decision strategy that provides positive short-run benefits but, do not

take into account the downstream impacts of decisions on the system as a whole. A

specific theoretical portfolio of projects is evaluated as a basis of comparison between the

20

ADP and stubby pencil approaches. Various sensitivity analysis drills are performed to

further evaluate the responses of these two perspectives.

The structure of this thesis is as follows. Chapter one defines the problem and

provides an overview of financial execution as well as basic Markovian and DP concepts.

Chapter two expands on some of the critical mathematical tools and developments in the

field of ADP. Additionally, this chapter provides an overview of the relevant authors and

their associated publications. Chapter three provides a walk-through of the development

hurdles and functionality of the financial execution ADP model. In chapter four, the

learnt phase of the model is discussed and the results of sensitivity analysis drills are

shown. Chapter five provides some summary remarks, observations, and opportunities

for further research.

21

CHAPTER TWO – ADP CONCEPTS AND LITERATURE OVERVIEW

2.1 Dynamic Programming Background
During the 1950s and early 1960s, DP began developing prominence as a

mathematical tool for modeling and solving MDP. There are a number of publications

during this timeframe that significantly helped define and advance the field of DP. Some

of these seminal works include Bellman (1954, 1957), Howard (1960), and Bellman &

Dreyfus (1962). At that time, these publications helped articulate the core principles of

DP and its utility as a tool for solving Markov decision and other stochastic control

problems. The DP approach is designed to specifically address the inherent structure of

sequential decision making problems which encompasses a vast diversity of problem

classifications. A few of these areas include inventory management, resource allocation,

job shop scheduling, shortest path problems, technology switching, and maintenance/

repair scheduling. Over the last few decades, the DP field has evolved into a rich array of

techniques designed to respond to the inherent difficulties with using traditional DP

solution approaches and the complexities of real world problem structures. The

following provides a short overview of the different lexicon used to refer to advance

dynamic programming concepts as well as some of the published authors in the field.

Powell (2009) points out that different academic communities have a fundamental

need to examine the solution capabilities and driving theories behind DP. A problem that

developed was that as these sub-communities worked to further advance solution

22

techniques for MDPs each community simultaneously built their own vernacular and

notional symbols to essentially express the same basic ideas. Powell (2007, 2009)

references that these different communities include control theory (engineering/

economics), artificial intelligence (AI) (computer science), and operations research. As

articulated below, there are significant drawbacks to using traditional DP approaches for

solving a MDP. In response to these shortcomings, an iterative solution approach within

the field of operations research was adopted know as adaptive/approximate dynamic

programming (ADP). In control theory, Bertsekas and Tsitsiklis (1996) refer to this

similar approach as neuro-dynamic programming. Furthermore, Sutton and Barto (1998)

refer to this as reinforcement learning (RL) within the context of AI. Both Powell (2010)

and Tsitsiklis (2010) offer perspectives and elaborate on the relationship that exists

between the ADP and AI communities. Additional context behind the evolution of ADP

is mentioned in Gosavi (2009) which states that “the modern science of RL has emerged

from a synthesis of notions from four different fields: classical DP, AI (temporal

differences), stochastic approximation (simulation), and function approximation

(regression, Bellman error, and neural networks).”

In regards to this thesis, two algorithmic approaches in the form of Q-learning and

value function learning are provided which served as the design framework for solving

the financial execution commitment policy problem and providing good cash flow

policies to the decision maker. The remainder of this chapter is dedicated to the

rationality and pedagogical development of the ADP approach.

23

2.2 Problems with Dynamic Programming
As expressed in Ivengar (2005), “Dynamic programming (DP) is the

mathematical framework that allows the decision maker to efficiently compute a good

overall strategy by succinctly encoding the evolving information state.” The DP

approach is concerned with finding optimal policies to sequential decision making

problems that are often expressed as a MDP. The previous chapter outlined two classical

DP solution approaches related to finding optimal policies within these types of decision

problem frameworks. Unfortunately, these two solution methods and other classical DP

approaches often breakdown when applied beyond relatively simple problems.

The first solution approach attempted to find an optimal solution by computing

the expected value of the objective function for all viable policy alternatives. This is

considered a strict enumeration approach and involved finding limiting probabilities

through solving a system of linear equations as expressed by each policy’s TPM. The

difficulty with this approach is that the calculations require a well defined TPM that

reveals how one state moves to the next in the decision process. However, in practicality

most real world problems do not have well defined probabilities that indicate how the

decision process will transition from state to state. Instead, in a complex problem

environment the movement from one state to the next is dictated by a combination of the

decision maker’s action and realized exogenous or random information that impacts the

decision sequence at each stage. The dependency of traditional DP solution approaches

to require a TPM is referred to in the literature as “the curse of modeling”.

The second approach utilized a backward recursion method to calculate a system

value for each state-space possibility in the sequential decision making system.

24

However, this approach becomes quickly problematic in that the computational burden

grows exponentially for each variable element added to the problem. When

implementing the backward recursion solution method, the expansion of the decision

problem by adding just a single state-space or action possibility will easily result in the

need for a sizable amount of additional calculation requirements. This exponential

growth in computational demands for even relatively small problems is referred to as “the

curse of dimensionality”.

The curse of dimensionality and the curse of modeling are of critical importance

to the limitations of traditional DP approaches and thus the need to develop ADP

techniques that both issues are worth further examination.

2.3 “Curse of Modeling”
One of the major drawbacks of traditional approaches to solving a MDP is that

they all assume access to the TPM. However, one positive aspect of having access to the

TPM is that the value function expression used in many of these solution approaches can

be calculated explicitly and as such obtain exact optimum solutions. Yet, most real

world problems do not have a well defined TPM that can capture the probabilistic

nuances of how a state action pairing will move the decision maker into the next state.

Solution methods such as ADP that attempt to solve and mimic problems that do not have

a readily available TPM structure are referred to as model-free. In these cases, the

information necessary to move a decision maker from state to state will need to be

generated artificially. The standard approach for doing this is to use a Monte Carlo

simulation technique. As with the real world problem examined in this thesis the

25

sequential decision making process of determining what amount of money to commit at

the start of each month in support of weapon system acquisition does not contain an

easily definable TPM matrix.

2.4 “Curse of Dimensionality”
A second concern with the traditional methods of solving a sequential decision

making problem is that the computational requirement grows exponentially as the

dimensionality and state-space size of the problem increases. As a result of the curse of

dimensionality the strict enumeration and backward recursion methods in chapter one

would be intractable for any large scale problems. Also, other classical methods such as

value iteration which requires performing a synchronous value update for all states in the

decision system at each iteration in the solution process quickly becomes unmanageable

as problem size increases.

Powell (2007) references the state-space, action space, and outcome space as the

three main curses of dimensionality. As articulated, a decision problem with I state-space

dimensions each of which can take on any of L possible values may have as many as LI

true state-space possibilities. This same exponential representation holds for an outcome

space of size MJ that has M possibilities over J dimensions and an action space of size NK

that has N possibilities over K dimensions. Expressed in this fashion it is readily visible

how any traditional DP approach which requires accounting of all possible state-space,

action space, and outcome space possibilities is quickly overwhelmed by the curse of

dimensionality.

26

An important concept to the ADP design is to delineate between a problem having

a large state-space and a problem having large dimensionality. For the financial

execution problem the size of the state-space is determined by the allocation factor

assignment against a given project. A $5.0M project with an allocation parameter of

$1.0M has in theory six possible programmed value states ranging from $0.0M through

$5.0M. By decreasing the allocation parameter by one-half to $0.5M, this increases the

number of possible programmed value state-spaces from six to eleven. Regardless of the

allocation parameter the dimensionality of the problem does not change. The defining

problem vector [P C O A E] has five dimensions and still only has five dimensions even

if there is a change to the allocation parameter. The dimensionality of the problem is

based on the number of attributes assigned to define a state-space. Nonetheless, the

dimensionality of a problem and the state-space number of a problem are both factors that

contribute directly to the curse of dimensionality.

Later in this thesis, the dimensionality of the problem vector is reduced from five

to two. There are two reasons for this. The first was as a natural progression of the

problem definition. The second was to reduce the state-space size as a means to mitigate

the impacts from the curse of dimensionality and improve the algorithm performance

time.

2.5 The Need for Approximate Dynamic Programming (ADP)
ADP is a direct response to the inherent problem nuances brought on by both the

Curse of Modeling and the Curse of Dimensionality. Figure 3 shows the natural

progression and rationality for examining sequential decision making solution methods

27

beyond what is provided by classical DP. The following sections of Chapter 2 are

dedicated to the mathematical syntax and theories of the ADP concept. The equations

and algorithms are expressed in terms of a finite horizon minimization problem to be

consistent with the described research problem for this thesis. However, all the

formulations are easily convertible to either a maximization or infinite horizon

expression.

Figure 3: The Need for ADP

2.6 Transition Function
The ADP approach makes use of the idea of a transition function to model the

behavior of how a decision making process moves from one state to the next. In light of

no longer having a TPM, surrogate symbolism is instead used to describe the rules of

how a decision system transitions between states. The expression SM(∙) taken from

Powell (2007) is recognized as a generic modeling syntax in which the state-space is a

model of the variables contained within the parenthetical (∙). As described in the resource

allocation problem from chapter one, the recursive expression ft(i) = minj{cij+ft+1(j)}

Standard Methods and Classical DP
Approaches to Solving MDP

1) Strict Enumeration

2) Backward Recursion

3) Linear Programming

4) Policy Iteration

5) Value Iteration

“Curse of Modeling”
- Requires TPM

“ Curse of Dimensionality”
- Exponential State-Space Growth

Solve for System of Linear Equations
Synchronous Value Function Updates

Drawbacks

Adaptive/
Approximate Dynamic Programming

Reinforcement Learning
Neuro-Dynamic Programming

28

showed how the value of a given state i is dependent upon a cost or reward for an action

plus the value of the state j arrived at by that action. In terms of the transition function

notation, this same flow of events is expressed as St+1 = SM(St,xt). Here, the future state

St+1 is dependent upon the current state St and the action xt taken at that time. However,

an additional variable that impacts the future state-space and what was before expressed

by the values contained in the TPM is the randomness that occurs between successive

states. In order to capture the embedded uncertainty within the system, the variable Wt+1

is added to the transition function which expands this modeling expression to what is

shown in Equation 7. The variable Wt+1 represent the randomness or exogenous

information that occurs in the system at the start of every time period t greater than one.

Equation 7: Transition Function
𝑆𝑡+1 = 𝑆𝑀(𝑆𝑡,𝑥𝑡 ,𝑊𝑡+1)

Another concept that is often used to model the evolving information state of the

system is the post decision state (PDS) variable which is expressed as 𝑆𝑡𝑥. The PDS

captures the state of the system just after an action xt is determined but, before

randomness or exogenous information is introduced into the system. Through the use of

the PDS variable the transition function is now broken into the two different parts

captured by Equation 8 and Equation 9 below. The two equations capture the idea that

the system decision process is moving successively from a pre-decision state into a PDS

and then into a new pre-decision state. The first expression, Equation 8, takes the

29

decision system from the pre-decision state and into the PDS. The second expression,

Equation 9, moves the system form the PDS into the next successive pre-decision state.

Equation 8: PDS Transition Function
𝑆𝑡𝑥 = 𝑆𝑀,𝑥(𝑆𝑡,𝑥𝑡)

Equation 9: Pre-Decision State Transition Function
𝑆𝑡+1 = 𝑆𝑀,𝑊(𝑆𝑡𝑥,𝑊𝑡+1)

 Assuming the possible actions xt are all well defined variables, the selection of

an action and the subsequent movement from a pre-decision state St to a PDS 𝑆𝑡𝑥as

expressed in Equation 8 is a deterministic process. However, the expression in Equation

9 is considered a stochastic process since it represents when the system moves from the

PDS 𝑆𝑡𝑥 into the next pre-decision state St+1 and randomness in the form of Wt+1 is

introduced into the system. Utilizing transition function notation, the sequential decision

making system can be considered as a successive series of back-to-back deterministic and

stochastic events. Figure 4 below captures this idea.

Figure 4: Transition Function Timeline

t-1

xt-1 x
tS 1−1−tS

t

tS xttW x
tS

t+1

1+tS1+tW

determinsitic stochastic determinsitic stochastic

30

2.7 Bellman’s Equation
The transition function syntax provides a compact method for expressing the

objective of the sequential decision making problem. The goal is still to find the best

policy that trades-off both immediate and long term costs to produce the minimum

overall expense across the problem horizon. This idea is captured by the objective

function expression in the following Equation 10. The variable C(St, xt) is the cost

incurred for taking action xt while in state St. The 𝛾𝑡 term is a discount factor for each

time period t.

Equation 10: DP Objective Function Formulation
𝑀𝑖𝑛𝜋𝜖Π ∑ 𝛾𝑡𝐶(𝑆𝑡, 𝑥𝑡)𝑇

𝑡=0

The objective as expressed by Equation 10 is to find the policy 𝜋 ∈ Π , such that

the cost for taking all actions xt across time period T is minimal. The nature of the

problem can be further reduced to evaluate only the necessary requirements to select the

optimal action xt at any state in the system vice all states simultaneously. At any given

state t in the sequential decision making process the optimal action for that state 𝑥𝑡∗(𝑆𝑡)

will satisfy Equation 11. In this expression, the optimal action to take is dependent upon

an initial immediate or myopic cost Ct(St,xt) plus the value of the next state in the system

𝑉𝑡+1(𝑆𝑡+1). As it relates back to the transition function, the initial costs Ct(St,xt)

represents the deterministic event in the decision process and the future value of the next

state 𝑉𝑡+1(𝑆𝑡+1) captures the stochastic component of the process. The new challenge

that is presented by this formulation is to determine the value of the Vt+1(St+1) expression.

31

Equation 11: Optimal Action (Powell 2007)
𝑥𝑡∗(𝑆𝑡) = arg𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡 (𝐶𝑡(𝑆𝑡,𝑥𝑡)+𝛾𝑉𝑡+1(𝑆𝑡+1))

In most problems there is no readily available value for the Vt+1(St+1) term or a

simple approach for calculating this value for a given time period t. The backward

recursion algorithm presented in Chapter 1 showed a method for calculating state-space

values 𝑉𝑡(𝑆𝑡) for a purely deterministic problem. However, determining this value

becomes far more problematic once probabilistic or stochastic variables are introduced

into the decision logic. Attempting to find this value is an exercise in solving for

Equation 12 which is referred to as the standard form of Bellman’s equation.

Equation 12: Standard Form of Bellman’s Equation
𝑉𝑡(𝑆𝑡) = 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡(𝐶𝑡(𝑆𝑡,𝑥𝑡) + 𝛾 ∑ 𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡,𝑥𝑡)𝑉𝑡+1(𝑠′𝑠′∈𝑆)

Bellman and Dreyfus (1962) put forward that there is an optimal policy that

satisfies the standard form of Bellman’s equation. Furthermore, if one is able to model

the state transitions with a well defined TPM, the value of each state-space Vt(St) can be

calculated explicitly. However, as a result of the curse of modeling most problems do not

have a TPM. As such, Bellman’s equation cannot be solved explicitly and the value

function at each state in the decision space will need to be estimated. This idea of now

having to find an estimated or expectation as a means to calculating the value function is

more eloquently recognized by the expectation form of Bellman’s equation shown below.

32

Equation 13: Expectation Form of Bellman’s Equation
𝑉𝑡(𝑆𝑡) = 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡(𝐶𝑡(𝑆𝑡,𝑥𝑡)+𝛾𝐸{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡})

Equation 13 shows how the current state-space value is directly dependent upon

the estimated expectation of the next state-space in the system. It is the methodologies

and science behind ADP that attempts to tackle the problem of determining an intelligent

approach to estimating this expectation.

2.8 Sampling the Value Function
The ADP algorithm works by collecting observed or sampled values 𝑣� of the

value function Vt(St) through simulating the decision process as it steps forward in time.

For each additional simulation run n, the ADP algorithm collects more and more 𝑣�

observations for a given state-space. Extrapolating from the expectation form of

Bellman’s equation, one could collect a sample value through Equations 14 from Powell

(2007). Both equations are essentially equivalent and are expressing the same idea. The

only difference between the two is the use of the transition function notation for the latter

expression.

Equations 14: Sample Realization of Value Function (Powell 2007)
𝑣�𝑡𝑛 = 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾 ∑ 𝑝𝑡+1(𝜔�)𝜔�∈Ω�𝑡+1 𝑉�𝑡+1𝑛−1(𝑆𝑡+1)
𝑣�𝑡𝑛 = 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾 ∑ 𝑝𝑡+1(𝜔�)𝜔�∈Ω�𝑡+1 𝑉�𝑡+1𝑛−1(𝑆𝑀(𝑆𝑡𝑛, 𝑥𝑡 ,𝑊𝑡+1(𝜔�)))]

During simulation n, a sample realization 𝑣�𝑡𝑛 at time period t is equivalent to the

minimal sum of the immediate cost plus the discounted value of the pre-decision state at

33

time period t+1. The expression 𝑉�𝑡+1𝑛−1(𝑆𝑡+1) is the recognized or estimated value of this

pre-decision state that currently exists after n-1 simulation runs. Using this formulation,

the approach is to randomly generate a set of outcomes Ω�𝑡+1 for the exogenous variable

Wt+1 and assign an associated probability for each outcome 𝜔� . The summations are then

across the probabilities of each 𝜔� 𝜖 Ω�𝑡+1.

2.9 Value Function Update
As the simulation progresses, each value 𝑣�𝑡𝑛 that is collected contributes to

finalizing an expectation of the PDS variable 𝑉� (𝑆𝑥). Various stochastic approximation

techniques can be used to smooth a collection of sampled values to calculate an

expectation for a population. A common approach as suggested by Robbins & Monro

(1951) and interpreted by Gosavi (2003) is to use the expression in Equation 15.

Equation 15: Smoothing Algorithm
𝑉�𝑡𝑛(𝑆𝑡𝑛) = (1 −∝𝑛−1)𝑉�𝑡𝑛−1(𝑆𝑡𝑛) +∝𝑛−1 (𝑣�𝑡𝑛) where ∝𝑛−1= 1

𝑛

Within the literature, the ∝𝑛−1term is referred to as either the step-size, alpha-

decay parameter, or learning rate. There is extensive discussion in the ADP literature as

to what step-size to use. Although, the ultimate step-size choice is often unique to the

decision problem at hand and the particular ADP approach utilized to find a solution.

2.10 Q-Learning on the Pre-Decision State
The initial ADP approach examined in this thesis was a Q-learning algorithm.

Instead of generating estimated values associated with each individual pre-decision state,

the Q-learning algorithm generates values in the form of Q-factors for each augmented

34

state-space and action pairing. Equation 16 and Equation 17 from Gosavi (2003)

describe the basic structure of the Q-learning approach. They present a method for

calculating the estimate of a Q-factor around the pre-decision state variable and then

using the Robbins-Monro methodology to update the expectation. Using this

formulation, the expression Q(i,a) represents the Q-factor value for the augmented state i

and action a pairing. As is consistent with Bellman’s formulation the Q-factor is a

combination of an immediate cost C(i,a,j) incurred from taking action a which moves the

decision system from state i to state j plus the minimum viable Q-factor Q(j,b) value from

the set of all actions 𝑏 𝜖 𝐴(𝑗).

Equation 16: Estimations of Q-Factors

𝑄(𝑖,𝑎) = ∑ 𝑝(𝑖,𝑎, 𝑗)�𝑐(𝑖,𝑎, 𝑗) + 𝜆𝑚𝑖𝑛𝑏𝜖𝐴(𝑗)𝑄(𝑗, 𝑏)�|𝑆|
𝑗=1

 = E[c(i, a, j) + 𝜆𝑚𝑖𝑛𝑏𝜖𝐴(𝑗)𝑄(𝑗, 𝑏)]
= E[SAMPLE]

 Equation 17: Robbins-Monro Q-Learning

 𝑄𝑛+1(𝑖,𝑎) = (1 − 𝛼𝑛+1)𝑄𝑛(𝑖,𝑎) + 𝛼𝑛+1[𝑟(𝑖, 𝑎, 𝑗) + 𝜆𝑚𝑖𝑛𝑏𝜖𝐴(𝑗)𝑄𝑛(𝑗, 𝑏)]

The presumption of Gosavi (2003) is that a simulation process is used to generate

the sample random variables of Equation 16. This explains the expectation that

encompasses the entire right-hand side of the expression. The Robbins-Monro update

then provides the latest evaluation of the Q-factor. For a step size term 𝛼𝑛+1 that is set to

1 (𝑛 + 1)⁄ the Q-factors become the averages of the observed random variables.

The following algorithm taken from Powell (2007) provides the method for

implementing Q-learning around the pre-decision state variable.

35

Algorithm 1 (Pre-Decision State Q-Learning).

Step 0: Initialization

 Step 0a: Initialize the approximation for the value function 𝑄�𝑡0(𝑆𝑡,𝑥𝑡)

 for all 𝑠𝜖𝑆, 𝑥𝜖𝑋,t𝜖𝑇

 Step 0b: Initialize 𝑆01

Step 0c: Set n=1

 Step 1: Choose a sample path 𝜔𝑛

 Step 2: For t = 1, 2, …., T,

Step 2a: Find the decision using the current Q-factors

 𝑥𝑡𝑛 = arg𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛 𝑄�𝑡
𝑛−1(𝑆𝑡𝑛, 𝑥𝑡)

Step 2b: Compute

 𝑞�𝑡+1𝑛 = (𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑉�𝑡+1𝑛−1(𝑆𝑀(𝑆𝑡𝑛, 𝑥𝑡𝑛,𝑊𝑡+1(𝜔𝑛)))

 Step2c: Update 𝑄�𝑡𝑛−1 and 𝑉�𝑡𝑛−1

 𝑄�𝑡𝑛(𝑆𝑡𝑛, 𝑥𝑡𝑛) = (1 −∝𝑛−1)𝑄�𝑡𝑛−1(𝑆𝑡𝑛, 𝑥𝑡𝑛) +∝𝑛−1 (𝑞�𝑡+1𝑛)

 𝑉�𝑡𝑛(𝑆𝑡𝑛) = 𝑚𝑖𝑛𝑥𝑡𝑄�𝑡
𝑛(𝑆𝑡𝑛, 𝑥𝑡𝑛)

 Step 2c: Find the next pre-decision state

𝑆𝑡+1𝑛 = 𝑆𝑀(𝑆𝑡𝑛, 𝑥𝑡𝑛,𝑊𝑡+1(𝜔𝑛))

 Step 3: n = n+1. If n < N, go to Step 1.

Step 4: Return the Q-factors (𝑄�𝑡𝑛)𝑡=1𝑇

36

Credit is given to Watkins (1989) as the first recognized publication of the Q-

learning algorithm. A formal narrative on the proof of convergence for the Q-learning

design is given by Watkins & Dayan (1992). The proof of convergence assumes that

actions are repeatedly sampled in all states where the action-values are discrete.

Tsitsiklis (1994) provides an alternative perspective on the proof of convergence in Q-

learning that parallels asynchronous stochastic approximation methods. In regards to Q-

learning, Gosavi (2005) emphasizes that “an attractive feature of the algorithm is its

stability which is partly due to the fact that the iterates remain bounded.” Furthermore,

Gosavi (2005) provides another alternative Q-learning proof of convergence from

Watkins & Dayan (1992) using mathematical induction.

2.11 Arguments for Using the Post Decision State (PDS)
Powell (2007) argues that a better approach to implementing the algorithmic

design to Bellman’s equation is to use the post decision state (PDS) vice pre-decision

state. Although the approach to finding Q-factors or value function estimates around the

pre-decision state is fundamentally consistent with Bellman’s optimality equation, the

actual implementation of collecting observed 𝑞�𝑡𝑛 or 𝑣�𝑡𝑛 in this manner may be

problematic. The issue is that at time t, the state 𝑆𝑡+1 is a random variable. The

simulation process that generates 𝑊𝑡+1(𝜔𝑛) is stochastic by nature. The selection of 𝜔𝑛

directly impacts which St+1 is in fact the next state. Furthermore, as expressed in

Equations 14 the current estimated value of this next state factors directly on the

calculations for the observed sample 𝑣�𝑡𝑛. However, one does not know which

37

𝑉�𝑡+1𝑛−1(𝑆𝑡+1) value from all possible future 𝑆𝑡+1 states that might occur will serve as the

best estimate for the expectation 𝐸{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡} expressed in Bellman’s formulation.

Given the stochastic complexities involved with estimating this embedded

expectation, Powell (2007) argues the case for building the value update process around

the PDS. His first step is to recognize the critical relationship that exists between the

PDS and pre-decision states which are shown in Equations 18 below. The first and third

equations express an intuitive relationship between the expectation of different state-

spaces and their equivalency to post decision states (PDS) between separate time periods.

The second equation expresses the relationship that exists between the pre-decision state

and PDS within the same time period. It should be highlighted that the relationships

captured in equations 1) and 3) are stochastic and that the expression in 2) is purely

deterministic.

Equations 18: Pre-Decision State and PDS Values (Powell 2007)
1) 𝑉𝑡−1𝑥 (𝑆𝑡−1𝑥) = 𝐸{𝑉𝑡(𝑆𝑡)|𝑆𝑡−1𝑥 }
2) 𝑉𝑡(𝑆𝑡) = 𝑚𝑎𝑥𝑥𝑡𝜖𝑋𝑡�𝐶𝑡(𝑆𝑡,𝑥𝑡) + 𝛾𝑉𝑡𝑥(𝑆𝑡𝑥)�
3) 𝑉𝑡𝑥(𝑆𝑡𝑥) = 𝐸{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡𝑥}

The significance of these equations is recognizing the correlating relationship

between using 𝑣�𝑡𝑛 as a sampling value for 𝑉𝑡𝑛(𝑆𝑡𝑛) and as a measure for the value of the

earlier time period’s PDS value 𝑉𝑡−1𝑛 (𝑆𝑡
𝑥,𝑛). As expressed in 1) from Equations 18 the

expected value of the current pre-decision state value 𝑉𝑡(𝑆𝑡) is equivalent to the PDS of

the earlier time period 𝑉𝑡−1(𝑆𝑡𝑥). As stated by Powell (2007), “while 𝑣�𝑡𝑛 is a sample of

the value of being in state 𝑆𝑡𝑛, it is also a sample of the value of the decision that put us in

38

state 𝑆𝑡−1
𝑥,𝑛 .” Using this philosophy the sampling formulations for 𝑣�𝑡𝑛 presented in

Equations 14 can be adjusted to what is reflected in Equation 19. Again, both equations

are essentially equivalent with the transition function notion being used in the later

equation.

Equation 19: Sample Realization of the Value Function using the PDS Variable
𝑣�𝑡𝑛= 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑉�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛)]
𝑣�𝑡𝑛= 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑉�𝑡𝑛−1�𝑆𝑀,𝑥(𝑆𝑡𝑛, 𝑥𝑡)�]

This approach provides a sampling structure for 𝑣�𝑡𝑛 around the PDS variable. The

realized sample values 𝑣�𝑡𝑛 are now a sum of the initial cost function 𝐶𝑡(𝑆𝑡, 𝑥𝑡) plus the

discounted value of the estimated PDS position after n-1 iterations. The advantage of this

formulation is that the stochastic component has been removed from the equation. The

calculations involved in determining 𝑣�𝑡𝑛 are purely deterministic. However, the

outstanding issue is the mechanics involved for actually determining the best expectation

or estimated value of the PDS position 𝑉�𝑡𝑛−1(𝑆𝑡
𝑥,𝑛).

In response to this dilemma, Powell (2007) modifies the implementation of the

Robbins-Monro algorithm to reflect Equation 20. Unlike Equation 15, Equation 20

centers the smoothing process or value update function on the PDS variable. Using this

formulation, Powell (2007) is taking advantage of the fact that at time t, the previous PDS

𝑆𝑡−1𝑥 is already known and not a random variable. In this manner, emphasizing the PDS

variable has reduced the stochastic complexities of the earlier pre-decision state

approach. The difference between using the pre-decision state and PDS can best be

39

characterized by either using an update process that is looking forward or an update

process that is looking backwards.

Equation 20: Smoothing Algorithm on PDS Variable
𝑉�𝑡−1𝑛 (𝑆𝑡−1

𝑥,𝑛) = (1 −∝𝑛−1)𝑉�𝑡𝑛−1(𝑆𝑡
𝑥,𝑛) +∝𝑛−1 (𝑣�𝑡𝑛)

2.12 Q-Learning on the Post Decision State (PDS)
The initial model built to examine the financial commitment problem was a Q-

learning algorithm that used a PDS value update process. A simulation process generated

and collected Q-factor observations 𝑞�𝑡𝑛 based on Equation 21.

Equation 21: Sample Realization q-Values
𝑞�𝑡𝑛= 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛(𝑄�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛, 𝑥𝑡))]

The sample q� tn values were calculated based on estimated PDS Q-factors

Q�tn(St
x,n, xt) vice the pre-decision state Q-factors Q�tn(Stn, xt). As before, whether using a

pre-decision state or PDS update, the syntax for the Q-factor always includes the action

variable xt. This highlights the special state-action relationship pairing captured by Q-

factors. Another feature of Equation 21 is that the Q-factor used in the calculation of the

sample realization q� tn is the minimum Q-factor associated with that PDS regardless of the

action taken to reach that PDS. This explains the minimization operand embedded within

the overarching minimization problem. It is possible that the xt value that solves the

inner minimization expression is different from the one that solves the outer minimization

40

expression. A second and perhaps clearer expression that explains how 𝑞�𝑡𝑛 are now

collected is to break Equation 21 apart into the two steps shown in Equation 22 and

Equation 23.

Equation 22: Sample Realization q-Values
𝑞�𝑡𝑛= 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑉�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛)]

Equation 23: Estimate of the PDS Value Function
𝑉�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛) = 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝑄�𝑡𝑛−1(𝑆𝑡
𝑥,𝑛, 𝑥𝑡)]

The expression 𝑉�𝑡𝑛−1(𝑆𝑡
𝑥,𝑛) is the current estimate of the value function for PDS

𝑆𝑡𝑥. The estimated value function position is the minimum of the set of current estimated

Q-factors values across all (𝑆𝑡𝑥, 𝑥𝑡) pairings that exists after n-1 iterations. As before, the

individually collected 𝑞�𝑡𝑛 observations serve as a basis for learning or approximating Q-

factor values. The expression in Equation 24 adopts the Robins-Monro update for Q-

learning on the PDS variable.

Equation 24: Q-Factor Learning
𝑄�𝑡−1𝑛 (𝑆𝑡−1

𝑥,𝑛 , 𝑥𝑡) = (1 −∝𝑛−1)𝑄�𝑡𝑛−1(𝑆𝑡
𝑥,𝑛, 𝑥𝑡) +∝𝑛−1 (𝑞�𝑡𝑛)

The algorithm presented on the following page outlines the structure that was

used to build the PDS Q-learning model.

41

Algorithm 2 (Post Decision State (PDS) Q-Learning). Step 0: Initialization

 Step 0a: Initialize the approximation for the value function 𝑄�𝑡0(𝑆𝑡,𝑥𝑡)

 for all 𝑠𝜖𝑆, 𝑥𝜖𝑋

 Step 0b: Initialize 𝑆01, Set n=1

 Step 1: Choose a sample path 𝜔𝑛

 Step 2a: For t = 1, 2, …., T, Solve

 𝑞�𝑡𝑛= 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛(𝐶𝑡(𝑆𝑡𝑛,𝑥𝑡) + 𝛾𝑉�𝑡𝑛−1(𝑆𝑡−1
𝑥,𝑛))

 where 𝑉�𝑡𝑛−1(𝑆𝑡
𝑥,𝑛) = 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝑄�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛, 𝑥𝑡)]

let xn be the value of x that solves the minimization problem

 Step2b: For t >1, update 𝑄�𝑡−1𝑛 and 𝑉�𝑡−1𝑛

 𝑄�𝑡−1𝑛 (𝑆𝑡−1
𝑥,𝑛 , 𝑥𝑡) = (1 −∝𝑛−1)𝑄�𝑡−1𝑛−1(𝑆𝑡−1

𝑥,𝑛 , 𝑥𝑡−1) +∝𝑛−1 (𝑞�𝑡𝑛)

 𝑉�𝑡−1𝑛−1(𝑆𝑡−1
𝑥,𝑛) = 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝑄�𝑡−1𝑛−1(𝑆𝑡−1

𝑥,𝑛 , 𝑥𝑡−1)]

 Step 2c: Find the next pre-decision state

𝑆𝑡+1𝑛 = 𝑆𝑀,𝑊(𝑆𝑡
𝑥,𝑛,𝑊𝑡+1(𝜔𝑛))

 Step 3: n = n+1. If n < N, go to Step 1.

Step 4: Return the Q-factors 𝑄�(𝑆𝑥, 𝑥) and value function approximations 𝑉�(𝑆𝑥)

2.13 Value Function Learning Algorithm
The Q-learning algorithm presented in the previous section produces both Q-

factor values and estimates on the value function for the PDS variable. The Q-factors are

stored in a 2-dimensional matrix with dimensions |S| . |X|. The horizontal rows of the

matrix each represent a viable PDS 𝑆𝑥and the columns each represent an action

42

possibility x. The advantage of the Q-learning results is that the data provides a visual

graphic pattern indicating which actions were selected or visited during the simulation

that led to arriving at a particular PDS. In this manner, the Q-learning output serves as a

logic test for the algorithm. If an action choice can not possibly lead to a PDS and the Q-

factor value associated with this PDS-action pairing is positive and thus was visited

during the simulation then it is clear that there is a problem with the implementation or

code that is interpreting this algorithmic design.

Although the verification aspect of Q-learning makes it an ideal prototype

approach for an ADP design, it is not practical for large scale sequential decision making

problems. The matrix data requirement that is necessary to maintain Q-factor values

tracking both the state and action pairing creates sizable storage and computational

demands. Once again, as a result of the curse of dimensionality the Q-learning approach

may become intractable for large scale complex problems.

An alternative approach is to compute the estimate of the value function directly

without the use of Q-factors. The following value function learning algorithm adjusts the

Q-learning algorithm in a way that allows for the value function updates to be calculated

directly. The result of this design approach is to produce a single vector with dimension

|S| that provides estimates for each PDS value function. Although this approach relieves

some of the storage and computational demands of the Q-learning algorithm, it

unfortunately provides no indication of exactly which actions were selected as part of

learning or estimating the PDS value functions.

43

Algorithm 3 (Value Function Learning).

Step 0: Initialization

 Step 0a: Initalize 𝑉�0(𝑆𝑥,0), 𝑆0

 Step 0b: Set n=1

 Step 1: Choose a sample path 𝜔𝑛

 Step 2a: For t = 1, 2, …., T

Solve 𝑣�𝑡𝑛= 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛(𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑉�𝑡𝑛−1(𝑆𝑀,𝑥(𝑆𝑡𝑛, 𝑥𝑡))

 And let xn be the value of x that solves the minimization problem

 Step2b: Update the value function for t >1

𝑉�𝑡−1𝑛 (𝑆𝑡−1
𝑥,𝑛) = (1 −∝𝑛−1)𝑉�𝑡−1𝑛−1(𝑆𝑡−1

𝑥,𝑛) +∝𝑛−1 (𝑣�𝑡𝑛)

 Step 2c: Find the next pre-decision state

𝑆𝑡+1𝑛 = 𝑆𝑀,𝑊(𝑆𝑡
𝑥,𝑛,𝑊𝑡+1(𝜔𝑛))

 Step 3: n = n+1. If n < N, go to Step 1.

Step 4: Return the PDS value function approximations 𝑉�𝑥(𝑆𝑥) for each state S

2.14 Q-Learning and Value Function Learning Design Summary
The implementation of these algorithms and the continual smoothing or feedback

process used to obtain convergence of the state values is referred to as learning. Once it

is determined that sufficient learning has occurred and that the estimates of the value

function have converged, these values are then used to solve Bellman’s optimality

equation in what is known as the learnt phase of the model. This learnt phase is what

ultimately produces a recommended optimal solution policy or state-action pairing.

44

 CHAPTER THREE – THE MODEL DESIGN

3.1 Perspectives on Data Structures
The initial modeling design hurdle was determining an input data structure

approach for the ADP. In order to make the model more user-friendly and easily

explainable, it was important that the data inputs mimicked formats already utilized by

the financial community and were easily understood by the involved decision makers. A

quick study of the standard charts, tracking graphics, and outputs currently used as well

as familiarization with the organization’s financial database systems and tools all helped

to define the ADP model’s inputs. Much of the financial information examined tended to

feature a month-to-month snapshot that captured the current status of the common five

execution parameters: programmed amount, commitments, obligations, accruals, and

expenditures. Figure 5 shows three common approaches consistently used to monitor and

display financial tracking and planning data.

$M Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sept
Program 5.000
Commitment 0.500 0.500 0.500 0.500 3.000
Obligation 0.500 0.500 0.500 0.500 3.000
Accruals 0.250 0.250 0.250 0.250 0.500 0.500 1.000 1.000 1.000
Expenditures 0.250 0.250 0.250 0.250 0.500 0.500 1.000 1.000 1.000

A) Incremental Plan

45

Figure 5: Funding Planning Matrices

Each of the three planning pictorials provides a slightly different depiction of the

same spend plan for a five million dollar project, $5.000M. Conducting a closer

evaluation of the anticipated February position reveals nuanced differences emphasized

in each plan. As indicated by the incremental plan A, it is expected that $0.500M is

committed in February. In actuality, since individual commitment increments of

$0.500M are planned each month from November through February, this brings the

predicted month-end February total commitment amount to $2.0M. This total

commitment amount is called out in the cumulative plan B. The audit plan C reveals that

of the total $2.0M committed by February, only $0.500M will be remaining as

unobligated. Similarly, for the $1.5M cumulative obligation amount called out in plan B,

the audit plan C reveals that by February there will be a balance of $0.750M remaining to

be accrued. The imposed naming conventions of incremental, cumulative, and audit

$M Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sept
Program 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Commitment 0.500 1.000 1.500 2.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Obligation 0.500 1.000 1.500 2.000 5.000 5.000 5.000 5.000 5.000 5.000
Accruals 0.250 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000 5.000
Expenditures 0.250 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000

B) Cumulative Plan

$M Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sept
Program 5.000 4.500 4.000 3.500 3.000
Commitment 0.500 0.500 0.500 0.500 3.000
Obligation 0.250 0.500 0.750 1.000 3.500 3.000 2.000 1.000
Accruals 0.250 0.250 0.250 0.250 0.500 0.500 1.000 1.000 1.000
Expenditures 0.250 0.500 0.750 1.000 1.500 2.000 3.000 4.000 5.000

C) Audit Plan

46

attempt to qualify the unique point of view that each of these three planning input

structures provides.

These three approaches used to monitor execution planning each have unique

appeal depending upon the daily concerns that arise due to one’s particular job role. The

incremental plan is ideal for the working level execution analyst who prepares funding

documents and needs data points on a month-to-month basis regarding the incremental

funding amount each document must incorporate. Additionally, this view is helpful for

the working level analyst that wants to compare the predicted accruals and expenditures

against those that are actually billed each month by a contractor. The cumulative plan

has more appeal to those concerned with understanding the larger overarching strategic

situation. For example, program directors and business financial managers often want to

know if their programs and projects are meeting aggregate month-end expenditure goals.

If there is evidence that a project is either over executing or under executing, these

decision makers can take corrective actions in an attempt to better align cash allocations

to actual needs. A critical aspect of this thesis is to compare the commitment decision

policies produced by a myopic stubby pencil approach against that of an ADP model.

The intent is to have the ADP model create good commitment decision policies that

attempt to avoid over-execution or under-execution scenarios. Lastly, the audit plan

provides a snapshot that tends to be preferred by comptrollers and auditors. The audit

plan quickly recognizes unutilized funding balances and highlights those dollars which

could be swept from the program and reallocated to other prioritize across the service or

agency.

47

3.2 Immediate Cost Function and the ADP Network
The simulation aspect of the ADP design reiterates and calculates responses to the

objective function hundreds of thousands of times until a convergence point is reached

forming the ADP action policy vector. Through simulation, the ADP model is attempting

to learn an action policy that can move the decision maker from one good state to another

good state. Qualitatively the objective is to determine an efficient use of cash whereby

the actual allocation of funding matches the true cost needs. The decision maker is

essentially attempting to avoid the negative consequences that result from either over-

committing or under-committing funding. The recommended commitment policy

generated by ADP is a direct result from repeated exposure to Bellman’s optimality

equation and the embedded model’s immediate or myopic cost function at each stage

within the sequential decision making network.

 The immediate cost function used for this thesis was constructed in an effort to

determine the best commitment action to take at the start of each month that could pay

the cash needs for three months. The model attempts to commit funding in a manner to

ensure expenditure coverage for the current month as well as two more additional months

or for what is required from time period t through the end of time period t+2. In this

case, the decision maker is looking to take an action xt that will minimize the absolute

value between the cumulative commitment position at state St-1 plus any new

commitments or de-commitments from action xt minus the cumulative actual

expenditures at state St+2. In short, at each stage in the simulation the model incurs the

following immediate or myopic cost due to taking action xt:

48

Equation 25: Immediate (Myopic) Cost Function

The rationale for using a three month time period was due to cash flow lag times.

The three month window tends to provide a sufficient lag time to allow for a commitment

action to become obligated on a contract vehicle where it is available for payout against

invoices.

In this simplified form, the immediate cost penalty does not incorporate certain

peculiarities. As stated, there is no preference between an action that causes over funding

and an action that causes under funding. In reality, a decision maker is likely to possess a

bias towards whether he or she wants to risk arriving at an under-commitment state that

momentarily delays payment to a contractor or an over-commitment state that generates

an opportunity cost trapping funds that could otherwise be used towards a different

project. A second nuance of the stated cost function is that it assumes there is no cost

associated with taking the actual commitment action. Given the labor hours involved, a

commitment or de-commitment action does cost time and money. A decision maker may

want to minimize the number of commitment actions taken over a year. As such, the cost

or penalty function could be implemented in a manner where instead of making a

commitment action every month, it is made once every other month or once a quarter.

Nonetheless, the current from of the cost function does serve the immediate purpose of

designing an ADP model that can emulate the DoD financial execution process.

Cumulative
Commitments

from St-1
ABS + xt

Predicted
Cumulative

Expenditures at St+2
-=),(t

n
tt xSC

49

 Due to the construct of the immediate cost function the ADP model design will

need to utilize, update, and maintain the data structures as depicted in the incremental

plan A and cumulative plan B matrices. Since the cost function does not incorporate

unutilized balances, the ADP model design will not require the data from the audit

planning matrix C. Figure 6 shows the ADP model financial execution input data

requirements of a $5.0M twelve month project for the five execution parameters of

programmed, committed, obligated, accrued, and expended.

Figure 6: Initial Planning $5.0M Project

The mechanics of the ADP model are easily represented pictorially by a

sequential decision making network. Figure 7 shows the step-by-step flow of the ADP

algorithm. A single iteration of the model will simulate month-to-month execution

activity for time periods t = 1 through t = T, where T is the total number of months. The

first step is to recognize the execution parameters of the current state-space or pre-

50

decision state St-1 in a given t-1 time period. Next, an action xt-1 is taken based on the

implementation of Bellman’s optimality equation. The action xt-1 then moves the model

into a post decision state (PDS) 𝑆𝑡−1𝑥 . At this point the model enters into the next time

period t where realized exogenous information Wt is incorporated into the system. The

execution parameters are updated based on the revealed exogenous information and a

new current pre-decision state St is defined. Once again, an action xt is taken and moves

the model into an updated PDS 𝑆𝑡𝑥. The model continues to step forward through the

decision network for T months and then repeats itself for a total of N simulation

iterations.

Figure 7: ADP Network Model of Commitment Cash Flow Problem

Wt

Exogenous information
revealed at month end

St-1 =
[5.0 2.0 1.0 0.5 0.5]

xt-1 = C = +2.0
Sx

t-1 =
[5.0 4.0 1.0 0.5 0.5]

t-1 t

Post-Decision
State (PDS)

Exogenous Shock
St =

[5.0 4.0 4.0 2.0 1.0]

xt = C = +1.0

t-1

Month Start Stage

Sx
t =

[5.0 6.0 4.0 2.0 1.0]

t t +1

Month Start Stage Post-Decision
State (PDS)

Wt+1

$6.000$6.0000.0000.000$5.000
C

O
E

P

A

$6.000$6.0000.0000.000$4.000
C

O
E

P

A

$6.000$6.0000.0000.000$3.000
C

O
E

P

A

$6.000$6.0000.0000.000$2.000
C

O
E

P

A

$6.000$6.0000.0000.000$1.000
C

O
E

P

A

$6.000$6.0000.0000.000$0.000
C

O
E

P

A

$6.000$6.0000.0000.000$5.000

$6.000$6.0000.0000.000$4.000

$6.000$6.0000.0000.000$3.000

$6.000$6.0000.0000.000$2.000

$6.000$6.0000.0000.000$1.000

$6.000$6.0000.0000.000$0.000

$6.000$6.0000.0000.000$5.000

$6.000$6.0000.0000.000$4.000

$6.000$6.0000.0000.000$3.000

$6.000$6.0000.0000.000$2.000

$6.000$6.0000.0000.000$1.000

$6.000$6.0000.0000.000$0.000

$6.000$6.0000.0000.000$5.000

$6.000$6.0000.0000.000$4.000

$6.000$6.0000.0000.000$3.000

$6.000$6.0000.0000.000$2.000

$6.000$6.0000.0000.000$1.000

$6.000$6.0000.0000.000$0.000

Programming Cuts
Programming Adds

Obligations
Accruals

Expenditures

51

Figure 7 also shows how the values of the $5M project’s state-space problem

vector changes as the ADP model moves through the decision network. The state-space

vector is defined by the current values of programmed amount, commitments,

obligations, accruals, and expenditures [P C O A E]. In the initial pre-decision state, the

values of these state-space execution parameters are shown as St-1 = [5.0 2.0 1.0 0.5 0.5].

During month t-1, an action is taken to commit an additional xt-1 = $2.0M dollars. The

state-space vector is then updated to reflect the $2.0M action as shown in the PDS 𝑆𝑡𝑥 =

[5.0 4.0 1.0 0.5 0.5]. In the next successive time period t, exogenous information reveals

that during the prior month $3.0M was obligated, $1.5M was accrued, and $0.5M was

expended. This realized information is incorporated into the new pre-decision state-space

vector which now takes on values of St = [5.0 4.0 4.0 2.0 1.0]. Lastly, during time

period t the action taken is to commit an additional xt = $1.0M. As such, the new PDS

vector is updated accordingly to 𝑆𝑡𝑥 = [5.0 4.0 1.0 0.5 0.5]. This action selection and

state-space vector update process will repeat itself hundreds of thousands of times during

the ADP model’s simulation process.

3.3 Subroutines of the ADP Model
The ADP model uses four Matlab subroutines to simulate the process of moving

from one pre-decision state to the next. These four subroutines are best described as 1)

selecting a commitment action, 2) updating the Q-factors or value function estimate, 3)

incorporating the exogenous information, and 4) updating the incremental planning

matrix A and cumulative planning matrix B data. These subroutines are the basis of the

ADP approach and are designed to incorporate the flow of the sequential decision making

52

network, the application of Bellman’s optimality equation, and the behavior of a DoD

financial execution process.

The first subroutine selects a commitment action. At the start of each month, the

set of all viable commitment actions is initially restricted by two factors. First, a

commitment action is not allowed if it results in a total commitment level that is beyond

the project’s current programmed amount. Second, all commitment action possibilities

are in multiples of a project’s assigned allocation parameter. Figure 8 shows the model

making a commitment action at the start of January or time period t = 4.

Figure 8: Matrix A & B Commitment Action Selection

The months October through December represent the simulated historical or

actual data. The months from January forward represent the latest predicted values of the

system. At this point, the total programmed funding level is $5.000M and the month-end

P C O A E P C O A E
t = 1 Oct 5.000 Oct 5.000
t = 2 Nov 0.250 Nov 5.000 0.250
t = 3 Dec 0.250 0.500 0.250 Dec 5.000 0.500 0.500 0.250
t = 4 Jan 0.250 0.250 0.250 0.250 Jan 5.000 0.750 0.750 0.500 0.250
t = 5 Feb 0.250 0.250 0.250 Feb 5.000 1.000 0.750 0.750 0.500
t = 6 Mar 0.500 0.500 0.250 0.250 Mar 5.000 1.500 1.250 1.000 0.750
t = 7 Apr 0.500 0.500 0.250 Apr 5.000 2.000 1.250 1.500 1.000
t = 8 May 1.000 1.000 0.500 0.500 May 5.000 3.000 2.250 2.000 1.500
t = 9 Jun 1.000 1.500 1.000 0.500 Jun 5.000 4.000 3.750 3.000 2.000
t = 10 Jul 1.000 1.250 1.000 1.000 Jul 5.000 5.000 5.000 4.000 3.000
t = 11 Aug 1.000 1.000 Aug 5.000 5.000 5.000 5.000 4.000
t = 12 Sept 1.000 Sept 5.000 5.000 5.000 5.000 5.000

Incremental Planning Matrix A Cumulative Planning Matrix B

B(3,2) = cumulative
commitments at St-1

B(6,5) = planned cumulative
expenditures at St+2

A(4,2) = planned
commitment action at St

53

December t-1 commitment total is $0.500M. Also at this point, there are no realized

expenditures. This means that the set of all possible actions xt ranges from a de-

commitment of $0.500M to a positive commitment of at most $4.500M. Given an

allocation parameter of $0.250M for the $5.000M project, the set of all viable

commitment actions is as follows:

After the subroutine makes an action determination, the planned incremental A

commitment amount highlighted in Figure 8 is updated accordingly. This simulated

actual commitment action may or may not be the same as the planned amount and is

highly dependent upon the decision system’s current value function estimate.

The Q-factor or value function update section integrates the use of Bellman’s

optimality equation and serves as the critical aspect of the ADP design. Depending upon

the approach, realized 𝑞� or 𝑣� observations are calculated from the minimum commitment

action resulting from the Equation 26 and Equation 27 expressions.

Equation 26: Sample Realization q-Values
𝑞�𝑡𝑛= 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝑄�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛, 𝑥𝑡)]

54

Equation 27: Sample Realization v-Values
𝑣�𝑡𝑛= 𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑉�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛)]

The expression 𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) represents the immediate or myopic cost from

committing xt dollars. As mentioned earlier, this cost is the absolute value between the

resulting cumulative commitment position by taking action xt and the predicted

expenditure position at state St+2. These values are highlighted in the cumulative

planning matrix B shown in Figure 8. In this example, the action xt that minimizes the

expression 𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) is xt = $0.250M. Here, the immediate cost from taking a

commitment action of $0.250M is 𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) = | $0.500M + $0.250M - $0.750M | = 0.

However, this commitment action may or may not be the same action that minimizes the

objective function expressions for Q-learning and value function learning. These realized

sample 𝑞� and 𝑣� values are calculated as the minimum of the sum of this immediate cost

𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) plus the current value function estimate associated with the PDS arrived at

after taking action xt. Sections 3.6 and 3.7 discus in depth the different ADP approaches

of Q-learning and value function learning as applied to the financial execution

commitment problem. These sections will elaborate on the specific details for how the

Q-factors and value function estimates are ‘learnt’ and actually updated as the simulation

model progresses.

The subroutine that generates exogenous information serves as a mechanism to

incorporate randomness and uncertainty into the model. Once the ADP algorithm selects

a commitment action xt, the incremental commitment parameter in matrix A and the

cumulative commitment parameter in matrix B are updated accordingly. However, it is

55

not until the start of the following month or stage that exogenous information is realized

regarding what occurred to the other execution parameters. At the start of each month, an

update process reveals what happened to the programmed amount, obligations, accruals,

and expenditures during the prior month.

In the ADP model, rules were developed to generate random data dictating the

possible ranges of values for each parameter. A unique set of rules was designed for the

initial $5.0M twelve-month scenario. At each stage or month in the simulation the

programmed amount had a 2% chance of receiving a plus-up equal to $0.250M and a 5%

chance it would incur a cut of $0.500M. If there was no plus-up or reduction the

programmed amount would remain the same. The model assigned a 20% chance that the

obligation associated with a commitment action would be delayed into the next month. A

rule was created that only allowed obligations to be delayed for at most two months.

A plus-minus factor was created to generate variability around the planned

accruals and expenditure figures. The plus-minus factor sets upper and lower bounds on

the month-to-month simulated accruals and expenditures. Given a plus-minus factor of

$0.500M, if the predicted accrual amount for the month was $1.000M then the range for

the simulated accrual would be from a low of $0.500M to a high of $1.500M.

Figure 9 shows how realized exogenous information impacts the status of the

incremental matrix A and cumulative matrix B data. Here, the program amount was cut

by $0.500M, the anticipated obligation of $0.250M was delayed, and the accrual and

expenditure positions came in at $0.500M vice the anticipated $0.250M. During

56

successive model runs, the exogenous subroutine’s rules were adjusted and tested as part

of conducting various modeling sensitivity analysis and data drills.

Figure 9: Matrix A & B Exogenous Updates

At the start of the new time period t+1 and before a new action decision is made,

the incremental planning matrix A and B data is updated. The results of the commitment

action and the exogenous information subroutines have a cascading impact on the

prediction of future time period’s financial execution. This impact needs to be properly

captured so that the next commitment action determination is based on the best available

prediction of the future state-space positions of the system.

Figure 10 shows changes made to the matrix A and B planning data due to the

results produced by the prior subroutines. The reduction of $0.500M, resulted in a new

57

predicted cumulative planning amount of only $4.500M for the months of February

through September. Also, given that the January accruals and expenditures were higher

than anticipated, the future year planning for accruals and expenditures now exhibits an

accelerated spending trend. The updated accrual and expenditure planning is governed

by the assumption that accelerated spending will continue but, eventually slow to fit

within the constraints of the new programmed amount.

Figure 10: Matrix A & B Planning Updates

The matrix A and B update subroutine adjusts accruals and expenditures based on

how the previous time period’s actuals compare to expectations. If the actual was larger

than the expectation, accrual and expenditure predictions are pulled forward in

anticipation that the trend will continue. In a similar manner, if the actual was less than

P C O A E P C O A E
t = 1 Oct 5.000 Oct 5.000
t = 2 Nov 0.250 Nov 5.000 0.250
t = 3 Dec 0.500 0.500 0.250 Dec 5.000 0.750 0.500 0.250
t = 4 Jan (0.500) 0.500 0.500 0.500 Jan 4.500 1.250 0.500 0.750 0.500
t = 5 Feb 0.500 0.500 0.500 0.500 Feb 4.500 1.750 1.000 1.250 1.000
t = 6 Mar 0.250 0.250 0.500 Mar 4.500 2.000 1.000 1.500 1.500
t = 7 Apr 0.250 0.750 0.250 0.250 Apr 4.500 2.250 1.750 1.750 1.750
t = 8 May 0.500 0.750 0.500 0.250 May 4.500 2.750 2.500 2.250 2.000
t = 9 Jun 0.750 1.000 0.500 0.250 Jun 4.500 3.500 3.500 2.750 2.250
t = 10 Jul 1.000 1.000 0.750 0.500 Jul 4.500 4.500 4.500 3.500 2.750
t = 11 Aug 1.000 0.750 Aug 4.500 4.500 4.500 4.500 3.500
t = 12 Sept 1.000 Sept 4.500 4.500 4.500 4.500 4.500

Incremental Planning Matrix A Cumulative Planning Matrix B

Update Matrix A & B Planning Information

58

the expectation, accruals and expenditure predictions are pushed into future time periods.

In both cases, the assumption is that the full programmed amount is eventually exhausted

and as such the updated cumulative amount will at some point always reach the

programmed amount. The matrix A and B update subroutine ensures that the ADP

algorithm design of the model is consistent with a Markov process in that the next

decision is only based on the current state of the system and not the earlier prior states.

3.4 Complexities Due to Adding Multiple Projects
A number of complex issues arose once the ADP modeling process was expanded

from modeling a single project scenario to modeling multiple projects simultaneously.

As a result of adding projects, the size of the state-space, outcome space, and action space

grew exponentially. This is consistent with the well know curse of dimensionality. In an

effort to reduce the memory and run-time requirements of the model the state-space

definition was limited to only those critical attributes absolutely necessary for

determining a commitment action. Given that the cost of taking an action was defined as

a function of just commitments and expenditures, it was no longer helpful to continue to

track either the obligation or accrual status of a project. Additionally, the state-space

definition was further constrained by removing the programmed plus-ups and reductions

variability from the exogenous subroutine. This had the effect of fixing a project’s

funding amount at a static level throughout the decision making process. Once the

project’s programmed amount was defined as a static variable, it was no longer necessary

to include it as part of the state-space vector. Therefore, the state-space definition of a

project was simplified to just commitments and expenditures [C E].

59

These adjustments significantly reduced the size of the state-space and respective

outcome space vectors. Prior to any adjustments a $5.0M project with an allocation

parameter of $0.250M had 3,200,000 state-space and outcome space possibilities.

Additionally, if at any time throughout the simulation process the $5.0M project received

a programming plus-up the number of state-space and outcome space possibilities would

grow considerably. After restricting the state-space definition to just commitments and

expenditures, the number of state-space and outcome space possibilities for the $5.0M

project dropped to only 400.

In this form, the model was now structured around examining the behavior

between a single system predictive parameter and an associated action parameter. Here,

the expenditure level serves as the predictive measure and the commitment choice serves

as the action parameter for the system. In order to incorporate the multiple projects, the

incremental and cumulative planning information is now loaded as an array. Figure 11

shows the updated multiple project state-space array input structure required to run the

model.

In order to further improve run-time and memory requirements, additional

adjustments were made to the viable action space possibilities. The range of all actions

during each time period t was limited to reflect a more realistic commitment decision

policy. If the current total expenditure amount was above the current total commitment

amount, the commitment action must at a minimum bring the total commitment amount

up to a level that is equal to the current total expenditure amount. Similarly, a de-

commitment action was not allowed if it dropped the total commitment level below the

60

current total expenditure amount. These limitations not only reduced the size of the

action state but, had the added affect of further reducing the size of the outcome space.

Under these circumstances, the model could never arrive at a PDS in which expenditures

were larger than commitments. In the case of the $5.0M project, the outcome space

possibilities were further reduced from 400 to 231.

Figure 11: Updated Matrix A & B Planning Data for Multiple Projects

The inclusion of multiple projects into the ADP also added new challenges to the

design of the commitment action subroutine. At each time period t, it was now not only

necessary to select a commitment action for the aggregate system, it was also necessary

to understand how that commitment action was allocated across each project. As such,

the commitment action subroutine was modified to include a number of features that are

best described with an example. Consider a three-project scenario in which the

61

individual budgetary programmed amounts and allocation parameters are as shown in

Table 4.

Table 4: Multiple Projects Allocation Parameter

Once multiple projects are incorporated, the model needs to calculate a

programmed amount and allocation parameter for the decision system as a whole. The

programmed amount for the system is merely the sum of the individual project’s

programmed amounts and in this case is equal to $8.500M. The allocation parameter for

the system is the greatest common denominator (GCD) among the set of individual

project’s allocation parameters. Since the model design restricts the individual allocation

parameters for each project to the following set [$5.0M $2.0M $1.0M $0.500M

$0.250M $0.100M], the system allocation parameter is necessarily restricted to the same

set with the addition of a $0.050M allocation parameter possibility [$5.0M $2.0M

$1.0M $0.500M $0.250M $0.100M $0.050M]. In the above example, the system

allocation parameter for the three given project’s is in fact $0.050M, the GCD for the

three projects.

As the model moves through successive stages, the incremental planning matrix A

and cumulative planning matrix B information is continually maintained and updated for

all three projects as well as for the total system. For the provided example, Figure 12

Programmed
Amount

Allocation
Parameter

Project 1 $5.000M $0.500M
Project 2 $2.000M $0.250M
Project 3 $1.500M $0.100M

62

shows the ADP reaching time period t = 7, the start of April. The figure shows the

current status of the cumulative planning B data for each of the three projects at this

point. The information above the dashed line represents actual commitment and

expenditures produced by the ADP while the information below the dashed line

represents the planning or predictive commitment and expenditure position for the

remaining time periods.

Figure 12: Multiple Projects Matrix B Data

The current aggregate commitment and expenditure state-space vector for the

system as a whole is [$5.750M $4.000M]. This is the sum of the individual project’s

state-space vectors shown at time period t = 6. Given a total programmed amount of

$8.500M, this means that the range of commitment possibilities for the system is from a

de-commitment action of $1.750M to a total positive commitment action of $2.750M.

Since the system allocation parameter is $0.050M, the set of all viable system

commitment actions includes all the amounts between negative $1.750M and positive

$2.750M that are evenly divisible by $0.050M. This means that at time period t = 7 there

C E C E C E
t = 1 Oct 0.500 0.000 0.750 0.250 0.200 0.000
t = 2 Nov 1.000 0.000 1.000 0.500 0.300 0.100
t = 3 Dec 1.500 0.500 1.250 0.750 0.400 0.200
t = 4 Jan 2.000 1.000 1.500 1.000 0.500 0.300
t = 5 Feb 3.000 1.500 1.500 1.250 0.500 0.400
t = 6 Mar 3.500 2.000 1.750 1.500 0.500 0.500
t = 7 Apr 4.000 3.000 2.000 1.750 1.200 0.800
t = 8 May 4.500 3.500 2.000 2.000 1.300 1.000
t = 9 Jun 5.000 4.000 2.000 2.000 1.400 1.200
t = 10 Jul 5.000 4.500 2.000 2.000 1.500 1.300
t = 11 Aug 5.000 5.000 2.000 2.000 1.500 1.400
t = 12 Sep 5.000 5.000 2.000 2.000 1.500 1.500

63

are 91 possible commitment options. However, what still remains unknown is how any

of the viable 91 system commitment actions is allocated across each of the three projects.

At this point, it was necessary to create an internal decision algorithm that

indicated how all 91 commitment options are allocated across the three projects. The

choice was to design a demand rules algorithm that systematically apportioned each of

the system commitment choices to the projects with the greatest demand or immediate

need for funding. However, any funding allotment scheme still needed to fit the

allocation parameters of the individual projects. A possible system commitment action

was removed from consideration if it could not be evenly distributed within the allocation

parameters of the individual projects while at the same time satisfying the priority order

of meeting projects with the highest immediate demand first.

The logic here is twofold. First, at any time period t, a decision maker would not

deliberately choose a commitment action that left an undistributed balance. Second, there

always exists a viable allocation option that evenly distributes across the individual

projects in priority order which will take precedent over any other evenly distributed

allocation option that does not distribute according to a priority order. In this manner,

common sense criterion was incorporated as part of determining which commitment

action to ultimately pick.

The demand rules algorithm separately evaluated each of the 91 commitment

options and either produced an allocation profile for that option or eliminated it from

consideration. For example, given a possible commitment action of $1.900M, the

demand rules algorithm assessed each project’s month-to-month expenditure demand in

64

order to ultimately produce an apportionment plan. Using Figure 12, it is determined that

at t = 7 project three has the greatest immediate forecasted expenditure demand. At this

point, the current month’s expenditures are forecasted to be $0.800M and the actual

commitment level at this point is only $0.500M. Project three’s immediate one month

need for funding is $0.300M which is higher than the immediate one month demand for

either project one and project two. As such, the demand rules algorithm allocates

$0.300M of the $1.900M to project three, leaving a balance of $1.600M remaining to be

allocated.

For the next month t = 8, there is a zero sum predicted demand for project one

funding given the current project one commitment level, a predicted demand of $0.250M

for project two, and an additional predicted demand of $0.200M for project three.

Meeting the forecasted demand requirements for project two and three means that project

two receives $0.250M of the remaining balance and project three receives an additional

$0.200M of the balance, bringing the total allocation of funding for project three to

$0.500M. The updated remaining allocation balance drops from $1.600M to $1.150M.

At t = 9, the forecasted expenditure demand for project one is $0.500M, for

project two it is zero, and for project three it is $0.200M. Making these additional

allocations means that to date project one receives $0.500M, project two $0.250M, and

project three $0.700M. The updated remaining balance allocation has now dropped even

further from $1.150M to $0.450M.

At this point when the demand rules algorithm is evaluating funding requirements

beyond a month t+2 time period, it starts to compare the aggregate funding needs for all

65

the remaining time periods in the model vice for each successive month. In this example,

for t = 10 and beyond the remaining demand for project one is $0.500M, for project two

it is zero, and for project three it is $0.300M. Since there is insufficient funding

remaining to meet neither the demand nor the minimum allocation parameter for project

one, the demand rules algorithm defaults to allocating an additional $0.300M to project

three. This brings the total allocation for project three up to $1.0M and further reduces

the remaining allocation balance to just $0.150M.

Now, the only remaining forecasted project demand is $0.500M for project one.

However, since the project one allocation parameter is also $0.500M, the remaining

$0.150M balance cannot be evenly allocated. As such, the demand rules algorithm now

eliminates the original $1.900M as a viable choice and moves in increments of $0.050M

to the next viable commitment action of $1.950M.

Repeating the same the process but, this time with $1.950M produces an even

allocation of $1.00M, $0.250, and $0.700M across the three projects respectively. Table

5 shows the results of the demand rules algorithm given the commitment options existing

at time period t = 7. Of the original 91 commitment possibilities, 63 were eliminated

leaving 28 options that fit evenly with the individual allocation parameters while meeting

immediate demand in priority order. Table 5 provides the final individual commitment

allocations across the three projects for each of the 28 acceptable system level

commitment actions.

66

Table 5: Example Viable Commitment Allocations for Multiple Projects

The next step after the demand rules algorithm determines the final allocation

allotments is for the ADP to calculate a respective system level immediate or myopic cost

𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) for each of the 28 commitment actions. The overall myopic system cost is the

sum of the individual project myopic costs given the separate allocation allotments. The

individual project’s 𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) costs remains as the absolute value difference between the

current aggregate commitment level as a result of the action taken minus the next three

month anticipated expenditure requirement. Table 5 also shows these respective

Comm. Total Proj. One Proj. Two Proj. Three Proj. One Proj. Two Proj. Three Total
Action # Comm. Comm. Comm. Comm. Myopic Cost Myopic Cost Myopic Cost Myopic Cos

1 (1.750) (1.500) (0.250) 0.000 2.000 0.500 0.700 3.200
2 (1.500) (1.500) 0.000 0.000 2.000 0.250 0.700 2.950
3 (1.000) (1.000) 0.000 0.000 1.500 0.250 0.700 2.450
4 (0.500) (0.500) 0.000 0.000 1.000 0.250 0.700 1.950
5 0.000 0.000 0.000 0.000 0.500 0.250 0.700 1.450
6 0.100 0.000 0.000 0.100 0.500 0.250 0.600 1.350
7 0.200 0.000 0.000 0.200 0.500 0.250 0.500 1.250
8 0.250 0.000 0.250 0.000 0.500 0.000 0.700 1.200
9 0.350 0.000 0.250 0.100 0.500 0.000 0.600 1.100
10 0.450 0.000 0.250 0.200 0.500 0.000 0.500 1.000
11 0.550 0.000 0.250 0.300 0.500 0.000 0.400 0.900
12 0.650 0.000 0.250 0.400 0.500 0.000 0.300 0.800
13 0.750 0.000 0.250 0.500 0.500 0.000 0.200 0.700
14 0.850 0.000 0.250 0.600 0.500 0.000 0.100 0.600
15 0.950 0.000 0.250 0.700 0.500 0.000 0.000 0.500
16 1.250 0.500 0.250 0.500 0.000 0.000 0.200 0.200
17 1.350 0.500 0.250 0.600 0.000 0.000 0.100 0.100
18 1.450 0.500 0.250 0.700 0.000 0.000 0.000 0.000
19 1.550 0.500 0.250 0.800 0.000 0.000 0.100 0.100
20 1.650 0.500 0.250 0.900 0.000 0.000 0.200 0.200
21 1.750 0.500 0.250 1.000 0.000 0.000 0.300 0.300
22 1.950 1.000 0.250 0.700 0.500 0.000 0.000 0.500
23 2.050 1.000 0.250 0.800 0.500 0.000 0.100 0.600
24 2.150 1.000 0.250 0.900 0.500 0.000 0.200 0.700
25 2.250 1.000 0.250 1.000 0.500 0.000 0.300 0.800
26 2.550 1.500 0.250 0.800 1.000 0.000 0.100 1.100
27 2.650 1.500 0.250 0.900 1.000 0.000 0.200 1.200
28 2.750 1.500 0.250 1.000 1.000 0.000 0.300 1.300

Individual Project
Commitment Actions

Individual Project
Immediate Costs),(t

n
tt xSCCommitment

Action xt

67

individual myopic costs attributed to the individual projects. The last column sums the

individual project’s myopic costs and provides the total myopic cost for the 28

commitment possibilities.

3.5 Q-Learning and Value Function Learning Designs
The initial ADP model used a Q-learning design. Through the use of simulation,

the Q-modeling approach continually refines and smoothes Q-factors until they have

reached a point of reasonable convergence. The Q-learning algorithm maintains and

updates the Q-factors for all commitment action and PDS pairings in a Q-matrix. Figure

13 diagrams the simulation of the sequential decision process and steps involved in

updating the Q-matrix and calculating the Q-factor information.

Figure 13: Q-Learning Diagram

Q-Learning Representation:

Pre-DS

0.0
0.5
1.0
1.5
2.0

(0,0)

PDS

St-1

Xt-1

(0.0 , 0.0)
(0.5 , 0.0
(1.0 , 0.0)
(1.5 , 0.0)
(2.0 , 0.0)

x
tS 1−

Wt

(0.0 , a)
(0.5 , b)
(1.0 , c)
(1.5 , d)
(2.0 , e)

St

Pre-DS
(2.0)
(1.5)
(1.0)
(0.5)
0.0
0.5
1.0
1.5
2.0

Xt

PDS

(0.0 ,a)
(0.5 , b)
(1.0 , c)
(1.5 , d)
(2.0 , e)

x
tS

Wt+1

(0.0 , a)
(0.5 , b)
(1.0 , c)
(1.5 , d)
(2.0 , e)

St+1

Pre-DS
(2.0)
(1.5)
(1.0)
(0.5)
0.0
0.5
1.0
1.5
2.0

Xt+1

PDS

(0.0 ,a)
(0.5 , b)
(1.0 , c)
(1.5 , d)
(2.0 , e)

x
tS 1+

Wt+2

Actions:
State -
Space x1 x2

… xt+1
… xt

… xm

[(c,e)]

[(c,e)]

[(c,e)]

[(c,e)]

[(c,e)]

[(c,e)]

[(c,e)]

[(c,e)]

[(c,e)]

)],(),([(ˆ 11

1

1111111
11

++

−

+
∈

++++∈++
++

+= t
n
t

n

t
Xx

t
n
tt

n
tt

n
t xSQMinxSCXxq

n
tt

γ
abs |PDS(c,e) - 3 months|),(tt xSQMin

n
tnt

nx
t

n

tnt
nx

t
n

t qxSQxSQ 11
,1

1
, ˆ),()1(),(+−

−

− +−= αα

update and smooth the PDS
value function approximation

68

The matrix is populated through an iterative process of observing a realized

𝑞� value for a given state and using it to smooth the previous time periods PDS Q-factor.

As depicted in Figure 13, an important aspect of the ADP design is that the value update

process only requires data from the current stage and the previous stage of the sequential

decision making problem. Since information from any prior stages is not needed, the

ADP approach shares some commonality with the memoryless property used in a Markov

decision system. All Q-factors are initialized at zero to start the algorithm. A sample

𝑞�𝑡+1 value is taken by combining the myopic cost of taking an action xt+1 plus the

discounted value function estimate associated with the PDS arrived at from taking that

action. The estimated value function is the minimum of the set of Q-factors associated

with the PDS at time t+1. Once a 𝑞�𝑡+1 is obtained, it is then used to smooth the stored Q-

factors associated with the previous time period t. An alpha-decay parameter ∝𝑛−1 is

used to smooth the Q-factor.

The ultimate Q-matrix result is a data set similar to the one depicted in Figure 14.

The top row of the Q-matrix represents the commitment action choice used to reach the

PDS commitment and expenditure position listed in the first two columns on the left.

The data pattern assures us that the simulation model is in fact visiting the anticipated

action and PDS pairings. A concern however is that the complexities of Q-factor

calculations and storage requirements for the Q-matrix make Q-learning an inefficient

approach for large scale problems.

69

Figure 14: Example Q-Matrix

Value function learning is an extension of the Q-learning approach which

alleviates the need to store and maintain the Q-matrix. Instead of producing a matrix of

Q-factors, the value function learning approach stores and maintains a vector of PDS

value function estimates. Each value is only associated with a particular PDS position

vice a given PDS and action pairing. The algorithm does remain consistent with the Q-

Comm Exp (5.0) (4.5) (4.0) (3.5) (3.0) (2.5) (2.0) (1.5) (1.0) (0.5) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0 0 4.593105 3.240517 3.942909 2.506222 2.713528 2.8977 4.342192 3.155769 2.039053 1.238259 4.399158 0 0 0 0 0 0 0 0 0 0

0.5 0 0 4.182829 1.820157 4.442513 2.603491 1.876836 2.584721 3.301983 2.200308 0.316237 3.121326 0.256951 0 0 0 0 0 0 0 0 0
0.5 0.5 0 2.978315 2.19727 2.535189 1.667643 2.360228 1.903759 2.404394 2.90757 4.813437 1.407338 2.783722 0 0 0 0 0 0 0 0 0
1 0 0 0 2.446311 3.014853 1.720142 3.218167 3.87171 4.355842 3.404336 0.235118 2.769361 0.522621 1.420244 0 0 0 0 0 0 0 0
1 0.5 0 0 1.746253 2.231379 4.760294 2.149056 3.146523 2.44335 1.897579 2.022749 0.662734 2.109432 2.264098 0 0 0 0 0 0 0 0
1 1 0 0 1.263345 3.454174 2.079029 1.840341 1.588968 3.092034 2.992489 2.265497 2.444747 1.879282 2.800189 0 0 0 0 0 0 0 0

1.5 0 0 0 0 1.620696 2.055022 4.351505 2.022041 2.411808 2.532145 3.135927 2.239712 0.660561 2.799926 1.726016 0 0 0 0 0 0 0
1.5 0.5 0 0 0 4.314988 1.663595 1.682072 2.363636 1.569646 1.992463 1.826735 0.355203 1.853347 0.830416 2.059368 0 0 0 0 0 0 0
1.5 1 0 0 0 1.492676 1.368906 2.319119 1.669449 3.498979 1.876675 0.972091 1.470205 2.032333 1.870047 2.128677 0 0 0 0 0 0 0
1.5 1.5 0 0 0 2.116797 1.630707 1.308034 1.334396 3.208789 0.467402 2.443047 1.217063 2.504269 3.272062 0.965751 0 0 0 0 0 0 0
2 0 0 0 0 0 2.285307 2.338855 3.35987 4.615637 3.258509 2.994544 3.635513 1.407253 0.317822 3.976046 3.059694 0 0 0 0 0 0
2 0.5 0 0 0 0 2.320516 1.778747 1.80124 1.284532 1.38232 0.34586 0.260081 2.673415 0.02597 0.027527 1.06126 0 0 0 0 0 0
2 1 0 0 0 0 1.343074 2.162401 2.946712 2.586787 1.576827 2.800488 2.608973 0.317857 3.497271 1.518783 2.934368 0 0 0 0 0 0
2 1.5 0 0 0 0 1.331283 1.200556 1.450437 2.303498 2.066899 1.782557 0.547623 3.179604 1.394261 2.071729 1.492124 0 0 0 0 0 0
2 2 0 0 0 0 1.818528 1.049782 1.10884 1.945241 0.544543 0.716931 0.850127 2.117909 1.849248 0.741475 0 0 0 0 0 0 0

2.5 0 0 0 0 0 0 2.920025 3.07924 2.728074 4.397483 3.35777 2.153177 1.795837 3.181114 2.628892 3.102666 2.240804 0 0 0 0 0
2.5 0.5 0 0 0 0 0 3.368114 3.300087 1.701658 2.987257 3.075026 1.794605 2.934653 0.017414 0.017554 3.038411 1.724059 0 0 0 0 0
2.5 1 0 0 0 0 0 2.509793 1.967639 1.288188 1.194157 1.914613 0.038399 0.034709 1.442583 0.853858 1.274971 1.429999 0 0 0 0 0
2.5 1.5 0 0 0 0 0 2.228385 0.776239 1.314933 1.530243 0.930553 1.428295 1.249322 1.895467 2.802327 2.034466 1.826942 0 0 0 0 0
2.5 2 0 0 0 0 0 2.25336 0.933223 1.432997 1.885266 2.243655 1.393963 1.517107 0.692764 2.048173 0.451052 0 0 0 0 0 0
2.5 2.5 0 0 0 0 0 0.949605 0.470348 0.379902 1.831057 1.172398 0.367475 1.54609 1.716537 0.482119 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 3.149052 2.967441 1.644242 4.577967 1.967207 2.197378 1.863188 2.801777 3.490615 2.583073 2.654369 0 0 0 0
3 0.5 0 0 0 0 0 0 3.069655 2.63204 2.5366 1.945799 2.63465 1.841423 1.652242 0.076903 0.072731 1.875528 2.884137 0 0 0 0
3 1 0 0 0 0 0 0 2.677918 3.173489 2.768688 2.934666 2.730004 0.080055 2.317524 0.248332 0.146261 1.108611 1.328518 0 0 0 0
3 1.5 0 0 0 0 0 0 1.191406 2.527674 1.63037 1.942176 1.199113 0.016674 0.016728 0.016793 1.988132 3.116973 1.738701 0 0 0 0
3 2 0 0 0 0 0 0 1.027168 2.841133 2.366059 2.037856 1.154233 2.926934 1.844707 0.016295 1.291345 1.52436 0 0 0 0 0
3 2.5 0 0 0 0 0 0 1.56042 0.750052 1.127166 2.003189 0.445673 0.627824 1.129074 1.501873 1.204346 0 0 0 0 0 0
3 3 0 0 0 0 0 0 0.604309 0.86695 0.701165 0.271282 0.567113 0.411723 0.108271 1.559428 0 0 0 0 0 0 0

3.5 0 0 0 0 0 0 0 0 1.863006 2.355526 2.318502 2.957 2.765366 2.893568 2.559316 3.294894 3.112401 4.398045 4.893306 0 0 0
3.5 0.5 0 0 0 0 0 0 0 3.524906 2.360812 2.028675 1.643429 1.867633 3.698398 1.383996 2.191923 1.053271 2.765881 3.7494 0 0 0
3.5 1 0 0 0 0 0 0 0 0.749138 1.302747 1.521823 1.718323 2.648074 2.367437 1.33171 0.017008 0.282158 1.358296 2.592928 0 0 0
3.5 1.5 0 0 0 0 0 0 0 2.283783 1.330461 1.418729 2.445431 0.016433 0.016516 0.016541 0.016344 3.117331 1.059731 0.969224 0 0 0
3.5 2 0 0 0 0 0 0 0 1.592784 0.599008 0.803637 2.038322 0.865072 0.015969 0.016122 0.958269 2.768699 2.271091 0 0 0 0
3.5 2.5 0 0 0 0 0 0 0 0.328137 1.017807 0.572215 2.166552 1.044566 1.01797 1.261174 1.107751 2.191004 0 0 0 0 0
3.5 3 0 0 0 0 0 0 0 0.491123 0.290359 0.499027 0.541447 0.440648 1.118863 0.351439 0.063733 0 0 0 0 0 0
3.5 3.5 0 0 0 0 0 0 0 0.337134 0.754151 0.042837 0.704714 0.085515 0.208794 0.019131 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 4.315004 2.322459 2.196213 3.244404 2.808249 2.298483 0.109498 4.146659 2.577183 3.213183 1.718718 0 0
4 0.5 0 0 0 0 0 0 0 0 2.427396 2.56899 2.902206 1.783043 3.643825 2.078255 1.555369 2.670643 3.330069 2.133228 1.499013 0 0
4 1 0 0 0 0 0 0 0 0 3.034836 1.8732 1.964737 1.494175 2.183134 1.409588 1.429607 2.53048 1.682277 2.391575 1.520064 0 0
4 1.5 0 0 0 0 0 0 0 0 1.778178 2.923229 2.478399 0.482843 1.401054 2.080638 1.335151 1.320966 0.016362 1.697827 1.606884 0 0
4 2 0 0 0 0 0 0 0 0 1.210115 2.876774 0.847329 0.016167 0.016097 0.016007 0.780615 0.016123 3.12254 0.830024 0 0 0
4 2.5 0 0 0 0 0 0 0 0 0.663556 0.511806 0.015442 1.664434 1.464394 0.015452 0.015715 1.289731 0.25377 0 0 0 0
4 3 0 0 0 0 0 0 0 0 0.237587 0.750948 0.445712 0.491764 0.926025 0.825486 0.711645 1.426235 0 0 0 0 0
4 3.5 0 0 0 0 0 0 0 0 0.021583 0.151247 0.588819 0.08161 0.088372 0.722349 0.077202 0 0 0 0 0 0
4 4 0 0 0 0 0 0 0 0 0.719324 0.146092 0.016896 0.042631 0.020721 0.160871 0 0 0 0 0 0 0

4.5 0 0 0 0 0 0 0 0 0 0 0.167616 1.898067 2.961028 2.699125 2.851881 3.434008 2.926889 2.258716 3.239837 4.05265 2.835013 0
4.5 0.5 0 0 0 0 0 0 0 0 0 2.32826 0.171509 3.386052 1.180675 2.30247 2.261945 0.175006 1.441662 2.72776 2.376759 2.467306 0
4.5 1 0 0 0 0 0 0 0 0 0 2.840816 3.869975 0.016559 3.482842 2.006814 2.225709 1.641043 4.203259 0.771404 1.47875 3.820565 0
4.5 1.5 0 0 0 0 0 0 0 0 0 1.319669 0.6982 1.614665 1.324325 2.743748 1.246729 2.425029 1.259691 1.61527 1.457016 1.611032 0
4.5 2 0 0 0 0 0 0 0 0 0 1.883712 2.323542 1.81459 0.234413 0.016097 0.490425 1.352257 0.772907 1.362282 0.993081 0 0
4.5 2.5 0 0 0 0 0 0 0 0 0 0.707289 1.241748 2.539489 0.01539 0.01562 0.254177 0.661947 0.891696 0.878488 0 0 0
4.5 3 0 0 0 0 0 0 0 0 0 0.452429 0.621188 0.014732 1.046127 0.01408 0.546166 0.376599 0.907052 0 0 0 0
4.5 3.5 0 0 0 0 0 0 0 0 0 0.461139 0.175942 1.041782 0.357745 0.397091 0.253937 1.247019 0 0 0 0 0
4.5 4 0 0 0 0 0 0 0 0 0 0.424944 0.463545 0.063618 0.021353 0.172568 0.010034 0 0 0 0 0 0
4.5 4.5 0 0 0 0 0 0 0 0 0 0.011252 0.011487 0.346337 0.009857 0.47281 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 1.59874 2.904082 0.082805 2.203494 2.0931 4.496563 0.281944 4.344734 2.222045 2.389115 3.126225
5 0.5 0 0 0 0 0 0 0 0 0 0 0.01714 1.780656 0.017094 2.609909 0.017195 0.017475 0.017542 2.429628 2.767272 1.711176 1.647942
5 1 0 0 0 0 0 0 0 0 0 0 0.016583 0.284796 0.680927 0.016962 0.017074 0.017077 0.017022 0.637242 1.471282 0.535322 3.196594
5 1.5 0 0 0 0 0 0 0 0 0 0 0.016126 0.209833 0.016364 0.01643 0.016468 0.016354 0.016545 1.460797 1.95933 1.938136 1.047965
5 2 0 0 0 0 0 0 0 0 0 0 0.015708 0.01559 0.01622 0.015984 0.312213 0.016171 0.015883 0.746813 0.698041 2.356466 0
5 2.5 0 0 0 0 0 0 0 0 0 0 0.015147 0.015725 0.015421 0.01556 0.01557 0.015684 1.150902 0.754049 1.446082 0 0
5 3 0 0 0 0 0 0 0 0 0 0 0.014912 0.015014 0.015199 0.015274 0.015094 0.613646 0.554658 0.43728 0 0 0
5 3.5 0 0 0 0 0 0 0 0 0 0 0.014474 0.014442 0.014611 0.014643 0.01447 0.0461 0.117523 0 0 0 0
5 4 0 0 0 0 0 0 0 0 0 0 0.013917 0.013766 0.013797 0.455701 0.68726 0.329732 0 0 0 0 0
5 4.5 0 0 0 0 0 0 0 0 0 0 0.012735 0.051754 0.022943 0.018172 0.387121 0 0 0 0 0 0
5 5 0 0 0 0 0 0 0 0 0 0 0.013346 0.013346 0.012346 0.012903 0 0 0 0 0 0 0

70

learning approach in that it still only requires data from two successive stages to perform

the value update process. For each time period t+1, a sample 𝑣� observation is obtained in

the same fashion as 𝑞�. However, in value learning the 𝑣� observation is used with the

alpha-decay parameter to directly smooth the estimated value function vice Q-factors.

Figure 15 diagrams the more simplified value learning approach and provides a partial

snapshot of the single vector output of PDS value function estimates. The problem with

the value learning approach is that the final vector does not provide a visual data pattern

which can confirm that the model is in fact visiting a wide array of possible commitment

actions. It is only through visiting a wide array of commitment actions and PDS

possibilities that the model is able to properly learn. The visual confirmation provided by

the Q-learning is the primary reason why that approach is used to initially test the

effectiveness of the ADP model prior to implementing the value function learning

method.

Figure 15: Value Function Learning Diagram and Output Vector

Pre-DS

0.0
0.5
1.0
1.5
2.0

(0,0)

PDS

St-1

Xt-1

(0.0 , 0.0)
(0.5 , 0.0
(1.0 , 0.0)
(1.5 , 0.0)
(2.0 , 0.0)

x
tS 1−

Wt

(0.0 , a)
(0.5 , b)
(1.0 , c)
(1.5 , d)
(2.0 , e)

St

Pre-DS
(2.0)
(1.5)
(1.0)
(0.5)
0.0
0.5
1.0
1.5
2.0

Xt

PDS

(0.0 ,a)
(0.5 , b)
(1.0 , c)
(1.5 , d)
(2.0 , e)

x
tS

Wt+1

(0.0 , a)
(0.5 , b)
(1.0 , c)
(1.5 , d)
(2.0 , e)

St+1

Pre-DS
(2.0)
(1.5)
(1.0)
(0.5)
0.0
0.5
1.0
1.5
2.0

Xt+1

PDS

(0.0 ,a)
(0.5 , b)
(1.0 , c)
(1.5 , d)
(2.0 , e)

x
tS 1+

Wt+2

)](),([(ˆ 1

1
1111111

n
t

n
tt

n
tt

n
tt

n
t SVxSCXxv +

−
+++++++ +∈= γ

abs |PDS(c,e) - 3 months|

),(tt xSV

n
tn

nx
t

n
tn

nx
t

n
t vSVSV 11

,1

1
, ˆ)()1()(+−

−

− +−= αα

State -
Space
[(c,e)]
[(c,e)]
[(c,e)]
[(c,e)]
[(c,e)]
[(c,e)]
[(c,e)]
[(c,e)]
[(c,e)]

Comm Exp MinV(T)
0 0 1.2383

0.5 0 0.2570
0.5 0.5 1.4073
1 0 0.2351
1 0.5 0.6627
1 1 1.2633

1.5 0 0.6606
1.5 0.5 0.3552
1.5 1 0.9721
1.5 1.5 0.4674
2 0 0.3178
2 0.5 0.0260
2 1 0.3179
2 1.5 0.5476
2 2 0.5445

2.5 0 1.7958
2.5 0.5 0.0174
2.5 1 0.0347
2.5 1.5 0.7762
2.5 2 0.4511
2.5 2.5 0.3675

71

3.6 Convergence: Alpha-Decay
The ultimate choice of the alpha-decay or step size parameter is critical to the

model’s success of reaching a convergence point after tens of thousands of simulation

iterations. Since the value update calculation requires data from two successive stages or

months, the number of Q-factor or value function updates that occur in a single iteration

is one less than the total number of months in the sequential decision system being

modeled. For example, a one year twelve-month system will have eleven updates for one

simulation iteration. Regardless of whether the ADP model is using Q-learning or value

function learning, the stochastic approximation update process takes the form shown in

Equation 28

Equation 28: Value Update Process (Powell 2007)
�̅�𝑛 = (1 − 𝛼𝑛−1)�̅�𝑛−1 + 𝛼𝑛−1𝜃�𝑛

In this form, 𝜃�𝑛 represents sample observations that are similar to the 𝑞�𝑛 and 𝑣�𝑛

sample values that are taken during the Q-learning and value function learning ADP

algorithms. Additionally, the �̅�𝑛 term which is similar to the 𝑄�𝑛(𝑆𝑥,𝑛, 𝑥) and 𝑉�𝑛(𝑆𝑥,𝑛)

terms, represent what is considered either the signal, mean, or expectation value for the

dataset or population from which the 𝜃�𝑛 observations are taken. As the simulation

progresses the alpha-decay value systematically changes with the objective of ultimately

obtaining a converged value for the �̅�𝑛 term and thus providing a reasonable estimated

expectation. The following three alpha-decay properties are the necessary conditions for

convergence.

72

𝛼𝑛−1 ≥ 0, 𝑛 = 1,2, …

�𝛼𝑛−1 = ∞
∞

𝑛=1

�(𝛼𝑛−1)2
∞

𝑛=1

< ∞

 These conditions ensure that the alpha parameter will always decline or decay

during each successive simulation iteration. Since the calculation of the observed sample

𝜃�𝑛 is dependent upon the very parameter �̅�𝑛 that is being estimated, 𝜃�𝑛 is considered a

biased proxy or estimate for the true �̅�𝑛 value. The nature of this bias and the

relationship that exists between the observation term 𝜃�𝑛 and the signal term �̅�𝑛 as they

evolve over time will have significant impact on the ideal step-size to use and the number

of iterations that are required to obtain convergence. In the ADP literature, there is an

emphasis placed on the alpha-decay decision. However, the alpha-decay choice is

problem dependent and often discovered through a matter of trial and error. Powell

(2007), provides an extensive discussion on various alpha-decay possibilities.

Some of the characteristics that impact the performance of the alpha-decay

parameter include issues on whether the true data is stationary or non-stationary, the

amount of “noise” that may exist in the sampling process, and whether or not the true

data exhibits a consistent trend or projection over time. Larger or slower decaying step-

sizes tend to perform better with non-stationary data since the weight of the smoothing

73

process will emphasize the latest observations 𝜃�𝑛 vice the historical or earlier obtained

𝜃�𝑛 observations.

An error term can be used as a measure on the amount of noise that exists in the

system as well as a gauge on whether or not the data is exhibiting a trend or projection.

Equation 29, shows the expression for the amount of error that exists between the

observation term 𝜃�𝑛 and current estimate �̅�𝑛:

Equation 29: Estimate Error
 𝜀𝑛 = �̅�𝑛−1 − 𝜃�𝑛

The behavior of the error term 𝜀𝑛 can provide indications on a better performing

alpha-decay option. If the true data is either monotonically increasing or decreasing such

that the error term 𝜀𝑛 is always the same sign, then once again a larger step-size or one

that favors the latest observation terms 𝜃�𝑛 will perform better. However, if the data is

relatively stationary but, continues to exhibit a lot of noise or variability between each

𝜃�𝑛observation without trending in a specific direction then a step-size that decreases

quickly will likely perform better. Unfortunately, the inherent problem with using a step-

size that decreases too quickly is the possibility of observing data that has only appeared

to converge, when in reality the ADP algorithm has not achieved the best possible

estimate of the signal term �̅�𝑛. This argument is the primary reason why the sample

average alpha-decay parameter of 𝛼𝑛 = 1 𝑛⁄ is normally not a good step-size choice in

spite of the fact that it does satisfy the conditions for convergence.

74

Alpha-decay parameters can either be deterministic or stochastic. Deterministic

alpha-decay parameters are usually correlated to the iteration number n and tend to be

easier to program and maintain throughout the simulation processes. A stochastic step-

size is correlated to the sample observation 𝜃�𝑛. Since the observations 𝜃�𝑛 are random

variables, a stochastic step-size is essentially also a random variable. Stochastic step-

sizes tend to be more complicated to program and incorporate into the ADP design.

However, they may have some advantages when working with data-sets that are either

monotonically increasing or decreasing. Furthermore, a stochastic step-size has appeal if

the various states of the decision system each converge at different rates.

The ADP algorithms presented in this thesis used an adapted deterministic

harmonic alpha-decay parameter as suggested by both Darken et al. (1992) and Gosavi

(2003). Equation 30 captures this particular alpha-decay parameter update process.

Equation 30: ADP Alpha-Decay Parameter
 𝛼𝑛 = 𝛼𝑛−1

1+ 𝑛2
𝛽+𝑛

The attractive feature of this alpha-decay parameter is its ability to decay slowly

during the early iterations and then accelerate before ultimately slowing again and

tapering during the final iterations. This structure helps the ADP algorithm avoid two

critical concerns. The first concern is that the alpha-decay parameter will decrease too

slowly causing the algorithm to stall-out before reaching convergence. The second is that

75

the alpha-decay parameter will decrease too quickly and give the false impression of

convergence. By having an alpha-decay parameter that remains relatively high early on,

the value update process will initially favor the sample 𝑞�𝑛 and 𝑣�𝑛 values. This emphasis

helps ensure that sufficient learning is occurring as part of the algorithmic process.

Additionally, the deterministic properties as well as the simple structure of this alpha-

decay parameter make it relatively easy to code and incorporate into either the Q-learning

or value function learning ADP structures. Only the constant term 𝛽 required tuning

when experimenting with the number of iterations to perform as part of each simulation

run.

3.7 Convergence: Mean Square Error (MSE)
The initial method used to confirm convergence was to evaluate the progression

of a select sample of PDS values. Figure 16 provides an example of the value changes in

two PDS positions for a twelve-month value function learning model across 80,000

simulation iterations. There are a number of problems with this depiction. First,

although it appears that the variability in the estimated PDS values is decreasing towards

the end of the simulation, there is no definitive reassurance that the algorithm is in fact

reaching a point of convergence. Furthermore, the two sample data patterns selected may

not necessarily serve as accurate surrogates for all the PDS possibilities encompassed in

the decision system. Since a typical financial execution commitment problem will have

hundreds of thousands of viable PDS, the memory requirement necessary to produce the

Figure 16 graphic for all the PDS values makes this an inefficient approach for verifying

convergence.

76

Figure 16: PDS Value Function Estimates Convergence Patterns

A better approach is to track the Mean Square Error (MSE) of the decision

system. Instead of checking for convergence by maintaining the changing expectations

for each PDS value, the MSE serves as single reference point for how quickly or slowly

the expected PDS values are converging for the whole system. The MSE calculation is

provided in Equation 31:

Equation 31: Mean Square Error (MSE) Calculation
𝑀𝑆𝐸 = (1 − 𝛼𝑛−1)𝑀𝑆𝐸𝑛−1 + 𝛼𝑛−1(𝑉�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛) − 𝑣�𝑡+1𝑛)2

0 1 2 3 4 5 6 7 8 9

x 10
5

0

5

10

15

77

Figure 17 shows an example MSE convergence plot for a twelve-month 50,000

iteration decision model. If at the end of all simulation iterations the MSE term still

remains relatively high, this may serve as an indication that further learning is required

and that the model will need to run additional iterations. If that is the case, the rate of

alpha-decay will likely need to be slower so that it does not time out or reach zero prior to

the model’s final iteration.

Figure 17: Mean Square Error (MSE) Plot

3.8 Exploration Vs. Exploitation (Learning)
Another sensitivity variable to consider in an ADP model design is the balance

between the amount of exploration and exploitation iterations to conduct in a simulation

run. The exploration iterations relax the minimization requirement when determining

which action to take at a particular stage in the model. The exploration phase changes the

0 1 2 3 4 5 6

x 10
5

0

50

100

150

200

250

300

350

78

formulation for obtaining sample 𝑞� and 𝑣� observations to the following approaches

shown in Equation 32 and Equation 33.

Equation 32: q-value Exploration
𝑞�𝑡𝑛= 𝑅𝑎𝑛𝑑𝑜𝑚𝑥𝑡∈𝑋𝑡

𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡𝑛[𝑄�𝑡𝑛−1(𝑆𝑡
𝑥,𝑛, 𝑥𝑡)]

Equation 33: v-value Exploration

𝑣�𝑡𝑛= 𝑅𝑎𝑛𝑑𝑜𝑚𝑥𝑡∈𝑋𝑡
𝑛[𝐶𝑡(𝑆𝑡𝑛, 𝑥𝑡) + 𝛾𝑉�𝑡𝑛−1(𝑆𝑡

𝑥,𝑛)]

 Using exploration, the actual action taken is allowed to float and incorporates

potential commitment choices that are ‘good’ and might deserve attention but, would

otherwise not be visited using an absolute minimization policy. Exploration gives the

model a chance to visit and learn the values for a broader range of action and PDS

possibilities. The exploitation or learning phase of the model re-introduces the

minimization operand as part of the commitment action criterion. Figure 18 shows an

alpha-decay pattern where the first 5,000 iterations of the simulation used exploration

while the successive 75,000 iterations used exploitation or learning. The benefit of using

exploration is that it may incorporate potentially good solutions into the simulation

process which deserve further investigation. However, a potential drawback is that it

may take longer for the learning phase of the model to reach a point of sufficient

convergence. Any ADP solution approach to a particular decision model design will

need to strike a balance between the amount of exploration to conduct and the demands it

will put on the run-time costs of the model.

79

Figure 18: Alpha-Decay for Exploration and Exploitation

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

alpha-
decay

5,000 iterations of exploration:
alpha-decay drops from 0.8 to ~0.6

75,000 iterations of exploitation/learning:
alpha-decay drops from ~0.6 to near zero

80

CHAPTER FOUR – RESULTS AND ANALYSIS

4.1 Learnt Phase
The ADP model is built around the three separate phases of exploration,

exploitation (learning), and learnt. During the exploration phase, the minimization

operand in Bellman’s optimality equation is relaxed allowing xt to be randomly chosen

from the set of viable actions at time t. The algorithm is allowed to explore and gather

information on good action and PDS combinations that would otherwise not be

considered during learning. Once the exploration phase is complete, the learning phase is

used to find the actual minimum xt that satisfies Bellman’s optimality equation at each

time period t. The exploitation or learning portion of the ADP continues until a point of

sufficient convergence is reached on the value function estimates for each of the PDS.

The result of the learning phase is a stored single vector ‘look-up’ table containing the

model’s estimated values on each PDS. It is at last, in the learnt phase of the ADP

approach where these value function estimates are used to create a decision policy.

During this final learnt phase, the decision maker is now provided a recommended

commitment policy of what action to take for a given pre-decision state position.

Unlike the exploration and learning phases, the learnt phase of the ADP algorithm

is a stand-alone simulation process. The exploration and learning phases of the model

work jointly to generate the value function estimates. If n < N simulation runs were

designated for exploration, then N-n were dedicated to learning. However, during the

81

learnt phase a separate set of N simulations are performed. The results of the N learnt

simulation runs are used not only to provide a policy recommendation but, they are also

used to conduct various types of sensitivity analysis and financial execution excursions.

The subroutines for the learnt phase of the model are similar to those used for the

exploration and learning phase with the exception that it is no longer necessary to have

either a Q-factor or value function update subroutine. At each time period t, the

subroutines for the learnt portion of the model now only include 1) selecting a

commitment action, 2) incorporating exogenous information, and 3) updating the

incremental planning matrix A and cumulative planning matrix B information.

The learnt phase of the model has three critical objectives. The first objective is

to provide an optimal commitment strategy policy for the execution of a weapon system’s

monthly fiscal year budget or the budget of a collection of individual projects given a

baseline forecasted position. The second objective is to provide a comparison between

the recommended commitment policies provided by the ADP and that of the stubby

pencil or myopic policy approach. The third objective of the learnt phase is to conduct

sensitivity analysis and financial execution drills. This allows one to compare and

contrast how the ADP and stubby pencil approaches each react to different modeling

assumptions and various financial execution environments.

The input data structures used for the exploration and learning phases will need to

be slightly modified in order to accomplish the stated objectives of the learnt phase. As

before, a data set array is used to load each of the individual project’s initial forecasted

commitment and expenditure information in an incremental planning A and cumulative

82

planning B matrix format. However, this time a duplicate set of the same A and B

planning data is loaded. As the simulation progresses, the first set of A and B matrices

will be dedicated to tracking how the ADP responds within the decision system and the

second set of A and B matrices will be dedicated to tracking how the stubby pencil policy

responds. Figure 19 provides an example snapshot of the updated input structure used for

the learnt phase of the ADP model.

Figure 19: Learnt Phase Inputs

t Month
1 Oct
2 Nov
3 Dec
4 Jan
5 Feb
6 Mar
7 Apr
8 May
9 Jun
10 Jul
11 Aug
12 Sept

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.250 0.000
0.250 0.000
0.250 0.250
0.250 0.250
0.000 0.250
0.000 0.250
0.000 0.000
0.000 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.500 0.000
0.500 0.000
0.500 0.500
0.500 0.500
0.000 0.500
0.000 0.500
0.000 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
1.000 0.000
1.000 0.000
1.000 1.000
0.000 1.000
0.000 1.000
0.000 0.000
0.000 0.000
0.000 0.000

Project 1 [c e]
Project 2 [c e]

Project 3 [c e]

Incremental Planning Array A

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.250 0.000
0.500 0.000
0.750 0.250
1.000 0.500
1.000 0.750
1.000 1.000
1.000 1.000
1.000 1.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.500 0.000
1.000 0.000
1.500 0.500
2.000 1.000
2.000 1.500
2.000 2.000
2.000 2.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
1.000 0.000
2.000 0.000
3.000 1.000
3.000 2.000
3.000 3.000
3.000 3.000
3.000 3.000
3.000 3.000

Cumulative Planning Array B

Project 1 [c e]
Project 2 [c e]

Project 3 [c e]

t Month
1 Oct
2 Nov
3 Dec
4 Jan
5 Feb
6 Mar
7 Apr
8 May
9 Jun
10 Jul
11 Aug
12 Sept

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.250 0.000
0.250 0.000
0.250 0.250
0.250 0.250
0.000 0.250
0.000 0.250
0.000 0.000
0.000 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.500 0.000
0.500 0.000
0.500 0.500
0.500 0.500
0.000 0.500
0.000 0.500
0.000 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
1.000 0.000
1.000 0.000
1.000 1.000
0.000 1.000
0.000 1.000
0.000 0.000
0.000 0.000
0.000 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.250 0.000
0.500 0.000
0.750 0.250
1.000 0.500
1.000 0.750
1.000 1.000
1.000 1.000
1.000 1.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.500 0.000
1.000 0.000
1.500 0.500
2.000 1.000
2.000 1.500
2.000 2.000
2.000 2.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
1.000 0.000
2.000 0.000
3.000 1.000
3.000 2.000
3.000 3.000
3.000 3.000
3.000 3.000
3.000 3.000

ADP
input data set

Stubby Pencil
input data set

83

4.2 Comparative Results
The learnt phase utilizes N = 100 simulation iterations to collect the data

necessary for conducting the comparative analysis between the ADP and stubby pencil

approaches. Each iteration 𝑛 𝜖 𝑁 simulates a financial execution experience from t = 1

up to t = T months. Each simulation iteration n cycles through the three learnt phase

subroutines T times. At each stage t, the learnt phase performs a unique commitment

action selection xt for both the ADP and stubby pencil policies, generates simulated

exogenous information, and updates the financial execution incremental A and

cumulative B planning arrays for both the ADP and stubby pencil. The exogenous

impacts for each time period t still represent the simulated realizations of actual

expenditures for that time period. This realized actual expenditure amount will be the

exact same for both the ADP and stubby pencil data set arrays. As such, once there is a

realized expenditure actual for time period t, the respective updated predicted

expenditures for time period t+1 and beyond will also be the exact same for the stubby

pencil data set arrays. As the 100 simulated iterations of the learnt phase progress, only

the commitment attribute of the state-space variable will be different between the ADP

and stubby pencil approaches. In this manner, the model can observe the different

responses of ADP and stubby pencil to the same simulated expenditure event.

The critical data points collected during the 100 simulation iterations of the learnt

phase are the different commitment actions taken each month by the two different ADP

and stubby pencil approaches. During the exploration and learning phases of the model,

the simulated action choice was a direct result of the application of Bellman’s equation as

part of the selecting a commitment action subroutine. The learnt phase of the model

84

determines an action choice in a similar manner except that two separate optimality

equations are utilized during the selecting a commitment action subroutine. One

optimality equation generates the ADP commitment actions and the other optimality

equation generates the stubby pencil commitment actions.

The two optimality equations used in the learnt phase of the model are shown by

Equation 34 and Equation 35. Equation 34 shows the optimality equation for the ADP

approach. In this case, the optimal action 𝑥𝑡∗(𝑆𝑡) is driven by the familiar structure of

Bellman’s equation. The choice of commitment action at each time period t is the

minimal sum of the immediate cost incurred by that action 𝐶𝑡(𝑆𝑡, 𝑥𝑡) plus the discounted

estimate of the value function 𝑉�𝑡(𝑆𝑡𝑥). In contrast, the optimality equation for the stubby

pencil or myopic approach is provided by Equation 35. What is readily visible is that for

the stubby pencil approach the optimal action 𝑥𝑡∗(𝑆𝑡) is driven exclusively by the

immediate cost function 𝐶𝑡(𝑆𝑡, 𝑥𝑡) without any consideration of the impact from the

values of the successive state-spaces.

Equation 34: Learnt Phase ADP Optimality Equation
 𝑥𝑡∗(𝑆𝑡) = arg𝑚𝑖𝑛𝑥𝑡∈𝑋𝑡 (𝐶𝑡(𝑆𝑡,𝑥𝑡) + 𝛾𝑉�𝑡(𝑆𝑡𝑥))

Equation 35: Learnt Phase Stubby Pencil (Myopic) Optimality Equation
 𝑥𝑡∗(𝑆𝑡) = arg minxt∈Xt (Ct(St, xt))

The fact that the stubby pencil approach only takes into consideration the

immediate cost function 𝐶𝑡(𝑆𝑡, 𝑥𝑡) without regard to how this decision may impact future

85

decisions is why this is considered a myopic decision policy. As with the learning and

exploration phases of the ADP model, the cost function 𝐶𝑡(𝑆𝑡, 𝑥𝑡) still remains the

absolute value difference between the cumulative commitment position obtained after the

incremental commitment action xt and the predicted month-end expenditure position at

time period t+2. As such, under the stubby pencil approach the optimal choice

𝑥𝑡∗(𝑆𝑡) will always be selected such that the associated immediate cost function value

Ct(St,xt) is equal to zero. The Equation 35 formulation reflects the stubby pencil’s

myopic preference to take the greedy commitment action. This commitment selection

will always provide the lowest immediate cost without regard to the impact current

decisions may have on the future costs in the system.

4.3 Collected Data
The output generated by the learnt phase of the ADP model is a series of graphic

pictorials. These pictorials contain various trend lines depicting the expenditure and

commitment activities from time t = 1 to t = T. In order to create these graphics, the

learnt phase needed to generate and store a number of data sets containing the results of

the 100 learnt phase simulation iterations. The following is a list of the seperate data sets

produced by the learnt phase and leveraged to build the graphics provided in this chapter.

1) ADP Commitments – A 100 x T matrix that maintains the month-end

cumulative ADP totals for the aggregate sum of all projects

2) Stubby Pencil Commitments – A 100 x T matrix that maintains the month-end

cumulative stubby pencil commitment totals for the aggregate sum of all

projects

86

3) Expenditures – A 100 x T matrix that maintains the month-end cumulative

actual expenditure positions aggregated across all projects

4) Three-Month Actual Expenditures – A 100 x T matrix that provides the

cumulative actual expenditure position at the end of month t+2 for time period

t. Recall that the immediate or myopic cost function Ct(St, xt) is the absolute

value delta difference between the cumulative commitment position after

action xt and the predicted expenditure amount for month-end t+2. This three-

month actual expenditure matrix provides the actual month-end t+2

cumulative expenditure amount at time period t. Obviously, this data point

can not be calculated at the point t in the simulation iteration. Rather, the

model must go back and provide this expenditure position once the simulation

iteration completes time t+2.

5) Three-Month Predicted Expenditures – A 100 x T matrix that provides at time

t the predicted cumulative expenditure totals for month-end t+2.

6) One-Month Predicted Expenditures – A 100 x T matrix that provides the

predicted month-end cumulative expenditures for time period t.

7) ADP and Stubby Pencil Commitment Decision – A 100 x T x 2 array that

maintains the individual commitment action/choice made each month by the

ADP and stubby pencil policies. The commitment choice is the sum of the

individual commitment actions made for each project.

8) ADP and Stubby Pencil Value Array – A 100 x T x 2 array that reports for

each simulation run n and month t the value function estimates 𝑉�𝑡𝑛(𝑆𝑡𝑥) used

87

in the optimality equation for the ADP approach and the myopic cost value

Ct(St, xt) for the stubby pencil approach. As mentioned earlier the optimality

function Ct(St,xt) for the stubby pencil approach will always equal zero. As

such, the stubby pencil portion of this array will merely be a 100 x T matrix of

zero value entries.

9) Project Expenditures – A 100 x T x number of projects array that maintains

each project’s individual realized expenditure for each month.

4.4 Model Input Examples
Figure 20 provides the input parameters for a typical modeling scenario, referred

to here as Test Case #2 - Trial #1. As described in Chapter 3, the ADP modeling inputs

required for each project include the planned funding level, the allocation parameter, and

the assigned plus-minus factor. Also, the ADP simulation requires the number of T =

months that are modeled in the decision system. Lastly, as shown Figure 20, the ADP

model requires the initial incremental A forecasted commitment and expenditure matrix

data for each month t ϵ T in the planning horizon. Once this A matrix data is loaded, the

ADP model code will generate and store the respective cumulative B forecasted

commitment and expenditure matrix information for each project. As the model

progresses through each time period t, the information contained in both the incremental

A and cumulative B matrices will be updated and replaced.

The initial Test Case #2 - Trial #1 scenario examined the behavior of a three-

project system over twelve months. The three projects each had individual budgets of

$5.0M, $2.0M, and $15.0M giving the system a total budget amount of $22.0M.

88

Additionally, the individual allocation parameters were $0.500M, $0.250M, and

$1.000M. The overarching allocation parameter for the decision system was $0.250M.

This value is the GCD across the allocation parameters of each of the three projects.

Figure 20: Test Case #2 – Trial #1 Input Parameters

Besides the initial input parameters and incremental A planning information, the

modeling input information also requires assignments for the number of exploration

iterations and number of learning iterations the model will perform. For Test Case #2 -

Trial #1, the initial model run used 5,000 iterations of exploration and 50,000 iterations

Modeling
 Input Parameters Funding Level

Allocation
Parameter PlusMinus Months

Project #1 5.000 0.500 1.000 12
Project #2 2.000 0.250 0.750 12
Project #3 15.000 1.000 2.000 12

Project #1 Project #2 Project #3

month Comm Exp Comm Exp Comm Exp
Oct 0.000 0.000 1.500 0.000 0.000 0.000
Nov 0.000 0.000 0.250 1.000 0.000 0.000
Dec 0.000 0.000 0.250 0.500 1.000 0.000
Jan 0.000 0.000 0.000 0.250 1.000 0.000
Feb 0.500 0.000 0.000 0.250 2.000 1.000
Mar 1.000 0.000 0.000 0.000 4.000 1.000
Apr 1.500 0.500 0.000 0.000 4.000 2.000
May 1.000 1.000 0.000 0.000 2.000 4.000
Jun 0.500 1.500 0.000 0.000 1.000 4.000
Jul 0.500 1.000 0.000 0.000 0.000 2.000
Aug 0.000 0.500 0.000 0.000 0.000 1.000
Sept 0.000 0.500 0.000 0.000 0.000 0.000

5.000 5.000 2.000 2.000 15.000 15.000

89

of learning. The actual Matlab structure used to load all the relevant input parameters is

provided below in Figure 21.

Figure 21: Test Case #2 – Trial #1 Matlab Structure

4.5 Model Output Examples
In order to produce the graphic pictorials of the learnt phase of the model, the

exploration and learning phases must first generate the value function estimates. One of

the challenges with using the ADP approach is determining the number of iterations

necessary to obtain sufficient convergence on the value function estimates. The MSE

chart was the standard graphic used to judge the progress of overall convergence. Figure

22 provides the original input parameters for Test Case #2 – Trial #1 along with the MSE

chart generated by the 50,000 iterations of learning. Recall that each simulation n will

produce T-1 MSE data points. Therefore, the Test Case #2 – Trial #1 MSE graphic was

generated using 50,000 X 11 = 550,000 data points. The blowup portion of the graph

shows that for the last 10,000 observations the MSE was consistently beneath twenty.

90

Figure 22: Test Case #2 – Trial #1 Mean Square Error (MSE)

Load Incremental Planning Data - Array A

Project #1 Project #2 Project #3

t month Comm Exp Comm Exp Comm Exp
1 Oct 0.00 0.00 1.50 0.00 0.00 0.00
2 Nov 0.00 0.00 0.25 1.00 0.00 0.00
3 Dec 0.00 0.00 0.25 0.50 1.00 0.00
4 Jan 0.00 0.00 0.00 0.25 1.00 0.00
5 Feb 0.50 0.00 0.00 0.25 2.00 1.00
6 Mar 1.00 0.00 0.00 0.00 4.00 1.00
7 Apr 1.50 0.50 0.00 0.00 4.00 2.00
8 May 1.00 1.00 0.00 0.00 2.00 4.00
9 Jun 0.50 1.50 0.00 0.00 1.00 4.00
10 July 0.50 1.00 0.00 0.00 0.00 2.00
11 Aug 0.00 0.50 0.00 0.00 0.00 1.00
12 Sept 0.00 0.50 0.00 0.00 0.00 0.00

5.00 5.00 2.00 2.00 15.00 15.00

Number of state-spaces: 4,005
Number of Months: 12
Total Budget = $22.000M
5,000 iterations Exploration
50,000 iterations Learning

RunTime: 11hrs 18Minutes
2.33 GHz Intel® Xeon
3.00 GB RAM

Modeling
 Input Parameters Funding Level

Allocation
Parameter PlusMinus Months

Project #1 5.000 0.500 1.000 12
Project #2 2.000 0.250 0.750 12
Project #3 15.000 1.000 2.000 12

0 1 2 3 4 5 6

x 10
5

0

20

40

60

80

100

120

140

160

180

200

MSE Last 10,000
Values

5.4 5.41 5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.5 5.51

 10
5

0

2

4

6

8

10

12

14

16

18

20

91

After the exploration and learning phases of the ADP algorithm produces value

function estimates for each PDS, N = 100 simulations of learnt phase analysis are then

used to produce the graphics shown in Figure 23 and Figure 24. These graphics are the

default commitment and expenditure outputs of the learnt phase. The top box in Figure

23 shows three different expenditure trend lines. The black line shows the original

planned cumulative expenditures. The red line provides the average predicted

expenditures. Unlike the initial black line that provides the predicted expenditures for all

months at the start of October and remains static throughout the course of the simulation,

the red line provides the predicted expenditure amount for time t given what is known at

t-1. As such, the red line represents the continual updates to the forecasts on

expenditures at a point in time just one month before the actual is realized. And lastly,

the green line represents the average expenditures that actually occurred that month.

Additional trend patterns shown in Figure 23 are captured by the maximum and

minimum asterisks. During the exogenous information subroutine, a strand of

information 𝜔𝑛 is generated to simulate the actual expenditures that occur each month.

This is the manner in which uncertainty or randomness is injected into the model. The

maximum and minimum asterisks represent the upper and lower limits that are possible

for the individual 𝜔𝑛 values. Therefore, the blue asterisks that are inside the top box in

Figure 23 represent the month-to-month expenditure pattern if the maximum allowable

actual expenditure occurred each month. Likewise, the purple asterisks represent the

month-to-month expenditure pattern if the minimum allowable expenditure occurred each

month.

92

Figure 23: Test Case #2 – Trial #1 Output Graphic 1

MM

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

M
ax

Av
g.

 A
ct

ua
l

Av
g.

 P
re

di
ct

ed

In
iti

al
 P

la
n

M
in

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

In
iti

al
 P

la
n

93

Figure 24: Test Case #2 – Trial #1 Output Graphic 2

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$0
.0

0
$1

.0
0

$0
.5

0
$0

.2
5

$1
.2

5
$1

.0
0

$2
.5

0

$5
.0

0
$5

.5
0

$3
.0

0
$1

.5
0

$0
.5

0

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Sp
t

$M A
D

P
m

or
e

re
sp

on
si

ve
 to

 p
er

 m
on

th
 e

xp
en

di
tu

re
 tr

en
d

A
D

P
(R

ed
) i

s s
en

si
tiv

e
to

 e
xp

en
di

tu
re

 re
al

iti
es

St
ub

by
 P

en
ci

l (
B

lu
e)

 is
 n

ot

94

The bottom box in Figure 23 provides trend lines that represent the commitment

patterns associated with the expenditure results for Test Case #2 – Trial #1. This bottom

graphic shows three different commitment trend line outputs. The black line depicts the

baseline cumulative plan outlined at the start of October. The red line and the blue line

respectively represent the results of the ADP cumulative commitment choices and the

stubby pencil cumulative commitment choices.

The picture in Figure 24 is the second standard graphic that is produced by the

learnt phase of the ADP model. This graphic combines both the commitment and

expenditure information onto the same grid. The ADP and stubby pencil commitment

trend lines used in Figure 23 are replicated here. However, they are now superimposed

with a gray prior month expenditure trend line.

4.6 Learnt Phase Observations from Test Case #2 – Trial #1
There are a number of observations one can make from these output graphics.

The first observation taken from the top box in Figure 23, is that there is little variability

between the three expenditure trend lines. This low variability may be due to a number

of factors which could include the small total budget size used in this scenario of only

$22M or it may be due to the small plus-minus assignments for each of the projects. As

such, the use of this particular scenario may make it difficult to understand the impacts of

randomness on the different ADP and stubby pencil approaches.

There are two additional observations associated with the commitment trends in

the bottom graph on Figure 23 and in the graphic shown in Figure 24. The first issue is

the sharp up and down movements of the ADP commitment actions. Although this

95

commitment strategy at first may seem erratic, upon further investigation this pattern

appears to be a direct response to the individual planned monthly expenditures. In

November, total planned expenditures jump to $1.000M and then tapers to $0.500M and

further to $0.250M for December and January. Furthermore, once the model moves

beyond January, the individual expenditure totals increase substantially from month-to-

month. The bar chart at the bottom of Figure 24 plots the original by month incremental

expenditure amounts. When compared against the two different commitment trend lines,

the dramatic up and down movements seem to suggest that ADP is more sensitive to

these same up and down expenditure patterns that existed in the initial plans.

The second observation is that as a whole the ADP policy for the most part was

consistently beneath the stubby pencil policy. Except for the months of December and

March the red ADP commitment strategy remained under that of the stubby pencil

commitment strategy. This may suggest that the ADP strategy is recommending a more

conservative approach when making commitment decisions. Even after the model

reaches the end of the time period in September, ADP has not committed the full $22.0M

budget. Lastly, it should be noted that neither the ADP nor the stubby pencil

commitment polices ever move into the undesirable state where the cumulative

commitment amount has dropped below last month’s expenditure amount. The gray

prior month expenditure trend line provided in Figure 24 serves as a cross-check that

neither policy allowed projects to expend more funding that what has been received to

date.

96

4.7 Exploration Vs. Exploitation (Learning) Revisited
One aspect of the ADP approach is examining the impacts that occur to a

modeling scenario as a result of altering the number of iteration runs dedicated to either

exploration or exploitation (learning). The following Test Case #2 -Trial #3 scenario

examines what happens to the Test Case #2 - Trial #1 baseline case when the exploration

iterations are increased from 5,000 to 10,000 and the learning iterations are increased

from 50,000 to 100,000. The results of the Test Case #2 - Trial #3 scenario are shown in

Figure 25, Figure 26, and Figure 27. The immediate observation is that the MSE statistic

starts at an initial higher level and as such takes longer to reach the same convergence

point that was obtained in Test Case #2 – Trial #1. As mentioned before, since there are

twelve months in the modeling scenario each iteration n produces eleven MSE data

points. For the Test Case #2 – Trial #3 scenario, the 100,000 iterations of learning will

provide 1,100,000 MSE measurements.

Figure 25 highlights the last 10,000 MSE data points produced by this excursion.

This graphic shows how it took nearly twice as many learning iterations for the model to

reach roughly the same MSE values that existed in Test Case #2 –Trial #1. It appears

that the doubling of the exploration iterations required the number of learning iterations

also be doubled in order to obtain a MSE point that was consistently under twenty for the

final iterations of the model. Although the exploration phase provides an opportunity for

the ADP simulation to learn information regarding the values of potentially ‘good’ action

and PDS combinations it has the undesirable consequence of also incorporating ‘bad’

action and PDS combinations. A possible conjecture is that it was necessary to perform

more learning iterations to reach an acceptable convergence point. The ADP literature

97

discusses the pros and cons of incorporating exploration into the model design along with

alternative implementation schemes that limit exploration from being completely random

and to focus more on just an exclusive subset of ‘good’ states. An exploration scheme

that can focus the ADP model to visit a better subset of only ‘good’ state space positions

will likely obtain improved convergence results during the learning phase of the

simulation.

4.8 Learnt Phase Observations from Test Case #2 – Trial #3
The Test Case #2 – Trial #3 scenario was exclusively a modeling excursion that

examined the impact of incorporating more exploration iterations into the model design.

The graphics in Figure 26 and Figure 27 provide the expenditure and commitment trend

line results for this particular modeling excursion. When comparing the results to the

initial Test Case #2 – Trial #1 case, it is observed that the overall results are similar. The

one nuance is that the ADP commitment choice does not exhibit the same dramatic up

and down commitment pattern. However, although this initial commitment action is

slightly smoother than in the initial case, the overall ADP commitment choice has still

remained beneath that of the stubby pencil. Again, it appears that ADP still prefers a

more conservative allocation approach over the simulated duration from time period t = 1

to time period t = T when compared against the stubby pencil approach.

98

Figure 25: Test Case #2 – Trial #3 Input Parameters and MSE

Load Incremental Planning Data - Array A

Project #1 Project #2 Project #3

t month Comm Exp Comm Exp Comm Exp
1 Oct 0.00 0.00 1.50 0.00 0.00 0.00
2 Nov 0.00 0.00 0.25 1.00 0.00 0.00
3 Dec 0.00 0.00 0.25 0.50 1.00 0.00
4 Jan 0.00 0.00 0.00 0.25 1.00 0.00
5 Feb 0.50 0.00 0.00 0.25 2.00 1.00
6 Mar 1.00 0.00 0.00 0.00 4.00 1.00
7 Apr 1.50 0.50 0.00 0.00 4.00 2.00
8 May 1.00 1.00 0.00 0.00 2.00 4.00
9 Jun 0.50 1.50 0.00 0.00 1.00 4.00
10 July 0.50 1.00 0.00 0.00 0.00 2.00
11 Aug 0.00 0.50 0.00 0.00 0.00 1.00
12 Sept 0.00 0.50 0.00 0.00 0.00 0.00

5.00 5.00 2.00 2.00 15.00 15.00

Number of state-spaces: 4,005
Number of Months: 12
Total Budget = $22.000M
10,000 iterations Exploration
100,000 iterations Learning

RunTime: 31hrs 10Minutes
2.33 GHz Intel® Xeon
3.00 GB RAM

Modeling
 Input Parameters Funding Level

Allocation
Parameter PlusMinus Months

Project #1 5.000 0.500 1.000 12
Project #2 2.000 0.250 0.750 12
Project #3 15.000 1.000 2.000 12

0 2 4 6 8 10

x 10
5

0

20

40

60

80

100

120

140

160

180

200
MSE for 3Trans - $22.000M - $0.250M incr - 12months

MSE Last 10,000
Values

1.09 1.091 1.092 1.093 1.094 1.095 1.096 1.097 1.098 1.099 1.1 1.101

x 10
6

0

2

4

6

8

10

12

14

16

18

20

99

Figure 26: Test Case #2 – Trial #3 Output Graphic 1

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

M
ax

Av
g.

 A
ct

ua
l

Av
g.

 P
re

di
ct

ed

In
iti

al
 P

la
n

M
in

$M

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

In
iti

al
 P

la
n

$M

100

Figure 27: Test Case #2 – Trial #3 Output Graphic 2

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$M

101

4.9 Learnt Phase Sensitivity Analysis
The learnt phase of the model contains unique sensitivity toggles that allow an

analyst to consider how the ADP and stubby pencil commitment choices react under

various execution modeling excursions. The sensitivity toggles are designed to alter the

manner in which expenditures occur each month throughout the modeling horizon. The

variable ‘exog’, short for exogenous information, was used in the Matlab code to

establish the type of expenditure randomness used during that particular learnt phase

excursion. The various settings for the ‘exog’ variable are ‘all’, ‘high’, ‘low’, or ‘mix’.

The setting for the ‘exog’ variable establishes the nature of how the plus-minus factor for

each project is used to simulate the monthly actual expenditures.

The ‘all’ setting is the default setting. In this case, each month’s actual

expenditures occur as a random uniform variable in which the predicted amount for a

given month is the mean. While using the ‘all’ setting, the minimum and maximum

values for the distribution are a positive or negative plus-minus value either above or

below the anticipated mean. The ‘all’ setting establishes that all values within this range

are equally-likely to occur as the expended amount for the month. The ‘high’ setting

throws out the bottom half of the uniform distribution such that the new minimum value

of the distribution is the original mean while the maximum possible value remains the

same. Under the ‘high’ setting only the high values of the original distribution are

equally-likely to occur as the actual expenditure for the month. The ‘low’ setting flips

the distribution such that the maximum possible value is now the original mean, while the

minimum value is the same as it was under the ‘all’ setting. In contrast, under the ‘low’

102

setting only the low values of the original distribution are equally-likely to occur as the

actual expenditure for the month.

The last possible sensitivity setting for the ‘exog’ parameter is the ‘mix’ setting.

The ‘mix’ setting switches the exogenous uncertainty or randomness of the actual

expenditure variable at a point halfway through the simulated time period. For each

month from t = 1 to t = T/2, the ‘exog’ assignment will either be ‘high’ or ‘low’, then for

each month after t = T/2 up to t = T the ‘exog’ assignment will switch over to the

opposite setting either ‘low’ or ‘high’. When the ‘mix’ setting is in use, another Matlab

variable called ‘fiftyfifty’ is set to either ‘LowToHigh’ or ‘HighToLow’. The ‘fiftyfifty’

designation determines whether the ‘exog’ variable shifts from ‘low’ to ‘high’ or from

‘high’ to ‘low’ during each simulation run n.

The different ‘exog’ settings provide the ADP model an opportunity to emulate

the various real world expenditure behaviors that may occur over an observed time period

or spending horizon. Essentially, the model now mimics four possible expenditure

scenarios that could occur. One scenario is when contractors are consistently

overrunning and expending funds at a pace faster than anticipated. The second scenario

is when the contractor is consistently underrunning and expending funding at a pace

slower than anticipated. The third scenario is when the contractor starts slow and is

initially underrunning then accelerates spending to a point where they are later

overrunning and expending dollars at a much faster rate. The fourth and final alternative

is when the contractor starts out hot and is initially overrunning and then must pull back

later to expend dollars at a much slower rate.

103

The following Figure 28 provides a snapshot of the Matlab input screen for the

learnt phase of the ADP model. The inputs include the same original project parameter

requirements used for the exploration and learning phases of the model. Additionally, the

example snapshot shows the assignments of the ‘exog’ and ‘fiftyfifty’ variable. Lastly,

the final read command loads the ‘look-up’ table data containing the value function

estimates that were produced during exploration and learning.

Figure 28: Learnt Phase Matlab Inputs

4.10 Learnt Phase Observations from Test Case #3 – Trial #2
An alternative approach to conducting sensitivity analysis during the learnt phase

is to consider the impact from adjusting the initial phase of the predicted expenditures for

each of the projects. This type of sensitivity drill keeps static the number of projects, the

104

budget size of each project, and the number of months simulated. The changes are to the

phasing of each project’s initial planned expenditures and consequently planned monthly

commitment actions with the intent to observe how these changes impact the separate

ADP and stubby pencil policy recommendations. The following Test Case #3 – Trial #2

results consider this type of sensitivity drill. This exercise takes the same three projects

from the earlier Test Case #2 – Trial #1 and Test Case #2 – Trial #3 scenarios and alters

the original expenditure phasing. The updated expenditure planning figures are

deliberately set to avoid the situation where the aggregate expenditures for the three

projects have an initial spike in the early months, then taper off only to increase quickly

in the later months. Figure 29 provides the input parameters for this modeling scenario

along with the MSE statistics that resulted from using a 5,000 exploration iteration setting

and a 75,000 exploitation iteration setting.

In addition to examining the impact from re-phasing the original expenditures, the

Test Case #3 – Trial #2 scenario was used as a basis to test the reaction of the model to

the various built in sensitivity toggles that are part of the learnt phase of the model. The

sequence of charts shown from Figure 30 through Figure 39 provides the standard two

pictorial graphics for each sensitivity drill considered. In all, fives separate excursions

were performed. These included 1) the default case, 2) exogenous information ‘exog’ set

to high, 3) exogenous information ‘exog’ set to low, 4) exogenous information ‘exog’ set

to ‘mix’ with the ‘fiftyfifty’ variable set to ‘LowToHigh’, and 5) exogenous information

‘exog’ set to ‘mix’ with the ‘fiftyfifty’ variable set to ‘HighTo Low’.

105

Figure 29: Test Case #3 – Trial #2 Input Parameters and MSE

Number of state-spaces: 4,005
Number of months: 12
Total Budget = $22.000M
5,000 iterations Exploration
75,000 iterations Learning

RunTime: 17hrs 31Minutes
2.33 GHz Intel® Xeon
3.00 GB RAM

Load Incremental Planning Data - Array A

Project #1 Project #2 Project #3
t month Comm Exp Comm Exp Comm Exp

1 Oct 0.000 0.000 1.000 0.000 1.000 0.000
2 Nov 0.500 0.000 0.500 0.500 1.000 0.000
3 Dec 0.500 0.000 0.250 0.500 1.000 1.000
4 Jan 0.500 0.500 0.250 0.500 2.000 1.000
5 Feb 1.000 0.500 0.000 0.250 2.000 1.000
6 Mar 1.000 0.500 0.000 0.250 3.000 2.000
7 Apr 1.000 1.000 0.000 0.000 3.000 2.000
8 May 0.500 1.000 0.000 0.000 2.000 3.000
9 Jun 0.000 1.000 0.000 0.000 0.000 3.000

10 July 0.000 0.500 0.000 0.000 0.000 2.000
11 Aug 0.000 0.000 0.000 0.000 0.000 0.000
12 Sept 0.000 0.000 0.000 0.000 0.000 0.000

5.000 5.000 2.000 2.000 15.000 15.000

Modeling
 Input Parameters Funding Level

Allocation
Parameter PlusMinus Months

Project #1 5.000 0.500 1.000 12
Project #2 2.000 0.250 0.750 12
Project #3 15.000 1.000 2.000 12

0 1 2 3 4 5 6 7 8 9

x 10
5

0

20

40

60

80

100

120

140

160

180

200

MSE Last 10,000
Values

8.15 8.16 8.17 8.18 8.19 8.2 8.21 8.22 8.23 8.24 8.25 8.26

x 10
5

0

2

4

6

8

10

12

14

16

18

20
MSE for 3Trans $22.000M $0.250M incr 12months

106

Figure 30: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = All

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

M
ax

Av
g.

 A
ct

ua
l

Av
g.

 P
re

di
ct

ed

In
iti

al
 P

la
n

M
in

$M

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

In
iti

al
 P

la
n

$M

107

Figure 31: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = All

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$0
.0

0
$0

.5
0

$1
.5

0
$2

.0
0

$1
.7

5
$2

.7
5

$3
.0

0
$4

.0
0

$4
.0

0
$2

.5
0

$0
.0

0
$0

.0
0

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Sp
t

U
pd

at
ed

 in
cr

em
en

ta
l e

xp
en

di
tu

re
 p

ha
si

ng

A
D

P
(R

ed
) a

dj
us

te
d

to

up
da

te
d

ex
pe

nd
itu

re
 p

ha
si

ng

$M

108

Figure 32: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = High

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

M
ax

Av
g.

 A
ct

ua
l

Av
g.

 P
re

di
ct

ed

In
iti

al
 P

la
n

M
in

$M

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

In
iti

al
 P

la
n

$M

109

Figure 33: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = High

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$M

110

Figure 34: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = Low

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

M
ax

Av
g.

 A
ct

ua
l

Av
g.

 P
re

di
ct

ed

In
iti

al
 P

la
n

M
in

$M

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

In
iti

al
 P

la
n

$M

111

Figure 35: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = Low

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$M

A
D

P
sa

ve
d

$1
.6

M

112

Figure 36: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = Low to High

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

M
ax

Av
g.

 A
ct

ua
l

Av
g.

 P
re

di
ct

ed

In
iti

al
 P

la
n

M
in

$M

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

In
iti

al
 P

la
n

$M

113

Figure 37: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = Low to High

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

A
D

P
sa

ve
d

$0
.9

M

$M

114

Figure 38: Test Case #3 – Trial #2 Output Graphic 1 / ‘exog’ = High to Low

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

M
ax

Av
g.

 A
ct

ua
l

Av
g.

 P
re

di
ct

ed

In
iti

al
 P

la
n

M
in

$M

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

In
iti

al
 P

la
n

$M

115

Figure 39: Test Case #3 – Trial #2 Output Graphic 2 / ‘exog’ = High to Low

0510152025

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$M

A
D

P
sa

ve
d

$0
.4

M

116

The various sensitivity analysis drills were conducted to help isolate a narrative

on either the potential advantage offered by the ADP approach or what might be missed

by using a purely stubby pencil approach for making commitment action determinations.

The sensitivity analysis drills were centered on the value function estimates produced

using the updated expenditure and commitment planning profiles in the Test Case #3 –

Trial #2 scenario. Each drill examined the average results from 100 iterations of learnt

phase simulations. A total of five possible sensitivity analysis scenarios were considered.

The first execution sensitivity analysis drill used the default setting to calculate

and determine the exogenous information or actual expenditures for each month or

simulated time period t. Figure 30 and Figure 31 provide the graphic pictorials

associated with this excursion. The results show both similarities and differences to those

provided in Test Case #2 – Trial #1 and Test Case #2 – Trial #3. As shown in the top box

in Figure 30, there is once again little observed variability between the average actual

expenditures, average predicted expenditures, and the initial expenditure plan. Also, as

shown in the bottom box in Figure 30 and in the graphic shown in Figure 31, the ADP

commitment strategy is consistently below that of the recommended stubby pencil

strategy. Furthermore, one observes that the ADP commitment policy no longer contains

those initial up and down spikes that occurred during the Test Case #2 – Trial #1

scenario. Again, for comparison purposes a bar chart of the original incremental planned

monthly expenditures is provided at the bottom of Figure 31. Upon closer examination, it

appears that the recommended ADP commitment policy has in fact adjusted accordingly

to a smoother per month expenditure profile. This observation is consistent with the

117

theory that the ADP commitment perturbations associated with Test Case #2 – Trial

#1were correlated to the initial expenditure planning profile and the fact that there was

noticeable up and down incremental phasing of the planned expenditures during the early

months of the modeling scenario. The final observation, shown in Figure 31, is that at no

point did either the ADP or stubby pencil commitment policy move below the actual

expenditures that had occurred up to one month prior to the current commitment decision

point.

The second sensitivity analysis drill examined the results of setting the

randomness of the actual expenditures or the exogenous variable to ‘high’. The graphic

pictorials for this scenario are provided in Figure 32 and Figure 33. As expected, the top

graph of Figure 32 now shows a wider discrepancy between the average actual

expenditures, average predicted expenditures, and initial plan. With an actual

expenditure setting of ‘high’, both the average predicted expenditures and the average

actual expenditures are above the initial expenditure plan. Once again, with the

exception of January, the ADP commitment policy was consistently below that of the

stubby pencil commitment policy. Additionally, as to be expected with ‘high’

expenditures both the ADP and stubby pencil approaches committed the full $22M at a

point much earlier in time as compared with the default ‘all’ sensitivity analysis

excursion.

The third drill examined the behavior of the model when the ‘exog’ variable was

set to ‘low’. This time as shown in the top box in Figure 34, the average actual

expenditures and average predicted expenditures have shifted below the initial planning

118

line. The ADP-recommended commitment policy still remained below that of the stubby

pencil policy. Furthermore, a significant observation is that in this case the stubby pencil

commitment policy approach reached the full $22M commitment policy during the

month of July while the ADP policy never committed the full $22M. Figure 35

highlights the potential savings obtained by following an ADP commitment strategy

while operating in a ‘low’ expenditure environment. These ADP savings represent

additional work opportunities or projects that a decision maker could incorporate into the

weapon system program.

The fourth excursion evaluated impacts to the ADP and stubby pencil policies

based on using a ‘mix’ of simulated actual expenditures that initially started low and

moved to high. Figure 36 and Figure 37 show the two pictorial graphics associated with

this learnt phase execution drill. In this case, the ADP commitment policy still remained

beneath that of the stubby pencil commitment policy. Additionally, the ADP approach

never committed the full $22M whereas the stubby pencil approach was completely

committed by July. Figure 37 highlights the savings obtained by following an ADP

commitment strategy while operating in an expenditure environment that moved from

‘low’ to ‘high’.

The fifth and final excursion evaluated the impacts of switching the mix

simulation of actual expenditures to ‘high’ to ‘low’. The final two graphics, Figure 38

and Figure 39 provide the results for this last excursion scenario. As is consistent with

the other drills the ADP approach committed funding at a slower pace as compared with

119

the stubby pencil approach. Once again, the ADP approach did not commit the full

$22M by year’s end and the realized savings are captured in Figure 39.

After evaluating the five sensitivity analysis cases, there are some critical

observations that seem to suggest general ideas or inferences on the tendencies of

commitment actions. In all five cases, the ADP model consistently suggested a

commitment allocation plan that was more conservative than the stubby pencil

recommended commitment plan. Figure 40 shows the end of year commitment levels of

both the stubby pencil and ADP policies for all of the five test case scenarios. In each of

the stubby pencil cases the recommended strategy was to commitment the full $22M

prior to the last month T. However, in three of the five cases using the ADP approach the

model recommended not committing the full $22M prior to the end of the FY. In regards

to these three cases, noted in Figure 40 are the ADP-reported savings.

Figure 40: End of Fiscal Year Commitment Amounts

19.5

20

20.5

21

21.5

22

22.5

(Default) High Low Low-to-High High-to-Low

Stubby Pencil - myopic
(No Learning Factor)

ADP
(Learning Factor)$M

$1.6M

$0.9M
$0.4M

120

An issue for the decision maker is to determine a point in the fiscal year in which

the anticipated ADP savings can be allocated to new work initiatives. Figure 41 provides

a snapshot status of the end of month May commitment levels for all five Test Case #3 –

Trial #2 sensitivity analysis scenarios. Although the myopic stubby pencil policy was

able to adjust its’ commitment strategy from the initial plan during the various sensitivity

scenarios, Figure 41 however shows that for the three cases in which ADP saved dollars

the stubby pencil policy already committed more funding in May than what the projects

will expend by the end of the fiscal year. In contrast, for these same scenarios the ADP

commitment levels in May are beneath the end of fiscal year expenditure levels

indicating that there is budget available to incorporate additional work.

Figure 41: End of Month May Commitment Levels

14

15

16

17

18

19

20

21

22

23

(Default) High Low Low-to-High High-to-Low

Initial Plan Stubby Pencil - myopic
(No Learning Factor)

ADP
(Learning Factor)

* *

*

* *

*Actual expenditures at end Sep
not known in May

121

4.11 Additional Test Cases and Analysis
The development of the two ADP models involved the analysis of numerous test

case scenarios. Table 6 and Table 7 provide a summary list of various test cases

examined. The summary indicates whether a test case used Q-learning or value function

learning. Also, the tables provide additional test case information including number of

projects, total budget, number of iterations, MSE observations, size of state-space, model

run-times, and the properties for each of the individual projects.

The Q-learning test cases provided confirmation that the execution simulation

design was in fact visiting only viable action and state-space combinations. For these

five test cases, the Q-matrix output resulted in a data pattern showing that the model was

not selecting any erroneous action possibilities. However, one observation was the

increased sparsity in the Q-matrix given the larger state-space test case scenarios. The

addition of exploration iterations will likely reduce some of the sparsity. However, given

the current ADP design this may cause the ADP model to visit some bad action and state-

space combinations. As a result, the model will likely require more learning iterations

before converging. A second observation from the Q-learning test cases was the increase

in run-time between the Q-learning Test Case #2 - Trial #1 and Test Case #3 - Trial #1.

Although Test Case #3 - Trial #1 contained fewer state-spaces, this scenario did involve

twice the number of months as well as one additional project. This seems to indicate that

the number of months in a test case scenario is a significant driver of the modeling run-

times.

122

Table 6: Test Case Summaries

#
N

am
e:

M
od

el
Ty

pe

of

Pr
oj

ec
ts

:

of

M
th

s:
$M

 T
ot

al
B

ud
ge

t:
Ex

p
It

e:
M

SE
:

A
lp

ha
-

D
ec

ay

of
 S

ta
te

s
R

un
 T

im
e

B
ud

ge
t

A
llo

c.
Pa

ra
m

.
+/

-
Fa

ct
or

B
ud

ge
t

A
llo

c.
Pa

ra
m

.
+/

-
Fa

ct
or

B
ud

ge
t

A
llo

c.
Pa

ra
m

.
+/

-
Fa

ct
or

B
ud

ge
t

A
llo

c.
Pa

ra
m

.
+/

-
Fa

ct
or

1
Te

st
Ca

se
#1

Tr
ia

l#
1

Q
-L

ea
rn

in
g

2
12

7.
00

0
Ex

p:
 5

,0
00

Lr
n:

 5
0,

00
0

La
st

10

,0
00

 o
bs

er
va

tio
ns

al
l u

nd
er

 0
.6

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

43
5

4h
rs

 3
4M

in
5.

00
0

0.
50

0
1.

00
0

2.
00

0
0.

25
0

0.
75

0

2
Te

st
Ca

se
#1

Tr
ia

l#
2

Q
-L

ea
rn

in
g

2
12

7.
00

0
Ex

p:
 5

,0
00

Lr
n:

 7
5,

00
0

La
st

10

,0
00

 o
bs

er
va

tio
ns

al
l u

nd
er

 0
.1

5
Ex

p:
 0

.8
 to

 0
.6

Lr
n:

 0
.6

 to
 0

.1
43

5
Di

d
N

ot
 R

ec
or

d
5.

00
0

0.
50

0
1.

00
0

2.
00

0
0.

25
0

0.
75

0

3
Te

st
Ca

se
#1

Tr
ia

l#
3

Q
-L

ea
rn

in
g

2
12

7.
00

0
Ex

p:
 5

,0
00

Lr
n:

 1
00

,0
00

La
st

10

,0
00

 o
bs

er
va

tio
ns

al
l u

nd
er

 0
.3

Ex
p:

 0
.9

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

43
5

Di
d

N
ot

 R
ec

or
d

5.
00

0
0.

50
0

1.
00

0
2.

00
0

0.
25

0
0.

75
0

4
Te

st
Ca

se
#2

Tr
ia

l#
1

Q
-L

ea
rn

in
g

3
12

22
.0

00
Ex

p:
 5

,0
00

Lr
n:

 5
0,

00
0

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

2
an

d
25

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
23

 h
rs

 1
1M

in
5.

00
0

0.
50

0
1.

00
0

2.
00

0
0.

25
0

0.
75

0
15

.0
00

1.
00

0
2.

00
0

5
Te

st
Ca

se
#3

Tr
ia

l#
1

Q
-L

ea
rn

in
g

4
24

68
.0

00
Ex

p:
 5

,0
00

Lr
n:

 5
0,

00
0

La
st

 1
0,

00
0

ob
se

rv
at

io
ns

m
os

t u
nd

er
 5

.0
so

m
e

be
tw

ee
n

5.
0

&
 1

0
Ex

p:
 0

.8
 to

 0
.6

Lr
n:

 0
.6

 to
 0

.1
2,

41
5

1
da

y
21

hr
s 6

M
in

40
.0

00
2.

00
0

6.
00

0
10

.0
00

1.
00

0
1.

00
0

6.
00

0
1.

00
0

2.
00

0
12

.0
00

2.
00

0
4.

00
0

6
Te

st
Ca

se
#1

Tr
ia

l#
1

Va
lu

e
Le

ar
ni

ng
2

12
7.

00
0

Ex
p:

 5
,0

00
Lr

n:
 5

0,
00

0

La
st

10

,0
00

 o
bs

er
va

tio
ns

al
l u

nd
er

 0
.6

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

43
5

2h
rs

 1
5M

in
5.

00
0

0.
50

0
1.

00
0

2.
00

0
0.

25
0

0.
75

0

7
Te

st
Ca

se
#1

Tr
ia

l#
2

Va
lu

e
Le

ar
ni

ng
2

16
9.

50
0

Ex
p:

 5
,0

00
Lr

n:
 5

0,
00

0
75

0,
00

0
M

SE
 d

at
a

po
in

ts
Ex

p:
 0

.8
 to

 0
.6

Lr
n:

 0
.6

 to
 0

.1
78

0
3h

rs
 5

3M
in

7.
00

0
0.

50
0

0.
50

0
2.

50
0

0.
25

0
0.

25
0

8
Te

st
Ca

se
#2

Tr
ia

l#
1

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 5
,0

00
Lr

n:
 5

0,
00

0

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

2
an

d
25

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
11

hr
s1

8M
in

5.
00

0
0.

50
0

1.
00

0
2.

00
0

0.
25

0
0.

75
0

15
.0

00
1.

00
0

2.
00

0

9
Te

st
Ca

se
#2

Tr
ia

l#
2

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 5
,0

00
Lr

n:
 7

5,
00

0

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

1
an

d
20

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
18

hr
s 1

0M
in

5.
00

0
0.

50
0

1.
00

0
2.

00
0

0.
25

0
0.

75
0

15
.0

00
1.

00
0

2.
00

0

10
Te

st
Ca

se
#2

Tr
ia

l#
3

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 1
0,

00
0

Lr
n:

 1
00

,0
00

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

1
an

d
20

Ex
p:

 0
.9

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
1

da
y

7h
rs

 1
0M

in
5.

00
0

0.
50

0
1.

00
0

2.
00

0
0.

25
0

0.
75

0
15

.0
00

1.
00

0
2.

00
0

N
ot

es
: I

nt
el

®
Co

re
®

2.
70

GH
z,

 8
.0

0
GB

 R
AM

nu
m

be
r o

f m
on

th
s a

pp
ea

rs
 to

 im
pa

ct
 ru

n-
tim

es
 h

ea
vi

ly

N
ot

es
: I

nt
el

®
Co

re
®

2.
70

GH
z,

 8
.0

0
GB

 R
AM

 V
-L

ea
rn

in
g

ap
pp

ea
r t

o
im

pr
ov

e
ru

n-
tim

e

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

sl
ig

ht
 im

pr
ov

em
en

t o
n

M
SE

 fr
om

 T
es

tC
as

e#
2T

ria
l#

1

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

at
 st

ar
t o

f l
ea

rn
in

g,
 M

SE
 st

at
is

tic
s h

ig
he

r t
ha

n
Te

st
Ca

se
#2

Tr
ia

l#
2

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

Q
-M

at
rix

: v
is

ite
d

ac
ce

pt
ab

le
 st

at
e-

sp
ac

es
;

no
tic

ea
bl

e
de

cr
ea

se
 in

 M
SE

 S
ta

tis
tic

 fr
om

 T
C#

1T
ra

il
#1

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

Q
-M

at
rix

: v
is

ite
d

ac
ce

pt
ab

le
 st

at
e-

sp
ac

es
; s

lig
ht

 in
cr

ea
se

s i
n

M
SE

 fr
om

 T
C#

1T
ria

l#
2

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

Q
-M

at
rix

: v
is

ite
d

ac
ce

pt
ab

le
 st

at
e-

sp
ac

es
;

Q
-M

at
rix

: s
om

e
sp

ar
si

ty
: a

 n
um

be
r v

ia
bl

e
st

at
e-

sp
ac

es
 n

ot
 v

is
ite

d

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

Q
-M

at
rix

: v
is

ite
d

ac
ce

pt
ab

le
 st

at
e-

sp
ac

es
:

Q
-M

at
rix

: s
om

e
sp

ar
si

ty
: a

 n
um

be
r o

f v
ia

bl
e

st
at

e-
sp

ac
es

 n
ot

 v
is

ite
d

co
m

pa
re

d
to

 T
C#

2T
ria

l#
1:

 fe
w

er
 st

at
e-

sp
ac

es
, d

ou
bl

ed
 n

um
be

r o
f m

on
th

s -
- r

un
-t

im
e

ne
ar

ly
 d

ou
bl

ed

N
ot

es
: I

nt
el

®
Co

re
®

2.
40

GH
z,

 6
.0

0
GB

 R
AM

di
ff

er
en

t p
la

tf
ro

m
 a

nd
 V

-L
ea

rn
in

g
ap

pe
ar

 to
 im

pr
ov

e
ru

n-
tim

e

Pr
oj

ec
t #

1
Pr

oj
ec

t #
2

Pr
oj

ec
t #

3
Pr

oj
ec

t #
4

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

Q
-M

at
rix

: v
is

ite
d

ac
ce

pt
ab

le
 st

at
e-

sp
ac

es

123

Table 7: Test Case Summaries (Cont.)

#
N

am
e:

M
od

el
Ty

pe

of

Pr
oj

ec
ts

:

of

M
th

s:
$M

 T
ot

al
B

ud
ge

t:
Ex

p
It

e:
M

SE
:

A
lp

ha
-

D
ec

ay

of
 S

ta
te

s
R

un
 T

im
e

B
ud

ge
t

A
llo

c.
Pa

ra
m

.
+/

-
Fa

ct
or

B
ud

ge
t

A
llo

c.
Pa

ra
m

.
+/

-
Fa

ct
or

B
ud

ge
t

A
llo

c.
Pa

ra
m

.
+/

-
Fa

ct
or

B
ud

ge
t

A
llo

c.
Pa

ra
m

.
+/

-
Fa

ct
or

11
Te

st
Ca

se
#3

Tr
ia

l#
1

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 5
,0

00
Lr

n:
 5

0,
00

0

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

2
an

d
25

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
11

hr
s 5

7M
in

5.
00

0
0.

50
0

1.
00

0
2.

00
0

0.
25

0
0.

75
0

15
.0

00
1.

00
0

2.
00

0

12
Te

st
Ca

se
#3

Tr
ia

l#
2

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 5
,0

00
Lr

n:
 7

5,
00

0

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

1
an

d
20

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
17

hr
s 3

1M
in

5.
00

0
0.

50
0

1.
00

0
2.

00
0

0.
25

0
0.

75
0

15
.0

00
1.

00
0

2.
00

0

13
Te

st
Ca

se
#3

Tr
ia

l#
3

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 5
,0

00
Lr

n:
 1

00
,0

00

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

1
an

d
20

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
23

hr
s 0

0M
in

5.
00

0
0.

50
0

1.
00

0
2.

00
0

0.
25

0
0.

75
0

15
.0

00
1.

00
0

2.
00

0

14
Te

st
Ca

se
#3

Tr
ia

l#
4

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 5
,0

00
Lr

n:
 1

50
,0

00

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

1
an

d
15

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
1

da
y

10
hr

s 0
6M

in
5.

00
0

0.
50

0
1.

00
0

2.
00

0
0.

25
0

0.
75

0
15

.0
00

1.
00

0
2.

00
0

15
Te

st
Ca

se
#3

Tr
ia

l#
5

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 5
,0

00
Lr

n:
 1

75
,0

00

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

1
an

d
17

Ex
p:

 1
.0

 to
 0

.8
Lr

n:
 0

.8
 to

 0
.1

4,
00

5
1

da
y

16
hr

s 2
7M

in
5.

00
0

0.
50

0
1.

00
0

2.
00

0
0.

25
0

0.
75

0
15

.0
00

1.
00

0
2.

00
0

16
Te

st
Ca

se
#3

Tr
ia

l#
6

Va
lu

e
Le

ar
ni

ng
3

12
22

.0
00

Ex
p:

 5
,0

00
Lr

n:
 1

00
,0

00

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

2
an

d
6

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 ~
0.

0
4,

00
5

15
hr

s 4
1M

in
5.

00
0

0.
50

0
1.

00
0

2.
00

0
0.

25
0

0.
75

0
15

.0
00

1.
00

0
2.

00
0

17
Te

st
Ca

se
#4

Tr
ia

l#
1

Va
lu

e
Le

ar
ni

ng
4

12
44

.0
00

Ex
p:

 5
,0

00
Lr

n:
 5

0,
00

0

La
st

10

,0
00

 o
bs

er
va

tio
ns

be
tw

ee
n

3
an

d
40

Ex
p:

 0
.8

 to
 0

.6
Lr

n:
 0

.6
 to

 0
.1

4,
00

5
16

hr
s 3

0M
in

s
12

.0
00

1.
00

0
2.

00
0

7.
00

0
0.

50
0

1.
50

0
15

.0
00

1.
00

0
2.

00
0

10
.0

00
0.

50
0

2.
00

0
N

ot
es

: I
nt

el
®

Co
re

®
2.

70
GH

z,
 8

.0
0

GB
 R

AM
le

ar
nt

 p
ha

se
 re

su
lts

 co
ns

is
te

nt
 w

/T
es

tC
as

e#
2

&
 #

3

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

sl
ig

ht
 im

pr
ov

em
en

t o
n

M
SE

 fr
om

 T
es

tC
as

e#
3T

ria
l#

1

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

no
 n

ot
ic

ea
bl

e
im

pr
ov

em
en

t o
n

M
SE

 fr
om

 T
es

tC
as

e#
3T

ria
l#

2

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

sl
ig

ht
 im

pr
ov

em
en

t o
n

M
SE

 fr
om

 T
es

tC
as

e#
3T

ria
l#

3

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

Us
ed

 a
n

 a
lte

rn
at

iv
e

de
te

rm
in

is
tic

 a
lp

ha
-d

ec
ay

 p
ar

am
et

er
 P

ow
el

l (
20

07
)

no
 n

ot
ic

ea
bl

e
im

pr
ov

em
en

t o
n

M
SE

 d
at

a
co

m
pa

re
d

to
 T

ria
ls

#1
-#

4

N
ot

es
: I

nt
el

®
Co

re
®

2.
70

GH
z,

 8
.0

0
GB

 R
AM

de
lib

er
at

el
y

tim
ed

-o
ut

 a
lp

ha
-d

ec
ay

; a
lp

ha
-d

ec
ay

 re
ac

he
d

0.
1

at
 th

e
75

,0
00

 it
er

at
io

n
of

 le
ar

ni
ng

va

ria
nc

e
m

uc
h

tig
ht

er
 d

ur
in

g
fin

al
 it

er
at

io
ns

 -
st

ab
ili

ze
d

M
SE

 st
at

is
tic

N
ot

es
: I

nt
el

®
Xe

on
®

2.
33

GH
z,

 3
.0

0
GB

 R
AM

sl
ig

ht
 im

pr
ov

em
en

t o
n

M
SE

 fr
om

 T
es

tC
as

e#
2T

ria
l#

1
re

-p
ha

si
ng

 in
iti

al
 co

m
m

itm
en

t/
ex

pe
nd

itu
re

 p
la

nn
in

g
ap

pe
ar

s t
o

sm
oo

th
 A

DP
 st

ra
te

gy
 co

m
pa

te
d

w
ith

 T
es

tC
ae

#2

Pr
oj

ec
t #

1
Pr

oj
ec

t #
2

Pr
oj

ec
t #

3
Pr

oj
ec

t #
4

124

Once the Q-matrix results provided reassurance that the simulation code was

implementing the algorithm as expected, value function learning became the primary

analysis tool. The studies numbered 6 through 17 from Table 6 and Table 7 were

dedicated to value function learning. An initial interesting observation was that the value

function learning Test Case #1 - Trial #1 provided similar MSE results as the Q-learning

Test Case #1 - Trial #1 in nearly half the time. This result is not too surprising since

some algorithmic efficiency was expected due to the fact that value function learning no

longer requires the update and storage of a Q-matrix. As mentioned earlier, the Test Case

#2 - Trial #3 scenario doubled the number of exploration iterations used from the Test

Case #2 - Trial #1 scenario. The impact appeared to be higher initial MSE statistics for

Test Case #2 - Trial #3 at the start of the learning phase. One possibility for this anomaly

is the inclusion of some additional bad state-spaces along with potentially good ones as a

result of performing more exploration iterations. The various test case 2 trials and test

case 3 trials examined the same $22M three-project scenario. However, the test case 3

trials re-phased the original commitment and expenditure planning. As highlighted

earlier the re-phasing of the initial commitment and expenditure planning figures

produced a smoother ADP recommended commitment policy.

One difficult challenge with using the ADP approach is determining a stopping

criterion for the algorithm. The Test Case #3 - Trials #1 through #4 scenarios were

attempts at determining if the modeling MSE statistics could be improved by performing

more iterations of learning. The trials were conducted in hopes that the MSE statistic

could reach a small and stable value indicating that the model was no longer learning and

125

had reached a convergence point. During these trials, the MSE statistics showed

marginal improvement when learning iterations were increase from 50,000 to 75,000

iterations. However, further increases in learning iterations did not produce sizable

increases in the final MSE statistics. The 100,000 and 150,000 iterations of learning

conducted in Test Case #3 - Trials #3 and #4 appeared to end with nearly the same MSE

values.

In an effort to assist with the MSE analysis, a new chart was constructed that

tracked MSE variance. This new graphic evaluated the progression of the MSE statistics

in blocks of 500 data points. For each successive block of 500, a sample average MSE

and sample variance MSE statistic was plotted. Figure 42 and Figure 43 show the

standard MSE and new MSE variance charts for the Test Case #3 - Trial #2 and Test

Case #3 -Trial #3 scenarios.

The middle graphic shows the relationship between the sample average MSE and

a sample variance for the MSE. The blue line in the middle graph provides the average

MSE statistic in blocks of 500. The green and red lines are plotted at three standard

deviations above and below the MSE. The last graphic adjusts the y-axis scale to provide

a blowup of the blue line in the middle chart. The downward trend depicted in the

bottom graphic seems to suggest that the MSE statistics are continually improving and

thus the model is still continuing to learn even at the point when the simulation was

stopped. However, the extra learning iterations conducted in Test Case #3- trial #3, did

not appear to improve the final MSE values. The Test Case #3 - Trial #4 scenario which

involved 150,000 learning iterations produced similar results.

126

Figure 42: Test Case #3 – Trial #2 MSE and Variance Graphics

0 1 2 3 4 5 6 7 8 9

x 10
5

0

20

40

60

80

100

120

140

160

180

200

8.15 8.16 8.17 8.18 8.19 8.2 8.21 8.22 8.23 8.24 8.25 8.26

5

0

2

4

6

8

10

12

14

16

18

20

MSE
Last 10,000

Values

0 200 400 600 800 1000 1200 1400 1600 1800

-40

-30

-20

-10

0

10

20

30

40

50

MSE
+3 Sigma
-3 Sigma

0 200 400 600 800 1000 1200 1400 1600 1800
4

5

6

7

8

9

10

11

12

MSE
+3 Sigma
-3 Sigma

127

Figure 43: Test Case #3 – Trial #3 MSE and Variance Graphics

0 2 4 6 8 10 12

x 10
5

0

20

40

60

80

100

120

140

160

180

200

MSE
Last 10,000

Values

1.09 1.091 1.092 1.093 1.094 1.095 1.096 1.097 1.098 1.099 1.1 1.101

x 10
6

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500

-40

-30

-20

-10

0

10

20

30

40

50

MSE
+3 Sigma
-3 Sigma

0 500 1000 1500 2000 2500
4

5

6

7

8

9

10

11

12

MSE
+3 Sigma
-3 Sigma

128

Test Case #3 - Trial #5 examined an alternative strategy which was to use a

different alpha-decay design. This test case used all the same input information as Test

Cases #3 – Trials #1 through #4 except for the new alpha-decay rule and for an increase

in the number of learning iterations to 175,000. Figure 44 provides summary graphic

information related to this test case scenario. The Test Case #3 - Trial #5 simulation used

a deterministic alpha-decay process referenced in Powell (2007) and expressed by

Equation 36. The top chart in Figure 44 provides the resulting alpha-decay pattern for the

5,000 iterations of exploration and the 175,000 iterations of learning. The middle graphic

shows MSE statistics with the last 10,000 values highlighted. The bottom chart provides

the sample MSE variance in blocks of 500 values.

Equation 36: Alternative Alpha-Decay (Powell 2007)

∝𝑛−1= ∝0
(𝑏 𝑛� + 𝑎)

(𝑏 𝑛� + 𝑎 + 𝑛𝛽)

Initially, the results from Test Case #3 – Trial #5 seem to exhibit promising

behavior. The middle chart in Figure 44 shows a MSE that appears relatively stable for

an extended amount of time. However, the final MSE values were not much improved

over those obtained in trials #1 through #4. In this instance, since the step-size decreases

rapidly during the early iterations, there is a danger of apparent convergence. Therefore,

the concern with using this approach is that the model was unable to learn sufficiently

from the collected 𝑣� sample observations.

129

A final test case examined in this series was Test Case #3 - Trial #6. In order to

avoid the dangers of apparent convergence, this scenario returned to utilizing the original

alpha-decay process. However, for this trial alpha-decay was allowed to drop to a near

zero value. In the earlier trials, the simulations were designed to stop once the alpha-

decay process reached 0.1. When conducting test cases that involved more learning

iterations, the alpha-decay process was slowed so that it would still equal approximately

0.1 during the final iteration of the simulation. Allowing alpha-decay to reach a near zero

value resulted in the output graphics provided by Figure 45. The final MSE statistics

during the last 10,000 iterations were bounded between two and six. Furthermore, the

bottom graphic in Figure 45 shows that the average MSE for each block of 500

observations is flattening out. The combination of a steadily decreasing MSE trend that

eventually flattens out is a positive sign that the simulation had ample number of

iterations too learn and has reached a point where further iterations will not provide any

new information.

The final scenario examined was to consider if a larger budget size would still

produce a conservative ADP policy when compared to the stubby pencil policy. Test

Case #4 – Trial #1 simulated a four-project, $44M dollar decision system. The problem

inputs are provided in Figure 46. Output Graphics of the learnt phase under various

expenditure sensitivity settings are provided in Figure 47, Figure 48, and Figure 49. In

all cases the ADP commitment policy strategy was still more conservative than that of the

stubby pencil policy.

130

Figure 44: Test Case #3 – Trial #5 Alpha-Decay, MSE, and Variance Graphics

0 2 4 6 8 10 12 14 16 18

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p y

5,000 Iterations of exploration:
alpha-decay drops from 1.0 to 0.8

175,000 Iterations of exploitation/learning:
alpha-decay drops from 0.8 to 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

20

40

60

80

100

120

140

160

180

200

MSE
Last 10,000

Values

1.915 1.916 1.917 1.918 1.919 1.92 1.921 1.922 1.923 1.924 1.925 1.926

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500 3000 3500 4000

-40

-30

-20

-10

0

10

20

30

40

50

MSE
+3 Sigma
-3 Sigma

131

Figure 45: Test Case #3 – Trial #6 MSE and Variance Graphics

0 500 1000 1500 2000 2500
3

4

5

6

7

8

9

10

11

12

MSE
+3 Sigma
-3 Sigma

0 2 4 6 8 10 12

x 10
5

0

20

40

60

80

100

120

140

160

180

200

MSE
Last 10,000

Values

1.09 1.091 1.092 1.093 1.094 1.095 1.096 1.097 1.098 1.099 1.1 1.101

x 10
6

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500

-40

-30

-20

-10

0

10

20

30

40

50

MSE
+3 Sigma
-3 Sigma

132

Figure 46: Test Case #4 – Trial #1 Input Parameters and MSE

0 1 2 3 4 5 6

5

0

20

40

60

80

100

120

140

160

180

200

MSE Last 10,000
Values

5.45 5.46 5.47 5.48 5.49 5.5 5.51

5

0

5

10

15

20

25

30
MSE for 4Trans $44.000M $0.500M incr 12months

Modeling
Input Parameters

Project #1
Project #2
Project #3
Project #4

Funding Level
12.000
7.000

15.000
10.000

Allocation
Parameter

1.000
0.500
1.000
0.500

PlusMinus
2.000
1.500
2.000
2.000

Number of state-spaces: 4,005
Number of Months: 12
Total Budget = $44.000M
5,000 iterations Exploration
50,000 iterations Learning
RunTime: 16hrs 30Minutes
2.70 GHz Intel® Core®
8.00 GB RAM

Project #1 Project #2 Project #3 Project #4
t month Comm Exp Comm Exp Comm Exp Comm Exp
1 Oct 0.000 0.000 0.000 0.000 1.000 0.000 3.500 1.000
2 Nov 0.000 0.000 0.000 0.000 1.000 0.000 2.000 1.000
3 Dec 0.000 0.000 0.000 0.000 1.000 1.000 2.000 1.500
4 Jan 1.000 0.000 0.500 0.000 2.000 1.000 1.500 2.000
5 Feb 1.000 0.000 0.500 0.000 2.000 1.000 1.000 2.000
6 Mar 3.000 1.000 1.000 0.500 3.000 2.000 0.000 1.500
7 Apr 3.000 1.000 1.000 0.500 3.000 2.000 0.000 1.000
8 May 2.000 3.000 2.000 1.000 2.000 3.000 0.000 0.000
9 Jun 2.000 3.000 2.000 1.000 0.000 3.000 0.000 0.000
10 July 0.000 2.000 0.000 2.000 0.000 2.000 0.000 0.000
11 Aug 0.000 2.000 0.000 2.000 0.000 0.000 0.000 0.000
12 Sept 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

12.000 12.000 7.000 7.000 15.000 15.000 10.000 10.000

133

Figure 47: Test Case #4 – Trial #1 Output Graphic 2 / ‘exog’ = All

05101520253035404550

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$M

134

Figure 48: Test Case #4 – Trial #1 Output Graphic 2 / ‘exog’ = High

05101520253035404550

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$M

135

Figure 49: Test Case #4 – Trial #1 Output Graphic 2 / ‘exog’ = Low

05101520253035404550

O
ct

No
v

De
c

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
pt

AD
P

Co
m

m
.

St
ub

by
 P

en
ci

l
(M

yo
pi

c C
om

m
.)

Pr
io

r M
on

th
Cu

m
ul

at
iv

e
Ex

p.

$M

136

CHAPTER FIVE – CONCLUSIONS, CONTRIBUTIONS, FUTURE RESEARCH,
AND NEXT STEPS

5.1 Conclusions
During each fiscal year, weapon system programs across the DoD are tasked with

the challenge of how to efficiently allocate their appropriated budgets. Due to the

realities that many weapon system programs spend millions of dollars each year on

numerous projects in an environment of uncertainty makes this a complex problem.

However, improved commitment polices to this allocation problem may help alleviate the

considerable amount of manpower dedicated to tracking the progress of weapon system

cash flow as well as the energy exhausted on year-end financial close-out activities.

Furthermore, commitment policy improvements may also help mitigate some of the

contentious debates that exist between a weapon system program office and an agency

comptroller office regarding cash flow. These potential advantages serve as incentives

for continued research on models and tools that can assist with finding good policies for

the financial execution commitment problem.

The challenge of finding the ideal or optimal commitment cash flow policy can be

described as a sequential decision making problem over time. Although the use of DP as

a tool for solving sequential decision problems that are structured as Markov decision

processes has existed for many years, the more advanced methodologies that are found in

the field referred to as approximate dynamic programming are relatively new. This

137

community provides a new approach to the application of Bellman’s equation in an effort

to mitigate the problems caused by “the curse of modeling” and “the curse of

dimensionality” that plague the traditional DP solution methods. This thesis specifically

examined the nature and complications that are involved in applying the ADP approach

as a unique alternative to the problem of finding the best financial execution commitment

strategy in an acquisition environment for weapon system programs.

Initial findings of this research suggest that ADP is an approach that can be used

to simulate and mimic the financial execution environment of weapons system programs.

Furthermore, the simulation results and graphical outputs provide a degree of verification

that traditional stubby pencil and myopic commitment behaviors are more aggressive

than those using an ADP approach. Recommended ADP commitment policies were

consistently lower than the recommended stubby pencil plan regardless of the sensitivity

settings used on the various expenditure excursions. In several of the scenarios, the ADP

model did not fully commit the entire budget prior to the end of the FY. Thus, this

indirectly implies that under certain expenditure conditions there is room within

appropriated budgets for program managers and decision makers to initiate more work or

projects at the onset of the FY.

5.2 Contributions
The initial objectives of this research were captured by three primary goals. The

first was to build an ADP simulation model that could mimic the financial execution

environment of a weapon system program. The second was to utilize the model to

provide decision makers with recommended commitment policy strategies. Part of

138

developing these commitment policy strategies would entail conducting comparative

analysis between the policy actions resulting from using an ADP approach and those that

a stubby pencil methodology would provide given the same modeling conditions and

assumptions. Lastly, the ADP execution modeling tool would be built to allow for

various types of sensitivity analysis and execution excursions. This last feature would

provide decision makers with a sense of how the recommended ADP commitment polices

would be altered under presumed execution environments.

In an effort to accomplish the established objectives as related to the financial

execution commitment problem, this thesis specifically examined two types of ADP

model designs. The first model used a Q-learning approach. The Q-learning model

creates and learns the values of Q-factors which represent a viable state-action pairing

within the decision system. The main advantage of Q-learning is that the output consists

of a visual |S| ∙ |X| Q-matrix. The data pattern of the Q-matrix serves as an indication as

to whether or not the logic of the model is structured properly in that the simulation is in

fact visiting state-action combinations that are feasible. However, given the storage and

computational demands of maintaining the Q-matrix throughout the simulation process

makes using this approach for larger problems intractable. Nonetheless, Q-learning

served as a solid foundation with which to build the second ADP model which is referred

to as value function learning. The value function learning model was able to produce

expectations of the value function in the form of Bellman’s equation that were easier to

manage and took the form of a single vector of dimension |S|.

139

Both models incorporated the use of several ADP techniques. One feature was to

integrate the use of exploration and exploitation (learning). In both models, a certain

number of simulation iterations were dedicated exclusively to exploration. While

conducting exploration, the model is allowed to visit states and state-action pairings that

might be good but, would otherwise not be visited if Bellman’s equation were

implemented using a strict minimum operand. As such, the model is allowed to learn

information regarding the values of states or state-action pairings that a decision maker

may wish to visit. Additionally, both the Q-learning and value function learning models

were built around the post decision state variable as described in Powell (2007). This

approach theoretically simplifies the value update process by separating the deterministic

and stochastic components of the simulation as described by the transition function. As

part of determining a stopping criterion for the simulation, mean square error (MSE)

statistics and graphics were used as a method for gauging the convergence of Q-factors

and expectations on the value function.

During the learnt phase, both the Q-model and value function model were able to

provide ADP-recommended commitment policy strategies. These strategies are able to

serve as cross-checks and alternatives to the stubby pencil approach. The comparative

analysis between ADP and stubby pencil showed that the more conservative ADP policy

could potentially improve cash flow efficiency. When compared against stubby pencil,

ADP committed fewer dollars while still meeting the expenditure demands that occurred

during the FY. Furthermore, the ADP policy continued to remain relatively conservative

to the stubby pencil policy regardless of the simulated FY expenditure conditions.

140

The test cases simulated in this thesis involved scenarios that included only a

small collection of projects. The protracted run times incurred precluded any extensive

analysis of test case scenarios involving a sizable collection of projects simultaneously.

However, based on the initial findings one can infer that there exists the possibility of an

ADP policy recognizing significant cash flow efficiencies once the algorithm is scaled to

simultaneously analyze the large numbers of projects that are often contained in a

standard weapon system budget. Under these conditions, the ADP approach possesses

the potential to provide decision makers with a rationale for starting additional projects at

the onset of the FY. Additionally, the decision to fund more projects can be made

without having to take on an unacceptable level of risk that the program will exhaust its

budget prior to the end of the FY.

5.3 Future Research
One of the biggest concerns with the ADP model for financial execution is the

extensive run times required to obtain a reasonable convergence on the Q-factors and

estimates on the expectation of the value function. One method to improve run times that

was used in this research was to reduce the number of attributes within the problem

vector that defined a state-space from [P C O A E] to just [C E]. Nonetheless, this

simplification of the state-space definition still noticeable suffered from excessively long

run-times and the curse of dimensionality. Model run-times increased exponentially for

each additive project that was incorporated into the simulation scenario. Although the

ADP approach does offer improvements on the curse of dimensionality compared to

traditional DP solution methods, the scalability of ADP models for real world problems

141

still remains as a recognized area of ongoing research. ADP techniques referred to as

value function approximations encompass current methodologies that are examining

approaches to address scalability and run-time issues.

Aggregation and function fitting are two types of value function approximation

techniques that are receiving attention as opportunities for further research in the field of

ADP. Aggregation works by lumping together a collection of similar outcome state-

space possibilities into a single state-space result. George et al. (2008) provides a good

overview of the use of aggregation for multi-attribute resource management problems.

Through the use of an allocation parameter to define and narrow the outcome states, the

ADP models presented in this thesis already included a type of aggregation method. The

aggregation method utilized for the ADP financial execution models operates by

effectively rounding the dollar values within the problem vector to the nearest factor of

the assigned allocation parameter.

Function fitting or basis functions are ADP value function approximation

approaches that remove the need to produce “look-up” table results for the state-space

position that was presented in the Q-learning and value function learning models. Using

this method the retained estimated value of the PDS 𝑉�𝑛(𝑆𝑥) is expressed as a basis

function such as the ones shown by Equation 37. Instead of learning estimated values of

the PDS position, through function fitting the algorithm will learn the estimated values of

the coefficient variables captured by the vector �̅�𝑛. The algorithm proceeds by first

obtaining an initial estimate of all viable state-spaces possibilities. Then, during the

successive iterations the algorithm learns the values of �̅�𝑛 by obtaining a least squares

142

solution from �̅�𝑛 = [(𝑋)𝑇𝑋]−1[𝑋]𝑇𝑉�𝑛(𝑆𝑥). Here, the variable X represents the matrix

form of the basis function.

Equation 37: Basis Function Examples

𝑉�(𝑆𝑥) = 𝜃0 + 𝜃1𝑆𝑥 + 𝜃2𝑆𝑥
2

𝑉�(𝑆𝑥) = 𝜃0 + 𝜃1𝑒−𝑆
𝑥 + 𝜃2𝑆𝑥𝑒−𝑆

𝑥
𝑉�(𝑆𝑥) = 𝜃0 + 𝜃1𝑆𝑥
𝑉�(𝑆𝑥) = 𝜃0 + 𝜃1𝑒−𝑆

𝑥

In addition to scalability, there are several assumptions regarding the ADP model

design that are worth re-examining and offer areas for further research. The first is to

consider the implications of having a myopic cost function C(St, xt) definition that is

dependent upon the current simulated month in question. Regardless of the current value

t, the myopic or immediate cost is defined as the delta difference between the cumulative

commitment allocation and the predicted cumulative expenditure needs over a three

month window from time period t until time period t+2. However, due to the common

occurrence of a continuing resolution authority (CRA) most programs are not in a

position to fund three months worth of effort at the initial start of the fiscal year.

A CRA restricts the amount of funding available to weapon system programs

during the earlier months of a fiscal year. These conditions may necessitate the need to

redefine the myopic cost function C(St, xt) such that it measures the delta difference

between cumulative commitments and cumulative predicted expenditures over just a

single month t vice a three month window from t to t+2. This reflects the reality that in

the earlier part of the fiscal year a weapon system program is likely to only have

143

sufficient funding available to cover one month worth of expenses at a time. However, at

some point during the fiscal year the CRA conditions will no longer be in place. At this

point, the definition of the myopic cost function C(St, xt) should switch back to its

original three month designation or for a time period that is consistent with the decision

maker’s priorities. Although an evolving myopic cost function design may not alter the

relationship between the ADP and stubby pencil recommended commitment policies, it is

likely to alter the specific ADP commitment policy produced by the model.

Another opportunity for further research is the manner in which the exploration

phase of the simulation is conducted. As currently designed, the exploration iterations

randomly pick a viable commitment action during each time period t on an equally-likely

basis. The intent of the exploration phase is to allow the model to learn and explore

reasonably good state-space possibilities that otherwise would not be visited using a strict

minimization operand as part of the value update process. The trade-off is that the model

may require longer run times for convergence since the randomness of the exploration

process results in visiting both reasonable good state-spaces as well as some bad state-

spaces. The exploration phase of the ADP model can be more efficient by investigating

alternative exploration designs that use a level of selective randomness so that the

simulation process is only visiting reasonably good state-space possibilities and avoiding

the bad state-space options all together. The study of effective exploration designs offers

a rich opportunity for further research within the field of ADP.

Lastly, finding good solution methods to determining effective commitment

policies does extend beyond the realm of purely mathematical modeling. In order to

144

understand this problem holistically, it would be imperative to further examine the

organizational behavior, agency processes, and the various incentive structures that are

all related to making financial commitment determinations. Some of the unresolved

issues in this area include insight on how long it takes a committed amount of funding to

move through the process and translate into expended dollars for any given project. The

ADP model currently assumes that dollars committed in a given month are in fact readily

available for billing and theoretically could be expended that same month. In reality,

there is lag time involved as committed dollars become obligated, accrued, and finally

expended. The amount of lag time is often associated with the specific project in

question or to the unique circumstances of that particular transaction. Additionally, as

described earlier, there are a number of incentive structures at work within the

organization that are antithesis to the objective of overall efficient cash flow for the

agency. The successful implementation of the ADP financial execution model within a

weapon system program office is highly dependent on a thorough understanding of the

organizational processes and institutionalized incentive structures.

5.4 Next Steps
There are a number of specific modeling enhancement considerations for the next

phase of development work on the ADP financial execution simulation tool presented in

this thesis. The realized exogenous information produced by the ADP model is the

simulated actual expenditure amount for month t and the respective updated expenditure

planning figures for month t+1 until the end of the fiscal year. During the simulation

process, the realized actual expenditures are based on the plus-minus parameter assigned

145

to a project. At each individual month, this plus-minus parameter establishes the upper

and lower bounds of a uniform distribution from which the actual expenditure is

randomly selected. However, an alternative method for modeling uncertainty is to

consider the possibility of assigning unique probability distributions to the various

projects. Repetitive projects that are executed each year may have historical expenditure

patterns that can be fitted to a probability distribution function. For those projects that

are new and do not have historical expenditure patterns, one approach would be to work

jointly with industry and contractors to build consensus on realistic expenditure forecasts

and the associated distribution functions that could represent these planning figures.

Another modeling enhancement would include the incorporation of a penalty

factor for each time the ADP recommends a commitment action that involves a new

transaction. In some of the case studies examined, the recommended ADP commitment

policy involved making an additive commitment action one month that was followed by a

corrective de-commitment action the following month. Although this policy may appear

superior since these adjustments reflect a greater sensitivity to the dynamics of the

expenditure requirements, the reality is that program offices tend to want to minimize the

number of de-commitment actions. A simple enhancement to the model would be to

replace any ADP-recommended de-commitment actions with a commitment action of

zero dollars. In general, each de-commitment as well as commitment action involves a

cost associated with the manpower and coordination necessary to complete the

transaction. The bottom line is to adjust the optimization function so that it more

accurately reflects the realities that a commitment policy which achieves the same

146

objectives with fewer transactions is superior to a commitment policy that requires more

transactions.

Lastly, in addition to the research areas mentioned earlier there are a number of

next step techniques and enhancements that may prove beneficial to improve the run-

times of the ADP financial execution model. Currently, the code does not take advantage

of any parallel processing opportunities. Given the resources for parallel processing, a

possible model implementation strategy that may improve run-times would be to separate

the simulation of the financial execution process from the value update process. Here,

the model first simulates an entire twelve-month FY execution cycle from a set

Ω𝑛containing exogenous information for all time periods t = 1 through t = 12. Then the

model performs the value update process for each of the PDS positions visited during the

twelve month cycle simultaneously. In theory, this update approach is plausible as long

as the simulation process never visited the same PDS twice during a single iteration.

Furthermore, removing de-commitments as an action choice from the model will greatly

improve the odds of satisfying this conditional.

Lastly, there are some relatively simple Matlab code adjustments that may

provide further improvements on run-times. The first adjustment would be to switch out

several of the matrix update and storage subroutines from a sequential search design to a

binary search design. Although the impacts on problems with small state-space sizes

could be negligible, there may be noticeable differences when applied to larger scale

problems. Another simple modification would include the consistent use of pre-

allocation commands that are used to set aside the memory requirements for any of the

147

matrices used in the ADP algorithm. Finally, one can further improve run-time

performance through the use of vectorization of the for loop statements within the Matlab

platform.

The research presented in this thesis provides an initial first step to considering

the problem of finding efficient cash flow commitment policies for weapon system

programs using a new and untested approach. First hand exposure to the processes and

experiences within the Missile Defense Agency (MDA) served as the framework and

motivation for constructing the ADP commitment policy model. It is the intention of the

author to provide an overview of the modeling concept and initial findings to

representatives within the Operations Directorate at MDA. The hope is to gain continued

support for further refinement of the ADP model as well as the opportunity to implement

the concept in parallel within a program office’s current execution commitment planning

and forecasting methodologies.

148

REFERENCES

149

REFERENCES

Bellman, Richard. 1954. “The Theory of Dynamic Programming”, Bulletin of the
American Mathematical Society 60, no. 6: 503-515.

Bellman, Richard. 1957. Dynamic Programming. Princeton, NJ: Princeton University
Press.

Bellman, Richard E. and Stuart E. Dreyfus. 1962. Applied Dynamic Programming.
Princeton, NJ: Princeton University Press.

Bertsekas, Dimitri P. 1995. Dynamic Programming and Optimal Control. Nashua, NH:
Athena Scientific

Bertsekas, D. and J. Tsitsiklis. 1996. Neuro-Dynamic Programming. Belmont,
Massachusetts: Athena Scientific

Borkar, V.S. 2002. “Q-Learning for Risk-Sensitive Control”, Mathematics of Operations
Research 27, no. 2: 294-311.

Darken, C., J. Chang, and J. Moody. 1992. “Learning rate schedules for faster stochastic
gradient search”, In Neural Networks for Signal Processing 2, Proceedings of the 1992
IEEE Workshop. Piscataway, NJ. IEEE Press.

Das, Tapas K., Abhijit Gosavi, Sridhar Mahadevan, and Nicholas Marchalleck. 1999.
“Solving Semi-Markov Decision Problems Using Average Reward Reinforcement
Learning”, Management Science 45, no. 4: 560-574.

Defense Acquisition Guidebook. Defense Acquisition University.
Available from https://dag.dau.mil/

Denardo, Eric V. 2003. Dynamic Programming: Models and Applications. Mineola, NY:
Dover Publications, Inc.

Department of Defense (DoD) Financial Management Regulation Glossary
Available From: http://comptroller.defense.gov/fmr/glossary.pdf

https://dag.dau.mil/

150

George, Abraham, Warren B. Powell, and Sanjeev R. Kulkarni. 2008. “Value Function
Approximation Using Multiple Aggregation for Multiattribute Resource Management”,
Journal Machine Learning Research 9, 2079-2111.

Gosavi, A. 2003. Simulation-Based Optimization: Parametric Optimization Techniques
and Reinforcement Learning. Boston, Massachusetts. Kluwer Academic Publishers.

Gosavi, Abhijit. 2005. “Boundedness of Iterates in Q-Learning”, Systems & Control
Letters, no. 55: 347-349.

Gosavi, Abhijit. 2009. “Reinforcement Learning: A Tutorial Survey and Recent
Advances”, INFORMS Journal on Computing 21, no. 2: 178-192.

Howard. R. 1960. Dynamic Programming and Markov Processes. Cambridge, MA. MIT
Press.

Iyengar, Garud N. 2005. “Robust Dynamic Programming”, Mathematics of Operations
Research 30, no. 2: 257-280.

Powell, W.B. 2007. Approximate Dynamic Programming: Solving the Curse of
Dimensionality. Hoboken, NJ: John Wiley & Sons, Inc.

Powell, Warren B. 2009. “What You Should Know About Approximate Dynamic
Programming”, Naval Research Logistics 56: 239-249.

Powell, Warren B. 2010. “Merging AI and OR to Solve High-Dimensional Stochastic
Optimization Problems Using Approximate Dynamic Programming”, INFORMS Journal
on Computing 22, no. 1: 2-17.

Puterman, Martin L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. New York: Wiley-Interscience Publication.

Robbins, Herbert and Sutton Monro. 1951. “A Stochastic Approximation Method”, The
Annals of Mathematical Statistics 22, no. 3: 400-407.

Sutton, R. S. and A. G. Barto. 1998. Reinforcement Learning. Cambridge, MA: MIT
Press.

Tsitsiklis, John N. 1994. “Asynchronous Stochastic Approximation and Q-Learning”,
Machine Learning, no. 16: 185-202.

Tskitsiklis, John N. 2010. “Perspectives on Stochastic Optimization Over Time”,
INFORMS Journal on Computing 22, no. 1: 18-19.

151

Watkins, C.J.C.H. 1989. Learning from Delayed Rewards. Ph.D. Thesis, University of
Cambridge, England.

Watkins, Christopher J.C.H. & Peter Dayan. 1992. “Technical Note: Q-Learning”,
Machine Learning, no. 8:279-292.

Winston, Wayne L. 1994. Operations Research: Applications and Algorithms. Belmont,
California: Duxbury Press.

152

CURRICULUM VITAE

Erich D. Morman obtained a Bachelor’s degree with a double major in mathematics and
economics from the University of Dayton in May 1996. He received his Masters degree
in Systems Engineering and Operations Research from George Mason University in May
2002. From March 1997 until the present he has worked for the Missile Defense Agency
as a support contractor. His professional experience includes the areas of wargaming and
simulation, cost estimating and analysis, and Planning, Programing, Budgeting, and
Execution (PPBE). He currently works in Arlington, VA as a senior analyst for
Electronic Consulting Services, Inc.

	List of Tables
	List of Figures
	List of Equations
	List of Abbreviations and Symbols
	Abstract
	Chapter One – The Problem
	1.1 Problem Statement
	1.2 Execution Definitions
	1.3 State-Space Vector
	1.4 Problem Environment
	1.5 Markov Decision Process
	1.6 Dynamic Programming (DP) Introduction
	1.7 Allocation Parameter
	1.8 Why Use Approximate Dynamic Programming (ADP)
	1.9 Contributions and Structure of Dissertation

	Chapter Two – ADP Concepts and Literature Overview
	2.1 Dynamic Programming Background
	2.2 Problems with Dynamic Programming
	2.3 “Curse of Modeling”
	2.4 “Curse of Dimensionality”
	2.5 The Need for Approximate Dynamic Programming (ADP)
	2.6 Transition Function
	2.7 Bellman’s Equation
	2.8 Sampling the Value Function
	2.9 Value Function Update
	2.10 Q-Learning on the Pre-Decision State
	2.11 Arguments for Using the Post Decision State (PDS)
	2.12 Q-Learning on the Post Decision State (PDS)
	2.13 Value Function Learning Algorithm
	2.14 Q-Learning and Value Function Learning Design Summary

	Chapter Three – The Model Design
	3.1 Perspectives on Data Structures
	3.2 Immediate Cost Function and the ADP Network
	3.3 Subroutines of the ADP Model
	3.4 Complexities Due to Adding Multiple Projects
	3.5 Q-Learning and Value Function Learning Designs
	3.6 Convergence: Alpha-Decay
	3.7 Convergence: Mean Square Error (MSE)
	3.8 Exploration Vs. Exploitation (Learning)

	Chapter Four – Results and Analysis
	4.1 Learnt Phase
	4.2 Comparative Results
	4.3 Collected Data
	4.4 Model Input Examples
	4.5 Model Output Examples
	4.6 Learnt Phase Observations from Test Case #2 – Trial #1
	4.7 Exploration Vs. Exploitation (Learning) Revisited
	4.8 Learnt Phase Observations from Test Case #2 – Trial #3
	4.9 Learnt Phase Sensitivity Analysis
	4.10 Learnt Phase Observations from Test Case #3 – Trial #2
	4.11 Additional Test Cases and Analysis

	Chapter Five – Conclusions, Contributions, Future Research, and Next Steps
	5.1 Conclusions
	5.2 Contributions
	5.3 Future Research
	5.4 Next Steps

	References

