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ABSTRACT 
 
 
 

NOVEL BIOMARKER PANELS FOR NON-ALCOHOLIC FATTY LIVER DISEASE 
AND OTHER OBESITY-RELATED DISORDERS 
 
Sandra J. Page, Ph.D. 
 
George Mason University, 2011 
 
Dissertation Director:  Dr. Ancha Baranova 
 
 
 
 Obesity is on the rise in populations across the world, and represents a major health 

concern. It is a component of Metabolic Syndrome, a collection of risk factors that 

predispose to diabetes and cardiovascular disease. Metabolic Syndrome is often 

accompanied by non-alcoholic fatty liver disease (NAFLD), a spectrum of liver disease 

ranging from simple steatosis, to non-alcoholic steatohepatitis (NASH) and liver fibrosis. 

Currently, the gold standard for NASH and liver fibrosis diagnostics is liver biopsy; thus, 

a non-invasive procedure for detecting and staging NAFLD is greatly needed.  

 The research presented herein involves evaluating various kinds of soluble 

biomarkers and the development of a novel, serum-based biomarker panel for NASH and 

NASH-related fibrosis. The biomarker panel comprises proteins that reflect the disease 

process of NASH and NASH-related fibrosis, including hormones derived from adipose 

tissue (adipokines) and proteins involved in fibrogenesis and cell death. While the sample 

size in this study was small at 79 patients, it is anticipated that subsequent testing of the 

  



panel on larger populations of NAFLD patients will ultimately support its use in clinical 

settings.  

 A second study was conducted with the goal of discovering novel, as-of-yet untested 

biomarkers of NASH and NASH-related fibrosis that may be tied to the deregulation of 

cell signaling pathways in adipose tissue. A previous study used a phosphoproteomic 

approach to discover that several kinase-driven pathways were deregulated in the adipose 

tissue of patients with NASH and NASH-related fibrosis; enrichment analysis showed 

that these pathways were linked to the regulation of cell functions by insulin, as well as 

signal transduction by AKT and PIP3. Subsequent pathway analyses were then conducted 

to identify a set of secreted, soluble proteins associated with these pathways. From this 

set two promising candidates were selected based on extensive literature searches; these 

were the chemokine CCL-2/MCP-1, and soluble Fas ligand. These candidates were then 

tested on a small cohort of patients with NASH and NASH-related fibrosis to determine 

if they had the potential to be diagnostically predictive, and it was discovered that both 

worked reasonably well as biomarkers of fibrosis. Consequently, these molecules may be 

released at abnormal levels by adipose tissue in patients with NAFLD and may in turn 

play a role in fibrogenesis associated with NASH; they would therefore be good 

candidates to test in future development of biomarker panels for NASH-related fibrosis. 

 A third study was undertaken to evaluate the association between levels of various 

soluble molecules and fatigue in patients with NAFLD or hepatitis C. Specifically, I 

correlated self-reported assessments of fatigue dissecting this condition into fatigue 

associated with physical activity (peripheral fatigue) or more global lack of energy and 

  



  

motivation (central fatigue) with measures of inflammation, or with abnormalities of 

glucose and lipid metabolism. The study demonstrated that a substantial majority of 

patients with chronic liver disease report significant peripheral fatigue. This type of 

fatigue was linked to elevated serum levels of IL-6 and IL-8, linking it to an 

inflammatory component, which is not the case for central fatigue. 

 

 



 

 

OVERVIEW 

 

 Obesity has reached epidemic proportions, both in the U.S. and worldwide. The 

World Health Organization reports that in 2005, approximately 1.6 billion adults and 20 

million children under the age of 5 were overweight, and an additional 400 million adults 

were obese (World Health Organization, 2011). Overweight and obesity are expected to 

increase, such that by 2015, the projected numbers of overweight and obese adults is 2.3 

billion and 700 million, respectively. Excessive weight, as determined by body mass 

index, is a significant health concern because it is a risk factor for several chronic 

diseases including cardiovascular disease, diabetes, musculoskeletal disorders (e.g. 

osteoarthritis), and some cancers (e.g. breast and colon). Obesity also predisposes to 

Metabolic Syndrome (MS), a suite of metabolic changes that increase the risk of Type II 

Diabetes (T2D) and coronary heart disease. The guidelines for defining Metabolic 

Syndrome vary by source, but typically include insulin resistance, obesity, elevated levels 

of triglycerides and glucose and decreased levels of HDL-cholesterol in the blood, and 

high blood pressure (Scaglione et al., 2010). T2D may be considered a component of 

Metabolic Syndrome as well (Scaglione et al., 2010). 

 Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of 

Metabolic Syndrome (Marchesini et al., 2001), and is the most common form of chronic 

liver disease in the U.S. and worldwide (Lazo and Clark, 2008). Thus, NAFLD is 
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strongly correlated with T2D (Li et al., 2002), and obesity (Junior et al., 2006), and 

appears to be inextricably linked to insulin resistance regardless of weight (Chitturi et al., 

2002). Although the disease was initially observed predominantly in females who were 

obese and diabetic (e.g. see Itoh et al., 1987), it is now recognized to span multiple 

demographic groups, affecting children and adults, men and women, and various 

ethnicities (Browning et al., 2004; Lavine and Schwimmer, 2004). The prevalence of 

NAFLD has been estimated as high as 30% in the U.S. adult population, 20% in the non-

U.S. adult population, and 2.6% in the pediatric population (Lazo and Clark, 2008; 

Tominaga et al., 1995). Individuals who are obese appear most prone to contracting 

NAFLD; 60-95% of patients with NAFLD are obese, with the morbidly obese having a 

95% prevalence of the disease (reviewed in: Collantes et al., 2004). Likewise, 

approximately 23-53% of obese children have NAFLD.  

 NAFLD represents a spectrum of liver disease that can lead to the development of 

cirrhosis and hepatocellular carcinoma, and thus is potentially lethal (El-Zayadi, 2008; 

Matteoni et al., 1999; Mishra and Younossi, 2007).  Patients with late stages of NAFLD, 

known as NASH and NASH-related fibrosis, are at much higher risk for progression to 

more advanced liver disease than those with the benign form, steatosis (Ekstedt et al., 

2006; Matteoni et al., 1999; Rafiq et al., 2009).  In fact, it is estimated that 32%-37% of 

patients with NASH will progress to fibrosis, 10-20% will develop cirrhosis, and 8-12% 

will die of liver-related conditions (El-Zayadi, 2008; Matteoni et al., 1999; Mishra and 

Younossi, 2007). Thus, diagnosis and management of NAFLD even at its earliest stages 

is of utmost importance. Approximately 3-5% of Americans have NASH, and up to one-
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third have steatosis (Collantes et al., 2004, Browning et al., 2004). Thus, diagnosis and 

management of NAFLD even at its earliest stages is of utmost importance. 

 The research presented herein aims to identify novel serum-based biomarkers for 

NAFLD and for the fatigue associated with chronic liver disease. Chapter 1 presents a 

detailed description of NAFLD including its diagnosis, epidemiology, and pathology. 

Chapter 1 also reviews the biomarkers and biomarker panels for NAFLD and for liver 

fibrosis that have been published to date. Chapter 2 presents a discussion of the methods 

used in this research together with the study aims for the three sets of experiments that 

were conducted. Chapter 3 contains the results of the first set of experiments, in which a 

novel, serum-based biomarker panel for the identification of NASH and NASH-related 

fibrosis was developed, tested and validated. In Chapter 4, the results of experiments are 

presented in which the potential contribution of adipose tissue to NAFLD is investigated, 

with the specific goal of testing two adipose-derived serum proteins as candidate 

biomarkers of NASH and NASH-related fibrosis. Chapter 5 summarizes an investigation 

into whether a targeted collection of cytokines and hormones, measured in sera, could be 

used as representative biomarkers of fatigue related to chronic liver disease. Finally, 

general conclusions based on the results of all experiments are presented in Chapter 6. 
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1:  INTRODUCTION 

 

A. Non-Alcoholic Fatty Liver Disease. 

Definition.  Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by two 

predominant histological features of the liver: over-accumulation of lipids within 

hepatocytes (known as steatosis), and inflammation together with steatosis and evidence 

of cell death, known as steatohepatitis. NAFLD is diagnosed in cases where other causes 

of liver disease, such as viral hepatitis and alcohol abuse, have been ruled out. By 

definition, NAFLD is limited to patients with fatty liver whose intake of alcohol does not 

exceed 30-40 grams per day in men or 20 grams per day in women (Junior et al., 2006), 

although the threshold for “non-alcoholic” varies by study. One study, for example, cited 

a criterion of <40 grams per week (Feldstein et al., 2003) while another used a criterion 

of no more than 20 grams per week (Puljiz et al., 2010). 

 

Pathology. NAFLD encompasses a range of pathologies including (in increasing order of 

increasing severity) steatosis alone (simple steatosis), steatosis with non-specific 

inflammation, non-alcoholic steatohepatitis (NASH), NASH-related fibrosis, and 

cirrhosis (Falck-Ytter et al., 2001; Matteoni et al., 1999; Younossi et al., 2002). All 

stages of NAFLD are defined histologically; Figure 1 illustrates the features that are 

characteristic of each of these stages. Steatosis is diagnosed when 5% or greater of liver  
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Figure 1. Histological images and corresponding superficial views of the liver showing 

(left to right) progression from a healthy state to increasing severity of NAFLD. While 

healthy hepatocytes appear uniform in color and shape, they enlarge as lipids over-

accumulate (steatosis) and nuclei are pushed to the periphery of the cells. NASH is 

characterized by evidence of cell damage and death coupled with steatosis and 

inflammation. Fibrosis develops with the progression of NASH, and can be portal, 

perisinusoidal, or pericellular in its distribution. Reprinted with permission of Dr. 

Birerdinc (Baranova et al., 2010). 
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weight is filled by lipids, whereas NASH is diagnosed when steatosis is accompanied by 

hepatocellular injury and inflammation either with or without fibrosis (Preiss and Sattar, 

2008). In hepatocytes, lipids accumlate in vesicles that displace the cytoplasm; in 

steatosis, the vesicles frequently become so enlarged that they push the nucleus to the 

periphery of the cell; this is known as macrovesicular steatosis. Macrovesicular steatosis 

is graded on a scale of 0 to 4, with 0 representing not present and 4 representing its 

presence in over 2/3rd of the liver. NASH is associated with a number of histological 

features but not all need to be present for the diagnosis of NASH, since combinations of 

histological features are often patient-specific (Sanyal, 2002). Definitions of NASH 

always include steatosis, and then may be based on a combination of (1) ballooning 

degeneration; (2) lobular neutrophilic inflammation; (3) Mallory-Denk bodies; and (4) 

portal, perisinusoidal or pericellular fibrosis. In combination the first three features 

represent necroinflammatory activity in the liver. NAFLD is graded from 1 to 3, with 1 

representing mild necroinflammatory activity and 3 representing severe 

necroinflammatory activity. NAFLD is staged according to the type and extent of 

fibrosis. Stages 1 through 3 represent varying extents of perisinusoidal and pericellular 

fibrosis with or without portal fibrosis, whereas stage 4 represents cirrhosis. Beyond this 

overview, diagnosis of NASH can be somewhat specific to the experience of a given 

histopathologist, and depending on the histological features in question the 

characterization of NAFLD can be relatively consistent or inconsistent among 

histopathologists (Younossi et al., 1998). The lack of standardization has been considered 
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problematic for some time, and some have argued for the development of a standardized 

approach to the diagnosis of NAFLD, and NASH in particular (Bondini et al., 2007). 

Recently, the NAFLD activity score (NAS) has been in use; NAS a scoring system based 

on histological features of NAFLD (excluding fibrosis) designed by the Nonalcoholic 

Steatohepatitis Clinical Research Network (CRN) to help assess, in a standardized 

manner, histological changes in the liver during clinical trials (Kleiner et al., 2005). It 

was validated in a cohort of NASH patients outside the CRN (Hjelkrem et al., 2011) 

however some have critiqued unintended uses of the NAS, specifically finding 

inconsistencies when using NAS thresholds for the diagnosis of NASH in lieu of 

histologic diagnoses (Brunt et al., 2011). 

 Distinguishing NASH from steatosis is crucial since NASH can progress to end stage 

liver disease, whereas steatosis often remains benign (Matteoni et al., 1999; Teli et al., 

1995). For example, in a prospective study of NAFLD patients, Matteoni et al. (1999) 

found that those patients with NASH were more likely to progress to cirrhosis or die of 

liver-related disease than those with milder forms of NAFLD (i.e. steatosis and steatosis 

with non-specific inflammation). Likewise, NASH has been heavily implicated in the 

etiology of cryptic cirrhosis and may lead to hepatocellular carcinoma arising from 

cirrhosis (reviewed in: Starley et al., 2010; Smedile and Bugianesi, 2005). Curiously, 

with the onset of cirrhosis, steatosis often disappears and other histological features of 

NAFLD (e.g. Mallory bodies, perisinusoidal fibrosis) become non-detectable, hence the 

reason many diagnoses of cirrhosis are necessarily labeled “cryptogenic” even though 

NAFLD may be suspected (Sanyal, 2002). 
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 Histologically, alcoholic steatohepatitis and NASH look alike; for example, both 

involve steatosis, fibrosis, and Mallory bodies, and neither is associated with any 

histological feature that is unique to that disease (Itoh et al., 1987). However, it has been 

reported that alcoholic steatohepatitis involves greater degrees of inflammation, 

hepatocellular injury, Mallory bodies, and perisinusoidal fibrosis, whereas in NASH there 

is a greater number of glycogen nuclei (Sanyal, 2002). 

 NAFLD is thought to arise and progress in two major pathological steps, known as 

the “two hits” (Day and James, 1998). The disease begins with the net accumulation of 

lipids in hepatocytes, usually in the form of triglycerides, possibly in reaction to a pre-

existing state of insulin resistance or hyperinsulinemia (Collantes et al., 2004; El-Zayadi, 

2008). Progression to NASH results from a second “hit” to the liver, involving a 

combination of oxidative stress generated by the oxidation of fatty acids, and cytokine 

signaling, particularly by tumor necrosis factor alpha, which contributes both to oxidative 

stress and insulin resistance (Collantes et al., 2004). The second hit is then succeeded by 

a number of events resulting in hepatocyte injury, inflammation, and fibrosis (Chitturi 

and Farrell, 2001). Apoptosis is an important component of NASH and also is 

mechanistically linked to the progression of fibrosis, therefore forming another 

dimension of the second hit. 

 Beyond the “two-hit hypothesis,” the pathogenesis of the disease is not well 

understood for several reasons. First, definitive diagnosis of NAFLD is based on liver 

biopsy, an invasive procedure that precludes the ability to conduct population-based 

studies (Browning and Horton, 2004).  Cohort and serial biopsy studies are typically 
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limited in scope due to short-term follow-up and selection bias during biopsy (Day, 

2005). The subjectivity of diagnosis is also problematic. Typically, NAFLD is diagnosed 

and staged based on the histological features of a biopsy specimen, as interpreted by a 

hepatopathologist. Although the histological features associated with steatosis and NASH 

are well defined, the minimum diagnostic criteria used by pathologists to differentiate 

NASH from steatosis (e.g. the minimal amount of fat necessary to diagnose NASH; the 

presence or absence of hepatocyte ballooning) are not standardized, despite attempts to 

prioritize such criteria (Hubscher, 2006; Neuschwander-Tetri and Caldwell, 2003; Ratziu 

et al., 2009). Moreover, there is variability in the interpretation of histological features 

among pathologists. Younossi et al. (1998) measured intraobserver and interobserver 

variability among histopathologists using 19 parameters corresponding to the histological 

spectrum of NAFLD, and found that there was inter- and intraobserver concordance 

within only eight parameters. The parameters in agreement included ballooning 

degeneration, glycogen nuclei, the extent and location of steatosis, and perivenular 

fibrosis, whereas parameters of inflammation were not consistently scored. Thus, 

Younossi et al. concluded that only some histological features of NAFLD are uniformly 

interpreted by pathologists. Unfortunately, non-histological diagnostic markers that might 

be used in concordance with a biopsy-based diagnosis do not exist, which is particularly 

problematic when the liver exhibits unspecific or ambiguous looking lesions (Ratziu et 

al., 2009). 

 

9 
 



Challenges of Non-Invasive Diagnosis. One of the most challenging aspects of 

diagnosing NAFLD is that it is typically asymptomatic despite the fact that about half of 

all patients exhibit hepatomegaly, or enlarged liver (Collantes et al., 2004; Sanyal 2002). 

The few complaints that are associated with NAFLD include fatigue, general malaise, 

and upper right quadrant abdominal pain. Only advanced stages of the disease produce 

more telltale signs of liver dysfunction, such as jaundice and ascites. If a patient has risk 

factors for NAFLD, serum levels of the aminotransferases, aspartate- and alanine 

aminotransferases (AST and ALT, respectively) may be assessed. These enzymes are not 

unique to hepatocytes, however when serum levels of AST and ALT exceed normal 

ranges they may be considered indicative of NAFLD, assuming other sources of liver 

disease (e.g. hepatitis B or C infection, excessive intake of alcohol) have been ruled out 

(Clark et al., 2003). Nonetheless, aminotransferases cannot be used as definitive 

biomarkers of NAFLD because (1) they do not correlate well with the progression of 

liver disease (Kallei et al., 1964); (2) many NAFLD patients have normal levels of 

aminotransferases (Browning et al., 2004; Junior et al., 2006; Mofrad et al., 2003); and 

(3) even when aminotransferases are elevated in NAFLD patients, the levels are typically 

mild to moderate (twofold to threefold) and only rarely are as high as 10 to 15 times 

normal (Collantes et al., 2004). Other blood-based indicators of liver function, such as 

bilirubin, do not reach abnormal levels until the onset of cirrhosis or liver failure (Sanyal, 

2002). In patients who are hospitalized, alcoholic steatohepatitis is easily distinguished 

from NASH because it leads to higher bilirubin levels and an AST/ALT ratio of >2, 
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compared to <1 for those with NAFLD; however, for those with modest alcohol 

consumption AST/ALT ratios are similar, making the diseases difficult to distinguish. 

 Currently, liver biopsy is the only means by which NAFLD is definitively diagnosed 

and staged, particularly with regard to distinguishing simple steatosis from NASH 

(Duvnjak et al., 2007). However, liver biopsy poses a small but serious health risk to 

patients, is costly, and is subject to sampling error (Bondini et al., 2007; Cadranel et al., 

2000; Ratziu et al., 2005), making it the “imperfect gold standard.” In rare instances, 

(<0.1% of patients), liver biopsy can be lethal (McGill et al., 1990; Tobkes and Nord, 

1995). Approximately 5% of patients undergoing liver biopsy require immediate 

hospitalization for biopsy-related complications, which are more likely to occur in 

patients with cirrhosis or hepatitis (Perrault et al., 1978). About 1% of patients experience 

post-biopsy hemorrhaging; in some cases severe enough to warrant a blood transfusion 

(Mahal et al., 1981). Hemorrhaging is more likely in patients with histologically defined 

liver disease. This observation is primarily explained by associated clotting abnormalities 

rather than by structural problems with the liver. Pain and hypotension also are typical 

side effects of liver biopsy that can require hospitalization (Janes and Lindor, 1993). 

Thus, a liver biopsy is typically not conducted until there is further evidence of advanced 

disease, such as chronically high aminotransferase levels despite significant lifestyle 

changes, or the presence of obesity, diabetes, or other risk factors for NAFLD (Collantes 

et al., 2004).  

 Non-invasive imaging methods such as ultrasonography, computerized tomography 

(CT) scan, and magnetic resonance imaging (MRI) can be used to detect certain features 
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of NASH. Altogether, imaging methods are better suited to diagnose liver fibrosis as 

compared to liver inflammation or steatosis. In fibrosis, deposition of the ECM leads to 

alterations in liver microstructure that are reflected by an increase in the liver stiffness 

and changes in the blood flow. These changes can be quantified using Transient 

Ultrasound Elastography (Fibroscan), an ultrasound-based technology for quantitatively 

assessing hepatic stiffness that has been introduced in the last several years both in 

Europe and in other parts of the world. Fibroscan measures the stiffness (or elasticity) of 

the hepatic parenchyma using both ultrasound (5 MHz) and low-frequency (50 Hz) 

elastic waves produced by a specialized ultrasound vibrator applied to the body wall and 

coupled with 1D ultrasound imaging that measures the propagation speed of a wave using 

a pulse-echo ultrasound. Since fibrotic tissue is harder than healthy liver tissue, the shear 

wave measurement provides immediate quantitative assessment of the “degree of 

stiffness.” FibroScan was reported to be of value in the diagnosis of fibrosis 

accompanying various liver diseases including hepatitis B and C, alcoholic liver disease, 

and non alcoholic fatty liver disease (NAFLD) (Laharie et al., 2010). Meta-analysis of 

the existing literature, however, indicates that the diagnostic performance of transient 

ultrasound elastography is diminished in patients with early-stage hepatic fibrosis, 

increased fatty infiltration of the liver on biopsy, or high body mass index (≥ 28 kg/m2) 

(Talwalkar, 2010).  

 When used to detect steatosis, non-invasive, imaging methods such as 

ultrasonography, CT scan, and MRI lose sensitivity; for example, ultrasonography and 

MRI are insensitive to degrees of steatosis less than 30% (Junior et al., 2006; Sanyal, 

12 
 



2002). Furthermore, these methods cannot be used to diagnose NASH or diffuse fibrosis, 

and they are difficult to standardize. Differences in sensitivities and specificities can arise 

due to differences in protocol; for example, using a CT scan to detect steatosis, sensitivity 

can range from 54% to 93% depending on the length of time following intravenous 

contrast injection (reviewed in: Sanyal, 2002). Likewise, inter- and intravariability in 

absolute liver attenuation numbers are high among multiple CT scans due to a variety of 

factors including differences in type and calibration of scanners and different regions 

targeted during scans. Sanyal (2002) reviewed the relative performances of these imaging 

techniques and found that while ultrasonography is most sensitive to lipid accumulation, 

when the accumulation is patchy or focal, CT scan and MRI perform better. CT imaging 

is the best method for semi-quantitation and comparative studies. 

 

Treatment. There is no curative treatment for NAFLD; as of yet, pharmacotherapies are 

used only in clinical trials and many are known to generate undesirable side effects 

(Adams et al., 2005; Siebler and Galle, 2006). To slow the progression of NAFLD, 

current treatments involve two strategies: (1) promote weight loss by diet modification 

and exercise, and in some cases also with bariatric surgery or administration of Orlistat, 

an enteric lipase inhibitor; and (2) address insulin resistance with the use of insulin 

sensitizing agents (e.g. metformin, thiazolidinediones) (Adams et al., 2005; Junior et al., 

2006; Mishra and Younossi, 2007). Other medications such as the hepatoprotective agent, 

ursodeoxycholic acid and anti-oxidants (vitamins C and E) have been tested for their 
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ability to restore plasma levels of liver enzymes or alleviate other aspects of NAFLD (e.g. 

steatosis), but their therapeutic value remains unproven. 

 A drawback to these treatment strategies is that they are lengthy, and the duration of 

treatment is uncertain. For example, improvements in biochemical and histological 

indicators of NAFLD were seen from 3 to 23 months after beginning a diet and exercise 

type of intervention, and after 6 months when weight loss was surgically mediated 

(Mishra and Younossi, 2007). Likewise, biochemical and histological indicators of 

NAFLD improved when patients were given drugs to control metabolic abnormalities, 

such as insulin sensitizers and lipid lowering medications, but these improvements were 

seen after one month to one year depending on the drug. The positive effects of vitamins 

C and E, which are thought to protect against cell damage from free radicals, were seen 

after 6 to 12 months in some studies, and were not seen at all in other studies (Collantes 

et al., 2004; Mishra and Younossi, 2007). 

 There are limited surgical options for treating NAFLD. Liver transplantation is 

conducted in cases where the disease has progressed to cirrhosis combined with liver 

failure or carcinoma (Adams et al., 2005), however due to the metabolic and systemic 

nature of the disease, steatosis and steatohepatitis have high rates of recurrence following 

transplantation (Contos et al., 2001). Bariatric surgery appears to reduce or even reverse 

the clinical symptoms of NAFLD; in one study, 82% of patients who underwent bariatric 

surgery showed dramatic improvement in histological features associated with NAFLD, 

including necroinflammatory changes and fibrosis (Dixon et al., 2004). The efficacy of 

these surgeries in improving NAFLD has been attributed to the substantial weight loss 
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experienced by patients. Nonetheless, bariatric surgery is reserved for individuals who 

are morbidly obese (NIH, 1991) and is performed with the primary goal of reducing the 

patient’s weight; thus improvement in liver disease following surgery is a favorable 

outcome but not an implicit goal.  

 

Necessity for the development of NAFLD biomarkers. Given the high prevalence of risk 

factors for NAFLD in the general population and the silent nature of the disease, it is not 

unreasonable to suspect that many cases are undiagnosed. For example, 21% of men and 

27% of women are obese (Mokdad et al., 2001), and it is estimated that ~75% of those 

with obesity may have NAFLD and up to 20% may have NASH (Lazo and Clark, 2008). 

Likewise, over 7% of adults have diabetes mellitus, and weight gain increases the odds 

for developing T2D, regardless of race or gender (Cohen et al., 2009; Mokdad et al., 

2001). The current estimate for the prevalence of NAFLD among diabetics is 30-50% 

(Bellentani et al., 2010). One study found that adults who have been recently diagnosed 

with diabetes mellitus are at increased risk for the development of advanced liver disease 

in the form of cirrhosis, liver failure, or other ailment requiring liver transplant, which 

they attributed to longstanding cases of NAFLD that had gone undetected (Porepa et al., 

2010).  

 Another reason that NAFLD might be undiagnosed in many individuals is the fact 

that insulin resistance (IR) may be overlooked. IR is the main common feature among 

T2D, Metabolic Syndrome, and NAFLD, and is considered the primary driver of NAFLD 

(Bugianesi et al., 2005). In fact, the association between NAFLD and IR is essentially 
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universal: it exists even in lean, non-diabetic patients with NAFLD, in both mild and 

severe cases of NASH, and has been observed across ethnic groups (Chitturi et al., 2002; 

Kruger et al., 2010; Marchesini et al., 1999). However, in clinical settings IR may be 

overlooked, particularly if other, more obvious risk factors for NAFLD (e.g. obesity, 

elevated AST/ALT levels) are lacking. For example, in one study, 16% of individuals 

falling into the most insulin-resistant study group were of normal weight (McLaughlin et 

al., 2004). Likewise, age may predispose to insulin imbalances and in turn, NAFLD. 

Petersen et al. (2003) tested glucose tolerance in healthy elderly and young subjects 

matched for fat mass and lean body mass, and found that the elderly subjects responded 

with slightly higher and significantly higher plasma glucose and insulin concentrations, 

respectively, compared to young subjects. Furthermore, the rate of glucose metabolism 

was 40% lower in the elderly group. Although insulin resistance was not detected in the 

livers of study participants, the elderly group had a 225% higher intrahepatic triglyceride 

content. Thus, is it conceivable that many cases of NAFLD are missed because 

individuals lacking more obvious risk factors for NAFLD are not tested for insulin levels. 

 A biomarker, or biological marker, is a quantifiable biomolecule that could be 

reliably used as an indicator of a certain biological state; e.g. a state of disease. An ideal 

biomarker would detect the presence of disease with high accuracy and be sensitive and 

specific for the disease in question; furthermore, it would be based on measurements 

from tissues collected in a non-invasive manner and it would be sufficiently cost effective 

to be put into routine clinical practice. A serum-based biomarker or panel of biomarkers 

meets these criteria. Serum is processed from blood; it represents the acellular constituent 
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of blood and as such, is easily collected by nurses during patient visits and also easily 

assessed for a wide variety of proteins by immunoassay. Many manufacturers make easy-

to-use immunoassay kits that can be used to measure protein levels in up to 80 samples at 

a time, making patient screening somewhat high-throughput. In assessing patients for 

NAFLD, a biomarker panel incorporating a number of proteins is more likely to be 

successful than a single-endpoint biomarker due to the complexity of NAFLD and the 

fact that NAFLD involves physiological processes not unique to the liver, such as 

inflammation and fibrosis. As outlined in section C of this chapter, a number of efforts 

using one or multiple serum-based proteins as candidate biomarkers of NAFLD have 

been undertaken, with moderate success. It should be noted that targeting proteins rather 

than other types of serum-based molecules offers several advantages, primarily that many 

have already been associated with NAFLD, and there are a wide variety of commercially 

kits available to detect proteins in serum. 

 An ideal setting for a biomarker or biomarker panel for NAFLD would be a 

community health center, where routing testing on large numbers of individuals could 

take place. In these centers, sample collection and laboratory testing could be performed 

by family practitioners or nurses on site. Patients would benefit not only from non-

invasive and accurate assessment of NAFLD status but also from repeated testing to help 

them track disease progress. It is likely that patients with frequent, up-to-date information 

on their disease status will be more motivated to make and maintain the changes in life 

style necessary to prevent the progression of NAFLD than they would be if only 

presented with the prospect of having NAFLD based on liver enzyme measurements or 
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other risk factors. Furthermore, implementation of a NAFLD biomarker panel in such 

settings would more than likely lead to widespread diagnosing of NAFLD, in turn 

enhancing our understanding of the epidemiology of NAFLD. 

  

B. How NAFLD and Obesity are Related  

 Recently, obesity has become recognized as a state of chronic, systemic inflammation 

characterized in part by elevated serum levels of pro-inflammatory cytokines (e.g. tumor 

necrosis factor alpha (TNF-α), interleukin-6 (IL-6)) and other inflammatory factors (e.g. 

C-reactive protein) and decreased levels of anti-inflammatory factors (e.g. adiponectin, 

interleukin-10 (IL-10)) (O’Rourke, 2009; Karalis et al., 2009; Nathan, 2008). 

Upregulation of these secreted factors is due to activation of several inflammatory 

signaling pathways, some of which involve components that also contribute to insulin 

resistance (e.g. Jun N-terminal kinase; reviewed in: Karalis et al., 2009). Exactly how 

obesity, insulin resistance and inflammation are causally linked remains unknown, 

although some clues have been identified. For example, free fatty acids can bind to innate 

immune receptors (e.g. Toll-like Receptor 4) in adipocytes, initiating the release of pro-

inflammatory cytokines (de Luca and Olefsky, 2008; Song et al., 2006). Additionally, the 

release of pro-inflammatory cytokines and adipokines by adipocytes may be a reaction to 

hypoxic conditions caused by hypertrophy and hyperplasia of visceral adipose tissue 

(O’Rourke, 2009;  de Luca and Olefsky, 2008). Cultured adipocytes exposed to hypoxic 

conditions increase their secretion of inflammatory adipokines such as IL-6, leptin, and 

monocyte migration inhibitory factor (MIF), while the secretion of adiponectin, an anti-
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inflammatory adipokine, decreases (Wang et al., 2007). Average adipocyte size plays a 

role as well; Skurk et al. (2007) reported that the secretion of pro-inflammatory cytokines 

interleukin-6 (IL-6) and interleukin-8 (IL-8) are significantly higher in hypertrophic 

adipocytes even after correction for cell surface, whereas the secretion of the anti-

inflammatory factors interleukin-10 (IL-10) and adiponectin are significantly lower or 

had no relationship to adipocyte size, respectively. White blood cells likely contribute to 

the inflammatory process as well. Although macrophages normally occur in adipose 

tissue, the extent of their infiltration is directly proportional to the degree of adiposity 

(Weisberg et al., 2003). Macrophages are thought to be responsible for most of the 

secretion of TNF-α and for some of the secretion of other inflammatory factors from 

adipose tissue (Fain et al., 2008; Fain, 2006; Weisberg et al., 2003). These, and other 

mechanisms allowing expanded adipose tissue to release inflammatory factors have 

significant health consequences; circulating inflammatory factors cause inflammation in 

distant organs and tissues (e.g. liver, bronchial lining and arterial wall), leading to 

progressing conditions such as insulin resistance and atherosclerosis (Nathan, 2008). 

 

Adipose Tissue and NAFLD. An important aspect to the pathology of NAFLD is the role 

of visceral adipose tissue. Adipose tissue is increasingly regarded as an active endocrine 

organ that secretes molecules with paracrine and endocrine function, in addition to 

providing a mechanism for the storage of lipids. The molecules released by adipose tissue 

include adipocyte-derived hormones as well as cytokines, which are released by both 

adipocytes and other cells of the adipose tissue, such as macrophages (Kershaw and Flier, 
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2004). Many of these adipose-derived molecules, collectively known as adipokines (Fain 

et al., 2004), play a role in energy homeostasis or immune response, but are also 

implicated in the development of obesity and insulin resistance (reviewed in: Kershaw 

and Flier, 2004). For example, leptin is secreted by adipocytes in proportion to adipose 

mass and signals energetic sufficiency, thereby suppressing additional energy intake. 

However, in cases of obesity, circulating leptin reaches excess levels and leptin resistance 

occurs. Likewise, interleukin-6 (IL-6) is a pro-inflammatory cytokine released by 

adipocytes, particularly from visceral adipose tissue, that correlates positively with 

obesity, decreased glucose tolerance, and insulin resistance. In fact, a number of pro-

inflammatory cytokines are released by adipocytes and other cellular and matrix 

components of adipose tissue (Fain, 2006; Kershaw and Flier, 2004), and may contribute 

to the chronic inflammatory state characteristic of obesity (Karalis et al., 2009; Nathan, 

2008; O'Rourke, 2009). It has been proposed that the increased circulating levels of pro-

inflammatory cytokines associated with obesity may alter hepatic gene expression 

affecting fatty acid synthesis and metabolism, leading to impaired fatty acid oxidation 

and other metabolic changes that promote steatohepatitis (Delgado, 2008). 

 Previous work in our laboratory has provided strong evidence for the role of pro-

inflammatory adipokines in the progression of NAFLD from simple steatosis to NASH 

(Baranova and Younossi, 2007; Jarrar et al., 2008) as well as the utility of selected pro-

inflammatory cytokines, markers of apoptosis, and adipose-derived hormones in 

predicting NASH (Jarrar, 2008; Younossi et al., 2008). Gene expression profiling in 

obese patients with and without NASH revealed that the adipose tissue of patients with 
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NASH expressed a number of molecules in the TNFα network and soluble serum-

circulating proteins (e.g. CCL26, IL-18, cathepsin B) (Baranova et al., 2007). Gene 

expression analysis also showed that the liver tissue of obese patients without liver 

disease has decreased expression of CCL7/MCP-3, which attracts macrophages during 

inflammation (Baranova et al., 2007). 

 

C. Previously Described Biomarkers of NAFLD and NASH. 

Introduction. For the past ten years or so a large number of studies have been undertaken 

to identify a reliable biomarker or set of biomarkers that could accurately identify 

NAFLD and stages of NAFLD. These biomarkers have been based on a wide variety of 

variables ranging from mRNA and protein expression in tissues, to serum molecules, to 

measures of oxidative stress and to demographic and clinical variables. Miller et al. 

(2011) recently provided a thorough review of these studies, dividing biomarker studies 

into three types of general concept: those using non-targeted approaches, studies of 

association, and algorithm tests. Non-targeted approaches involve techniques such as 

gene or protein microarrays validated by rtPCR and genome-wide association studies, 

with the advantages of novel biomarker discovery and a relative lack of bias; 

disadvantages are that these techniques can be costly and therefore typically involve only 

small study cohorts. In contrast, studies of association compare levels of targeted markers 

between diseased and non-diseased cohorts. These markers have ranged from clinical 

measurements such as circulating levels of liver enzymes (e.g. AST, ALT, and γ-

glutamyltransferase (GGT), to adipokines (e.g. adiponectin, resistin, and leptin), to 
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inflammatory markers (e.g. TNFα, IL-6), to markers of oxidative stress (e.g. oxidized 

LDL). Markers of fibrosis (hyaluronic acid, HA) and apoptosis (cytokeratin-18) also have 

been tested in this context. Algorithm tests involve the development of predictive 

mathematical models for the diagnosis and staging of NAFLD, which are then evaluated 

for performance using area under the curve receiver operating characteristic (AUROC) 

analysis. These tests can be further categorized by diagnosis; specifically targeting 

steatosis, NASH, or fibrosis. Several of these have been tested on relatively large cohorts 

of patients with NAFLD. Miller et al. provide a detailed comparison of 13 of such tests 

which shows AUC values ranging from 0.763 to 0.936 in the training sets. In total, Miller 

et al. reviewed 50 studies reporting reliable biomarkers for NAFLD, excluding studies 

based on imaging techniques and in the pediatric population. A subset of these biomarker 

tests along with their strengths and weaknesses are discussed in more detail below. 

 

Biomarker Panels for NAFLD. Previous efforts to discover and validate a serum-based 

biomarker specific to NAFLD have particularly focused on differentiating NASH or liver 

fibrosis from steatosis. In some cases the biomarker was represented by a single 

biomolecule endpoint, and in others a panel of biomarkers was developed. Those using a 

single endpoint have targeted various aspects of the pathology of NASH, including 

hormones released by adipose tissue (e.g. adiponectin), markers of oxidative stress (lipid 

peroxidation products), apoptosis (e.g. cytokeratin-18 fragments), hepatic inflammation 

(e.g. tumor necrosis factor α), and fibrosis (components of extracellular matrix; reviewed 

in: Bambha and Yee, 2008). However, the drawbacks of single-endpoint biomarkers is 
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that they are either not representative of the liver exclusively, or of NASH to the 

exclusion of other liver diseases. For example, cytokeratin-18 fragments are elevated in 

the serum of patients with other chronic liver diseases, as well as those with non-liver 

specific malignancies (Olofsson et al., 2007; Yagmur et al., 2007). 

 It has been suggested that a panel of biomarkers of NAFLD, combining various 

aspects of the disease process, might prove more reliable than those based on single 

endpoints (Bambha and Yee, 2008). This approach was taken recently by our laboratory, 

in which a preliminary biomarker panel distinguishing NASH from steatosis was 

established (Younossi et al., 2008). The panel comprised a suite of serum proteins 

released from the cells during apoptosis and necrosis, both of which occur in NASH, as 

well as pro-inflammatory cytokines and adipokines associated with the pathogenesis of 

NAFLD. The model was successful in predicting NASH, with a sensitivity and 

specificity of 95% and 70%, respectively, and an area under the ROC curve (AUC) value 

of 0.908, and it performed better than previously reported serum-based biomarkers for 

NASH, which consist of single-endpoint measurements of cytokeratin 18-derived 

antigens (Wieckowska et al., 2006; Yilmaz et al., 2007). However, the limitation of this 

model is that it did not include markers of fibrosis. Although NASH can occur without 

fibrosis, the onset of fibrosis is a stronger indicator of progressive disease that can lead to 

cirrhosis or liver-related death (Matteoni et al., 1999). 

 Interestingly, several biomarker panels for liver fibrosis have been developed and 

validated in the context of NAFLD. An early predecessor is one that came to be known as 

the Original European Liver Fibrosis Panel (OELF), and was based on the serum factors 
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hyaluronic acid (HA), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), and 

aminoterminal peptide of pro-collagen III (P3NP), as well as age (Rosenberg et al., 

2004). This panel was successful at distinguishing the presence of fibrosis vs. no fibrosis 

in patients with alcoholic liver disease and NAFLD; however, the NAFLD cohort 

constituted only 61 of the total 912 patients enrolled in the study. A recent study tested 

the OELF panel in 192 NAFLD patients and showed that the removal of age did not 

compromise model performance, resulting in the Enhanced Liver Fibrosis panel (ELF) 

(Guha et al., 2008). The ELF further improved on the OELF by delineating 3 distinct 

stages of fibrosis: severe, moderate, and none. Similarly, a very large cohort (N = 733) of 

biopsy-proven NAFLD patients was used to design and validate a fibrosis index, named 

the NAFLD Fibrosis Score, based solely on parameters routinely collected in clinical 

settings (Angulo et al., 2007). These parameters included: age, body mass index (BMI), 

AST/ALT ratio, platelet count, and hyperglycemia, and successfully distinguished 

NAFLD patients with and without advanced fibrosis.  

 Although these panels have greatly improved the detection of NAFLD, they all suffer 

from the same shortcoming: modest predictive power. For the NAFLD Fibrosis Score, 

depending on the upper and lower thresholds used, the sensitivities ranged from 51-82% 

and 43-77% for the groups of patients used to build or validate the index, respectively. 

Furthermore, the index failed to categorize 25% of the total study cohort. The results for 

the ELF were similar: when the thresholds for sensitivity and specificity were set to 90%, 

the ELF failed to classify 14%, 38%, and 52% of NAFLD patients with severe, moderate, 

or any fibrosis, respectively. When the ELF was combined with “simple markers” 
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constituting the NAFLD Fibrosis Score, the results improved slightly, increasing AUC 

values by 2, 3, and 5 percentage points to 0.84, 0.93, and 0.98 for the models predicting 

any fibrosis, moderate fibrosis, and severe fibrosis, respectively (Guha et al., 2008). 

 Two biomarker panels designed to detect fibrosis and cirrhosis in other chronic liver 

diseases have been previously tested in the context of NAFLD. One, known as the the 

AST to platelet ratio index (APRI), was designed to detect fibrosis and cirrhosis in 

patients with chronic hepatitis C (CHC) (Wai et al., 2003). For a given patient, the APRI 

is simply calculated as: [(AST ( in IU/L)/ULN)*100/platelet (109 L)], where ULN = 

upper limit of normal (Wai et al., 2003). In CHC patients, the APRI correlates 

significantly with the stage of fibrosis, and distinguishes fibrosis from cirrhosis. 

However, the performance of the APRI is inferior to other biomarker panels (discussed 

below) when applied to NAFLD patients (Cales et al., 2009). Another biomarker panel 

called the FibroMeter was designed to predict the stage and extent of fibrosis in viral and 

alcoholic chronic liver diseases (Cales et al., 2005). While testing the FibroMeter as a 

diagnostic tool for NAFLD patients, the panel was refined and renamed the FibroMeter 

NAFLD, and included the parameters: glucose, AST, ferritin, platelet, ALT, body weight, 

and age (Cales et al., 2009). As demonstrated in 235 NAFLD patients from two medical 

centers, the FibroMeter NAFLD greatly outperformed the NAFLD Fibrosis Score and the 

APRI in predicting significant (mid-stage) fibrosis, with an overall accuracy of 91% 

(AUC = 0.941) vs. 86% for the NAFLD Fibrosis Score (AUC = 0.884, p = 0.008) and 

84% for the APRI (AUC = 0.866, p < 0.001) (Cales et al., 2009). However, all three tests 

performed similarly in cases of severe fibrosis and cirrhosis. The authors concluded that 
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both the stage of liver fibrosis and the relative prevalence of each stage in a given 

population greatly affect test performance. 

  

D. Development of a Biomarker Panel for NASH and NASH-related Fibrosis 

 As described previously, NAFLD is a widespread liver disease that represents the 

manifestation of Metabolic Syndrome, and encompasses a histological spectrum 

beginning with steatosis with or without inflammation, and progressing to NASH and 

NASH-related hepatic fibrosis. In a subset of patients with NASH and accompanying 

fibrosis, chronic liver disease (e.g., cirrhosis, hepatocarcinoma) may develop, potentially 

leading to liver failure (Matteoni et al., 1999). Liver biopsy, the only definitive means of 

diagnosing and staging NAFLD, is an invasive procedure with inherent health risks and 

other drawbacks (e.g., cost); consequently it is only conducted in cases where evidence of 

progressive liver disease is sufficient to warrant its use. A non-invasive, serum-based 

biomarker panel for the diagnosis and staging of NAFLD would be a practical alternative 

to liver biopsy that could be conducted safely and repeatedly on patients with, or at risk 

of NAFLD. None are currently in clinical use but several studies have reported prototype 

biomarkers or biomarker panels which fall into two general categories: those for the 

prediction of NASH (e.g., NASH Diagnostics™ (Younossi et al., 2008); Apoptosis 

Biomarker (Wieckowska et al., 2006)) and those for the prediction of hepatic fibrosis 

caused by NAFLD or other diseases (e.g., OELF and ELF (Rosenberg et al., 2004); 

NAFLD Fibrosis Score (Angulo et al., 2007); APRI model (Cales et al., 2009; Wai et al., 

2003)). The primary drawbacks to these models, when applied to patients with NAFLD, 
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are (1) modest predictive power; (2) failure to encompass more than one stage of NAFLD 

or to target NAFLD specifically; and (3) among tests for fibrosis, a tendency to favor the 

detection of advanced fibrosis over milder forms. Because NASH and NASH-related 

fibrosis are the stages of NAFLD that predispose to progressive liver disease, it would be 

desirable to have a set of non-invasive tools that could identify both of these disease 

states. For such a tool to be clinically useful, it also should be easily collected, disease-

specific, and not cost-prohibitive for widespread use.  

 In this study, an attempt was made to develop a serum-based, non-invasive biomarker 

panel for NASH and NASH-related fibrosis that would not only would reliably detect 

these two stages of NAFLD, but would do so at a high level of performance. We chose to 

develop a panel of biomarkers rather than select single-endpoint markers to improve 

disease specificity, and we analyzed demographic and clinical data in combination with 

laboratory (biomarker) measurements in model development. Our goal was to develop 

the biomarker panel for three possible clinical endpoints: NASH, and NASH-related 

fibrosis, and advanced fibrosis. We also strived to comprehensively measure the disease 

process by including markers reflecting adipose-derived signaling, apoptosis, and 

fibrogenesis. The markers of apoptosis and fibrogenesis chosen for incorporation into the 

biomarker panel were previously successful in other studies; however, the adipose-

derived signaling molecules selected for study were relatively novel candidate 

biomarkers (Younossi et al., 2008). All candidate markers were quantified in serum by 

ELISA or EIA, such that if the panel succeeded in distinguishing NASH and NASH-

related fibrosis from benign forms of liver disease, it could be theoretically put into 
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practice at reasonable medical cost, and will be acceptable for community clinical 

settings. 

  

E. Novel Biomarkers of NAFLD Reflecting the Role of Adipose Tissue 

 There is a strong association between obesity and NAFLD; in fact, the occurrence of 

NAFLD is strongly correlated with anthropometric indices of body size and visceral body 

fat including BMI, waist-to-hip ratio, and waist-to-height ratio (Jiang et al., 2010). The 

biological underpinnings of this relationship are unknown, although immune factors as 

well as imbalances in adipokine secretion (Krawczyk et al., 2010) are widely implicated.

 A recent study used a proteomic approach to examine whether cell signaling events in 

adipose tissue were differentially regulated in patients with and without NAFLD, and 

specifically whether phosphorylated forms of signaling molecules (indicating activated 

pathways) were useful in predictive models for NASH and NASH-related fibrosis 

(Younossi et al., 2010). This study found that factors in the insulin signaling pathway, 

specifically AKT1 and IRS1, were significant predictors of NASH when integrated into a 

model that also included clinical and demographic data. NASH-related fibrosis was not 

as well predicted by phosphoproteomic data regardless of whether or not protein 

phosphorylation levels were combined with demographic and clinical data in the 

modeling effort; however of the models developed, the most predictive model for 

advanced fibrosis included GSK3 and cyclic AMP-regulated protein kinase A (PKA). 

Thus, phosphoproteomic markers are useful as predictors of NASH and NASH-related 

fibrosis in the context of multiple regression modeling. For clinical purposes, however, it 
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is of interest to know (1) whether differentially phosphorylated proteins, indicating de-

regulated cell signaling in the adipose tissue of patients with NASH and fibrosis, are 

associated with secreted molecules; (2) whether a selected subset of the pool of secreted 

molecules may be easily measured in human serum and are present at different levels in 

patients with and without NASH and NASH-related fibrosis; and (3) whether such 

serum-based molecules are useful in statistical analyses aimed at distinguishing 

diagnostic patient groups or at developing predictive models for NASH and NASH-

related fibrosis. If molecules meeting these criteria are identified, they may serve as 

useful targets for future studies of biomarkers of NAFLD that may one day be used in 

clinical practice. The current study was designed to investigate this topic. 

 

F. Biomarkers of Central and Peripheral Fatigue in Patients with Chronic Liver 

Disease 

 Fatigue is a symptom common to a broad spectrum of chronic diseases including 

diseases of the intestine, kidney, liver, and lungs; it is a predominant feature of chronic 

fatigue syndrome and is also associated with cancer, metabolic and neurological diseases, 

and vector-borne diseases such as Lyme’s disease. Disease-related fatigue can manifest 

directly from the disease process, or it can be related to indirect factors such as age, sex, 

medications, and the duration of symptoms (reviewed in: Carneiro et al., 2011). Chronic 

fatigue is particularly debilitating in that its effects can be physical, cognitive and even 

social in nature; it is associated with pain, stress, sleep deprivation, anemia, and 
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infections, and can lead to emotional difficulties that reduce quality of life, including 

depression and diminished self-esteem. 

 A number of liver diseases are associated with fatigue including NAFLD (Raszeja-

Wyszomirska et al., 2008), alcoholic hepatitis (Sass and Shaikh, 2006) hepatitis A, B, C 

and E (Wilkins et al., 2010; Jacobson et al., 2010; Terzic et al., 2009; Lee et al., 2008), 

and primary biliary cirrhosis (Abbas et al., 2010). Ongoing study and treatment of 

patients by the Center for Liver Diseases (Fairfax INOVA Hospital, Annandale, VA) has 

allowed insight into the nature of fatigue associated with chronic liver diseases. In 

chronic hepatitis C (HCV), for example, patients often present with listlessness, lack of 

motivation, sleep and mood disorders, and a global (overall) sense of loss of energy. 

Fatigue may persist after treatment for the virus has been completed and liver tests and 

viral load have improved or normalized. This has led to the belief that fatigue is not 

necessarily a result of severity of liver involvement as measured by abnormal enzymes, 

nor is it a correlate of viral load. No adequate explanations for HCV-related fatigue have 

been established, but some reports suggest there are abnormalities of the neuroendocrine 

pathways associated with regulation of cortisol and the stress response (Swain, 2000; 

Swain and Maric, 1995). Alterations in circulating cytokine levels also have been 

implicated in HCV-related fatigue, and the adipokine leptin as well as its secretogogue 

TNFα have been associated with the severity of fatigue in chronic HCV (Piche et al., 

2002). In a recent study, measures of fatigue based on the Fatigue Impact Scale 

questionnaire were significantly correlated with plasma leptin levels even after adjusting 

for fat mass (Anty et al., 2011). The same study also found that serum levels of total and 
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free L-carnitine, an endogenous compound involved in lipid metabolism, were inversely 

correlated with the severity of fatigue, suggesting that L-carnitine supplementation could 

alleviate fatigue in patients with chronic liver disease. 

 Metabolic abnormalities, liver disease, and fatigue certainly appear to be linked. 

Many patients with metabolic syndrome and NAFLD suffer from fatigue (Newton, 2010; 

Raszeja-Wyszomirska et al., 2008). A 2010 study investigating the relationship between 

metabolic syndrome and chronic fatigue syndrome (CFS) found that Americans with CFS 

are twice as likely to have metabolic syndrome and furthermore that there is a graded 

relationship between the two diseases, such that the addition of each factor contributing 

to metabolic syndrome is associated with a 37% increase in the likelihood of having CFS 

(Maloney et al., 2010). The number of factors contributing to metabolic syndrome also 

correlates with the severity of fatigue in CFS patients. In NAFLD, fatigue is reported to 

be a significant problem that is associated with daytime sleepiness and autonomic 

dysfunction (Newton, 2010). About half of patients with NAFLD have mild cognitive 

impairment while almost the remaining half have more severe cognitive impairment, 

characterized by problems with memory and concentration. NAFLD patients also have 

reduced physical activity (Newton, 2008). Interestingly, NAFLD-related fatigue does not 

correlate with the degree of liver damage or with insulin resistence, nor is it related to 

hepatic encephalopathy (Newton, 2010). At the Center for Liver Diseases, fatigue in 

patients with NASH is often reported as difficulty performing physical activity and in 

sustaining daily routines. NASH is thought to be the result of persistent fatty infiltration 

in the liver that progresses to liver fibrosis as a result of inflammation secondary to the 
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presence of fat. Metabolic problems lead to abnormalities of energy production and are 

associated with fatty infiltration of mitochondria, relative insulin resistance, glucose 

intolerance, dyslipidemia and an abnormal inflammatory profile (e.g. C-reactive protein, 

pro-inflammatory cytokines). Thus, the abnormalities of the metabolic and inflammatory 

profiles may contribute to the fatigue associated with NASH. 

 Despite fatigue’s significance to patients, its mechanisms or biological characteristics 

have not been fully understood. Studies exploring the quality, intensity and 

characteristics of fatigue use a variety of objective and self-report measures, whose 

validation and sensitivity are not fully established. As a result, there is often conflicting 

data reported about associations with, and causes of fatigue.  There has been discussion 

and increasing acceptance in the literature that fatigue can be defined as central or 

peripheral. Central fatigue occurs when physical or mental activities are difficult to 

initiate or sustain; whereas peripheral fatigue describes reduced muscle function resulting 

from organ or system, but not cerebral, over-activity (Gerber, 2010). Treatments for each 

type of fatigue differ, therefore it is important to be able to properly distinguish the 

features of fatigue reported by patients. The discovery of an accurate and objective 

biomarker panel that could distinguish central and peripheral fatigue and be standardized 

for use in clinical settings has the potential to greatly improve patients’ quality of life, in 

that fatigue and associated systemic symptoms may be alleviated by targeted 

interventions (Newton, 2010). 

 This study investigates the use of serum biomarkers in a population of patients with 

two common forms of chronic liver disease, NASH and HCV, who frequently have 
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disabling fatigue. The definitions we propose to use are that central fatigue is the failure 

to initiate and/or sustain attention intensive tasks and activities requiring self-motivation; 

and that peripheral fatigue is a decline in physical performance resulting from inadequate 

cardiorespiratory, muscle metabolic and physiological function. The biomarker panel to 

be constructed will be multi-dimensional and include both objective and self-report 

information. Objective parameters will include serum levels of (1) serotonin, a 

neurotransmitter with many functions including the regulation of mood, sleep, and 

muscle contraction; (2) pro-inflammatory cytokines tumor necrosis factor alpha (TNFα), 

interleukin-6 (IL-6), and interleukin-8 (IL-8), which are controlled through the 

hypothalamic-pituitary-adrenal (HPA) axis and are altered in expression in relation to 

viral infection and chronic fatigue syndrome (Cho et al., 2006; Swain and Maric, 1995); 

(3) C-peptide insulin, a cleaved portion of proinsulin that remains stable in the 

bloodstream; (4) AST and ALT, serum markers of liver function; and (5) glucose; and (6) 

lipids (e.g. total cholesterol, HDL). Measures of physical fitness (e.g. walk distances) as 

well as measures of metabolic output based on answers to standardized questionnaires 

will also contribute to objective measures of fatigue in this study. 
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2:  METHODS AND MATERIALS 

 

A. NASH and NASH-related Fibrosis Biomarker Panel 

Study Aim and Resources. The primary goal of this study was to develop a non-invasive, 

serum-based, diagnostic panel of biomarkers for NAFLD, differentiating NASH and 

NASH-related fibrosis from steatosis (with and without inflammation) and livers with 

minimal histological changes. The fibrosis-, adipose-, and apoptosis-related markers were 

tested in combination with demographic and clinical data for their combinatorial 

sensitivity and specificity to discern NASH, fibrosis, and advanced fibrosis of the liver. 

The panel was validated in an independent cohort of patients with NAFLD and cross-

compared in the same cohort of patients with a number of known NAFLD and NASH 

diagnostic panels previously described in the literature. 

 The study was conducted in collaboration with the Center for Liver Diseases at 

Fairfax INOVA Hospital (Annandale, VA), which is conducting an ongoing study of 

NAFLD that began in 2001. Human serum samples have been collected by the Center 

from histologically-proven patients with NAFLD, and a repository of specimens has been 

assembled. This repository has been made accessible for research, and includes liver and 

adipose tissues as well as fasting serum samples gathered at the time of liver biopsy, all 

codified to retain the anonymity of the donors and stored at -80oC. A subset of liver tissue 

from each patient was histologically processed and read by a single hepatopathologist, 
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who used a standardized approach to stage and grade each sample for steatosis, NASH, 

and fibrosis (see histopathology).  

 Extensive clinical and demographic data were available for all patients. Based on a 

pre-defined data collection form, each patient’s personal and family histories were 

obtained along with information on drug and alcohol use, and the presence of diabetes 

mellitus, hypertension, or hyperlipidemia as defined by clinical diagnosis requiring 

medical therapy. Each patient underwent a physical examination in which height, weight, 

hip and waist measurements were obtained. Laboratory tests included fasting glucose, 

serum aminotransferases (AST and ALT), lipid panel, viral serologies (HbsAg and HCV 

antibody), ceruloplasmin levels, antinuclear antibodies, and iron studies. The data were 

collected for each patient after obtaining informed consent. Patients with evidence of 

excessive alcohol use (≥ 10 g/d), other causes of liver disease (e.g., hepatitis B, hepatitis 

C, autoimmune liver disease) and those receiving treatment with PPAR-γ agonists were 

excluded. The study protocol was approved by the Institutional Review Board of Fairfax 

INOVA Hospital. 

 

Candidate Biomarkers. The candidate biomarkers chosen for testing targeted three 

aspects of the pathology of NAFLD: adipose tissue signaling, cell death, and fibrosis. The 

biomarkers representing adipose tissue signaling included adiponectin and resistin. 

Although these proteins have not been extensively tested as biomarkers of NAFLD, they 

performed well as components of a biomarker panel for NASH alone (Younossi et al., 

2008), and it was of interest to see if they would perform equally well in a new cohort of 
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patients with NAFLD. Given the strong link between obesity and NAFLD and the fact 

that adipose tissue acts as an endocrine organ, particularly in cases of adiposity, it is 

reasonable to suspect that signaling from adipose tissue in obese individuals plays a 

mechanistic role in the development of NAFLD.  

 Two markers of cell death were included in this study; these were total CK-18 (M65 

antigen), reflecting total cell death, and caspase-cleaved CK-18 (M30 antigen), a marker 

of apoptosis. Both have been successfully used as biomarkers of apoptosis in other 

studies, including those of liver disease (Olofsson et al., 2007; Yagmur et al., 2007; 

Younossi et al., 2008). Since subtraction of the serum levels of M30 antigen from serum 

levels of M65 antigen indicates cell death by necrosis, this subtraction was also included 

in the development of predictive models for NASH and NASH-related fibrosis. Finally, 

we included biomarkers of fibrosis; these were specifically, hyaluronic acid (HA), amino-

terminal propeptide of type III collagen (P3NP), and TIMP-1 (Rosenberg et al., 2004). 

 

Approach. A number of steps were required to develop, test, and validate a biomarker 

panel that could be used to differentiate NAFLD patients with NASH and NASH-related 

fibrosis vs. a control group. First, serum from a cohort of NAFLD patients was assessed 

for concentrations of seven candidate biomarkers. These measurements were then paired 

with clinical data for the same patient cohort and the entire dataset was subjected to 

multiple regression analysis in order to develop diagnostic models representing: (1) 

NASH; (2) any hepatic fibrosis; and (3) advanced hepatic fibrosis. The models were 

assessed for predictive power by calculating each model’s sensitivity, specificity, positive 
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and negative predictive values, and receiver operating characteristic (ROC) area under 

the curve (AUC). Finally, the three models were validated by a 10-fold cross-validation 

procedure, and compared to other published biomarker panels for NAFLD. These 

methods are outlined in more detail below. 

 

Patient Cohort. A total of 79 patients were included in this study. All but eight patients 

were morbidly obese (BMI ≥ 40); of the remaining eight, seven were obese (BMI ≥ 30) 

and one was overweight (BMI = 26.7). For each of these patients the following 

demographic and clinical information was available: gender, race, age, height, weight, 

BMI, presence of Diabetes mellitus type II (henceforce abbreviated as “diabetes”), and 

blood levels of triglycerides, total cholesterol, glucose, AST, ALT, and the ratio of AST 

to ALT. Additionally, the diagnosis and stage of NAFLD was available for each patient 

based on liver biopsy. Table 1 shows the numbers of patients falling into each NAFLD 

category (defined in Histopathology). This table displays a matrix rather than a linear 

series of counts because there is overlap among patients falling into the NASH and 

NASH-related fibrosis groups. This overlap is due to the fact that NASH may be 

diagnosed with or without the presence of fibrosis; and conversely, in one case fibrosis 

occurred in the absence of NASH but that patient exhibited steatosis and, therefore, 

remained in the study. Due to the nature of the statistical analysis (specifically, the 

regression component), outcomes such as NASH or fibrosis must be considered 

independently; thus, while a patient may be included in the NASH group, that patient also 

may be included in the fibrosis group if fibrosis was present.  
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Table 1. Patient cohort for the NASH and NASH-related fibrosis biomarker panel study. 

Disease categories are defined in Histopathology. Numbers in italics show the extent to 

which disease categories overlapped. 

 Total in diseased group  Total  in control group 

NASH 40 38 – fibrosis (any) 
2 – no fibrosis 

 39 38 –  controls 
1 – fibrosis (mild) 

      
Any 

Fibrosis 
39 38 – NASH 

1 – no NASH 
 40 38 – controls 

2 – NASH 
      

Advanced 
Fibrosis 

16 all NASH  63 38  – controls 
22 – NASH & mild fibrosis 
2 – NASH & no fibrosis 
1 – mild fibrosis & no NASH 

 

  

 The control group (N = 38) for this study included patients with varying degrees of 

steatosis with or without inflammation (see Histopathology) as well as several who had 

“minimal non-specific changes in the liver.” The control group did not include any 

individuals with entirely normal liver histology, simply because none were available:  the 

vast majority of patients who donated their tissues to the Center for Liver Disease were 

obese or morbidly obese and had compelling medical reasons to suspect liver disease, and 

thus did not exhibit normal liver function. 

Two patients were diagnosed with NASH but not fibrosis and were included in the 

control group for comparisons involving fibrosis; however, it is conceivable that these 

patients had undetected fibrosis due to sampling error during liver biopsy. Therefore, as a 

quality control step, I plotted the serum levels of all seven candidate biomarkers grouped 

by control, NASH only, and any form of fibrosis (Figure 2). The resulting scatterplots 
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demonstrated that for each of the seven biomarkers, it was fair to put the two NASH-only 

patients in the control group when testing for fibrosis because their biomarker values fell 

within the range exhibited by the control group. However, the scatterplots also show that 

for each biomarker, the range of values exhibited by the fibrosis group partially overlaps 

the ranges of the NASH and control groups. That observation, together with how few 

patients presented with NASH alone underscore the importance of fibrosis as a 

component of NASH and demonstrate that, at least from a biomarker standpoint, NASH 

and fibrosis are essentially inseparable. Consequently, it is imperative to include markers 

of fibrosis in the development of biomarker panels aimed at detecting NASH. 
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Figure 2.  Serum levels of candidate 
biomarkers for patients with 
steatosis only (control group), 
NASH only, or any form of fibrosis. 
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Histopathology. Each liver biopsy specimen was fixed in formalin, routinely processed 

for histology, sectioned, and stained with hematoxylin-eosin (H & E) and Masson 

trichrome. All histological slides were read by a single hepatopathologist, Dr. Zachary 

Goodman of the Armed Forces Institutes of Pathology (Washington, D.C.), who was 

blinded to all clinical and demographic data. The slides were reviewed following a 

predetermined histologic grading system. H & E stained slides were used to determine 

the extent of steatosis, which was graded as an estimate of the percentage of tissue 

occupied by fat vacuoles as follows: 0 = none, 1 = <5%, 2 = 6-33%, 3 = 34-66%, 4 = 

>66%. Other histological features evaluated in H & E sections included portal 

inflammation, lymphoplasmacytic lobular inflammation, polymorphonuclear lobular 

inflammation, Kupffer cell hypertrophy, apoptotic bodies, focal parenchymal necrosis, 

glycogen nuclei, hepatocellular ballooning, and Mallory-Denk bodies. Patients who had 

hepatic steatosis (with or without non-specific inflammation) or NASH were considered 

to have NAFLD. NASH was defined as steatosis, lobular inflammation, and ballooning 

degeneration with or without Mallory Denk bodies, and with or without fibrosis (Bondini, 

2007). 

Fibrosis was assessed using Masson trichrome stained slides. Portal fibrosis and 

interlobular pericellular fibrosis were staged as follows: 0 = none, 1 = mild, 2 = 

moderate, 3 = marked. When present, bridging fibrosis was noted as many or few 

bridges. Cirrhosis was identified by parenchymal nodules surrounded by fibrous tissue, 

and was categorized as incomplete or established depending on the degree of loss of 

acinar architecture. Fibrosis was categorized into two groups: (1) none to minimal 
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fibrosis, and (2) advanced fibrosis. The “none to minimal fibrosis” group had no or only 

mild portal or pericellular fibrosis. The “advanced fibrosis” group had at least moderate 

portal or pericellular fibrosis, bridging fibrosis, or cirrhosis.  

 

Measurement of Serum-based Analytes. Fasting serum glucose levels were measured by 

glucose oxidase-based kits (Sigma-Aldrich, MO, USA) according to the manufacturer’s 

protocol. Serum levels of selected markers were measured by Enzyme Linked 

Immunosorbent Assay (ELISA) or Enzyme Immunoassays (EIA), following the 

manufacturer’s protocol in all cases. The overriding principle of each kit was based on 

sandwich ELISA. The kits were purchased from various manufacturers as follows: 

adiponectin, resistin and TIMP-1 were measured using “Quantikine” kits from R & D 

Systems (Minneapolis, MN, USA); HA and P3NP were measured with kits from USCN 

Life (Wuhan, China); and M65 and M30 antigens were measured with kits from Peviva 

(Bromma, Sweden). 

All samples were codified and aliquoted prior to use in assays, and some were diluted 

for use in a particular assay when recommended by the corresponding protocol. Dilutions 

were two-fold, ten-fold, or 100-fold and these were accounted for in the final calculation 

of analyte concentration. Due to the size of the study cohort (N = 79), two assays were 

required per analyte since each assay, conducted on a 96-well plate, could be used to 

assess a maximum of 40 patients. All measurements of samples, standards, controls, and 

blanks were performed in duplicate. Each plate included a standard curve and a blank, 
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consisting of the diluent used to dilute the standards (and samples, when diluted). 

Positive controls were used for quality assurance when provided by the manufacturer. 

The absorbance values were measured with a plate reader (ELx800) at 450 nm, and 

again at 630 nm; absorbance values measured at 630 nm were then subtracted from those 

at 450 nm to account for absorbance of the plate itself, producing a “wavelength 

correction.” Prior to the wavelength correction, the average blank absorbance value was 

subtracted from all other absorbance values for both the 450- and 630 nm readings. 

(Reversing the order of subtractions and performing the wavelength correction first 

followed by subtracting the average blank value produced identical results.) Calibration 

(standard) curves were constructed by plotting the net average absorbances of the 

standards on Y-axis and the concentrations on X-axis; axes were log transformed and 

curve fitting was (usually but not always) conducted using a 4-parameter or spline 

formula, as specified by the manufacturer’s protocol. Concentrations of analyte in each 

sample were calculated from the standard curve using Gen5 software. If samples were 

diluted, the concentrations were multiplied by the dilution factor to calculate the final 

concentrations. The average concentration was calculated for each duplicate pair of 

readings and was used in subsequent analyses. The standard deviation and percent 

coefficient of variation (% CV) also were calculated for each duplicate pair of readings 

and it was observed that for the vast majority of duplicate readings (~36 of every 40 

pairs) in each assay, the % CV was below 10%. 
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Data Analysis. The entire study cohort was divided into sub-cohorts according to the 

following diagnostic comparisons: (1) those with NASH were compared to those without 

NASH; (2) those with any hepatic fibrosis were compared to those with no fibrosis; and 

(3) those with advanced hepatic fibrosis were compared to those with minimal to no 

fibrosis. Each of the comparisons was further analyzed separately. Specifically, for each 

of the sub-cohorts within each comparison, the demographic, clinical, and laboratory data 

were analyzed by calculating the means and standard deviations for all continuous 

variables, and counts and percentages for all categorical variables. Then, two-sample 

statistical tests were performed for each parameter in each comparison. To choose an 

appropriate statistical test, all continuous variables were tested for normality by the 

Shapiro Wilk test; a p-value ≤ 0.05 was considered significant and thus indicative that the 

data came from a non-normally distributed population. For normally distributed data 

comparisons between groups were made by two-tailed, two-sample t-test assuming 

separate (unpooled) variances, and for non-normally distributed data comparisons 

between groups were made by Mann-Whitney U (Wilcoxon rank sum) test. For 

categorical variables, group comparisons were made using the Pearson chi-square test for 

homogeneity except in cases where at least one cell count was < 5; in those cases a 

Fisher’s exact test was performed. A p-value ≤ 0.05 was considered significant in all 

cases. 

In collaboration with the Fairfax INOVA Hospital statistician, Dr. Maria Stepanova, 

multiple linear regression with stepwise, bidirectional selection was used to develop 

predictive models for the occurrence of NASH, hepatic fibrosis, and advanced hepatic 
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fibrosis. This procedure starts with a complete model containing all the predictors 

potentially associated with a dependent variable, and stops when no more improvement 

in data fitting is possible with the addition or removal of any predictor. Here, the 

predictors were the demographic, clinical, and laboratory parameters, and the dependent 

variable was the diagnostic outcome (e.g., NASH). To meet the applicability criteria for 

regression modeling, a data transformation for non-normally distributed variables was 

used. At each step of model design, including variable selection and model training, the 

resulting regression models were the ones with the highest coefficient of determination 

(R2 value). This maximized the portion of variability that could be accounted for by the 

models and the likelihood that future outcomes would be correctly predicted by the 

models.  

The stability of the variable selection process and model design were verified at each 

step in a series of tenfold cross-validation (10-CV) experiments. In those experiments, the 

complete cohort was partitioned into ten subsamples, and of the ten subsamples, a single 

subsample was retained as the validation data for testing the model, and the remaining 

nine samples were used as training data. Using the predictors obtained from the model 

with the highest R2 value, multiple regression was run on the training set to generate new 

beta-values, and the betas were then used on the validation set to calculate diagnostic 

outcomes (e.g., NASH). The outcomes were then compared against the true diagnoses. 

This process was repeated ten times, with each of the ten subsamples used exactly once 

as the validation data. The predictive power of the developed models, namely the 

sensitivity, specificity, positive and negative predictive values, and the area under the 
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ROC-curve (AUC) with 95% confidence intervals were measured for each resulting 

model after completion of the 10-CV procedure. 

Parametric and non-parametric tests as well as tests of normality were performed 

using Mystat: a Student Version of Systat (v.12). Chi square- and Fisher’s Exact tests 

were performed using S-Plus (v.8). Multiple regression and the 10-CV experiments were 

executed with Matlab R2007a (The MathWorks, Natick, MA) software, while ROC 

curves and measures of predictive power were generated using MedCalc 

(http://www.medcalc.be/). 

 

Comparison with Previously Reported NASH and Fibrosis Biomarker Panels. For 

validation purposes, and in collaboration with Dr. Stepanova, the biomarker panel 

developed in this study was compared to previously reported, non-invasive biomarker 

panels that have been used to detect NASH or fibrosis from blood samples. This 

validation step was performed by running the previously developed biomarker panels on 

our study cohort and comparing their actual, cohort-specific measures of performance 

(e.g., specificity, sensitivity) with those achieved by our panel. For the prediction of 

NASH specifically, the panels chosen included NASH Diagnostics®, previously 

developed in our laboratory (Younossi et al., 2008) and the Apoptosis Biomarker, 

consisting of the level of cleaved cytokeratin CK-18 (M30 antigen) (Wieckowska et al., 

2006). The three different combinations of the β-coefficients and thresholds for 

distinction between the presence and absence of NASH were selected so that the ruling-in 

threshold corresponded to a sensitivity of at least 90%, the ruling-out threshold had a 
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specificity of at least 90%, and the optimal threshold was selected such that the Euclidian 

distance from the 100% accuracy point on the ROC-curve was minimized. For the 

prediction of any fibrosis and advanced fibrosis, the following previously reported panels 

were tested:  ELF and OELF (Rosenberg et al., 2004), NAFLD Fibrosis Score (Angulo et 

al., 2007), the combined ELF + NAFLD Fibrosis Score (Guha et al., 2009), and the APRI 

model (Cales et al., 2009; Wai et al., 2003). The coefficients for the regression models 

and the thresholds for ruling-in and ruling-out any fibrosis, advanced fibrosis, and NASH 

were those provided by the authors of the models. All models were tested on the study 

cohort by cross validation (as previously described) and p-values were recorded. 

Sensitivity, specificity, and positive and negative predictive values were calculated for 

each of the given thresholds. Additionally, ROC curves were plotted and AUC values 

were estimated for each of the models. 

 

B. Novel Biomarkers of NAFLD Reflecting the Role of Adipose Tissue 

Study Aims and Approach. Due to the strong correlation between the occurrence of 

NAFLD and the amount of visceral body fat (Jiang et al., 2010) it was of interest to 

investigate the prospect that deregulated cell signaling in adipose tissue could result in 

imbalances in secreted molecules that in turn contribute to the pathology of NAFLD. If 

such molecules were identified, they might serve as accurate biomarkers for the 

occurrence of NASH and NASH-related fibrosis. With those ideas in mind, the specific 

aims of this study were as follows: (1) to use the phosphoproteomic data set (Younossi et 

al., 2010) in an enrichment analysis to identify which signaling pathways were most 
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represented by the collection of phosphoproteins, and specifically which pathways and 

constituent components were most likely responsible for differential levels of adipocyte 

signaling between patients with and without NASH and NASH-related fibrosis; (2) to 

identify a collection of secreted molecules closely associated with the pathways of 

interest and from those, to choose two novel candidate biomolecules to be tested as 

biomarkers of NASH and NASH-related fibrosis; (3) to measure serum levels of these 

two candidate molecules by ELISA in a cohort of NAFLD patients that represent a subset 

of the cohort used in Younossi et al. (2010); and (4) to investigate whether diagnostic 

groups are significantly different in their levels of the candidate molecules and whether 

serum levels of the candidate molecules, in combination with demographic and clinical 

data, are useful in predictive models of NASH and NASH-related fibrosis. 

 The resources available for this study were as described in Section A for the NASH 

and NASH-related Biomarker Panel study. Briefly, the study was conducted in 

collaboration with the Center for Liver Diseases at Fairfax INOVA Hospital (Annandale, 

VA) and was approved by the Institutional Review Board of Fairfax INOVA Hospital. 

Study subjects participated with informed consent and donated serum, liver and adipose 

tissues as part of the ongoing study of NAFLD. These patients had histologically-proven 

NAFLD as interpreted by a single hepatopathologist and did not exhibit other signs of 

liver disease or excessive alcohol use, and did not use pharmaceuticals that would 

interfere with studies of liver disease. Demographic and clinical data were collected for 

each patient, as outlined in Section A. 
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Patient Cohort. A total of 39 patients were initially included in the study; however two 

were discovered to have fibrosis in absence of steatosis or NASH and therefore may not 

have belonged in the NAFLD cohort, and were omitted from further analysis. Of the 

remaining 37 patients, most (N = 31) were morbidly obese (BMI ≥ 40), five were obese 

(BMI ≥ 30), and one was overweight (BMI = 28.2). For this study, detailed histological 

information was available for each patient including (1) stage of portal and pericellular 

fibrosis; (2) grade of inflammation including portal inflammation, lobular 

lymphoplasmocytic inflammation, and lobular Kuppfer cell hypertrophy; and (3) grade of 

ballooning degeneration. The diagnostic data available for this cohort included the 

diagnoses of NASH and NASH-related fibrosis. Additionally, I created an “advanced 

fibrosis” category for instances where either portal or pericellular fibrosis exceeded stage 

1. The demographic and clinical data associated with this patient cohort included gender, 

race, age, BMI, presence of Diabetes mellitus type II (henceforth abbreviated as 

“diabetes”), hypertension, or hyperlipidemia, platelet and white blood cell counts, and 

serum levels of AST, ALT, albumin, bilirubin, hemoglobin, glucose, triglycerides, total 

cholesterol, and high-density lipoprotein (HDL).  

 Table 2 shows the numbers of subjects in each diagnostic category (for definitions see 

Histopathology, Section A). As in the previous study there was overlap among patients 

falling into diagnostic groups. All patients with NASH had at least mild fibrosis in the 

form of portal or pericellular fibrosis, and six patients had both portal and pericellular 

fibrosis. Ten “control” patients without NASH were diagnosed with fibrosis, however in 

all cases the fibrosis was portal in nature and arguably not as characteristic of NASH as is 
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pericellular fibrosis, which is associated with NASH in adults (Hall and Kirsch, 2005). A 

large proportion (86%) of the study cohort had some form of fibrosis; of those, twelve 

had pericellular fibrosis and the remainder had portal fibrosis. In the advanced fibrosis 

group, two patients had stage 2 pericellular fibrosis and four had stage 2 portal fibrosis. 

Only three of the six members of the advanced fibrosis group had NASH; those without 

NASH had portal fibrosis. The remaining control group for the study comprised five 

patients with low grade (1 or 2) steatosis only. All patients in the study cohort had some 

degree of steatosis, however. Additionally, all but one had some degree of lobular 

inflammation, and none had bridging fibrosis or cirrhosis. 

 

Table 2. Patient cohort for the study of novel adipose-related biomarkers. Disease 

categories are defined in Histopathology (Section A). Numbers in italics show the extent 

to which disease categories overlapped. 

 Total in diseased group  Total  in control group 

NASH 22 22 – fibrosis (any) 
0 – no fibrosis 

 15 10 –  fibrosis (any) 
5 – steatosis only 

      
Any Fibrosis 32 22 – NASH 

10 – no NASH 
 5 5 – steatosis only 

0 – NASH 
      

Advanced 
Fibrosis 

6 3 – NASH 
3 – no NASH 

 31 19 – NASH & mild fibrosis 
7 – mild fibrosis, no NASH 
5  – steatosis only 

 

 

Histopathology. The histological examinations of liver specimens as well as diagnoses 

and staging of NAFLD for this study were as described in Section A, as the samples used 
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in this study were drawn from the Center for Liver Disease’s repository for the ongoing 

study of NAFLD. 

 

Pathway Analysis. To identify secreted molecules that may be released by adipose tissue 

and tested as serum-based biomarkers for NASH and NASH-related fibrosis, enrichment 

analyses coupled with group statistical comparison of phosphoprotein expression in 

adipose tissue between patients with and without NASH and fibrosis was conducted. Two 

software packages, MetaCore software (GeneGo, Inc.) and Pathway Studio software 

(Ariadne Genomics), were used to determine (1) which signaling pathways were most 

significantly represented by the collection of phosphorylated proteins tested in the 

publication by Younossi et al. (2010); (2) which components of those pathways were 

most responsible for potential differences in adipose tissue signaling between patients 

with and without NASH; and (3) to identify a collection of secreted molecules that could 

be linked to the pathways identified in step 1, with particular regard to the 

phosphoproteins that were significant predictors in models predicting NASH and NASH-

related fibrosis. Because this analysis was feedback-driven and therefore somewhat 

iterative, details on how the analysis was conducted are given in Chapter 4 along with the 

corresponding results. 

 

ELISAs.  Serum levels of CCL-2 were measured by the Human CCL2/MCP-1 

Immunoassay Quantikine ELISA kit, while serum concentrations of sFasL were assessed 

using the Human Fas Ligand/TNFSF6 Quantikine ELISA kit; both from R & D Systems 
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(Minneapolis, MN). All measurements were performed in duplicate, and absorbance 

readings at 450 nm were made using an ELx800 plate reader. No samples were diluted 

prior to performance of an assay, and the manufacturer’s instructions were followed. 

Other quality control steps (e.g. wavelength correction) as well as the calculation of 

standard curves were as performed as previously described. 

 

Statistical Analyses. The statistical approach for this study followed that used in the 

previous study; however, cross validation and ROC curve analysis were not performed. 

Briefly, the entire study cohort was divided into sub-cohorts according to the following 

diagnostic comparisons: (1) those with NASH were compared to those without NASH; 

(2) those with any hepatic fibrosis were compared to those with no fibrosis; and (3) those 

with advanced hepatic fibrosis were compared to with minimal to no fibrosis. Within 

each sub-cohort, group statistical comparisons were conducted for all demographic, 

clinical, laboratory, and histological variables. To choose an appropriate statistical test, 

all continuous variables were tested for normality by the Shapiro Wilk test; a p-value ≤ 

0.05 was considered significant and thus indicative that the data came from a non-

normally distributed population. For normally distributed data comparisons between 

groups were made by two-tailed, two-sample t-test assuming separate (unpooled) 

variances, and for non-normally distributed data comparisons between groups were made 

by Mann-Whitney U (Wilcoxon rank sum) test. For categorical variables, group 

comparisons were made using the Pearson chi-square test for homogeneity except in 

52 
 



cases where at least one cell count was < 5; in those cases a Fisher’s exact test was 

performed. No statistical test was performed in cases where a cell count was 0.  

 In addition to group comparisons, multiple linear regression using stepwise 

bidirectional selection was performed to identify predictive models for the diagnostic 

outcomes of NASH, any hepatic fibrosis, and advanced hepatic fibrosis. In these 

analyses, it was not possible to use all 26 variables in the data set as potential predictors 

in the models because the study cohort consisted of just 37 patients, and testing 26 

predictors would have increased the risk of “over-fitting” the models to the data set. 

Consequently, the number of variables was reduced to 15 (representing less than half the 

size of the study cohort) and each outcome was tested with the following set of 

predictors:  gender, race, age, BMI, diabetes, hyperlipidemia, AST, ALT, total bilirubin, 

glucose, total cholesterol, triglycerides, HDL, CCL-2, and FasL. Omitted from the 

regression analyses were the histological parameters (e.g. pericellular- and portal fibrosis, 

portal- and lobular inflammation, etc.) since the goal is to develop a serum-based 

biomarker panel; albumin, white blood cell count, platelet count, and hemoglobin since 

these measures are not specific to liver function or to Metabolic Syndrome; and 

hypertension, because data were missing for some patients and consequently these 

patients would have been excluded from the entire regression analysis by the statistical 

software.  

 A p-value ≤ 0.05 was considered significant for all tests. Parametric and non-

parametric tests as well as tests of normality were performed using Mystat: a Student 
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Version of Systat (v.12). Chi square- and Fisher’s Exact tests, as well as multiple linear 

regression were performed using S-Plus (v.8). 

 

C. Biomarkers of Chronic and Peripheral Fatigue in Patients with Chronic Liver 

Disease. 

Study Aims. Fatigue is a common symptom of chronic liver diseases, including non-

alcoholic fatty liver disease (NAFLD) and chronic hepatitis C (HCV). The aim of this 

study was to determine whether, in patients with chronic liver disease, there is a 

correlation between self-reports of physical activity-associated fatigue (peripheral 

fatigue) or more global lack of energy and motivation (central fatigue) with serum levels 

of serotonin and markers of inflammation, or with abnormalities of glucose and lipid 

metabolism. 

 

Patient Cohort. A total of 31 patients participated in the study, with informed consent.  

All patients had chronic liver disease in the form of biopsy-proven NAFLD or HCV with 

viremia, and were untreated. Specifically, 10 and 20 patients were diagnosed with 

NAFLD or HCV, respectively, and an additional patient had both diseases. Ten of the 

patients were diagnosed with Metabolic Syndrome, not all of whom had NAFLD. The 

study cohort had the following demographic and clinical characteristics:  age 52.5 ±6.8 

years, 66.7% male, BMI 32.4 ± 5.5, 26.7% with Diabetes Mellitus, and 0% with 

cirrhosis. Fasting blood samples were obtained and assessed for levels of selected 

cytokines and hormones (IL-6, IL-8, TNF- α, serotonin, and C-peptide insulin), liver 
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enzymes (AST, ALT), glucose, and lipids (triglycerides, total cholesterol, HDL 

cholesterol, LDL cholesterol, and the non-HDL fraction of cholesterol). Five patients 

returned for follow-up visits and the serum from those visits were included in study.  

 

Measures of Fatigue. Self-reports of central fatigue included standardized and valid 

measures of depression (short form of CES-D), vitality/energy (vitality subscale of the 

SF36; transformed to a scale of 0 to 100) and level of activity (Human Activity Profile). 

Maximum activity scores (MAS) from the Human Activity Profile are mathematically 

related to Metabolic Equivalent of Task (MET), a calculation relating physical activity to 

metabolic rate. For this study, MAS values were converted back to MET values to 

provide a more objective measure of physical exertion. 

 For peripheral fatigue, patients were first divided into tertiles by MET value. The 

middle third was omitted from further analysis; the remaining top third (those with MET 

>8.8, representing strenuous activity) and bottom third (those with MET <7.5 

representing less strenuous activity) became “high MET” (i.e. not peripherally fatigued) 

and “low MET” (peripherally fatigued) groups; respectively. Other variables used as 

measures of peripheral fatigue included (1) distance covered within six minutes of 

walking; and (2) Borg scale value. The Borg scale is a standardized, self-report method 

for rating perceived physical exertion. 

 A patient was defined as having central fatigue if they had a CES-D score >7 

combined with a SF-36 vitality index score <45; patients meeting only one of these 

criteria or neither were classified as not having central fatigue. The CES-D score is 
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designed to measure depression and is based on a standardized, self-report form in which 

symptoms of depression are listed. The vitality scoring system within the SF-36 form is 

designed to measure perceived, overall (global) fatigue; e.g., feeling “worn out” and 

“tired.” 

 

ELISAs. Serum levels of IL-6, IL-8, and TNF-α were measured by the Human IL-6 

Immunoassay Quantikine ELISA kit, the Human CXCL8/IL-8 Immunoassay Quantikine 

ELISA kit, and the Human TNF- α Immunoassay Quantikine ELISA kit, respectively; all 

from R & D Systems (Minneapolis, MN). Serum levels of serotonin and C-peptide 

insulin were quantified using the Serotonin ELISA and C-peptide ELISA kits from Alpco 

(Salem, NH). Serum lipid profiles (including glucose concentrations) and liver function 

tests (i.e. ALT, AST, and AST:ALT) were conducted using the Cholestech LDX system 

and associated test cassettes (Inverness Medical, Hayward,CA). In ELISA assays, all 

measurements were performed in duplicate, and absorbance readings at 450 nm were 

made using an ELx800 plate reader. No samples were diluted prior to performance of an 

assay, and the manufacturer’s instructions were followed. Other quality control steps (e.g. 

wavelength correction) as well as the calculation of standard curves were as performed as 

described in the study of the NASH and NASH-related Fibrosis Biomarker Panel. 

 

Statistical Analysis. Tests for normality were conducted on all serum-based variables 

using the Shapiro Wilk test; all variables were non-normally distributed except for LDL 

cholesterol. Consequently, for group comparisons involving LDL cholesterol the two-
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sample, two-tailed student t-test assuming separate variances was used, and correlations 

were assessed by Pearson correlation coefficient. For all other variables, group 

comparisons were made by Mann-Whitney U or Kruskal Wallis test, and correlations 

were assessed by Spearman Rho. Medians and quartiles, or means and standard 

deviations are provided for non-normally distributed- and normally distributed variables, 

respectively. Statistical tests were performed using Mystat: a Student Version of Systat 

(v.12); however, since this software does not provide p-values for Spearman coefficients, 

Spearman rho correlations and associated p-values were computed using an on-line 

calculator (http://faculty.vassar.edu/lowry/VassarStats.html). The criterion for 

significance for all statistical tests was 0.05. 
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3:  NASH AND NASH-RELATED BIOMARKER PANEL 

 

Results. 

Predictors of NASH. Table 3 shows all demographic, clinical, and laboratory data and 

the outcomes of group statistical comparisons for patients with and without NASH. Not 

surprsingly, liver fibrosis was overwhelmingly more prevalent in NASH patients than 

those without NASH; namely, 95% of patients with NASH had some degree of fibrosis 

and 40% had advanced fibrosis. One patient in the non-NASH group had stage 1 

pericellular fibrosis (i.e., mild fibrosis). The clinical attributes of the NASH group were 

in accordance with known risk factors for NAFLD; The occurrence of diabetes (p = 

0.035), weight (p = 0.009), and AST- and ALT levels (p = 0.002 and 0.007, respectively) 

were significantly higher in the NASH group as compared to non-NASH cohort. 

Furthermore, NASH patients had slightly higher BMI than non-NASH patients but not 

significantly (p = 0.06). The NASH group predominantly consisted of males  (p = 0.004). 

NASH patients also had significanly lower total cholesterol levels (p = 0.041) relative to 

the non-NASH group. The NASH group also was significantly taller (p = 0.037), most 

likely due to male prevalence. Regarding the parameters reflecting adipose tissue 

signaling and fibrosis, NASH patients had significantly higher serum levels of M30 

antigen (p < 0.001), TIMP-1 (p < 0.001), P3NP (p < 0.001), and HA (p = 0.001) than 

non-NASH patients.  
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Table 3. Demographic, clinical, and laboratory data for patients with and without NASH. 

Entries are counts for discrete measures (with percentage of group total given in 

parentheses) or mean ± S.D. for continuous measures. A p-value of ≤ 0.05 was 

considered significant. Significant results are shown in bold text. Chi  = chi square test of 

homogeneity; FE = Fisher’s exact test; MW = Mann-Whitney U test; 2T = two-sample t-

test (2-tailed). 

 NASH no NASH P-value Test 
N 40 39   
Fibrosis 38 (95%) 1 (3%) < 0.001 FE 
Advanced fibrosis 16 (40%) 0 (0%) < 0.001 FE 
Diabetes 14 (36%) 5 (13%) 0.035 Chi 
Female 25 (63%) 36 (92%) 0.004 Chi 
Caucasian 28 (72%) 26 (67%) 0.806 Chi 
Age 44 ± 10 41 ± 10 0.137 MW 
Height (cm) 170 ± 10 166 ± 8 0.037 2T 
Weight (kg) 141 ± 31 127 ± 24 0.009 MW 
BMI 49 ± 9 46 ± 6 0.060 MW 
AST (U/L) 33 ± 24 21 ± 9 0.002 MW 
ALT (U/L) 43 ± 22 30 ± 21 0.007 MW 
AST/ALT 0.81 ± 0.22 0.88 ± 0.35 0.553 MW 
Triglycerides (mg/dL) 174 ± 96 180 ± 88 0.604 MW 
Total cholesterol (mg/dL) 188 ± 33 204 ± 36 0.041 2T 
Glucose (mg/dL) 121 ± 46 106 ± 31 0.388 MW 
Adiponectin (ng/mL) 6644 ± 5420 6709 ± 5145 0.538 MW 
M30 (U/L) 295 ± 219 174 ± 174 < 0.001 MW 
M65 (U/L) 555 ± 406 388 ± 145 0.127 MW 
M65-M30 (U/L) 272 ± 283 257 ± 164 0.651 MW 
Resistin (ng/mL) 11.5 ± 5.4 12.1 ± 6.7 0.988 MW 
TIMP-1 (ng/mL) 206 ± 64 168 ± 24.7 < 0.001 MW 
P3NP (ng/mL) 17.1 ± 6.0 12.9 ± 5.8 < 0.001 MW 
HA (ng/mL) 76 ± 68 41 ± 58 0.001 MW 

 

 

 By multiple regression the following predictive (p = 9.1e – 06) model for NASH was 

identified:  probability of NASH = -0.0298 + (0.3103)[diabetes] + (-0.3224)[gender] +  

(0.0120)[BMI] + (-0.0012)[triglycerides] + (0.0004)[M30] + (0.0007)[M65-M30]. 
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Diabetes and gender are categorical variables and entered as follows:  diabetes, 1 = yes, 0 

= no; gender, 1 = female, 0 = male. The standard deviation and p-value associated with 

each beta value are shown in Table 4. 

 

Table 4. Model for the prediction of NASH. 

 β-value  ± S.D. p-value 
(Intercept) -0.0298 0.3567 0.9337 
Diabetes 0.3103 0.1157 0.0093 
Gender -0.3224 0.1187 0.0084 
BMI 0.0120 0.0063 0.0613 
Triglycerides (mg/dL) -0.0012 0.0006 0.0508 
M30 antigen (U/L) 0.0004 0.0002 0.0835 
M65 – M30 (U/L) 0.0007 0.0003 0.0096 
 

 

 Using an optimized threshold (i.e., the one maximizing sensitivity and specificity) of 

>0.3641, this model has a sensitivity of 79% (95% C.I. 62 – 91%), specificity of 74% 

(95% C.I. 57 – 87%) positive predictive value (PPV) of 73% (95% C.I. 56 – 86%), and 

negative predictive value (NPV) of 80% (95% C.I. 63 – 92%). The AUC value for the 

associated ROC curve is 0.809 (95% C.I. 0.699 – 0.892). The ROC curve is shown in 

Figure 3.  
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Figure 3. ROC curve for the model predicting NASH. The solid line indicates the 

collection of thresholds and their associated sensitivities and specificities, dashed lines 

represent 95% confidence intervals, and the linear, dotted line represents what would be 

observed at random (i.e. if the model had no predictive power). 

 

 To illustrate the importance of including serum proteins in the predictive model of 

NASH, multiple linear regression was repeated using only the clinical variables available 

in this study. A predictive model for NASH emerged as follows:  NASH = –2.674 + 

0.4312[diabetes] + 0.0169[height] + 0.0122[BMI] + 0.0065[AST] – 0.0028[Total 

cholesterol]. Although this model was significant (p = 0.0005) its overall performance 

when validated on an independent cohort of NASH patients was poor, with a sensitivity 
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of 43%, specificity of 79%, PPV and NPV of 75% and 48%, respectively, and an AUC of 

0.541. The ROC curve for this model is shown in the Figure 4. 
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Figure 4. ROC curve for the model predicting NASH based on clinical variables alone. 

 

Predictors of Fibrosis.  Table 5 shows all demographic, clinical, and laboratory data and 

the outcomes of groupwise statistical comparisons for groups of patients with and without 

any hepatic fibrosis. The vast majority (97%) of patients with liver fibrosis also were 

diagnosed with NASH. Forty-one percent of patients with fibrosis had advanced fibrosis. 

As in the NASH comparison, the fibrosis group was more likely to be male (p = 0.013) 

and had significantly lower total cholesterol levels than the no fibrosis group (p = 0.009). 

In terms of risk factors for NAFLD, the fibrosis group had significantly higher weight (p 

= 0.018), AST- and ALT serum levels (p = 0.005 and 0.006, respectively), and were 

nearly significantly higher in BMI (p = 0.051). In terms of adipose signaling and markers 
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of fibrosis, patients with fibrosis had significantly higher levels of M30 antigen (p < 

0.001), TIMP-1 (p = 0.002), P3NP (p = 0.002), and HA (p = 0.001). 

 

Table 5. Demographic, clinical, and laboratory data for groups of patients with and 

without any hepatic fibrosis. Entries are counts for discrete measures (with percentage of 

group total given in parentheses) or mean ± S.D. for continuous measures. A p-value of ≤ 

0.05 was considered significant. Significant results are shown in bold text. Chi  = chi 

square test of homogeneity; FE = Fisher’s exact test; MW = Mann-Whitney U test; 2T = 

two-sample t-test (2-tailed). 

 Fibrosis no Fibrosis P-value Test 
N 39 40   
NASH 38 (97%) 2 (5%) < 0.001 FE 
Advanced fibrosis 16 (41%) 0 (0%)   
Diabetes 13 (34%) 6 (15%) 0.087 Chi 
Female 25 (64%) 36 (90%) 0.013 Chi 
Caucasian 27 (71%) 27 (68%) 0.925 Chi 
Age 44 ± 10 41 ± 10 0.124 MW 
Height (cm) 170 ± 10 170 ± 8 0.069 2T 
Weight (kg) 141 ± 31 128 ± 24 0.018 MW 
BMI 49 ± 9 46 ± 7 0.051 MW 
AST (U/L) 32 ± 25 22 ± 10 0.005 MW 
ALT (U/L) 44 ± 32 29 ± 21 0.006 MW 
AST/ALT 0.79 ± 0.21 0.90 ± 0.35 0.242  MW 
Triglycerides (mg/dL) 171 ± 97 183 ± 88 0.299 MW 
Total cholesterol (mg/dL) 186 ± 31 206 ± 36 0.009 2T 
Glucose (mg/dL) 120 ± 47 108 ± 30 0.744 MW 
Adiponectin (ng/mL) 6646 ± 5470 6703 ± 5110 0.578 MW 
M30 (U/L) 299 ± 225 176 ± 171 < 0.001 MW 
M65 (U/L) 556 ± 417 396 ± 152 0.181 MW 
M65-M30 (U/L) 269 ± 281 261 ± 176 0.610 MW 
Resistin (ng/mL) 11.6 ± 5.5 12.0 ± 6.6 0.957 MW 
TIMP-1 (ng/mL) 205 ± 65 170 ± 27 0.002 MW 
P3NP (ng/mL) 17.0 ± 6.2 13.1 ± 5.7 0.002 MW 
HA (ng/mL) 77 ± 69 41 ± 57 0.001 MW 
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Analysis of the data set by multiple linear regression revealed that the following 

model was significantly (p = 0.00013) predictive of any hepatic fibrosis:  probability of  

Fibrosis = -0.0417 + (0.2593)[diabetes] + (-0.2714)[gender] + (0.0123)[BMI] + (-

0.0014)[triglycerides] + (0.0004)[M30 antigen] + (0.0006)[M65 – M30]. Diabetes and 

gender are categorical variables and entered as follows:  diabetes, 1 = yes, 0 = no; gender, 

1 = female, 0 = male. The standard deviation and p-value associated with each beta value 

are shown in Table 6. 

 

Table 6. Model for the prediction of any hepatic fibrosis. 

 β-value  ± S.D. p-value 
(Intercept) -0.0417 0.3728 0.9113 
Diabetes 0.2593 0.1209 0.0357 
Gender -0.2714 0.1240 0.0323 
BMI 0.0123 0.0066 0.0662 
Triglycerides (mg/dL) -0.0014 0.0006 0.0347 
M30 antigen (U/L) 0.0004 0.0002 0.0918 
M65 – M30 (U/L) 0.0006 0.0003 0.0257 

 

 

 Using an optimized threshold of >0.5689, this model has a sensitivity of 52% (95% 

C.I. 34 – 69%), specificity of 90% (95% C.I. 76 – 97%) positive predictive value of 81% 

(95% C.I.  58 – 94%) and negative predictive value of 69% (95% C.I. 54 – 81%). The 

AUC value for the associated ROC curve is 0.796 (95% C.I. 0.676 – 0.883). The ROC 

curve is shown in Figure 5. 
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Figure 5. ROC curve for the model predicting any hepatic fibrosis. The solid line 

indicates the collection of thresholds and their associated sensitivities and specificities, 

dashed lines represent 95% confidence intervals, and the linear, dotted line represents 

what would be observed at random (i.e., if the model had no predictive power). 

 

 To illustrate the importance of including serum proteins in the predictive model of 

fibrosis, multiple linear regression was repeated using only the clinical variables available 

in this study. A predictive model for fibrosis emerged as follows:  Fibrosis = 0.1757 + 

0.3182[diabetes] + 0.0056[weight] + 0.0061[AST] – 0.0037[Total cholesterol]. Although 

this model was significant (p = 0.0009) its overall performance when validated on an 

independent cohort of NASH patients was modest, with a sensitivity of 74%, specificity 
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of 80%, PPV and NPV of 96% and 33%, respectively, and an AUC of 0.703. The ROC 

curve for this model is shown in Figure 6. 
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Figure 6. ROC curve for the model predicting fibrosis based on clinical variables alone. 

 

Predictors of Advanced Fibrosis. Table 7 shows all demographic, clinical, and laboratory 

data and the outcomes of group statistical comparisons for patients with and without 

advanced fibrosis. All of the patients with advanced fibrosis had NASH, whereas only 

38% of the patients with mild or no fibrosis were diagnosed with NASH, a significant 

difference between the groups (p < 0.001). No demographic factors were significantly 

different between patients with advanced fibrosis and those without it; however, AST 

levels were significantly higher in patients with advanced fibrosis (p = 0.008), and these 

patients were relatively higher in BMI (p = 0.075). In terms of secreted molecules, M30 
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antigen and TIMP-1 were significantly higher in the advanced fibrosis group (p = 0.003 

and 0.001, respectively). 

 

Table 7. Demographic, clinical, and laboratory data for patients with and without 

advanced fibrosis. Entries are counts for discrete measures (with percentage of group 

total given in parentheses) or mean ± S.D. for continuous measures. A p-value of ≤ 0.05 

was considered significant. Significant results are shown in bold text. Chi  = chi square 

test of homogeneity; MW = Mann-Whitney U test; 2T = two-sample t-test (2-tailed). 

 Advanced 
Fibrosis 

mild or no 
Fibrosis 

P-value Test 

N 16 63   
NASH 16 (100%) 24 (38%) < 0.001 Chi 
Fibrosis 16 (100%) 23 (37%)   
Diabetes 6 (38%) 13 (21%) 0.295 Chi 
Female 11 (69%) 50 (79%) 0.569 Chi 
Caucasian 14 (88%) 40 (65%) 0.141 Chi 
Age 44 ± 12 42 ± 10 0.541 MW 
Height (cm) 169 ± 8 167 ± 9 0.609 2T 
Weight (kg) 141 ± 26 132 ± 29 0.142 MW 
BMI 51 ± 9 47 ± 8 0.075 MW 
AST (U/L) 39 ± 31 24 ± 14 0.008 MW 
ALT (U/L) 47 ± 37 34 ± 25 0.102 MW 
AST/ALT 0.88 ± 25 0.83 ± 0.3 0.423 MW 
Triglycerides (mg/dL) 139 ± 36 187 ± 99 0.086 MW 
Total cholesterol (mg/dL) 197 ± 35 196 ± 35 0.957 2T 
Glucose (mg/dL) 109 ± 40 114 ± 39 0.315 MW 
Adiponectin (ng/mL) 8101 ± 7414 6302 ± 4528 0.611 MW 
M30 (U/L) 319 ± 225 210 ± 196 0.003 MW 
M65 (U/L) 685 ± 567 421 ± 203 0.356 MW 
M65-M30 (U/L) 305 ± 337 256 ± 204 0.946 MW 
Resistin (ng/mL) 12.6 ± 5.4 11.6 ± 6.2 0.297 MW 
TIMP-1 (ng/mL) 227 ± 84 177 ± 35 0.001 MW 
P3NP (ng/mL) 16.0 ± 5.2 14.8 ± 6.5 0.235 MW 
HA (ng/mL) 78 ± 73 54 ± 63 0.155 MW 
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 By multiple regression the following significant (p = 6.2e –05) model for advanced 

fibrosis was identified:  probability of Advanced Fibrosis = -0.1760 + (0.2189)[diabetes] 

+ (-0.0014)[triglycerides] + (0.0065)[AST] + (0.0022)[TIMP-1]. Diabetes is a categorical 

variable and entered as follows:  1 = yes, 0 = no. The standard deviation and p-value 

associated with each beta value are shown in Table 8. 

 

Table 8. Model for the prediction of advanced fibrosis. 

 β-value  ± S.D. p-value 
(Intercept) -0.1760 0.1765 0.3225 
Diabetes 0.2189 0.0996 0.0316 
Triglycerides -0.0014 0.0005 0.0084 
AST 0.0065 0.0027 0.0177 
TIMP-1 0.0022 0.0009 0.016 

 

 

 Using an optimized threshold of >0.2442, this model has a sensitivity of 87% (95% 

C.I. 60 – 98%), specificity of 70% (95% C.I. 56 – 82%) positive predictive value of 45% 

(95% C.I. 27 – 64%), and negative predictive value of 95% (95% C.I. 83 – 99%). The 

AUC value for the associated ROC curve is 0.807 (95% C.I. 0.695 – 0.892). The ROC 

curve is shown in Figure 7. 
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Figure 7. ROC curve for the model predicting advanced fibrosis. The solid line indicates 

the collection of thresholds and their associated sensitivities and specificities, dashed 

lines represent 95% confidence intervals, and the linear, dotted line represents what 

would be observed at random (i.e., if the model had no predictive power). 

 

 To illustrate the importance of including serum proteins in the predictive model of 

advanced fibrosis, multiple linear regression was repeated using only the clinical 

variables available in this study. A predictive model for fibrosis emerged as follows:  

Advanced Fibrosis = 0.4831 + 0.3681[diabetes] – 0.2473[gender] + 0.1564[race] + 

0.018[AST] – 0.0087[ALT] – 0.001[Triglycerides] – 0.0025[Glucose]. Although this 

model was significant (p = 0.00007) its overall performance when validated on an 
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independent cohort of NASH patients was modest, with a sensitivity of 100%, specificity 

of 32%, PPV and NPV of 22% and 100%, respectively, and an AUC of 0.661. The ROC 

curve for this model is shown in Figure 8. 
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Figure 8. ROC curve for the model predicting advanced fibrosis based on clinical 

variables alone. 

 

Model comparisons. For the three models predicting NASH (this study, NASH 

Diagnostics (Younossi et al., 2008), and M30 antigen (Wieckowska et al., 2006)), our 

model performed best at predicting NASH in our study cohort (Table 9). Specifically, our 

model had an AUC value of 0.81 (95% C.I. = 0.70 – 0.89) and a p-value of 9.07e – 06 

compared to an AUC of 0.71 (95% C.I. = 0.60 – 0.81) and p-value of 0.0081 for M30 

antigen, and an AUC of 0.643 (95% C.I. = 0.52 – 0.75) and p-value of 0.0041 for NASH 

Diagnostics. 
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Table 9. Comparison of predictive models for the diagnosis of NASH. 

 Threshold Sensitivity Specificity PPV 
(%) 

NPV 
(%) 

AUC p-value 

Our model 
 

0.221 
0.3641 
0.6183 

91.18 
79.41 
44.12 

47.37 
73.68 
92.11 

60.8 
73.0 
83.3 

85.7 
80.0 
64.8 

0.809 9.07E-
06 

NASH 
Diagnostics 

0.311 
0.4408 
0.5757 

81.58 
65.79 
28.95 

16.67 
66.67 
91.67 

50.8 
67.6 
78.6 

46.2 
64.9 
55.0 

0.643 0.00415 

M30 
antigen 

201 
273 
395 
537 

90.0 
72.5 
45.0 
27.5 

33.33 
64.10 
82.05 
87.18 

58.1 
67.4 
72.0 
68.7 

76.5 
69.4 
59.3 
54.0 

0.714 0.0081 

 

  

 A total of six models were tested for predicting any degree of fibrosis (Table 10). Of 

these, ours performed best with an AUC of 0.80 (95% C.I. = 0.68 – 0.88) and p-value = 

0.00013. The next best performing models were the ELF and OELF, each with an AUC 

of 0.75 (95% C.I. = 0.63 – 0.84) and p-values of 0.0002 and 9.5e – 05, respectively, and 

the combined ELF + NAFLD Fibrosis Score model with an AUC of 0.78 (95% C.I. = 

0.66 – 0.87) and p-value = 0.0013. The NAFLD Fibrosis Score alone had modest 

predictive power in our study cohort (AUC = 0.62, 95% C.I. = 0.50 – 0.73, p-value = 

0.0031), as well as the APRI model with an AUC = 0.70 (95% C.I. = 0.58 – 0.80) and a 

p-value = 0.007. 
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Table 10. Comparison of predictive models for the diagnosis of fibrosis. “Combined” 

refers to the combined ELF + NAFLD Fibrosis Score model. 

 Threshold Sensitivity Specificity PPV 
(%) 

NPV 
(%) 

AUC p-value 

Our model 0.2188 
0.4242 
0.5689 

90.91 
60.61 
51.52 

43.59 
71.79 
89.74 

57.7 
64.5 
81.0 

85.0 
68.3 
68.6 

0.796 0.00013 

OELF 0.2806 
0.4755 
0.686 

94.44 
69.44 
38.89 

38.46 
71.79 
92.31 

58.6 
69.4 
82.4 

88.2 
71.8 
62.1 

0.747 9.5E-05 

ELF 0.2391 
0.3776 
0.6519 

91.67 
80.56 
41.67 

33.33 
64.10 
92.31 

55.9 
67.4 
83.3 

81.2 
78.1 
63.2 

0.751 0.00018 

NAFLD 
Fibrosis 
Score 

0.2841 
0.4282 
0.6303 

90.91 
63.64 
24.24 

26.32 
57.89 
81.58 

51.7 
56.8 
53.3 

76.9 
64.7 
55.4 

0.621 0.00308 

Combined 0.1836 
0.4613 
0.6167 

96.67 
70.00 
43.33 

27.03 
70.27 
91.89 

51.8 
65.6 
81.2 

90.9 
74.3 
66.7 

0.777 0.00133 

APRI 0.1239 
0.1601 
0.3327 
0.4928 

91.67 
77.78 
33.33 
5.56 

28.95 
55.26 
92.11 
97.37 

55.0 
62.2 
80.0 
66.7 

78.6 
72.4 
59.3 
52.1 

0.700 0.00659 

  

 

 In a comparison of model performance for predicting advanced fibrosis, our model 

again performed best, with an AUC of 0.81 (95% C.I. = 0.70 – 0.89) and p-value of 6.3e – 

05 (Table 11). The ELF and OELF panels were the next highest performing panels, each 

with AUC values of 0.74 (95% C.I. = 0.63 – 0.84) and p-values of 0.0003 and 0.096, 

respectively. The APRI model (AUC = 0.68 (95% C.I. = 0.56 – 0.79), p-value = 0.057) 

and the combined ELF + NAFLD Fibrosis Score model (AUC = 0.688 (95% C.I. = 0.56 

– 0.80), p-value = 0.027) had modest predictive power, while the NAFLD Fibrosis Score 

performed most poorly and did not identify patients with advanced fibrosis with any 

72 
 



more accuracy than would occur by chance alone (AUC = 0.52 (95% C.I. = 0.40 – 0.64), 

p-value = 0.333). 

 

Table 11. Comparison of predictive models for the diagnosis of advanced fibrosis. 

“Combined” refers to the combined ELF + NAFLD Fibrosis Score model. 

 Threshold Sensitivity Specificity PPV 
(%) 

NPV 
(%) 

AUC p-value 

Our model 0.0816 
0.2442 
0.3640 

93.33 
86.67 
46.67 

35.19 
70.37 
90.74 

28.6 
44.8 
58.3 

95 
95 
86 

0.807 0.00006 

OELF 0.1034 
0.3083 
0.3945 

87.5 
68.75 
31.25 

28.81 
81.36 
93.22 

25.0 
50.0 
55.6 

89.5 
90.6 
83.3 

0.739 0.09557 

ELF 0.1561 
0.2695 
0.3749 

87.5 
75.0 

31.25 

47.46 
74.58 
89.83 

31.1 
44.4 
45.5 

93.3 
91.7 
82.8 

0.742 0.00027 

NAFLD 
Fibrosis 
Score 

0.1327 
0.1541 
0.3103 

84.62 
69.23 
15.38 

36.21 
48.28 
81.03 

22.9 
23.1 
15.4 

91.3 
87.5 
81.0 

0.524 0.33347 

Combined 0.0399 
0.2229 
0.3429 

92.31 
69.23 
30.77 

25.93 
72.22 
90.74 

23.1 
37.5 
44.4 

93.3 
90.7 
84.5 

0.688 0.02742 

APRI 0.4928 
0.1206 
0.2256 
0.3856 

7.14 
92.86 
64.29 
42.86 

96.67 
20.00 
66.67 
93.33 

33.3 
21.3 
31.0 
60.0 

81.7 
92.3 
88.9 
87.5 

0.681 0.05652 

 

 

 A summary chart showing the performances (by AUC) of all models tested in this 

study is shown in Figure 9. This chart includes the performances of the models derived 

from the current data set that were based on clinical variables alone. 
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Figure 9: Comparison of model performance for the prediction of NASH, fibrosis, and 

advanced fibrosis.  

 

Discussion. NAFLD is a highly prevalent liver disease which, at its more advanced 

stages of NASH and NASH-related fibrosis, poses a risk for chronic liver disease and 

liver failure (Matteoni et al., 1999). NAFLD has no cure and is managed by controlling 

weight and metabolic abnormalities using a combination of diet and exercise regimes as 

well as pharmaceutical agents (Younossi, 2008); thus, early diagnosis of NAFLD is 

important for proactive management of the disease. There have been several reports of 

non-invasive, serum-based biomarkers and biomarker panels suitable for the detection of 

NASH or fibrosis; some markers of fibrosis have been developed with NAFLD in mind 

while others were tested on NAFLD patients after their discovery (see Chapter 1). 
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 The aim of this study was to develop a non-invasive, serum-based biomarker panel 

for NASH and NASH-related fibrosis, incorporating various aspects of the disease 

process including adipose-derived signaling, apoptosis, and fibrogenesis. Multiple linear 

regression was used to develop three models for the prediction of NASH, fibrosis, and 

advanced fibrosis. Clinical, demographic, and serum-based parameters were tested as 

potentially significant model predictors. These parameters also were subjected to two-

sample statistical comparisons to observe whether any parameters differed significantly 

between diagnostic groups. Finally, all models were tested for stability by 10-fold cross 

validation and their predictive power assessed by calculating the sensitivity, specificity, 

positive- and negative predictor values of the models, as well as by ROC curve analysis. 

The relative performance of the models was compared with that of previously published 

models by applying those models to our study cohort. 

 Our analyses showed that a vast majority (95%) of patients with NASH have some 

form of hepatic fibrosis and many (40%) have advanced fibrosis. Furthermore, patients 

with NASH were more likely to be diabetic and had significantly higher weight and 

serum liver enzymes (AST and ALT) compared to patients without NASH, and were 

higher in body mass index as well. These findings are in accordance with known clinical 

features of NAFLD (Hossain et al., 2009). Some surprising results were that the NASH 

group had significantly lower total cholesterol levels compared to the non-NASH group, 

and in contrast to the stereotype, was significantly higher in its proportion of males. 

Whether these findings reflect unknown mechanisms in the pathogenesis of NAFLD or 

were simply by chance is uncertain. The NASH group also was significantly taller than 
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the non-NASH group but this finding was almost certainly confounded by the dominance 

of males in the NASH group. NASH patients had significantly higher serum levels of 

M30 antigen, TIMP-1, P3NP, and HA, suggesting elevated apoptotic and fibrogenic 

activities in these individuals. 

 Analysis of all clinical, demographic, and laboratory variables by multiple linear 

regression demonstrated that the presence of diabetes and male gender, together with 

elevated BMI, elevated serum levels of M30 antigen and increasing difference between 

M65 and M30 antigens and reduced serum triglycerides are highly predictive of NASH.  

This model had very good performance (AUC = 0.809) and outperformed other 

biomarker panels for NASH, specifically NASH Diagnostics (Younossi et al., 2008) and 

the Apoptosis Biomarker (Wieckowska et al., 2006); thus it appears to be robust for the 

prediction of NASH. Biologically, these results suggest that even when we account for 

demographic and clinical variables such as gender, BMI, serum triglycerides and the 

presence of diabetes, the levels of apoptotic and necrotic activity, as indicated by serum 

levels of M30 antigen and the difference between M65- and M30 antigens, respectively, 

are predictive of NASH and are likely to take part in the pathology of NASH, either as 

contributors to the disease process or as its byproducts. 

 NASH and hepatic fibrosis appear to be closely linked phenomena; not only did a 

majority of NASH patients have fibrosis, but the majority (97%) of patients with hepatic 

fibrosis also had NASH. Thus, ruling out other causes of liver disease, it appears that 

patients with NASH are likely to have fibrosis, and vice versa. As observed in the 

analysis of NASH, the fibrosis subcohort had a higher proportion of males and 
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significantly lower levels of total cholesterol compared to those without fibrosis. In 

contrast, the observations of significantly higher weight, higher BMI, and significantly 

higher AST- and ALT levels are in accordance with risk factors for NAFLD. Patients 

with fibrosis, like those with NASH, appear to have elevated apoptotic and fibrogenic 

activity, as evidenced by significantly higher serum levels of M30 antigen, TIMP-1, 

P3NP, and HA. 

 Incorporating all clinical, demographic and laboratory data it was noted by multiple 

regression that the presence of diabetes, male gender, increased BMI, decreased serum 

triglycerides, and elevated serum levels of M30 antigen as well as elevated difference 

between M65- and M30 antigens are highly predictive of NASH-related hepatic fibrosis. 

The model had high performance with an AUC value of 0.796 and it outperformed five 

other models for the prediction of fibrosis including the OELF and ELF (Rosenberg et 

al., 2004), NAFLD Fibrosis Score (Angulo et al., 2007), the combined ELF +  NAFLD 

Fibrosis Score (Guha et al., 2009), and the APRI model (Cales et al., 2009; Wai et al., 

2003). It is important to appreciate that although the predictors in this model are the same 

as those in the model predicting NASH, it was tested on a different subcohort (patients 

grouped by fibrosis, not NASH) and new beta-values were generated during the 10-fold 

cross validation procedure; thus, it appears to be robust for the prediction of fibrosis. 

Biologically it provides a similar “message” as the model predicting NASH; namely that 

even when controlling for the significant clinical and demographic factors (gender, BMI, 

serum triglycerides and the presence of diabetes), apoptosis and necrosis are important 

predictors of fibrosis and presumably play a role in the pathology of NASH-related 
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fibrosis, either directly contributing to the disease process or resulting from other disease-

related events. 

 Given the close association between NASH and fibrosis it was not surprising to find 

that 100% of patients with advanced fibrosis had NASH, compared to only 38% of the 

patients without advanced fibrosis. Demographic factors were not useful for 

distinguishing between patients with advanced fibrosis and those without it, but one 

clinical variable, serum AST concentration, was significantly higher in patients with 

advanced fibrosis. Those patients also had significantly higher levels of two secreted 

markers, namely M30 antigen and TIMP-1, suggesting that apoptosis and fibrogenesis 

are occurring in patients with advanced fibrosis, as was observed previously for patients 

with any hepatic fibrosis and with NASH. 

 Using all clinical, demographic and laboratory variables as potential predictors it was 

observed by multiple linear regression that the presence of diabetes along with increasing 

AST and TIMP-1 and decreasing triglycerides were predictive of advanced fibrosis. This 

model had good performance with an AUC = 0.807, and it outperformed the OELF and 

ELF (Rosenberg et al., 2004), NAFLD Fibrosis Score (Angulo et al., 2007), the 

combined ELF +  NAFLD Fibrosis Score (Guha et al., 2009), and the APRI model (Cales 

et al., 2009; Wai et al., 2003). In fact, the NAFLD Fibrosis Score was ineffective for the 

detection of advanced fibrosis in our study cohort. Biologically, our modeling results 

suggest that fibrogenesis is an important component of the disease process in cases of 

advanced fibrosis, since TIMP-1 is predictive even when diabetes, serum AST levels and 

triglycerides are statistically controlled. 
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 Taken together, the results of this study underscored the use of markers of 

fibrogenesis and cell death for the prediction of NASH and NASH-related fibrosis. 

Biomarkers of adipose signaling, namely resistin and adiponectin, were not useful in 

distinguishing NAFLD disease states, even though they were useful in a previous 

biomarker panel developed for NASH (Younossi et al., 2008). 

 Regarding the demographic factors evaluated in this study, it is interesting to note the 

significant contribution of male gender to the prediction of NASH and NASH-related 

fibrosis. There is growing evidence that estrogen may be protective against NAFLD, 

possibly explaining why females were under-represented in the NASH and fibrosis 

groups. Serum estradiol is significantly lower in women with NAFLD compared to those 

without NAFLD, even when considering only those women who are pre- or post-

menopausal or have polycystic ovary syndrome (PCOS) (Gutierrez-Grob et al., 2010). 

Similarly, breast cancer patients treated with tamoxifen, an estrogen receptor antagonist, 

are at increased risk for the development of steatosis and NASH (Oien et al., 1999; Van 

et al., 1996). There are a number of mechanisms by which estrogen may be protective 

against NAFLD. First, estrogen appears to suppress both steatosis and hepatic fibrosis, 

and to prevent macrophage accumulation in the liver which in turn limits the release of 

pro-inflammatory cytokines (reviewed in: Shimizu and Ito, 2007). Estrogen also has anti-

diabetic functions related to insulin signaling and oxidative stress (reviewed in: Louet et 

al., 2004). In terms of insulin signaling, it has been shown that estradiol-17β (E2) 

administered alone or as part of hormone replacement therapy improves insulin 

sensitivity in women lacking endogenous E2 secretion, and this improvement is thought 
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to take place in the liver, as experiments have shown that insulin sensitivity in skeletal 

muscle does not change in response to estrogen. E2 replacement in post-menopausal 

women is also associated with decreased visceral obesity and with increased, insulin-

mediated suppression of lipolysis. Experiments with murine models underscore these 

observations. Both aromatase knock-out (ArKO) mice and estrogen receptor α knock-out 

(αERKO) mice develop insulin resistance, and in ArKO mice, hepatic insulin resistance 

is accompanied by excess triglyceride accumulation, increased expression of lipogenic 

genes and decreased expression of genes responsible for fatty acid oxidation. Regarding 

oxidative stress, it was discovered many years ago that several forms of estrogen, 

including E2, act as anti-oxidants and are protective against lipid peroxidation in the liver 

(Lacort et al., 1995; Yoshino et al., 1987). In rat hepatocytes undergoing oxidative stress, 

E2 up-regulates Bcl-2, a gene whose products suppress lipid peroxidation and prevent 

apoptosis (Shimizu and Ito, 2007; Inoue et al., 2003). Taken together, these studies 

suggest that estrogen may to be protective against NAFLD and its actions may target 

various aspects of the disease process, including the development of steatosis, 

inflammation, fibrosis, insulin resistance, and oxidative stress. 

 Another result from this study that warrants further investigation is the use of BMI in 

predictive models of NAFLD. Body mass index was not statistically significant in any of 

the group comparisons at a significance level of 0.05, but it would have been significant 

in all of them if a significance level of 0.10 had been used. The most reasonable 

explanation for the lack of significance at 0.05 is that nearly the entire study cohort was 

morbidly obese; thus even the control groups were not representative of the general 
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population. However, BMI was a significant contributor to the models predicting NASH 

and NASH-related hepatic fibrosis, and would certainly be important to include along 

with markers of fibrogenesis and cell death in future efforts to refine the current 

biomarker panel for NAFLD. 

 

Study Limitations. There are several limitations associated with our study, most notably 

the relatively small sample cohort (N = 79). As tissues and serum continue to be collected 

as part of the the ongoing NAFLD study conducted by the Center for Liver Diseases, it is 

hoped that the study will be repeated using a larger cohort of patients, providing not only 

greater statistical power but also the possibility of increasing the number of patients with 

NASH but not fibrosis. In this study, the majority of patients had both NASH and NASH-

related fibrosis, such that the respective models predicting those diagnoses were the same 

in terms of their predictors, except in the case of advanced fibrosis. It would be helpful to 

know whether and how the NASH and hepatic fibrosis models would differ in 

composition if they were developed using a study cohort with more patients falling into 

distinct disease categories. Ideally, it also would be extremely helpful to have a control 

group consisting of individuals with no liver disease and presenting no features of 

Metabolic Syndrome, however acquiring liver specimens from such individuals would be 

unethical given the risks associated with liver biopsy, and the absence of liver disease 

would need to be inferred using a weight-of-evidence approach (e.g., serum levels of 

liver aminotransferases within normal ranges, and normal weight and BMI, and 

abstinence from alcohol, etc.). 
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 Future studies also would benefit from collections of larger volumes of serum, as this 

study was restricted by serum availability. As a consequence, it was not possible to 

conduct duplicate assays on the same patients for any of the target analytes, and intra- 

and inter-assay variability could not be calculated. Repeated assays along with measuring 

samples in triplicate would have greatly improved our ability to assess the accuracy of 

our results, and would have provided greater confidence that the results observed were 

replicable. This point cannot be understated given that the process of conducting an 

ELISA or EIA has some inherent variability due to subtle differences in incubation times, 

antibody concentrations, etc., although the use of kits certainly minimizes this variability 

since protocols have been optimized and reagents are standardized. 

 Finally, there are some improvements that could have been made to our statistical 

approach. Due to the small study cohort, validation of the models was conducted using a 

10-fold cross-validation procedure, in which the same data set was used for both training 

and testing purposes. An independent validation cohort would have provided greater rigor 

for testing our models. Furthermore, due to the extensive computational demands of re-

designing a new regression model for each of the ten training sets, only the beta values 

were allowed to change with each training round and these were applied to the 

corresponding validation set. Confidence in our models would be greatly strengthened by 

re-developing a new model, with potentially new predictors, during each iteration of the 

training procedure and applying this model to the validation set. By amassing a set of ten 

“best predicting” models, this approach would hopefully reveal the most robust predictors 

for the various diagnostic categories. 
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Conclusions. Our study demonstrated that secreted molecules signifying apoptosis and 

fibrogenesis, together with clinical and demographic parameters, can be used to 

distinguish patients with NASH and NASH-related fibrosis from those having only 

steatosis or minimal hepatic changes. The parameters that most often distinguished 

diagnostic groups included the presence of diabetes, gender, serum triglycerides, BMI, 

AST, M30 antigen, an estimate of necrosis (M65 antigen – M30 antigen),  and a marker 

of fibrogenesis (TIMP-1). The adipokines resistin and adiponectin were not useful in 

predictive models of NASH or NASH-related fibrosis; however, due to the strong 

association between obesity and NAFLD, it would be reasonable to continue testing other 

adipokines for efficacy in predictive models.  
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4:  NOVEL BIOMARKERS OF NAFLD  

REFLECTING THE ROLE OF ADIPOSE TISSUE 

 

Enrichment Analysis and Selection of Candidate Biomarkers. The enrichment 

analysis was initially performed using MetaCore and, based on protein names alone, it 

revealed that the pathways most enriched in the Younossi et al. (2010) data set were 

those relating to insulin signaling, including the IGF-1 receptor pathway (which can be 

triggered by insulin), insulin regulation of translation, AKT signaling (a component of the 

insulin, chemokine, and apoptosis signaling pathways), PIP3 signaling (a component of 

the insulin signaling pathway), and regulation of lipid metabolism by insulin signaling. 

This finding was in accordance with expected results, as the phosphoproteins chosen for 

study in Younossi et al. were those already known to play a role in insulin signaling and 

were selected based on the strong association between insulin resistance and NAFLD. 

However, using the protein array data from Younossi et al., this enrichment analysis also 

served to illustrate which components of these pathways were most differentially 

phosphorylated in patients with and without NASH, thereby suggesting mechanistically 

how cell signaling in adipose tissue might be de-regulated. For example, in the pathway 

illustrating regulation of lipid metabolism by insulin, the proteins from Younossi et al. 

that were most differentially phosphorylated were insulin receptor substrate 1 (IRS-1) 

and its binding partner, SHC-transforming protein (SHC), and to a lesser extent 3-
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phosphoinositide dependent protein kinase-1 (PDPK1), ribosomal protein S6 kinase, 70 

kDa (p70-S6 kinase 2), and eIF4E-binding protein 1 (4E BP1); in all of these cases 

phosphorylation levels were notably lower in patients with NASH relative to those 

without NASH, whereas other measured proteins in this pathway (e.g., mechanistic target 

of rapamycin (mTOR)) were not as strikingly different in their phosphorylation levels 

(Figure 10). Several of these phosphoproteins appeared repeatedly throughout the 

enriched pathways, and therefore it is not surprising why a subset of them (IRS-1, AKT) 

were independently predictive of NASH and NASH-related fibrosis in regression models 

(Younossi et al., 2010). Table 12 shows in detail which of the original 27 proteins 

analyzed appeared in the five most prevalent pathways. 
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Figure 10. MetaCore output showing regulation of lipid metabolism by insulin, with 

relative phosphorylation levels of proteins measured in Younossi et al. (2010) indicated 

by bars (bar 1 = patients with NASH; bar 2 = patients without NASH). Bars point up 

(red) or down (blue) in relation to the assay normalization value; bar height indicates the 

degree of difference in phosphorylation from the normalization value. 
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Table 12. Subset of phosphoproteins analyzed in Younossi et al. (2010) appearing in the 

five most enriched pathways. 

Phosphoprotein Function Pathway(s) 
IRS-1 docking protein 

regulation of lipid metabolism by insulin 

signal transduction by AKT 

signal transduction by PIP3 

IGF-1 receptor signaling 

regulation of translation by insulin 
SHC protein domain 

regulation of lipid metabolism by insulin 

signal transduction by PIP3 

IGF-1 receptor signaling 

regulation of translation by insulin 
AKT kinase 

regulation of lipid metabolism by insulin 

signal transduction by AKT 

signal transduction by PIP3 

IGF-1 receptor signaling 

regulation of translation by insulin 
P70-S6 kinase 

regulation of lipid metabolism by insulin 

signal transduction by AKT 

signal transduction by PIP3 

IGF-1 receptor signaling 

regulation of translation by insulin 
PKA-c kinase 

regulation of lipid metabolism by insulin 
mTOR kinase 

regulation of lipid metabolism by insulin 

signal transduction by PIP3 
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IGF-1 receptor signaling 

regulation of translation by insulin 
4E-BP1 translation 

regulation of lipid metabolism by insulin 

signal transduction by AKT 

signal transduction by PIP3 

IGF-1 receptor signaling 

regulation of translation by insulin 
p90 RSK1 kinase 

regulation of lipid metabolism by insulin 

signal transduction by PIP3 

IGF-1 receptor signaling 

regulation of translation by insulin 
GSK-3 kinase 

signal transduction by AKT 

signal transduction by PIP3 

IGF-1 receptor signaling 
FOXO3A transcription factor 

signal transduction by AKT 

signal transduction by PIP3 

IGF-1 receptor signaling 
BAD apoptosis 

signal transduction by AKT 

signal transduction by PIP3 

IGF-1 receptor signaling 
CREB1 transcription factor 

signal transduction by PIP3 

IGF-1 receptor signaling 
eIF4G translation 

regulation of translation by insulin 
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As the enrichment analysis was conducted, it became clear that MetaCore would not 

be an adequate tool for hypothesis formation regarding secreted molecules, because (1) 

MetaCore is optimized for the investigation of intracellular activities and is not easily 

manipulated for the identification of secreted molecules, and (2) it draws its information 

from a proprietary, “black box” database which necessarily limits the pool of potential 

pathways associated with a molecule of interest. Therefore, the enrichment analysis was 

repeated using Pathway Studio, which forms its database by scanning all open source 

publications for relevant information and is not limited to intracellular activities. After 

analyzing the full data set a series of networks were generated, and the network 

containing the most differentially expressed phosphoproteins, as determined by group 

comparison between patients with and without NASH conducted within Pathway Studio, 

was selected for subsequent analysis. To this network, molecules regulated by the 

phosphoproteins that were independently predictive of NASH and advanced fibrosis in 

Younossi et al. (2010) were added; these included targets of AKT kinase, insulin receptor 

substrate-1 (IRS1), glycogen synthase kinase-3 (GSK3), and protein kinase A (PKA). 

Diseases and cellular processes pertinent to NASH, namely liver fibrosis, insulin 

resistance, apoptosis, and reactive oxygen species (ROS) also were added as outcome 

categories. These were connected to existing entities in the network, producing a 

substantial collection of positive and negative relationships. Because Pathway Studio 

uses PubMed as its knowledge base, relationships formed during pathway queries are 

easily researched and networks may be edited to suit specific goals. Thus, the very large 

network of entities produced in this study was culled to a manageable level using the 
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following criteria:  (1) only those relationships reflecting a direct or nearly direct 

connection to significant phosphoproteins from the Younossi et al. study or to the 

outcome categories were retained; (2) relationships based on scant evidence (e.g., only 

one publication supporting a relationship) were deleted; and (3) only soluble molecules 

were retained, favoring small peptides over other types of secreted molecules such as 

steroid hormones. The final network resulting from this “culling” step revealed a set of 

proteins worth investigating as serum-based biomarkers of NASH and NASH-related 

fibrosis due to their close relationships with the significant phosphoproteins from the 

Younossi et al. study (and hence, potential release from adipose tissue) and with the 

disease and cellular processes relevant to NASH (Figure 11). Literature searches were 

then performed on individual members of the final collection of secreted proteins in order 

to establish (1) if they made biological sense to investigate as biomarkers of NASH and 

NASH-related fibrosis based on their known mechanisms of action; and (2) whether any 

previous associations had been made between a protein of interest and the occurrence of 

NASH or NASH-related fibrosis. Three cytokines, TNF-α, IL-6, and IL-8, were omitted 

from this analysis because these had been tested in previous studies performed in our 

laboratory and although they were useful in distinguishing patients with any form of 

NAFLD from those without it (Jarrar et al., 2008), they did not perform well in a 

subsequent study in which a predictive model for NASH was developed (Younossi et al., 

2008). 
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Figure 11. Final output network based on analyses performed in Pathway Studio.  

Proteins highlighted in blue were differentially phosphorylated in the phosphoproteomic 

data set.  Proteins selected for testing in the NASH and NASH-related fibrosis biomarker 

panel are highlighted in green (Fas ligand and CCL2). 

 

After researching the functions of the candidate proteins as well as their potential 

associations with NAFLD, the two proteins that appeared most suitable for testing as 
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biomarkers of NASH and NASH-related fibrosis were Chemokine (C-C motif) ligand 2 

(CCL-2) and Fas ligand (FasL). The rationale for the use of these proteins and hypotheses 

regarding their roles in NAFLD is provided in the following two sections. 

  CCL-2. Also known as monocyte chemotactic protein-1 (MCP-1) and monocyte-

chemotactic and activating factor (MCAF), CCL-2 is a small cytokine belonging to the 

CC chemokine family, having two adjacent cysteines near its N-terminus. The gene 

encoding CCL-2 is located on the q-arm of chromosome 17, within a cluster of other 

genes encoding CC family cytokines (Zlotnik et al., 2006). At sites of inflammatory 

response, CCL-2 is a chemoattractant for monocytes and memory-phenotypic T-

lymphocytes, and induces the migration of dendritic cells (Xu et al., 1996; Carr et al., 

1994). CCL-2 also attracts basophils but not neutrophils or eosinophils. CCL-2 is 

secreted by many types of cells, including peripheral blood mononuclear cells (Seitz et 

al., 1995), mast cells (Katsanos et al., 2008), epithelial cells (Tsuboi et al., 2002), 

endothelial cells (Sironi et al., 1993), bone marrow stromal cells (Gautam et al., 1995), 

osteoclasts (Bost et al., 2001), and smooth muscle cells (Pype et al., 1999). Its secretion 

is induced by inflammatory mediators such as interleukin-1 alpha (IL-1α), interferon-

gamma (IFN-γ), and lipopolysaccharide (LPS), and potentiated by transforming growth 

factor beta (TGF-β) and IL-4 (Gautam et al., 1995). Interleukin-10 (IL-10) may initiate or 

inhibit the secretion of CCL-2 depending on the cell type and extracellular conditions 

(Seitz et al., 1995; Sironi et al., 1993). CCL-2 is ligand for the seven transmembrane, G-

protein coupled receptor, CCR2, and triggers signaling cascades that lead to increased 

cytosolic Ca2+ ion concentrations, stimulation of the MAPK series of kinases, and 
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activation of rho GTPase in monocytes (Ashida et al., 2001; Yen et al., 1997; Sozzani et 

al., 1991), as well as activation of PI3K-γ in macrophages (Jones et al., 2003). Other 

receptors binding CCL-2 include D6 and DARC, which act as decoy receptors and do not 

initiate a signaling cascade, and US28, a chemokine receptor that accelerates the 

inflammatory process (reviewed in Yadav et al., 2010). 

 Functionally, CCL-2 is an inflammory chemokine that recruits leukocytes to injured 

or infected tissue, and therefore contributes to various healing processes ranging from the 

reduction of viral infection to bone remodelling (Yadav et al., 2010). Elevated expression 

of CCL-2, however, is associated with a number of diseases including multiple sclerosis, 

transplant rejection, asthma, rheumatoid arthritis, atherosclerosis, inflammatory bowel 

disease, and cancer, although interestingly CCL-2 also has anti-tumor effects (reviewed 

in Gerard and Rollins, 2001; Yadav et al., 2010). In many cases CCL-2 is functionally 

linked with a disease due to its ability to recruit leukocytes to tissues; for example, the 

ability of CCL-2 to recruit and localize monocytes in renal tissue contributes to the 

damage associated with inflammatory kidney diseases (reviewed in Yadav et al., 2010). 

However, CCL-2 also contributes to disease processes due its effects on endothelial cells; 

for example it increases the permeability of the blood-brain barrier by altering 

cytoskeleton interactions with tight junctions in brain endothelial cells, and it contributes 

to angiogenesis by causing endothelial cells to migrate to, and sprout from aortal rings. 

 In the context of NAFLD, CCL-2 has ties to pathological functioning in both adipose 

tissue and the liver, and therefore has potential as a serum-based biomarker. As outlined 

in Chapter 2, deregulation of adipose tissue resulting from obesity contributes to the 
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development of insulin resistance and metabolic syndrome. Part of this pathological 

process involves the secretion of pro-inflammatory cytokines from adipocytes and 

macrophages in adipose tissue, which is elevated when adipose tissue is composed of 

large adipocytes (Gustafson, 2010; Sopasakis et al., 2004). CCL-2 is one of the 

inflammatory cytokines released by adipose tissue; its expression is higher in obese vs. 

lean subjects and in visceral vs. subcutaneous adipose tissue (Bruun et al., 2005), and it is 

expressed and secreted by adipocytes but the majority of its secretion from adipose tissue 

has been attributed to adipose-resident macrophages (Meijer et al., 2011; Bruun et al., 

2005). Recently a study demonstrated that over-expression of CCL-2 in the adipose tissue 

of obese murine models resulted in increased macrophage infiltration into adipose tissue, 

insulin resistance, and hepatic steatosis (Kanda et al., 2006); conversely, knocking out 

MCP-1 (CCL-2) gene function decreased macrophage infiltration, insulin resistance, and 

steatosis in obese, murine models; thereby suggesting a critical role for CCL-2 in the 

pathogenesis of NAFLD. A 2010 study supported and extended these findings by 

experimentally increasing circulating levels of CCL-2 in a murine model; chronically 

elevated CCL-2 levels resulted in insulin resistance, increased infiltration of macrophages 

into adipose tissue, and increased hepatic triacylglycerol content (steatosis), whereas 

acutely elevated CCL-2 levels resulted in insulin resistance only (Tateya et al., 2010). 

Consequently, CCL-2 appears to induce systemic insulin resistance regardless of 

leukocyte activity in adipose tissue. As an inflammatory marker, CCL-2 also has been 

linked specifically to NAFLD in humans. Serum levels of CCL-2 were significantly 

elevated in patients with NAFLD compared to healthy controls, and were significantly 
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elevated in patients with NASH compared to those with simple steatosis (Haukeland et 

al., 2006). Furthermore, serum levels of CCL-2 remained a predictor for the diagnosis of 

NAFLD after adjusting for age, sex, and BMI, and a predictor for NASH after adjusting 

for sex, BMI, and the presence of metabolic syndrome. Accordingly, patients with 

steatosis but no histological signs of inflammation have increasing gene expression of 

CCL-2 in proportion to liver fat content, as measured by Affymetrix gene chip and PCR 

(Greco et al., 2008; Westerbacka et al., 2007). 

 Taken together, the research to date on CCL-2 supports the investigation of this 

cytokine as a biomarker for NAFLD, and specifically for NASH and NASH-related 

fibrosis for the following reasons: (1) it recruits leukocytes to tissues and therefore 

promotes inflammation; (2) it is secreted from adipose tissue and from more than one cell 

type within that tissue; (3) its secretion is positively related to adiposity and linked to 

adipocyte size; (4) it contributes to insulin resistance and steatosis in murine models; and 

(5) its gene expression and serum levels correlate with the progression of NAFLD in 

humans. Based on these observations, I put forth the following mechanistic explanation:  

circulating CCL-2 is elevated in patients with NAFLD due to enlarged visceral adipose 

tissue; when released from adipose tissue, it causes monocyte infiltration into the liver 

and contributes to steatosis and insulin resistance of hepatocytes, thereby playing a role in 

the pathophysiology of NAFLD. 

 Fas Ligand. Also known as TNF superfamily member 6 (TNFSF6), CD178 antigen 

and CD95 ligand, Fas ligand (FasL) is a member of the tumor necrosis factor (TNF) 
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superfamily. FasL is a single-pass, type II transmembrane protein consisting of 281 

amino acids. The gene encoding Fas ligand is located on the q arm of chromosome 1.  

 Binding of FasL to its receptor, FAS, a type I transmembrane protein, induces 

apoptosis. Both are expressed during embryonic development and in adult life (Green and 

Ferguson, 2001), however, not all types of cells express FAS. FAS is primarily expressed 

in organs (e.g. heart) and in the lymphoid system, while FasL is expressed in activated T 

cells and constitutively expressed in several tissues including the eye and testis, and in 

endothelial cells (Green and Ferguson, 2001; Sata and Walsh, 1998). FAS is also 

expressed in neutrophils, monocytes, and eosinophils, but of these, only neutrophils 

constitutively express FasL and as a result, easily undergo apoptosis in response to pro-

inflammatory cytokines and other signaling molecules (Liles et al., 1996). 

 The canonical pathway for FasL signaling is as follows, and is displayed in Figure 12. 

FasL (which is thought to exist as a homotrimer) oligomerizes FAS upon binding; when 

three or more FAS molecules have come together (called “cross-linking”) the adaptor 

protein, fas-associated death domain (FADD), is recruited (Green and Ferguson, 2001). 

FADD binds FAS via its death domain, while its death-effector domain recruits and binds 

pro-caspase-8. The entire complex is then known as the death-inducing signal complex 

(DISC). Pro-caspase-8 is then cleaved and caspase-8 is released, which in turn activates 

other caspases and induces a cascade leading to apoptosis; however, caspase-8 at low 

concentration can induce apoptosis via the release of cytochrome c from mitochondria 

(Mahmood and Shukla, 2010). Other proteins can bind FADD leading to other results; for 

example, receptor interacting protein (RIP) has a death-effector domain and upon binding 
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FADD, induces caspase-independent cell death, while FADD-like IL-1β converting 

enzyme inhibitory protein (c-FLIP) inhibits cell death upon binding FADD (Green and 

Ferguson, 2001). 
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Figure 12. FasL initiation of apoptosis. Binding of FasL to its receptor, Fas, causes 

oligomerization of the receptor (A) and recruitment of FADD (B). FADD is an adaptor 

protein that in turn recruits pro-caspase 8 (C), which is then cleaved to produce caspase 8 

(D). Caspase-8 in high concentration activates caspases 3 and 7, which initiate apoptosis. 

If caspase-8 is low in concentration, it initiates the intrinsic pathway for apoptosis by 

initiating a cascade that causes cytochrome c release from mitochondria. 

98 
 



 While intact FasL is a 40 kDa protein, it can be proteolytically cleaved to produce a 

soluble protein (sFasL) of 26 kDa that then circulates as a trimer (Tanaka et al., 1995); 

this cleavage event also produces TNFα (Tanaka et al., 1996). Matrix metalloproteinases 

(MMPs), e.g. MMP-7 and MMP-3, cleave FasL near the transmembrane domain but at 

more than one site, generating distinct forms of sFasL that may be responsible for the 

seemingly contradictory activities attributed to sFasL (Vargo-Gogola et al., 2002). For 

example, sFasL released by neutrophils induces cell death in lung epithelial cells (Serrao 

et al., 2001), whereas human Jurkat cells and mouse primary hepatocytes are resistant to 

human sFasL-induced apoptosis, and endothelial cells resist hypoxia-induced apoptosis 

by releasing sFasL (Tanaka et al., 1998; Mogi et al., 2001). In a direct comparison of 

apoptotic capability between sFas and membrane-bound FasL (mFasL), sFasL was 1,000-

fold less efficient than mFasL, and was not cytotoxic to hepatocytes when injected at 

high doses into mice (Schneider et al., 1998). Mogi et al., 2001 proposed two 

explanations for the decreased cytotoxic and even apoptotic-protective effects of sFasL:  

(1) upon binding to Fas, the Fas-sFasL complex is readily internalized and degraded 

leading to down-regulation of apoptotic signaling, whereas the Fas-mFasL complex is not 

easily internalized and therefore not rapidly down-regulated; and (2) Fas-sFasL binding 

may activate alternative pathways that promote survival factors such as nuclear factor-

kappa B (NF-κB).  

 While the predominant role of sFasL in the regulation of apoptosis is still unknown, 

its function as a pro-apoptotic factor is widely accepted (Kavathia et al., 2009), and 

recent studies of its contribution to disease suggest that at least in pathological processes, 
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its cytotoxic capability is most relevant. For example, in rheumatoid arthritis sFasL 

inhibits angiogenesis by promoting apoptosis of synovial cells, thereby reducing the 

production of vascular endothelial growth factor (Kim et al., 2007). With regard to 

cancer, it has been proposed that the poor prognosis associated with elevated levels of 

plasminogen activator inhibitor-1 (PAI-1) can be explained by its ability to inhibit 

plasmin production, in that plasmin cleaves FasL to produce sFasL, promoting 

endothelial cell apoptosis (Bajou et al., 2008). Soluble FasL also has served well as a 

serum-based biomarker of disease when regarded as a pro-apoptotic factor. Kavathia et 

al. (2009) first confirmed that systemic apoptosis decreases with age by noting a negative 

correlation between age and serum sFasL levels in both men and women, and then 

demonstrated that serum levels of sFasL were negatively correlated with the stage of 

breast and prostate cancers. These results were mirrored by serum levels of cytochrome c, 

which also is pro-apoptotic and is an established serum marker of apoptosis. 

 While the role of sFasL in the liver has not been well studied, Fas and FasL are highly 

expressed in the liver (Faubion et al., 1999), and as a result, together with the elevated 

expression of other death receptors and their ligands in the liver, it is believed that 

hepatocyte apoptosis is predominantly mediated by extrinsic rather than intrinsic 

signaling (Guicciardi and Gores, 2010). Apoptosis appears to be ubiquitous among liver 

diseases, and Fas-mediated apoptosis is associated with NAFLD, alcoholic hepatitis, viral 

hepatitis, cholestatic liver disease, and others. Pertinent to NAFLD, human hepatocytes 

exposed to free fatty acids increase their expression of Fas and more readily undergo Fas-

mediated apoposis via a mechanism that is still unknown (Feldstein et al., 2003a). 
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Furthermore, expression of Fas and FasL correlate with disease severity as determined by 

immunohistochemistry of normal liver, steatotic liver, and NASH, and this finding 

supported the concordant observation of increasing apoptosis with disease progression 

(Feldstein et al., 2003b). It was suggested that Fas-mediated apoptosis contributes to liver 

fibrosis via the following pathway:  fas signaling activates caspase 8, which in turn 

creates mitochondrial dysfunction that triggers apoptosis and also generates the release of 

reactive oxygen species (ROS) in a caspase-dependent manner. ROS then promotes 

apoptosis (in a feedback manner) as well as tissue injury and inflammation, leading to 

fibrosis. This last step was based on knowledge of the close association between 

apoptosis and fibrosis observed in animal studies and the fact that hepatic stellate cells 

(HSC) are known to undergo fibrogenic activity upon engulfment of apoptotic bodies. 

However, the mechanisms by which apoptosis may lead to fibrosis have since been 

investigated in more detail and can be classified by two processes: engulfment of 

apoptotic bodies, and fibrosis-signaling molecules emanating from dying cells 

(Guicciardi and Gores, 2010). In the first type, liver injury generates excess apoptosis, 

such that there are too many apoptotic bodies to be engulfed by hepatic stellate cells and 

macrophages, and these trigger inflammation leading to fibrosis. In the second type, 

apoptotic cells release signaling molecules in the form of nucleotides into the 

extracellular space. These bind HSC and macrophages and act as chemoattractants that 

drive the HSCs and macrophages to the sites of injury. There, HSCs are activated to 

become myofibroblasts, which in turn generate the collagen that forms scar tissue. Taken 
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together, these studies illustrate the potential importance of the Fas/FasL system in the 

pathology of NAFLD.  

 In contrast, little work has been done to elucidate the potential role of sFasL in liver 

disease, and only one study investigated the use of sFasL as a serum-based biomarker of 

NASH (Tamimi et al., 2011); published after completion of the work presented in this 

chapter. In that study, sFasL was not a significant predictor of NASH despite the fact that 

the remaining two apoptosis-related proteins forming the biomarker panel, caspase-

cleaved cytokeratin-18 and the soluble fas ligand receptor, sFas, were predictive. sFasL 

did positively correlate with histological features of NASH including lobular 

inflammation and hepatocyte ballooning, but not strongly (p-values not reported). 

However, sFasL was not tested as a marker of NASH-related fibrosis and to date, no 

other studies have tested sFasL as a biomarker of NAFLD. Soluble FasL has been tested 

in the context of other liver diseases and has been useful as a biomarker of apoptosis for 

some of them. Serum levels of sFasL were useful in differentiating patients with acute 

liver failure from those with acute hepatitis E or with sepsis alone (Singhal et al., 2009; 

Nakae et al., 2001). However, plasma levels of sFasL were low in patients with hepatitis 

C (HCV) while concurrent measurements of sFas plasma levels were high, indicating an 

overall decrease in programmed cell death in the HCV disease process (Lapinsky et al., 

2006; Raghuraman et al., 2005). Serum levels of sFasL were higher in patients with 

chronic but not acute hepatitis B, and highest in patients with a most severe infection 

(Song le et al., 2004). Serum sFasL levels also were elevated in patients with alcoholic-

related cirrhosis, and a concomitant, in vitro study of peripheral blood mononuclear cells 
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(PBMCs) derived from the same patient cohort showed that the PBMCs of patients with 

alcoholic-related cirrhosis secreted higher levels of sFasL relative to controls (Szuster-

Ciesielska et al., 2005). 

 In humans, the role of the Fas/FasL system in adipose tissue is not as well understood 

as that of the liver, however animal studies suggest an adipose-specific functional role for 

Fas/FasL in insulin resistance. In vitro, human preadipocytes undergo apoptosis upon 

exposure to FasL, and mature adipocytes derived from murine white adipose tissue 

express Fas (Gross et al., 2009; Kim et al., 2007b). Adiponectin, an adipose-derived 

hormone that is thought to be protective against fatty liver diseases (Wang et al., 2009), 

suppresses interferon gamma production in natural killer (NK) cells, which in turn down-

regulates their expression of Fas ligand and consequently limits their cytotoxic effects 

(Kim et al., 2006). One study related sFasL to adiposity, finding that in comparison of 

patients with and without cachexia there was inverse relationship between serum levels of 

sFasL and measures of body composition, namely BMI and percent body fat (Takabatake 

et al., 2005). Regarding NAFLD, Moreno (2005) postulated that Fas ligand-induced liver 

cell death represented a late step in a pathological process that starts with inflammation 

and insulin resistance in adipose tissue, releasing free fatty acids and promoting 

hyperinsulinemia which in turn cause steatosis and oxidative stress in hepatocytes. 

Studies of Fas/FasL in murine models have provided a mechanistic explanation for the 

contribution of adipose-expressed Fas/FasL to insulin resistance. Wueest et al. (2010) 

demonstrated that Fas expression is increased in the adipose tissue of mice with genetic- 

and diet-induced obesity, and then conducted a brief study in humans, finding that the 
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adipose tissue of obese subjects more highly expresses Fas than that of lean subjects, and 

that the adipose tissue of obese patients with type 2 diabetes expresses significantly 

higher levels of Fas than that of lean, non-diabetic subjects. Animal studies then showed 

that (1) Fas-knockout mice were protected from diet-induced glucose intolerance and 

elevated fasting insulin levels; (2) adipocyte-specific Fas knock-out mice (AFasKO) 

were significantly more insulin sensitive, both in adipocytes and systemically, relative to 

controls; (3) AfasKO mice expressed decreased mRNA levels of pro-inflammatory 

cytokines including IL-6, Cd11b, and MCP-1 (CCL-2) as well as decreased circulating 

levels of IL-6; (4) AfasKO mice were protected from hepatic insulin resistance and 

steatosis and had decreased levels of phosphorylation of IRS-1 (although increased levels 

were expected); and (5) murine adipocytes cultured in FasL-conditioned media developed 

insulin resistance. Consequently, the authors concluded that in obesity, Fas activation in 

adipocytes leads to increased secretion of  pro-inflammatory cytokines, which in turn 

promote insulin resistance. 

 Taken together the previous studies suggest that Fas ligand is worthy of investigation 

as a serum-based biomarker of NASH and NASH-related fibrosis, for the following 

reasons: (1) it is firmly established that the Fas/FasL death receptor system initiates 

apoptosis, and apoptosis is an important pathological step in NAFLD; (2) the pro-

apoptotic activities of sFasL has been associated with various diseases and disease 

processes such as rheumatoid arthritis, angiogenesis, and cancer, and its serum levels are 

inversely correlated with age and the progression of cancer, both of which involve 

decreasing levels of apoptosis; (3) the Fas/FasL system is highly expressed in the liver 

104 
 



and its level of expression correlates with the progression of NAFLD, up to and including 

NASH; (4) murine models of obesity suggest a mechanistic role for adipocyte-specific 

Fas/FasL in the development of systemic and hepatic insulin resistance as well as 

steatosis; (5) Fas-mediated apoptosis in the liver is linked to the development of hepatic 

fibrosis via the engulfment of apoptotic bodies by HSCs, which then differentiate into 

myofibroblasts and produce collagen; and (6) previous tests of sFasL as a serum-based 

biomarker for liver disease have been successful in most cases; e.g. sFasL was predictive 

of acute liver failure, hepatitis B and E, and alcoholic cirrhosis. Thus, I put forth a 

hypothesis that Fas ligand-mediated apoptosis is an important contributor to the 

development of NASH, by initiating cell death and fibrosis in response to liver injury and 

inflammation. Mechanistically, I hypothesize that the deregulation of cell signaling in the 

adipose tissue of morbidly obese patients leads to (1) increased expression of Fas/FasL 

which may lead to increased cytokine production and in turn hepatic insulin resistance 

and steatosis; and (2) increased secretion of sFasL from adipocytes, which in turn 

enhances apoptosis in hepatocytes by binding membrane-bound Fas; this chronic 

signaling and resulting tissue damage then triggers fibrogenesis as part of the liver’s 

healing response. 

 

Results. 

Prediction of NASH. Table 13 shows all demographic, clinical, laboratory, and 

histological data and the outcomes of group statistical comparisons for patients with and 

without NASH. Although NASH can occur in absence of fibrosis, in this study cohort 
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100% of patients with NASH had some level of hepatic fibrosis. Thus, the prevalence of 

fibrosis was significantly higher (p = 0.015) in patients with NASH than in those without 

NASH but with steatosis. However, only 14% of patients with NASH had advanced 

fibrosis compared to 20% of patients without NASH. Surprisingly, patients with and 

without NASH did not differ in any clinical or demographic attributes, and were alike in 

terms of serum levels of the candidate biomarkers, CCL-2 and sFasL. Histologically, 

NASH patients were distinguished by the fact that only they presented pericellular 

fibrosis and ballooning degeneration; however, these features are among the criteria for 

diagnosing NASH and would be unlikely to occur in isolation. Likewise, portal and 

lobular inflammation as well as Kupffer cell hypertrophy occurred at notably higher rates 

(i.e. p-values approaching significance) in NASH patients, again consistent with 

diagnostic criteria. 
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Table 13. Demographic, clinical, and laboratory data for patients with and without 

NASH. Entries are counts for discrete measures (with percentage of group total given in 

parentheses) or mean ± S.D. for continuous measures. A p-value of ≤ 0.05 was 

considered significant. Significant results are shown in bold text. Chi  = chi square test of 

homogeneity; FE = Fisher’s exact test; MW = Mann-Whitney U test; 2T = two-sample t-

test (2-tailed). 

 NASH no NASH P-value Test 
N 22 15   
Fibrosis (any) 22 (100%) 10 (67%) 0.015 Chi 
Advanced fibrosis 3 (14%) 3 (20%) 0.667 FE 
Diabetes 8 (36%) 5 (33%) 0.872 Chi 
Female 16 (73%) 9 (60%) 0.647 Chi 
Caucasian 19 (86%) 12 (80%) 0.951 Chi 
Age 49 ± 9 47 ± 11 0.596 2T 
BMI 49 ± 11 46 ± 9 0.421 MW 
Hyperlipidemia 12 (54%) 11 (73%) 0.417 Chi 
Hypertension 15 (68%) 11 (73%) 0.801 Chi 
AST (U/L) 23 ± 6.4 22 ± 7.4 0.760 2T 
ALT (U/L) 35 ± 18 29 ± 9 0.496 MW 
AST: ALT 0.74 ± 0.21 0.82 ± 0.34 0.577 MW 
Albumin (g/dL) 4.1 ± 0.27 3.9 ± 0.77 0.732 MW 
Bilirubin (total) (mg/dL) 0.44 ± 0.17 0.59 ± 0.38 0.263 MW 
White blood cell count (103/uL) 7.6 ± 2.2 6.9 ± 1.6 0.246 MW 
Platelet count (103/uL) 274 ± 78 270 ± 69 0.845 2T 
Hemoglobin (g/dL) 13 ± 1.1 13 ± 1.7 0.878 2T 
Glucose (mg/dL) 116 ± 43 104 ± 32 0.556 MW 
Cholesterol (total) (mg/dL) 187 ± 30 190 ± 41 0.808 2T 
Triglycerides (mg/dL) 179 ± 144 174 ± 83 0.458 MW 
HDL (mg/dL) 47 ± 9 51 ± 11 0.182 2T 
CCL-2 (pg/mL) 464 ± 118 486 ± 218 0.902 MW 
sFasL (pg/mL) 89 ± 31 82 ± 34 0.516 MW 
Portal fibrosis 16 (73%) 10 (67%) 0.976 Chi 
Pericellular fibrosis 12 (54%) 0 (0%)  n/a 
Ballooning degeneration 17 (77%) 0 (0%)  n/a 
Portal inflammation 16 (73%) 6 (40%) 0.099 Chi 
Lobular inflammation 22 (100%) 14 (93%) 0.076 Chi 
Kupffer cell hypertrophy 17 (77%) 6 (40%) 0.051 Chi 
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Multiple linear regression using bidirectional stepwise selection revealed that for this 

patient cohort, only BMI and HDL were independent predictors for NASH (p = 0.048). 

Specifically, the probability of NASH = 0.7475 + (0.0197)[BMI] + (-0.0226)[HDL]. The 

standard deviation and p-value associated with each beta value are shown in Table 14. 

 

Table 14. Model for the prediction of NASH. 

 β-value  ± S.E. p-value 
(Intercept) 0.7475 0.4333 0.0935 
BMI 0.0197 0.0093 0.0416 
HDL (mg/dL) -0.0226 0.0094 0.0222 

 

 

Prediction of Fibrosis. In an evaluation of patients with and without any form of hepatic 

fibrosis (Table 15), 69% of patients with fibrosis had NASH, and 19% of patients had 

advanced fibrosis. None of the demographic and clinical variables were significantly 

different between patients with and without fibrosis. Regarding the candidate biomarkers, 

serum levels of CCL-2 were similar between the diagnostic groups; however, sFasL was 

significantly higher (p = 0.015) in patients with fibrosis relative to those without fibrosis. 

Also, histological signs of liver disease including portal and pericellular fibrosis, 

ballooning degeneration and portal inflammation were limited entirely to the subcohort 

with fibrosis, and Kupffer cell hypertrophy was largely confined to that subcohort as 

well. Lobular inflammation was found at high levels in both subcohorts. 
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Table 15. Demographic, clinical, and laboratory data for patients with and without any 

hepatic fibrosis. Entries are counts for discrete measures (with percentage of group total 

given in parentheses) or mean ± S.D. for continuous measures. A p-value of ≤ 0.05 was 

considered significant. Significant results are shown in bold text.  FE = Fisher’s exact 

test; MW = Mann-Whitney U test; 2T = two-sample t-test (2-tailed). 

 Fibrosis no Fibrosis P-value Test 
N 32 5   
NASH 22 (69%) 0 (0%)  n/a 
Advanced fibrosis 6 (19%) 0 (0%)  n/a 
Diabetes 10 (31%) 3 (60%) 0.321 FE 
Female 23 (72%) 2 (40%) 0.304 FE 
Caucasian 28 (88%) 3 (60%) 0.177 FE 
Age 48 ± 10 49 ± 11 0.847 2T 
BMI 48 ± 10 47 ± 13 0.564 MW 
Hyperlipidemia 19 (59%) 4 (80%) 0.630 FE 
Hypertension 23 (72%) 3 (60%) 0.603 FE 
AST (U/L) 22 ± 6.4 22 ± 10 0.956 2T 
ALT (U/L) 33 ± 16 30 ± 6.9 0.807 MW 
AST: ALT 0.77 ± 0.21 0.81 ± 0.56 0.548 MW 
Albumin (g/dL) 4.0 ± 0.56 4.1 ± 0.34 0.806 MW 
Bilirubin (total) (mg/dL) 0.51 ± 0.29 0.44 ± 0.23 0.667 MW 
White blood cell count (103/uL) 7.3 ± 1.9 7.4 ± 2.3 0.773 MW 
Platelet count (103/uL) 267 ± 72 306 ± 79 0.347 2T 
Hemoglobin (g/dL) 14 ± 1.3 13 ± 1.3 0.299 2T 
Glucose (mg/dL) 112 ± 41 103 ± 17 0.947 MW 
Cholesterol (total) (mg/dL) 191 ± 34 170 ± 35 0.267 2T 
Triglycerides (mg/dL) 182 ± 126 142 ± 87 0.351 MW 
HDL (mg/dL) 48 ± 8.9 51 ± 16 0.667 2T 
CCL-2 (pg/mL) 457 ± 138 570 ± 279 0.374 MW 
sFasL (pg/mL) 91 ± 30 54 ± 26 0.015 MW 
Portal fibrosis 26 (81%) 0 (0%)  n/a 
Pericellular fibrosis 12 (38%) 0 (0%)  n/a 
Ballooning degeneration 17 (53%) 0 (0%)  n/a 
Portal inflammation 22 (69%) 0 (0%)  n/a 
Lobular inflammation 32 (100%) 4 (80%) 0.146 FE 
Kupffer cell hypertrophy 22 (69%) 1 (20%) 0.057 FE 
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By multiple linear regression using stepwise bidirectional selection, both hypothesized 

biomarkers, CCL-2 and sFasL, as well as race were independent predictors of hepatic 

fibrosis (p = 0.007). Specifically, the probability of Any Fibrosis = 0.5464 + 

(0.2399)[Caucasian] + (-0.0006)[CCL-2] + (0.0047)[sFasL]. The variable “causasian” 

has a value of 1 if true, or 0 if false. The standard deviation and p-value associated with 

each beta value are shown in Table 16. 

 

Table 16. Model for the prediction of any hepatic fibrosis. 

 β-value  ± S.E. p-value 
(Intercept) 0.5464 0.2268 0.0217 
Caucasian 0.2399 0.1345 0.0837 
CCL-2 (pg/mL) -0.0006 0.0003 0.0591 
sFasL (pg/mL) 0.0047 0.0016 0.0054 

 

 

Prediction of Advanced Fibrosis. Only six patients in the study cohort had advanced 

fibrosis, specifically portal or pericellular fibrosis at stage 2, the highest stage of fibrosis 

observed in this study. No patient had both portal and pericellular fibrosis at stage 2, 

however. Three of the six patients with advanced fibrosis had NASH (Table 17), two of 

which also had diabetes; however a third patient with diabetes but not NASH also had 

advanced fibrosis. Thus, there was no statistical difference between patients with and 

without advanced fibrosis in terms of the occurrence of NASH or diabetes. The two 

diagnostic groups were not distinguished by demographic factors, but several clinical 

variables distinguished the groups including AST-, ALT-, and HDL serum levels. In fact, 

these variables appeared to be at “healthier” levels relative to the control group, in that 
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serum levels of AST and ALT were significantly lower in patients with advanced 

fibrosis, while HDL levels were significantly higher in that group. Serum levels of the 

candidate biomarkers CCL-2 and sFasL were not different between patients with and 

without advanced fibrosis; in fact, the mean and standard deviation of the levels of sFasL 

were coincidentally identical between the two groups. (For comparison the median levels 

of sFasL in patients with advanced or minimal to no fibrosis were 79 and 84, 

respectively.) None of the histological features associated with NASH and NASH-related 

fibrosis were significantly different between the two diagnostic groups. 
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Table 17. Demographic, clinical, and laboratory data for patients with and without 

advanced fibrosis. Entries are counts for discrete measures (with percentage of group 

total given in parentheses) or mean ± S.D. for continuous measures. A p-value of ≤ 0.05 

was considered significant. Significant results are shown in bold text. Chi  = chi square 

test of homogeneity; FE = Fisher’s exact test; MW = Mann-Whitney U test; 2T = two-

sample t-test (2-tailed). 

 Adv. 
Fibrosis 

none to minimal 
Fibrosis 

P-value Test 

N 6 31   
NASH  3 (50%) 19 (61%) 0.667 FE 
Diabetes 3 (50%) 10 (32%) 0.664 FE 
Female 4 (67%) 21 (68%) 1.00 FE 
Caucasian 5 (83%) 26 (84%) 0.561 Chi 
Age 51 ± 10 48 ± 10 0.483 2T 
BMI 48 ± 2.6 48 ± 11 0.564 MW 
Hyperlipidemia 4 (67%) 19 (61%) 1.00 FE 
Hypertension 6 (100%) 20 (65%) 0.244 Chi 
AST (U/L) 20 ± 2.4 23 ± 7.2 0.042 2T 
ALT (U/L) 23 ± 4.7 34 ± 16 0.026 MW 
AST: ALT 0.88 ± 0.15 0.75 ± 0.29 0.122 MW 
Albumin (g/dL) 4.0 ± 0.28 4.0 ± 0.57 0.804 MW 
Bilirubin (total) (mg/dL) 0.52 ± 0.28 0.49 ± 0.28 0.753 MW 
White blood cell count (103/uL) 8.0 ± 2.7 7.2 ± 1.8 0.592 MW 
Platelet count (103/uL) 256 ± 99 276 ± 69 0.649 2T 
Hemoglobin (g/dL) 12.4 ± 1.8 13.6 ± 1.2 0.156 2T 
Glucose (mg/dL) 103 ± 41 113 ± 39 0.606 MW 
Cholesterol (total) (mg/dL) 203 ± 15 185 ± 36 0.065 2T 
Triglycerides (mg/dL) 144 ± 39 183 ± 131 0.853 MW 
HDL (mg/dL) 56 ± 7.8 47 ± 9.8 0.041 2T 
CCL-2 (pg/mL) 390 ± 103 488 ± 169 0.161 MW 
sFasL (pg/mL) 86 ± 33 86 ± 33 0.805 MW 
Portal fibrosis 5 (83%) 21 (68%) 0.782 Chi 
Pericellular fibrosis 3 (50%) 9 (29%) 0.367 FE 
Ballooning degeneration 1 (17%) 16 (52%) 0.187 FE 
Portal inflammation 5 (83%) 17 (55%) 0.397 Chi 
Lobular inflammation 6 (100%) 30 (97%) 0.500 Chi 
Kupffer cell hypertrophy 4 (67%) 19 (61%) 1.00 FE 
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Analysis by multiple linear regression with stepwise bidirectional selection showed that 

HDL and CCL-2 were independent predictors of advanced hepatic fibrosis (p = 0.028). 

Specifically, the probability of Advanced Fibrosis = -0.2154 + (0.0142)[HDL] + (-

0.0007)[CCL-2]. The standard deviation and p-value associated with each beta value are 

shown in Table 18. 

 

Table 18. Model for the prediction of advanced fibrosis. 

 β-value  ± S.E. p-value 
(Intercept) -0.2154 0.3122 0.4949 
HDL 0.0142 0.0059 0.0214 
CCL-2 -0.0007 0.0004 0.0757 

 

 

Discussion. The goal of this study was to identify and test novel serum-based biomarkers 

of NASH and NASH-related fibrosis that could be potentially tied to deregulated cell 

signaling in adipose tissue. Using the phosphoproteomic data set generated by Younossi 

et al. (2010), enrichment analysis was conducted and that analysis resulted in the 

identification of pathways that were deregulated in the adipose tissue of patients with 

NASH relative to what is found in the adipose tissue of control patients. The five 

pathways most enriched were those relating to insulin signaling, including the IGF-1 

receptor pathway, insulin regulation of translation, AKT- and PIP3 signaling, and 

regulation of lipid metabolism by insulin signaling. A number of molecules within those 

pathways were phosphorylated at lower levels in NASH patients than in patients without 

NASH, particularly IRS-1, SHC, PDPK1, p70-S6 kinase 2, and 4E BP1. These results 
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suggest that cell signaling pathways in the adipose tissue of morbidly obese patients with 

NASH are indeed deregulated. Further analysis revealed that a number of secreted 

molecules could be linked to these pathways and to disease processes associated with 

NAFLD (e.g. insulin resistance, liver fibrosis) including cytokines, chemokines and 

matrix metalloproteinases, among others. An extensive literature search was then 

undertaken to identify which members of this collection might have a functional role in 

liver disease and consequently be linked to the development of NAFLD, resulting in the 

identification of CCL-2/MCP-1 and FasL as candidate serum-based biomarkers. Based 

on those findings, I hypothesized that (1) circulating CCL-2, elevated in patients with 

NAFLD due to enlarged visceral adipose tissue, causes monocyte infiltration into the 

liver and contributes to steatosis and insulin resistance of hepatocytes, thereby playing a 

role in the pathology of NAFLD; and (2) that Fas ligand-mediated apoptosis is an 

important contributor to the development of NASH, initiating cell death and fibrosis in 

response to liver injury and inflammation, and that the deregulation of cell signaling in 

the adipose tissue of morbidly obese patients may lead to increased secretion of sFasL, 

which in turn would promote apoptosis and fibrosis in hepatocytes. 

 Interestingly, the results of this study suggest that both candidate biomarkers are 

potentially useful markers of hepatic fibrosis, yet only the second of the two hypotheses 

mechanistically supports this observation. It was expected that if the secretion of CCL-2 

from adipose tissue contributes to the pathology of NAFLD, then its serum levels would 

increase with increasing progression of the disease. Instead, average serum 

concentrations of CCL-2 decreased with progression of the disease, such that in patients 
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with steatosis, NASH (with any fibrosis), fibrosis with or without NASH, and advanced 

fibrosis, the average concentrations were 570, 464, 457, and 445 pg/mL, respectively. 

Consequently, decreasing CCL-2 was an independent predictor of fibrosis and advanced 

fibrosis, although it was not a significant predictor of NASH. Differences in serum levels 

of CCL-2 between the diagnostic groups also were not statistically significant in any 

group comparisons. 

 Serum levels of sFasL were significantly increased in patients with any form of 

hepatic fibrosis relative to those without fibrosis but with steatosis. Moreover, increasing 

sFasL was independently predictive of hepatic fibrosis. However, serum levels of sFasL 

were not significantly different in group comparisons or in regression modeling relating 

to the prediction of NASH or advanced fibrosis. Tamimi et al. (2011) also did not find a 

statistical difference in sFasL levels between patients with and without NASH, however 

in both their study and mine sFasL levels were higher in NASH patients than in those 

without NASH. As in this study, Tamimi et al. found that sFasL was not a significant 

predictor of NASH by regression analysis. 

 A few additional findings in this study are worth consideration. Increasing BMI and 

decreasing HDL were independent predictors of NASH. Other studies of NASH have 

underscored the importance of these variables. BMI is positively correlated with NAFLD 

(p <0.001) in a dose-response manner (Jiang et al., 2010) and also correlates strongly (p 

<0.001) with NAS (NAFLD activity score; a scoring system for NAFLD severity up to 

and including NASH), while serum HDL levels are inversely correlated (p = 0.004) with 

NAS (Puljiz et al., 2010). Likewise, in group comparisons Tamimi et al. (2011) reported 
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significantly higher BMI values and somewhat lower HDL levels in NASH patients 

relative to those without NASH. 

 Whether an individual was Caucasian factored into the model predicting hepatic 

fibrosis. Hossain et al. (2009) found that NAFLD patients with moderate to severe 

fibrosis were more likely to be Caucasian, and a multiple regression model for the 

prediction of moderate to severe fibrosis included Caucasian as a significant predictor. 

 In the evaluation of advanced fibrosis, the some of the results are contrary to expected 

trends. AST and ALT were significantly lower in the group with advanced fibrosis 

relative to controls, but in another study they were significantly higher in patients with 

NAFLD and moderate to severe fibrosis and increasing levels of these aminotransferases 

were independent predictors for moderate to severe fibrosis by multiple regression 

(Hossain et al., 2009). However, in this study the average AST and ALT levels were 

within the normal range (<40) for both diagnostic groups and therefore the finding of 

significant difference between the groups may not be biologically relevant. HDL was 

significantly higher in patients with advanced fibrosis, whereas in the study by Hossain et 

al. (2009) it was not significantly different between NAFLD patients with and without 

moderate to severe fibrosis nor was it a significant predictor for moderate to severe 

fibrosis in regression analysis. The average HDL levels measured in this study, while not 

at a level that is considered protective of heart disease (>60) were also not alarmingly low 

in either group, so again the statistical difference between the diagnostic groups may not 

be relevant to the progression of NAFLD. Of the three clinical variables discussed, only 

HDL was an independent predictor of advanced fibrosis in multiple regression analysis. 
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 There were some limitations to this study that could be easily addressed in future 

testing of CCL-2 or sFasL as biomarkers of NASH and NASH-related fibrosis. One 

explanation for the seemingly contradictory performances of sFasL in this study, as well 

as the failure of CCL-2 to predict NASH, is simply lack of statistical power. My study 

cohort was heavily weighted toward individuals with NASH and mild fibrosis; only five 

subjects had steatosis alone and only six had advanced fibrosis. Furthermore, the 

classification of “advanced” in this study was limited to fibrosis at stage 2 (of a possible 

4) and was predominantly portal in nature (4 of 6 cases), which is not as strongly 

associated with NASH as is pericellular fibrosis (Hall and Kirsch, 2005). Thus, it is 

possible that larger and better defined sub-cohorts would have led to greater statistical 

power to differentiate patients with various stages of NAFLD using CCL-2 and sFasL. 

For example, patients with stages 3 and 4 portal or pericellular fibrosis and more 

examples of stage 2 pericellular fibrosis, as well as greater numbers of patients with 

steatosis with and without accompanying inflammation would be desirable (in this study 

all but one subject had some degree of lobular inflammation).  

 Future experiments designed to test CCL-2 and sFasL as biomarkers of NAFLD 

should involve simultaneously testing of other, targeted molecules to better support 

hypotheses regarding the pathology of NAFLD. It would be particularly helpful to 

measure established serum biomarkers of apoptosis, such as caspase-cleaved cytokeratin 

18 (M30 antigen), concurrent with screening sFasL levels so that correlations between 

the two could be calculated; if the two positively correlate than those data would 

underscore the role of sFasL as a biomarker of apoptosis. If not, perhaps it is inaccurate 
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to regard sFasL as a pro-apoptotic factor in the context of NASH; certainly it was not 

predictive of NASH in this study or that by Tamimi et al. (2011). In fact, Tamimi et al. 

(2011) found that sFas (receptor), which in other contexts is implicated in the suppression 

of apoptosis (Lapinsky et al., 2006; Raghuraman et al., 2005), was predictive of NASH 

and correlated significantly with histologic features of NASH. 

 Another avenue that would be interesting to explore is the relationship between CCL-

2 and Fas/FasL expression in human adipocytes and hepatocyes. If the findings in Wueest 

et al. (2010) using murine models of obesity could be extended to humans, they would 

suggest that Fas/FasL overexpression in the adipocytes of obese individuals leads to 

increased secretion of pro-inflammatory cytokines into the bloodstream, which in turn 

promotes insulin resistance and steatosis in the liver. Schaub et al. (2003) showed that 

increased expression of the Fas/FasL system in human vascular smooth muscle cells 

increased secretion of CCL-2/MCP-1, as mediated by interleukin-1 alpha (IL-1α). 

However, in this study sFasL increased with increasing severity of fibrosis whereas CCL-

2 decreased with increasing severity of fibrosis. As suggested in the second hypothesis, 

there may be two disparate contributions of Fas/FasL to the pathology of NAFLD; one in 

which adipose-specific Fas/FasL leads to hepatic insulin resistance and steatosis as 

mediated by inflammatory factors such as CCL-2, and another in which sFasL 

contributes to hepatic fibrosis. Given that all the patients in this study except five had 

some form of fibrosis, perhaps the second mechanism was easy to detect while the first, 

i.e. the contribution of CCL-2 to hepatic inflammation, would have been easier to detect 

with a larger subcohort of patients having only steatosis or NASH without fibrosis. 
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 A few technical approaches could be improved in future experiments. Due to limited 

serum volumes, each patient in this study was measured only once (albeit in duplicate) 

for each analyte. Future experiments testing patients in triplicate would provide greater 

accuracy, and repeated assays would allow inter-assay variability to be assessed. Use of a 

larger cohort would provide more statistical power and, hopefully, more examples of the 

full spectrum of NAFLD, as described previously. Finally, in this study there was a 

mechanical failure of a plate reader, causing the CCL-2 assay to sit unmeasured for 1 hr. 

beyond the recommended time interval in which measurements should have been taken. 

Fortunately, the quality of the data did not seem compromised by this event, as the fit of 

the standard curve remained at an R-value of 1. Nonetheless, repeated testing of CCL-2 

in patients with NAFLD would be useful to confirm the results reported here. 

 

Conclusions. The results of this study suggest that deregulation of insulin signaling in the 

adipose tissue of obese patients may lead to increased secretion of the chemokine CCL-2 

and the soluble, apoptosis-inducing ligand sFasL, which in turn are predictive of hepatic 

fibrosis. Lack of a sufficiently large control group without fibrosis may account for the 

failure to detect significant differences in the serum levels of these candidate biomarkers 

between patients with and without NASH. Nonetheless, this study is in accordance with 

others implicating a pathological role for CCL-2 and sFasL in the progression of 

NAFLD.  
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5:  BIOMARKERS OF CENTRAL AND PERIPHERAL FATIGUE IN PATIENTS 

WITH CHRONIC LIVER DISEASE 

 

Results.  

 Two sets of analyses were conducted for this study, each investigating the 

relationship(s) between serum-based parameters (specifically, serum levels of selected 

cytokines, hormones, and metabolic factors), and fatigue. Patients were categorized as 

having peripheral or central fatigue as described in Chapter 2, and were compared against 

an appropriate control group; i.e., patients with chronic liver disease who did not 

experience the type of fatigue in question.  

 

Peripheral fatigue. For the analysis of peripheral fatigue, the total sample size was 23 

(specifically, 20 subjects, three for whom follow-up data were available); totaling 9 in the 

“high MET” group and 14 in the “low MET” group. In a comparison of patients with and 

without peripheral fatigue, those who were fatigued (low MET) had significantly elevated 

serum levels of IL-6 and IL-8 (p < 0.01 and < 0.05, respectively) relative to those without 

fatigue (high MET) (Table 19). Aside from IL-6 and IL-8, no other serum-based 

parameters differed significantly between the high and low MET groups. 
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Table 19. Results of group comparisons between patients with and without peripheral 

fatigue. Table entries for “low MET” and “high MET” groups (except in the case of 

LDL) are medians (25th, 75th quartiles); entries for LDL are mean ± SD. Significant 

results are shown in bold text. MW = Mann Whitney U test; 2T = two sample, two-tailed 

student t-test assuming separate variances. 

Parameter Low MET High MET p-value Test 
Serotonin (ng/ml) 89 (27, 108) 206 (96, 246) 0.101 MW 
C-peptide insulin (pg/ml) 3131 (2441, 4282) 2405 (2120, 2768) 0.131 MW 
IL-8 (pg/ml) 19 (16, 25) 13 (11, 20) 0.044 MW 
TNF-α (pg/ml) 7.8 (6.5, 11) 8.1 (4.6, 9.0) 0.705 MW 
IL-6 (pg/ml) 2.9 (2.6, 3.7) 1.6 (1.2, 1.8) 0.006 MW 
ALT (U/L) 53 (33, 63) 39 (24, 58) 0.256 MW 
AST (U/L) 50 (36, 62) 40 (26, 46) 0.088 MW 
AST:ALT 1.1 (0.9, 1.1) 1 (0.9, 1) 0.497 MW 
TC (mg/dL) 171 (152, 227) 212 (199, 221) 0.231 MW 
TRG (mg/dL) 95 (74, 156) 121 (77, 163) 0.875 MW 
HDL (mg/dL) 40 (32, 50) 47 (30, 61) 0.468 MW 
LDL (mg/dL) 132 ± 51 135 ± 44 0.721 2T 
Non-HDL fraction (mg/dL) 126 (108, 197) 153 (132, 188) 0.450 MW 
Glucose (mg/dL) 103 (96, 127) 101 (88, 106) 0.242 MW 

 

 

 A second analysis investigated the relationship between age and objective measures 

of peripheral fatigue. Patients (n = 36) were divided into 3 age categories:  low (<41 

years old), medium (41-50 yrs), and high (>50 yrs). The measures of fatigue included 

MET scores, 6-min. walk distance, and Borg Scale value. The differences among age 

groups for the three measures of fatigue were tested by Kruskal Wallis test. None of the 

differences were significant (Table 20). Thus, age does not appear to play a role in 

peripheral fatigue in patients with chronic liver disease. 
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Table 20. Results of group comparisons comparing age groups (low, medium, high) with 

objective measures of peripheral fatigue (MET scores, 6-min. walk distance, and 6-min. 

Borg Scale value). 

Measure of Peripheral Fatigue p-value (Kruskal Wallis) 
6 min. walk (distance) 0.398 
Borg Scale value (6 min.) 0.531 
MET 0.247 

 

 

Central Fatigue. For the analysis of central fatigue, repeat visits were excluded and 

pertinent data were lacking for one patient, bringing the total sample size to 30; of these, 

13 were classified as having central fatigue and 17 did not have central fatigue. Those 

with and without central fatigue were compared with regard to all laboratory parameters 

(Table 21). Only one variable, the ratio of AST to ALT, was significantly different 

between the groups. 
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Table 21. Results of group comparisons between patients with and without central 

fatigue. Table entries for “yes” (central fatigue present) and “no” (central fatigue absent) 

groups (except in the case of LDL) are medians (25th, 75th quartiles); entries for LDL are 

mean ± SD. Significant results are shown in bold text. MW = Mann Whitney U test; 2T = 

two sample student t-test assuming separate variances. 

Parameter Yes No p-value Test 
Serotonin (ng/ml) 106 (22, 224) 118 (92, 190) 0.601 MW 
C-peptide insulin (pg/ml) 2768 (2412, 3940) 2348 (2028, 2882) 0.233 MW 
IL-8 (pg/ml) 20 (14, 26) 16 (13, 20) 0.217 MW 
TNF-α (pg/ml) 6.3 (3.4, 8.1) 7.6 (6.5, 10) 0.082 MW 
IL-6 (pg/ml) 2.7 (1.8, 3.0) 1.9 (1.6, 3.8) 0.601 MW 
ALT (U/L) 58 (39, 83) 33 (24, 47) 0.082 MW 
AST (U/L) 51 (37, 62) 31 (26, 58) 0.325 MW 
AST:ALT 0.9 (0.7, 1) 1.1 (1, 1.1) 0.004 MW 
TC (mg/dL) 183 (148, 221) 199 (163, 212) 0.630 MW 
TRG (mg/dL) 82 (60, 158) 89 (59, 132) 0.769 MW 
HDL (mg/dL) 51 (36, 58) 42 (33, 49) 0.516 MW 
LDL (mg/dL) 123 ± 38 134 ± 43 0.488 2T 
Non-HDL fraction (mg/dL) 147 (106, 166) 132 (117, 171) 0.676 MW 
Glucose (mg/dL) 106 (101, 125) 102 (88, 112) 0.276 MW 

 

 

Correlations. Using the full data set including follow-up visits (N = 36), a number of 

significant correlations were observed among cytokines, liver enzymes, and serum lipids 

(Table 22). Serum levels of IL-6 were positively correlated with levels of IL-8 and 

negatively correlated with MET value, and serum concentrations of IL-8 also correlated 

with the liver enzymes, ALT and AST. ALT and AST concentrations were positively 

correlated with each other. Serum levels of LDL cholesterol, not surprisingly, correlated 

with total cholesteral levels as well as with serum tryglyceride levels. 
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Table 22. Significant correlations among cytokines, liver enzymes, and serum lipids in 

patients with chronic liver disease.  

Comparison p-value Type of Correlation 
IL-6 vs. IL-8 0.028 positive 
IL-6 vs. MET 0.013 negative 
IL-8 vs. ALT 0.019 positive 
IL-8 vs. AST 0.019 positive 
AST vs. ALT <0.001 positive 
LDL vs. total cholesterol <0.001 positive 
LDL vs. triglycerides 0.046 positive 
 

 

Discussion. The biological underpinnings of the fatigue associated with chronic disease 

have not been fully understood, yet fatigue can be debilitating to patients, affecting their 

physical, emotional, and social well-being. Chronic liver diseases in which fatigue is a 

symptom include NAFLD, alcoholic cirrhosis, various forms of viral hepatitis, and 

primary billiary cirrhosis. Fatigue associated with liver disease can be extensive, 

contributing to lower quality of life (Sogolow et al., 2008). In NAFLD, fatigue manifests 

as decreased physical activity and an increase in the perception of fatigue; furthermore, it 

is strongly correlated with daytime sleepiness and dysfunction of the autonomic nervous 

system, which in turn can lead to dizziness and increase the likelihood of falling 

(Newton, 2010; Newton et al., 2008). The extent of fatigue is not, however, related to the 

severity of NAFLD or to insulin resistance (Newton et al., 2008). Children with NAFLD 

also experience fatigue, and this fatigue contributes significantly to a decline in quality of 

life relative to that of a healthy reference population (Kistler et al., 2010). In HCV, 

fatigue may arise from abnormalities of the neuroendocrine pathways associated with 
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regulation of cortisol and the stress response (Swain, 2000; Swain and Maric, 1995). The 

severity of fatigue in patients with HCV is associated with elevated plasma levels of 

leptin and TNFα, and decreased plasma levels of L-carnitine (Anty et al., 2011; Piche et 

al., 2002).  

 The aim of this study was to to determine whether, in patients with chronic liver 

disease, there is a correlation between self-reports of physical activity-associated fatigue 

(peripheral fatigue) or more global lack of energy and motivation (central fatigue) with 

serum markers of inflammation, or with abnormalities of glucose and lipid metabolism. 

The results of this study suggest that serum levels of the pro-inflammatory cytokines, IL-

6 and IL-8 may be important biomarkers of peripheral fatigue in patients with chronic 

liver disease. Both cytokines were significantly elevated in patients with low MET 

scores, and IL-6 also negatively correlated with MET score. Most studies relating IL-6 

and IL-8 to chronic fatigue have done so in the context of chronic fatigue syndrome 

(CFS); in these studies and others, there appears to be concordant evidence for the role of 

IL-6 in fatigue, and somewhat conflicting information regarding IL-8. Circulating levels 

of IL-6 are significantly higher in patients with chronic fatigue syndrome (CFS) relative 

to controls (Nas et al., 2011), possibly due to its increased secretion from peripheral 

blood mononuclear cells of patients with CFS (Chao et al., 1991). By analysis with 

mutiplex technology, IL-6 was significantly elevated in the plasma of women with CFS; 

however, IL-8 was significantly lower relative to controls (Fletcher et al., 2009). In 

contrast, circulating levels of both IL-6 and IL-8 were elevated in patients with CFS 

experiencing a flare-up of symptoms following moderate exercise. No studies to date 
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have compared blood levels of cytokines with measures of fatigue associated with 

chronic liver disease. However, a recent study, noting the association of sleep disorders 

with disturbances in immune response, found that individuals with HCV experiencing 

poor quality of sleep had significantly higher serum levels of IL-6, while HCV-infected 

individuals who sleep well have significantly decreased serum levels of IL-8 (de Almeida 

et al., 2011); they hypothesized that the hypersecretion of these pro-inflammatory 

cytokines indicated worsening of the disease, which in turn led to disturbances in sleep. 

 Another finding of this study is that age does not appear to contribute to peripheral 

fatigue in patients with chronic liver disease. There was no significant relationship 

between age and measures of peripheral fatigue, including MET score, Borg scale value, 

and 6-min. walk distance. This finding is important given that the ages of the participants 

in this study spanned three decades, ranging from 33 to 63 years old; thus, peripheral 

fatigue in patients with chronic liver disease cannot be considered a consequence of 

aging. 

 Regarding central fatigue, the ratio of AST to ALT was significantly lower in patients 

with central fatigue. The median ratio value in this cohort was 0.9, compared to 1.1 in the 

cohort without central fatigue. The biological significance of this finding is unclear. The 

conventional use of this ratio is to distinguish patients with alcoholic liver disease, who 

tend to have a ratio ≥ 2, from NASH, having a ratio <1 (Sorbi et al., 1999). However, in a 

direct comparison of patients with either of those two diseases, a ratio of >1 is sufficient 

to identify patients with alcoholic liver disease (Zamin et al., 2002). The AST/ALT ratio 

is not diagnostic for HCV; in patients already diagnosed with HCV an AST/ALT value 
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>1 was formerly considered indicative of cirrhosis, however that guideline has been 

disputed (Bartos et al., 2007; Reedy et al., 1998). In this study, there were approximately 

equal counts of patients with NAFLD or with HCV falling into the “yes” and “no” 

classifications for central fatigue; therefore the significant difference in AST/ALT values 

between the two cohorts did not reflect disease status, as confirmed by Fisher’s Exact test 

(p = 0.688). No studies have directly compared AST or ALT values to measures of 

fatigue in chronic liver disease; however there is scant circumstantial evidence for a 

relationship between altered aminotransferase levels and fatigue. For example, fatigue 

was reported by 50 patients with biopsy-proven NAFLD, representing the entire study 

cohort, and the AST/ALT was <1 for 72% of this cohort (Khurram and Ashraf, 2007). 

Likewise, in a cohort of 20 patients with primary biliary cirrhosis, fatigue was a major 

symptom while aminotransferases, although slightly elevated, were reported to be 

“reversed” in terms of the AST/ALT ratio (Yao et al., 2002). 

 The remaining positive correlations observed in this study merit some discussion. IL-

6 and IL-8 were positively correlated with one another, IL-8 was positively correlated 

with the aminotransferases, and the aminotransferases correlated positively with each 

other. These findings support similar results found in studies of NAFLD and HCV. 

Serum levels of IL-6 and IL-8 are highly correlated in patients with NAFLD (Jarrar et al., 

2008), and serum levels of IL-6 are significantly higher in patients with chronic hepatitis 

C relative to controls (Lee et al., 2010; Antonelli et al., 2009). Serum levels of IL-8 are 

significantly elevated in patients with NAFLD relative to obese and non-obese controls 

(Jarrar et al., 2008) and increase with the progression of hepatitis C (Neuman et al., 
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2007). In fact, IL-8 is induced by hepatitis C and its consistent elevation in the context of 

that disease justified its use as a marker of anti-viral drug treatment efficacy (Akbar et al., 

2011). AST and ALT are frequently elevated above the normal range in NAFLD and 

their sustained elevation in the bloodstream over time plays into the decision of whether 

to suspect NAFLD, and even whether to conduct a liver biopsy (Younossi, 2008). 

Elevated aminotransferases including AST and ALT are also associated with chronic 

hepatitis B and C and several other liver diseases (Liu, 2009; Maier, 2005).  

 Finally, in this study there was a positive correlation between LDL and total 

cholesterol, and between LDL and triglycerides. Lipoproteins are spherical particles 

released from or delivered to the liver that contain proteins (known as apolipoproteins) 

and lipids. The role of lipoproteins is to transport lipids through the bloodstream; among 

these lipids are cholesterol and triglycerides. Low density lipoproteins (LDL) deliver 

lipids from the liver to tissues and organs, whereas high density lipoproteins (HDL) 

deliver lipids from organs and tissues to the liver for processing. Consequently, the 

finding of positive correlations between LDL and total cholesterol and between LDL and 

triglycerides is not surprising and indicates a high lipid content of the blood and tissues of 

this patient cohort, all of whom were overweight or obese. A positive correlation between 

LDL and total cholesterol was identified over two decades ago (Lam et al., 1990), and 

levels of total cholesterol and LDL were recently shown to aggregate by family to an 

extent that environmental factors appear negligible (de Miranda Chagas et al., 2011); thus 

it is possible that genetics accounted for the strong association between these two 

variables in the current study. Previously reported correlations between LDL and 
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triglycerides depended on the class of LDL under consideration and whether blood levels 

of triglycerides exceeded a given threshold, with some correlations being highly positive 

and others highly negative depending on the particular combination of factors (Griffin et 

al., 1994); however increasing serum triglycerides is associated with a concomitant 

increase in the triglyceride content of total LDL particles and of large but not small LDL 

particles (Halle et al., 1999), suggesting a potential biological mechanism for the 

observed positive correlation between serum triglyerides and LDL levels in this study. 

 As a pilot study, the research presented herein represents a first step in the effort to 

identify objective, serum-based biomarkers of fatigue in patients with chronic liver 

disease. Thus, several aspects of this research could be improved in future studies 

continuing this area of investigation. First, larger patient cohorts would be advisable. This 

study may have failed to detect other relationships between fatigued and non-fatigued 

patients simply due to its small cohort of 31 patients. Furthermore, there were only four 

patients in total who had neither peripheral nor central fatigue and it would be of interest 

to measure serum levels of the significant parameters (IL-6, IL-8) with those levels found 

in a larger cohort of patients with chronic liver disease but no fatigue, as well as in 

patients without chronic liver disease. As mentioned in other chapters, liver biopsy would 

not be conducted on healthy individuals but perhaps a “healthy” control group could be 

identified based on a weight of evidence approach, in which the status of “no liver 

disease” could be surmised from lack of evidence of liver dysfunction based on clinical 

variables, a lack of family history of liver disease, etc. Another problem with the use of 

the small cohort in this study is that several parameters, including serum cytokines, were 
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highly skewed and therefore the significant results found for IL-6 and IL-8, for example, 

may have been driven by a small number of patients. Again, use of a larger cohort in 

future studies would help to reduce uncertainty in significant results.  

 Another recommendation would be to expand the number of serum markers of 

inflammation, since these preliminary results suggest that pro-inflammatory cytokines 

appear to correlate well with peripheral fatigue. In studies of cancer, fatigue is known to 

occur not only from pharmaceutical treatments targeting the immune system but also is a 

problem after treatment ceases, possibly due to the prolonged release of pro-

inflammatory cytokines such as IL-1β, IL-6, and TNFα; release of these factors by 

tumors may also account for fatigue in patients not receiving immunotherapy (Bower, 

2007). Likewise, serum levels of C-reactive protein (CRP) were significantly higher in 

survivors of breast cancer suffering from chronic fatigue than in those survivors not 

experiencing fatigue (Reinertsen et al., 2010). Regarding chronic liver disease, the recent 

findings of elevated leptin and TNFα and decreased L-carnitine in fatigued subjects with 

HCV (Anty et al., 2011; Piche et al., 2002) are also intriguing and would suggest that 

these molecules, although not all related to immune function, would be good to test in 

future studies of fatigue involving patients with HCV. 

 A final recommendation would be to investigate additional means of defining central 

fatigue in patients with chronic liver disease. Since the only significant finding in this 

study was that patients with and without central fatigue differed only in their AST:ALT 

ratio, usually an indicator of type of liver disease but not effective in this study, it would 
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be interesting to test whether other measures of central fatigue would be more helpful in 

differentiating patients according to blood parameters. 

 

Conclusions. Our study demonstrated that in patients with chronic liver disease (1) the 

pro-inflammatory cytokines IL-6 and IL-8 are significantly higher in patients with 

peripheral fatigue and are therefore potentially useful biomarkers of peripheral fatigue in 

these patients; and (2) age does not appear to play a role in peripheral fatigue. Future 

studies expanding on the current findings and incorporating additional measures of 

central fatigue will likely be useful in better characterizing fatigue in patients with 

chronic liver disease. 
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6: CONCLUSIONS 

 

 In 2000, the National Cancer Institute (NCI) established the Early Detection Research 

Network (EDRN), which provided an infrastructure to coordinate the multidisciplinary 

efforts needed to develop tools for the early detection of cancer (Srivastava and Kramer, 

2000). The NCI recognized that the preliminary work of research laboratories to identify 

promising biomarkers of cancer was not being used as a basis for subsequent studies 

further investigating the utility of these biomarkers as screening tools in clinical settings, 

despite a growing awareness of the importance of early detection in cancer therapy. A 

reason for the disparity between laboratory and clinical research was a lack of stable 

connections between the two types of institution and hence the lack of appropriate 

samples and associated diagnostic, clinical, and demographic data on which to validate 

and refine potential biomarkers. As a result, the EDRN established a network of 

laboratories designed to coordinate efforts in the identification and validation of 

candidate biomarkers. Members of this network proposed a 5-phase plan for the process 

of biomarker development (Pepe et al., 2001). Phase 1 involves preclinical exploratory 

studies in which a wide variety of genes and proteins are analyzed for differential 

expression between diseased and non-diseased tissues, with the goal of discovering and 

prioritizing potentially useful biomarkers. Phase 2 involves the non-invasive collection of 

samples and measurement of the potential biomarker using a clinical assay. The clinical 
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assay must distinguish diseased from non-diseased individuals and be assessed for 

performance by measures such as sensitivity, specificity, and ROC curve analysis. Since 

in Phase 2 a biomarker is tested in the context of patients already with established 

disease, the ability of the biomarker to discern early stages of the disease cannot be 

assessed. Therefore, Phase 3 requires the execution of retrospective longitudinal studies, 

in which a biomarker is tested for its capacity to detect pre-clinical disease. These studies 

begin with a repository of samples collected from seemingly healthy subjects who were 

monitored over time for the development of cancer; samples from those who developed 

cancer become cases and are compared to appropriate controls, i.e. samples from subjects 

who did not develop cancer. Levels of biomarker expression are then compared between 

the case and control cohorts to determine whether the biomarker can distinguish the 

cohorts at the time of sample collection, which preceded clinical diagnosis. Phase 4 tests 

the biomarker’s performance in a prospective manner; it is broadly applied to patients as 

a screening tool and those with positive results receive subsequent, definitive diagnostic 

testing. This phase allows further characterization of the biomarker in terms of its 

performance and highlights the stage(s) of disease at which it works efficiently; however, 

large sample sizes are needed since the tool is not applied to a targeted population, and 

ethical concerns arise as patients will receive diagnoses and treatments as a result of the 

biomarker test. In phase 5, the final step, studies are undertaken to determine whether 

implementation of the biomarker test reduces mortality in the population at large. Even 

tests that identify early stages of disease are not always helpful in reducing overall 

mortality, due to a lack of effective treatment for the disease, difficulty implementing the 
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screening program, prohibitive costs associated with executing the screening or with 

diagnostic testing of false positives, or over-diagnosis of disease cases that might 

otherwise have gone into regression. 

 Although the 5-phase plan for biomarker development was designed for the detection 

of cancer, its framework is readily applied to the development of biomarkers for other 

diseases (Miller et al., 2011). The biomarkers described herein targeted NASH and 

NASH-related fibrosis from patients with NAFLD, or targeted fatigue associated with 

chronic liver disease. The studies identifying and validating these biomarkers largely fall 

within the criteria of Phase 2 development. In the first study, all candidate proteins tested 

as part of the biomarker panel had been separately identified in previous studies as 

effective in differentiating a disease state from a non-diseased state, either with regard to 

NAFLD or to a more generalized disease process (e.g. apoptosis, fibrosis). Thus, there 

was not a biomarker discovery per se but rather a “meta-discovery” that already 

identified biomarkers work optimally in combination to predict NASH and NASH-related 

fibrosis. Furthermore, these were tested and validated on non-invasively collected 

samples from patients that had been definitively diagnosed with established stages of 

NAFLD, further fitting the requirements of Phase 2. The second study, identifyng CCL-2 

and FasL as potential biomarkers of NAFLD-related fibrosis, also fit the requirements for 

Phase 2 development in that they were measured by clinical assay in non-invasively 

collected samples from patients with definitive diagnoses; however, since these 

biomarkers were chosen by pathway analysis based on protein array data and had 

undergone only a limited amount of testing as biomarkers of liver disease in other 
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studies, they also somewhat fit the description of biomarker discovery outlined in Phase 

1. The third study, identifying biomarkers of fatigue in patients with chronic liver disease, 

also straddled the line between Phases 1 and 2 of the 5-phase plan. Elevated levels of 

serum cytokines have been associated with fatigue in other diseases, including chronic 

fatigue syndrome, but had only rarely been tested as biomarkers of fatigue in the context 

of chronic liver disease, and apparently not at all in the context of NAFLD; thus, one can 

argue that IL-6 and IL-8 (and perhaps the AST/ALT ratio) were “discovered” biomarkers 

of fatigue in NAFLD and HCV. Moreover, these were tested on definitively diagosed 

cohorts of patients, using clinical assays and serum, and therefore also fit the 

requirements of phase 2. 

 In summary, the studies presented in this document illustrate that (1) serum markers 

of apoptosis and fibrosis, in combination with specific clinical and demographic data are 

useful in distinguishing patients with NASH and NASH-related fibrosis from those with 

steatosis; (2) serum levels of the chemokine CCL-2, and the apoptotic signaling 

molecule, sFasL, in combination with specific demographic and clinical data may be 

useful for distinguishing NAFLD-related fibrosis (with or without NASH) from steatosis; 

and (3) serum levels of the cytokines IL-6 and IL-8, and possibly the AST/ALT ratio, 

may be predictive of fatigue in patients with chronic liver disease. Taken together, the 

molecules that proved most useful in these studies suggest that the physiological 

processes most important to the pathology of NAFLD and perhaps chronic liver disease 

in general are inflammation, apoptosis, and fibrosis. While those processes have been 

widely implicated in numerous other studies of NAFLD, the data presented herein further 
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confirm that these processes are worthy of continued study in the context of chronic liver 

disease. 
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