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Abstract

A SYSTEMATIC FRAMEWORK FOR IMPROVING ESTIMATES OF
ANTHROPOGENIC AEROSOL COOLING

Xiaoqin Yan, PhD

George Mason University, 2016

Dissertation Director: Dr. Timothy DelSole

One of the most significant uncertainties in climate change projections is the sensitivity

of the climate system to increasing greenhouse gas concentrations. Attempts to estimate

this sensitivity based on observations over the past century have failed to reduced this un-

certainty, primarily because of uncertainties in the cooling effect of aerosols, which have

cancelled some of the warming induced by greenhouse gases. This study attempts to im-

prove estimates of aerosol cooling by exploiting new statistical techniques and by identifying

variable combinations that are more effective at estimating the response to climate forcings

than single variables. The exploration of variable combinations is facilitated using a new

measure called potential detectability, which quantifies the extent to which the response to

climate forcing can be detected in a model. It is shown that joint temperature-precipitation

information over a global domain provides the most accurate estimate of aerosol forced

responses in climate models, compared to using temperature, precipitation, or sea level

pressure individually or in combination. Unfortunately, observational errors in precipita-

tion are too large to permit estimation of aerosol-induced climate changes. Repeating this

estimation using only land-data, where reliable rain gauge data are available, succeeds in

estimating aerosol cooling, but is only modestly improved by including precipitation data.

We show that the time evolution of the response to aerosol forcing can be estimated from ob-

servations. This conclusion goes beyond previous studies by using only the spatial structure

of the forced response to detect aerosol forcing.



Chapter 1: Introduction

There is no serious scientific doubt that the earth is warming and that most of this warm-

ing has been caused by human activities, mostly by increasing concentrations of long-lived

greenhouse gases (Masson-Delmotte et al. 2013; Myhre et al. 2013; Bindoff and et al. 2013).

This warming has been accompanied by diminishing snow and ice (Vaughan et al. 2013),

rising sea levels (Church et al. 2013), and changes in extreme weather and climate events

(IPCC 2012). Continued emission of greenhouse gases will undoubtedly cause further warm-

ing, melting snow and ice, and sea level rise, increasing the likelihood of serious, widespread,

and irreversible impacts for people and ecosystems.

An urgent concern is how climate will change in the future in response to human ac-

tivity. State of the art climate models predict that global mean temperature will warm

by 1.4 to 3.1◦C by the end of the 21st century (5 to 95% confidence range, Collins et al.

2013, table 12.2). Unfortunately, this uncertainty range is relatively large: the high end

of this prediction, which is in addition to the 0.8◦C warming that has already occurred

since pre-industrial times, is so far beyond the range of what has been experienced over the

past millions of years that abrupt, unpredictable, and potentially irreversible changes can-

not be ruled out (e.g., collapse of ecosystems, destabilization of Greenland and Antarctica

ice-sheets; Molina et al. 2014; IPCC 2014). The largest source of uncertainty in climate pro-

jections is climate sensitivity (Knutti et al. 2002; Knutti and Hegerl 2008), which quantifies

how a climate system responds to an energy imbalance. One measure of climate sensitivity

is the Equilibrium Climate Sensitivity (ECS), defined as the global mean surface warming

in response to a doubling of CO2 after the system has reached a new steady state. The ECS

of comprehensive climate models depends on parameters affecting clouds, convection, and

other processes in ways that are not well constrained by observations (Flato et al. 2013).
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Attempts to constrain ECS using recent climate observations have ruled out low sen-

sitivities (ECS < 1◦C), but the upper limit of sensitivity is much less constrained (Forest

et al. 2002; Gregory et al. 2002; Knutti and Hegerl 2008). The main reason for this sensi-

tivity is the uncertainty in the radiative forcing due to aerosols. Aerosols are tiny particles

suspending in atmosphere, which can be either natural or anthropogenic (human-made).

Typical natural aerosols are sea salt, volcanic aerosols and most mineral dust, while typical

anthropogenic aerosols (AA) are black carbon, sulphate, nitrate and ammonium that are

formed mostly from the incomplete combustion of fossil and biomass based fuels. Aerosols

influence the climate mainly through three mechanisms: i) absorption and scattering of

incoming solar radiation, called the direct effect (left panels of fig. 1.1); ii) local heating

due to absorption of solar radiation and the associated change in atmospheric temperature,

called the semi-direct effect (right panels of fig. 1.1); iii) and changing the microphysical

and dynamical behavior of clouds, called the indirect effect (fig. 1.2). For the direct effect,

atmospheric aerosols absorb or scatter solar radiation, depending on the species of aerosols,

and in either case reduce the amount of solar radiation reaching the Earth’s surface. For

the semi-direct effect, black carbon (BC) can absorb solar radiation and induce warming in

the surrounding air, which can prevent cloud formation due to enhanced stability or even

evaporate cloud droplets, thereby allowing more solar radiation to reach the surface (Koren

et al. 2004). Finally, aerosol particles serve as cloud condensation and ice nuclei and, as

such, compete for uptake of water vapor, resulting in smaller cloud droplets and greater

overall surface area, reflecting more solar radiation back to space (Twomey 1977; Lohmann

2006). In addition, smaller cloud droplets are less likely to collide to form rain droplets

and thereby prolong the life time of the cloud, further reinforcing the cloud albedo effect

(Albrecht 1989). Numerous other indirect effects are known to exist but their impact is

difficult to quantify and parameterize in global scale climate models.

To quantify the impact of changes in climate properties, scientists use the concept of

radiative forcing, which is defined as the net change of the energy balance of the climate

system between two particular times, such as pre-industrial to present-day. According to
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Figure 1.1: Overview of interactions between aerosols and solar radiation and their im-
pact on climate. The left panels show the instantaneous radiative effects of aerosols (direct
effects), while the right panels show their overall impact after the climate system has re-
sponded to their radiative effects (semi-direct effects). From FAQ 7.2, Figure 1 of IPCC
AR5 WG1.

Boucher et al. (2013), the current best estimate of direct effect forcing of aerosols is -0.45

W m−2, with a confidence interval of (-0.95, 0.05); the current best estimate of the semi-

direct effect is +0.4 (0.05 to 0.8) W m−2; and, the current best estimates of the total

radiative forcing of aerosols is -0.9 (-1.9 to -0.1) W m−2. The fact that the net radiative

forcing is negative indicates that aerosols tend to cool the earth. The large uncertainties

associated with these estimates are due primarily to uncertainties in the emission levels,

size distribution of aerosols, and certain optical properties of sulfates.

An assessment of the global radiative forcing is summarized in fig. 1.3. Current estimates
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Figure 1.2: Overview of aerosol-cloud interactions and their impact on climate (indirect
effect). Panels (a) and (b) represent a clean and a polluted low-level cloud, respectively.
From FAQ 7.2, Figure 2 of IPCC AR5 WG1.

of global radiative forcing suggest that the forcing due to AA is more uncertain than that

due to well-mixed greenhouse gases (GHG), and hence dominates most of the uncertainty in

total forcing (Forster et al. 2007, see also fig. 2.20). Also, aerosol cooling partially cancels

greenhouse warming. Thus, it is possible that the climate system has a large climate

sensitivity, but this sensitivity was masked in the past because of a large cooling from

atmospheric aerosols. Also, the large uncertainty in radiative forcing, and the fact that

these two forcings are of opposite sign, raises the possibility that climate models might

4



Figure 1.3: Estimated probability distribution functions for the radiative forcing of total
anthropogenic (block filled black curve), long-lived greenhouse gases and ozone (block filled
red curve), and aerosol direct and cloud albedo (blue dashed). From fig. 8.16 of IPCC AR5
WG1.

respond incorrectly to a given radiative forcing, but still produce realistic simulations of past

warming by plausible adjustments in the cooling from aerosols. Therefore it is important

to identify the anthropogenic aerosol forced responses in models and observations, in order

to validate models and hence to enhance the reliability of future projections.

Aside from its important in estimating climate sensitivity, anthropogenic aerosols also

have been implicated as an important source of climate variability (see Boucher et al. 2013,

for a comprehensive review). Booth et al. (2012) found that the inclusion of aerosol indirect

effects allow model simulation to capture the magnitude, the temporal and spatial structure

of SST variability over North Atlantic. Shindell et al. (2012) found that aerosols contribute

significantly to precipitation changes over the Sahel and South and East Asia in histor-

ical simulations, and inclusion of aerosols in model simulations improves the agreement

between simulated and observed precipitation trends. Dong and Zhou (2014) show that

GHGs and AAs effectively compete to form the Indian Ocean basin-wide warming pattern

5



and the positive India Ocean Dipole-like warming pattern along the equator. Model studies

of Rotstayn and Lohmann (2002) show that anthropogenic aerosol cooling of the Northern

Hemisphere can alter the the low-latitude circulation and rainfall substantially and be the

primary cause of the consistent southward shift of ITCZ. Ridley et al. (2015) use precip-

itation reconstructed from carbon isotope records to show that the anthropogenic aerosol

emissions have led to a reduction of rainfall in the northern tropics during the twentieth

century. Allen et al. (2014) found from both models and observations that anthropogenic

aerosols can modify the Pacific Decadal Oscillation and therefore contribute to the expan-

sion and contraction of the tropical belt during the twentieth century. Multi-model analyses

of Chang et al. (2010) show that the anthropogenic sulfate aerosols may have dramatically

altered the tropical Atlantic rainfall during the twentieth century. Thus, methods for es-

timating the response to anthropogenic aerosols would clarify the role of anthropogenic

aerosols in climate variability.

In order to estimate the role of anthropogenic aerosols in past climate variability, some

assumptions about climate variability need to be made. A basic paradigm in climate science

is that climate variability can be partitioned as

o = (f1 + f2 + · · ·+ fM ) + n

climate forced internal

variability variability variability

(1.1)

where f1, f2, . . . , fM denote forced variability that occurs in response to external forcings

(e.g., GHG, anthropogenic aerosols, solar forcing, volcanoes, land-use changes, etc.), and

internal variability n refers to the chaotic variability that arises from internal dynamics of the

Earth system in the absence of external forcings. The statistical characteristics of internal

variability can be estimated by running climate models with no year-to-year variation in

external forcing. These simulations are often called control runs. The response to specific

forcings can be estimated by running climate models driven by that specific forcing but
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starting at slightly different initial conditions. The resulting simulations are called ensemble

members. For brevity, we call a simulation driven by a specific forcing a single-forcing run.

Because the climate system is chaotic, different simulations will have different realizations

of internal variability. However, if the above paradigm is correct, the different simulations

should have the same forced variability, which therefore can be estimated by averaging over

the ensemble members while holding time and spatial location fixed. Similarly, climate

models can be run with all forcings. These simulations are called historical simulations. It

should be recognized that estimates of forced and internal variability derived from models

may not represent the truth (indeed, they sometimes differ greatly between models).

A first step, then, is to identify the characteristics of the forced responses fm. We are

especially interested in how the response to anthropogenic aerosols differ from other forc-

ings, especially GHG warming, since differences between responses provide the basis for

distinguishing them in observations. A major difference in forcing is that greenhouse gases

tend to be long-lived and thus well mixed, with relatively weak spatial gradients, whereas

anthropogenic aerosols are short lived and thus tend to be more concentrated around their

(land) sources. These differences in forcing lead to differences in hemispheric gradients

and land-sea gradients in the temperature and precipitation responses. Forcings also differ

temporally: forcing from well-mixed greenhouse gases has increased monotonically over the

past century while forcing from aerosols has leveled in the last few decades. In addition,

both forcings have distinct seasonal cycles. Despite these forcing differences, the associated

response patterns tend to be similar to each other. As a representative example, we show

in fig. 1.4 estimates of forced variability patterns from Xie et al. (2013), which were de-

rived from a principal component analysis of single-forcing runs averaged across ensemble

members and models. The top and bottom rows show the SST and precipitation response,

respectively, while the left and right columns show the response to aerosol and GHG forcing,

respectively. The pattern correlation amounts to 0.87 for sea surface temperature and 0.67

for precipitation. The similarity of these patterns suggest that separating these responses

using data might encounter multicollinearity problems.
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Figure 1.4: Climate response patterns estimated from the leading EOF patterns of multi-
model mean CMIP5 simulations for: SST in aerosol runs (a) and GHG runs (b); rainfall in
aerosol runs (c) and GHG runs (d). The variances explained by these patterns are indicated
in the upper right of each panel. From fig. 2 of Xie et al. (2013).

The most widely used method for estimating forced responses in observations is optimal

fingerprinting (Allen and Tett 1999; Hegerl et al. 2007; Hegerl and Zwiers 2011), which is

essentially generalized least squares (GLS). In this approach, a scaling factor is attached to

each forcing in (1.1) to yield the model

o = (a1f1 + a2f2 + · · ·+ aMfM ) + n. (1.2)

Then, the scaling coefficients a1, . . . , aM are estimated using GLS. If the hypothesis

HD : am = 0 (1.3)
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can be rejected, then the response to the m’th forcing is said to be detected. If the hypothesis

HA : am = 1, (1.4)

cannot be rejected, then variability is said to have been attributed to the m’th forced

response. If HA is rejected and the estimated value of am exceeds one, then the model is

said to underestimate the response, otherwise it is said to overestimate the response.

To illustrate, we discuss an analysis by Stott et al. (2006). Stott et al. (2006) as-

sumed that observed surface air temperature could be modeled as (1.2) with three forced

response vectors: anthropogenic aerosol forcing, GHG forcing, and natural forcing (e.g.,

volcanoes and solar insolation). The response vectors and internal variability statistics

were estimated from three separate climate models (HadCM3, PCM, GFDL) and used to

fit observed surface air temperature over the twentieth century (1900-1999). The resulting

scaling coefficients a1, a2, a3 and associated confidence intervals are shown in the top panel

of fig. 1.5. Three sets of scaling coefficients are shown because they used three sets of re-

sponse vectors: response vectors using both global mean and subglobal information (solid);

response vectors using global mean alone (dashed); and response vectors using indices of

global mean, hemispheric gradient, land-sea contrast and meridional gradient over northern

hemisphere (dotted-dashed). Note that confidence intervals for temperature indices tend

to be comparable to those using subglobal information, indicating that the information

needed to detect forced responses are included mainly in the indices. Also, confidence inter-

vals for response vectors using only global mean information tend to be larger than those

for the other response vectors, with the GFDL model showing undetectable aerosol forcing,

suggesting that global mean information is not necessarily adequate for detection.

The temperature trend induced by different forcings are calculated by applying the scal-

ing coefficients to the simulated trend in individual models. The resulting estimated trends

are shown in the bottom panel of 1.5. For the 100-y period of 1900-1999, the estimated

trends show that warming due to GHG forcing (red solid) is detected and attributed con-

sistently for the three models within a range of 0.7 − 1.3K; cooling due to anthropogenic
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Figure 1.5: Scaling factors (top) and derived trends (bottom) over the twentieth century for
the GHG (red), anthropogenic aerosol (green), and natural forcings (blue) contributions for
HadCM3, PCM, and GFDL models. Solid lines denote analyses including both global mean
and subglobal information, dash lines denote analyses including just global mean data, and
dotteddashed lines denote analyses including indices. The solid black line in the bottom
panel shows observed temperature trend over the century. Diamonds show temperature
changes from models unscaled by comparison with observations. From fig. 3 of Stott et al.
(2006).

aerosol forcing (green solid) is detected, but with larger uncertainty, within a range of

0.33 − 0.49K. Combining results of the three models, estimates of the 5 − 95 percentile

range is 0.4 − 1.4W/m2 for net aerosol forcing and is 2.2 − 4.0K for transient climate re-

sponse (the globally averaged temperature difference between the average temperature over

the 20-yr period around the time of CO2 doubling and the mean temperature of the control
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run with CO2 at preindustrial levels).

Similarly, other studies estimated the scaling coefficients associated with responses to

different forcings by applying the above optimal fingerprinting method to data with different

length. According to Bindoff and et al. (2013), over the period of 1951-2010, the changes of

observed global mean surface temperature is approximately 0.6◦C, to which anthropogenic

aerosols contributed -0.6◦C to 0.1◦C (5 to 95% uncertainty). Note that even the sign of

aerosol forced responses is not well determined yet, as can be seen more clearly from fig.

10.4 of Bindoff and et al. (2013).

The question arises as to whether the above results can be improved upon. Despite

the word “optimal,” additional improvement is possible because the word “optimal” refers

only to the fact that the scaling factors derived from fingerprinting have minimal variance

for the given response vectors and noise covariances. Nothing in this definition prohibits

other vectors from estimating aerosol cooling and greenhouse warming with less uncertainty.

There are several ways in which alternative response vectors can improve estimates of aerosol

cooling and greenhouse gas warming:

• a vector could have a stronger response to a specific forcing.

• a vector could have less internal variability.

• a vector could be less collinear with the vectors associated with other forcings.

The goal of our research is to improve estimates of the response to anthropogenic aerosols

by characterizing the forced responses in different (and hopefully better) ways.

One approach to improving estimates of forced responses is to identify response vectors

with less noise. Most optimal fingerprinting studies estimate the forced response using the

ensemble mean of single-forcing simulations. To improve upon this approach, we select

the response vectors that maximize the ratio of variances of total variability over internal

variability. The resulting vector maximally discriminates between forced and internal vari-

ability. This vector can be obtained using the method of Jia and DelSole (2012) (discussed

shortly). Although these vectors maximize detectability of a single forcing, they may not be
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Figure 1.6: (a) Estimated contributions of greenhouse gas (GHG, green), anthropogenic
aerosols(yellow) and natural (blue) forcing components to observed global mean surface
temperature changes over the 1951-2010 period. (b) Corresponding scaling factors by which
simulated responses to GHG (green), other anthropogenic (yellow) and natural forcings
(blue) must be multiplied to obtain the best fit to Hadley Centre/Climatic Research Unit
gridded surface temperature data set 4 (HadCRUT4; Morice et al., 2012) observations based
on multiple regressions using response patterns from nine climate models individually and
multi-model averages (multi). Results are shown based on an analysis over the 1901-2010
period (squares, Ribes et al. (2013)), an analysis over the 1861-2010 period (triangles, Gillett
et al. (2013)) and an analysis over the 1951-2010 period (diamonds, Jones et al. (2013)).
Coloured bars show best estimates of the attributable trends (a) and 5 to 95% confidence
ranges of scaling factors (c). Vertical dashed lines show the best estimate HadCRUT4
observed trend over the period concerned. From fig. 10.4 of Bindoff and et al. (2013).

the best variables to distinguish different forcings. For instance, two forcings may produce

highly detectable, but virtually identical responses in a given set of variables, in which case

those variables could not be used to distinguish the forced responses. Our goal is to find the

best variables for separating forced responses from each other and from internal variability.
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Some hints about the features of the response that are important for estimating an-

thropogenic aerosols can be inferred from the study of Stott et al. (2006). In particular,

they examined the sensitivity of their estimates to including or excluding features like the

differential warming rates between the hemispheres, between land and ocean, and between

mid- and low-latitudes. They found that removing one or more of these features from the

response vector increased the final uncertainty. These features will be explored in this thesis.

Another approach to improving estimates of anthropogenic aerosol cooling is to en-

hance the signal by using new variables or by combining variables. Indeed, previous studies

have found that combining different variables can improve inferences, including using joint

changes of temperature at the surface and aloft (Jones et al. 2003), joint changes of temper-

ature, diurnal temperature range and precipitation (Schnur and Hasselmann 2005), joint

changes of temperature and salinity (Stott and Jones 2009; Pierce et al. 2012), joint changes

of maximum amount and location of zonal mean precipitation (Marvel and Bonfils 2013),

and joint changes on river flows, winter air temperature and snow pack over the Western

United States (Barnett et al. 2008). While these studies illustrate the success that can be

achieved using multiple variables, several questions arise. For instance: is there an objective

way to demonstrate that combining variables does indeed improve the final estimate? How

can the relative merits of different variables be compared?

The purpose of our research is to quantify the effectiveness of different features, different

variables, and different methods for detecting the response to aerosol forcing, and thereby

improve estimates of anthropogenic aerosol cooling. One could attempt to do this by brute

force: simply apply various guesses for response vectors to observations and see what hap-

pens. Doing this for different variables, domains, combinations, and time averages would

produce an overwhelming amount of data that would be difficult to interpret. We have

developed a much more systematic procedure that also is rigorous and insightful. A key

quantity in our methodology is potential detectability, which measures the detectability of

a forced response in a model. For a single forcing, potential detectability equals the total-

to-noise ratio of the forced response, defined as the ratio of the total variance (forced plus
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unforced) to the variance of internal variability. For two forcings, potential detectability

equals the product of the total-to-noise ratio of the given forcing times a measure of mul-

ticollinearity between the two forcings (as we will show). Both quantities can be estimated

from single-forcing simulations. Moreover, potential detectability is directly related to the

statistic for testing the detection hypothesis (1.3) and can be compared across vectors and

models. Thus, this approach not only allows us to compare the detectability of different

response vectors, but can be used to diagnose why certain vectors are not as good as others

(e.g., the vectors have weak responses or are close to collinear).

In addition, most optimal fingerprinting studies distinguish different forced responses by

exploiting differences in forced response patterns that contain information of both spatial

and temporal evolution. Therefore, the relative importance of spatial versus temporal

structure for separating different forced responses is unclear. The extent to which different

forced responses can be separated based on time series of global mean quantities has been

investigated extensively (Stern and Kaufmann 2000; Lean and Rind 2009; Zhou and Tung

2012). In this study, we not only investigate the extent to which forced responses can

be separated based on forced response vectors including information of both spatial and

temporal structure, but also explore the extent to which forced responses can be separated

based on solely spatial structures. Thus, we explore an approach to optimal fingerprinting

that differs from previous approaches in that we do not use the full space-time evolution

of the climate change signal as a predictor. Instead, we use only the spatial structure of a

variable, and its co-variability with other variables, as input to fingerprinting. The output

is an estimate of the time histories of the forced responses. This approach avoids making

the (strong) assumption that the climate model correctly simulates the spatial-temporal

evolution of the forced response. The consistency of optimal fingerprinting methods with

different assumptions will also be investigated.

In chapter 2, a brief review of standard optimal fingerprinting is given. Then, we propose

that instead of using the ensemble mean to estimate the forced response, we use vectors
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that maximize the total-to-noise ratio of the forced response. Another modification of opti-

mal fingerprinting is proposed whereby only the spatial structure of the forced response is

included in optimal fingerprinting, leaving the time history to be inferred from data. The

proposed methodologies are illustrated using climate simulations and observations of surface

air temperature. In chapter 3, potential detectability of forced response vectors are derived

for the different fingerprinting methods. In chapter 4, potential detectability is evaluated

in climate simulations over a global domain in a perfect model setting. This analysis re-

veals that the joint temperature and precipitation response vector has the most potential

detectability of any vector on a global domain. However, evidence is presented that global

precipitation observations are not accurate enough to use such vectors to estimate anthro-

pogenic forced responses. In chapter 5, the potential detectability of land-only variables,

observations of which are considered to be more reliable, is evaluated. These results are

then used to guide analysis of observations. Potential detectability of other variables and

domains are summarized in chapter 6. Finally, chapter 7 gives a summary of conclusions.
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Chapter 2: Improving Detection and Attribution by

Filtering Noise and Relaxing Assumptions

2.1 Traditional Fingerprinting

The goal of our research is to improve estimates of forced responses by exploiting advances

in optimal fingerprinting. Accordingly, we first review optimal fingerprinting. The material

presented here is standard (Allen and Tett 1999; Hegerl et al. 2007; Hegerl and Zwiers

2011). A basic paradigm in climate science is to partition climate variability into two

parts: forced variability, which occurs in response to external forcings, such as volcanic

eruptions, solar variations, and human-induced changes in atmospheric composition, and

internal variability, which occurs in the absence of external forcings, and arises from internal

dynamics of the atmosphere-ocean-land-cryosphere system. Optimal fingerprinting assumes

that observed variability o can be modeled as a linear sum of responses to individual forcings

f1,...,fM plus random internal variability n,

o =
M∑
i=1

fiai + n, (2.1)

where ai are unknown scaling factors to account for amplitude errors. The internal vari-

ability n is assumed to be a random vector from a multivariate distribution with covariance

matrix Σ̃N . To estimate the scaling factors, the response to individual forcings f1,...,fM and

the statistics of the noise need to be pre-specified. The noise covariance matrix is estimated

from a long control simulation that has no year-to-year variation in climate forcing. The

forced response vector fm is estimated from climate simulations driven by the mth forcing.

By convention, the response vector is normalized such that the model amplitude is am = 1.
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The scaling factors are then estimated using a generalized version of regression that ac-

counts for covariance structure in the noise. The solution is most conveniently expressed

by writing model (2.1) equivalently as

o = Fa + n (2.2)

where,

a = (a1 a2 ... am)T and F = (f1 f2 ... fm)T . (2.3)

Then the generalized least squares estimate of the amplitudes (Allen and Tett 1999) is

â = (FT Σ̃−1
N F)−1FT Σ̃−1

N o (2.4)

where the caret ˆ denotes a sample estimate. The estimate is unbiased, in the sense that

E[â] = a, and has covariance matrix

cov[â] = (FT Σ̃−1
N F)−1. (2.5)

If the noise is normally distributed, then â also is normally distributed, and a 95% confidence

interval for the m’th regression coefficient is

(
âm − 1.96

((
FT Σ̃−1

ε F
)−1

)1/2

mm

, âm + 1.96

((
FT Σ̃−1

ε F
)−1

)1/2

mm

)
. (2.6)

The hypothesis am = 0 is rejected when the above confidence interval excludes zero. This

step is called detection. If the hypothesis am = 1 cannot be rejected, then we say the

observed change can be attributed to the m’th forcing. As a result, this procedure is called

detection and attribution analysis. Again, the above results are standard.
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2.2 Fingerprinting Based on Spatial Response Patterns

This thesis explores a novel modification of optimal fingerprinting: instead of using the

full spatio-temporal evolution of the model forced response, only the spatial structure of

the forced response is used, leaving the time evolution of the response to be inferred from

data. The resulting detection and attribution analysis is argued to be more convincing than

the traditional approach because less information from models is assumed as input to the

fingerprinting, and more information about the forced responses (e.g., the time evolution)

is derived from observations and then compared to models.

Let the observed change at the n’th time step and s’th spatial location be denoted

on,s. Thus O is an N × S matrix for a total of N time steps and S spatial locations. As

before, observed changes O are modeled as a linear sum of simulated changes from forcings

f1, . . . , fM plus random internal variability η,

O =
M∑
m=1

fmam + η, (2.7)

where a1, . . . , aM are scaling factors to account for amplitude errors. A different symbol

is used for internal variability compared to (2.2) because we make different assumptions

about it. In particular, we assume internal variability η is white noise such that each

time step is drawn independently from a Gaussian distribution with zero mean and S-

dimensional covariance matrix Ση. One might question whether the (temporal) white noise

assumption for internal variability is appropriate. It is found in this study that the white

noise assumption gives reasonable estimates of uncertainty, in the sense that the results

derived from separate ensemble members frequently lie (at the expected rate) within the

confidence interval derived from any one of the members. This consistency suggests that

the above model (including the white noise assumption) is reasonable.
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The forced response is represented in a form that is separable in space and time, namely

fm = rmp
T
m, (2.8)

where rm is an N -dimensional vector specifying the response time series, pm is an S-

dimensional vector specifying the spatial pattern, and superscript T denotes the matrix

transpose. The pattern pm is derived from single-forcing simulations in a manner that will

discussed in the next section. The goal of the modified fingerprinting method is to estimate

the time series rm (which subsumes the scaling factor am). This approach requires informa-

tion of only the spatial structure of the forced response and does not impose any constraints

on the forced time variability. Unfortunately, the uncertainties become unacceptably large

when time series for two or more forcings are estimated for each year separately (e.g., con-

fidence intervals for the scaling factors include 0, implying that the forced response can

not be detected). Consequently, this study assumes that the response evolves slowly in

time, which allows the estimation method to pool data across years to reduce uncertainty.

Specifically, the temporal variation is represented by a J ’th order polynomial in time:

rm(t) =
J∑
j=1

cm,jLj(t), (2.9)

where Lj(t) is the j’th Legendre polynomial in time t. This formulation requires estimating

J coefficients per forcing. An illustration of Legendre polynomials 1-5 over a time period

from 1950 to 2004 are shown in Figure 2.1. The polynomial representation is most ques-

tionable during volcanic eruptions, but since the dominant response to volcanic eruptions

spans only a few years (Iles et al. 2013), smoothing over periods of major eruptions leads to

only minor errors on multidecadal time scales. It should be noted that though the shape of

each Legendre polynomial is the same for varying time periods, the sign might change since

there is no convention for the signs. Therefore we will display the Legendre polynomials

each time when they are used.
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Figure 2.1: Temporal evolution of Legendre polynomials 1-5 for periods of 1950-2004.

Let L be the N × J matrix whose columns are the leading J Legendre polynomials.

Then, the regression model (2.7) becomes

O = LCP + η, (2.10)

where C is an J ×M matrix of coefficients. The above regression model assumes that the

spatial structure of the forced responses P are known but leaves the associated coefficients

of the Legendre polynomials C (which gives the time series rm) to be inferred from data.

This re-formulated model also can be expressed in the form of optimal fingerprinting, hence

solutions can be derived from standard fingerprinting equations. A detailed derivation of

these solutions is given in Appendix A. The result is that the coefficient estimate is

Ĉ =
(
PTΣ−1

η P
)−1

PTΣ−1
η OL, (2.11)
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and the corresponding 95% confidence interval for the j’th Legendre polynomial of the m’th

forced response is

(
ĉm,j − 1.96

√((
PTΣ−1

η P
)−1
)
mm

, ĉm,j + 1.96

√((
PTΣ−1

η P
)−1
)
mm

)
. (2.12)

2.3 Reducing Noise Using Discriminant Analysis

As stated earlier, the goal of our research is to improve estimates of forced responses. One

way to improve estimates from optimal fingerprinting is to filter out more noise from the

estimated forced response vector. In the standard approach, the forced response vector fm

is estimated by running a climate model with the specified forcing and then computing

an average over an ensemble of such simulations. For finite ensemble size, some residual

internal variability still remains and therefore contaminates the estimated forced response

vector. A standard approach is to account for this uncertainty using the Errors in Variables

technique (Allen and Stott 2003).

In this thesis, we propose an alternative approach to reducing sampling error. Specifi-

cally, the forced response will be estimated using an optimization procedure that maximizes

the signal-to-noise (S/N) ratio, i.e., maximizes the ratio of the variance of the forced re-

sponse to the variance of internal variability. By optimizing the S/N ratio, the procedure

removes noise from the forced response vector. These response vectors can be obtained from

the method of Jia and DelSole (2012), which decomposes a forced response into a sum of

components ordered by S/N ratio, where each component is a fixed pattern multiplied by an

associated time series (similar to the way principal component analysis decomposes data by

variance). In all cases, only one component has statistically significant S/N ratio, implying

that other forced patterns, if they exist, are not detectable after the most detectable pattern

has been removed. Jia and DelSole (2012) show that the pattern pm that maximizes the

S/N ratio satisfies the eigenvalue problem

ΣmΣ−1
η pm = λpm, (2.13)
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where Σm is the covariance matrix for the single-forcing simulation for the m’th forcing, and

anomalies are measured relative to the control simulation. The above technique can estimate

the forced response pattern pm from a single realization of the control and forced runs.

In particular, this method does not require averaging over an ensemble. The eigenvalue λ

equals the total-to-noise ratio, or equivalently, S/N+1. Accordingly, we call the eigenvector

associated with the largest eigenvalue the most detectable component.

2.4 Data

To illustrate the above method, model simulations from phase 5 of the Coupled Model

Intercomparison Project (Taylor et al. 2012) are used. Estimates of internal variability are

derived from 500 years of pre-industrial control runs, which have no year-to-year variation in

external forcing. The response to particular forcings are estimated from simulations that are

forced over the period 1850-2004 only by anthropogenic aerosols, called AA simulations, and

by all forcings except anthropogenic aerosols, called noAA simulations. Only two CMIP5

models, CSIRO-QCCCE.CSIRO-Mk3-6-0 (CSIRO) and IPSL.IPSL-CM5A-LR (IPSL), have

both noAA and AA simulations, thus only these models are considered. Both CSIRO and

IPSL models use the same aerosol emission inventory (Lamarque et al. 2010) over the

historical period from 1850 to 2000 in decadal increments at a horizontal resolution of 0.5◦

in latitude and longitude. CSIRO scaled all BC emissions by 1.25 and all OA emissions

by 1.5 (Rotstayn et al. 2012). Both models include aerosol indirect effects and represent a

wide range of aerosol sensitivity (Gettelman et al. 2015).

We also use simulations of the recent past (1950-2004) driven by anthropogenic and

natural forcing, called historical simulations. These simulations will be used as a substitute

for observations to test the new methodologies. Analyzing historical simulations can be

interpreted as fingerprinting in a “perfect model world” in the sense that observational errors

vanish (since data is generated by a climate model) and fingerprinting has nearly perfect

knowledge of the forced response pattern and the statistics of internal variability (since

these were estimated from dedicated simulations from the same model). Applying optimal
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fingerprinting to data from historical simulations, as if the simulations were observations,

allows us to test whether optimal fingerprinting is extracting the forced response accurately.

Observational temperature data is from version 4 of the Hadley Centre/Climatic Re-

search Unit data set (HadCRUT4)1. Annual means were computed when at least 10 months

per calendar year were available. A grid point is included only when annual means are avail-

able for every year in the period 1950-2004. The resulting map of available grid points covers

75% of the global surface area and was used to analyze both observations and model data.

The Legendre polynomials used in this section is displayed in fig. 2.1.

2.5 Regularizing Optimal Fingerprinting

In the above data set, the spatial dimension far exceeds the temporal dimension. As a

result, the covariance matrices Σm and Ση are singular (i.e., they have no inverse). There-

fore, in practice, we need to regularize the problem by constraining it in some way. The

most common approach to regularizing the estimation problem is to project the data onto

the leading empirical orthogonal functions (EOFs) of internal variability, i.e., to represent

the data in a reduced EOF space. Unfortunately, EOFs are data dependent and lead to

difficulties in interpretation and statistical overfitting (Lawley 1956; Allen and Tett 1999;

Jones et al. 2013; DelSole and Tippett 2015). Moreover, EOFs of internal variability may

not project strongly on the forced responses. Therefore this study uses a different basis

set to avoid these problems, namely, the eigenvectors of the Laplacian operator. These

eigenvectors depend only on the domain and hence are data independent, and the leading

eigenvectors often have simple physical interpretation. The eigenfunctions can be ordered

by decreasing spatial scale. For a global domain, Laplacian eigenfunctions are equivalent to

spherical harmonics. For restricted domains, such as ocean-only or land-only, the Laplacian

eigenfunctions are computed by the method discussed in DelSole and Tippett (2015), which

is based on a Green’s function method. The Laplacian eigenvectors for the HadCRUT4

1downloaded from http://www.cru.uea.ac.uk/cru/data/temperature/
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Figure 2.2: Eigenvectors 2-5 of the Laplace operator over the HadCRUT4 observational
grid.

observational grid discussed in the previous section are shown in fig. 2.2. For these re-

stricted domains, the first Laplacian eigenfunction still corresponds to a spatially uniform

pattern over the domain (and hence is not shown in fig. 2.2), and subsequent eigenvectors

correspond to dipoles, tripoles, quadrapoles, etc. of decreasing length scale.
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2.6 Results

In this section, we illustrate the methodologies discussed in the previous sections using an-

nual mean 2m air temperature (TAS). A key question is how many Laplacian eigenvectors

should be chosen to perform fingerprinting– if the dimension is too small then the forced

response might escape detection (because it cannot be resolved by the basis vectors), but

if the dimension is too large then overfitting becomes problematic. We explored different

dimensions to find a choice such that the forced response estimated from historical simu-

lations was consistent with the forced response derived from the single-forcing simulations

(i.e., the “truth”). This exploratory analysis suggested that twenty Laplacian eigenvectors

was a good choice to keep the consistency, so this choice will be used in the following.

In order to compare different methodologies, each of which involves different response

vectors, we estimate individual forced responses using fingerprinting, but then compute the

global mean temperature change due to the linear trend in the forced response. This allows

the results to be compared using a common variable. This computation is fairly trivial in

our framework, since all fingerprints contain the first Laplacian eigenvector, which gives the

area mean temperature over the domain, and the trend is either easily computed from the

time series multiplied by the scaling factor, or an immediate result of the fingerprinting.

The change in near-global mean temperature over 1950-2004 predicted by climate models

and estimated from observations by different methods is shown in fig. 2.3. The thick error

bars with crosses shows estimates from HadCRUT4, and error bars with dots show estimates

derived from historical simulations. For comparison, thin error bars show estimates from

individual ensemble members of the single-forcing runs, which can be viewed as estimates of

the “truth” in a perfect model world. In general, estimates from historical simulations (in

which AA and noAA are estimated simultaneously) tend to under-estimate the responses

in the perfect model world. This bias is expected since errors in the forced response vectors

are neglected in our fingerprinting method but tend to bias the estimated forced responses

toward zero (Allen and Stott 2003).

We consider the results one method at a time. For traditional fingerprinting, responses
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Figure 2.3: 95% confidence intervals of global-mean temperature changes associated with
the linear trend due to AA (blue) and noAA (red) forcing in CSIRO (upper) an IPSL (lower),
as estimated from HadCRUT4 (thick error bars with crosses), historical simulations (thick
error bars with dots) and from single-forcing simulations (thin error bars correspond to
different ensemble members), for three different calculation methods: “traditional” means
that the forced response vectors are derived from the ensemble means of single forcing
simulations; “S/N optimized” means the forced response vectors are derived from the first
discriminants of the forced response; and “space-only” means the forced response vectors
include only the forced response patterns of single forcing simulations. Signs of changes due
to AA have being flipped to be positive.

26



to AA and noAA forcing are detected using CSIRO fingerprints, and the observed estimates

are consistent with model predictions (i.e., the error bars with the dots and crosses overlap

in fig. 2.3). In contrast, the response to AA cannot be detected using IPSL fingerprints (i.e.,

the blue error bars include zero), and the response to noAA is detectable but significantly

weaker than the model predicted response. These results imply that IPSL over-estimates the

warming due to noAA forcing and the cooling due to AA forcing. Moreover, the structure

of the warming due to AA and noAA forcing is not consistent with the observed changes

(since the error bars between historical and observations do not overlap).

To investigate whether the results from traditional fingerprinting can be improved, we

use forced response vectors that maximize detectability in single-forcing runs. These vectors

are determined by solving (2.13). The most detectable components derived from CSIRO for

AA and noAA forcing are shown in fig. 2.4, and the most detectable components derived

from IPSL are shown in fig.2.5 in the same format. The top rows of fig. 2.4 and 2.5 show

the maximized ratios as a function of fingerprints dimension. After an exploration of all

truncations from 1 to 25, it is found that the results illustrated here are not sensitive to

truncation choices. The top panel shows that only the leading component has statistically

significant variance ratio, which implies that there is only one distinct pattern that is de-

tectable in models for this variable, for each forcing. This result confirms that each forced

response can be expressed in the separable form (2.8). The middle panels show the pro-

jection of the component onto the control run (black) and onto the twentieth century runs

(blue and red lines). The ensemble member used in the maximization is shown in red, while

an independent ensemble member is shown in blue. If the component were pure internal

variability, then there would be no correlation between the time series. The strong agree-

ment between the red and blue curves shows that the method accurately infers the time

series of the forced response from a single realization. The temperature patterns associated

with the most detectable component are shown in the bottom panels. The patterns for AA

and noAA forcing differ slightly in their relative amplitudes of the hemispheric gradient and

east-west gradient.
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Figure 2.4: Results of maximizing detectability of anthropogenic aerosols (left) and all forc-
ings but anthropogenic aerosols (right) in the CSIRO model for annual mean temperature.
The top row shows maximized total-to-noise variance ratios (blue line with dots), and the
95% confidence interval under the hypothesis of equal variances (red shading), as a function
of the dimensions of laplacian eigenfunctions. The second row shows time series of the most
detectable component in a 55-year segment of the control runs (black) and in the twentieth
century (blue and red lines), when the component is represented by 20 laplacian eigenfunc-
tions. The blue curve shows the ensemble member used in the maximization while the red
curve shows the component in an independent ensemble member. The third row shows the
temperature patterns, respectively, associated with the most detectable anomaly using 20
laplacian eigenfunctions. The temperature pattern has units Kelvin per unit time series.
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Figure 2.5: Similar to fig. 2.4, but for IPSL

The result of estimating global mean temperature changes using the most detectable

components are shown in the second column of fig. 2.3. A comparison between the first

and second columns of fig. 2.3 shows that the estimates are generally consistent between

the two methods. In particular, the uncertainties are comparable between the two meth-

ods. Thus, although we expected to reduce the uncertainties by maximizing detectability,

no such improvement was found. Nevertheless, the result represents an advance because

fingerprinting based on optimized patterns is much more transparent, in the sense that the
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spatial pattern and time series characterizing the forced response can be visualized in a

single figure (in contrast, the forced response in traditional fingerprinting is characterized

by a full spatio-temporal vector that is not generally separable in space and time).

Next, we consider the result of estimating global mean temperature changes using only

the spatial structures of forced responses to AA and noAA forcings, shown in the third

column of fig. 2.3. As expected, the uncertainty of the detected changes increases compared

to the other two methods, since less information is encoded in the fingerprints. Nevertheless,

the results are consistent with the previous two methods. This, too, represents an advance,

since it demonstrates that AA and noAA forcing can be detected and the associated time

evolution can be inferred from observations.

2.7 Summary

This chapter proposed novel modifications of optimal fingerprinting for improving estimates

of forced responses. First, we proposed filtering out noise from the response vectors by max-

imizing detectability with respect to single-forcing simulations. Second, we proposed that

instead of using the full spatio-temporal evolution of the model forced response, only the

spatial structure of the forced response is used in the response vector, leaving the time

evolution of the response to be inferred from data. The resulting detection and attribu-

tion analysis is argued to be more convincing than the traditional approach because less

information from models is assumed as input to the fingerprinting, and more information

about the forced responses (e.g., the time evolution) is extracted from observations and

compared to models. Because the time evolution is represented by an orthogonal set of

temporal polynomials, detection and attribution of time signals can be performed for each

polynomial separately, allowing consistency of trends and multi-decadal variability to be

assessed separately. Spatial structures were represented using eigenvectors of the Laplace

operator over a global domain, which provides an objective basis set for filtering small scale

spatial structure that is independent of data.

The results presented in this chapter, and also in later chapters, suggest that optimizing
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the forced response patterns does not significantly reduce the uncertainty in estimated

responses. Despite this, the result represents an advance, because it demonstrates that

much of the signal in the forced response is “rank-1,” which means that the spatial structure

and temporal evolution of the forced response can be illustrated in a single figure, which

physically clarifies the forcing that is being detected. In addition, we estimated forced

responses based only on spatial structure. This approach produced estimates with more

uncertainty, as expected since more information was extracted from observations, but the

results were nevertheless consistent with those of traditional fingerprinting. We argue that

this latter approach gives a compelling demonstration that models correctly simulate the

spatial structure of the response to AA and noAA, so much so that the multi-decadal time

evolution of these patterns can be derived from observations.
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Chapter 3: Improving Detection and Attribution by

Augmenting Additional Variables

The purpose of this thesis is to investigate ways to improve estimates of the response to

anthropogenic aerosols. The last chapter explored the use of discriminant analysis to fil-

ter out noise from the response vectors. In this chapter, we explore attempts to enhance

the signal by using new variables or by combining variables. In principle, we could re-do

the calculations presented in the previous chapter for different variables, combinations of

variables, and basis vectors, and then compare the results, but this approach would be too

overwhelming to comprehend. As part of our thesis research, we developed a framework for

comparing the effectiveness of different variables for detecting a specific forced response. A

central quantity in this framework is potential detectability, which measures the extent to

which a forced response can be detected in a perfect model scenario. Although observations

are not used to evaluate potential detectability, significant potential detectability is a nec-

essary condition for detection in observations– if a forced response cannot be detected in a

perfect model scenario, then it cannot provide a legitimate basis for detection and attribu-

tion in observations. Thus, it provides a basis for discarding variables that are less effective

than temperature and for identifying new variables that could be more effective than tem-

perature. Another attractive property is that it can be evaluated from single-forcing runs.

Consequently, potential detectability allows the detectability of a forced response in a model

to be compared across a variety of variables so that the best choice of variables for detecting

a given forced response can be identified prior to analyzing observations.

The purpose of this chapter is to derive potential detectability. As a result, this chapter

is rather technical. However, we can summarize the essence of the measure as follows. The

degree to which a forced response can be detected is quantified by the total-to-noise ratio

(TNR), which is defined as the ratio of variance of the total variability to the variance of
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Figure 3.1: Schematic illustration of total, forced and internal variability. Internal vari-
ability is simulated by a control simulation (black curve). Total variability is simulated
by a historical simulation that contains both internal and forced variability (red curves).
Multiple red curves indicate independent ensemble members of the historical simulation.

internal variability. Looking at the schematic in fig. 3.1, it is obvious that the stronger the

total-to-noise ratio, the easier forced variability can be detected in a background of internal

variability. For a single forcing, potential detectability is identical to the total-to-noise ratio.

When the forcing is partitioned into two response vectors (e.g., AA and noAA), potential

detectability is proportional to the product of the total-to-noise ratio of the forced response,

times a measure of multicollinearity between the two response vectors. That is,

potential detectability = (total-to-noise-ratio)
(
1− ρ2

)
, (3.1)

where ρ is the cosine of the angle between the two response vectors (in a certain space).

To our knowledge, this equation has not appeared in the literature, despite its simplicity

and fundamental importance. This result substantially clarifies the relation between de-

tectability, signal-to-noise ratio, and multicollinearity. In particular, a forcing may produce

a strong response, and thus have large TNR ratio, but if this response is very similar to the

other response being separated, then ρ ≈ 1 and the detectability may be weak. Conversely,

a response may be relatively weak in a certain set of variables, hence small TNR ratio, but
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that response could be very different than the response in a different set of variables, in

which case ρ ≈ 0 and the detectability could be large.

3.1 Potential Detectability for Traditional Fingerprinting

The traditional fingerprinting model is (2.2). The m’th forced response is said to be detected

if one can reject the null hypothesis Hm that the coefficient for the m’th forced response

vanishes:

Hm : am = 0. (3.2)

A standard result is that, under this null hypothesis, the statistic

φm =
â√(

(FT Σ̃−1
N F)−1

)
mm

, (3.3)

has a standardized normal distribution. This quantity has the form of a “total-to-noise

ratio.” Large absolute values of φm favors rejection of the null hypothesis. Typically, the

forced response fm is normalized so that in a perfect model am = 1. Therefore, the square

of the expected value of the detection statistic is

φ2
m =

(
(FT Σ̃−1

N F)−1
)−1

mm
. (3.4)

If there is only a single forced response, say fm, then the detection statistic is

φ2
m = fTmΣ̃−1

N fm. (3.5)

Thus, the TNR ratio for a single forcing is

TNRm = fTmΣ̃−1
N fm. (3.6)
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If there are two forced responses, f1 and f2, then this detection statistic takes the form

FT Σ̃−1
N F =

(fT1 Σ̃−1
N f1) (fT1 Σ̃−1

N f2)

(fT2 Σ̃−1
N f1) (fT2 Σ̃−1

N f2)

 . (3.7)

Since this is a 2× 2 matrix, the inverse can be computed analytically as

(
FT Σ̃−1

N F
)−1

=

 (fT2 Σ̃−1
N f2) −(fT1 Σ̃−1

N f2)

−(fT2 Σ̃−1
N f1) (fT1 Σ̃−1

N f1)

 1

(fT1 Σ̃−1
N f1)(fT2 Σ̃−1

N f2)(1− ρ2)
, (3.8)

where ρ2 is

ρ2 =
(fT1 Σ̃−1

N f2)2

(fT1 Σ̃−1
N f1)(fT2 Σ̃−1

N f2)
. (3.9)

The parameter ρ can be interpreted as the cosine of the angle between f1 and f2 in “whitened

space” (i.e., a space in which the covariance matrix of the noise is the identity matrix)

(DelSole and Tippett 2007). Using the above result to evaluate (3.4) gives

φ2
m = (fTmΣ̃−1

N fm)(1− ρ2). (3.10)

This is the equation described in (3.1). Note that we set am = 1 to derive this equation, so

the above φm measures detectability in a perfect model world.

3.2 Potential Detectability for Responses that Are Separable

in Space and Time

We showed in the previous chapter that the forced response can be assumed to be separable

in space and time with no practical loss of generality. Accordingly, we assume the response

vector is of the form (2.8). To use standard optimal fingerprinting equations, the response
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vector needs to be “stacked” into a single vector. This can be done as

fm = rm ⊗ pm, (3.11)

where ⊗ indicates the Kronecker product. Substituting this expression into (3.4) and sim-

plifying (and skipping tedious algebraic details) yields

TNRm = φ2
m = (pTmΣ̃−1

N pm)(rTmrm). (3.12)

In the case of two response vectors, we obtain

FT Σ̃−1
N F =

(pT1 Σ̃−1
N p1)(rT1 r1) (pT1 Σ̃−1

N p2)(rT1 r2)

(pT2 Σ̃−1
N p1)(rT2 r1) (pT2 Σ̃−1

N p2)(rT2 r2)

 (3.13)

Computing the inverse of this matrix analytically and following similar steps as before gives,

φ2
m = TNRm(1− ρ2

timeρ
2
space) (3.14)

where,

ρtime =
rT1 r2√

rT1 r1

√
rT2 r2

(3.15)

and

ρspace =
pT1 Σ̃−1

N p2√
pT1 Σ̃−1

N p1

√
pT2 Σ̃−1

N p2

. (3.16)

The parameter ρtime measures the cosine of the angle between the response time series.

The parameter ρspace measures the cosine of the angle between the response vectors in

“whitened space” (DelSole and Tippett 2007), and can be interpreted as a generalized

spatial correlation. The squared temporal (pattern) correlation is always between 0 and 1,

where one implies that the response time series are perfectly collinear while zero implies
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that the response time series are orthogonal. Expression (3.14) shows that detectability

decreases as either the response time series or spatial patterns become more collinear.

The total-to-noise ratio TNRm, temporal correlation ρtime and pattern correlation ρspace

can be computed immediately after the forced response has been obtained from the single-

forcing runs and separated in space and time. Accordingly, we define potential detectability

to be equation (3.14) after substituting TNRm from single-forcing runs. It follows that

potential detectability can be computed directly from the single-forcing runs and does not

require simulations with multiple forcings. We also define the realized detectability to be

equation (3.14) after substituting TNRm derived from coefficient estimates âm from histor-

ical simulations

3.3 Potential Detectability Using only Spatial Information

For fingerprinting based on spatial patterns only, the regression model is (2.10). The m’th

forced response is said to be detected if one can reject the null hypothesis Hm that all

polynomial coefficients for the m’th forced response vanishes:

Hm : cm,1 = cm,2 = · · · = cm,J = 0. (3.17)

Under this null hypothesis, the statistic

φ2
m =

∑J
j=1 ĉ

2
m,j((

PTΣ−1
η P

)−1
)
mm

, (3.18)

has a chi-squared distribution with J degrees of freedom. The quantity φ2
m measures the

detectability of the m’th forced response and must exceed a critical value for a forced

response to be detected.

If only one forced response vector (i.e., M = 1) is considered, the covariance matrix

for the Legendre coefficients reduces to the scalar cov[ĉj ] =
(
pTmΣ−1

η pm
)−1

. Then the
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detectability (3.18) of one forced response vector becomes

φ2
m[M = 1] =

 J∑
j=1

ĉ2
m,j

(pTmΣ−1
η pm

)
. (3.19)

Note that this expression is of the form of a total-to-noise ratio:

φ2
m[M = 1] =

∑J
j=1 ĉ

2
m,j

cov[ĉj ]
= TNRm, (3.20)

where TNRm denotes for the total-to-noise ratio of the forced response relative to the

internal noise

Now we consider the case of two forced response patterns p1 and p2. In this case,

PTΣ−1
η P =

pT1 Σ−1
η p1 pT1 Σ−1

η p2

pT2 Σ−1
η p1 pT2 Σ−1

η p2

 . (3.21)

The inverse of this matrix can be computed analytically as

(
PTΣ−1

η P
)−1

=
1

det
[
PTΣ−1

η P
]
 (

pT2 Σ−1
η p2

)
−
(
pT1 Σ−1

η p2

)
−
(
pT2 Σ−1

η p1

) (
pT1 Σ−1

η p1

)
 . (3.22)

The determinant is

det
[
PTΣ−1

η P
]

=
(
pT1 Σ−1

η p1

) (
pT2 Σ−1

η p2

) (
1− ρ2

)
, (3.23)

where

ρ =
pT1 Σ−1

η p2√
pT1 Σ−1

η p1

√
pT2 Σ−1

η p2

. (3.24)
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Consolidating the above results into the detection statistic (3.18) gives

φ2
m[M = 2] =

 J∑
j=1

ĉ2
m,j

(pTmΣ−1
η pm

) (
1− ρ2

)
. (3.25)

A comparison of (3.19) and (3.25) shows that the detectability of the response when two

forced responses are present is equal to the detectability of the response associated with one

response vector scaled by a collinearity term (1− ρ2), i.e.,

φ2
m = TNRm

(
1− ρ2

)
. (3.26)

The parameter ρspace measures the cosine of the angle between the response vectors

in “whitened space” (DelSole and Tippett 2007), and can be interpreted as a generalized

spatial correlation. The squared pattern correlation ρ2
space is always between 0 and 1, where

one implies that the response vectors are perfectly collinear while zero implies that the

response vectors are orthogonal. Expression (3.26) shows that detectability decreases as

the response vectors become more collinear.

The total-to-noise ratio TNRm and pattern correlation ρspace can be computed immedi-

ately after the response vectors have been derived from the single-forcing runs. Accordingly,

we define potential detectability to be equation (3.26) after substituting TNRm from single-

forcing runs. It follows that potential detectability can be computed directly from the

single-forcing runs and does not require simulations with multiple forcings. Also, we define

realized detectability to be equation (3.26) after substituting TNRm derived from coefficient

estimates ĉm,j from historical simulations
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Chapter 4: What Surface Observations are Important for

Separating the Influences of Anthropogenic Aerosols From

Other Forcings?

In this chapter, we apply the concept of potential detectability, as derived in the previous

chapter, to identify variables or combinations thereof that may be effective for detecting

anthropogenic aerosol cooling. This investigation will be performed in a perfect model

world, using no observations, to illustrate the methodology and to identify the range of

possibilities for improving estimates of aerosol cooling.

We use the same model data as discussed in sec. 2.4. Moreover, we analyze annual

means of three commonly used variables for climate detection: 2m air temperature (TAS),

precipitation (PR) and sea level pressure (PSL). However, no observations are used. Since

there are no restrictions due to missing data, we consider global fields. The Laplacian eigen-

vectors used to represent global data are displayed in fig. 4.1. The first eigenfunction, not

shown, is merely a constant and corresponds to the global mean. The second eigenfunction

measures the gradient between Northern and Southern Hemispheres, the next two measure

the east-west gradients, and the fifth measures the pole-to-equator gradient. The Legendre

polynomials shown in fig. 4.2 are used to represent time variability of the forced response.

4.1 Detection and Attribution Based on Temperature and

Precipitation

Since detection and attribution with multiple variables has not been discussed yet, we first

illustrate our procedure by analyzing a single case in detail. Accordingly, we perform a de-

tection analysis of AA and noAA forced responses using joint temperature and precipitation

data. The detection analysis is performed on a single ensemble from a historical simulation,
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Spherical Harmonic  2 Spherical Harmonic  3

Spherical Harmonic  4 Spherical Harmonic  5

−2.4 −2 −1.6 −1 −0.6 0.2 0.6 1 1.4 1.8 2.2

Figure 4.1: Spatial patterns of Spherical Harmonics 2, 3, 4, 5

which serves as a surrogate for observations, thereby avoiding complications due to model

error and observational error. There are ten such ensemble members for CSIRO and six such

ensemble members for IPSL. We first consider a state vector based on the first Laplacian

eigenvector (i.e., the spatially uniform pattern) for temperature and precipitation. At one
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Figure 4.2: Temporal evolution of Legendre polynomials 1-5 for periods of 1900-2004.

time step, this vector contains only two elements: global average temperature and precip-

itation. The response vectors pAA and pnoAA that maximize detectability with respect to

internal noise are determined. Because the 2-dimensional vectors are unique up to a scaling

factor, only the ratio of the two elements is unique, which has units of %/K and is called

hydrological sensitivity. Thus, for one Laplacian eigenvector each, fingerprinting based on

temperature and precipitation is tantamount to estimating response time series based on

differences in hydrological sensitivity between different forcings. For comparison, we also

consider response vectors using 20 spherical harmonics for temperature and 20 spherical

harmonics for precipitation.

The estimated time series of global mean temperature change using five Legendre poly-

nomials are shown in fig. 4.3. Different curves of the same color show results for different

ensemble members of the historical run (10 for CSIRO; 6 for IPSL). The figure also shows
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global mean temperature change estimated from the AA and noAA simulations separately

without temporal smoothing (A.25). The top and bottom rows show results derived based

on 1 and 20 spherical harmonics, respectively, while the left and right columns show results

derived from CSIRO and IPSL, respectively. As is evident from the figure, the global mean

temperature changes for AA and noAA are estimated very well in this “perfect model” case.

In fact, the time series of global mean temperature change estimated from historical runs

look essentially like smoothed versions of those obtained from the AA and noAA runs, even

though the two time series were estimated independently. Moreover, global mean temper-

ature change time series for different ensemble members are relatively close to each other,

indicating that the estimates are not sensitive to sampling errors.

The impact of adding spatial gradient information in the forced response patterns is

shown in the bottom row. Based on twenty harmonics for temperature and twenty har-

monics for precipitation, the time series estimated from the CSIRO historical run (lower

left panel) are generally closer together (hence less sensitive to internal variability) and

closer to the single-forcing runs (hence more accurate). In contrast, time series for IPSL

have changed relatively little, suggesting that detectability is not strongly improved by

adding spatial gradient information. Thus, the importance of spatial gradient information

for separating forced responses is model dependent.

So far in this study, optimal fingerprinting has been applied in the context of a “perfect

model world,” in the sense that the same model generates the data and generates the forced

response used in fingerprinting. In practice, the forced response vectors used in fingerprint-

ing differ from the “true” responses that influence observations. To assess model error,

one often examines the sensitivity of estimated responses to response vectors derived from

different models. Accordingly, we show in fig. 4.4 the change in global mean temperature

in single-forcing simulations attributable to AA and noAA forced response vectors derived

from different models. The top and bottom rows show results based on 1 and 20 spherical

harmonics, respectively, while the left and right columns show results derived from CSIRO

and IPSL single-forcing runs, respectively. The figure shows that the change in global mean
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Figure 4.3: Time series of global mean temperature change calculated from historical sim-
ulations (blue and red), and from single-forcing AA runs (green) and noAA runs (black),
using the joint annual mean temperature-precipitation response vector. Different panels
correspond to different models and different number of Spheric harmonics, as schemati-
cally illustrated in the title. Time series from historical simulations are based on using five
Legendre polynomials, whereas time series based on individual forcing runs are based on
year-by-year estimation. The response vector is derived from only one ensemble member of
the individual forced runs and then used to estimate global mean temperature change time
series for each ensemble member from the historical run.

temperature is relatively insensitive to the model response vector. Thus, while response vec-

tors differ between models, these differences do not lead to significantly different conclusions
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Figure 4.4: Time series of global mean temperature change obtained from single-forcing AA
runs (green) and noAA runs (red), using the joint annual mean temperature-precipitation
response vector derived from the same model (solid) or another model (dashed). Differ-
ent panels correspond to different models and different number of Spherical harmonics, as
schematically illustrated in the title.

about climate changes attributable to AA and noAA.

The response patterns pAA and pnoAA used to derive time series in bottom panels of

fig. 4.3 and 4.4 are shown in fig. 4.5. Recall that for each model’s single-forcing run,

this pattern is the only component with statistically significant signal-to-noise ratio (fig.
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4.6). Because the state vector depends on the joint temperature-precipitation fields, the

response pattern is characterized by a pair fields, shown along each row. Multiplying these

patterns by their respective time series gives the spatio-temporal response to AA and to

noAA forcing in each model. The models agree that noAA forcing tends to warm the globe

and AA forcing tends to cool the globe. However, CSIRO suggests that the noAA-warming

is approximately equally distributed between Northern and Southern Hemispheres, whereas

IPSL suggests that noAA-warming is dominated in the Northern Hemisphere. The models

also agree that noAA will tend to enhance precipitation and AA will tend to decrease

precipitation over the western Pacific, near the maritime continent, and over the Atlantic

and Pacific centered near central America. However, the models disagree in the direction

of precipitation changes over the Indian ocean. The fact that the AA and noAA response

patterns are similar implies that the patterns have a large squared pattern correlation

ρ2. Despite this large pattern correlation, the total-to-noise ratio is sufficiently strong to

overcome multicollinearity problems to produce stable time series estimates.

Confidence intervals for the polynomial coefficients (in the perfect model case) are shown

in fig. 4.7. A forced response is said to be detected when the interval derived from the

historical run does not include zero, and is said to be attributable to AA or noAA forcing

when the interval from the historical run overlaps with the appropriate interval from the

single-forcing run. Almost all forced responses are attributable to the appropriate forcing,

as expected because the data comes from a perfect model experiment. For both CSIRO and

IPSL, the linear trend and the quadratic growth are detected (i.e., coefficients associated

with the first two Legendre polynomials differ significantly from zero). Based on all variable

combinations that we have analyzed, adding more Laplacian eigenvectors tends to improve

the ability to detect and attribute changes in higher order polynomials in time. However,

as the order of the polynomial increases, so too does the number of fitted parameters

and the likelihood of overfitting. We have found that 20 Laplacian eigenvectors produces

stable results in a perfect model scenario. Since multidecadal variability is associated with

polynomials of degree 3-6, these results suggest that detecting and attributing multidecadal
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tas AA CSIRO pr AA CSIRO

tas noAA CSIRO pr noAA CSIRO
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Figure 4.5: Response vectors that maximize detectability of AA forcing and noAA forcing
in two different models (CSIRO and IPSL) based on 20 Laplacian eigenvectors and annual
mean fields. The response vector depends on a joint temperature-precipitation relation
and therefore is characterized by a pair of patterns, shown in each row. The left column
shows temperature fields and the right column shows precipitation fields. The corresponding
forcing and model is indicated in the title of each figure. These response patterns were used
to estimate the time series shown in fig. 4.4.
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Figure 4.6: Maximized signal-to-noise variance ratios (blue line with dots), and the 95%
confidence interval under the hypothesis of equal variances (red shading), as a function of
the dimensions of fingerprints, based on 20 Laplacian eigenvectors and annual mean fields
of each variable, for AA single-forcing runs of CSIRO (top left) and IPSL (bottom left),
and noAA single-forcing runs of CSIRO (top right) and IPSL (bottom right).

variability to forcings in a perfect model requires spatial gradient information.

48



−
3

0
−

1
0

0
1

0
2

0
3

0

1 2 3 4 5

CSIRO simulations
TAS + PR; H = 1

−
6

0
−

4
0

−
2

0
0

2
0

1 2 3 4 5

IPSL simulations
TAS + PR; H = 1

−
4

0
−

2
0

0
2

0
4

0

1 2 3 4 5

CSIRO simulations
TAS + PR; H = 1−20

−
6

0
−

4
0

−
2

0
0

2
0

1 2 3 4 5

IPSL simulations
TAS + PR; H = 1−20

i’th Legendre polynomials i’th Legendre polynomials

noAA estimated from historical

AA estimated from historical

noAA run

AA run

Figure 4.7: 2.5% and 97.5% confidence limits for the coefficients of the five Legendre poly-
nomials (in time) estimated from CSIRO (left column) and IPSL (right column), using 1
Laplacian eigenvector (top row) and 20 Laplacian eigenvectors (bottom row). The dashed
line indicates zero. Only the perfect model case, in which all parameters and data come
from the same model, is shown.

4.2 Detectability Under Different Combinations of Variables,

Spatial Structures, and Seasons

We now explore detectability based on various combinations of variables. To summarize the

results, we show the potential detectability measure φ2
m in (3.25) using the total-to-noise
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ratios derived from the single-forcing runs. To precisely state the state vector, let Y ∆T,domain
v,l

denote the v’th physical variable– surface air temperature (TAS), precipitation (PR) or sea

level pressure (PSL)– for the l’th Laplacian eigenvector for time averaging period ∆T and

geographic “domain.” For a variable v on a global domain averaged over a year (“ann”),

the state vector is of the form

p =

(
Y ann, globe
v,1 Y ann, globe

v,2 Y ann, globe
v,3 . . .

)T
. (4.1)

In this case, as the dimension of the vector increases, more spatial gradient information is

included through higher order spherical harmonics. The vector is calculated by maximizing

total-to-noise ratio in the first ensemble member of the appropriate forced run from each

model. The potential detectability φ2
m as a function of vector dimension using 3 Legendre

polynomials are shown as black symbols in fig. 4.8 (the other symbols will be discussed

shortly).

Potential detectability slightly above the significance threshold implies that the signal is

marginally above the noise level for detection. While such values are desirable because they

meet the criterion for detection, in practice, we are interested in response vectors whose

potential detectability is several times higher than the threshold, because these vectors can

detect a signal that is several times larger than the noise level. To be clear, we would not

select the vector that maximizes detectability in the training sample, because of overfitting.

The figure shows that, in general, TAS and PR lead to stronger detection than PSL. PR

gives stronger detection of AA than any other single variable. PSL cannot detect AA forced

responses if too few spherical harmonics (< 8) are included in the state vector. In CSIRO,

the potential detectability jumps after including the second and fifth spherical harmonic,

suggesting that the hemispheric gradient and pole-to-equator gradient provides critical in-

formation for separating AA and noAA forced responses. Such jumps are not evident in

IPSL, indicating that the importance of spatial gradient information to separating AA and

noAA forced responses is model dependent. Note that AA or noAA forcing individually
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Figure 4.8: Potential detectability in a “perfect model” cases, in which the response patterns
and noise covariance matrix are from a same model for detecting noAA in CSIRO (a), noAA
in IPSL (b), AA in CSIRO (c), and noAA in IPSL (d). Black symbols are for single variables
(TAS, PR, PSL). Red symbols are for variable pairs (TAS-PR, PSL-PR, TAS-PSL). Blue
symbols are for single variables using variations between seasons and between land and sea.
The horizontal axis shows the dimension of the state vector. The precise state vectors are
described in the text. The number of Laplacians of each variable used to construct different
variable combinations are indicated by marks at top x-axis: black for single variables, red
for pairs of variables, blue for variables incorporate information of both seasonal variable
and land-sea contrast. Dashed line indicates the threshold for detectability at the 5%
significance level.
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produce spatial gradients. The above result implies that the degree to which such spatial

gradients discriminate between forcings is model dependent.

Recall that the potential detectability φ2 is proportional to the product of the total-

to-noise ratio and multicollinearity measure (1− ρ2). These individual terms are shown in

fig. 4.9. For the single-variable case (i.e., black symbols), the figure shows that PSL has

relatively low total-to-noise ratio and high degree of collinearity compared to TAS or PR.

This explains why PSL is less effective than other variables at detecting AA. PR has the

least collinearity between AA and noAA responses than any other single variable.

We next consider potential detectability for pairs of variables. Specifically, for a pair of

physical variables i and j on a global domain averaged over a year, the state vector is of

the form

p =

(
Y ann, globe
i,1 Y ann, globe

j,1 Y ann, globe
i,2 Y ann, globe

j,2 Y ann, globe
i,3 Y ann, globe

j,3 . . .

)T
.

(4.2)

For instance, if i = TAS and j = PR, then the first two elements give the projection of

these variables on the first spherical harmonic, the next two elements give the projection

on the second spherical harmonic, and so on. The potential detectability for this case is

shown as red symbols in fig. 4.8. Note that in this case the vector dimension does not equal

the number of spherical harmonics, since the vector is formed by concatenating pairs of

variables. Accordingly the dimension of the state vector is shown in the lower x-axis while

the number of spherical harmonics is shown on the upper x-axis of fig. 4.8. The figure reveals

that state vectors based on TAS-PR variable pairs give the strongest potential detectability

relative to other vectors of the same dimension. Interestingly, potential detectability based

on TAS-PR does not increase strongly beyond the second spherical harmonic. The strong

potential detectability using TAS-PR is because the associated response vectors are less

collinear than other vectors (see fig. 4.9). For example, other variables in CSIRO can have

larger total-to-noise ratios but lower potential detectability due to high collinearity.

As mentioned in the introduction, many studies suggest that seasonal variations and
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Figure 4.9: Multicollinearity measure (top row), the total-to-noise ratio for noAA (middle
row), and the total-to-noise ratio of AA (bottom), for CSIRO (left column) and IPSL (right
column), for the variable combinations indicated by colored symbols corresponding to fig.
4.8.

land-sea gradients are important for detection. We have examined state vectors based on

this type of information, but potential detectability often is worse than just using spatial
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gradients. As an example, we select state vectors that include both seasonal variations and

land-sea gradients of the form

p =

(
Y djf, land

v,1 Y mam, land
v,1 Y jja, land

v,1 Y son, land
v,1 Y djf, ocean

v,1 Y mam, ocean
v,1 . . .

)T
, (4.3)

where the superscripts indicate the obvious 3-month mean and the domain over which

Laplacian eigenvectors are computed. For this vector, the first eight elements correspond

to the first Laplacian eigenvector (i.e., the spatial average over the domain), and the second

eight elements correspond to the second Laplacian eigenvector in the respective domain.

Potential detectability based on these vectors is shown as blue symbols in fig. 4.8. For

temperature and precipitation, this vector leads to less potential detectability than a vector

of the same dimension based on spherical harmonics (especially for IPSL). The total-to-

noise ratios for AA forcing are especially low for vectors based on (4.3) (see fig. 4.9).

These results suggest that seasonal variations or land-sea contrast information does not

significantly enhance potential detectability relative to global, annual-mean indices.

The above conclusions pertain to a “perfect model” analysis. The question arises as

to whether our conclusions hold in an imperfect model setting. Figure 4.10 shows results

similar to those in fig. 4.8, except for the “imperfect model” case in which response vectors

and noise covariances are estimated from a model that differs from the model that gener-

ated the historical run. As in the perfect model case, precipitation still gives the strongest

potential detectability of AA, and combining precipitation with either temperature or sea

level pressure gives the strongest potential detectability of all. In contrast, jumps in po-

tential detectability occur at the second and fifth Laplacian in IPSL rather than CSIRO,

implying that the jumps are due to resolving gradient information in the response vector

and the noise covariance matrix rather than the historical runs used. The use of seasonal

variations or land-sea contrast information is more mixed in the imperfect model case: such

information can slightly enhance potential detectability relative to vectors of the same di-

mension using annual mean information and spherical harmonics, but these increases are
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Figure 4.10: Same as fig. 4.8, but for “imperfect model” cases, in which response patterns
and the noise covariance matrix are from different models, as follows: detecting noAA with
response pattern from CSIRO and noise covariance matrix from IPSL (a), detecting noAA
with response pattern from IPSL and noise covariance matrix from CSIRO (b), detecting
AA with response pattern from CSIRO and noise covariance matrix from IPSL (c), and
detecting AA with response pattern from IPSL and noise covariance matrix from CSIRO
(d).

generally small, whereas the losses of potential detectability due to seasonal variations or

land-sea contrast information can be substantial (especially for precipitation).

Note that TAS-PSL produces weaker potential detectability than other variable pairs.
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Figure 4.11: Scatter plot of global average temperature and sea-level pressure over the
period 1900-2004.

PSL is atmospheric pressure extrapolated to sea level and is computed partly from temper-

ature data. The question arises as to whether PSL enhances potential detectability beyond

TAS. In some cases, TAS and PSL are highly correlated, as shown in fig. 4.11 for the

global mean, which explains why the AA response is not detectable using only one Lapla-

cian eigenvector of TAS and PSL. In all cases shown in fig. 4.8, TAS always has stronger

potential detectability than PSL when based on the same number of Laplacian eigenvectors.

In rare cases in fig. 4.10, PSL has only marginally larger potential detectability than TAS.

In general, then, PSL does not enhance potential detectability significantly beyond that

already available from the temperature data used to compute PSL.

The potential detectabilities shown above are computed from single-forcing runs without

actually analyzing data in which both forcings are present. Realized detectability also can

be computed from (3.25) using data from historical simulations, in which both forcings

are present. A comparison between the potential detectability and realized detectability

for the different vectors is shown in fig. 4.12. In general, potential detectability tends to

overestimate the realized detectability. Nevertheless, the two measures tend to agree more

strongly as the realized detectability increases beyond the significance threshold.
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Figure 4.12: Comparison of potential detectability and realized detectability, for noAA forc-
ing (top row) and AA forcing (bottom row), and for CSIRO (left column) and IPSL (right
column). potential detectability is computed using TNR ratio estimated from single-forcing
run, and realized detectability is computed using TNR ratio estimated from historical run.
The colored symbols correspond to the same cases as in fig. 4.8. Grey lines have slope of 1
and cross the origin. Black horizontal lines indicate the threshold of 5% significance level
of realized detectability.
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4.3 Summary and Discussion

This study showed that joint temperature-precipitation information over a global domain

provides more accurate estimates of aerosol forced responses in climate models, compared

to using temperature, precipitation, or sea level pressure individually or in combination. To

clarify the importance of spatial versus temporal information, we use only spatial structure

or co-variability between variables as input to fingerprinting and infer the associated time

series from fingerprinting (which subsumes the traditional scaling factor). The response

vector was chosen to maximize signal-to-noise ratio using the method of Jia and DelSole

(2012). Typically, only one vector is detectable for any given forcing and model. To do

this, the data were represented in terms of a few Laplacian eigenvectors instead of EOFs.

Laplacian eigenvectors enhance physical interpretation (since they often are of the form of

monopoles, dipoles, tripoles, etc) and are data independent and hence can be compared

across models. Also, the time evolution is assumed to be low-frequency, in the sense that

it is representable by a low order polynomial in time. Since no temporal information is

included in the response vector, the results clarify how detectability depends on spatial

structure and co-variability with other variables.

To illustrate the above methodology, we used it to estimate the change in global aver-

age temperature in historical simulations due to different forcings using joint temperature-

precipitation response vectors. The inferred time series closely matched the time series

computed from single-forcing runs, even if only the first spherical harmonic was used, and

even if the response vector of one model is used to infer the change in a different model.

In some models, the accuracy of the estimates improves as more spherical harmonics are

included in the response vector. A third order polynomial in time was found to be sufficient

for capturing most of the response over a century.

The above methodology was applied to identify the most effective variables in a model for

estimating the cooling attributable to anthropogenic aerosols. We explored three different

variables– surface temperature, precipitation, sea-level pressure– and various combinations

of spatio-temporal information. We found that joint temperature-precipitation response
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vectors yielded the strongest detection of aerosol cooling, even in the absence of spatial

and temporal gradient information. The best single variable for detecting anthropogenic

aerosols is annual mean precipitation. We call attention to the fact that sea-level pressure

is computed partly from temperature data and hence is not independent of temperature.

We find no evidence that sea-level pressure provides any significant gain in detectability

beyond that already available in the surface temperature data from which sea-level pressure

is derived. We also used state vectors that included seasonal variations and that separated

land and ocean domains, but these vectors generally produced less detectability than vectors

of the same dimension based on annual mean variables of Laplacian eigenvectors. These

conclusions hold even in “imperfect model” setting, in which the response pattern and noise

covariance matrix are from different models. In one model, jumps in detectability occurred

after the second and fifth spherical harmonics were included, which measure, respectively,

the North-South hemispheric gradient and equator-to-pole gradient. Further comparison

between “perfect” and “imperfect” model analyses indicate that these jumps are due to

resolving gradient information in the response vectors and the noise covariance matrix.

As emphasized throughout this study, our results are derived from model experiments

in which errors in the forced response and observations can be neglected. There is no guar-

antee that response vectors that work well in models also will work well in observations. In

fact, DelSole et al. (2015) applied optimal fingerprinting to observations using global-mean

joint temperature and precipitation information, but observed, global, long-term precipi-

tation was inconsistent with models and even between data sets, resulting to inconsistent

hydrological sensitivity between models and observations (fig. 4.13). Thus, detection anal-

ysis based on observed global-mean joint temperature and precipitation turns out to be

difficult, despite the fact that the global-mean joint temperature and precipitation is an

efficient detection variable combination in a model setting. Nevertheless, the methodology

illustrated here is expected to provide a useful starting point for deciding which variables

to use for detection and attribution analysis of observations.
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Figure 4.13: Scatter plot of annual-mean, global-mean temperature and precipitation in sim-
ulations from CSIRO (top) and IPSL (bottom), and observations (green symbols). Each
panel displays simulations with anthropogenic aerosols only (“AA, blue); with all forcings
except anthropogenic aerosols (“noAA, red); with both natural and anthropogenic forcings
“his, gold); with no natural and anthropogenic forcing (“ctr, grey). Also shown are obser-
vations based on GPCP (green filled circles) and CMAP (green crosses). Temperature in
the historical run and observations are centered to have zero mean over the common period
1979-2004, while other simulations are shown relative to the mean of the historical run over
this period. Precipitation in the historical run and observations are normalized by their
respective means over the period 1979-2004, while other simulations are normalized by the
mean of the historical run over the same period. The solid curves show the projection of a
low-pass time series of the respective runs. The two lines in the bottom right corner indicate
the hydrological sensitivities estimated from the AA and noAA simulations. From fig.3 of
DelSole et al. (2015).
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Chapter 5: Inferring Anthropogenic Aerosol Cooling From

Land Observations

The last chapter showed that the joint variability of surface air temperature and precip-

itation is sufficiently distinct from that of other forcings that it can be used to estimate

aerosol cooling in a “perfect model world.” Unfortunately, global average precipitation is in-

consistent between models and observations, and even between different observational data

sets (Adler et al. 2011; Wentz et al. 2007; Liepert and Previdi 2009; DelSole et al. 2015).

One possible source of this inconsistency is observational errors, since estimates of global

mean precipitation differ considerably between data sets, and precipitation estimates over

the ocean are derived largely from satellite measurements, which lack ground truth for cali-

bration (Adler et al. 2011; Wentz et al. 2007; Liepert and Previdi 2009; DelSole et al. 2015).

Over land, however, long records of reliable gauge observations are available in addition to

satellite measurements. Therefore, we consider variables only over land, where rain gauge

data are available for constraining satellite estimates of precipitation. More precisely, this

chapter investigates whether combining precipitation and temperature data over land can

improve estimates of anthropogenic aerosol cooling.

5.1 Data

We use the same model data as described in sec. 2.4. But by considering the length of

observation data, the periods are of 1901-2004 and 1948-2004 separately. Note that model

data ends in 2004 for historical simulations. Two sets of observation datasets are used in this

study: the CRU TS 3.22 monthly gridded fields (Harris et al. 2014) and the GHCN-CAMS

monthly gridded fields (Fan and van den Dool 2008). Each dataset contains observational

fields of both surface air temperature (TAS) and precipitation (PR). The CRU data spans
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Figure 5.1: Eigenvectors 2, 3, 4, 5 of the Laplace operator over global land areas.

from 1901 to 2013 and the GHCN-CAMS data spans from 1948 to 2013. In analyses of the

longer period (1901-2013), only CRU data is used. In analyses of the shorter period (1948-

2013), both datasets are used. Observations of sea level pressure (PSL) are not analyzed in

this study because this variable has less potential detectability than TAS and PR, as will

be shown in the next section. All model simulations and observations are interpolated onto

a common 5◦ × 5◦ grid. A common mask is constructed based on the two observational

datasets and applied to all model simulations and observations.
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Figure 5.2: Temporal evolution of Legendre polynomials 1-5 for periods of 1901-2013 (left
and bottom axes) and 1948-2013 (right and upper axes).

5.2 Potential Detectability Over Land

Even if certain variables were found to improve detection of anthropogenic forcing on a

global domain, there is no guarantee that the same variables, restricted to land, would

improve detection. In this section, we investigate whether temperature and precipitation

over land areas allows detection of anthropogenic aerosols in a perfect model world. To

answer this question, we compare the potential detectability of different variables, variable-

combinations, and spatial filters. We also included PSL in the mix. These results will

be used to rank variable combinations by their ability to detect a specific forcing, and

demonstrate that certain fingerprints should be discarded because they would fail to detect

a forcing even in a perfect model.

We are interested in whether forced responses can be detected using only spatial or

co-variability information over land (i.e., no temporal information). For this purpose, we
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use Laplacian eigenvectors over land, displayed in fig. 5.1. Also, the Legendre polynomials

used in this section for observations is displayed in fig. 5.2. We also consider the time

period 1948-2013, for which the Legendre polynomials have the same structure as in fig. 5.2

but with an x-axis ranging between 1948 and 2013 (see top axis in fig. 5.2). The Legendre

polynomials used in this section for model data (not shown) have the same structure as those

in fig. 5.2 but with x-axis ranging between 1901 and 2004, and 1948 and 2004 separately

corresponding to the longer and shorter observations.

Let Y ∆T
v,l denote the v’th physical variable– TAS, PR or PSL– for the i’th Laplacian

eigenfunction for time averaging period ∆T . For an annual average (∆T = “ann”) single

variable v on a global land domain, the state vector is of the form

p =

(
Y ann
v,1 Y ann

v,2 Y ann
v,3 . . .

)T
, (5.1)

where vector dimension d equals the number of Laplacian eigenvectors. For a pair of physical

variables i and j on a global land domain averaged over a year, the state vector is of the

form

p =

(
Y ann
i,1 Y ann

j,1 Y ann
i,2 Y ann

j,2 Y ann
i,3 Y ann

j,3 . . .

)T
, (5.2)

where vector dimension d, for even dimension, corresponds to d/2 Laplacian eigenvectors

for variable i and d/2 Laplacian eigenvectors for variable j. For a variable based on seasonal

variations, the state vector is of the form

p =

(
Y djf
v,1 Y mam

v,1 Y jja
v,1 Y son

v,1 Y djf
v,2 Y mam

v,2 . . .

)T
, (5.3)

where vector dimension d corresponds to d/4 Laplacian eigenvectors for variable v, assuming

d is a multiple of 4, and ∆T corresponds to the obvious 3-month average.

The potential detectability of different variables and variable-combinations are shown

in fig. 5.2. Different colors indicated different categories of variables: black for single
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Figure 5.3: Potential detectability of different response vectors for noAA in CSIRO (a),
noAA in IPSL (b), AA in CSIRO (c), and noAA in IPSL (d). Black symbols are for single
variables (TAS, PR, PSL); red symbols are for variable pairs (TAS-PR, PSL-PR, TAS-PSL);
blue symbols are for single variables using seasonal variations. The precise state vectors are
described in the text. The dimension of each state vector is indicated in the bottom x-axis
and the number of Laplacian eigenvectors for each vector is indicated in the top x-axis
according to the above color scheme. Dashed line indicates the threshold for detectability
at the 5% significance level.

annual-mean variables, red for pairs of annual-mean variables, and blue for single seasonal-

mean variables. Vector dimension is indicated on the bottom x-axis and the number of

Laplacian eigenvectors is indicated on the upper x-axis according to the color scheme.

The figure shows that, for sufficiently large dimension, the joint temperature-precipitation

vector based on annual averages gives the largest potential detectability in both models

and for both forcings (e.g., the red circles lie above all other symbols at large dimension).
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However, in the case of CSIRO, the land-only vectors for TAS are comparable to those

for the joint TAS-PR vector; that is, combining temperature and precipitation does not

enhance detectability very much compared to the temperature-only vector. This result is in

contrast to the global-average vectors analyzed in the last chapter, and in contrast to IPSL.

Inclusion of seasonal variations of TAS can improve potential detectability in CSIRO, but

not dramatically, and not in IPSL. PSL always shows the lowest potential detectability in

both models. Note, however, that while the joint TAS-PR vector and the single-variable

TAS vector have comparable potential detectability for equal dimension, the former uses

fewer Laplacian eigenvectors and therefore filters out more small scale variability.

We also have computed potential detectability in an “imperfect model world” in which

response patterns and noise covariance matrix derived from one model are used to detect

forced responses in another model’s single-forcing run (not shown). The above conclusions

hold in this case too. We conclude that in a “perfect model world” the joint temperature-

precipitation data over land can detect AA and noAA forced responses. However, temper-

ature data also can detect AA and noAA forced responses given enough Laplacian eigen-

vectors (i.e., given enough small scale structure).

5.3 Signal-to-Noise Ratio and Multicollinearity

As indicated in (3.25), potential detectability depends on two factors: the strength of

the forced response relative the noise (i.e., TNRm) and the degree of collinearity between

the response vectors (i.e., ρ). The value of these quantities for the joint temperature-

precipitation vector based on annual means is shown in fig. 5.4. Recall that the vector is

constructed according to (4.2), so if the dimension is even then the number of Laplacian

eigenvectors equals half the vector dimension.

The signal-to-noise ratio increases with the number Laplacian eigenvectors, as expected:

the vectors are chosen to maximize the signal-to-noise ratio at each specified dimension. The

pattern correlations decrease with the number of Laplacian eigenvectors, but in quite differ-

ent ways in the two models: a sharp decrease occurs in IPSL from the 3rd to 4th Laplacian
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Figure 5.4: The signal-to-noise ratio of the noAA (red) and AA (blue) response, and the
pattern correlation between the response vectors, in CSIRO (left figures) and IPSL (right
figures), as a function of the dimension of Laplacians of the joint annual-mean temperature-
precipitation vector.

eigenvector, while the decrease in CSIRO is more gradual. The abrupt decrease implies

that the 4th Laplacian eigenvector contains structure (i.e., the hemispheric gradient, as can

be seen from fig. 5.1) that helps to distinguish between AA and noAA responses in IPSL.

A variety of factors could be responsible for this difference in model response patterns. For

instance, aerosol-cloud interactions (Ma et al. 2015) and precipitation simulations (Wehner

et al. 2014; Li et al. 2015) are known to be sensitive to a model’s horizontal resolution and

emissions. CSIRO has stronger black carbon and organic aerosol emissions (Rotstayn et al.

2012) and higher longitudinal resolution (Dufresne et al. 2013) than IPSL. In any case, this

abrupt change in pattern correlation will be seen to affect the detection and attribution
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results shown later.

5.4 Spatial Patterns
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Figure 5.5: Maximized signal-to-noise variance ratios (blue line with dots), and the 95%
confidence interval under the hypothesis of equal variances (red shading), as a function of
the dimensions of fingerprints, based on 25 Laplacian eigenvectors and annual mean fields
of each variable, for AA single-forcing runs of CSIRO (top left) and IPSL (bottom left),
and noAA single-forcing runs of CSIRO (top right) and IPSL (bottom right).

We find that twenty-five Laplacian eigenfunctions produce stable results for observations.
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tas AA CSIRO pr AA CSIRO

tas noAA CSIRO pr noAA CSIRO

tas AA IPSL pr AA IPSL

tas noAA IPSL pr noAA IPSL

−0.2 −0.12 −0.04 0.06 0.12 0.18 −0.045 −0.025 −0.005 0.02 0.035

Figure 5.6: Response vectors that maximize detectability of AA forcing and noAA forcing
in two different models (CSIRO and IPSL) based on 25 Laplacian eigenvectors and annual
mean fields. The response vector depends on a joint temperature-precipitation relation
and therefore is characterized by a pair of patterns, shown in each row. The left column
shows temperature fields and the right column shows precipitation fields. The corresponding
forcing and model is indicated in the title of each figure. These response patterns were used
to estimate the time series shown in fig. 5.10.
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Given this many Laplacian eigenfunctions, the most detectable annual-mean temperature

patterns for AA and noAA responses are quite similar to the temperature patterns in

the most detectable joint temperature-precipitation pattern. Note that for each single-

forcing simulations, only the most detectable component are statistically significant fig.

5.5. Therefore we show just the most detectable joint temperature-precipitation patterns

in fig. 5.6. Because these are joint patterns, each vector contains both a temperature and

precipitation pattern, which are shown along a row. When the response patterns of surface

air temperature and their respective time series (thin black and green curves in fig. 5.10)

are multiplied, both models indicate cooling due to AA and warming due to noAA over

most global land areas, as expected. For precipitation, models show diversities in regions

of equatorial Africa, the maritime continent and Australia. In most global land regions,

the precipitation patterns are still fairly consistent across models: decreasing precipitation

due to AA and increasing precipitation due to noAA. Note that the direction of response

depends on the product of response pattern and time series, and that the time series for

AA is mostly negative while that of noAA is mostly positive.

5.5 Confidence Intervals for the Polynomial Coefficients

5.5.1 Joint Temperature-Precipitation Fingerprints

Confidence intervals for the coefficients of Legendre polynomials 1-5 are shown in fig. 5.7

for the joint annual-mean temperature-precipitation vector using 1 and 25 Laplacian eigen-

functions. For each coefficient, warm colors show confidence intervals for noAA and cold

colors show those of AA. Each confidence interval is shown separately for CRU observations

and for the first ensemble member of historical runs and single-forcing runs. Confidence

intervals that exclude zero indicate detection of a given forced response. Confidence in-

tervals excluding zero and overlapping with those of individual forced responses indicate

attribution of the change to the forced response.

Not surprisingly, the response for both AA and noAA forcing projects most strongly on
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Figure 5.7: Confidence intervals of estimated coefficients of Legendre polynomials 1 to 5
based on the first (top panels) and the first twenty-five (bottom panels) Laplacian eigen-
functions, separately for noAA (warm colors) and AA (cold colors) of single-forcing runs,
historical simulations and CRU observations. Estimates are made based on the joint fields
of surface air temperature and precipitation.

Legendre polynomial 1, corresponding to a linear function of time (i.e., the “trend”). The

confidence intervals shrink as smaller spatial scales (i.e., more Laplacian eigenvectors) are

taken into account. For IPSL, the intervals shrink abruptly across 4 Laplacian eigenvectors

(not shown) because of the abrupt change in multicollinearity (see fig. 5.4). The results

using only 1 Laplacian eigenfunction (top row) are equivalent to fingerprinting using only

land-average quantities. In a perfect model world, both forcings can be detected using

only land-average quantities. However, the sign of the trend coefficients for observations

are opposite to that derived from models for both noAA and AA response patterns. This
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result shows that the land-average temperature-precipitation co-variability differs signifi-

cantly between models and observations, consistent with the results of DelSole et al. (2015)

for global-average variables.

Detection of both forcings in models and observations occurs for twenty-five Laplacian

eigenvectors (bottom row of fig. 5.7). Most coefficients for models and observations are

consistent, in the sense that the confidence intervals for the same forcing overlap. The main

exception is a tendency for fingerprinting to underestimate the forced response compared

to single-forcing runs. This bias is presumably related to random errors in the forced

response patterns, which have been neglected in our fingerprinting method, and which tend

to bias the amplitudes toward zero. This bias is an artifact of least squares that can be

avoided by an Error-in-Variables (EIV) model (Allen and Stott 2003). Another interesting

exception is that observations reveal a detectable AA response in the 3rd polynomial and

a detectable noAA response in the 5th polynomial, using either model response vector,

but these responses are not consistent with models. Legendre polynomials 1-2 can fit an

exponential whereas polynomials 3-5 might be identified with multi-decadal variability.

Thus, this discrepancy may imply that models are missing multi-decadal responses over

land.

5.5.2 Temperature Fingerprints

Most detection and attribution studies use temperature data only. For comparison, then, we

show in fig. 5.8 confidence intervals for the coefficients of Legendre polynomials using only

temperature data. The top row shows the case using two Laplacian eigenvectors (the case

of one Laplacian is not shown because it is impossible to separate two responses using one

spatial pattern). For CSIRO, no detection is possible in a perfect model world. Despite this,

the forced response is detectable in observations, but in a direction contrary to expectations

(i.e., the aerosols warm the land while greenhouse gases cool the land). To understand this

inconsistency, we consider scatter plots for the first two Laplacian eigenvectors over land

for observations and model simulations, shown in fig. 5.9. In the case of CSIRO, individual
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simulations suggest a negative correlation between the two Laplacians, whereas observations

suggest a positive correlation. Thus, in order for fingerprinting to fit observations, the

sign of the forced responses need to be flipped. In the case of IPSL, the slope of the

relation is nearly identical for the two forcings, suggesting collinearity problems. Indeed,

the correlation parameter ρ is 0.9981 and 0.9999 for CSIRO and IPSL, respectively. Recall

that our fingerprint method ignores uncertainty in the response vectors. This assumption

is problematic when the vectors are nearly collinear. It is likely, then, that the confidence

intervals are significantly underestimated, which probably explains why the trend in the

forced response for IPSL is not estimated accurately even in a perfect model world (i.e., the

confidence intervals for the single-forcing runs do not overlap with those of the historical

runs). Given this inconsistency in a perfect model world for IPSL, fingerprinting is not

expected to work in observations. These results reveal a stark contrast between models,

and between models and observations.

The results using 25 Laplacian eigenvectors of annual-mean temperature are shown in

the bottom row of fig. 5.7. In general, most coefficients for models and observations are

consistent (i.e., the confidence intervals for models and observations overlap), with some

exceptions due to the tendency for the response to be underestimated compared to the

single-forcing runs, as found earlier. Compared to the joint TAS-PR case, fewer coefficients

are detectable using TAS-only, owing to the larger confidence intervals. Nevertheless, the

overall consistency between the joint TAS-PR case and the TAS-only case suggests that

much of the signal is contained in the temperature data. As found in the TAS-PR case,

there is a detectable AA response in the 3rd polynomial and detectable noAA response

in the 5th polynomial in observations, but not in models. This result again implies that

models are missing a multi-decadal response over land.

5.6 Time Series

It proves instructive to translate some of the above results into the time domain. To do this,

we multiply the estimated coefficients by the corresponding Legendre polynomial. The time
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Figure 5.8: Similar to fig. 5.7 but estimates are made based on only surface air temperature.

series for the AA and noAA response based on representing TAS-PR and TAS by the first

twenty-five Laplacian eigenfunctions over land are shown in fig. 5.10. Curves for different

forcings have been offset relative to each other for clarity. Different curves of the same color

show results for different ensemble members of the historical run. Time series estimated

separately from the AA and noAA simulations (without temporal smoothing, using (A.25))

are shown in thick green and black, and time series estimated from the CRU observational

dataset are shown in the thick red and blue.

Time series estimated from historical runs (thin red and blue) look essentially like

smoothed versions of the time series obtained from the AA and noAA runs (think green and
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Figure 5.9: Scatter plots of the first (H1) and second (H2) Laplacian time series for surface
air temperature over global land, for CSIRO (top) and IPSL (bottom), for historical simula-
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colored lines show the least squares fit line. The title of each panel shows the correlation of
the scatter plots for the respective simulations and observations. The correlation threshold
for a 5% significance level is 0.2.
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black), which is impressive given that the different curves were estimated separately. More-

over, time series for different ensemble members are relatively close to each other, indicating

that the uncertainty due to sampling errors is relatively small compared to the overall sec-

ular changes. Time series estimated from CRU observations lie mostly within the spread of

the model historical simulations, implying significant consistency between model response

and observed changes. The time series from CRU observations exhibit more multi-decadal

oscillations than model time series, consistent with the fact that the confidence intervals of

forced responses for CRU observations exclude zero while those based on models include

zero. Note that the time series are almost indistinguishable between the TAS-only and

TAS-PR response vectors, strongly suggesting that most of the forced response signal is

contained in the temperature data. Including the precipitation data mostly reduces the

uncertainty. This again confirms conclusions obtained based on estimates of confidence

intervals.

5.7 Forced Responses During 1948-2013

We repeated the above analysis except using the shorter period from 1948 to 2013. This

allows us to assess the impact of smaller sample size and different data sets (CRU and

GHCN-CAMS). The corresponding confidence intervals are displayed in fig. 5.11 for the

joint TAS-PR response vector and in fig. 5.12 for the TAS-only response vector, in the same

format as fig. 5.7. To obtain these results, forced response vectors are re-calculated from

historical simulations spanning from 1948 to 2004. Though only half of the sample size is

used, the derived forced response vectors (not shown) are very similar to those in fig. 5.6.

The top row of fig. 5.11 reveals that neither AA nor noAA is detectable in CSIRO,

whereas both forcings are detectable in IPSL, using land average TAS-PR data in a perfect

model world. In the case of IPSL, the predicted response is consistent with the response

estimated from CRU observations, but underestimates the response estimated from GHCN-

CAMS observations, especially in the linear (i.e., trend) component. The sign of the trend
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Figure 5.10: Response time series derived from historical simulations (blue and red), derived
from single-forcing AA runs (green) and noAA runs (black) and from CRU observations
(thick red and thick blue) using the temperature response vector (top rows) and the joint
temperature-precipitation response vector (bottom rows) associated with the first 25 Lapla-
cian eigenfunctions and Legendre polynomials 1-5. Different columns correspond to different
models used for the historical simulation and response vector, as illustrated in the title. The
response vector is derived from only one ensemble member of the single-forcing runs and
then used to estimate response time series for each ensemble member from the historical run
and observations. Time series from historical simulations are based on using five Legendre
polynomials, whereas time series based on single-forcing runs are based on year-by-year
estimation.

estimated in IPSL is consistent between models and observations, suggesting that the in-

consistency in the sign of the trend seen in fig. 5.7 arises from inconsistencies in the first
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half of the 20th century.

In the case of twenty-five Laplacian eigenvectors (bottom row of fig. 5.11), an interesting

inconsistency occurs when detecting the trend in AA. For CSIRO fingerprints, the trend

is detectable and attributable in the CRU data, but not for the GHCN-CAMS data. In

contrast, IPSL fingerprints detect the trend in AA, but underestimate the trend in GHCN-

CAMS. These discrepancies reveal significant sensitivity in estimating anthropogenic aerosol

forcing to observational temperature-precipitation data sets and to model fingerprints on

sub-centennial time scales.
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Figure 5.11: Similar to fig. 5.7 except that the response vectors of AA and noAA are derived
from single-forcing runs from 1948 to 2004, and observations are CRU and GHCN-CAMS
data from 1948 to 2013.

In the case of using two Laplacian eigenvectors of TAS-only over land (top row of
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fig. 5.12), the forced response cannot be detected in CSIRO, and gives results that are

inconsistent with single-forcing runs in IPSL in a perfect model sense. These results are

similar to those using the longer time period shown in fig. 5.9 and can be explained by

the same reasons. In the case of twenty-five Laplacian eigenvectors (bottom row of fig.

5.12), forced responses to noAA forcing can be detected and attributed consistently for all

observations. An inconsistency occurs again when detecting the trend to AA forcing. For

CSIRO fingerprints, the trend is not detectable for either observational data set. In contrast,

IPSL fingerprints detect the trend in AA for both CRU and GHCN-CAMS. Since the two

observational data sets are consistent and agree with the IPSL responses, we conclude that

the AA response in CSIRO is not consistent with observations.
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Figure 5.12: Similar to fig. 5.11 except that the response vectors of AA and noAA are
derived from annual mean TAS only.
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5.8 Summary and Discussion

This chapter showed that the time evolution of the response to anthropogenic aerosols

can be estimated using annual-mean land temperature over centennial time scales. This

conclusion goes beyond traditional fingerprinting studies by using only the spatial structure

of the forced response to detect anthropogenic aerosol forcing, leaving the multi-decadal time

evolution of the response to be inferred from data. Including annual-mean land precipitation

with land temperature only modestly reduces uncertainty over centennial time scales, in

contrast to the case of global (land + ocean) data in a perfect model world (DelSole et al.

2015). In addition, multi-decadal variability, as captured by Legendre polynomials 3-5

shown in fig. 5.2, are detected in observations but not in models, suggesting that models

are missing significant multidecadal variability in both the anthropogenic aerosol response

and the non-anthropogenic aerosol response.

When observations are restricted to sub-centennial time scales (1948-2013), temperature-

only fingerprints based on IPSL can detect a trend in AA and noAA responses in observa-

tions, but fingerprints based on CSIRO can detect only the noAA response in observations

(for sufficiently large number of Laplacian eigenvectors). These results, and the consistency

between two different observational data sets, suggest that CSIRO simulates a tempera-

ture trend due to AA that is not consistent with observations over this period, whereas

IPSL simulates trends in both AA and noAA that are consistent with observations. Using

joint land temperature-precipitation information improves the consistency of AA response

between CSIRO and CRU, but not with GHCN-CAMS, suggesting sensitivity to the ob-

servational data set. No consistent detection of multi-decadal variability occurs over this

period using temperature-only fingerprints.

The first two Laplacian eigenvectors over land correspond to the global-land-average

and the east-west gradient. Although observations reveal a significant positive correlation

between these two components, CSIRO suggests a negative correlation. In addition, IPSL

suggests a positive correlation between these two components, but this relation is nearly

identical for control and forced simulations, making detection difficult.
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This study was motivated by the results of the last chapter, which showed that, in a

perfect model world, joint temperature-precipitation information over a global domain pro-

vides more accurate estimates of aerosol forced responses than do any other combination

of temperature, precipitation, or sea level pressure. Unfortunately, that study also revealed

significant inconsistencies in global mean precipitation between models and observations,

and even between different observational data sets. Therefore, the present study examined

detectability of anthropogenic aerosols using only land data, where satellite observations

of precipitation can be calibrated against gauge observations. For a sufficiently large num-

ber of Laplacian eigenvectors, the present study finds that joint temperature-precipitation

information over land only modestly improves the detectability of anthropogenic aerosols

relative to temperature-only information.

81



Chapter 6: Potential Detectability of Other Variables and

Domains

The previous chapters explored the possibility of improving estimates of aerosol cooling by

combining temperature data with precipitation and/or sea level pressure. That analysis is

far from exhaustive. In this chapter, we present results for a much wider range of variables

for estimating anthropogenic aerosols. To summarize these results efficiently, we fix the

dimension and show potential detectability only for eight-dimensional response vectors.

The variables, domains, and averaging windows considered here are summarized in table 6.

A key addition is the inclusion of ocean data and surface radiation data.

Recall that only model data is needed to evaluate potential detectability. We use the

CMIP5 model data described in sec. 2.4. Also, we compute potential detectability when

only spatial structure of the forced response is specified, using five Legendre polynomials

for temporal structure (fig. 4.2). The potential detectability of forced response to anthro-

pogenic aerosol forcing in CSIRO is shown in fig. 6.1. In total, 36 response vectors are

summarized in this figure and plotted in order of potential detectability values (marked by

the numbers in square brackets). Red marks variables that have been analyzed in above

sections and black marks variables that need to be analysed in future.

The summary figure shows that potential detectability varies greatly depending on dif-

ferent variables, domains and averaging windows. As we saw in chapter 4, among single

variables that we have analyzed, annual-mean, global precipitation (“pr−GLO.ann”) shows

the highest ability to detect forced responses to anthropogenic aerosol forcing, followed by

annual-mean global near-surface temperature (“tas−GLO.ann”). Other single-variable such

as sea level pressure, ocean temperatures over the North Atlantic and North Pacific, have

much lower potential detectability of anthropogenic aerosol forcing.

When ocean surface temperature (“tos”) is combined with other oceanic variables, such
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tas near-surface temperature
tos ocean surface temperature
pr precipitation
psl sea level pressure
rsds downward shortwave surface radiation
evspsbl surface evaporation
sos surface salinity
oh ocean heat content in upper 700m
LAND land domain
OCEAN ocean domain
NASST North Atlantic SST
NPSST North Pacific SST
GLO global domain
ASIALAND Asia
NHLAND northern hemisphere land
NALAND North America
ann annual mean
djfmamjjason concatenation of seasonal means

Table 6.1: The variables, domains, and time averaging windows used to define forced re-
sponse vectors, and the associated shorthand nomenclature for each.

as heat content or salinity, potential detectability is hardly improved. But when ocean sur-

face temperature is combined with downward shortwave radiation at the surface (“rsds”),

potential detectability is greatly improved, particularly when the shortwave is available over

the northern hemisphere land or Asia land regions. The highest potential detectability is

achieved by using sea surface temperatures over the North Pacific and downward shortwave

radiation over northern hemisphere land. This potential detectability is much larger than

the potential detectability obtained in previous chapters, namely annual mean temperature

and precipitation (which ranks only 6th). Combining sea surface temperatures with short-

wave radiation over other land areas consistently gives greater potential detectability than

other combinations involving sea surface temperatures.

Held and Soden (2006) showed that a robust response to global warming is that the net

water flux into the surface– precipitation minus evaporation over the ocean– scales with

changes in surface temperature. This result suggests that evaporation may be a useful vari-

able for detection purposes. As can be seen from fig. 6.1, detectability based on combined
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Figure 6.1: Potential detectability of anthropogenic aerosol forcing of different variables,
domains, and time averaging using eight-dimensional response vectors from CSIRO. The
response vector is defined along the y-axis using the nomenclature in table 6. For instance,
‘tos−NPSST.rsds−ASIALAND.ann’ shows the potential detectability of joint sea surface
temperature over North Pacific and surface downward shortwave over Asia land area. Pre-
viously studied variables are marked in red, variables to be analyzed in more depth in the
future are marked in grey.

evaporation and sea surface temperature is domain dependent: higher over North Pacific

than over North Atlantic. The best detectability achieved with evaporation ranks 11th.

Among all response vectors considered, no dramatic improvement of potential detectabil-

ity is found by taking into account land-sea contrast or seasonal variations.
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To gain an idea of how potential detectability differs for noAA, we show in the top

left panel of fig. 6.2 a scatter plot of AA and noAA potential detectability in CSIRO.

The number-label corresponds to the ranked response vector in fig. 6.1, and the red line

shows x = y for reference. Fig. 6.2a shows a good linear relationship between the potential

detectability of AA and noAA forcing. In general, detectability of noAA tends to larger

than that of AA. A similar scatter plot for IPSL is shown in fig. 6.2b, which confirms the

near-linear relation between detectability of the two forcings and shows an even stronger

tendency for noAA to more detectable than AA.

A comparison of potential detectability of a given forcing between models is shown on

the bottom row of fig. 6.2. Interestingly, the potential detectability of noAA is nearly the

same for both models (as indicated by the fact that most points in fig. 6.2d lie close to the

x = y line). In contrast, the potential detectability of AA tends to be larger in CSIRO than

IPSL. Also, the ranks tend to be preserved between the models for AA and for noAA.
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Figure 6.2: Scatter plots of potential detectability to AA and to noAA, in simulations from
CSIRO (top left) and IPSL (top right). And scatter plot of potential detectability to AA in
simulations from CSIRO and IPSL (bottom left), and scatter plot of potential detectability
to noAA in simulations of CSIRO and IPSL (bottom right). All potential detectability are
calculated for variables (combinations) shown in fig. 6.1 and the correspondence is shown
by the rank numbers. Line of x = y is displayed in each panel by the red line.
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Chapter 7: Summary

The purpose of this thesis was to investigate ways to improve estimates of the response to

anthropogenic aerosols. Our main conclusions are as follows.

We have shown that the response to anthropogenic aerosols and other forcings can be

detected using only the spatial structure of the response. While using only spatial structure

does not reduce the uncertainties, the fact that time series can be inferred from observa-

tions, and that these time series are consistent with model simulations, seems impressive

and improves our confidence in the ability of the model to simulate the forced responses.

However, while there was strong agreement on the trend, significant multi-decadal varia-

tions in the forced response were detected, but models did not simulate these variations.

This result suggests that models may be missing important multi-decadal variations in the

response to anthropogenic aerosol forcing and in other forcings.

We proposed a new measure, called potential detectability, that measures the degree to

which a specific forcing can be detected in a perfect model world. Consequently, potential

detectability allows the detectability of a forced response in a model to be compared across a

variety of variables so that the best choice of variables for detecting a given forced response

can be identified prior to analyzing observations. When the forcing is partitioned into two

response vectors (e.g., AA and noAA), potential detectability is proportional to the product

of the total-to-noise (TNR) ratio of the forced response, times a measure of multicollinearity

between the two response vectors. That is,

potential detectability = (total-to-noise-ratio)
(
1− ρ2

)
, (7.1)

where ρ is the cosine of the angle between the two response vectors (in a certain space).
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To our knowledge, this equation has not appeared in the literature, despite its simplic-

ity and fundamental importance. This result substantially clarifies the relation between

detectability, signal-to-noise ratio, and multicollinearity.

We showed that in a “perfect model world,” precipitation yields the most accurate

estimates of anthropogenic aerosol-induced changes over a global domain than any other

single variable analyzed in this study. Even better estimates could be obtained using joint

temperature-precipitation information. In the real world, however, observational errors

in global precipitation data are too large to permit estimation of aerosol-induced climate

changes. Repeating this analysis using only land-data, where reliable rain gauge data are

available, succeeds in estimating aerosol cooling. However, adding precipitation does not

significantly improve the estimation relative to estimates obtained from temperature alone,

as it did in the global domain analysis.

Previous studies found that hemispheric gradients and equator-to-pole gradients were

important for estimating aerosol forcing, but we show that this is a model dependent feature.

Previous studies also suggested that seasonal variations and land-ocean contrasts can be

used to discriminate aerosol-forced responses from other forced responses, but we find that

vectors that include this kind of information produce less detectability that vectors of the

same dimension but which include only annual means of large-scale basis vectors (i.e.,

Laplacian eigenvectors). We find that sea-level pressure provides no significant gain in

detectability beyond that already available in the surface temperature data from which sea-

level pressure is derived. This result calls into question the usefulness of surface pressure

data for estimating climate changes.

Note that we investigated two specific types of single-forcing simulations in this study

because we were interested primarily in the response to anthropogenic aerosols. However,

the methodology presented in this study is not limited to the particular single-forcings stud-

ied in this work. In general, our proposed methodology can be applied for any problem that

can be formulated as optimal fingerprinting (or equivalently, as generalized least squares).

We examined a large number of variables, domains, and time averaging windows for

88



estimating anthropogenic aerosol-forced response. Surprisingly, ordering the combinations

according to the rank of their potential detectability produces nearly the same order for

different forcings and models. We find that the highest potential detectability of anthro-

pogenic aerosol-induced changes is obtained using joint sea surface temperature and down-

ward shortwave radiation over the land surface. This result has motivated us to collect

observational records of shortwave radiation and investigate the use of this data for improv-

ing estimates of anthropogenic aerosol cooling, and thereby providing a new, independent,

and hopefully improved estimate of climate sensitivity.
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Chapter A: Generalization of Optimal Fingerprinting

This appendix shows how optimal fingerprinting can be generalized to estimate time series

for forced responses and formally derives the potential detectability measure. We begin by

first summarizing generalized least squares (GLS), which is a standard framework in linear

regression, and then discuss how optimal fingerprinting relates to GLS. This material is

standard Allen and Tett (1999); Hegerl et al. (2007); Hegerl and Zwiers (2011). Then, we

show how our modified regression problem can be framed as a GLS problem and then derive

potential detectability.

Generalized least squares assumes that an observed K-dimensional vector y can be

modeled as

y = X β + ε

K × 1 K ×M M × 1 K × 1
, (A.1)

where X is a matrix of known “explanatory variables,” β is a vector of unknown regression

coefficients to be estimated from data, and ε is a random noise term. Ordinary Least

Squares (OLS) gives estimates of β when elements of the noise term ε are independent and

identically distributed. In contrast, GLS gives estimates of the regression coefficients when

elements of the noise term are correlated, or more precisely, have covariance matrix Σ̃ε; i.e.,

cov[ε] = Σ̃ε. (A.2)

A standard fact is that a variable transformation can adjust the covariance matrix so that

OLS can be used. The end result is that the GLS estimates of the regression coefficients is

β̂ =
(
XT Σ̃−1

ε X
)−1

XT Σ̃−1
ε y, (A.3)
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where the caretˆdenotes a sample estimate. The estimate (A.3) is unbiased, in the sense

that E[β̂] = β, and has covariance matrix

cov[β̂] =
(
XT Σ̃−1

ε X
)−1

. (A.4)

If the noise is normally distributed, then β̂ also is normally distributed, and a 95% confidence

interval for the m’th regression coefficient is

(
β̂m − 1.96

((
XT Σ̃−1

ε X
)−1

)1/2

mm

, β̂m + 1.96

((
XT Σ̃−1

ε X
)−1

)1/2

mm

)
. (A.5)

Optimal fingerprinting assumes a model of the form (2.7), repeated below:

o =
M∑
m=1

fmam + η. (A.6)

In this study, we assume that the forced response fm is represented as (2.8), where the

response pattern pm has been derived by maximizing the signal-to-noise ratio (i.e., by

solving (2.13)), and use GLS to estimate the time series rm (which subsumes the scaling

factor am). In addition, we assume the response time series rm can be represented by a

low-order polynomial in time (2.9). Under these assumptions, the forced response vector

fm at the s’th spatial location and n’th time step is

(fm)s,n = ps,mrn,m =

J∑
j=1

ps,mcm,jLn,j . (A.7)

To express the final regression model in the form (A.1), it is convenient to “stack” the
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spatial locations first and then loop over time, leading to the following identifications:

ys+S(n−1) = os,n (A.8)

Xs+S(n−1),m+M(j−1) = ps,mLn,j (A.9)

βm+M(j−1) = cm,j (A.10)

εs+S(n−1) = ηs,n. (A.11)

As discussed in the main text, we assume internal variability is Gaussian white noise. Under

the white noise assumption, the covariance matrix of the noise term has the block diagonal

structure

Σ̃ε =



Ση 0 . . . 0

0 Ση . . . 0

...
...

. . .
...

0 0 . . . Ση


, (A.12)

where Ση is the single-time, S ×S covariance matrix of internal variability. The covariance

matrix of the estimated coefficients is the inverse of the following matrix:

(
XT Σ̃−1

ε X
)
m+M(j−1),m′+M(j′−1)

= ps,mLn,j
(
Σ−1
η

)
s,s′

δn,n′ps′,m′Ln′,j′ (A.13)

=
(
LTL

)
j,j′

(
pTmΣ−1

η pm
)
m,m′ , (A.14)

where we employ the familiar summation convention in which indices that appear twice are

summed over all values of that index. Because Legendre polynomials are orthogonal,

LTL = I. (A.15)

This orthogonality relation implies that estimates for different coefficients are independent
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of each other, and that the matrix (A.13) has the block diagonal form

XT Σ̃−1
ε X =



PTΣ−1
η P 0 . . . 0

0 PTΣ−1
η P . . . 0

...
...

. . .
...

0 0 . . . PTΣ−1
η P


, (A.16)

where P is the S ×M matrix containing the forced response patterns

P =

(
p1 p2 . . . pM

)
. (A.17)

Similar considerations yield

(
XT Σ̃−1

ε y
)
m+M(j−1)

= Ln,jps,m
(
Σ−1
η

)
s,s′

δn,n′Os′,n′ (A.18)

=
(
pTmΣ−1

η OL
)
j

(A.19)

Substituting (A.19) and (A.16) into (A.3) gives the coefficient estimates

ĉm,j =
((

PTΣ−1
η P

)−1
PTΣ−1

η OL
)
m,j

. (A.20)

Let Ĉ denote the Legendre coefficient matrix defined above, and let ĉj denote the M -

dimensional vector of coefficients for the j’th Legendre polynomial, so that

Ĉ =

(
ĉ1 ĉ2 . . . ĉJ

)
. (A.21)
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Then, the covariance matrix of the “stacked” coefficients

vec[Ĉ] =



ĉ1

ĉ2

...

ĉJ


(A.22)

is (A.16). The block diagonal structure of the covariance matrix (A.16) implies that ĉi and

ĉj are independent for i 6= j. Moreover, the block diagonals are equal, so the covariance

matrix of the estimates for the j’th Legendre polynomial are independent of j and given by

cov[ĉj ] =
(
PTΣ−1

η P
)−1

. (A.23)

Thus, a 95% confidence interval for the j’th Legendre polynomial for the m’th forced re-

sponse is

(
ĉm,j − 1.96

√((
PTΣ−1

η P
)−1
)
mm

, ĉm,j + 1.96

√((
PTΣ−1

η P
)−1
)
mm

)
(A.24)

For future reference, we note that if the time series were estimated for each year inde-

pendently, as we do in the case of a single forced response, then the generalized least squares

estimate of the time series is

r̂m,y =
((

pTmΣ−1
η pm

)−1
pTmΣ−1

η O
)
m,y

. (A.25)
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