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There are many organizations where location and time are critical to the success 

of their mission.  These organizations desire to improve the performance of their 

teams with the technology they are using to locate an entity in the minimal 

amount of time as necessary.  The study of this optimization is titled visual 

analytics, which studies the performance of humans and machines on a specific 

task.  For this work, the task is detecting and identifying a specific entity, a team 

task consisting of two analysts, verbally communicating together in order to 

collaborate on completing their task.  With the message quality of this 

communications impacting the outcome of their performance due to its effect on 

their situational awareness of the situation. 

 

 



 

To address this question, a simulated environment was created using the 

program FOCUS.  This simulation replicated two unmanned aerial systems – 

operated by two human analysts (simulated), each carrying a different electro-

optical sensor, over a complex, urban environment.  A yellow taxicab acted as 

the specific entity the two analysts tried to detect and identify by utilizing targeting 

performance measures.  This function was evaluated within the simulation 

against different levels of message qualities (low, medium, and high quality) that 

was incorporated into the same level of situational awareness and based on the 

training level of the team.  These levels were measured 500 times for each level 

to determine the impact on the performance of the tasks.  This was accomplished 

through the utilization of the distributed situational awareness theory. 

 The results showed a significant difference between each level of 

situational awareness, impacted by message quality.  It also supported that each 

level was significantly better than the result of the lower level.  This provides 

additional evidence that training on communications improves the performance of 

the team and creates a baseline of performance based on situational awareness.  

When aided target recognition technology was incorporated into the experiments, 

however, the added technology did not produce significantly different 

performance results compared to the high level of situational awareness and 

training.  

 For those organizations that location and time are important to mission 

accomplishment, these results provide an additional resource on the how 



 

technology and training might be utilized to find the best performance given 

certain situations.  A highly trained team might improve their performance with 

this technology, or a team with low training could perform at a high level given 

the appropriate technology in limited time scenarios.  More importantly, this 

provides an evaluation tool to compare new technologies and their impact on 

teams.  Is an investment in new technology appropriate if investing in additional 

training produces the same performance results?  Future performance can also 

be evaluated based on the team’s level of training and use of technology for 

these specific tasks. 
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1. INTRODUCTION 

 

 

 

1.1. Introduction 

At the cross roads of human cognition and electronic data processing is 

the field and study of visual analytics.  Within this area of study, the overarching 

goal is to develop a greater basis of understanding on the methods, 

technologies, and practices that exploit and combine the strengths of human and 

computer processing (Keim, et al. 2008).  On one side of this combination is the 

human being, equipped with eyes and brain to analyze their surroundings.  

Historically, our ancestors needed to investigate their environment to find food, 

protect themselves from predators, and also maintain a safe area to live.  As we 

progressed over the eons, the advent of computers and an increasingly 

technological society have stressed our capacity to handle all of the visual 

information that assaults our senses.  Research by Misra and Stokols  (2012) 

indicates that we are limited by our biology (the human brain) in how much data 

our human visual system and organic cognition abilities can handle in a specific 

amount of time.  Too much data leads to information overload and after our limit 

is reached, we quickly loose visual images as the brain erases old data in lieu of 

the new.  As described by Kerren et al. (2011) as more unfiltered information is 

collected and stored, a predicament arises which they label the “information 
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overload problem.”  This refers to the vast amounts of information that is of no 

value to the person because it is irrelevant to the task or processed and/or 

presented in an unsuitable way to make it worthless.  Consisting of emails and 

other forms of communication that hinders a person’s ability to make timely and 

informative decisions (Einsfeld et al. 2009).  This problem also increases the 

stress upon a person which ultimately effects their ability to perform and 

complete tasks (Entin and Serfaty 1999). 

For this work and based on this research, the premise is that the human 

brain can only detect a finite number of objects and then even less if it has to 

identify a specific one.  A couple of entities might not be a problem, but an urban 

environment full of different entities and consisting of a complex environment 

would overload the capacity of the human brain – even several people working 

together.  Therefore, the problem isn’t acquiring data but identifying methods and 

models that can turn this information into reliable, provable, and actionable 

knowledge (Kerren et al. 2011, 2013).  Past research conclusions have applied a 

common fallacy to the problem of information overload by indicating that to fix it, 

people only need better technology - more powerful tools to automated data 

analysis and present relevant information (Keim et al. 2008)  Other research 

indicates that this might solve an immediate problem but also creates a placebo 

effect that this new technology is making a difference; however, these devices 

usually don’t help us understand the problem any better and will likely lead to 

more complicated problems in the future.  Visual analytics provides a 
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methodology to assist in understanding the problem of understanding and 

“analyzing our analysis” to determine if low cost processes and procedures can 

be incorporated into complex data analysis instead of costly technological 

solutions (Andrienko et al. 2011a).  To provide a guideline for this process, this 

work will utilize the overarching vision of visual analytics.  This goal is to turn 

information overload into an opportunity with the goal being to make data or 

information processes more transparent to analytic techniques (Thomas and 

Cook 2005).  Visual analytics will be further examined in section 2.1. 

Being highly interdisciplinary, visual analytics combines various related 

research areas such as visualization, data mining, data management, data 

fusion, statistics and human factors science (among others).  As described by 

Thomas and Cook (2005) the goal of merging these disciplines together is the 

creation of tools and techniques to enable people to: 

• Synthesize information and derive insight from massive, dynamic, 

ambiguous, and often conflicting data. 

• Detect the expected information and assist in discovering unexpected 

data. 

• Provide timely, defensible, and understandable assessments. 

• Communicate assessment effectively for action. 

Keim et al. (2008) visualize this merging in Figure 1 by creating a 

subjective division in labor between the machine (electric data processing) and 
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the human being that makes sense of the information they are viewing through 

the human visual system. 

 

 
Figure 1 Visual analytics integrates scientific disciplines to improve the division of 
labor between human and machine.  Source (Keim et al. 2008). 

 

However, visual analytics is more than just visualization.  It is an integral 

approach to decision-making, combining visualization, human factors, and data 

analysis (Keim et al. 2008; Andrienko et al. 2013).  The challenge is to optimize 

the interaction between the two for the task at hand, estimating limits that can’t be 

further automated and then develop a tightly integrated solution that adequately 

integrates the best-automated analysis of the processes with appropriate 

visualization and interaction techniques (Hansen and Johnson 2011)    

For example, and to better describe this work’s problem statement, the 

U.S. military leverages these two strengths, machine and humans, to find and 

then identify an entity for various reasons.  Over a decade of continuous military 

operations within Afghanistan and Iraq (and other countries) have rapidly evolved 
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and enhanced the field of visual analytics due to the nature of these conflicts and 

required changes in technologies and procedures.  Driving this change was the 

Department of Defense’s (DoD) need to find a decentralized enemy that easily 

blends with their native populations; therefore, many different methods, 

technologies, and practices were quickly funded, fielded, and tested to determine 

their ability to correctly identify and track terrorists or enemy participants (Odom 

2008; Frank 2012) 

Machine or technological solutions focused on sensors and platforms that 

rapidly evolved and changed from space bound or high-altitude platforms to ones 

much closer to the ground.  Additionally, electronic hardware and software 

packages were developed to quickly analyze data differences, provide 

correlations, or even automatically track distinct objects in real-time (Moore 2004; 

Odom 2008).  The rationale behind this decision being that high-resolution 

images were required to detect and identify individuals or other entities and 

today’s technology require sensors, and in particular cameras, to reduce the 

distance to these smaller entities (Gettleman and Schmitt 2009).  Coupled with 

the advancing data processing technology, technical solutions became an 

important part of the solution to finding these individual entities.   

Since most images are still viewed by human beings, and it is they who 

apply meaning to these pictures, these people must also be trained in finding 

particular images out of a complex environment.  A chapter in this education for 

those working in the military or government is the “Yellow Taxicab Problem.”  It is 
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one of many lessons that have come to epitomize an increasingly important type 

of object detection problem – finding a specific type of entity to be identified, 

discover some unknown number, if any, of those entities in imagery (static or 

motion), and find a specific one based on prior knowledge.  Describing the 

search for Saddam Hussein in 2003, the “Yellow Taxicab Problem” lays out how 

Saddam Hussein eluded coalition forces in their attempt to capture him within 

Baghdad.  Intelligence reports indicated that he was frequently traveling around 

Baghdad in a yellow taxicab; however, analysts, the humans, were unable to 

regularly and accurately identify such a small entity in satellite imagery (Moore 

2004; Odom 2008).  In training, analysts use this problem to determine other 

methods or processes to find such a small object in a large, complex 

environment.  Some problems are also mitigated with technical solutions 

(Grossman 2014). 

Another lesson example is based in Somalia with the difficulty of trying to 

identify “technicals” – militarized pick-up trucks usually painted white with a large 

weapon in the back – using space-based imagery (Odom 2008; Gettleman and 

Schmitt 2009).  Evidence showed that the analysts could not accomplish their job 

without technical solutions; thus, propelling the development of new sensors, 

platforms, and data processing systems.  Ultimately, high-resolution images were 

required with sufficient clarity to identify these weapon systems. 
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1.2. Understanding the Problem 

For this work, the problem mirrors these examples.  Utilizing visual-based 

or optical sensors attached to aerial platforms, and as shown in Figure 2, a 

human operator wants to find and identify a specific entity in a landscape.  To 

better visualize the problem, this could be an aerial law enforcement platform 

looking for a criminal a park service platform looking for a lost hiker in a dense 

forest, military analysts looking for a yellow taxicab in Baghdad.   

In order to accomplish this task, the operator utilizes machines, in this 

case aerial platforms, that house specific optical sensors to sense the landscape 

through the electromagnetic spectrum (EMS).  Utilizing enhanced data 

processing systems, that raw EMS data is translated into a medium understood 

by the human operator through a computer and displayed on a monitor 

(Vollmerhausen 2004).   

 

 
Figure 2  Diagram describing problem of this work, involving a human operator 

and technology required to find a specific entity.   
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As described in the “Yellow Taxi Problem,” the human operator would fly 

the platform around the landscape looking for a specific entity using optical 

sensors.  Utilizing the visual analytics methodology, this problem would integrate 

human performance, decision-making, and technology limitations to identify the 

best process for finding and identifying a specific entity utilizing different 

visualization and interaction techniques.  To simplify, the problem is to evaluate a 

sensor system (or system of systems) while incorporating the capabilities and 

limitations of the human beings operating these machines. 

Despite merging the strengths of the machine or technical solutions and 

human advancements, research has shown that systems comprised of 

interacting human and machine agents are very complex, poorly understood, and 

difficult to predict (Ahmed et al. 2014).  Some human performance issues have 

been examined such as NextGen future air traffic managements systems (Joint 

Planning and Development Office 2010), network centric military operations 

(Nelson et al. 2004), and emergency response (Manoj and Baker 2007).  

However, research has indicated a need to better understand the complex 

interactions between technological systems and human performance.   

Research in this area falls under the category of “human – computer 

interaction” which involves the design, implementation, and evaluation of 

interactive technological and human systems in the context of a specific task (Dix 

2004; Hernandez and Moreno 2019).  Evidence is drawn from other disciplines 

like computer science, system design, and behavioral science with the goal of 
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improving the interaction between humans and computers and improving the 

performance of completing a task (Sears and Jacko 2009).  Combining and 

integrating the strengths of computers and humans, the focus of visual analytics, 

and specifically this work, is to determine an optimal interactive process designed 

to extract useful knowledge from data.  In this work, this is presenting the data 

from the sensor in a format that a human operator can separate a specific entity 

from background clutter of an image.  In order to layout the tasks for the 

computer and human, and their interactions, it is crucial to understand a human’s 

cognition and how this connects to what they want to accomplish and the 

computer’s understanding of the human’s task (Keim et al. 2008). 

As per the Merriam-Webster dictionary (2018a), “cognitive” is defined as 

involving conscious intellectual activity like thinking, reasoning, etc..  “Cognition” 

is a cognitive mental process; therefore, human cognition is the cognitive mental 

process of a human being.  However, for this study the focus is on human 

performance of a specific task, not on inner, complex actions of the brain.  

Therefore, in this work, cognition is the cognitive mental process of a human 

being required to complete a task.  As noted earlier and further explain in section 

2.1, this work draws upon the research that the human brain can only detect a 

finite number of objects and that human cognition is limited (Misra and Stokols 

2012).  Therefore, in this work, performance is measured as a manifestation of 

the inner cognitive workings of a person.  The better the performance of an 

individual, the better the cognitive ability of said individual. 
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Focusing on the performance of the human operator, there are two areas 

that will be evaluated for this body of work.  First, is how well the human operator 

can detect and identify a specific entity on their computer.  The rationale for this 

is that the EMS data collected from the sensor must be represented in a medium 

understood by a human operator, i.e. the computer screen.  The operator’s 

performance to detect and identify the specific entity will be measured utilizing 

the Targeting Task Performance Metric (TTPM) (see section 2.8) that focuses on 

the human visual system (eyes and brain) (Hixson et al. 2004; Vollmerhausen 

2004, 2009; Preece et al. 2014).  Therefore, the performance of the human 

operator to detect and identify a specific entity on a computer screen (that has 

been transmitted to it from an optical sensor) will be measured by performance of 

the eyes and brain of the operator to detect that object. 

Since this work will incorporate more than one human operator, the 

second assessed task performance will focus on how well the operator can 

communicate the location of a specific entity, that their optical sensor has 

detected, to another human operator that will use another optical sensor to 

identify the entity.  Evaluation of this task will incorporate different cognitive 

mental capacity metrics titled Task Load (TL) and Working Memory (WM).  This 

communication performance will also include the Message Quality (MQ) between 

these operators.  Combined, these metrics provide a predictable estimate on the 

performance of communicating a geographic location to another human (de 
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Visser et al. 2010; de Visser and Parasuraman 2011; Ahmed et al. 2014).  This 

will be further examined in sections 2.5 and 2.7) 

Added to complexity of communicating cognitive ideas are the errors or 

differences between where the entity actually exists, at a specific point in time, 

and what the machines and humans estimate that entity to be located.  These 

errors need to be incorporated into this whole process of detecting, 

communicating, and identifying this specific entity (Shi 2010; Caers 2012).  

These errors, or “uncertainty in a geographical location,” are inherent in the 

technology and estimations that result from the reductionism of taking the 

infinitely complex geographical world and creating an abstraction of the real 

world through digital or data modeling methodologies (Zhang 2002; Hüllermeier 

et al. 2010).  It is an additive effect resulting from technology (e.g. calibration of 

optical sensors) to the error in the human operator’s estimation that increases 

depending on the complexity of the system (Heuvelink 1998; Karssenberg and 

De Jong 2005).  For the purposes of this research, this Geographical Location 

Uncertainty (GLU) will propagate throughout the whole system, with each error 

being an additive addition to the overall uncertainty that will degrade the 

performance of finding and identifying a specific entity.  GLU will be further 

discussed in section 2.9. 

Figure 3 visualizes the different aspects of the problem for this research.  

Compared to Figure 2, an additional platform equipped with a different optical 

sensor, with corresponding human operator, are added to the overall system.  
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GLU is inherent within all aspects of the system, from the technological sensors 

to the human operators.  As laid out in this figure, error is also inherent in how 

people communicate locations and directions to one another and this is 

evaluated between the two operators (Heuvelink 1998; Bergstrand et al. 2016).  

Within the operator, they visualize the entity through the technical system and 

this performance is measured by TTPM.  TL and WM are ingrained within each 

operator that will impact their performance in communicating the GLU laden 

entity location.  Between the two operators, MQ and GLU are communicated, 

impacting overall performance of the system; therefore, and to simplify, this work 

provides a unique way to evaluate the performance of a system (and thus 

incorporate it into a system of systems) by not only testing the technical parts of 

the systems but also incorporating the capabilities and limitations of the human 

part of the systems that not only operate but draw understanding from the 

information or data of the system. 

 

 
Figure 3  Graphical representation of the Problem for this Research 
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1.3. Connecting the Problem through Situational Awareness 

A basic problem being evaluated in this research is determining how much 

the operator knows what is going on through the sensor.  “Knowing what is going 

on around you” or ‘having the big picture” is defined as Situational Awareness 

(SA) (Jones 2015).  Current research has moved past studying the individual and 

into more complex systems of interacting humans and technical agents.  In 

Stanton et al.’s (2006) research, SA is defined as:  

activated knowledge for a specific task within a system…. [and] the use of 

appropriate knowledge (held by individuals, captured by devices, etc.) 

which relates to the state of the environment and the changes as the 

situation develops. (Stanton et al. 2006) 

This change is correlates to the ever-increasing incorporation of 

technology into a person’s life.  SA research’s focus has evolved from basic 

human factors that emphasized individuals to incorporating whole systems of 

actors (human and non-human) (Hutchins 1995; Button 1997; Rasmussen 1997; 

Leveson 2004; Walker 2009; Wilson 2012).  As an academic concept, SA 

research contains the various models and methods that assist researchers and 

practitioners with describing how individuals, teams or systems develop SA.  

Additionally, it provides a methods and measurements of assessing the quality of 

SA during task performance (Salmon et al. 2013).   

Since the premise of this research is the awareness and understanding of 

what is going on around an agent, team or system, referenced research focuses 
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on the concept of ‘situation focus’ and measuring the objective ground-truth 

verse an adjudicated ‘awareness.’  As a methodology, this is an appealing cause 

(situation) and effect (awareness) way of evaluating this ‘ground truth’ principle 

(Stanton et al. 2017).  Correlating ground-truth and the level of awareness within 

a given situation tends to presume a ‘mapping of the relevant information in the 

situation onto a mental representation of that information within the 

[individual]’(Rousseau et al. 2004).  This body of work is an examination into 

narrowing the gap between ground truth and the mental representation of an 

entity’s location.  Looking at this problem through a SA methodology helps 

extract and explain all relevant factors that narrow this gap, including 

Geographical Location Uncertainty (GLU).   

Current research into SA examines how the whole system operates and 

that all parts of the system hold their own form of SA – both human and 

technological agent.  Each part presents and communicates a replication of the 

ground truth.  This theory was expanded over the last decade and refined into 

the Distributed SA (DSA) model by Stanton et al. (Salmon et al. 2008, 2009, 

2016; Neville and Salmon 2015; Stanton et al. 2015; Stanton 2016).  This is 

further examined in section 2.4.3.  In context to this body of work, this is the basis 

of propagating geographical location uncertainty throughout the system but also 

the difficulties of communicating SA.  Within DSA, the overall system’s situational 

awareness is dependent upon the network and the communication of the 

information upon it.  Additionally, each node of this system (or network) have 
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distinct views and relationships (Stanton et al., 2006; Stewart et al., 2008; 

Salmon et al., 2009; Walker et al., 2010).  Human operators have their own view 

of ground truth and so does the platforms and their sensors.  Combined, there 

exists a formal or informal process to negotiate a collective notion of ground truth 

that evaluates all views of the system. 

An example of DSA occurs within the cockpit of a fighter jet (or 

commercial aircraft).  A pilot, controlling the aircraft, understands the situation 

from their viewpoint, while the co-pilot has a slightly different view of the same 

situation.  This is mainly based on the different tasks that each agent is 

executing.  Additionally, and incorporating the technical part of this SA, the 

aircraft’s systems have yet another view and of the situation based on what each 

sensor is designed to monitor.  Taken as a system, each part (sensor or pilot) 

contributes to the overall situational awareness of the system as a whole.  The 

pilot communicates their plan of action.  To assist in this endeavor, the co-pilot 

updates or reads the outputs from the systems of the aircraft such as the 

airspeed and altitude.  The sensors themselves function within the parameters of 

their design and measure certain phenomena around the aircraft.  The overall 

key to DSA is the interconnectivity of these various views in providing the 

appropriate information to the right agents at the right time (Stanton et al. 2017). 

1.4. Significance of this Research 

 Arnheim (1997) stated in this book “Visual Thinking,” a precursor to the 

field of visual analytics, that research in this area searches for a way to augment 
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the strengths of human visualization and cognition with the power of computer 

technologies.  Additionally, Johnson and Hanson (2011) stress that the goal is to 

identify the best automated processes for the task at hand, estimating limits that 

can’t be further automated, and then develop a tightly integrated solution that 

adequately integrates the top automated processes and human performance 

methods into a cohesive methodology.  Within this work, the application of 

converging the best automated technological processes (computers) and human 

performance outcomes, within an interconnected system of system, is tied to the 

task of finding and identifying a specific entity.  This converges with a segment of 

visual analytics that researches how augmenting human beings with computers 

improves their ability to use visual-based sensors to find something or someone 

(Keim et al. 2008).   

 Research on DSA models or team functionality has been conducted on 

different configurations of people and technology in many fields.  Several studies 

cover military and commercial aircraft and their crew.  They have focuses on how 

the pilot, co-pilot and the aircraft’s sensors have differing views of the same 

situation and how this effect’s the overall performance of the entire system 

(Stanton et al. 2017).  Other research, emphasizing performance and how 

corresponding facts impact it, focused on many contexts, including military 

settings (Endsley, 1993, 2015; Stanton et al., 2006; Salmon, 2009; Salmon et al., 

2009; Stanton, 2014) transportation (Ma and Kaber 2007; Salmon et al. 2008b, 

2014; Stanton and Salmon 2009; Golightly et al. 2010, 2013; Walker et al. 2013), 
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process control (Salmon et al. 2008b; Stanton et al. 2009; Sneddon et al. 2013), 

and emergency services (Blandford and William Wong 2004; Seppänen et al. 

2013).  Other studies have evaluated other domains that contain high levels of 

technology and safety requirements (i.e. aviation, aerospace, chemical and 

petroleum process industries, healthcare, defense and nuclear power).  

Incidentally, it was the research conducted in these fields on improving 

conditions and performance that lead to the impetus of SA not only for human 

teams but also non-human agents (Stanton et al. 2010; Hollnagel 2014).    

The significance of this research is the creation of a DSA model for a 

specific task, under the aspects of visual analytics, that combines the 

measurements of technological performance and human performance in a 

distributed system that is degraded by geographical location uncertainty.  The 

task of this system is to find and identify a specific entity in a complex, urban 

landscape with optical sensors.  The DSA model fits the problem set in this body 

of work because of the research conducted determining if a relationship existed 

between DSA and task performance.  These experiments examined the 

conversations teams exchange when performing tasks and calculated a positive 

relationship between DSA and the teams’ performance (Sorensen and Stanton 

2013).  This same positive relationship was also found in other high-fidelity, 

training environments for search and rescue crews and also within other military 

units (Rafferty et al. 2013).  Ultimately, this presents evidence that SA is useful in 

predicting performance (Patrick and Morgan 2010; Bleakley et al. 2013; Golightly 
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et al. 2013).  The scientific contribution of this work is a DSA model incorporating 

research from the social sciences into a more exact science of technological 

detection of an object.  It is unique due to the inclusion of many facets 

(geographical location uncertainty, human communication performance, human 

visual system, and mental constraints) to create a tool to predict performance for 

the specific task of detecting and identifying a specific entity in a complex 

environment. 

1.5. Motivation 

As indicated previously, the focus on this research is on creating a novel 

DSA model that maximizes processes through the combination of people and 

technology. The work in this paper also evaluates a sensor system consisting of 

platforms equipped with optical sensors to human operators that are making 

decisions based off of the data collected by these sensors.  Evaluated research 

on sensor systems in this work replicated the human part of the system as a 

“black box” in order to minimize the complexity and variability of that part of the 

overall system (Vollmerhausen 2009).  However, a vast majority of tasks are 

conducted in teams or with individuals that have to constantly coordinate with 

another individual which leaves an important aspect of task performance 

unaccounted for in these simulations or evaluations (Ahmed et al. 2014).  

Additionally, emergency response teams, law enforcement, and search and 

rescue squads are dependent upon good communications to accurately and 

quickly find a person in a complicated and dynamic environment (Bergstrand et 



19 
 

al. 2016).  What current research indicates is a need for reliable modeling that 

incorporates different capabilities to teams might be able to predict future 

performance (Blasch et al. 2015).  These models will then provide more 

information for decision makers when purchasing advanced communication 

systems, training for their teams, or push for changes in organization structure, 

procedures, and processes. 

This leads to the motivation for this work.  Keim et al. (2008) describes a 

segment of visual analytics that researches how augmenting human beings with 

computers improves their ability to use optical sensors to find a specific entity.  

Opening the “black box” of the human operator incorporates complexity into this 

research but provides a critical addition to this segment’s body of research on 

team task performance within a DSA model.  It will provide examples of human 

operator models incorporating differing aspects of cognition into their 

measurements of task performance. 

1.6. Contribution 

 This work provides a DSA model that can be used in the fields of remote 

sensing, system and team performance analysis, and also in the acquisition of 

new technologies.  It distinctively combines exact technological models of 

specific aerial vehicles and optical sensors with human performance models.  

These human performance models incorporate mental capacity metrics such as 

Task Load (TL) and Working Memory (WM) to measure the cognitive ability of a 

human operator on a particular task.  Then, it incorporates these metrics into a 
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human communication model that utilizes a Message Quality (MQ) metric to 

determine task performance.  Research from this work will support a DSA model 

that predicts the task performance of detecting and identifying a specific entity 

with two different sensors.  It is based not only on sensor parameters but on the 

cognitive capabilities of human operators and how well they communicate 

between one another for a particular task.  Conclusions from this work will 

provide further research on situational awareness and provide an example of 

how geographical location uncertainty impacts a DSA system’s ability to locate 

an entity – especially if location is critical to task performance.  As stated by 

Ahmed et al. (2014), tasks are completed by teams and more research on 

evaluating a team’s performance on a job is builds upon the related bodies of 

science.  Therefore, this work provides an assessment tool for any organization 

in which teams, communication, and time are important to the competition of their 

task.   

Since aspects of situational awareness focus on ground truth (the exact 

location in an environment) and how close an entity is to that ground truth with 

their own estimation, GLU provides a level of measurement between an exact 

measurement (ground truth) and an estimate.  Combined together, these factors 

provide the scientific community a unique model that can be used to predict task 

performances, on a narrow set of tasks, providing information on the interaction 

between technological systems and team performance.   
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1.7. Intended Audience 

 This work is intended for four primary audiences: operators, the forensic, 

acquisition, and GeoInformation Science communities.  This new task 

performance model will enable these communities to incorporate SA and team 

performance into their events.  Additionally, this incorporation allows them to 

replicate tasks and gain results that are more comparable to real-world 

assessments.  This research contributes the most to those operators and 

organizations where location and time are utmost important to their primary 

tasks.  For these organizations, this work provides research on the effect that 

communications (message quality) and situational awareness has on their 

primary task.  Additionally, it presents potential technological framework that 

automates this process as much as possible (in an aided manner – not 

automatic).  Especially when teams don’t have time to train on communication 

skills.  The forensic community can utilize this model in accident investigations to 

provide better insight into how poor communication between human operators 

and the technological agents created the situations that led to an accident where 

a specific location is in question.  This could be anything from the aviation 

community to nuclear reactor operation centers.  If specific problems are 

determined, these can be better defined and changes can be implemented to 

improve the safety in many different industries.  For the acquisition community, 

the results of this work provide new evaluation parameters to quantify the 

effectiveness of new technologies if using an existing team performance for a 
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specific task.  GeoInformation science researchers and other data scientists will 

find interest in the results due to another method of incorporating two scientific 

fields and providing another aspect of remote science and human performance. 

1.8. Chapter Roadmap 

 
Figure 4  Roadmap for this work 
DSA = Distributed Situational Awareness (Section 2.4) 
GLU = Geographical Location Uncertainty (Section 2.9) 
TL = Task Load (Section 2.5) 
WM = Working Memory (Section 2.5) 
MQ = Message Quality (Section 2.5) 
TTPM = Targeting Task Performance Metrics (Section 2.8) 

 

In chapter one, the problem for this work is defined and lays out its 

contribution and potential impact to the larger science community.  Chapter two 

provides a summary of visual analytics, its sub-scientific fields and explains the 

methodologies of finding and identifying an unknown entity in a complex 
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environment.  The core scientific theory of this work, Situational Awareness, will 

then be explained, moving into the final theory of Distributed Situational 

Awareness and how it impacts this work.  The sub-components of this work will 

then be discussed in greater detail.  Human cognition through team performance 

assessments, and its relationship to training, will be explained along with the 

central theory to this work – targeting task performance metrics.  Geographical 

location uncertainty will be explained and further discussed as to its relevance to 

this work.  Additionally, relevant electronic optics utilized in this experiment will 

be defined, explained, and discussed in its importance to this work.  Finally, the 

Aided Target Recognition theory, with technological examples will be defined and 

discussed.   

Based on the literature review, the research question is further defined in 

chapter three with the main hypotheses for this work.  Chapter four explains in 

detail how the experiments will be performed.  The role of modeling and 

simulation in the experiment will be defined, and how it will create the data 

required for further analysis.  The simulation engine, FOCUS (Fusion Oriented 

Command, Control, Communications, Computers, Intelligence, Surveillance, and 

Reconnaissance (C4ISR) Utility Simulation will be explained, along with its 

current validation as an assessment and analysis tool for this experiment.  The 

overall experiment will then be described in greater detail.  How the entities in the 

simulation are replicated, to the terrain utilized will be explained.  The next step 
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then explains how the components of the experiment will be replicated and 

analyzed within FOCUS.   

Chapter five will provide analysis of the results from the experiment and 

the data pulled from FOCUS.  This includes determining significant differences 

and correlations of the data outcomes.  Chapter six will discuss these results in 

more details to include issues to address concerning the processes chosen for 

this work and also the impacts of what the results indicate.  Finally, the last 

chapter will provide a summary of this work and conclusion, with last comments 

on potential future work that can be conducted based on the results of these 

experiments.  
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2. LITERATURE REVIEW 
 
 
 

This chapter will define and present the research on the main topics for 

this work.  It will begin on the defining the interaction between human 

visualization and computing power foundational to this work.  Research will then 

be presented that ties together the aspects of detecting and identifying a target, 

not only individually, but through team performance.  Different aspects of this 

task will be broken down and defined to provide context and parameters 

paramount in this work.  It will end in describing the optical sensors that provide 

the data needed for the experiments and overall assumptions foundational to this 

paper. 

2.1. An Overview of Visual Analytics 

Visual analytics is a relatively new term and was first used when the book 

“Illuminating the Path” was published by Thomas and Cook (2005).  However, 

the idea, research, and approaches that fall into this research area emerged 

much earlier.  It is defined as the study of human cognition and electronic data 

processing, and its overarching goal is to develop a better basis of understanding 

on the methods, technologies and practices that exploit and combine the 

strengths of human and computer processing (Keim et al. 2008).  Visualization is 

“the means through which humans and computers cooperate using their distinct 
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capabilities for the most effective results”(Andrienko et al. 2010).  Many research 

areas utilized this methodology in information visualization, GIScience, 

geovisualization and data mining long before 2005 through the use of novel 

maps and functionality (Slocum et al. 2001; MacEachren et al. 2005; Andrienko 

et al. 2011b).  Since 2005, research has attempted to establish visual analytics 

as a specific scientific discipline “to consolidate the relevant research that has 

been conducted within different disciplines” (Andrienko et al. 2010).  GIScience 

and geovisualization can assist in this process(Slocum et al. 2001; Crooks et al. 

2013; Croitoru et al. 2015).  

For this research, the focus is on the combining the visual components of 

the human being and computers.  Humans utilize their biological sensors (eyes) 

to send data to the processing center (the brain) which then uses it to analyze 

the data and replicates a visual or understanding of its surroundings based on 

the data and processing capabilities.  As we progressed over the eons, the 

advent of computers and an increasingly technological society have stressed our 

capacity to handle all of the visual information that assaults our senses.  

Research by Misra and Stokols (2012) indicates that we are limited by our 

biology (the human brain) in how much data our human visual system and 

organic cognition abilities can handle in a specific amount of time.  Research has 

termed this experience, when a person cannot process the information received 

due to the large amount of incoming data, as “information overload” (Lipowski 

1975; Sweller 1988; Van Zandt 2004; Misra and Stokols 2012).  When an 
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individual perceives they are suffering from an information overload problem, a 

form of psychological stress occurs which effects their ability to conduct work 

(Entin and Serfaty 1999; Misra and Stokols 2012).  Resulting in this stress is a 

reduction in working memory or ability to balance actionable items within a 

person’s mind.  This ultimately leads to a decrease in performance (Engle 2002; 

Huang et al. 2009).  

For this work, the premise is that the human brain can only detect a finite 

number of entities and then even less if it has to identify a specific one.  This 

extra step in identification requires additional cognitive resources; thus, reducing 

the finite capability to detect additional entities.  Variables like terrain complexity 

and other outside stimuli will affect this finite number.  A couple of entities might 

not be a problem, but an urban environment full of different entities would 

overload the capacity of the human brain – even several people working 

together.  Answering the question of “how many is too much” will depend on the 

complexity of the environment and the difficulty of the task.   

Therefore, the problem isn’t only acquiring data but also identifying 

methods and models that can turn this information into reliable, provable, and 

actionable knowledge (Kerren et al. 2011).  However, past research provides 

evidence that technology can’t fix this problem alone.  The system must be 

measured holistically, taking into account the human and non-human entities that 

create it (Keim et al. 2008; Stanton et al. 2017).  Proper analysis provides a 

framework to compartmentalize the complex problems and lets us face the 
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problem of understanding and “analyzing our analysis” to determine if low cost 

processes and procedures can be incorporated into complex data analysis 

instead of costly technological solutions (Andrienko et al. 2011a).  The 

overarching vision of visual analytics is to turn information overload into an 

opportunity with the goal being to make data or information process more 

transparent to analytic techniques  (Thomas and Cook 2005).  For this work, the 

technical aspects will be examined in section 2.12 and also within the the second 

hypothesis in section 3.3. 

Visualizing these procedures and processes is key to this analysis – 

regardless of the medium in which a human being receives the information.  

Visualization becomes the instrument of a semi-automated analytical process, 

where humans and machines complement their respective distinct capabilities 

and limitations for the most effective results (van Wijk 2005).  Being highly 

interdisciplinary, visual analytics combines various related research areas such 

as visualization, data mining, data management, data fusion, statistics and 

human factors science (among others).  Overall, the goal of this merging of other 

disciplines is the creation of tools and techniques to enable people to better 

synthesize information in order to derive increased insight into the complexity of 

data (Thomas and Cook 2005).  However, visual analytics is more than just 

visualization.  It is an integral approach to decision-making, combining 

visualization, human factors, and data analysis (Keim et al. 2008; Liu and 
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Fuhrmann 2018).  The challenge is to identify the best automated processes for 

the analysis task at hand. 

2.2.  Visual to Video Analytics 

With the proliferation of cameras, from individual ones that people wear 

like helmet cameras (https://youtu.be/fXfBqxlp0mw) or police body video 

cameras (Headley et al. 2017) that provides endless hours of video.  To those 

working to support a larger system for security or surveillance reasons (Chen et 

al. 2016), also  continuously adding to the vast ocean of video data that is 

unstructured or difficult to analyze.  Some of the video is downloaded at a later 

time or continuously uploaded into social media sites for the user and their 

friends to view in either near real-time or at a later date.  This creates a 

requirement to determine processes or procedures to better analyze these large 

volumes of video data (Choudhary and Chaudhury 2016). 

Video analytics is an industry term for the automated extraction of 

information from video for a variety of purposes.  It is a sub-set of the larger field 

of visual analytics and just like its parent field, it focuses on applying a 

combination of imaging, computer vision, pattern analysis, and machine learning 

to apply upon real-world problems.  These problems can be determining traffic 

congestion based on tracking vehicles (Coifman et al. 1998) to analyzing how 

people transverse different obstacles in an urban setting (Favorskaya 2016).  

Applications also include detection of suspicious objects and also improvement 

of security operations (Hu et al. 2004; Choudhary and Chaudhury 2016).  For law 
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enforcement, several applications are license plate recognition and traffic 

analysis for intelligent transportation systems (Gagvani 2009).  Video analytics is 

important to this work since the sensors utilized for its experiments are optical 

sensors that are continually capturing optical images that are in size from several 

megabytes to gigabytes – depending on the size of the image.  This creates a 

problem of transmitting and analyzing a large volume of video data. 

The main difference between visual analytics and video analytics is with 

the requirement for sequence of pictures in temporal order to provide context and 

better understanding of visual scenes.  Again, this is why this subset of visual 

analytics is relevant to this work due to the full motion video and wide area 

motion imagery optical sensors used in this work.  Similar to web analytics, which 

is the study of deriving intelligence from web logs, video is treated as a data 

source and through different processes under video analytics attempts to extract 

meaningful information from it.  As with most analytical processes, most of the 

output is generally quantitative and structured information that summarizes some 

feature related to the content of video.  Therefore, it is also called video content 

analysis (VCA) or video intelligence (Gagvani 2009). 

2.3. Methodologies in Finding and Identifying an Entity 

Referring back to the “Yellow Taxicab” problem (see section 1), and for 

this work the entity that the analysts and sensors are searching for in an urban 

environment is a specific, yellow taxicab.  Taken as a distinct and unique entity, 

this vehicle stands out from the background due to many distinct characteristics, 
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all with physical properties that can be measured by sensors.  In this section, a 

simple methodology developed by the U.S. military (United States Joint Forces 

Command 2007) to differentiate between entities and the background will be 

described.  It provides a process that military analysts utilize to detect and 

identify entities through the remote sensing of optical sensors and can be 

explained in three steps: 

• Find – actually finding and identifying the entity with remote sensing 

assets (e.g. yellow taxicab or finding lost hikers on a mountain). 

• Fix – this is the location (current or future) of the desired entity (e.g. 

where in the city is the taxicab at a specifc time or a location of lost hikers is 

determined through remote sensing). 

• Track – entity is under constant observation or surveillance (e.g. 

following the yellow taxicab throughout the city to determine where it goes, stops, 

picks up or drops off – providing continuous updates). 

These steps are important in this work because it describes an official 

methodology to evaluate accuracy, required time to detect and identify, and 

incorporates skills levels of the human operators into these three steps.  It also 

provides the framework for the experiments utilized in this work. 

2.3.1. Characteristics Impacting Entity Detection 

Every entity (and every yellow taxicab) has unique characteristics which 

effect how different sensors can detect it.  These characteristics form the basis 

for the step of “find.”  The U.S. military (United States Joint Forces Command 
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2007) provides a concise explanation and description for the three categories of 

characteristics by which entities are detected: 

1.  Physical Characteristics.  The physical features that describe and 

physically define an entity.  Examples include location, shape, size, number, 

dispersion, reflexivity, electromagnetic signatures, and mobility characteristics 

(moving, stationary, or fixed). 

2. Environmental Factors.  These factors describe how the environment 

affects the entity.  Effect of weather, terrain, proximity to items that effect the 

sensor’s ability to properly collect data from the environment all impact how it will 

be acquired and detected. 

3. Time-Sensitivity.  Prior decisions might make the entity a priority or it 

commits an action that requires immediate action.  An example is if a hiker gets 

hurt and needs immediate medical attention.  This puts the entity at a higher 

priority and might require addition assets to find and fix and/or track the entity.  

From these characteristics, analysts and the sensors they utilize are able to 

acquire an entity and then, technically, be able to properly detect and identify a 

particular entity. 

For this work, categories 1 (physical characteristics) and 3 (time-

sensitivity) are of importance.  Category 2 (environmental factors) can be of 

importance but in order to simplify the experiment, all environmental factors will 

be removed.  This will allow results to focus on the methodology and not 

environmental factors that might be circumstantial.  Sensors utilized in this work 
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will be optical and will evaluate entities by their physical characteristics, or those 

characteristics that reflect aspects of the electromagnetic spectrum.  Additional 

information on these sensors is provided in section 2.10.  Additionally, detecting 

and identifying the entity is time sensitive since the targeted entity will be moving 

from a starting point to a destination and it is only during this movement that the 

entity can be detected by the sensors.  Also, the time of how long an entity is 

tracked will be used to evaluate the differences between the dependent variables 

in the experiment. 

2.3.2. Considerations for Entity Tracking 

In general, tracking of a moving entity (like a yellow taxicab) requires 

recognizing and then locating the entity in a scene, determining its motion and 

projected pathway, and then following that entity as it moves through the 

sequence of image frames (Hwang et al. 1992; Nakano et al. 2016).  Tracking of 

this entity is defined in the science of video analytics since the sensors utilized in 

this work are continuously capturing optical images over a specific time period.  

The detection and tracking of desired entities in images corrupted by noise, 

clutter, illumination and other three-dimensional artifacts, poses a very complex 

problem and demands sophisticated solutions using pattern recognition and 

motion estimation methods (Pantrigo et al. 2010; Cao et al. 2012; Chen et al. 

2016; Lipton et al. 1998).  The challenges become even more complicated if 

there is more than one entity in the scene and simultaneous multiple entity 

tracking is required.   
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For this work, a team will be measured on how well they track a specific 

entity (yellow taxicab) within the complex urban environment.  Detection and 

identification of this independent moving objects through the images produced by 

optical sensors is independent variable within the experiments comprising this 

work.  Therefore, the sensor properties have to be incorporated into the 

experiments along with the challenges resulting from tracking many different 

images and covering a larger field of view.  This creates additional challenges in 

detection and tracking (Bal and Alam 2005; Dawoud et al. 2006). Of the various 

approaches in detection, recognition, classification and position estimation of 

targets from images, researchers have investigated several methods including 

both Matched Spatial Filter (MSF), base correlators, and joint transform 

correlators (Mahalanobis 1997; Mahalanobis and Muise 2001; Alam and Bal 

2004; Bal and Alam 2005; Dawoud 2005; Alam et al. 2003).  However, the 

application of MSFs or their variants for imagery is very limited; although those 

have been used for the simulated and real synthetic aperture radar (SAR) and 

light detection and ranging (LiDAR) imagery. 

In order for a target to be tracked, it needs to be continuously detected by 

a sensor and then followed through subsequent images by a human analyst or 

other technological means.  This continuous detection creates a “track” or path 

that is created as the location of the target is geo-located over a set iteration of 

time (e.g. 2 seconds).  Researchers in the past would look at individual images 

and manually mark and track an object on a map; however, today’s technology, 
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within constrained parameters, enables computers to find and track these objects 

(and multiple objects) much faster than a human in certain conditions (Alam 

2007).  For humans, most of these steps are done internally to the human visual 

system (HVS), but the process has been examined and documented and 

simplified to a two-step process.  Alam (2006) developed this process and have 

conducted several research studies on its validity.  The first of two steps of this 

process (which can occur in real-time) is detection, which involves correlating the 

input scene with all detection filters (one for each desired or expected target 

class) and combining the correlation outputs.  In the second step, a predefined 

number of areas of interests (AOIs) having the expected size of target images 

are selected based on the areas having higher correlation peak values in the 

combined correlation output.  To ensure that all desired or expected targets are 

included in the AOIs, their number should be at least three times higher than the 

number of expected targets (Bhuiyan et al. 2014).  Within the final part of step 

two, classification filters are then applied to these AOIs and target types along 

with clutters are identified based on a distance measure and a threshold.  Moving 

target detection and tracking are accomplished by following this technique for all 

incoming image frames by applying the same filters (Alam 2006, 2007; Islam and 

Alam 2006; Alam and Bhuiyan 2014). Due to today’s computing power, this 

processing can occur at near real-time.  However, the success of the method 

depends on how fast the transmission of an image is to the processor and then 

to a human analyst. 
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2.4. Situational Awareness (SA) 

At the most basic level, SA could be described simply as ‘knowing what is 

going on around you’ or ‘having the big picture’ (Jones 2015).  Others have 

described it as the capability of actors (mostly people, but not limited to only 

them) to interact and connect with their surrounding dynamic environment 

(Dogan et al. 2011; Yu et al. 2016).  Initial research on SA focused on the 

individual and used the term ‘situational awareness’ as defined by Endsley 

(2015). 

Situational awareness is the perception of the elements in the 

environment within a volume of time and space, the comprehension of 

their meaning and a projection of their status in the near future (Endsley 

2015).  

Research over the decades has led to the evolution of the definition into 

teams with current research focusing on more complex systems of interacting 

humans and technical agents.  Within this body of evidence, Stanton et al. (2006) 

defines SA as: 

activated knowledge for a specific task within a system…. [and] the use of 

appropriate knowledge (held by individuals, captured by devices, etc.) 

which relates to the state of the environment and the changes as the 

situation develops (Stanton et al. 2006).  

This new perspective of a systems of systems moves from the older view 

of the cause and effect logic of individual models that has been rooted in 
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cognitive psychology.  Incorporating non-human agents (technical agents) has 

radically increased the controversy of SA definitions within this academic 

community (Endsley 2015).  However, as technology becomes more ingrained in 

everyday life and how it effects people’s interactions with their environment, its 

ever important and relevant to infuse current and future research concepts with 

these systems of systems perspectives, especially with growth of advanced 

automations and the emerging field of artificial intelligence (Hancock 2014, 

2017).   

Due to the rapid growth in definition and utilization of SA, some 

professions and academic disciplines refer to SA as the process of interchanging 

information between people of what resides in their heads (Fracker and Logue 

(Goerge E) Inc.  Montoursville, PA 1991; Sarter and Woods 1991; Endsley 1995) 

or specifically their brains (Endsley 2015).  Research in this area is increasingly 

incorporating entire socio-technical systems and how they interact with an 

operational or more realistic environment.  As noted before, its focus has evolved 

from basic human factors that emphasized individuals to incorporating whole 

systems of actors (human and non-human) (Hutchins 1995; Button 1997; 

Rasmussen 1997; Leveson 2004; Walker 2009; Wilson 2012).  As a theoretical 

concept, SA research contains the various models and methods that assist 

researchers and practitioners with describing how individuals, teams or systems 

develop SA.  Additionally, it provides a methods and measurements of assessing 

the quality of SA during task performance (Salmon et al. 2013).   
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2.4.1. The Role of Ground Truth 

At a higher level, SA is perceived as the awareness and understanding of 

what is going on around an agent, team or system (Jones 2015).  A perceived 

and viewed environment is not static and is continually changing, demanding the 

attention the agent.  Within research on this topic, effort is devoted to the concept 

of ‘situation focus’ and measuring the objective ground-truth verse an adjudicated 

‘awareness.’  As a methodology, this is an appealing cause (situation) and effect 

(awareness) way of evaluating this ‘ground truth’ principle.  However, upon closer 

evaluation, there are several important subtleties that need to be addressed 

(Stanton et al. 2017).  Correlating ground-truth and the level of awareness within 

a given situation tends to presume a ‘mapping of the relevant information in the 

situation onto a mental representation of that information within the [individual]’ 

(Rousseau et al. 2004).  This mapping of a ‘mental representation’ can be split 

into two aspects of ‘awareness’.   First, the ‘mental representation’ consists of 

structured ‘relevant information’ and that SA depends on the contextual 

interconnections between discrete elements.  Second, as described by Endsley 

and Garland (2000), it is also an ‘abstraction within our minds’ which reflects 

another or the second aspect of awareness - its hypothetical nature depending 

upon the circumstances (Bryant et al. 2004).   

In order for agents to make better decisions and improve their 

performance, SA needs to provide them with ‘explanations for all attendant facts’ 

(Reber 2009) and how these facts or attributes are affecting the performance of 
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the agent.  Several studies have focused on capturing these performance and 

corresponding facts.  This research includes military settings (Endsley, 1993; 

Stanton et al., 2006; Stewart et al., 2008; Salmon, 2009; Salmon et al., 2009; 

Stanton, 2014) transportation (Ma and Kaber 2007; Stanton and Salmon 2009; 

Golightly et al. 2010, 2013; Walker et al. 2013; Salmon et al. 2014; Fuhrmann et 

al. 2015), process control (Salmon et al. 2008b; Stanton et al. 2009; Sneddon et 

al. 2013), emergency services (Blandford and William Wong 2004; Seppänen et 

al. 2013), and location-based social networks (Crooks et al. 2013; Liu and 

Fuhrmann 2018).  Additionally, these provide explanations on the outcomes of 

‘lost’ SA and the impact this has upon performance, especially when it is first 

gained or later regained (Stanton et al. 2015).   

2.4.2. Sociotechnical Systems (STS) 

Basically, deconstructing the word “sociotechnical” defines it as a 

combination of people (‘socio’) with technical elements.  These two elements 

then interact in an activity that supports a larger system or organization.  “Socio” 

also indicates that teams and teamwork is one core of the STS concept with 

technology comprising the other core.  However, STS is more than merely 

teams, it involves multiple stakeholders that govern distinct policies, rules, and 

culture and the systems that they utilize.  A foundation of the STS concept is that 

people and systems cooperate in multifaceted, non-deterministic and often in 

non-linear and non-additive ways.  This complexity then requires a high level of 

‘joint optimization’ in order to be successful (Walker 2009).  As shown in other 
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research, this complexity is indicated in other domains that contain high levels of 

technology and safety requirements (i.e. aviation, aerospace, chemical and 

petroleum process industries, healthcare, defense and nuclear power).  

Incidentally, it was the research conducted in these fields on improving 

conditions and performance that lead to the impetus of STS (Hollnagel 2014).   

As products and services become more complex and networked, the STS 

concept increases in relevance for a greater audience (Walker et al. 2008).  In 

research conducted to date, studies upon closely connected, interactive 

complexities (especially in accidents) has led to unexpected results and 

outcomes of how the systems succeeded or failed (Perrow 1999; Stanton and 

Walker 2011; Salmon et al. 2013; Croitoru et al. 2015).  An impactful outcome of 

this research indicates that even though these systems are complex, they are 

non-reductive.  Due to their interconnectivity, they cannot be simply 

disaggregated into smaller, more manageable elements as research has shown 

with simpler linear systems (Liang et al. 2005; Walker et al. 2010).  This has 

shown that traditional reductionist approaches based in experimental cognitive 

psychology cannot be easily utilized to explaining SA.  STS’ more systematic 

way of explaining SA is more appropriate for the complex, technological 

environment of today (van Winsen and Dekker 2015). 

2.4.3. Distributed Situational Awareness (DSA)  

Evolving SA from teams into systems began with the work of Artman and 

Garbis (1998).  Their research moved from focus on individuals to how the whole 
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system operates and argued that not only people hold SA but all the parts of the 

systems hold their own form of SA.  Each part presents and communicates a 

replication of the ground truth.  This was a change to current research because 

their model focused on the interactions between people (and artifacts or 

machines) instead of a person’s individual cognition.  This theory was expanded 

by Stanton et al. (2006; 2009; 2010; 2014; 2015; 2016; 2017) and associates 

over the last decade and refined into the Distributed SA (DSA) model.  Within this 

model, SA is based on the interactions between agents (human or technological) 

within a collaborative system.  Additionally, its popularity in research has grown 

over the last decade due to the ever-increasing inclusion of technology into 

society (Neville and Salmon 2015; Hancock 2017). 

For this work, the DSA encompasses the entire aspects of the 

experiments that were run.  As indicated in Figure 5, the DSA connects the 

human analysts and the sensors and their platforms, with each holding their own 

SA and estimate of ground truth.   When communicated, different aspects of SA 

from other parts of the system interact to form a new estimate of SA that is then 

propagated through the system to the next node or part. 
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Figure 5 Distributed Situational Awareness System utilized in this work. 

 

Due to the dynamic nature of this information, it needs to be constantly 

monitored if it is to be understood, especially if there are changes in the task, 

environment, and other interactions (both social and technological) (Liang et al. 

2005; Patrick et al. 2006; Duckham et al. 2007).  As part of the model, DSA 

focuses on one task at a time and the knowledge associate with that task.  An 

agent within the network is the owner of the task and the other agents and 

information is networked together by the information or knowledge in order to 

complete that task (Seeley et al. 2012; Crooks et al. 2013).  Each node within 

this network turns on or off depending on the task, environment, or interactions 

required at a given time.  Ownership is not of importance in this system, but what 

is vital are the pathways and unfettered flow of information.  Due to the 

dynamism within this network, it is extremely difficult, if not impossible, to re-

create with reductionist, linear approaches.  Therefore, the necessary theoretical 

foundations and tools to explore the nonlinearity within this complex 
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sociotechnical model can be found within the study of systems (Walker et al. 

2010; Crooks et al. 2013; Croitoru et al. 2015; Liu and Fuhrmann 2018).  An 

example of evaluating DSA theory was conducted during a large-scale U.K. Army 

field trial of a new mission-planning and battlespace management system and 

produced satisfactory results (Stanton 2009).  Additional research was conducted 

to determine if a relationship existed between DSA and task performance.  These 

experiments examined the conversations teams exchange when performing 

tasks and calculated a very strong positive relationship (r = 0.923, P < 0.001). 

between DSA and the teams’ performance (Sorensen and Stanton 2013).  The 

same positive relationship was also found in other high-fidelity, pre-deployment 

training environments (Rafferty et al. 2013).  Therefore, research has determined 

there is a strong relationship between DSA and team performance on tasks.  

Ultimately, this presents evidence that SA is useful in predicting performance 

(Patrick and Morgan 2010; Bleakley et al. 2013; Golightly et al. 2013). 

2.5. Measuring Human Cognition Through Team Performance 
Communications Assessment 

As noted earlier in this work, when most performance evaluations of 

sensor systems are conducted, the human part of the system is usually treated 

as a “black box,” with the complexity of the operator/analysts reduced to a simple 

number.  A rationale for this simplification is networked systems are very intricate 

and not completely mapped out and, additionally, difficult to predict (McKendrick 

et al. 2014).  Additionally, creating experiments is all about reducing variables 

and most human beings are full of contradicting skills. 
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To address this “black box” issues, numerous research studies have been 

conducted, mostly in the fields of human factors or ergonomics.  These studies 

cover the networked systems within the domains of future air traffic management 

systems (Joint Planning and Development Office 2010), network-centric military 

operations (Nelson et al. 2004), emergency response (Manoj and Baker 2007), 

and the use and control of Unmanned Aerial Systems (UAS) (Brown and Garcia 

2009; Saunders and Beard 2010; Ahmed et al. 2014; Nawrat. M 2014).  These 

studies have shown that poor network reliability and variability in response time 

decreases human performance, compounding to larger system inefficiencies 

(Bayrak and Grabowski 2006); additionally, other research has studied the 

limitations of human attention and its effect on system performance.  As the 

network complexity increases, which leads to more demands on the human 

operator, the whole system’s performance starts to degrade (Rosenfeld et al. 

2008).  Overall, these studies support the hypothesis that as a system or 

networked system increases in complexity or the load on the human operator, 

the overall efficiency and effective of the system decreases. 

As the noted studies and others have identified, in order to gather 

requisite human–machine performance data, human-in-the-loop experiments 

built within complex simulations can be conducted to gather this data.  However, 

due to the size and complexity of these networked systems, experimental data is 

insufficient to properly replicate the entire system.  Therefore, other scientists 

have modeled many aspects of the network in order to isolate variables and to 
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also test human automation performance metrics, task-specific network 

parameters and individual cognitive factors (de Visser et al. 2010; de Visser and 

Parasuraman 2011; Ahmed et al. 2014).  Validated human performance models 

are utilized in these system experiments to replicate interactions and to 

determine their ability to predict system performance with multiple operators, 

especially as system complexity increases and its properties change over time.  

By reducing complexities in the system, they reduce the mental load for an 

operator which can improve their performance.  

Of interest to this work, is research on the use and operator mental load 

when deploying multiple UAS’s in different situations (Cooke 2006; Cummings et 

al. 2007).  Other research has been conducted on managing the mission of 

surveillance, including search and rescue tasks (Parasuraman et al. 2005, 2009, 

2011).  Additionally, other probabilistic models predicting human-automation 

performance in networked UAS situation have been proposed.  Fan et al. (2010) 

and Heger and Singh (2017) modeled the human operators dynamically with a 

Markov model in order to encapsulate the random transitions that effect decision-

making and task performance.  Another research group used discrete-event task 

simulations on operators to model the performance effects of different workloads 

and vehicle utilizations with UAS’s (Donmez et al. 2010).  These studies focused 

on the performance of the human operator as more UAS’s were assigned to 

them and additional areas of search were added.  As predicted, as the task load 

(TL) was increased, the performance decreased.  Additional research was 
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conducted to determine how performance was affected when imperfect 

information was given to the operator.  Overall, the results indicated that as the 

information provided to the operator decreased in quality (either misinformation 

or communication interference) the performance was again degraded as extra 

mental capacities were diverted to decipher the messages (Wickens et al. 2006; 

Cummings and Guerlain 2007).  Of importance to this work, is that these 

research areas provide a range of dynamic probabilistic human operator models 

which provide evidence which supports the hypothesis that they can generate 

sample-based performance prediction statistics via repeated random simulations 

of closed-loop task execution.  As stated by Ahmed et al. (2014) they can also 

potentially provide useful insight into specific scenarios that lead to good/bad 

system performance. 

There are other variables that can also be researched when looking at a 

human operator.  As the previous research indicated that the TL increases with 

complexity of the system, individual operator’s performance still varies based on 

how well they can handle this extra mental load.  This variance is categorized as 

the working memory (WM) of an individual.  In one experiment, this mental 

capability was estimated by focusing on how well the operator can maintain focus 

or their attention on assigned visual search tasks while coping with distractors 

(Engle 2002; Ranzini et al. 2017).  Other research concluded that WM is a key 

component in executive control processes that is important to multi-tasking and 

making time-critical decisions (Endsley 1995; Parasuraman and Jiang 2012).  Of 
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the indicated research, most of it focuses on the TL and WM of operators and its 

effect on how well they can performance their tasks under different conditions.   

Research important to this work was conducted by de Visser et al. (2010) 

and then re-examined by Ahmed et al. (2014).  What both of these studies 

concluded was that TL and WM had an impact on performance, but they also 

added message quality (MQ) into the experiment and estimated its impact, in 

conjunction with WM and TL, on performance.  MQ was the clarity of the 

information that was given to the operator through the networked system.  Within 

the experiment, MQ was banded within three categories for quality: no message, 

noise message, clear or relevant message.  This related to the messages that 

individuals (4 operators) send to other members of the team.  Each member saw 

the same complex scenario on their screens with the goal of working as a team 

to share information.  Concerning MQ, no message is self-explanatory – nothing 

was sent to the operator and they had to complete the task on their own from 

what they saw on their screen.   Noise message was a message that could assist 

the operator, but only parts of the message were heard by the operator.  Only 

random parts of the message were actually transmitted, with static filling the rest 

of the message.  Clear or relevant messages were completely clear with no 

interference.  The operator received the messages that other team mates send to 

the operator.  They created a composite score consisting of several criteria 

including earning points on how well they played the experiment’s game and 

titled it Dynamic Distributed Decision (DDD) game score (see Figure 6).  The 
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DDD was designed by the team as an air defense simulation task environment 

which provides a flexible framework to study individual and team decision making 

performance (de Visser et al. 2010). 

 

 
Figure 6  DDD Game Score Task Load x Message Quality condition Interaction.  

Source  (de Visser et al. 2010) 

 

The outcome of these experiments concluded that the TL of the operator 

increased as the MQ decreased and the performance of the operator decreased 

as the operator struggled to handle all tasks.  Teams of operators focused on 

their individual performance with a “no message” MQ, but noise messages 

distracted the operators and resulted in significantly lower scores. 

For this work, human cognition through team performance is represented 

through the metrics of TL, WM, and MQ.   Their interaction with this DSA model 
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is replicated in Figure 7, focusing on the communications between the two 

analysts but also the cognitive levels within their own brains. 

 

  
Figure 7 Human Cognition metrics utilized in this work.   

 

2.6. Relationship with Training 

Existing literature on communication indicates a strong correlation with 

training as a team and the quality of communications that occurs within or 

outside that team (Patrick et al. 2006; Cooke et al. 2013; Endsley 2015; Rybing 

et al. 2016; Sorensen and Stanton 2016).  Additional research also indicates a 

strong correlation between training and SA concerning teams (Patrick et al. 2006; 

Walker et al. 2008; Patrick and Morgan 2010; Seppänen et al. 2013; Sorensen 

and Stanton 2013).  Therefore, for this work, the assumption is that the team with 

the highest SA and cognitive communication performance scores is also the 

highest trained in the communication requirements for this experiment.  This 
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training, as supported by the research, should let the team perform better due to 

better communication and SA of the environment.   

The level of training for a team can be measured in different ways, but the 

desired methods is to evaluate performance outcomes (Kraiger et al. 1993; 

Kirkpatrick 2006; Alvarez et al. 2010).  For this work, the assumption is that the 

team with the highest cognitive performance metrics and SA has the highest 

level of training.  As supported by the research, these teams should also perform 

the best.  Another aspect of team performance is the assumption that that 

individual team members are proficient in their technical areas of expertise 

(Straus et al. 2019).  In this case, these individuals are trained and proficient on 

the use of their computer systems and the communication protocols required for 

their job.  This will also indicate a positive correlation between the proficiency 

level of the individual and team performance.  The teams with individuals that are 

better trained, as demonstrated by higher proficiency, will perform better on 

accomplished certain tasks. 

Another aspect of training is to prepare individuals and teams to perform 

under conditions of stress.  Military teams, emergency medical personnel, and 

any task that must be performed under a time constraint creates stress.  This 

includes information monitoring, communication to develop situational 

awareness, and shared mental models and training on these skills is critical for 

team adaption to stressful conditions (Entin and Serfaty 1999).  
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Sponsored by the Office of Naval Research, the Tactical Decision Making 

Under Stress (TADMUS) program, examined the nature of stress in tactical 

crews, the effects of stress on decision making, and strategies to mitigate stress 

including training and design of information displays (Cannon-Bowers and Salas 

1999, 2009).  Significant outcomes from this program identified two categories of 

operational stressors:  

(1) Task-related stressors, which are inherent in the task, such as 

workload, time pressure, information uncertainty, and auditory overload. 

(2) Ambient stressors, which are in the environment, such as auditory or 

visual distractions, performance pressure, and fatigue due to sustained 

operations (Cannon-Bowers and Salas 1999). 

Of importance to this work, these stressors from both categories can be 

simulated.  Teams can be trained and evaluated in simulators with the use of 

scenario-based training.  Scenario-based training is when a team must perform 

certain tasks in a scenario designed to increase stress and replicate real-world 

conditions (Kirkpatrick 2006; Cannon-Bowers and Salas 2009; Salas et al. 2013; 

Nazir et al. 2015; Hixson et al. 2015; Straus et al. 2019).  These research studies 

also provide evidence that the level of individual training impacts the 

performance of multiple team scenarios with respect to with respect to collective 

skills, which involve perceptual, decision making, communication, and 

coordination activities.  However, more research is needed to understand the 

association between the type of scenario and training simulation that is ideal 
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when compared to levels of expertise for individual training (Kraiger et al. 1993; 

Noble 2002; Alvarez et al. 2010; Straus et al. 2019). 

2.7. Calculating Cognition 

In order to be used by other researchers, Ahmed et al. (2014) provided 

three different models that could be utilized in other experiments.  A linear model 

is provided that is helpful to system designers that are looking at a model to 

provide a basis for networked human-machine systems; however, this linear 

model is insufficient for extended performance predications that are not similar to 

the original experiment.  For application that is dissimilar to the original 

experiment, the researchers present a probabilistic Gaussian process model and 

Bayesian network model to provide more robust, statistical predictions.  Cross-

validation of these models on predicting performance show that the following 

linear model adequately captured the performance measures from the Gaussian 

and Bayesian models.   

For this work, the linear model is described below to better illustrate the 

variables and weights incorporated into the work.   

 

Equation 1 

𝒀 = 𝒂 + 𝒃𝟏𝑻𝑳 + 𝒃𝟐𝑴𝑸+ 𝒃𝟑𝑾𝑴+ 𝜺 

 

Within the linear model, Y is the performance measure of the cognitive 

ability of a team to compete a specified task.  A constant bias term, a, on team 
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performance is incorporated first into the model.   TL, or Task Load, is multiplied 

against a regression weight, b1, from the data collected from the original 

experiment.  This is added to the product of MQ, or Message Quality, and 

another regression weight, b2.  The final cognitive metric WM, or Working 

Memory, is multiplied to another regression weight of b3.  To finish the model, a 

final value of the standard error of the estimate is added, estimated from the 

original experiment data via least squares.  This formula is based on the original 

experiment which creates a distribution starting at a point greater than zero due 

to it being on the experiment’s data. 

However, the performance measure of Y cannot be easily integrated with 

the probabilistic outcome of Acquire-TTPM that is utilized by FOCUS and 

something that could be more easily coded into a program.  In order to better 

integrate these two results, Ahmed et al. (2014) proposed a Bayesian Network 

conditional probability table (CPT) based on the results of their experiment that 

provide a probability performance metric expressed in Table 1.   

 

Table 1 Bayesian Network CPT on the performance of an individual based on 
varying values of TL, MQ, WM.  Source (Ahmed et al. 2014) 

P(H=2 | TL, MQ, WM = hi) 

TL 
MQ 

all relevant some noise no messages 

low 0.99 0.95 0.95 

hi 0.92 0.81 0.68 
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 In this table, H indicates high values for the three variables.  For this 

experiment, the “hi” or high TL will be used with the additional high WM.  The MQ 

will have three variables.  From the original experiment, the values are 1 (all 

relevant), .2 (some noise), and 0 (no message) and this will also be utilized in 

this work.  Due to time constraints and other stressors, the simulated human 

operators will be evaluated using a high TL that is degrading their performance.  

The “no message” column indicates a very noisy message which further 

degrades the performance of the team.  These values will be utilized to alter the 

communication variables within FOCUS. 

2.8. Targeting Task Performance Metric (TTPM) 

The human cognitive metrics and situational awareness previously 

discussed are related to the communication ability between each human analyst 

and their ability to handle what is going on around them.  This section explains 

the ability of each human analyst to actually perform their specified task of 

detecting or identifying a specific entity on a computer monitor, as shown in 

Figure 8.  Research on this subject is well documented with TTPM (Hixson et al. 

2017) and is one of the reasons it was chosen.  However, the main reason is its 

utilization as the foundational component of the simulation, FOCUS, employed 

for the experiments covered in the body of work. 
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Figure 8  TTPM utilized in this work 

 

The TTPM is a sensor performance model designed to predict task 

performance of identifying a specific entity or target in this case, and its 

performance has been validated by research establishing probabilities based on 

multiple conditions and ranges (Hixson et al. 2004; Vollmerhausen 2004; 

Vollmerhausen and Robinson 2007; Vollmerhausen et al. 2008a, b; Preece et al. 

2014).  It is the basis of the U.S. Army’s electro-optical target acquisition model 

that is used to predict how well a human observer can detect and identify an 

entity or target (Vollmerhausen 2009).   

The TTPM incorporates the limitations of the human visual system (HVS) 

using the research based upon the contrast threshold function (CTF).  Developed 

by Beaton and Farley (1991) and also utilizing the work from Barten (1990), the 

CTF is a function based upon the dependence of an average luminance, the 

number of eyes, and the apparent target angle.  Their research developed the 

CTF into a numerical representation of the ability of the HVS to detect the 
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presence of a low-contrast sine wave as a function of spatial frequency.  In 

experiments, an observer was presented a sine-wave pattern on a screen and a 

response is solicited as to whether they can detect the sine wave, as shown in 

Figure 9.   

 

 
Figure 9 Experimental setup for measuring CTF.  Top right shows variation in 

contrast.  Bottom right shows variation in spatial frequency. Source 
(Vollmerhausen 2009). 

 
 

The goal was to measure the amplitude of the sine wave that is just visible 

to the observer.  Procedurally, the experiment set a constant luminance while the 

contrast of the screen was reduced until the observer specified they could no 

longer see it.  As an example, this decrease in contrast from left to right is shown 

at the top right of the figure.  Conclusions from the experiment indicated that the 

operator’s success in identification was depend upon several conditions of the 

image stimulus, including orientation, luminance levels, stimulus size, surround 

luminance, and viewing distance (Barten 1989, 1990).   

In an equation, TTPM is composed of several required dependent variables 

and their corresponding functions.  The system CTF (CTFsys) is composed of the 

naked eye CTF (CTFeye) degraded by blur and noise from the visual sensor and 
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shown in the imager.  As shown in Equation 2, TTPM is a function of the area 

between the target contrast and the systems CTF (Hixson and Teaney 2016). 

 

Equation 2 

𝑪𝑻𝑭𝒔𝒚𝒔(𝝃) =
𝑪𝑻𝑭𝒆𝒚𝒆(𝝃)

𝑴𝑻𝑭(𝝃)
(𝟏 +

𝜶(𝑳)𝟐𝑵(𝝃)𝟐

𝑳𝟐
)

𝟏
𝟐⁄

 

 

The system CTF is a product of the CTF of the naked eye, CTFeye, at a 

specific spatial frequency, 𝝃, and the system modulation transfer function, MTF 

(𝜉), at a specific frequency in (milliradian)-1.  This product is then multiplied to 

the outcome of the function based on the display luminance of the computer 

monitor, L (>0), the noise filtered by the display and visual system, N (𝜉), and 

the calibration constant dependent on the luminance displayed to the eye, α.  An 

example of the produced CTF curve is shown in Figure 10.  Hixson, et. al. (2017) 

use this figure to show that TTPM represents the limited amount of visual 

information observable to human operators that allow them to detect a specific 

target. 
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Figure 10 Example of CTF Curve.  Source (Hixson et al. 2017) 

 

The actual TTP metric (TTPM) is shown in equation 3, where Ctgt is the 

target contrast based on research on specific vehicles and 𝜉 is spatial frequency 

(Hixson and Teaney 2016).   

 

Equation 3 

𝑻𝑻𝑷 = ∫ √
𝑪𝒕𝒈𝒕

𝑪𝑻𝑭𝒔𝒚𝒔(𝝃)
ⅆ𝝃

𝝃𝒄𝒖𝒕

𝝃𝒍𝒐𝒘

 

 

The limits on the integral start (low) and end (cut) are where the target 

contrast intersects the CTFsys as shown in Figure 10.  As part of the operation, 

the integration is conducted two times, once with the horizontal CTF and then 
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with the vertical CTF.  The geometric mean is then calculated from these results.  

These results then feed the Equation 4 (Hixson et al. 2017). 

 

Equation 4 

𝑽 = 𝑻𝑻𝑷(
𝑪𝑫

𝑹
) 

 

This equation determines the number of times it takes an operator to search 

a screen, or resolvable cycles - represented by V, to detect the entity or target.  

This is based off the TTP value from equation 7, multiplied to the produce of the 

target’s characteristic dimensions in meters, CD, divided by the distance between 

the target and sensor in kilometers, R. 

The final step is to take the resolvable cycles on target, V, and relate it to 

the task difficult factor (V50).  V50 is the resolvable cycles necessary to 

successfully perform a target acquisition 50% of the time.  Therefore, V# (e.g. 

V50) will always be less than V but will always be above zero.  𝑃∞ is the 

probability of task completion given infinite time to complete it.  This relationship 

is depicted in Equation 5 (Hixson et al. 2017). 
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Equation 5 

𝑷∞ =
(𝑽 𝑽𝟓𝟎⁄ )

𝟏.𝟓

𝟏 + (𝑽 𝑽𝟓𝟎⁄ )
𝟏.𝟓

 

 

Graphing this relationship is shown in Figure 11. 

 

 
Figure 11 Probability curve of Equation 9.  Source (Hixson et al. 2017) 

 

Through laboratory observer perception testing, the task difficulty factors are 

measured empirically for each waveband and task acquisition task (e.g. detection 
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and identification) (Driggers 2001; Driggers et al. 2006).  Repeating this process 

for different ranges builds a range performance curve as shown in Figure 12. 

 

 
Figure 12 Probability curve based on probability to complete the task range in 

kilometers.  Source (Hixson et al. 2017) 

 

Within the electro-optical (EO) / infrared (IR) sensor category, the TTPM 

covers their performances equally.  Both of these electro-optical sensors are 

used in this work.  EO imagers reflect light (sunlight or starlight) and usually 

detect energy within between 0.4 and 2 microns on the spectral band.  IR (or 

thermal) imagers detect emitted electromagnetic energy (heat) from objects and 
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operate with the mid-wave infrared (3 to 5 microns) or the long-wave infrared (8 

to 12 microns).  Even though signal and noise units for describing thermal 

imagers are different those modeling reflected light, the basic target acquisition 

theory used to create TTPM is exactly the same.  (Vollmerhausen and Jacobs 

2004).  Each has an operator or analyst looking at a visual display of a target and 

TTPM predicts the effects of blur, noise, and display characteristics on target 

acquisition task performance. 

2.9. Geographical Location Uncertainty 

Tied to the concept of “ground truth” within situational awareness, there is 

not only a struggle to have a common understanding of a situation but where an 

entity is actually geographically located.  There is uncertainty in the actual 

geographical location of the entity (at a specific point in time) and what the 

human operator estimates and how the sensors actually sense the entity and 

calibrate its location.  This error stems from the mis-calibration of the optical 

sensors, laser distance sensors, GPS navigational estimates, and many other 

areas.  It is a result from the reductionism of taking the infinitely complex 

geographical world and creating an abstraction of the real world through digital or 

data modeling methodologies (Heuvelink 1998; Zhang 2002; Jackson et al. 2013; 

Mullen et al. 2015).  Geographical location error, consisting of geodata 

uncertainty or geospatial data uncertainty, has been a Geographical Information 

Science research topic for many years (Zhang 2002; Shi 2010; Caers 2012; 

Mullen et al. 2015; Jackson et al. 2013).  For this work, geographical location 
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uncertainty will be used as an all-encompassing title that incorporates concepts 

like ambiguity, inaccuracy, imprecision, error (unknown or not quantified error), 

and subjectivity as it relates to geographical location.  All the parts of the 

distributed system that is calculated to have GLU in this work is depicted in 

Figure 13. 

 

 

Figure 13  Distribution of GLU within this work’s framework 

 

Since uncertainty in geographical location is a challenging concept, 

research has been conducted on visualizing uncertainty solutions (Brodlie et al. 

2012; Mahabir, Ron et al. 2018).  However, research on how uncertainty effects 

reasoning and decision-making continues to look at different aspects of this 

complex challenge (Johnson and Sanderson 2003; MacEachren et al. 2005).  Of 

importance to this work, is the research that has been conducted on the 

performance of a team that communicates uncertainty through written forms 
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(emails) and how it doesn’t match the performance of other teams that use maps 

or other graphical means (Kobus et al. 2001; Shattuck et al. 2009).  Other work 

has been done that studies the effect of uncertainty on positional accuracy.  All of 

which note that uncertainty, in whatever form they studied, impacts the ability of a 

human being to estimate the exact location of an entity(Jackson et al. 2013; 

Mullen et al. 2015).  Brolese et al. (2006) evaluated improving a human’s ability 

to estimate location and how uncertain surroundings impact their ability 

accurately communicate this position.  Hope et al. (2007) researched the 

negative impact of uncertain locations spatial decision making.  This research 

was also reference in Kirschenbaum’s et. al. (2014) evaluation of several other 

studies that studied how positional uncertainty impacts the performance of teams 

and individuals.  Such research indicates that the uncertainty in estimating an 

entity’s position impacts the performance of teams and decreases the 

effectiveness of decision making. 

Finger’s et. al. (2002) study used game theory (and game tasks) in a 

dynamic environment and the added constrain of time.  In this game, subjects 

tried to identify an unidentified moving object that moved across a computer 

monitor.  Competing against other participants, subjects tried to have the highest 

number of guesses in the least amount of time.  Similar constructs were 

conducted in several others studies that included this dynamic environment and 

measured performance of a particular task (Bisantz et al. 2005, 2011; Hope and 

Hunter 2007; Riveiro et al. 2014).  Overall, these studies indicate that uncertainty 
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increases the mental work load on the participants and takes longer to complete 

a task. 

Another aspect relevant to this work is the measurement of a participant’s 

performance and how this impacts the completion of a task involving uncertainty.  

Cognitive research on expertise indicates that this level of skill impacts how 

decisions are made, especially when uncertain aspects are involved (Klein 1998; 

Patrick et al. 2006; Walker et al. 2008; Patrick and Morgan 2010; Seppänen et al. 

2013; Sorensen and Stanton 2013, 2016).  Several of these studies involve 

groups of subjects with varying levels of expertise or experience.  Roth (2009) 

supports this assessment and his results indicate that expertise has a significant 

effect on task performance.  Hope’s et al. (2007) work also showed a high 

degree of correlation between expertise and high performance on specific tasks 

relating position accuracy and uncertainty. 

Ideally, to reduce uncertainty, the first step would be to identifying the 

sources of error; however, accounting for all sources is usually a futile endeavor.  

One method to account for all of the imprecisions is to model the uncertainty 

(Heuvelink 1998).  In this scenario, the inaccuracies within the system have 

propagated to the first observer – the one trying to detect the entity or target.  

With the inclusion of their final errors, a level of uncertainty in location is 

communicated to the second observers – the one trying to identify the entity.  

This uncertainty is usually indicated through errors in positional accuracy or a 

point in space. 
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2.10. Optical Sensors 

Two separate optical sensors will be used in this work.  This section will 

provide information on these two electronic optical and InfraRed (EO/IR) sensors: 

Full Motion Video (FMV) and Wide Area Motion Imagery (WAMI) sensors.  These 

sensors are depicted in Figure 14. 

 

 

Figure 14 Sensors utilized in this work 

 

2.10.1. Electronic Optical and InfraRed (EO/IR) and Full Motion Video 

(FMV) 

 Technology and environmental challenges have created obstacles to 

detecting and identifying entities through EO/IR images in the past.  Images 

captured by surveillance cameras, aerial vehicles, and other stationary and non-

stationary sensors are generally characterized by limited resolution, poor contrast 

and low signal-to-noise ratio (Alam and Bhuiyan 2014).  However, advances over 
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the past decade have created solutions to these problems through new software, 

hardware, and wireless transmission enhancements.  It is common place to find 

surveillance cameras that are high definition resolution and provide exceptional 

recorded clarity of an image for an area.  For this work, high definition is defined 

as least 1080 pixels (1080p) that comprise a video image.  The more pixels the 

higher the resolution (pixels per image) (Sanna and Lamberti 2014). 

 Earlier research on EO/IR focused mainly on the visible light spectrum 

with a focus on both single and multiple monocular or stereo cameras to develop 

solutions to finding and tracking targets.  However, the main concern with visible 

light sensors, and of particular concern with those agencies and departments that 

must find an entity in all weather and light conditions, was its unsatisfactory 

performance under poor visibility conditions (Ricaurte et al. 2014).  Later 

research in the 2000’s continued with the visible spectrum but also started to 

incorporate more research with the infrared spectrum that could pierce poor 

weather and see in all light conditions (Fernández-Caballero et al. 2014).  Since 

detecting entities in poor visibility was a priority in many research objectives, 

experiments focused on the long-wave infrared (LWIR) spectrum (in the range 8-

12 nm) due to its ability to sense heat sources at night or through smoke, fog, 

and other atmospheric conditions.  Of specific interest in the study of IR is 

forward-looking infrared (FLIR) technology because in this sensor the intensity of 

an object mainly depends on its temperature and radiated heat and is not 
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influenced by light conditions and object surface features (Sanna and Lamberti 

2014). 

 FMV sensors in this work are high definition cameras mounted in a mobile 

gimbal (protective mobile cover attached to an aerial platform) that provides 

almost 360 degree of movement laterally and 90 degrees of movement 

horizontally (Groenert and Bryski 2009).  Due to the high resolution of the 

pictures captured by these sensors, they have demonstrated the ability to detect 

a man-sized entity at 40 kilometers or a large vehicle at 80 kilometers by their 

optical and electronic zoom capabilities (Eismann et al. 2010).  The sensor 

utilized in this work is a variation of the WESCAM MX-20 (2019a) which has both 

infrared and electro-optical (visible light) capabilities.  PS2 Surveillance Services 

is an example of a company that provides surveillance services and utilizes 

sensors similar to those in this work (2018b).  For this work, these FMV sensors 

will be utilized to identify a specific entity.   Through their use of visible and 

infrared capabilities, it has the capacity to identify a specific target. 

 In detecting, identifying, and tracking objects with EO or FLIR, scholars 

have used learning based (Chan et al. 1996; Lin-Cheng Wang et al. 1997) and 

model-based methods (Lamdan and Wolfson 1988; Olson and Huttenlocher 

1997; Venkataraman et al. 2011; Gong et al. 2014a).  Other than algorithms, 

multi-sensor phenomenologies have been attempted to improve results of 

detection.  In this work, the term, “multi-sensor” is defined as more than one 

sensor is looking at the same target and consists of several categories: multi-
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look, where one sensor gets several looks at the target from different aspects; 

and multimode fusion, where sensors of different modalities sense the target 

(e.g., acoustic and EO signals are fused) (Bhanu 1993).   An example of this 

multi-sensor effort is the merging of images of the IR spectrum and the visible 

spectrum in detecting and tracking entities as depicted in Figure 15.  Krotosky 

and Trivedi (2007) used a cross-spectral stereo-registration methodology to    

better detect pedestrians for automated cars.  They use both visible and infrared 

to detect the people in the street. 
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Figure 15  Cross-spectral stereo-registration results for pedestrian detection.                 
(a) Color. (b) Infrared. (c) Unaligned. (d) Aligned.  Source (Krotosky and Trivedi 
2007) 
 

2.10.2. Wide Area Motion Imagery (WAMI) 

WAMI sensors are designed to detect multiple entities over a large 

geographical area.  Enabling the ability to actually monitor these larger areas has 

been the technological evolution of digital image processing systems that 

combine video imagery from multiple sources.  As seen in Figure 16, a vast 

majority of WAMI systems consist of multiple cameras whose FOVs overlap one 
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another and usually cover 360 degrees from their platform.  These images are 

then digitally merged together to create on image which special software (or 

viewer) can then interpret the image (or video) for an analyst (Priddy and 

Uppenkamp 2012). 

 

 
Figure 16  WAMI Summary: Sensors, Image Exploitation, and Viewer.  Source 
(Priddy and Uppenkamp 2012) 

 

With such a wide FOV, research has focused on security (e.g. perimeter 

surveillance) (Porter et al. 2010; Blasch et al. 2014), environmental analysis 

(e.g., monitoring flood damage) (Asari 2014), and emergency response (e.g., 

disaster relief)(Gao et al. 2013; Young and Foulkes 2015), and the results of this 

research have been the development of numerous methods and techniques used 

in processing WAMI data .  As shown in Figure 17, merging several optical 

sensors, larger areas of higher resolution imagery can be better analyzed due to 

the ability to zoom in on areas of interest (AOI). 
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Figure 17 WAMI Data from the Columbus Large Imagery Format (CLIF) 
collection.  Source (Mendoza-Schrock et al. 2009) 

 

 Due to the multiple, higher resolution optical sensors, the size of one frame or 

image from WAMI sensors can consist of multiple gigabytes of data.  These 

sensors have the capability to image small city-sized areas at approximately 

0.5m a pixel and about 1 or 2 frames per second (Porter et al. 2009).  The large 

data file sizes and high-resolution images (compared to higher fidelity EO/IR 

sensors with narrower FOVs) create image files that require a data flow of over 

100Mb of data per second, or over 400Gb per hour (Wu et al. 2015a).  However, 

WAMI sensors are typically used when organizations need constant coverage of 

an area (a.k.a. persistent surveillance), 3D processing for terrain analysis (due to 

different perspectives of the sensors), and target tracking (Porter et al. 2010).  

Research has also focused on some of the key challenges for digitally 

processing WAMI sensors, which include low frame rates, extended camera 

coverage, multiple targets, weak target texture, and environment occlusions.   

2.10.3. Describing a Wide Area 

Research organizes a wide area into three areas of interest, and these are 

represented in the columns within Figure 18.  Within each column are several 
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rows of themes that current research has studied.  The first row, physical sensor 

models aid in registration, that when aligned support 3D terrain analysis.  The 

second-row states that optics with geometry support segmentation for vehicle 

detection that support event processing over a spatial and temporal correlation.  

Finally, the third row reads as tracking is based on measurements from 

detections, it is the computational challenges that lead to activity-based 

intelligence (Blasch et al. 2012). 

 

 
Figure 18  WAMI Processing Techniques.  The colors denote areas of 
development with the Gray boxes as physical designs, yellow boxes are software 
exploitation, and pink is hardware techniques.  Source (Blasch et al. 2014). 

 

In order to maintain a continuous (or persistence) detection of an area, 

WAMI developments relied upon specific sensor and platform designs to sustain 

this capability (Rovito et al. 2008).  These designs also improved sensor 
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resolution to enable the detection and tracking of these targets that is critical for 

surveillance (Abidi et al. 2008). 

Differing from surveillance, WAMI requires additional analysis to be 

conducted on very large image sizes.  Due to the challenges of processing these 

big image files, different methods were developed that reduced the frame rate in 

order to accommodate for the low update rate due to slow download speeds of 

the radio communications (Porter et al. 2009).   

Unfortunately, low-frame rates create problems in registering the images 

(Blasch 2009), from which techniques were created that layered different data 

(Mendoza-Schrock et al. 2009).  Other techniques enabled for limited activity 

analysis due to the different layers, (Porter et al. 2009), interactive search (Porter 

et al. 2010), and track initiation (Cuntoor et al. 2010), even when constrained by 

a low-frame rate. 

2.11. Airborne Surveillance for Vehicle Detection 

Over the past two decades, video surveillance research and operational 

use of these systems has shown a favorable ability in detecting vehicles.  Most of 

this research was done on fixed camera system, like traffic cameras; however, 

airborne video systems have attracted the most attention in recent research.  

Such platforms are particularly attractive due to their ability to move quickly, 

deploy faster, and have a larger FOV at higher altitudes.  However, the technical 

drawback from this mobility is the ability of airborne video surveillance to visually 

track vehicles.  As a fundamental task in visualization and pattern recognition, 
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detecting the same vehicle from frame to frame is possibly the most difficult task.  

Several works that cover this field have created methods to localize, and narrow 

the search, concerning these moving vehicles (Veeraraghavan et al. 2003; 

Yilmaz et al. 2006; Ali et al. 2007).   

The basic framework of airborne video is: (1) moving vehicle detection; (2) 

vehicle tracking; (3) behavior understanding (Hu et al. 2004; Meng Liu et al. 

2008) .  There are different methods to detecting moving vehicles: optical flow 

(Barron et al. 1992; Mak 2008), background subtraction (Yilmaz et al. 2006), 

temporal differencing methods (Lipton et al. 1998; Wu et al. 2015a) and pattern 

classifiers (Lin et al. 2009).  For vehicle tracking, it is broken up into mainly four 

categories of evaluation (Hu et al. 2004; Yilmaz et al. 2006) region-based 

tracking, contour-based tracking, feature based tracking and model-based 

tracking.  However, there is no clear-cut delineation between these categories, 

since algorithms or methods are sometimes integrated together.  Additional 

complexity is added to these categories when tracking vehicles from an airborne 

platform.  Airborne tracking is more difficult than from a stationary camera for four 

main reasons:  (1) the motion of the platform is constantly changing; (2) the FOV 

of the video camera is limited; (3) changes to objects appearance or shape is 

dynamic during tracking due to illumination and angle of visualization variations; 

(4) background objects like buildings or trees obscure or block the target from the 

sensor resulting in loss of observation (Cao et al. 2012). 
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2.12. Aided/ Target Recognition (AiTR) 

 Aided/automatic target recognition (AiTR) is the term used to describe the 

research, projects, and processes covering automated or aided processing 

functions on imaging sensor data that enable the performance of operations 

ranging from simple cuing of a human observer onto a target to the complex, fully 

autonomous object acquisition and identification of these targets (Ratches et al. 

2001).  Automatic targeting recognition (ATR) describes the fully autonomous 

side of this research.  An example of ATR is the terminal acquisition phase of a 

missile seeker as it guides itself onto a target.  Aided target recognition (AiTR) 

focuses on the processes required to present image annotations to the human 

observer.  Researches in this part of the field examine the human analyst’s ability 

to make decisions on the veracity and complexity of generated information and 

the action taken(Plantz et al. 2008; Ratches 2011; Goley and Nolan 2012; Pei 

and Mutka 2013).  Then they investigate how to improve these results through 

technology and other processes (Ratches 2011).  In this work, only the AiTR side 

of the field will be addressed as the analyst’s work cycle and the proper 

placement of technology in this cycle are examined.  

 A high-level simplified diagram of a generic AiTR algorithm is shown in 

Figure 19.  First, an image from a sensor is inputted into the front end of the 

processor, after which, preprocessing conditioning is executed.  Several actions 

can occur within preprocessing to include mostly standard image-processing 

techniques like noise reduction or removal, image orientation, etc.  After these 
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operations are conducted, features are then extracted so candidate regions of 

areas of interest can be segmented, anomalies identified, and detections 

declared.  Once completed, higher levels of classification or determination can be 

processed.  The last stage of this algorithm can be better explained by the 

example of two different military vehicles: classification (tracked versus wheeled), 

recognition (truck versus tank), and identification (M1 tank versus T72 tank) as 

depicted in Figure 19.   

 

 
Figure 19 Generic AiTR algorithm showing discrimination functions processed on 

image.  Source (Ratches 2011). 
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 The role of AiTR is to assist the human observer in completing their 

assigned task.  This assistance can be in detecting pedestrians on a busy street, 

determining if an entity is a car or other object, or some other aspect that 

requires automation to quickly analyze different electromagnetic spectrum results 

and match the results to a database(Snorrason et al. 1995; Lin-Cheng Wang et 

al. 1997; Olson and Huttenlocher 1997; Singh and Abdallah 2000; Mahalanobis 

and Muise 2001; Priddy and Uppenkamp 2012; Blasch et al. 2013; Li et al. 

2014).  Overall, it lets a human execute their assignment faster and with more 

precision. 

 In this work, the AiTR that will be utilized is designed to reduce the 

miscommunication and GLU between the detecting and identifying platforms.  

With the DSA theory, this would be an automated entity with its own SA that 

connects the platform and sensors of both types and also the human operators.  

As shown in Figure 20, the AiTR technology is the conduit between the sensors, 

platforms communication arrays, and the computers the human operators are 

utilizing.  In this work, the first stage (1 in the figure) is that the WAMI sensor 

collects a visual image that is then processed by the AiTR.  This process detects 

potential targets which are then transmitted to the WAMI operator (stage 2) who 

finds potential targets that match the entity description.  This potential target is 

then sent back to the AiTR processor and forwarded to the FMV sensor on the 

other platform with a geographical location (with GLU incorporated), this is stage 
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3.  The FMV sensor then rotates and zooms in on the location provided by the 

WAMI sensor and operator – the potential target.  This image is then transmitted 

to the FMV operator for detection, analysis, and identification – stage 4.  If the 

target is the specified entity, then the operator continues to track the target 

(Snorrason et al. 1995; Zhou et al. 2004; Blasch et al. 2013; Eismann et al. 

2010).  

  

 
Figure 20 Layout of how AiTR will affect the operator’s ability to detect and 

identify the targeted entity 

 

AiTR impacts the experiment since the technology removes the need for 

verbal communication between the operators (removing the verbal MQ value) – 

as indicated in the stage 5 indicators in figure 20.  Additionally, the GLU within 

the system is reduced since the human operators own estimation of the targets 
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location will be removed.  Within the research of visual analytics, AiTR provides 

an integral approach to improving decision-making by combining visualization, 

human factors, and data analysis through computer technology (Keim, et al. 

2008).  It meets the challenge to identify the best automated processes for the 

analysis task at hand – identification of a targeted entity.  It has the potential to 

enhance the performance of a human operator by expanding the limits of the 

human brain as researched by Misra and Stokols (2012) with automation.  

Finally, AiTR is a method and model that can turn vast amounts of information 

into reliable, provable, and actionable knowledge (Kerren et al. 2013).  

Combining and integrating the strengths of computers and humans, the focus of 

visual analytics, and specifically this work, is to determine an optimal interactive 

process designed to extract useful knowledge from data.  In this work, this is 

presenting the data from the sensor in a format that a human operator can 

quickly and accurately separate a specific entity from background clutter of an 

image (Keim et al. 2008).  AiTR is potentially the technology that can assist in 

this process.  

2.13. Summary of Literature Review 

This chapter provided research on the critical topics for this work and its 

experiments.  At its foundation is a review of visual analytics and its importance 

to merging the studies of human visualization and machine computing (section 

2.1).  This was followed by an overview of the steps necessary to finding and 

identifying an entity was explored followed by studies on situational awareness 
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and an individual’s awareness of their surroundings or location (section 2.3).  

Moving into the cognitive aspects of human being, research was presented 

concerning the overall model for this work concerning Distributed Situational 

Awareness (DSA) and how humans and non-humans and technological assets 

interact within a system (section 2.4).  Of importance in this research is that each 

node in the system has its own situational awareness which is then 

communicated to other nodes.  Human cognition in the context of team 

performance was defined and tied to how teams are affected cognitive 

performance metrics of TL, WM, and MQ when completing specified tasks 

(sections 2.5 through 2.7).  This is tied to an individual’s ability to detect and 

identify an entity which is measured by the TTPM (section 2.8).  GLU was also 

defined and its research on uncertainty in location, which can also be propagated 

through a system (as supported by the DSA) (section 2.9).  Finally, the optical 

sensors – both FMV and WAMI was defined and tied to surveillance concepts 

(section 2.10) and the importance of AiTR to this work (section 2.12).  
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3. RESEARCH QUESTION 
 
 
 

3.1. Overview 

This work aims to make a contribution by providing a team-based 

detection and identification performance model incorporating the theory of DSA 

and its effect on completing a specific task.  The task being the ability to detect 

and identify a specific entity (yellow taxicab) within a complex urban environment.  

Conditions to accomplish task is the utilization of two unmanned aerial vehicles 

mounted with either a full motion video senor or a wide area motion imaging 

sensor and two human analysts creating a team to execute this task.   

Basing this worked on the DSA theory, in which situational awareness is 

shared and communicated throughout the system, a team’s cognitive 

performance capabilities (communications and detection/identification abilities) 

combined with the GLU from each node (human and non-human) is propagated 

through the system.  With the cumulative results effecting the overall 

performance of the team in executing its task.  From the aerial platforms with 

their sensors to the human operators analyzing the video images on their 

computer screens, each agent contributes to the uncertainty or situational 

awareness of the whole and effects each node of the system. 
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3.2. Research Questions 

Given a team-based detection and identification performance model, 

which utilizes multiple sensors and incorporates the theory of DSA, how does 

message quality and GLU impact the team’s ability to execute a specific task?   

Additionally, how does technology (AiTR) impact this task?  That task being how 

long, in seconds, a yellow taxicab can be identified within a complex, urban 

environment.  Situational awareness, for this body of work, comprises the 

integration of unique aspects geographical location uncertainty, human 

communication performance, human visual system, and mental constraints.  

Utilizing the shared situational awareness theory of the DSA model, these 

aspects are then shared throughout the system, each interacting with each node, 

ultimately effecting their performance in the task.   Therefore, the research 

question is pictured in Figure 21, with degrees of situational awareness within 

each analyst, and the aspects effecting that situational awareness between the 

two analysts, impact the performance of the team.  

 

 
Figure 21 Baseline construct for the experiment 
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With the first experiment creating a baseline, this work postulates that 

variations in human communication performance (Message Quality (MQ)), based 

on the level of training and voice communications, will impact the other variables 

of the model and nodes within the system and overall SA of the team.  Since 

training impacts the communication and SA of the team (Patrick and Morgan 

2010; Seppänen et al. 2013; Sorensen and Stanton 2013, 2016), this work will 

demonstrate a positive correlation between verbal communication proficiency 

and performance outcomes.  With higher verbal communication skills producing 

significantly better results than lower verbal communication skill levels.   

Utilizing the fundamentals of visual analytics, this work will provide 

evidence that demonstrates an automation of the performance task utilizing 

Aided Target Recognition (AiTR) technology.  This would be of importance in 

situations when teams are quickly formed to accomplish a task, that are unable 

to train prior to the execution.  Since this would probably result in low verbal 

communication proficiency levels, this work will propose another solution utilizing 

the technology solutions with the AiTR field.  Experiments run in this work will 

utilize a form of AiTR that will remove, or significantly reduce, the verbal 

communication (and subsequent GLU effects) which will result in levels of 

performance significantly equal or better than the best performance outcomes 

from the baseline. 
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As stated by, Johnson and Hanson (2011) the goal of visual analytics is to 

identify the best automated processes for the task at hand, estimating limits that 

can’t be further automated, and then develop a tightly integrated solution that 

adequately integrates the top automated processes and human performance 

methods into a cohesive methodology.   

3.3. Hypotheses 

This work will explore the following hypotheses: 

H #1:  Given a DSA model, with three levels of Situational Awareness 

(SA), each level of SA will be significantly different than the other levels.  This will 

be supported by the statistical analysis between large sets of results for each 

level of SA.  Each level of SA will consist of stable dependent variables within the 

model representing WM, TL, and the function of GLU based on time.  However, 

the dependent variables representing SA, with the main variable representing 

differing communication performance metrics, will impact the dependent variable 

represented by the number of seconds a target is detected and identified within 

the scenario.  These SA metrics will be banded within a low, medium, and high 

category which will have a corresponding numerical value associated with the 

CPT values in Table 1.   

This value will be incorporated into the simulation and 500 iterations will 

be run for each category level.  Low communication metrics will correspond to 

very poor communications between analysts and overall poor SA of the identified 

entities to be tracked (pick-up truck).  Each higher category will indicate more 
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successful communications, corresponding to more training, and higher metric of 

communication success between analysts. 

H #2:  Given the baseline established from the first hypothesis, an 

additional data set will be created utilizing AiTR technology.  The best performing 

SA level from the baseline will be significantly different than the results utilizing 

AiTR.  This will be supported by the statistical analysis between the two data 

sets.  The AiTR data set will be created by assuming a team with low SA metrics 

will be augmented with AiTR hardware and software.  This technology, placed 

into the DSA model, will remove the requirement to verbally communicate 

between human analysts and will replace it digital communications tied to 

algorithms that assist in detecting specific entities and reducing human 

incorporated GLU through automation.  This should negate the low 

communication performance metric that effects the SA level from baseline 

results.  This model with AiTR is shown in Figure 22. 
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Figure 22 DSA Model with the incorporation of AiTR technology at the human 

operator's computer system 

 

 Due to the automated exchange of location through a digital and 

computerized medium, through the technology consisting of the AiTR, the 

message quality (MQ) between the two analysts will be removed, as shown in 

figure 22.  This will reduce the overall geographical location uncertainty by 

removing the incorporation of GLU from the human analysts.  500 iterations will 

be conducted with these new metrics and compared to the highest performance 

results from hypothesis #1. 

3.4. Expected Scientific Contributions 

Research from this work will provide a DSA model, that incorporates 

cognitive attributes, that can predict the task performance of detecting and 

identifying a specific entity based on the level of training of the teams.  It will also 
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provide evidence that supports the use of technology that aided in target 

detection and identification through automation and how it can negate poor 

training of teams.  As stated in section 1.6, this research contributes the most to 

those organizations where location and time are utmost important to their primary 

tasks.  Additionally, it will provide these organizations research on the effect that 

communications (message quality) and situational awareness has on this task of 

identifying a specific entity (yellow taxicab).  Therefore, this DSA model could be 

used in the fields of remote sensing, system and team performance analysis, and 

also in the acquisition of new technologies.  It distinctively combines exact 

technological models of specific aerial vehicles and optical sensors with human 

performance models, which incorporate mental capacity metrics, to measure the 

cognitive ability of a human operator on a particular task based on training.  

Additionally, with the incorporation of geographical location uncertainty in this 

DSA model, a methodology of how GLU impacts performance of a system can 

also be evaluated.  All these variables contribute to the end state of how well a 

team of humans can complete the specific task of detecting and identifying a 

specific entity within a complex urban environment. 

The second hypothesis will specifically evaluate the trade-off between 

training and technology.  It will provide evidence on how much technology can 

improve performance results within the constraints of this model and specified 

variables.  For those organizations that rely on finding a location or entity as 

quick as possible, this research will present a potential technological framework 
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that automates this process as much as possible (in an aided manner – not 

automatic).  Especially when teams don’t have time to train on communication 

skills – a consideration organizations might have to make when time and 

resources are limited.  Additionally, this will provide a framework to predict 

performance of a team with variable degrees of communication skills and SA.  

Linking this improvement in the removal of geographical location uncertainty that 

can be spread within the model, it will provide additional research on the impact 

of GLU in human and non-human entities and its impact on collaborative efforts 

in location accuracy.  Ultimately, this research will provide solutions to improve 

performance on the “Yellow Taxicab” problem from Chapter 1 – finding solutions 

to the problem in order to to solve it faster and more accurately.  With solutions 

based on highly trained teams (with higher SA) or with AiTR technology that 

provides the same benefit as training.  
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4. MATERIALS AND METHOD 
 
 
 

4.1. Utilization of Modeling and Simulation 

Other than the prohibitive cost of actually setting up an experiment with all 

the vehicles, sensors, communications equipment, and personnel, this work will 

utilize a set of models and simulation engines to replicate the experimental 

environment.  The main reason to use a simulation is that based on the models 

utilized, it is possible to explore multiple factors in fully controlled environment 

(Amaran et al. 2014).  For this work, weather and all other environmental 

conditions will be removed to simplify the experiment.  In this simulated 

environment, all vehicles and equipment can be programmed work at designated 

performance levels while the dependent variables of the experiment are changed 

for different iterations.  This allows the isolation of independent and dependent 

variables so an optimized model can be determined. 

Another reason for utilizing a simulation is the difficulty in setting up and 

approving a human-based experiment.  This would be costly as explained 

previously, but would require significantly more time to prepare and execute as 

training, coordination, and the timeline required to incorporate live performers 

would make this experiment.  A simulation also allows exponentially more 
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iterations of an experiment that keeps most of the independent variables stable 

so the dependent variables can be accurately evaluated. 

Research also supports the use of detailed scenarios to simulate high 

levels of psychological complexity for crew planning and execution tasks, 

including criterion stressors such as time pressure and information overload.  

Evidence supports this even when physical fidelity in the scenario is low (e.g. 

consisting only of a desktop computer and multiple monitors) (Prince and Jentsch 

2001; Noble 2002; Toups et al. 2011; Hamstra et al. 2014).   

For example, a program is described by Stout et al. (1998) on research 

investigating low physical fidelity training simulation.  This experiment evaluated 

multiple two-person military aviation crews on the success of low physical fidelity 

simulated training through the performance on certain communication and SA 

tasks.  The low physical fidelity training simulation consisted of two networked 

desktop computers and communications via intercom, and not an expensive 

aviation simulator or live flight training.  Evaluation was conducted on the crew 

through interdependent tasks, emphasizing team skills such as mission analysis, 

communication, leadership, adaptive performance, situational awareness, and 

shared decision making.  Results indicated that low fidelity training simulations 

were significantly comparable to more expensive training methodologies when 

comparing these cognitive skill sets.   

Similarly, in a review of 58 studies concerning training on communications 

and SA by Fiore and Salas (2004) concluded that findings support the use of low-
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physical fidelity simulators for communication and SA training and that this 

training has led to positive attitudes, learning, and behavioral changes on the job.  

Recently, there has been burgeoning research on simulation-based training in 

health care settings.  As with emergency response and military teams, members 

of health care teams typically have different areas of expertise, and teams 

operate in ambiguous, dynamic environments in which problems may have 

multiple possible solutions and require rapid decision making based on 

communications and shared SA.  Studies in health care have come to many of 

the same conclusions as research in aviation and other military tasks or settings 

regarding assumptions about how simulated, low physical fidelity and the need to 

apply learning principles to the design of simulation-based training is very 

important (Graafland et al. 2012; Norman et al. 2012; Mcrobert et al. 2013; Salas 

et al. 2013; Hamstra et al. 2014; Benishek et al. 2015). 

4.2. Creating a Simulated Environment 

In order to create the baseline required for this research, the experiments 

require a simulation environment that is capable of accurately replicating the 

aspects that affect the detection and identification of a specific entity.  The 

simulation would need to have the capacity to replicate the DSA model will 

integrating geographical location uncertainty, human communication 

performance, the human visual system, mental constraints, and the physics 

based operational properties of the aerial platforms and their associated sensors.  

The Fusion Oriented Command, Control, Communications, Computers, and 
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Intelligence (C4ISR) Utility Simulation (FOCUS) engine’s basic functions can 

support most of these requirements and with some minor alterations, that will be 

discussed later in this work, can meet all of them.   

4.2.1. Fusion Oriented Command, Control, Communications, Computes, 

and Intelligence (C4ISR) Utility Simulation (FOCUS) - the 

Simulation Engine 

FOCUS was developed by the U.S. Army Material Systems Analysis 

Activity (AMSAA) to utilize authorized engineering models of platforms and 

sensors in order to analyze C4ISR’s impact on tactical decision making 

(Harclerode 2015; AMSSA 2019).  It is designed to simulate the performance of 

C4ISR systems and to permit rapid analysis and interpretation of simulation data 

for research or operational analysis.  With the ability to simulate events down to 

platform-level resolution (vehicle, aircraft, dismounted soldier, etc.) it also 

replicates the behaviors of these platforms and also the targeted entities such as 

movement, collection, acquisition, and communications in robust code modules 

that can predict overall performance of C4ISR systems of systems (Jones et al. 

2011).   

This simulation was specifically built to simulates surveillance and 

reconnaissance processes, including sensor performance, tasking and collection; 

the exploitation and processing of data from all sources, the fusion of this 

information into tracks, and the communication of current predicted tracks to a 

visual simulation of entities and events in a three-dimensional battle-space. 
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It was designed to represents entities at the platform and sensor level. 

Behaviors such as movement, collection, acquisition, and communications are 

defined for each entity by the user when setting up the vignette.  These 

behaviors can either be manually generated or by constructing a flow diagram of 

built-in, autonomous tasks along with dynamic conditionals and events (Jones et 

al. 2011; AMSSA 2019). 

It has its own terrain database with low to high resolution terrain.  It also 

includes a post-processing analysis toolkit is integrated into FOCUS to filter the 

output file and extract the desired results. The results can be viewed using the 

internal FOCUS graphs or exported for further spreadsheet analysis (AMSSA 

2019).   

Utilizing chronological, physics-based algorithms, FOCUS was designed 

to calculate and then analyze the capacity of a sensor to capture an entity within 

its Field of View (FOV) (AMSSA 2019).  This algorithm incorporates multiple 

factors from the distance and speed of the platform carrying the sensor, to the 

angles between the sensor and targeted entity.  It then calculates the probability 

of capture every second of the simulation.  These results are then calculated with 

a corresponding TTPM table for the specific sensor to determine the probability 

of a human operator to detection and/or identification a specific entity within the 

captured image (Boettcher et al. 2010).  This probability is based upon the 

distance, size, and other characteristics of the entity.  To simplify the 

calculations, probabilities are based on the engineering models from a library of 
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platforms and different sensors and the TTPM.  Outcomes can be presented in 

several ways, but is based on the how long an entity was detected, identified, or 

tracked during a simulation’s duration.  This is demonstrated in Figure 23. 

 

 
Figure 23  FOCUS Process diagram.  Source (Burghardt et al. 2015). 

 

 FOCUS uses a sensor system (sensor and platform) in conjunction with 

the environment, platform behaviors, and target object to create a different set of 

figures of merit or output (task performance).  Each terrain point or potential 

target, within the footprint of the sensor or field of view, is evaluated for each 

platform location to determine line of sight and probability of detection and 

identification of the specific entity or all entities within the field of view.  The 

output, or figures of merit, include an average probability of line of sight / 

detection / identification for the terrain and platform locations (Harclerode 2015; 

Burghardt et al. 2015; AMSSA 2019).   
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4.2.2. Validation of the FOCUS model and Availability 

Since FOCUS was created by AMSAA, this is the first public research that 

will utilize this program.  As per Army Regulation (AR) 5-11 Management of Army 

Modeling and Simulation (M&S) (2014), Verification and Validation (V&V) is 

required for all Army M&S programs.  In this regulation, “verification is the 

process of determining that the M&S accurately represents the developer’s 

conceptual description and specification. Validation is the process of determining 

the extent to which the M&S is an accurate representation of the real world” 

(2014).  This V&V was conducted by Burghardt et al. (2015)  of FOCUS in which 

they conducted a comparative sensor performance analysis on Electro-

Optical/Infrared (EO/IR) sensors.  However, as this is a propriety program, not all 

aspects of the V&V are public.  The report that Burghardt et al. conduct in 

Technical Report 2015-34 was reviewed by me.  This report provided the 

necessary evidence I required to ensure that my experiments would be using a 

valid and verified simulation and authoritative models.   

Concerning the actual V&V, part of the report goals was to ensure the 

sensors accurately interacted with terrain, environmental conditions, vehicles, 

objects, and other entities that exist within a complex environment.  Finally, they 

conducted tests to ensure all the sensor modules (engineering models) and the 

simulation evaluated the ability of different sensors and platforms to detect, 

identify, and track specific entities in a real-world vignette. 
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The results of the test verified all algorithms and methodologies, 

specifically the TTPM, incorporated into FOCUS that represents entities at the 

platform level (e.g. aerial vehicles) and at the sensor level (e.g. EO/IR sensors) 

with respect to behaviors such as movement, collection, acquisition, and 

communications.  For review of these results, requests should be made to 

Director, US Army Materiel Systems Analysis Activity, 392 Hopkins Road, 

Aberdeen Proving Ground, MD 21005-5071 to request Technical Report No. TR-

2015-34 (Burghardt et al. 2015)  The software for FOCUS is free of charge, but 

requests should also be made to the same address.   

4.3. Modeling the Different Aspects of the Research Question 

This work will utilize the simulation FOCUS to set-up and run the required 

experiments.  This section begins with an explanation of the equations used in 

the experiment and followed by more explanation on how the simulation FOCUS 

utilizes the data used in the experiments.  Data for the experiments is based off 

of the information provided with authoritative FOCUS database on both the 

platforms and the sensors.  Sensor data is based off of the TTPMs established 

for each sensor that is inherent in the simulation (see section 2.8).   

As a baseline in execution for each experiment, the target entity (yellow 

taxicab) is stationary within the starting point at the beginning of each iteration of 

the experiment.  This location is hidden from all sensors and the entity cannot be 

detected until it leaves the facility.  Once the simulation clock starts, the target 

entity will randomly leave the facility based on a random number generation 
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between 0 and 300 seconds.  Upon exiting the start point, the target entity will 

follow the same path and at the same speed for every iteration.  However, this 

random departure will place the platforms and sensors in different locations on 

the map.  Combined with the masking of the buildings, the first detection of the 

target entity will occur randomly for each iteration.  Also, this means that each 

iteration will have different angles between the target entity which will place 

different buildings within the line of sight of the sensor and target entity.  Intent for 

this random start time is to reduce any detection and identification anomalies that 

might occur due to beginning positioning of the platforms and entities.  This will 

also create a wide variation in the results as some iterations might be masked by 

buildings for most of the timeframe, resulting in lower performance numbers. 

4.3.1. Replicating the Platforms, Entities, and Sensors 

In FOCUS, platforms are entities representing a particular individual piece 

of equipment.  To accurately represent this entity, the model must maintain real-

world physical attributes (signatures) for each platform in addition to performing 

realistic movements in accordance with different terrain.  According to verification 

and validation analysis conducted by Burghardt et al. (2015) and verified by me 

from the report(Jones et al. 2011; Burghardt et al. 2015; AMSSA 2019), all 

characteristics of the platforms are represented accurately. 

These characteristics have been recorded by previous experiments 

(Burghardt et al. 2015) and are accurately incorporated into the FOCUS 

database.  Specifically, for this experiment, the MQ-1C Extended Range Multi-
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Purpose (ERMP) UAS, commonly named Gray Eagle, is utilized for the sensor 

carrying platform, and a standard, yellow taxicab is the specific entity that the 

sensors system will detect and identify.  

The sensors utilized in this experiment is categorized under Electro Optic / 

Infra-red (EO/IR) (see section 2.10).  Burghardt et al. (2015) and I verified from 

this report that the sensors in the database specify that the following 

characteristics are the essential sensor parameters necessary for a valid 

representation: 

• FOV Modes  

o Acquire-Targeting Task Performance Metric (TTPM) Shortcut 

Tables  

o Horizontal and Vertical Angles [degrees]  

o Magnification  

• Gain Parameter (IR only)  

For this experiment, I chose to use the MQ-1C platform, MX-20 High 

Definition FMV EO/IR sensors and the Redkite WAMI sensor (see section 2.10).  

I have spent many years utilizing and researching these platforms and sensors.  

This knowledge of these systems allows me to rapidly verify and understand the 

output that FOCUS is producing off of these systems. 

Within the experiment, one MQ-1C platform equipped with the MX-20 High 

Definition (HD) Fully Motion Video (FMV) EO/IR sensors will be utilized for 

identifying the entity within its narrow Field of View (FOV) (see section 2.10.1).  
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Another MQ-1C equipped with the Redkite, lightweight Wide Area Motion 

Imagery sensor will use its sensor to detect entities within its large FOV.  The 

FOV for both sensors depend on its magnification.  FOCUS can change the 

magnification when the entity is located within its FOV.  For the MX-20 EO/IR 

sensor, the sensor will begin at a wider FOV, and FOCUS will move it to a 

narrower FOV once the image is detected for identification purposes.  The 

RedKite sensor will remain at a wider FOV since its responsibility is to detect 

entities (see section 2.10.2).   

Utilizing the EO/IR sensors in FOCUS, there are several assumptions that 

must be accepted.  The first is that the Acquire-Targeting Task Performance 

Metric (TTPM) is a valid representation for determining probability of 

detection/identification.  Second, the default Field of View (FOV) used is the 

widest that has a probability of detection (P(d)) for a vehicle target of at least 0.7 

unless otherwise set by the user.  Third, the time limited search methodology is a 

valid representation of timing considerations for search and target acquisition 

processes.  Fourth, each sensor has a dedicated human operator/analyst.  Fifth, 

FOV is be defined by a horizontal and vertical angle.  Sixth, the sensor stays 

centered on target when tracking (Burghardt et al. 2015).   

4.3.2. Building the Terrain 

FOCUS has the ability to represent real world terrain data and other 

various environmental conditions and entities in order to accurately simulate 

vignettes that replicate real-world events for studies.  Environmental parameters, 
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buildings and terrain data, along with its coordinate conversion within the model, 

were verified and validated in accordance to real world data (Jones et al. 2011; 

Burghardt et al. 2015; AMSSA 2019).   

For this work, the simulation terrain data came with the FOCUS program, 

which was extracted from the National Geospatial Agency (NGA) geographical 

data (high resolution) repository which is within the terrain database within 

FOCUS.  To acquire this terrain, contact the Director, US Army Materiel Systems 

Analysis Activity, 392 Hopkins Road, Aberdeen Proving Ground, MD 21005-

5071.  Similar LiDAR maps can be downloaded from other sources, and there 

are other terrain models within FOCUS (e.g. Fallujah, Iraq).  These sources 

include the NOAA data access viewer (2019b) or from the United States 

Geological Survey (2019).   

Samarra is a city in Iraq, approximately 78 miles north of Baghdad on the 

Tigris River (as depicted in Figure 24).  In 2004, the city had an estimated 

population of almost 214,100 (Tesch 2019, c).   

 

 
Figure 24  City of Samarra within the borders of Iraq.  Source (BBC News 2007) 
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Samarra is known for its historical, religious sites to include the Great 

Mosque of Samarra.  Most of the city’s economy is based on tourism and 

academic / archeological studies with little industry.  I chose to use it in this 

experiment since it was already cleaned up and ready for experimentation based 

on previous research by AMSAA.  This allowed a quick access to an urban 

terrain that could be readily incorporated into FOCUS without additional work.  

The terrain database was created in 2004 from the collection of LiDAR scans 

from military platforms to develop a detailed map of downtown Samarra as 

depicted in Figure 25.   

 

 
Figure 25 View of the section of Samarra that was mapped with LiDAR and used 
in this work.  This is a 8x5 km rectangle.  Source (Google Earth 2019). 
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This area consists of tightly packed multistory buildings (3-4 story) with 

narrow streets and larger intersecting wide avenues as depicted in the LiDAR 

image in Figure 26. 

 

 
Figure 26 LiDAR picture of downtown Samarra, Iraq viewed in the FOCUS 

simulation.  Source FOCUS. 
 

 

 
Figure 27 View of a street along the target's route as seen in LiDAR 

(Source FOCUS) and approximately the same image from Google Earth (2019). 

 

As seen in Figure 27, visual buildings are not imported into the simulation 

to reduce computing requirements.  LiDAR has captured the rough size, height, 
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and shape of the buildings and in FOCUS have the ability to block the signal 

emissions so sensors cannot detect entities that are shadowed by the buildings.  

For this work, the details of the building are irrelevant.  Their rough size is 

required in order for them to create line of sight blocking between the specified 

entity and the sensor (on the platform).  This is a common problem in urban 

terrains (Williams et al. 2014).  Therefore, the basic LiDAR imagery meets the 

objects of the terrain for this experiment, to block the line of sight between the 

sensor and target entity depending on the angle and location of each entity in the 

scenario.  This replicates a real-world vignette for this experiment. 

According to the U.S. Bureau of the Census (1994) , an urban area is 

defined as a continuously built-up area with a population of 50,000 or more 

people.  Additionally, the U.S Census Bureau (1994) would classify Samarra as a 

metropolitan area or city; however, it size is in the small category (<250,000).  

Samarra wasn’t picked because it is an ideal candidate for this research, it was 

chosen because it provides the foundational urban environmental conditions I 

wanted for the experiments.   

In order to make the urban environment more complex, additional vehicles 

are added to the map in order for the analysts to distinguish between different 

vehicles.  Even though Samarra wouldn’t have vehicular traffic as in a developed 

world, additional vehicles were added to this map to create a more complex 

environment with higher traffic density for this experiment.  According to the 

Highway Capacity Manual (2014), Traffic density is defined as the number of 
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vehicles occupying a unit length of roadway.  Optimum density is normally 

around 36 to 48 vehicles per lane mile.  There are approximately 60 miles of 

roads within the 24 miles2 of the LiDAR model of Samarra. 2,880 vehicles are 

moving on these roads, providing a density of 48 vehicles per miles, which is 

heavy, but free flowing traffic (Roby 2014)  An additional 9,363 vehicles are 

parked within the city, along the roads, within parking lots, or other locations, for 

a total of an additional 12,243 vehicles were added to the map.  This 

incorporation of vehicles and traffic creates conditions of a busy, complex urban 

environment with vehicles, moving and stationary, within the boundaries of the 

terrain.  The intention of this addition was to increase the complexity of the 

environment and to create a more difficult detect and identification field for the 

operators.   

At the start of the simulation, half of these vehicles will begin to move 

along designated routes, while the specific entity, or target in this scenario, will 

begin traveling along its route.  The intent of these vehicles is to create the 

background clutter that a human operator must shift through (moving and 

unmoving) in order to find the specific entity.  Additionally, these additions 

replicated a traffic pattern of a busy city with flowing traffic (Deaver et al. 2009; 

Elliethy and Sharma 2016).  Due to the limitations of the program, no pedestrians 

were incorporated and no traffic regulation technologies (e.g. traffic lights) were 

incorporated into the simulation.  All traffic continuously flowed with vehicles 

continuously starting and stopping on their assigned routes without an 
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hinderance.  Additionally, the simulation is unable to replicate collisions so all 

entities passing through each other (but not the buildings).  Hypothetically, this 

could make detecting and identification a vehicle more difficult, but the impact of 

that variable is not addressed in this experimentation. 

4.3.3. How FOCUS Detects and Identifies a Specific Entity 

EO/IR target acquisition performance is measured using the Acquire-

TTPM model, which determines a probability of detection and identification 

between a sensor and a target (Burghardt et al. 2015).  As described by Hixson 

et. al (2017), Acquire-TTPM was designed to reduce a simulation’s 

computational requirements during large scale testing and evaluation events 

while still supporting the TTPM.  Acquire-TTPM utilizes precomputed tables for 

specific sensors based on scene conditions and three coefficients that can be 

easily referenced by the simulation.  FOCUS utilizes Acquire-TTPM through 

these three equations (Hixson et al. 2017). 

 

Equation 6 

𝑿𝒎𝒊𝒏 =
𝑿𝟏
𝝎
+𝑿𝟐 

 

Equation 7 

𝑨 =
𝑳𝟏

𝟏 + 𝑨𝟏𝝎
𝑨𝟐
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Equation 8 

𝑨𝒄𝒒𝒖𝒊𝒓𝒆 − 𝑻𝑻𝑷𝑴 = 𝑨(|𝑪𝒕𝒈𝒕| − 𝑿𝒎𝒊𝒏)
𝑩
 

 

Equation 6 determines the value of Xmin which represents minimal size of 

the target needed to detection.  Equation 7 determines A, which represents the 

eye angle correction.  Equation 8 is the updated Acquire TTPM values which is a 

function of the contrast of the target (Ctgt) - calculated by FOCUS Xmin (minimal 

size of the target at a specific distance), and A (eye angle correlation).  A1, A2, 

X1, X2, B, and L1 = sensor specific calculated parametrized values based off 

numerous iterations of calculating the TTPM and fitting results to the form.  𝜔 is 

the value of the angular size of the target, calculated by FOCUS. 

Building the Acquire-TTPM tables requires these calculations to be run for 

each sensor in order to determine the CTF function.  Then this function is used to 

create the tables utilized by FOCUS (Harkrider et al. 2014).  he Acquire-TTPM 

implementation for each EO/IR sensor type (MX-20 (EO/IR), RedKite (WAMI)) 

maps back to an authenticated engineering level model.  The Acquire model is a 

rolled-up version of the engineering level model that is less computationally 

expensive and more appropriate for real time simulations.  Acquire-TTPM is a 

validated model backed by empirical data and is the U.S. Army standard for 

EO/IR target acquisition performance (Gerhart 1996; Hixson and Teaney 2016; 

Hixson et al. 2017).  Within FOCUS, the Target Acquisition Draw Methodology 

(TADM) is used in conjunction with the Acquire-TTPM output to decide whether 
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or not a target is detected.  The TADM was altered in FOCUS to not allow false 

or bad draws of percentages in order to prevent a single target entity or single 

sensor from becoming incapable of being detected or making detections.  These 

bad draws would create a mathematical problem (e.g. zero in a denominator) or 

other forms that invalidate the data and create either the simulation to fail or 

zeros out a probability based on the limitations of the.  The change is that the 

observer/target draw is redrawn for each detection opportunity and results are 

based on the probability of detection and identification of the Acquire-TTPM 

(Teaney and Reynolds 2010; Maurer et al. 2013).  These results are incorporated 

into a table (see Table 2 below) for every sensor that is utilized by the FOCUS 

program.  

As a validated standalone model, Acquire-TTPM data is based on 

empirical data from perception experiments of trained experiment subjects 

finding targets in EO/IR imagery (Burghardt et al. 2015).  FOCUS has an 

Acquire-TTPM database for every sensor that captures the probability of 

detection or a probability of identification based on the slant range between the 

sensor and the targeted entity.  As defined by FOCUS, the slant range is the 

direct line, in meters, between the aerial platform and the terrestrial target entity.   

In the FOCUS Acquire-TTPM database, this probability is represented as 

P(inf) to indicate the probability of completing the performance task if given 

infinite time with a single image.  This is the baseline that FOCUS uses to 

calculate the probability of task completion for every second of the simulation 
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scenario length as a function of range (Burghardt et al. 2015).  As depicted in 

Tables 2 and 3, the probability of completing the task (detection or identification) 

is a function of the slant range (distance between the aerial platform and ground 

based targeted entity).  As the range increases, the probability of success 

decreases.  The minimum range used in this work is 2500m, since that is the 

minimum height the MQ-1C platforms will fly.  If the platform is directly above the 

target entity, they will have a slant range of 2500m.  Since the Acquire-TTPM is 

based on the TTPM, the initial data was calculated utilizing a 50% probability of 

success within TTPM, as depicted by V50 in Equation 5.  Using that value, the 

range is then calculated.  This is why the 0.5 probability has a unique slant range 

that is not rounded as the other ranges.  FOCUS and Acquire-TTPM then 

calculate the remaining ranges based off this 0.5 probability.  This capability will 

be used later in this work when incorporating other factors that will impact the 

TTPM value.  For this work, the base data for the FMV and IR sensors are in 

Tables 2 and 3. 
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Table 2 Acquire- TTPM data for the MX-20HD FMV sensor extracted from 
FOCUS for probability of detection and identification.  With the sensor as 2500m, 
P(inf) is the probability of detecting or identifying the specific entity at a distance 

of Rng (meters) given infinite time. 

 

 

Table 3 TTP metric data for the MX-20HD IR sensor extracted from FOCUS for 
probability of detection and identification.  With the sensor as 2500m, P(inf) is the 

probability of detecting or identifying the specific entity at a distance of Rng 
(meters) given infinite time. 

 

 

The main difference in this base data is that the probability of detecting a 

target entity is significantly higher than identifying it.  This is due to the additional 

cognitive resources and time required to identify a specific entity over just 

Detect on MX-20 HD FMV Identify on MX-20 HD FMV

Altitude 2500m Altitude 2500m

P(inf) Rng (meters) P(inf) Rng (meters)

0.982 2500 0.500 2500

0.949 3000 0.490 2566

0.878 3500 0.372 3000

0.778 4000 0.264 3500

0.664 4500 0.186 4000

0.549 5000 0.132 4500

0.500 5228 0.094 5000

Detect on MX-20HD IR Identify on MX-20HD IR

Altitude 2500m Altitude 2500m

P(inf) Rng (meters) P(inf) Rng (meters)

0.999 2500 0.750 2500

0.999 3000 0.691 3000

0.999 3500 0.610 3500

0.999 4000 0.535 4000

0.999 4500 0.500 4272

0.998 5000 0.471 4500

0.500 12222 0.414 5000
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detecting it.  This is based on research utilizing subjects to detect and identify 

entities on computer monitors as detailed in the TTPM section, section 2.8 

(Vollmerhausen 2004; Preece et al. 2014).   

4.3.4. Updating the Methodologies in Finding and Identifying an 

Entity 

Given the initial methodology of find, fix, track, FOCUS needs to answer 

the “how” this is accomplished within its simulation.  Compared to the Acquire-

TTPM tables that is based on the probability to complete a task given infinite 

time, FOCUS requires an instantaneous result since there is a time constraint in 

the simulation.  Additionally, in most experiments and situations, operators are 

required to detect or identify a target by scanning a Field of Regard (FOR) larger 

than a single imager field of view seen on a computer screen.  In order to 

accomplish this task, FOCUS incorporates several methodologies described 

below (Maurer et al. 2013). 

• Target Acquisition Draw (TADM): uses a weighted set of three random 

draws to account for variability. 

• Step-stare search: approximates the human search process in a FOR 

as a series of individually interrogated fields of view (FOV).  The FOR 

is searched from left to right, top to bottom. 

• Time-limited search (TLS): this is the required, consecutive seconds of 

consecutive task performance (detection or identification) successes 



112 
 

for the task to be complete based on task difficulty as displayed in 

Table 4.  

 

Table 4 TLS values based on Task Difficulty for Ground Vehicle Targets 

 

 

With these methodologies, Acquire-TTPM is integrated into them in order 

to form a complete target acquisition process.  As shown in Figure 28, FOCUS 

divides the Field of Responsibility (FOR), this covers the area the sensor is 

responsible for searching – established in the program of the simulation, into 

individual FOVs, or the viewable area of the sensor or optic placed displayed on 

a computer screen (Hixson et al. 2017).  Each FOV is then searched, left to right 

and top to bottom.  If FOCUS determines that the FOV has the target in it, and 

not obscured by terrain or objects, the probability is detected using the Acquire-

TTPM based on the range model.  It continues to calculate the probability of 

detection or identification compared to the weighted random draw calculated by 
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using TADM to determine a final probability of target detection.  Once calculated, 

FOCUS uses the TLS model to determines if the observer had time to detect the 

target.  If enough time was calculated to detect the targeted entity, determined by 

TLS, FOCUS randomly determines if the target was detected (based on 

probability).  If the targeted entity is determined to be detected, the next step is 

identification (Burghardt et al. 2015). 

 

 
Figure 28 FOCUS Find and Fix (a.k.a detection) flowchart.  Source (Hixson et al. 

2017) 

 

In order to determine if the detected entity is the targeted entity, FOCUS 

must apply the Find and Fix process in Figure 29 for identification.  As with 

detection, the probability of identification is calculated utilizing the Acquire-TTPM 

based range model as presented in Figure 28.  Compared to the same TADM 

draw for detection and the same TLS, the probability for identification is 

determined and tested.  With a result of no identification, FOCUS will check if 

increased magnification is possible.  If this possible, magnification is increased, 

resulting in higher probability of identification, and re-tested (Burghardt et al. 
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2015).  Consecutive successes that meet the TLS values will result in a recorded 

success for identification of the target. 

 

 
Figure 29  FOCUS Identification flowchart.  Source (Hixson et al. 2017) 

 

4.3.5. Incorporating Human Cognition Through Team Performance 

Communications into FOCUS 

Since Acquire-TTPM contains probabilities of different aspects of EO/IR 

target acquisition, it determines the performance of a single human operator to 

detect or identify a target entity.  In order for this work to incorporate team 

performance, the ability of two human operators to execute their assigned 

functions must be integrated into the model.  This will require augmenting the 

Acquire-TTPM model with a unique addition of team performance based on 

communications found in the research of Ahmed et al. (2014).  Utilizing these 

validated human performance models to replicate interactions and to determine 
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the ability to predict system performance with multiple operators, especially as 

system complexity increases and its properties change over time.  Incorporating 

additional technology will hypothetically reduce complexities in the system, 

thereby reducing the mental load for an operator which can improve their 

performance.   

Augmenting the Acquire-TTPM model with Ahmed et. al. (2014) human 

performance model will incorporate more complexity the target acquisition 

system within FOCUS.  Previous research (Bayrak and Grabowski 2006; Manoj 

and Baker 2007) have indicated that poor network reliability and variability in 

response time decreases human performance, compounding to larger system 

inefficiencies.  Overall, as network complexity increases, which leads to more 

demands on the human operator, the whole system’s performance starts to 

degrade (Artman and Garbis 1998; Cooke et al. 2005; McKendrick et al. 2014).  

These research studies support the hypothesis that as a system or networked 

system increases in complexity, which results in an intensification on the task 

load of the human operator, the overall efficiency and effective of the system 

decreases.  Therefore, adding the value of this human cognition performance 

metric should reduce the Acquire-TTPM value utilized in FOCUS.  The values 

that will degrade the Acquire-TTPM values are from Table 1.  These values will 

be explained in subsequent sections. 
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4.3.6. Replicating Geographical Location Uncertainty (GLU) 

The last variable that needs to be incorporated into this experiment’s 

construct is imprecision in geographical location.  As discussed previously, one 

method to account for all of the inaccuracies in geographical location is to model 

the uncertainty (Heuvelink 1998).  For this work, the inaccuracies within the 

system have propagated to the first observer – the one trying to detect the entity 

or target.  With the inclusion of the first human operator’s errors, a level of 

uncertainty in location is communicated to the second observer – the one trying 

to identify the entity.  For this scenario, the uncertainty is manifested through 

errors in positional accuracy.  Therefore, the second human operator must detect 

and then identify a specific entity while working with the cumulative GLU from the 

first sensor all the way to their own internal, cognitive errors.  FOCUS can 

replicate this in the function TLS with more difficult tasks requiring more time to 

complete the task based upon the difficulty level from table 4.  For this work, the 

TLS will be impacted by the cognitive performance score from Table 1.  As 

communications between the “Detector” and the “Identifier” degrade, the GLU will 

increase, resulting in the task difficulty to increase, and it will take longer for the 

“Identifier” to complete their assignment.  In order to implement this into FOCUS 

and the experiment, the task difficulty in FOCUS will be altered to replicate the 

differences in the SA score based on the communication performance metric 

(Low, Medium, or High) from table 1.  The result will be that these scores will 
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increase the time (in seconds) required for task competition: 0.08 for High; 0.19 

for Medium; 0.32 for Low.  These values are presented in Table 5. 

 

Table 5  TLS task difficulty scores based upon Cognitive Performance Score 
Degradation.  Red indicates the scores used for this work. 
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Since the time to complete the task increases as the SA level decreases, 

this will replicate the increase the time to communicate in FOCUS.  This is due to 

the message quality being poor and the time to communicate the location of the 

entity takes a longer time to execute.  While this explanation is occurring, the 

vehicle will continue to move and the GLU area will also increase in the 

simulation – increasing the difficulty of the second analyst, the “identifier,” to 

accomplish their task; therefore, GLU is directly related to the MQ.  As the MQ 

decreases, it will increase the time it takes to communicate the location of the 

target, increasing the GLU within the simulation and ultimately reducing the 

performance value of the “identifier.” 

4.3.7. Explanation of Experiment’s Structure 

 As explained previously, this experiment will utilize simulated entities 

within FOCUS to address the this works hypotheses.  As depicted in Figure 30, 

which is a screen shot from the FOCUS program, the targeted entity moves 

within the simulated urban terrain, the detecting platform (MQ-1C UAS) with its 

RedKite WAMI sensor will fly over the terrain at optimal height, at a specified 

speed, and following a directed flight pattern (large oval).  Its sensor will detect 

entities within its FOV and the “Detector” will attempt to identify the targeted 

entity once it leaves its Area of Interest (AOI) that is being continuously 

monitored by the Detecting Platform and Sensor.   

Once a possible targeted entity is detected by the “Detector,” they will 

communicate the location of the potential targeted entity to the “Identifier.”  The 
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identifying platform is also flying at an altitude of 2000m, at a constant speed and 

following its own flight pattern (large “figure eight”) will then change its flight 

pattern to try and maintain a constant 2000m from the targeted entity.   

 

 
Figure 30 Screen shot from FOCUS depicting platform flight patterns and sensor 

FOVs 
 

The “Identifier” will then search the location in order to detect the targeted 

entity communicated by the “Detector.”  If the identification platform is not within 

range or the target is obscured by a building, the hand-off will not be made and 

the request will be dropped.  However, the identification platform will move 

toward the target location in order to place the identification sensor within range.  

While this maneuvering is occurring, the target entity will continue to move along 

its designated route and the detection platform will continue to conduct 

detections.  If the hand-off is made to the “Identifier” and the entity moves behind 
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a building (based on the new angle and slant of the identifying platform) and the 

complete FOV is scanned without detection, this iteration will be labeled “lost” 

and the process starts again if the “Detector” is still tracking the targeted entity.  If 

not, the search of the Field of Responsibility (FOR) by the “Detector” begins 

again.   

If the targeted is acquired by the “Identifier,” they will try to positively 

identify that the potential entity is the actual targeted entity utilizing the MX-20 

high definition video sensor on their own platform.  Values for detecting and 

identifying are resident within FOCUS, but the detecting and identifying 

probability of the “Identifier” will need to be degraded through the TLS function 

based on values from Equation 6 due to the added complexity, variable levels of 

communication quality, incorporated into the process. 

 Therefore, the original value Acquire-TTPM value for detection will remain 

unaltered for the “Detector.”  The Acquire-TTPM value for detection and 

identification of the “Identifier” will be degraded according the values in Table 6.  

Since these values for Y increase as the better values for TL, MQ, WM improve, 

there should be in inverse relationship with Acquire-TTPM.  As the performance 

measure of cognitive ability for communication (value Y) increases, there should 

be less of an effect on Acquire-TTPM probabilities, as shown in Equation 9. 

 

Equation 9 

Experiment TTPM = Acquire TTPM – (1-Y) 
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Y = Performance metric for Cognitive Ability from Equation 1 

FOCUS will ingest this information through the Acquire-TTPM tables 

within the program.  Utilizing existing edit programs (designed within FOCUS), 

the Acquire-TTPM tables values from table 2 and 3 will be replaced with the 

Experimental TTPM with the following values from Equation 9. 

 

Table 6  Experiment TTPM values that replace Acquire-TTPM 

 

 

As discussed in section 2.8, the original 0.5 and unique range is the basis 

for how Acquire-TTPM creates the required tables in FOCUS.  For each 

Detect on MX-20 HD FMV Detect on MX-20HD IR

0.08 0.19 0.32 0.08 0.19 0.32

P(inf) Rng High Med Low P(inf) Rng High Med Low

0.98 2500 0.90 0.79 0.66 0.99 2500 0.91 0.80 0.67

0.95 3000 0.87 0.76 0.63 0.99 3000 0.91 0.80 0.67

0.88 3500 0.80 0.69 0.56 0.99 3500 0.91 0.80 0.67

0.78 4000 0.70 0.59 0.46 0.99 4000 0.91 0.80 0.67

0.66 4500 0.58 0.47 0.34 0.99 4500 0.91 0.80 0.67

0.55 5000 0.47 0.36 0.23 0.99 5000 0.91 0.80 0.67

0.50 5228 0.42 0.31 0.18 0.50 12222 0.42 0.31 0.18

Identify on MX-20 HD FMV Identify on MX-20HD IR

0.08 0.19 0.32 0.08 0.19 0.32

P(inf) Rng High Med Low P(inf) Rng High Med Low

0.50 2500 0.42 0.31 0.18 0.75 2500 0.67 0.56 0.43

0.49 2566 0.41 0.30 0.17 0.69 3000 0.61 0.50 0.37

0.37 3000 0.29 0.18 0.05 0.61 3500 0.53 0.42 0.29

0.26 3500 0.18 0.07 0.00 0.54 4000 0.46 0.35 0.22

0.19 4000 0.11 0.00 0.00 0.50 4272 0.42 0.31 0.18

0.13 4500 0.05 0.00 0.00 0.47 4500 0.39 0.28 0.15

0.09 5000 0.01 0.00 0.00 0.41 5000 0.33 0.22 0.09

Cognitive PerformanceCognitive Performance

Cognitive Performance Cognitive Performance
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Cognitive Performance value, the range for the 0.5 value is determined and 

FOCUS automatically fills out the remaining tables based on internal algorithms. 

Overall, each iteration of the experiment will determine how many seconds 

a target was identified correctly (given how many times it was lost, blocked by 

building, or other factors that FOCUS replicates).  During these series in FOCUS, 

Experimental-TTPM and the task difficulties of TLS will be grouped together into 

High, Medium, and Low Situational Awareness (SA) levels that support this DSA 

model.  Each variation of SA (Low, Med, High) will be run 500 times in order to 

create a sufficient population.  The table of each iteration result will then be 

statistically analyzed to determine if the hypotheses are supported or not. 

4.3.8. Matching Experiments with Research Question 

Referencing the hypotheses, the first step is to create a baseline that the 

remaining experiments will be compared against.  This experiment will utilize 

FOCUS, in the scenario detailed previously, to execute 500 iterations for each 

dependent variable of the grouped SA level.  The output from these iterations will 

be statistically compared to ensure that each is significantly different from each 

other.   

The next step, and in order to determine the results for the second 

hypothesis, is to incorporate AiTR into the system.  In Figure 35, the AiTR 

technology connects all other aspects of the system in this experiment and 

leverages digital communications to reduce the requirement to verbally 

communication the yellow taxicab’s location.  The effects is that the digital 
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communications significantly decreases the effect of MQ resulting in an increase 

in probability to accomplish the required task.  Referencing Table 1, the 

assumption for this experiment is that since it reduces the TL of the operator with 

relevant messages, the cognitive performance metric for the AiTR would be the 

99% in the table.  When this is applied to Equation 9, the results that would be 

incorporated into the Experimental-TTPM is in the following table. 

 

Table 7  AiTR Experimental-TTPM values utilized by FOCUS 

 

 

Detect on MX-20 HD FMV Detect on MX-20HD IR

Altitude 2500m Altitude 2500m 0.01

P(inf) Rng High P(inf) Rng AiTR

0.982 2500 0.982 0.999 2500 0.989

0.949 3000 0.949 0.999 3000 0.989

0.878 3500 0.878 0.999 3500 0.989

0.778 4000 0.778 0.999 4000 0.989

0.664 4500 0.664 0.999 4500 0.989

0.549 5000 0.549 0.999 5000 0.989

0.500 5228 0.500 0.500 12222 0.490

Identify on MX-20 HD FMV Identify on MX-20HD IR

Altitude 2500m Altitude 2500m 0.01

P(inf) Rng High P(inf) Rng AiTR

0.500 2500 0.500 0.750 2500 0.740

0.490 2566 0.490 0.691 3000 0.681

0.372 3000 0.372 0.610 3500 0.600

0.264 3500 0.264 0.535 4000 0.525

0.186 4000 0.186 0.500 4272 0.490

0.132 4500 0.132 0.471 4500 0.461

0.094 5000 0.094 0.414 5000 0.404
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After conducting 500 iterations with this TTPM table, the results from the 

baseline would be compared to these results to determine if the hypothesis 

should be supported or not. 

 

 
Figure 31  Incorporating AiTR into the system   
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5. ANALYSIS OF RESULTS 
 
 
 

5.1. General Analysis Observations 

After conducting 500 iterations for each level of Situational Awareness 

(SA) in the DSA model, the first step is to determine the correlation between the 

data sets.  The correlation results for FMV SA levels are in Table 8 and the IR SA 

levels are in Table 9. 

 

Table 8  Correlation results for FMV SA Levels 

 

 

Table 9  Correlation results for IR SA Levels 

 

 

Both tables indicate a very high positive correlation between the data sets.  

This indicates that the data is linearly similar and provides evidence that data 

high med low

high 1

med 0.9981 1

low 0.9239 0.9301 1

high med low

high 1

med 0.9926 1

low 0.9400 0.9686 1
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collection between the data sets was normal, with not outliers or areas that need 

to be addressed prior to further analysis. 

The next analysis step is to visualize the data through a stacked histogram 

(all three data sets) overlaid with a normal distribution bell curve of the data sets 

to visualize how the data compares to one another.  Figure 32 compares the 

FMV SA data sets and Figure 33 compares the IR SA data sets. 

 

 
Figure 32  FMV SA Level Data Sets.  Histogram and Normal Distribution Curve 

 



127 
 

 
Figure 33  IR SA Level Data Sets.   Histogram and Normal Distribution Curve 

 

Comparing the frequency of the histograms for FMV (Figure 32), both the 

High and Medium results have distributions are left-skewed and favoring the 

higher results, with the High results heavily left-skewed.  The Low results are 

more bimodal but with more distribution at the lower results.  However, this 

analysis supports previous research that as the SA increases, due to training, the 

performance results also improve.  Low SA provided lower results and as the SA 

increased the distribution of the results skewed more heavily to the higher 

numerical results, not only in value (more seconds identifying a target) but also in 

frequency.   

Analyzing the results for the IR sensor (Figure 33) also follows the results 

for the FMV sensor.  However, the Lower SA was heavily right skewed with a 
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higher proportion of the results in the lower numerical values.  Medium SA results 

are more bimodal while the Higher SA results match the FMV High SA results 

and is left-skewed.  However, the distribution of the three levels are much closer 

together for the IR sensor than was presented in the FMV sensor. 

The more bimodal distribution suggests a transition in how the simulation 

calculated results.  This transition is more pronounced in the IR sensor due to the 

right and left skewed distribution of the Low and High results.  This transition 

seems to have occurred in the Low SA for the FMV sensor as the results 

markedly improve between Medium and High SA data sets.  This might indicate 

a variable or set of variables that are heavily influencing the results of the 

simulation and warrants additional research. 

Reviewing the descriptive statistics provides additional information on the 

analysis of the data.  As indicated by the analysis on the histograms and normal 

distribution curves (Figures 32 and 33), the descriptive statistics of mean and 

mode follow the same trends as shown in Table 10.  With numerically higher 

results for High SA over the Medium and Low SA results.   
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Table 10 Descriptive Statistic Results for different levels of SA, 500 Iterations 

 

 

For all the results in all the SA levels, FMV and IR, the standard deviation 

is high.  This is supported by the analysis concerning the histograms and normal 

deviation curves.  Since a high standard deviation indicates a spread of the data, 

this is interpreted by me that the conditions in the simulation were set up 

correctly.  As stated in section 4.3, the random start time of the target entity will 

cause some iterations to have the platform and sensor and target entity at the 

worst angles for detection or identification.  Additionally, some iterations might 

have more masking of the target entity behind buildings, causing reduced results 

based on the inability to detect or identify the target entity.  As indicated by the 

Mean 487.36 Mean 619.60

Standard Deviation 236.56 Standard Deviation 145.46

Median 529.00 Median 667.00

Count 500 Count 500

Mean 417.10 Mean 541.31

Standard Deviation 253.75 Standard Deviation 223.08

Median 452.50 Median 621.00

Count 500 Count 500

Mean 323.00 Mean 373.23

Standard Deviation 216.96 Standard Deviation 217.81

Median 263.50 Median 345.50

Count 500 Count 500

Infrared Sensor Full Motion Video Sensor

High Situational Awareness (SA)

Medium Situational Awareness (SA)

Low Situational Awareness (SA)

Infrared Sensor Full Motion Video Sensor

Infrared Sensor Full Motion Video Sensor
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standard deviation, this spread the results for each data set.  Even with high 

performance metrics, the variability of buildings blocking the line of sight of the 

sensors resulted in lower performance numbers, regardless of the proficiency of 

the team.  This forced FOCUS to constantly calculate probability of detection and 

identification as the target entity continuously moved behind buildings and the 

track was lost.  Overall, this replicated a more realistic experiment in which 

environmental factors impacted the performance of the system and team to 

execute its task.   

For the FMV data sets, the data follows the logic that due to higher 

performance potential within the High SA, there would be less standard deviation 

in the data set compared to the Medium and Low SA data sets.  However, the 

similarity between Medium and Low SA in standard deviation indicate a more 

equitable distribution of the data set, with Medium SA earning higher overall 

results than Lower SA and thus performing better overall.   

The opposite seems to be true for the IR SA data sets.  Referencing Table 

6 with the Acquire TTPM numbers, the closer Mean and Mode values and 

histogram analysis, supports the higher probabilities in initial calculation with IR 

sensors impacts the final results.  Analysis indicates that the variation in SA 

(Low, Medium, High) has less of an impact on each data set if the probabilities 

for success are higher.  Additionally, as supported by the results, the standard 

deviation is more equitable between the SA levels when utilizing an IR sensor 

and the variations within the simulation has a larger impact on the results than 
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with the FMV sensor.  These results support earlier research that attempts to 

improve the detection and identification capabilities of IR sensors to make them 

more equitable to FMV sensors (Lamdan and Wolfson 1988; Islam and Alam 

2006; Deaver et al. 2009; Venkataraman et al. 2011; Wang et al. 2013; Gong et 

al. 2014b; Wu et al. 2015b).  Unfortunately, due to the limited visual variations of 

IR output, the only success has been in merging IR and FMV sensor inputs 

(Dawoud et al. 2006; Teaney and Reynolds 2010; Eismann et al. 2010; Wu et al. 

2015b). 

5.2. Analysis of Baseline Results 

The intent of the first hypothesis was to determine if the three levels of SA 

were significantly different.  As already indicated through the histograms and 

descriptive statistics, each level of SA is numerically better than the lower level.  

With Low SA having the worst results and High SA with the best.  To determine if 

the data sets are significantly different, an ANOVA was run with the results from 

the three SA levels.  Table 11 is with the FMV results and Table 12 is the IR 

results. 

 

Table 11  ANOVA on FMV results 

 

 

ANOVA on FMV SA Data Sets

Source of Variation SS df MS F P-value F crit

Between Groups 27994022 2 13997011 346 3.5E-124 4.62 Reject null hypothesis

Within Groups 60593680 1497 40477 F>Fcrit

Total 88587702 1499
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Table 12  ANOVA on IR results 

 

 

 As indicated by the ANOVA results, and within each sensor data set, the 

three SA levels are significantly different from one another.  Taking into account 

the descriptive statistics and histogram/normal distribution curves, the logical 

conclusion is that each level is also significantly better than the previous level.  

Medium SA is significantly better than Low and High SA is significantly better 

than both levels.  The data supports this assumption for both sensors.  

Therefore, hypothesis #1 is supported by the results and the null hypothesis can 

be rejected.   

5.3. Analysis of AiTR 

After conducting 500 iterations for of the AiTR TTPM results, utilizing the 

values in Table 9, the correlation with the High SA level results was conducted 

between these two data sets for each sensor type. The correlation results for 

AiTR and FMV SA levels are in Table 13 and the AiTR and IR SA levels are in 

Table 14. 

 

Table 14 Correlation between AiTR and FMV SA level 

 

ANOVA on IR SA Data Sets

Source of Variation SS df MS F P-value F crit

Between Groups 13742268 2 6871134 123 3.1364E-50 4.62 Reject null hypothesis

Within Groups 83542984 1497 55807 F>Fcrit

Total 97285252 1499

Correlation High SA FMV AiTR

High SA FMV 1

AiTR 0.9999 1
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Table 13  Correlation between AiTR and IR SA level 

 

 

Both tables indicate a very high, almost perfect, positive correlation 

between the data sets.  This indicates that the data is very similar and provides 

evidence that data collection between the data sets was normal, with not outliers 

or areas that need to be addressed prior to further analysis. 

The next analysis step is to visualize the data through a stacked histogram 

with both data sets, overlaid with a normal distribution curve of the data sets to 

visualize how the data compares to one another.  Figure 34 compares the IR SA 

data sets and Figure 35 compares the FMV SA data sets. 

 

Correlation High SA IR AiTR

High SA IR 1

AiTR 0.9999 1
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Figure 34 AiTR and High IR Data Set:  Histogram and Normal Distribution Curve 

 

 
Figure 35  AiTR and High FMV Data Set:  Histogram and Normal Distribution 

Curve 
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Comparing the frequency of the histograms for IR (Figure 34), both AiTR 

and the High have a high level of similarity.  The normal distribution curves are 

almost identical and the means have a difference of three.  Histogram frequency 

distribution are almost identically left-skewed.  Overall, the IR results between 

AiTR and High SA are very similar.  This also is supported by the very high 

positive correlation between the two data sets.  Analyzing the results for the FMV 

sensor (Figure 35) also follows the results for the IR sensor.  Both have a high 

level of similarity in distribution and the means have a difference of only four.  

Initial results indicate almost identical data sets with AiTR only positive a slight 

better performance record. 

Reviewing the descriptive statistics provides additional information on the 

analysis of the data.  As indicated by the analysis on the histograms and normal 

distribution curves (figures 34 and 35), the descriptive statistics of mean and 

mode follow the same trends as shown in Table 15.  With slightly numerically 

higher results for AiTR over High SA.   
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Table 15 Descriptive Statistics of AiTR and High SA Data Sets 

 

 

Given the analysis of the histograms and normal distribution curves, and 

the data in Table 15, both data sets of High SA and AiTR are very similar.  

Additionally, given the 0.9999 correlation between the data sets, this again 

provides evidence to the similarity of the two. 

The intent of the second hypothesis was to determine if AiTR and the best 

performance SA level, which evidence determined was High SA level, were 

significantly different.  As already indicated through the histograms and 

descriptive statistics, both of the data sets are very similar.  To determine if they 

are significantly different, a F-test was conducted to determine if High SA and 

AiTR for both sensors had equal variance.  Then a t-Test assuming equal 

variance was calculated to determine if the data suggests a significant difference 

or not.  Results are shown in Table 16. 

 

Mean 521.47 Mean 525.17

Median 566 Median 569

Standard Deviation 236.56 Standard Deviation 236.60

Count 500 Count 500

Mean 622.36 Mean 666.53

Median 712 Median 717

Standard Deviation 155.20 Standard Deviation 155.02

Count 500 Count 500

Infrared Sensor

High SA IR AiTR IR

High SA FMV AiTR FMV

Full Motion Video Sensor
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Table 16 F-test and t-Test results for High SA and AiTR 

 

 

 The F-test provided a high confidence of equal variance between High SA 

and AiTR for both sensor data sets.  The F score (F=1.00) provides evidence of a 

very strong equal variance and similar data sets, this is also supported by the 

previous analysis in this section for these data sets.  When the t-Test assuming 

equal variance was conducted, with a P >.01 confidence level, the results for the 

t statistic and P value indicate that the two data sets are not significantly different.  

Combined with the previous analysis, the null hypothesis is accepted. 

F-Test for IR - AiTR and High SA F-Test for FMV - AiTR and High SA

High SA AiTR High SA AiTR

Mean 521.47 525.17 Mean 662.36 666.53

Variance 55958.44 55978.59 Variance 24087.97 24030.22

Observations 500 500 Observations 500 500

df 499 499 df 499 499

F 1.00 F 1.00

P(F<=f) one-tail 0.50 P(F<=f) one-tail 0.49

F Critical one-tail 0.81 F Critical one-tail 1.23

t-Test: Equal Variance - IR t-Test: Equal Variance - FMV

High SA AiTR High SA AiTR

Mean 521.47 525.17 Mean 662.36 666.53

Variance 55958.44 55978.59 Variance 24087.97 24030.22

Observations 500 500 Observations 499 499

Pooled Variance 55968.52 Pooled Variance 24059.09

Hypothesized 

Mean Difference 0

Hypothesized 

Mean Difference 0

df 998 df 996

t Stat -0.25 t Stat -0.42

P(T<=t) one-tail 0.40 P(T<=t) one-tail 0.34

t Critical one-tail 2.33 t Critical one-tail 2.33

P(T<=t) two-tail 0.80 P(T<=t) two-tail 0.67

t Critical two-tail 2.58 t Critical two-tail 2.58
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 However, the analysis supports the assumption that both data sets are 

significantly similar.  This provides evidence that a team, augmented by AiTR 

technology, and with little or no training can perform at the same level as an 

experienced, trained team.  In order to enable this assumption, each individual 

must be proficient in their own skill sets and those relevant to the task (Straus et 

al. 2019).   
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6. DISCUSSION OF RESULTS 
 
 
 

Results from the experiments substantiates the hypothesis that the 

different levels of SA are significantly different and that each data set is notably 

better than lower versions.  Even though the High SA data sets and AiTR were 

not significantly different, the evidence supports that they are considerably 

similar.  Overall, the data collected in this work supports that higher levels of SA, 

supported by improved communications between team members, impacts the 

performance of a team at certain, specific tasks.   

This contributes to the growing field of study of visual analytics by 

supporting the overarching goal of increasing understanding on the methods, 

technologies, and practices that exploit and combine the strengths of human and 

computer processing (Keim et al. 2008).  A unique methodology of identifying a 

yellow taxicab, influenced by SA and GLU, was presented in this work.  Its 

relationship with technology from aerial platforms and sensors to the images on a 

computer screen impacted the performance of a team of analysts in 

accomplishing their task.  Improved AiTR technology also demonstrated a 

significant impact on the performance of this team, and how it can assist in ad 

hoc groups that are formed quickly in a disaster.  Overall, this work examined the 

interactions aspects of this human – computer interaction. 
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Concerning the “Yellow Taxicab” problem, this research presents unique 

methodologies that can solve the problem quicker in a training setting.  It 

provides additional evidence on how training, technology, and human interaction 

impacts the performance of a team to successfully complete the task.  

Additionally, it provides additional areas of potential study on how even better 

results might be produced.  

6.1. Limitation of data sources 

Since a simulation is a replication of a world of infinite variables, there is 

no way to completely imitate all of the possibilities a team or piece of equipment 

might encounter.  Therefore, a simplification of the environment must be made to 

allow for proper computation and control of the experiment (Saunders and Beard 

2010; Collett et al. 2013; Amaran et al. 2014; Nakano et al. 2016; Rybing et al. 

2016).  This creates a level of artificiality in the experiment that must be 

addressed and acknowledged.  Even though a more realistic experiment would 

be ideal, the cost and complexity of conducting such an event is financially and 

computationally unfeasible; therefore, simulation are better utilized when better 

focused on performance measures and variables that can be isolated (Cannon-

Bowers and Salas 2009; Saunders and Beard 2010). 

For this work, an important decision was the removal of any weather from 

the simulation.  This allowed the experiments to focus on the dependent and 

independent variables but removed a level of realism which could have impacted 

the results.  Additionally, the performance values and the overall programs that 
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executed all searches and platform movements was simplified from real-world 

tests.  Even though they were based off of observed experiments, there is still a 

level of realism that is lost in these environments (Ratches et al. 2001; 

Vollmerhausen and Jacobs 2004; Vollmerhausen and Robinson 2007; 

Vollmerhausen 2009).  A possible result from this replication is that the cognitive 

communication performance metrics perform better than they would have in an 

experiment with real equipment and subjects.  Replicated communication 

equipment and lack of environmental factors would improve communication 

clarity and reliability (Artman and Garbis 1998; Cooke et al. 2005; McKendrick et 

al. 2014).  Even though FOCUS hasn’t been evaluated on this measure, it could 

have bias within the programming that places a higher value on communication 

and performance than has been evaluated or noticed in previous experiments.  

This could affect the outcomes of the different data sets during the experiment. 

Concerning the performance values of the platform and sensors, these 

were also captured from previous evaluations and experiments; however, they 

have been validated and perform within the parameters established by the U.S. 

Army (Burghardt et al. 2015).  Variations in these performance values could have 

an unknown impact on the simulations and the results.  However, the large 

standard deviations, discussed in previous section, indicate that a level of realism 

was incorporated into the simulation with buildings blocking the line of sight 

between the target entity and the sensors.  These results suggest that the 
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simulation operated within expectations, with a constant re-acquisition 

sequences required. 

Another area that requires additional evaluation is the use of the data from 

Ahmed et al.’s (2014) experiments on cognitive communication performance 

measures.  Even though the experiments within this work closely matched those 

of that experiment, utilizing this model was the best fit for the simulation, there 

could be enough differences between the two experiments that the use of the 

data in the Bayesian Network conditional probability table (CPT) could create 

unvalidated results.  This use would need to be further evaluated to ensure there 

is not unknown measured influence upon the results.  Additionally, the work of 

Admed et al. (2014) isn’t well referenced or widely used in other aspects of 

measuring cognitive performance. 

Additionally, there are other communications variables that were not 

incorporated into the experiments.  A limitation on bandwidth for the 

transportation of data and its impact on the ability to utilize high definition images 

was not addressed and incorporated.  In real-world situations, this would impact 

the results since bandwidth is reduced due to changes in atmospheric conditions 

or other environmental or technological impacts (Porter et al. 2010; van Eekeren 

et al. 2015; van Huis et al. 2015).  The assumption in this experiment is that 

sufficient bandwidth would be available to provide the necessary frame rate and 

fidelity for the analysts to do their job.  This is relevant to this experiment since 

the TTP metric is based off of an analyst looking at a screen with high resolution 
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images (Vollmerhausen and Jacobs 2004).  Additionally, research also provides 

evidence that higher fidelity images created better results in detection and 

identification tasks (Alam 2006; Vollmerhausen 2009; Hsu-Yung Cheng et al. 

2012; Cao et al. 2012; Maurer et al. 2013). 

6.2. Implications and Synthesis of Results 

Existing literature on communication indicates a strong correlation with 

training as a team and the quality of communications that occurs within or 

outside that team (Patrick et al. 2006; Cooke et al. 2013; Endsley 2015; Rybing 

et al. 2016; Sorensen and Stanton 2016).  This could provide a way to express 

the level of communications, or overall, training of a specific team in an event 

that comprises many such teams.  As indicated by existing research, a strong 

correlation between training and SA of a team exists and supports this 

interpretation (Patrick et al. 2006; Walker et al. 2008; Patrick and Morgan 2010; 

Seppänen et al. 2013; Sorensen and Stanton 2013).  Therefore, the assumption 

is that the better trained team, with training on communications, will produce 

better results on specific tasks than less trained teams.  The results from the first 

experiment support this assertion with the team possessing higher SA, which 

better cognitive communication performance metrics, earned more identifications 

in the 500 iterations than the other SA levels. 

As supported by this experiment, the uncertainty in the geographical 

location of the target is also affected by the communication quality and both 

impact the level of SA for the team.  Lower levels of communication performance 



144 
 

increased the level of uncertainty due to miscommunication of the message.  

Several research articles have indicated that poor communication increases 

reaction time and impacts the performance of a team in completing a task due to 

more time allocated to finding a specific location (Artman and Garbis 1998; 

Nelson et al. 2004; Cooke et al. 2005; Bayrak and Grabowski 2006; Han et al. 

2013; Sorensen and Stanton 2016).  Results from the experiment executed in 

this work support these articles.  Teams with lower SA levels, and worse 

communications, earned less identifications in the iterations of the experiments.  

The main reason for these performance levels is that their chance to re-acquire 

the targeted entity was worse and took more time to detect and identify.  In a 

limited simulation, this would ensure that the teams that are unable to work 

efficiently as a team, with good communications, would produce worse results.  

Ultimately, this impacts the performance of tasks that require accurate location. 

The results from hypothesis #2 and the incorporation of AiTR technology 

into the DSA model provides evidence of a potential solution when trained teams 

are not available to complete a mission.  Since it takes time and resources to 

effectively train a team to complete a detection and identification task, this work 

provides support that this technology can enable a team to work at the same 

level as a trained team with high SA and communication skills.  Importance of 

this research is when ad hoc teams are built at crisis areas like natural disaster 

sights or search and rescue operations.  In order to maximize the human 

resource pool, individuals can be quickly integrated through AiTR technology and 
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be able to operate at a much higher proficiency level.  This research doesn’t 

explain how these individuals could be integrated, but it provides evidence that 

investing in this technology will prove beneficial to increase team performances. 

Overall, evidence was produced that expected results can be generated in 

the current configuration of the experiment and how FOCUS and the data is 

utilized/configured.  Results support the assumption that SA, and its 

subcomponent of communications, impacts the effectiveness of identifying a 

target entity in a complex, urban environment.  SA also has a relationship with 

GLU and this also impacts the ability of a team to accomplish this task and this 

GLU is perpetuated through the system as supported by the DSA model.  Teams 

with higher SA perform better due to the minimization of GLU and 

miscommunication; however, this training required for higher SA can be mitigated 

by the use of AiTR technology.   
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7. SUMMARY AND CONCLUSION 
 
 
 

7.1. Summary 

As stated by, Johnson and Hanson (2011) the goal of visual analytics is to 

identify the best automated processes for the task at hand.  Estimating limits that 

can’t be further automated and then develop a tightly integrated solution that 

adequately integrates the top automated processes and human performance 

methods into a cohesive methodology.  The goal of this research was to provide 

a framework that integrates unique aspects (geographical location uncertainty, 

human communication performance, human visual system, and mental 

constraints) within the parameters of the DSA model.  Once integrated, this 

model would able to predict performance for the specific task of detecting and 

identifying a specific entity in a complex, urban environment.   

Upon analysis, the results supported the assumption that variations in 

human communication performance (Message Quality (MQ)), based on the level 

of training and voice communications, impact the other variables of the model 

and nodes within the system and overall SA of the team.  For the model, this 

includes GLU and the cognitive, mental abilities identified by Task Load (TL) and 

Working Memory (WM).  Since training impacts the communication and SA of the 

team (Patrick and Morgan 2010; Seppänen et al. 2013; Sorensen and Stanton 
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2013, 2016), this work demonstrated a positive correlation between verbal 

communication proficiency and performance outcomes.  With higher verbal 

communication skills, and higher SA, producing significantly better results than 

lower SA skill levels.   

This work also demonstrates a potential solution to ad-hoc, or quickly 

formed teams needed to accomplish a detect and identify task in reference to an 

accurate location.  For teams that are unable to train prior to the execution, this 

work proposes another solution utilizing the technology solutions with the Aided 

Target Recognition (AiTR) field.  Experiments run utilizing AiTR indicated a 

removal, or significantly reduction, in the verbal communication (and subsequent 

GLU effects) which results comparable to those with high SA and higher levels of 

training.  

7.2. Conclusion 

This research postulated that the targeting and identification process 

presented in this paper, consisting of two different sensors, each with an 

independent human analyst, can be improved to better replicate a real-world 

environment.  Concerning the “Yellow Taxicab Problem,” and actually identifying 

a yellow taxicab in a complex, urban environment, this research provides addition 

areas of study and alternative methods to solving this problem in a more efficient 

and effective manner.  Not only must the analyst find the target, they must 

communicate its location to another analyst that had to identify it based on prior 

knowledge (i.e. type, color, etc.).  Working together as a team, these two 
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analysts utilized two specific sensors, FMV and WAMI, to detect and identify this 

targeted entity within a complex, urban environment.  Buildings, targets, aerial 

platforms, and sensors were replicated within the simulation program, FOCUS, 

that incorporated authoritative data from its databases. 

The basis for this research was to take the established TTP metric and to 

make it more responsive to team dynamics and other real-world variables.  

Incorporating the evolving research revolving around situational awareness (SA) 

brings into account the additional studies on the difference between ground truth 

and what people and their technology perceive or understand.  This interaction 

between human beings and their technology is the basis for the theory on 

distributed situational awareness  (DSA) model and the reason it was chosen for 

this work (Stanton et al., 2006; Salmon et al., 2008a, 2016; Neville and Salmon, 

2015; Sorensen and Stanton, 2016).  Within this model, SA is based on the 

interactions between agents (human or technological) within a collaborative 

system.  Overall, a system’s situational awareness, specified as the identifying 

the targeted entity in this work, is dependent upon the network and the 

communication of the information upon it.  The TTP metric focuses on the 

internal mental processes of the human analyst on interpreting information that is 

presented on a computer monitor.  However, when applying this outside of the 

DSA model the rest of the system and the communications resident in that 

process are neglected.  Incorporating the human cognition performance metric 

by Ahmed et al (2014) models a portion of this system that deals with the quality 
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if human communication, task load, and other cognitive loads that effect the 

ability of an analyst to complete a specific task.  In this experiment, that task is 

ultimately the identification of the targeted vehicle of interest for this work.   

In conclusion, this work provides a new metric to determine the probability 

of completing a task, identification in this case, that is impacted by the situational 

awareness of a team of humans and their supporting technological agents within 

the system.  The TTP metric could be replaced by another metric that focuses on 

another task, but this work provides additional support to the DSA theory and the 

impact that technology, humans, and uncertainty have on SA.  It also concludes 

that AiTR technology can have a large impact on assisting teams and their 

systems in completing specified tasks.  Other intriguing avenues of research 

were discussed and possible assumptions that could be tested.  Overall, this 

work is a study in science of the artificial; therefore, I would like to end this work 

with a quote from Herbet A. Simon from his book, The Science of the Artificial, 

commenting on the task of natural science. 

To show that the wonderful is not incomprehensible, to show how it can be 

comprehended but not to destroy wonder. For when we have explained 

the wonderful, unmasked the hidden pattern, a new wonder arises at how 

complexity was woven out of simplicity. The aesthetics of natural science 

and mathematics is at one with the aesthetics of music and painting both 

inhere in the discovery of a partially concealed pattern. (1996) 
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7.3. Future Work 

Given the results of this work, the argument is made that the substantial 

positive results between the differences of other levels of SA are important in the 

use of AiTR technology.  As other research indicates, there is a positive 

correlation between the level of training that a team undergoes and the level of 

performance of a specific task where communication, or SA in this case, is 

measured.  Applied to this work, that would mean better training, thus higher SA 

level, will produce better task performance results and more identifications.  

Since training takes time and resources, another area to research is this 

relationship between training a team and the use of AiTR to off-set the cost of 

creating highly proficient teams.  Additionally, a possible research questions 

would compare the differences in cost and resources to train a team and those 

that are trained on AiTR.  Would those trained on AiTR create even better 

results? 

Not only would training be affected, but the WM utilized in this experiment 

and from Ahmed’s et al. (2014) research is a constant value.  Another aspect that 

could be evaluated is how the WM of each analyst would change over time.  WM 

would not remain constant as fatigue or other environmental effects would affect 

the behavior or capacity of the human analyst.  This decrease in WM could bring 

“Information Overload” into the experiment, which would decrease the 

performance of the analyst and effect overall performance of the team.   
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Further research would also be beneficial in determining the optimal 

number of sensors for this specific task and terrain.  Two sensors were utilized in 

this work, but would better results be calculated with three or more sensors?  

Could one sensor record appropriately sufficient results?  This would be a cost 

benefit calculation for an operation, where the least number of sensors would 

save money while performing within an adequate band of success.  An 

experiment could be set up to determine the ideal number of sensors for different 

situations or performance requirements. 

 Another area to discuss is the impact of bandwidth between the aerial 

platforms and the ground station when using AiTR.  This was briefly discussed in 

this experiment; the bandwidth was a constant and did not change.  In real-world 

situations, this would also hold true in the best situations, usually bandwidth is 

reduced due to changes in atmospheric conditions or other environmental or 

technological impacts (Porter et al. 2010; van Eekeren et al. 2015; van Huis et al. 

2015).  The assumption in this experiment is that sufficient bandwidth would be 

available to provide the necessary frame rate and fidelity for the analysts to do 

their job.  This is relevant to this experiment since the TTP metric is based off of 

an analyst looking at a screen with high resolution images.   

Since this relied upon a simulation, executing the experiments with 

additional environmental factors would provide additional research relevant to the 

topic of task performance and identification of a yellow taxicab.  This would 
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provide additional evidence on how weather impacts the performance of a team 

and how different levels of SA and training impact the results. 

Since the work of Ahmed et al. (2014) might have impacted the results of 

this experiment, executing this experiment again with real, living human analysts 

could provide additional research on this topic.  Variables could be further 

examined to include training levels, different forms of verbal and digital 

communications, and other factors that could potentially impact the performance 

of the task.  Some of which are hidden in a simulated environment.  This type of 

experiment would allow a better understanding of the impact of the message 

quality of communication and the training of the team.  Different variables of 

communication and training could be further investigated to determine if other 

correlations can be calculated.  One of these aspects is the impact of Shannon 

and Weaver’s (1964) communication theory on how entropy of the message and 

its uncertainty effects the information produced. 

Doing a live experiment would also assist in validating this model for future 

work.  The main validation of this model utilized in this work is from the U.S. 

Army; however, the incorporation of Ahmed’s et al. (2014) work might cancel this 

validation.  Conducting a live experiment would provide the data and variables to 

determine if live results are significant to the results calculated with this model.  

Then a more in-depth validation of the model could be accomplished. 

Another aspect that could be evaluated from a live experiment is to test 

the GLU of the model assessment.  Ground truth could be measured at a specific 
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time and the assessed location of the analysts and the different agents within the 

system could be measured forensically.  This would provide a better 

measurement between ground truth and assessed location to determine if the 

GLU aspects of FOCUS are actual valid or need to be adjusted.  

Possible research to explore would be the work of Wu et al. (2015a) on 

the Pseudo Real-time Exploitation of Sub-Area (PRESA) framework for 

processing WAMI frames in real-time.  What makes their work unique is their 

decision to not process the full frame in real-time (all 360 degrees of a WAMI 

picture), but to instead to create sub-areas (or area of interest (AOI)) of the frame 

and then process these in real-time.  This allocation of computing resources 

improves the processing rate for those AOIs only – bringing them to real-time 

while the rest of the frames remain at a slower proportion.   

The last subject to discuss is the question of scale.  This team model 

(detector and identifier) can incorporate more than one detector or data transfer 

person, but in order for it to scale it must end with a decision maker (identifier) 

that is executing a specific task that is dependent upon the previous nodes.  This 

is supported by the DSA model as it sees each node (human or technological) as 

interlinked.  At a more macro scale, each team could act as a separate node that 

produces a task result that is then used as a primer for another team.  

Uncertainty will be propagated through this system and the communications 

within the team or between team will also impact the SA of the overall system.  

This has been well researched in the DSA model (Walker et al. 2008; Seppänen 
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et al. 2013; Sorensen and Stanton 2013; Endsley 2015; Dogan et al. 2011).  

However, increasing more complexity into this model will likely reduce its ability 

to successfully execute its task. 

The results of this work provide other researchers evidence and the tools 

of how to incorporate more complex systems utilizing the DSA model.  Further 

research could examine how SA and GLU impact the performance of a task, and 

to better understand the human-computer interaction that is growing more 

prevalent in a technologically improving society.  This work provides alternative 

ways on how technology impacts human performance.  As a starting point, this 

research provides additional evidence to those organizations in which location 

and time are an important aspects of accomplishing their mission, even those 

individuals looking for a yellow taxicab in an urban environment.  
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