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ABSTRACT
 

UNDERSTANDING AND ANALYZING THE HUMAN MICROBIOME: 
TAXONOMIC IDENTIFICATION AND POTENTIAL INTERACTIONS 

Ammar S. Abbas Naqvi, MS 

George Mason University, 2010 

Thesis Director: Patrick Gillevet 

The Microbiome Analysis Center, in collaboration with Rush University Medical 

Center and Case Western University, has been studying and characterizing gut microbiota 

in normal and diseased states such as ALD and HIV. Currently, the Multitag 

Pyrosequencing (MTPS) methodology developed by Dr. Gillevet is being used to 

inten-ogate the microbiome from dozens of samples at a time. As a result we have been 

receiving hundreds of samples of both bacterial and fungal microbiome of stool, mucosal 

biopsy, and oral samples from a large number of subjects and diseases. 

The vast volumes of data flowing from diverse sources has necessitated the 

development of analysis pipelines in order to intelligently and rapidly process the 

molecular information and to analyze, cluster, and con-elate the sample datasets. 

However, a fundamental and pre-requisite for most research in this particular is being 

able to efficiently and accurately identify the genus and species information given a set of 

SSU rRNA sequences. The cun-ent implementation of this type of investigation is 

widespread, but as datasets get very large it proves to be very impractical due to factors 



concerning run-time and memory. For this particular study, we have developed and 

designed a portable and robust tool to identify the bacterial taxonomy and distribution at 

the species level, specifically in patients with HIV looking at the vaginal microflora. 

Another very important aspect of the Microbiome is to understand the 

relationships of the bacteria between and amongst different classes (ie. healthy, diseased). 

In order to accomplish this we plan on applying a systems biology approach to the 

microflora. This study will produce an approach that will specifically look at the gut 

microbiota in relation to Alcohol Liver Disease at the graphical network level. 

A series of challenges is anticipated related to time and memory constraints, 

informative identification, and proper linkage of taxonomic identification to the clinical 

information in the microbiome. We discovered distinct and common features amongst 

our samples that will provide novel insights and ultimately broaden our understanding of 

how the microbiome influences human health, furthering future research in this rapidly 

progressing field. 



CHAPTER 1
 

Background
 

1.1 Background - The Human Microbiome 

A microbiome is the entire set of microbial cells, including their genomes and 

interactions in a particular environment. The human body contains one of the most 

densely populated microbial environments or microbiomes known on earth. Over 1 x 10 14 

microbial cells interact with ours, indicating the ubiquity and potentially critical 

importance of such interactions in our bodies, specifically the digestive tract [1-3]. There 

are also other sets of microflora sites in our bodies including skin, nose, mouth and 

vagina, which are all outlined and displayed in Figure 1.1. 
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Figure 1.1 Microflora sites in humans (from [12]) 

Controlled interactions between digestive tract epithelial and immune cells with 

microbial cells are critical to human health. They are involved with the immune system 

and its responses, metabolic regulation, and digestion. The human digestive tract is an 

interface between the human body and the environment and represents an important 

portal that regulates the level of exposure to environmental factors that is hypothesized to 

playa key role in the state of health or disease. The microbiome and the gut epithelial 

barrier are hypothesized to be essential for regulating and maintaining normal mucosal 

and systemic immune functionality. The underlying paradigm is that the gut microbiome 

actively interacts with the human host through quorum sensing and immune mechanisms 

and are in homeostatic equilibrium in the healthy state. 

In healthy individuals, controlled interactions of the digestive tract epithelial and 

immune cells and microbial cells provide a training ground for the body's immune 

system by regulating metabolic functions, enabling proper digestion and absorption, 

2
 



providing access to essential vitamins, and conferring protection from intestinal 

pathogens. However in diseased individuals, the interface connecting interactions may 

become modified leading to detrimental effects, leading to immune deregulation, and 

many inflammatory and autoimmune diseases. [1-3] 

Some well-studied diseases that have been explained through gut microbiome 

expression analysis include Inflammatory Bowel Disease, Bacterial Vaginosis, Alcohol 

Liver Disease, and Obesity. Further development in methods and tools for 

characterizations of these interactions of the microbiome, mucosal and immune system, 

and the human genome will allow us to gain valuable insights as to underlying 

mechanisms of how the microbiome affect health and disease. 

1.2 NextGen Sequencing 

Nexgen sequencing usually refers to the recently developed technology, which 

enables for high-throughput systematic sequencing since the Sanger sequencing method. 

Currently, there are four common and used commercial sequencing platforms for this, 

including Illumina, 454 Roche, ABI, and Helicos. All are based on DNA replication 

methods. Due to the increased demand for cost-efficient sequencing there is a drive for 

the development of high-throughput sequencing technologies that parallelize the 

sequencing process, producing not only thousands, but also millions of sequences at a 

time. Nextgen or high-throughput sequencing technologies are both fast and inexpensive. 

As a result, it has become a driving force for new research. All of the methods listed 

above, with the exception of 454, are based on generating massive amounts of short reads 
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(30-45 base pairs). As a result, one of the major strengths of the 454 platforms and 

method is that it generates longer reads (now 500 bp). The longer reads are much more 

advantageous when dealing with de-novo analysis. This technology or methodology is 

specifically known as pyrosequencing and is primarily used in this study and similar 

studies. [4] 

Pyrosequencing is a method of DNA sequencing based on the "sequencing by 

synthesis" principle. It differs from the other popular methods, because it relies on the 

detection of a pyrophosphate release on nucleotide incorporation, rather than chain 

termination with dideoxynucleotides. The technique was developed by PaJ Nyren and 

Mostafa Ronaghi at the Royal Institute of Technology in Stockholm in 1996. The method 

involves taking a single strand of the DNA and then enzymatically synthesizing its 

complementary strand. The Pyrosequencing method is based on detecting the activity of 

DNA polymerase by coupling the detection of the pyrophosphate with another 

chemiluminescent enzyme called luciferase. Essentially, the method allows sequencing of 

a single strand of DNA by synthesizing the complementary strand along it, one base pair 

at a time, and detecting which base was actually added at each step. The template DNA is 

immobilized, and solutions of A, C, G, and T nucleotides are added and removed after 

the reaction, sequentially. Chemiluminescence is only produced when the nucleotide 

solution complements the first unpaired base of the template. The sequence of reagents 

that produces the luminescent signals allows the determination of the sequence of the 

template. [5-7] Figure 1.2 shows a general schematic of the procedure. 
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Figure 1.2 Pyrosequencing Schematic (from [13]) 

Nevertheless, a novel Multitag Pyrosequencing (MTPS) methodology, which has 

been developed by our group, was used to sequence the samples in our studies. This is an 

extension of the previously described pyrosequencing procedure. It takes individual DNA 

molecules and amplifies them on beads using an oil emulsion peR procedure. Individual 

beads are then sequenced using the normal pyrosequencing methodology [7]. The 

improvement resides in incorporating tagged fusion primers to barcode multiple samples 

at a time. Thus, dozens of samples are sequenced simultaneously allowing us higher 

throughput. 

1.316S rRNA 
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The 16S ribosomal MiA (rRNA) gene is a region of prokaryotic DNA found in 

all bacteria and archaea. This specific gene encodes for an essential part of the ribosome. 

In bacteria, the small subunit is coded for by the 16S rRNA gene, and the large subunit is 

coded for by the 23S rRNA and 5S rRNA genes. The 16S rRNA gene is a commonly 

used feature for identifying the taxonomy of bacteria for several reasons. For example, 

researchers may want to identify or classify only the bacteria within a given 

environmental sample. Since, the gene is distinct, it is considered a very useful feature 

for identifying bacterial species, making it very useful for metagenomic and related 

studies. In addition, the 16S rRNA gene is relatively short at 1.5kb in length making it 

easier and inexpensive to sequence. Lastly and perhaps the most important reason is that 

it contains the species-specific signatures that allows us to identify distinct species within 

a bacterial sample or data set. [8] 

1.4 Available Tools 

Since the advent of NextGen sequencing teclmologies there has been a drive or a demand 

to efficiently analyze human microbiomic or metagenomic data. In addition to 

sequencing these samples, there is a need to analyze them. Many old statistical methods 

cannot handle the sheer volume of information being processed, so many tools are 

currently being developed with modified algorithms and methods in order to facilitate the 

data processing. Some of the popular tools for data and statistical analysis are UniFrac 

[9,10] and MEGAN. [11] 

1.4.1 UniFrac 
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Statistical methods and tools have been developed using traditional methods of 

comparisons, but many of these techniques are limited in nature because they do not 

account for the different degrees of similarity between sequences and the abundance 

content or diversity within samples. As a result, a substantial loss of information is 

attributed to the analysis. 

A tool called UniFrac introduced a new method for computing differences 

between microbial communities based on phylogenetic information and abundance. It 

measures the phylogenetic distance between sets of taxa in a phylogenetic tree as the 

fraction of the branch length of the tree that separates various taxa from either one 

environment or the other, but not both. It can be used to determine whether communities 

are significantly different, to compare many communities simultaneously using clustering 

and ordination techniques, and to measure the relative contributions of different factors, 

such as chemistry and geography, to similarities across samples. 

It takes as input a single phylogenetic tree, which can be generated using any of 

the tree making tools (ie. PAUP) that contains sequences derived from at least two 

different environmental samples and an environmental file describing the origins of the 

sequences and their abundance. Either the UniFrac distance metric or the P test or both 

can be used to make the comparisons. It can be used to compare many samples 

simultaneously, because it satisfies the technical requirements for a distance metric and 

can thus be used with standard multivariate statistics such as un-weighted pair group 

method using average linkages (UPGMA) clustering and principal coordinate analysis. 

[9, 10] 
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It is more powerful than non-phylogenetic distance measures, because it exploits 

the different degrees of similarity between sequences. The ability to integrate sequence 

data from many diverse studies makes it ideal for large~scale comparisons, between 

environments despite the variability in data collection techniques. 

1.4.2. MEGAN 

MEGAN is a taxonomic identification tool that allows one to interactively 

exploring the content of a data set, using the NCBI taxonomy to summarize and order the 

results. The program uses a basic algorithm to assign each read to the lowest common 

ancestor of the set of taxa that it hit in the comparison procedure. 

As a result, species-specific sequences are assigned to taxa near the leaves of the 

NCBI tree, whereas widely conserved sequences are assigned to high-order taxa closer to 

the actual root. It deviates from the analytical pattern of previous metagenomic analysis 

pipelines and builds on the power of comparing random sequence intervals against 

known databases regardless of phylogenetic properties. Despite the incompleteness of 

databases, which is common in these types of studies, this approach is gives one an 

overall generalization of the dataset. [11] 

Nevertheless, the main benefit of this tool is that it allows large data sets to be 

dissected without the need for assembly or the targeting of specific phylogenetic markers, 

which can be very time and memory intensive at times. Hence, it speeds up the analysis 

many fold. Furthermore, it also provides visual and statistical output for comparing 

different datasets. However, the lack of data in these databases may result in false 

8 



negatives reads, but will not result in a significant amount of false positives, since it uses 

a very conservative approach. With its pros and cons it has demonstrated its usefulness as 

it has been used on many microbial and metagenomic datasets. 

1.5 Other Resources 

A plethora of additional resources exist for similar data and computational 

analysis of these types of samples. A central repository for all microbiomic data is 

available at the Human Microbiome Project: Data Analysis and Coordination Center. The 

resource provides a great deal of valuable information, including reference genomes, 

whole-shotgun sequencing data, and related clinical data [2]. A similar resource is 

CAMERA, the Community Cyber-infrastructure for Advanced Marine Microbial 

Ecology Research and Analysis database, which is a web resource providing databases of 

raw environmental sequence data, associated metadata, pre-computed search results, and 

high-performance computational tools. Other such tools exist and a great number are 

coming into existence due to development of new methodologies and analysis pipelines. 
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CHAPTER 2
 

Taxonomic Identification and Analysis of Multitag Pyrosequence data from Human
 

Microbiome Samples
 

2.1 Abstract 

The lab has been using the Roche OS FLX sequencing platform to produce tens of 

thousands of sequencing reads from samples of both bacterial communities (microbiome) 

and fungal communities (mycobiome) of stool, gut mucosa, vaginal washes, and oral 

washes from a large number of subjects. This vast volume of data from diverse sources 

has necessitated the development of an analysis pipelines in order to systematically and 

rapidly identify the taxa within the samples and to correlate the sample data with clinical 

and environmental features. Specifically, we have developed automated analytical tools 

for data tracking, taxonomical analysis, and feature clustering. 

We have developed a portable and robust tool to identify the taxonomy and 

abundance of bacteria in the human microbiome and demonstrate the pipeline using 

cervical vaginal lavage (CYL) samples. 

This analysis pipeline will not only provide insight to our specific CYL dataset, 

but is applicable to other microbiome and to Metabiome samples produced from 

metagenomic methods and will ultimately broaden our understanding of how the 
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microbiome influences human health furthering future research in this rapidly expanding 

field. 

2.2 Background 

The human microbiome is the entire set of microbial cells, including their 

genomes in a particular ecological niche on or in the human body. The human body 

contains one of the most densely populated microbial environments known on earth. 

Over 1 x 1014 microbial cellsinteract with ours [2,3], indicating the ubiquity and 

potentially critical importance of such interactions in our bodies, especially in the 

digestive tract. There are also other sets of microflora sites in our bodies including skin, 

nose, mouth, genital tract and lungs. Controlled interactions between the microbes in the 

protective mucosal gut biofilm and gut epithelial and immune cells are critical to human 

health. We define the interactions of a human microbiome with the host metabolism and 

immune systems as the "Metabiome". These interactions are involved in the immune 

system and its responses, metabolic regulation, quorum sensing, and digestion. In 

diseased states, the nom1al microbiome composition can shift (dysbiosis) altering the 

interactions and the functionality of the Metabiome. 

We report the development and validation of an analytical pipeline that calculates 

the taxonomic distribution across the samples which is practical and addresses major 

obstacles encountered in the analysis of microbiome samples such as dataset size and 

taxanomic identification. It results in a quick and efficient method to characterize 

samples based on taxonomy and abundance. 
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We evaluated our tool on a dataset related to the lower genital tract microbiome 

sampled by Cervical Vaginal Lavage (CYL). Our subjects were healthy females and 

females with HIY with and without Bacterial Yaginosis (BY). BY is a serious condition 

found in females aged 15 to 44 caused by an imbalance of naturally occurring bacterial 

flora. A healthy vaginal microbiome normally consists predominantly of Lactobacillus. 

The bacteria that make up BY are very diverse which may cause an imbalance and lead to 

detrimental health effects. Specifically, it has been observed that patients with the BY 

condition have a higher incidence of heterosexually transmitted HIY, indicating there 

must be some sort of interaction between the microbes and the human body.lo 

Our research lead to the development and validation of a tool that calculates the 

taxonomic distribution across the samples, which is practical and an applicable pipeline 

that surpasses major obstacles of dataset size and similarity. It results in a quick and 

efficient method to characterize samples based on taxonomy and can be applied to a 

variety ofmicrobiome 16S rRNA datasets. 

2.3 Methods 

Datasets Used 

The data we used for this study was derived from a set of Cervica Yaginal Lavage 

samples provided by G.T. Spear. [13]. CYL samples were obtained from 21 women 

divided into 4 groups on the basis ofHIY seropositivity (HIY+ or HIY- status) and 

Nugent Gramstain analysis for BY. Samples that were obtained from BY+ women had 

scores of7-10, whereas samples obtained from BY- women had scores of 0-3. The 
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HIY+BY+, HIV- BY+, and HIY-BY-) groups each consisted of 5 subjects, whereas the 

HIY+BV- group consisted of 6 subjects. The samples were subjected to a novel 

multiplexed pyrosequencing method by generating a set of 12 primers that each contained 

either the 27F or 355R primer that was tagged on the 5' end with a 4-base "bar code." 

PCR was performed on individual patient samples by use of the unique barcoded primers, 

and 10-12 samples then were pooled and ligated to the PCR linkers used in the emulsion 

step ofpyrosequencing. All samples were amplified for 30 cycles, as described in Spear 

et a12008[13]. Pyrosequencing of the amplified, tagged DNA was performed 454 Life 

Sciences, with the use of 10-12 separately tagged samples included in a single slot. The 

data from each well were "deconvoluted" by sorting the sequences into bins on the basis 

of the bar codes, and the taxa in the samples were normalized by the total number of 

reads from each bar code. 

There are four distinct classes in the set, including those that have Bacteriai 

Yaginosis (BY) and are negative or positive for HIY and those that do not have BY and 

are either negative or positive for HIY. In this report, we primarily used the two BY 

classes to validate the clustering, since it is the more diverse set in these samples. WE 

obtained 15,874 reads for these samples, 905 for the BY- samples and 6,968 for the BY+ 

samples each consisting of five patients, and these samples contained around 50 different 

bacterial species. 

Performance Metrics 
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In order to verify the cluster reliability we calculated the p-values between our 

clusters and contigs output. In addition, we also tested the final taxa distribution against 

the original pipeline using the correlation coefficient and t-test measures. 

Computational Pipeline 

As reflected in Figure 2.1, we had already developed a prototype pipeline to 

identify the taxa and compute the distribution in the samples using a brute force approach 

that searched the RDP8, RDP1 0, or Genbank databases using the BLAST algorithm. 

However, this became impractical with the large number of sequences produced by the 

Multitag Pyrosequencing data. 

Specifically, there were almost 10,000 sequences from the BV-HV- sample that 

were needed to align and search for against NCBl's nucleotide database. Despite, local 

high end computing power (Mac OS, 2x3Ghz Dual Core Intel Xeon, 4gb 667 Mhz DDR 

FB-DIMM), the local BLAST process crashed the local server. As a result, PERL scripts 

had to be developed so we could divide the original sequence file into smaller parts and 

then merge and parse the BLAST results. We tested a variety of combinations of the 

options or parameters available through BLAST and we found that that a minimum cut 

off for percent identity of 96%, an e-value of .000000001, a bit size of 60 and a word size 

of 50 were optimal with over 95% ofthe query sequences producing significant hits. 

Nevertheless, even with the more stringent filtering, we were still getting over a 

thousand hits per query, which limited the perfonnance of the analytical pipeline. As a 

result, we applied an additional layer of filtering, our own ranking mechanism, where we 
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sorted the results by the percent identity, bit-score, and then by the coverage of the 

alignment, respectively and parsed out only the highest match. 

Our goal is to produce an abundance table for each taxa in a microbiome sample 

so we extracted all of the unique accession identification numbers, created a database file 

with all of these accession numbers, and then ran the file through our local NCBI 

fastacmd program which outputted the taxonomic information for each hit. 

We then linked up each hit from the parsed results with its proper taxonomic 

identification for each analyzed data subset and then concatenated all of our results into 

one flat file database. After creating these linkages between the sequences and 

taxonomy, we normalized the abundance of each the genus and species for each sample 

and used this normalized abundance table for clustering analysis. Despite our efforts of 

optimization this approach was still very slow, especially if the number of sequences to 

analyze are high. Thus we developed the revised pipeline illustrated in Figure 2 and 

compared the clustering based on CD-HIT with a full assembly program (Seqman) and 

evaluated the pipeline's performance using a variety of measures. The general outline for 

the validation of the revised pipeline is as following: 

•	 Cluster the given microbiome data set using the CD-HIT algorithm 

•	 Perform preliminary analysis in order to verify that the initial clusters are reliable 

•	 Assemble the original dataset in Seqman in order to generate consensus sequences 

of assembled contigs 
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•	 Format the two sets (clustering and contig) and run Unifraq in order to measure 

statistical significance of the two sets generated from the two tools (CD-HIT and 

Seqman) 

•	 Assess accuracy by comparing the distribution using the different pipelines with 

each other 

• Perform run-time analysis on the different pipelines 

Using CD-HIT 

In order to cluster the dataset, we used a tool called CD-HIT, which was designed 

and developed by Weizhong Li at the University of California in San Diego. CD-HIT 

was originally developed for clustering large protein database at a particular sequence 

identity threshold and uses an incremental clustering algorithm and was recently 

modified to analyze nucleotide sequences. It is widely used in educational groups and 

institutions such as UniProt, Protein Data Bank, European Bioinformatics Institute, and 

the Venter Institute [14-16]. 

We fed our fasta-formatted sequences into the program using a minimum 

threshold value of 98% identity and a word size of 9 that was found to be optimal for to 

identify taxa at the species level. The results included two files - a cluster file with all of 

the clusters and its members and a fasta file with the longest or representative sequence 

for each cluster. We then subjected the representative sequences of each cluster to local 

BLAST using the Genbank database. 

Cluster Validation 
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Since, the clustering step was the most crucial step in our new methodology we 

proceded to verify that our clusters were indeed reliable and stable. We first checked the 

total members of a particular cluster to see if they all produced the same significant hits 

using BLAST. Secondly, we investigated the multiple sequence alignments of the 

assembly of each cluster manually using Seqman, a NextGen assembler developed by 

DNASTAR Inc, Madison, WI [17]. For these particular assessments we chose 5 random 

clusters of three or more members and performed the procedure on each of those clusters. 

For the BLAST method we used megablast and used the same options as we would in our 

original pipeline with a minimum percent identity of 96%, an e-value cutoff of 1 x -10, a 

word-size of 50 and a bit-score cut off of 60. Similarly for the Seqman assembly, we 

used the same percent identity. 

To further and verify the validity of the clusters, we ran Unifrac.9 on the contigs 

and clusters. Unifrac uses both phylogenetic information and abundance information to 

statistically compare microbial communities. We first divided the datasets into forward 

and reverse reads and then assembled each of the two sets (forward and reverse) into 

distinct contigs produced by Seqman and clusters generated by CD-HIT. 

We then took the respective contigs and clusters and aligned them with 

CLUSTALW [18,19] and then used PAUP [20,21] to generate a tree file. We used a 

PERL script to generate an environmental file that indicated where each sequence had 

come from, including the sample or patient origins and either a Seqman or CD-HIT 

environmental type. We fed these two files into the Unifrac [11] tool which produced a 

matrix showing the P-value ofthe comparisons for each environment against each other. 
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The matrix was computed with the Bonferroni correction to correct the P-values that is 

reported for multiple comparisons which is performed by multiplying the raw P-value by 

the number of permutations. [10, 11] 

Taxonomic Identification and Distribution 

After verifying the reliability of the clusters, we continued with extracting 

sequence information of the representative of each cluster, which the program chose 

based on the length ofthe sequence, and ran BLAST on those representative sequences. 

Hence, instead using BLAST on each sequence in our full dataset, we just used BLAST 

on a single member from each cluster speeding up the NCBI database search 

significantly, usually by more than ten times. 

After retrieving the best hit, which we ranked by percent identity, e-value, and bit

score respectively we retrieved the genbank accession numbers for each hit following the 

same procedure as we did in our original pipeline. We made a separate file for the 

accession numbers, which we then fed into a script, Fastacmd that looked up the genus 

and species information. Fastacmd is a widely used program that NCBI offers as one of 

its tools to interact with the genbank database. 

Once we armotated the genus and species information back to the representative 

sequences that were BLASTed, we then went back to the cluster file that was produced 

previously and armotated each cluster member with the appropriate information. 

20
 



Next we applied the same shell and Perl scripts that were originally developed used to 

count species abundance information to this annotated and labeled dataset, so we can 

visualize and inspect the species distribution in the entire set. 

Comparative Analysis 

Finally, we compared our results from this newly developed pipeline with the 

original pipeline in order to ensure and assess the overall precision and accuracy ofthe 

revisions and modifications introduced was comparable and reliable. 

Run-time Analysis 

As a final step to confirm that the CD-HIT version was indeed very quick and 

portable we compared the run-time against our original BLAST pipeline and another 

commonly used pipeline, where the reads are assembled and then the contigs are used 

with BLAST. 

2.4 Results and Discussion 

Using CD-HIT 

Revising our old pipeline (Figure 1) by implementing our newly developed 

procedure shown Figure 2.2, we first clustered the raw reads. Our results from the crucial 

clustering step are shown in figure 3. In the BV-negative (BV-) set of 8,905 we found 

that there were a total of 1,063 clusters that were produced with our threshold. Similarly 

the BV+ set of 6,968 reads generated 1,000 clusters. Figure 2.3 represents the cluster size 
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and sequence membership distribution of the BV- set, which is almost identical to the 

BV+ class. Almost 50% of the sequences are in clusters that are of cluster sizes 50 to 

300, neveltheless, there are significant numbers of sequences in other cluster sizes as 

well. Fortunately, the clustering step has reduced the number of queries we need to feed 

to the BLAST by a factor of more than 8, which will inevitably speed up the process. 

Cluster Validation 

We checked 5 different clusters and all the members of each clusters hit the same 

matches when compared to other cluster members. However, in order to confidently 

verify their reliability, we continued on to the more robust test on our cluster stability 

with Unifrac. Looking at matrix displayed in table 2.1, the last two letters (ie. FC) display 

an environment in our dataset, which in our case is a patient. For example 

SBV7397_II_FC comes from environment "FC." And the "SBV" portion just indicates 

that this read had originated from Seqman or an assembly, while "BV" indicates a CD

HIT or clustering origin. We can conclude that each read reflecting the same environment 

has a p-value score of 1.0, verifying a very strong similarity. For example read 

BV7397_ICFC, a CD-HIT cluster sequence, is equivalent to SQ7397_ICFC, a Seqman 

contig sequence. These comparisons tell us that the clusters and their respective members 

all have very strong alignments amongst each other, which indicate a strong confirmation 

of the reliability and stability of our clusters. 
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Taxonomic Identification and Distribution 

Finally we continued to the next step in our pipeline, which was the final step to 

verify its accuracy. We compared the distribution from the different pipelines (BLAST, 

contig, and revised) on the samples. As we can observe in Figure 2.4 there was some loss 

of information, but nonetheless, the abundance information was quite similar and 

comparable validating our newly proposed pipeline. Nevertheless, we calculated the 

correlation coefficients' and t-tests for all three RDB levels and all were positive with the 

strongest correlation being on level 3 and the weakest on level 5, which is reflected in 

table 2.2. 

Run-Time Analysis 

Our dataset consisted of 8,906 sequence reads. We compared our CD-HIT method 

with our previous BLAST pipeline and another common method of running BLAST on 

the contigs. Figure 2.5 shows the run time in seconds for all three types of methods. The 

run-time for the contig method using Seqman and the clustering method using CD-HIT 

all included the additional steps (ie. assembly and clustering). As we can see, CD-HIT is 

significantly quicker being almost 20 times faster than our original BLAST pipeline and 

almost 40 times faster than the popular contig pipeline. 

2.5 Conclusions 

We addressed a series of challenges related to computer time and memory 

constraints, informative identification, and proper linkages of taxonomy to the clinical 

23 



data to develop an accurate analytical pipeline to determine the taxa abundance in large 

datasets from human microbiome samples. 

Our implementation and proposed pipeline has made this type of analysis 

practical as current implementation of this type of investigation analyze the individual 

sequencing reads, but as datasets get very large this proves to be impractical due to run

time and memory considerations. 

The clusters that were produced were reliable enough to conclude that CD-HIT is 

a tool that can successfully cluster microbiome sequences that are 97-100% similar. The 

taxonomic distribution was also significantly similar showing us that we can simply 

BLAST a representative sequence from each cluster and still obtain comparable results. 

Finally, the runtime of the pipeline reflected a 20-40-fold increase in speed when 

compared to other well-defined methods. Usually researchers have traditionally used the 

contig method to make the procedure, specifically the BLAST step, less exhaustive and 

more practical, but our clustering pipeline proves to be of greater efficiency. Hence, the 

revised pipeline makes taxonomic identification and distribution analysis much more 

efficient and practical, especially when the total number of samples or reads reach a high 

number. In the future, we would test the pipeline on metagenomic and other microbial 

samples to further our confidence. 
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Figure 2.1- Original Taxonomic Identification Pipeline 
Popular flow of methods and procedures to obtain taxonomic identification and 

distribution with each box being a discreet step in the process 
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Figure 2.2 - Revised Analysis Pipeline 
Revised and proposed flow of methods and procedures to obtain taxonomic identification 
and distribution with each box being a discreet step in the process 
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Figure 2.3 - Line graph of cluster size versus percentage of total sequences 
Line graph with the x-axis as the cluster size and the y-axis as the percentage of 
sequences contained in that particular cluster with CD-HIT for BV-. 
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Figure 2.5 - Runtime (in seconds) for each type of method 
Histogram measuring the time (seconds) of the two common methods (straight BLAST, 
contig) and the new CD-HIT version 

2.7 Tables 
Table 2.1 Unifrac Table ofP-Values - Unifrac result data matrix of the P-values of each 
environment in the samples (BV-,BV+). 

I] 

SBVO 
329 I 
I FB 

SBV7 
397 I 
I FC 

SBV7 
400 I 
I FD 

SBV8 
123 I 
I FE 

SBV9 
055 I 
I FA 

BVO 
329-
II F 
B 

BV7 
397 -
II F 
C 

BV7 
400-
II F 
D 

BV8 
123 -
II F 
E 

BV9 
055 -
II F 
A 

BV03 
29 II 

FB 1 0.3 0.77 0 0.11 0 0.13 0.01 0 0.22 
BV73 
97 II 

FC 0.01 0.98 0.04 0 0 0.13 0 0.13 0 0.23 
BV74 
00 II 

FD 0.01 0.27 1 0.13 0.47 0.01 0.13 0 0 0.02 
BV81 
23 II 

FE 0 0 0.08 1 0 0 0 0 0 0.04 
BV90 0 0.47 0.88 0.43 1 0.22 0.23 0.02 0.04 0 
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55 II 
FA 

SBVO 
329 I 
I FB 0 0.9 0.91 0.11 0.79 1 0.01 0.01 0 0 
SBV7 
397 I 
I FC 0.9 0 0.56 0.01 1 0.3 0.98 0.27 0 0.47 
SBV7 
400 I 
I FD 0.91 0.56 0 0.8 0.99 0.77 0.04 1 0.08 0.88 
SBV8 
123 I 
I FE 0.11 0.01 0.8 0 0.95 0 0 0.13 1 0.43 
SBV9 
055 I 
I FA 0.79 1 0.99 0.95 0 0.11 0 0.47 0 1 

SBV2 SBV6 SBV7 SBV8 SBV9 BV2 BV6 BV7 BV8 BV9 
64 I 12 I 87 I 17 I 14 I 64 I 12 I 87 I 17 I 14 I 
FC FE FG FH FO FC FE FG FH FO 

BV26 
4 I F 
C 0.94 0 0 0 0.03 0 0 0 0 0 
BV61 
2 I F 
E 0 0.94 0.27 0 0 0 0 0.26 0 0 
BV78 
7 I F 
G 0.05 0.02 0.84 0 0 0 0.26 0 0 0 
BV81 
7 I F 
H 0 0 0 1 0.04 0 0 0 0 0.07 
BV91 
4 I F 
0 0.02 0 0.12 0.47 0.97 0 0 0 0.07 0 
SBV2 
64 I 
FC 0 0.03 0.1 0 0.15 0.94 0 0.05 0 0.02 
SBV6 
12 I 
FE 0.03 0 1 0 0 0 0.94 0.02 0 0 
SBV7 
87 I 0.1 1 0 0 0.16 0 0.27 0.84 0 0.12 
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RDB Level I Correlation Coeffecient I Students T-Test 
Level 3 I 0.912903583 I 1 
Level 4 I 0.912903583 I 1 

LevelS 10.370181378 11 

FG 
SBV8 
17 I 
FH 0 0 0 0 0.82 0 0 0 1 0.47 
SBV9 
14 I 
FO 0.15 0 0.16 0.82 0 0.03 0 0 0.04 0.97 

Table 2.2. Statistical Measures of Taxa Distribution - Correlation Coeffecients and 
Student T-Tests calculations between the original and revised pipelines. 
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CHAPTER 3
 

Network-based Modeling for Analyzing the Human Gut Microbiome
 

3.1 Abstract 

Background 

The human gut contains one of the most populated microbial communities in the 

world. The influence of these microbial corrununities on the human development, 

immunity, and physiology is largely unstudied. In this paper we used a network-based 

approach to characterize the microflora in colonic mucosal samples and correlate 

potential interactions between the identified species with respect to the healthy and 

diseased states. 

Results 

We performed our analysis on the abundance data produced from the 16S rRNA 

sequencing of the bacteria within mucosal microbiome samples. We analyzed the 

modeled network by computing several local and global network statistics, identified 

recurring patterns or motifs, fit the network models to a family of well-studied graph 

models. 

Conclusions 

This study has demonstrated, for the first time, an network analysis approach that 

differentiated the gut microbiota in a disease state [Alcoholic Liver Disease] and Healthy 
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state [Healthy subjects]. The results indicate that by investigating the topological 

network of taxa identified in different gut microbiota samples, we can essentially predict 

a person's state of health or identify the bacteria or bacterial relationships that 

differentiate the disease state from healthy state. Our study suggests that we may be able 

to use network-based analysis of bacteria in studying the role of microbiota in the 

pathogenesis, diagnosis and clinical course of the human diseases where dysbiosis has 

been implicated. 

3.2 Background 

A microbiome is the entire set of microbial cells, including their genomes and 

interactions within the various ecological environment of the human body. The human 

gut contains one of the most densely populated microbial environments known on earth. 

Over 1 x 1014 microbial cells interact with human cells, indicating the ubiquity and 

potentially critical importance of such interactions in our bodies [1]. The interactions 

between digestive tract epithelial and mucosal immune cells with microbial cells are 

critical to human health. These interactions are involved with the immune system and its 

responses, metabolic regulation, and digestion and we define these microbial interactions 

with the host the Metabiome. 

In diseased states, these interactions may be altered resulting in disrupted 

functionality and organ failure [1][2]. In this project we investigate the microbiome with 

respect to Alcoholic Liver Disease, a serious condition due to heavy alcohol 

consumption. It is a major health problem in the United States consuming 15% of total 
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health care dollars [3] and is associated with 20% mortality rate [4]. To date, the impact 

of chronic alcohol consumption on gut microbiome composition has not been fully 

studied. New advances in molecular biology have now made it possible to fully 

interrogate the microbiota in complex biological environment like the human gut. For 

our studies, we analyzed the microbiome composition in mucosal samples identified 

using the first two variable regions of the 16S rRNA. This region contains taxa specific 

signatures that allows identification of the taxa down to the species level. Using the 

identified species, we follow a network-based approach to model the correlations 

between the different microbes. We are able to show significant differences amongst the 

potential microbial correlations within the healthy and diseased patients, using network 

analysis [5] [6], motif finding algorithms [7], and network fitting algorithms [8]. Previous 

network-based analysis of microbial communities has involved the evolutionary 

relatedness across species [9][10]. To the best of our knowledge this is the first attempt to 

investigate microbial taxa networks and diversity within the human gut microbiome of 

Alcoholic Liver Disease (ALD) patients. 

3.3 Methods 

Our analysis of the potential correlations amongst microbes within the gut follows 

the following five steps: (i) identification of abundant species within the patient sample 

using 16S RNA sequencing, (ii) defining the network collectively for a patient type, (iii) 

computing network statistics and set operations, (iv) motif finding, and (v) fitting the 

network to a family of graph models. 
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Datasets 

The data we used for this study was the mucosal microbiome composition from 

Alcoholic Liver Disease (ALD) and Healthy Control patients produced by Multitag 

Pyrosequencing (MTPS) of the 16S rRNA of mucosal biopsies from the gut. There were 

five distinct clinical patient classes we studied, which included the healthy controls, 

alcoholics with liver disease, alcoholics without liver disease, sober alcoholics with liver 

disease, and sober alcoholics without liver disease denoted as Healthy, Alcoholic (+), 

Alcoholic (-), Sober (+), and Sober (-), respectively. These clinical samples were 

obtained by the Rush University Medical Center in Chicago, Illinois from a total of 51 

middle-aged male and female patients (refer to the clinical paper [13]). In clinical 

terminology, sober patients are those patients that were alcoholics and have stopped 

drinking due to adverse health effects. In Table 3.1 we report the general statistics of the 

entire set, including the defined classes, patients, 16S reads, number of family-level taxa 

identified within the samples. 

Taxonomic Identification 

Molecular methods that examine the 16S ribosomal RNA (rRNA) gene are routinely 

used to identify the phylotypes of the bacteria comprising the Human Microbiome [14]. 

We used the bacterial primers 27F and 355R to amplify the first two variable region in 

the 16S rRNA and then using the new generation Roche GS-FLX high-throughput 
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instrument [12] in combination with a multi-tag approach to produce several thousand 

16S sequence reads for each sample [11]. 

We identify the taxa or phylogenetic class for each read by performing a BLAST [15] 

search against the Ribosomal Database Project (RDP 8.1) [16][17]. In our study we 

determined the taxa using blast parameters "-e 0.01 -p 0.97 -w 60 -m 8". The RDP is a 

database of 16S rRNA small sub-unit sequences for the Bacteria and Archaea organisms 

along with annotation information. The RDP provides a hierarchical phylogenetic 

categorization for the 16S rRNA sequences. It also provides several web-services related 

to the identification of taxonomical distribution of microbiome samples. 

We identified the taxonomical information for each sequence reads by annotating each 

read with the best BLAST search hit to the RDP database. We used the fifth level in the 

RDP 8 taxonomic hierarchy, the family level, for the taxa assignment as it provided 

sufficient resolution ofthe species in the sample microbiomes. 

We computed the taxa distribution for each set of 16S rRNA reads obtained from 

the biopsy of a patient and filtered out any taxa that have less than 1% normalized 

abundance. Every patients microbiome is slightly different and much of this difference 

lies in the low abundant taxa below 1% [1]. Thus, filtering the data also helps identify 

trends in the microbiome above this background variation. We also experimented with 

using the Bayesian-based RDPI0 [17] classifier to determine the taxonomical 

information and found the differences in the final analysis not as significant. 
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Network Modeling 

We modeled a networks for each the five patient types. An undirected graph G = 

(V,E) is used to represent the potential correlations between the different taxa within 

patient groups. The set of vertices V represents the set of identified taxa, and an edge Eij 

exists between vertices Vi and Vj if both these taxa were found together above a defined 

threshold in the reads obtained from a patient's sample. The edge Eij indicates a potential 

correlation between the bacterial species. We can also compute the weight of the edge 

E ij by counting either the number of patient samples where both these taxa were present 

and abundant, or by using the abundance information of the interacting partners. For the 

purpose of this study, we neglect the edge weights and use an undirected, un-weighted 

graph representation. We will investigate weighted graphs in the near future. 

The network models are visualized in the popular open-source Cytoscape [5] 

software, developed for visualization of protein-protein interaction networks obtained 

from high throughput proteomic studies. Figures 3.1 (a)-(e) shows the network models 

for the five patient classes - Healthy, Alcoholics (+), Alcoholics (-), Sober (+), and Sober 

(-), respectively. We observed that the healthy group network is denser, which we 

measure in our network connectivity analysis, in comparison to the other networks 

reflected by the larger number of taxa that co-occur. There are distinctions in the different 

networks, which can be correlated to different patient classes. 
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Network Statistics and Operations 

We computed several global and local network properties to distinguish between 

the different patients. In Table 2 we report some of the computed statistics for the 

different networks. The global network properties that were calculated were the degree 

distribution, the average network diameter, and the average clustering coefficient. The 

degree of a node represents the number of neighbours for a given node. The average 

network diameter is the average shortest path length over all pairs of nodes in the 

network. The clustering coefficient of a node z in a network, is the probability that two 

nodes x and y which are connected to the node z are themselves connected. The average 

of this over all nodes z of a network is the clustering coefficient of the network [8]. We 

used GraphCrunch to quickly and efficiently compute these network statistics. 

We also performed network operations that involved overlapping the different 

class networks in order to find the intersection, union and difference of particular nodes 

and edges (con·elations). We also computed a core network i.e., the intersection or the 

common set of the entire five patient networks that may represent the "core" microbiome. 

This network is shown in Figure 1(f) (See Results for more details.) 

Motif Detection 

Motifs within networks are frequently occurring sub-graphs generally made up of 

small number of vertices or nodes. Motifs may reveal important structural principles or a 

unique signature in complex network models [18][19]. We attempted to use a motif

finding algorithm to differentiate between the various patient-derived networks. 
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However, searching through these networks is a NP-complete problem. FANMOD is one 

of the heuristic-based motif finding algorithm that has proven to be efficient in 

determining small motifs within biological networks [7] in comparison to other motif 

finding algorithms like MAVISTO [20]. FANMOD also determines the significance of a 

discovered motif by counting the occurrence of the identified motif in a set of 

randomized networks (generated with the same degree distribution). 

Network Fitting 

We also compared our generated network models to five sets of well-studied 

family of random graph models, which are the Erdos-Renyi [21], Erdos-Renyi with same 

degree distributions [22], Scale-free Barabasi-Albert [23], N-dimensional geometric [24], 

and Stickiness [25] denoted by ER, ER-DD, SF-BA, GEO-3D, and STICKY, 

respectively. All of these random null models are common in real networks, such as 

social, protein interaction, and World Wide Web networks [19]. We used GraphCrunch 

[8], to assess how well our networks fit some of these random graph models. 

GraphCrunch ensures that the different random models have the number of nodes and 

edges that are within 1% of the input network. 

Since the comparison of a pair of networks leads to subgraph isomorphism (i.e., 

NP-complete), GraphCrunch uses a set of heuristics for computing the local sub-graph 

dependent statistics. In particular, the RGF-distance and GDD-agreement are local 

measures of structural similarities between two networks. These measures are based on 3

5 node graphlets, which are small-connected non-isomorphic induced sub-graphs of large 
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networks. ROF-distance compares the frequencies of the appearance of all 3-5-node 

graphlets in two networks (real and random), while the ODD-agreement generalizes the 

notion of the degree distribution to the spectrum of graphlet degree distributions. 

3.4 Results and Discussion 

Network Topology 

In Table 3.2 we present the average correlation coefficient and the average 

diameter for the five patient-derived networks. In Figure 3.2, we also present the 

cumulative distribution function (CDF) of the degree distributions per node (taxa) for the 

five defined categories. Nodes with a higher degree indicate the specific taxa potentially 

having interaction with more taxa. From the Figure 3.3 we observe the difference 

between the "Healthy", "Sober" and "Alcoholic" classes. The x-axis is the degrees per 

nodes in each of the networks, while the y-axis is the percentage of interactions that occur 

relative to each class network. As an example, the plot shows that 60% of the species 

interact with less than 50, 40, and 30 (approximately) species in the Healthy, Sober, and 

Alcoholic classes, respectively. This indicates a potential larger number of interactions 

within the Healthy class. The graphs did not distinguish between the classes with or 

without liver disease. 

Core Microbiota 

Using Cytoscape [5] we compute the intersections and differences amongst the 

edges or taxa relationships across the different networks. We compute a core network, 
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which presents the common correlations between nodes (shown in Figure 1(£)). This 

network has 68 vertices and 326 edges and may potentially represent the "core" 

microbiome relationships in our gut. In Figure 3.3(b) we show the Healthy network with 

the "core" network highlighted in yellow. We can see that there are significantly many 

edges (1057) and vertices (112) involved in the non-core part of the network. 

We also compared the Healthy network to four combinations of non-healthy 

networks - (i) Alcoholics (+) and Alcoholics (-), (ii) Sober (+) and Sober (-), (iii) 

Alcoholics (+) and Sober (+), and (iv) Alcoholics (-) and Sober (-). In Figure 3(a) we 

show the number of common and distinct interactions between the healthy and the four 

union networks. We observe that the Healthy network shares the most potential 

interactions with the Sober (Sober (+) and Sober (-)) and no Liver Disease (Alcoholics (-) 

and Sober (-)) networks. We also note that there are significant differences (distinction) 

between Healthy and the other classes. 

Motif Finding 

We used the Fanmod motif detection algorithm to search for three, four, and five 

vertex sub-graphs, while generating 1,000 random models with a locally constant number 

of bidirectional edges and 3 exchanges and tries per edge for computing the statistically 

significant motifs. As in other biological networks [26] we found the feed-forward 3

node motif to be present in all the patient-derived networks with at least a 20% 

frequency. We present the most significant (highest z-scores) 4-node motifs discovered 

across the five networks in Figure 4, along with the frequency of occurrence in the 
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network and the random networks. We found a total of four motifs in the Healthy and 

Sober classes, and 3 motifs in the Alcoholics classes that were significant. The first two 

motifs are much more abundant in the Healthy and the Sober (-) classes when compared 

to the others. On the other hand the third motif is more abundant in the Alcoholics and 

the Sober (+) classes. These results reflect that there may be specific patterns of 

interactions existing within different patient classes. 

Network Model Fitness 

Using OraphCrunch [8], we generated 30 instances of all the five random models 

(ER, ER-DD, OEO-3D, SF-BA, and Sticky) for each of our patient-derived networks. We 

compared the real networks to these set of random instances using a set of both global 

and local properties of networks that were described earlier to find the best-fit model. In 

Figures 5(a) and 5(b) we plot the ODD-agreement (arithmetic mean) and ROF-distance 

between our patient networks and derived random models, respectively. Analyzing 

Figure 5(a), we notice that the trend is similar for the families of random models, though 

the agreement for the Healthy and Sober (-) networks is the lowest, and highest for the 

Sober (+) class. In Figure 5(b), we see that the STICKY and ER-DD model fits best with 

our patient-derived networks, since we show a distance measure. 

3.5 Conclusions 

In this work we presented an approach to model the potential interactions within 

the microbiome using a network-based approach. We used a range of network analysis 
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tools to characterize the modeled networks for different classes of patients. In particular, 

we analyzed the 16S rRNA sequences in the gut microbiome from healthy patients and 

alcoholic patients (with or without liver disease). 

We found a core set of correlations (interactions or relationships) that exist in all 

of these networks that may suggest that there is a core set of metabolic or inunune 

functions that are provided by the human gut microbiome. We also found potential 

interactions that only occur in the Healthy patients reflecting that these relationships may 

be crucial for good health and that disruption of these interactions may lead to instability 

in the ecosystem or disease. We also found that the Healthy network was denser, with a 

higher degree distribution per node and a greater number of motifs present. One potential 

hypothesis that needs evaluation is that the healthy gut microbiome is more robust and 

adaptable to changing environmental conditions. The comparison against specific random 

null model networks gives us further insight in the topology ofthese networks. 

To test the robustness and significance of our analysis we need to apply the same 

teclmique to larger alcohol liver disease datasets. We also would like to test it for other 

potential diseases, and for microbial communities in other species or even environments. 

In the future we aim to use a weighted graph representation and validate the abundance of 

interactions using metabolomic, metaproteomic, and metagenomic studies. 
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3.7 Figures 

/' 

(a)	 (b) (c)
 

, 

(d) (e)	 (f) 
Figure 3.1: Network Representation for the (a) Healthy (b) Alcoholics (+) (c) Alcoholics 
(-) (d) Sober (+) (e) Sober (-), and (f) Core Classes. These networks are visualized using 
the Cytoscape network modeling tool. 
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Figure 3.2: Degree Distribution (Cummulative Distribution Function) for the five patient 
classes. 
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(a) (b) 

Figure 3.3: Network Operations. (a) Intersection and Difference statistics of union 
networks (Alcoholics, Sober, Liver Disease, and No Liver Disease) with respect to the 
Healthy class. (b) Superimposition ofthe Core Network (yellow) over the Healthy 
Network in blue. 
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Figure 3,5: Local metrics (a) GDD-Agreement and (b) RGF-Distance comparing the 
patient-derived networks against the ER, ER-DD, GEO-3D, SF-BA, and STICKY graph 
models 

51 



3.8 Tables 

Table 3.1. General Dataset Statistics 
Class # Patients # Reads #Reads per 

Patient 

#Taxa 

Identified 

Healthy 10 8058 805 114 

Alcohol (+) 8 13025 1628 107 

Alcohol (-) 9 10016 1112 109 

Sober(+) 11 13694 1244 113 

Sober (-) 13 19240 1480 99 

Total 51 64033 1255 116 

Table 3.2. Global Network P 
Class Total 

Interactions 

Average 

Diameter 

Average 

Clustering 

Coefficient 

Healthy 2604 1.608 0.636 

Alcohol (+) 1726 1.709 0.626 

Alcohol (-) 1781 1.719 0.632 

Sober(+) 2052 1.711 0.538 

Sober (-) 1867 1.638 0.688 
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CHAPTER 4
 

Summary
 

4.1 Summary 

The studies presented in the thesis are a step towards the broader objectives and 

goals of the Human Microbiome Project. It has been proven that in diseased individuals 

the interface between microbial and human cells is transformed potentially allowing 

different types of interactions to occur that are directly correlated or associated with a 

persons state of the health. In this particular study we implemented a network-based 

approach and discovered possible distinct interactions or relationships amongst different 

bacterial taxa related to a persons class or clinical health state (ie. healthy, diseased). 

Furthermore, prior to our network approach, we have successfully introduced a novel 

analysis pipeline for the taxonomic identification of l6S rRNA sequences obtained from 

multi-tag pyrosequencing samples. Our results have lead us to affirm that there IS a 

means to classify and diagnose individuals based on their microbiome properties. 

4.2 Future Direction 

Nevertheless, there is a need for more implementation to confirm our conclusions. 

In the future, the study needs to incorporate and be validated on other diseased datasets. 

More importantly, the focus should be concentrated on actual transcription that occurs in 
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the bacteria. For example, add a deeper layer to the networks that include the actual 

metabolic pathways and metabolites that are present. This type of depth will give us 

greater insight on the types of interactions that are present in a person's microbiome. 
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