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This dissertation describes research into a new remote sensing method to detect 

trace gases in hyperspectral and ultra-spectral data. This new method is based on the 

wavelet packet transform. It attempts to improve both the computational tractability and 

the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric 

trace gas research supports various Earth science disciplines to include climatology, 

vulcanology, pollution monitoring, natural disasters, and intelligence and military 

applications. Hyperspectral and ultra-spectral data significantly increases the data glut of 

existing Earth science data sets. Spaceborne spectral data in particular significantly 

increases spectral resolution while performing daily global collections of the earth. 

Application of the wavelet packet transform to the spectral space of hyperspectral and 

ultra-spectral imagery data potentially improves remote sensing detection algorithms. It 



   

  

also facilities the parallelization of these methods for high performance computing. This 

research seeks two science goals, 1) developing a new spectral imagery detection 

algorithm, and 2) facilitating the parallelization of trace gas detection in spectral imagery 

data. 
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1 Introduction 

 

 

 

 

Traditional hyperspectral analysis has followed two paths, statistical and non-

statistical. Statistical approaches use the population data of the hyperspectral cube 

through examination of the covariance matrix and eigenvalues. Once these statistics are 

known, a comparison is made to either other populations within the cube or a reference 

library. Non-statistical approaches examine individual pixels to identify their properties 

either in relation to other pixels within the hyperspectral cube or in relation to a reference 

library. This type of approach follows traditional spectroscopy where materials in an 

individual spectrum are identified and quantified. This information is used to identify and 

quantify materials in the scene.  These approaches lie within three so-called spaces in 

which analysis is performed [1]. These spaces include Image Space, which represents the 

image plane or x and y spatial dimensions of the hyperspectral image, Spectral Space, 

which represents the wavelength or frequency dimension along the z-axis of the 

hyperspectral cube, or Feature Space, which represents the relationships between each or 

all of the wavelengths or bands within the z-axis of the hyperspectral cube. Image space 

contains literal information which is information that is visually interpreted by the user. 

These spaces are illustrated in Figure 1. Feature space and spectral space are considered 

non-literal information. Data in those spaces must be processed using various 

mathematical methods. These methods elicit additional information within the scene. 
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Figure 1. The Spaces of Hyperspectral Analysis 

 

 

The general goals of hyperspectral analyses are relatively simple; 1) characterize or 

identify all of the materials either solid, liquid, or gas within the hyperspectral image, or 

2) identify specific target materials of interest, which also maybe solid, liquid, or gas, 

within the hyperspectral image. The study of all the materials in the scene, or endmember 

analysis, is used in several scientific research areas; geology, geography, planetary 

science, earth science, atmospheric science, etc. The search for specific target materials 

may be thought of as a subset of this study, which has somewhat broader implications but 

a narrower focus in environmental monitoring, atmospheric science, planetary science, 

military applications, intelligence gathering, and many other research areas [2-5]. 
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Several airborne and spaceborne platforms exist that collect spectral imagery data 

for both civil and military purposes. As more and more spectral imagers become 

available, data processing requirements shift from analysis of individual data collections 

to daily processing of global data. With the advent of NASA’s Advanced Infrared 

Sounder (AIRS) on board the AQUA satellite, ultra-spectral data (2378 bands with !/"! 

~1200) increased by at least an order of magnitude the complexity and computational 

requirements on hyperspectral analysis [6]. This requires computationally tractable 

remote sensing methods to process data quickly for material detection and identification.  

Typically hyperspectral analysis focuses on a single data set or a small number of 

data sets. This type of analysis seeks to find specific materials, properties, or 

characteristics, within the data sets of interest. Prior to Hyperion, on board NASA’s EO-1 

satellite, or Advanced Infrared Sounder (AIRS), on-board NASA’s AQUA satellite, 

hyperspectral data were generally collected with an airborne platform. Airborne 

platforms have a much smaller data volume as their collections are limited to individual 

flights. AIRS covers the entire globe twice a day. With AIRS data, global atmospheric 

study is possible. AIRS data facilitates research in many areas providing information on 

both global and local scales. AIRS is as equally suited to measuring total atmospheric 

ozone across the globe as it is trace amounts of sulfur dioxide from regional volcanic 

events. It is easy to see the vast number of earth science applications for which AIRS data 

are suitable. 

With this daily global data set comes an equally substantial data volume. This large 

data volume is on the order of 240 data sets/day or 30 GB/day of AIRS radiance data. 
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Sheer volume alone is not the only computational issue associated with AIRS data [7; 8]. 

The AIRS instrument has a spectral resolution of 1200 (!/"!). This allows it to see both 

vibrational and rotational features of gas spectra [9]. In typical hyperspectral analysis 

(!/"! ~10-100), atmospheric compensation could be accomplished using a moderate 

resolution radiative transfer model such as MODTRAN. AIRS, with its high spectral 

resolution, requires radiative transfer models using the HITRAN database [10] and line-

by-line radiative transfer models. This increases computational complexity of data. 

If we agree that the computational science need for improved detection and 

identification for AIRS ultra-spectral data is clear, then we can focus on the earth science 

question of atmospheric trace gas detection and identification. Trace gases represent less 

than 1% of total content of the atmosphere [11] but are primarily responsible for such 

varied effects as climate change (CO2), air pollution (chlorofluorocarbons, CFCs), 

protection from ultra-violet rays (O3), and weather (H2O). Detection, identification, and 

quantification of these trace gases are critical to the study of earth science [12; 13]. 

Most hyperspectral analysis can be divided between statistical methods in feature 

space and distance methods in spectral space. The current statistical methods do not lend 

themselves easily to parallelization, but spectral space methods are more accommodating. 

Unfortunately the statistical methods demonstrate better results in weak signal detection 

[14-17]. Thus methods applied to spectral space that provides performance as good as or 

better than statistical methods are much needed. 

Several efforts have been made at applying the wavelet transform to hyperspectral 

analysis [18-24]. Applying a wavelet transform to spectral data follows the discussion of 
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[25] by applying a transformation to data to generate features for better pattern 

recognition The fundamental problem of identifying a material (solid, liquid, or gas) 

within a spectral image is that of matching the pixel spectrum to the material signature 

from a reference library, ergo, pattern matching. 

The wavelet transform has many properties that could be applied to hyperspectral 

data analysis. A fundamental property is the multiple resolution signal analysis that can 

be applied [26].  These multiple resolutions or scales separate the fine scale and large 

scale properties of the input signal. Thus, the wavelet transform used in spectral space is 

the basis for a new ultra-spectral remote sensing detection and identification method. 

Preliminary results (see Appendix 1) for the development of a wavelet transform 

based detection and identification algorithm are promising. Initial applications of the 

Discrete Wavelet Transform (DWT) compare well with traditional hyperspectral 

methods. This is an expected result. Several researchers have already published their 

findings regarding classification improvements with the DWT [20; 27; 28]. 

The application of the DWT and the Wavelet Packet Transform (WPT) are 

somewhat analogous the principal component analysis (PCA or Karhunen-Loeve basis) 

approach to multispectral and hyperspectral feature detection. The most significant 

difference is the Karhunen-Loeve optimizes through finding the axes of most variance in 

the observed data, while a basis from a wavelet packet tree can be selected based on other 

cost functions [29]. 

The goal of this research is to develop a method for trace gas detection in spectral 

data using a wavelet packet best basis. Hereinafter referred to as the “Wavelet Packet 
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Subspace” (WPS) approach. By applying the wavelet packet transform in spectral space, 

the statistics of the entire data set need not be calculated, and the WPS approach would 

become an easily parallelizable problem (EPP). In this application, we seek to identify 

the most significant contributions of the target signal in wavelet coefficient space.  

Although we must also bear in mind the issues of using too few or too many bands in 

attempting to separate the target and the background. 

The presented treatise is organized as follows. Following this introduction, which 

includes background information on hyperspectral analysis, a description of the 

atmosphere, various spectral detection methods, spectral libraries, and a discussion on 

wavelet and wavelet packet transforms. It then describes the methods used, which explain 

the approach to the data, wavelet packet selection, and the methods used to compare and 

visualize the results. The results are presented. Then, results for all of the data sets are 

analyzed. A discussion section follows, which provides key observations of the results 

and their implications to both the algorithm and its computational tractability. Finally, the 

conclusion discusses the results in regard to the original intent of the research and future 

research. 

 

1.1 Hyperspectral Imagery Data 

 

Spectral imaging for remote sensing arose as an alternative to high resolution, large 

aperture satellite systems [3]. Spectral imaging is an extension of typical visual imagery, 

like black and white or color imagery, into a larger portion of the electro-magnetic 
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spectrum. It uses the visual through long wave infrared (LWIR) portions of the 

electromagnetic (E-M) spectrum and measures several to hundreds of bands throughout 

the spectrum.  

As a color image is a measure of radiance in three bands (red, green, and blue), a 

spectral image may contain several to hundreds of contiguous bands within the red, 

green, and blue portions of the spectrum. The spectral image may also extend through the 

visual spectrum into the mid-wave infrared (MWIR) and into the long-wave infrared 

(LWIR). Figure 2 illustrates this concept. 

 

 

Figure 2. Black & White, Color, and Spectral Images 
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Hyperspectral data analysis is generally broken into three major segments of the 

electro-magnetic spectrum, the VNIR/SWIR (also called solar reflective) region ~0.4 µm 

to ~2.5 µm, the mid-wave region ~2.5 µm to ~7.0 µm, and long-wave (also called 

thermal) region ~7.0 µm to ~15.0 µm. Within the reflective region the primary 

illuminating source of photons is the Sun. This is the visual portion of the E-M spectrum 

and extends into the near infrared. In the long-wave region, illumination from the Sun is 

negligible and the primary source of photons is self-emission from objects above zero 

Kelvin. Across the mid-wave region, both the Sun and self-emission contribute to the 

collected radiance and thus both sources of photons must be dealt with during analysis of 

the data. In addition to the particular phenomenologies of the source radiance, sensor 

design is based on materials that are sensitive to different parts of the E-M spectrum, e.g. 

Mercury-Cadmium-Telluride (HgCdTe). HgCdTe is a material used in sensor focal plane 

arrays. It is sensitive to long-wave radiation but significantly less sensitive to photons in 

the ~0.4 µm to ~2.5 µm region [30]. 
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Figure 3. A Typical Image Collection Scenario 

 

 

The model for a typical hyperspectral remote sensing collection scenario follows 

many other imaging systems as illustrated in Figure 3. There is a source, which provides 

the illuminating photons. Generally the Sun is the source for reflective hyperspectral 

collection. Radiant energy travels through the atmosphere, is reflected off of some object 

on the ground, and again travels through the atmosphere, and is then collected by the 

sensor. This radiance model will be discussed in more detail later. The sensor collects the 

received photons in both the spatial and spectral domains and records them.  

Hyperspectral data are generally thought of as a data cube, with spatial information 

across the x-y plane and spectral information across the z-axis. Thus any plane in x-y 

corresponds to a wavelength along the z-axis. Each pixel within the x-y plane has a 
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corresponding spectrum along the z-axis (Figure 4). This brings us to the concept of 

literal and non-literal information [31]. In the x-y plane of the data cube we have 

information, which to any individual conveys visual information, an image. This image is 

literal information that conveys some context to us, i.e. the image of an Abrams M-1 

main battle tank. The image is interpretable as a tank in a field or in a parking lot, etc. 

Along the z-axis of the data we have individual pixel spectra. These spectra are 

considered non-literal information as the data are not necessarily visually interpretable 

but must be processed before information can be interpreted. 

This research focuses on exploiting non-literal information within the long-wave 

region of the E-M spectrum. Thus here, the sensors, radiance model, and data cubes used 

will correspond to the ~7.0 µm to ~12.0 µm region of the spectrum. 
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Figure 4. The Hyperspectral Data Cube 

 

 

1.2 The Atmosphere and Radiative Transfer Equation 

 

The atmosphere plays a significant role in the hyperspectral detection on any 

material whether the data collected is in the reflective or LWIR regions. The atmosphere 

is the medium that photons from the source travel to the sensor. The photons collected by 

the sensor have been attenuated and scattered by the atmosphere. The atmosphere itself is 

a mixture of ideal gases in which nitrogen and oxygen predominate by volume. Photons 

from the Sun in the visible, infrared, and ultra-violet wavelengths heat the atmosphere 

and are either absorbed by the atmosphere or are reflected back into space. The structure 



   

 12 

of the atmosphere is stably stratified but varies in both pressure and temperature as 

altitude increases [11]. Table 1 lists major constituents of the atmosphere. 

 

Table 1. Major Constituents of the Atmosphere
1
  

 

Gas Abundance Infrared Active 

Nitrogen 78% no 

Oxygen 21% yes 

H2O < 4% yes 

CO2 350 ppm yes 

Ar  9340 ppm no 

Ne 18 ppm no 

He 5.2 ppm no 

CH4 1.7 ppm yes 

N2O 320 ppb yes 

CO 125 ppb yes 

O3 10-100 ppb yes 

 

 

Given the structure of the atmosphere, the amount of absorption and transmission 

through that portion or layer of the atmosphere can vary significantly. There are many 

texts on the physics of the atmosphere [5; 11; 12; 32]. For our purposes a simplified 

model of the atmosphere is as shown in Figure 5. This helps to illustrate its impacts on 

hyperspectral data collection and analysis.  

 

                                                
1
 Adapted from Yung & Demore (1999), pgs 318-319 
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Figure 5. Simplified Model of the Atmosphere 

 

 

Following Figure 5, at (1), the Sun’s irradiance at 6000 K is close to a blackbody at 

the same temperature, (see Figure 6). The solar irradiance is incident on the Earth’s 

atmosphere. At (2), its photons are absorbed and scattered by the atmosphere 

subsequently heating the atmosphere. Bear in mind since the atmosphere varies in 

pressure with altitude, the amount of absorption and scattering varies, and the subsequent 

heating of the atmosphere also varies. 

Eventually the solar radiance (3), which has been attenuated by the atmosphere, is 

incident on the Earth’s surface. It reflects off the surface and is also absorbed by the 

surface, thus, heating the surface. The Earth (4), is heated by the Sun. It also has internal 

heat generated by the geophysics of the planet. The surface then emits radiation back into 
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the atmosphere where it is either absorbed or transmitted through. The atmosphere (5) is 

emitting due to its temperature. It also contains the surface radiance and reflected solar 

radiance as attenuated by the atmosphere. Finally, the radiance at the top of the 

atmosphere (6) contains, reflected solar radiance, emission from the atmosphere and 

emission from the surface, all of which have been attenuated.  

We will return to this model later when we discuss trace gas detection. It is 

important to note from Table 1 that not all gases are infrared active. That is, they do not 

absorb nor emit photons in the infrared region of the spectrum and thus do not contribute 

to the emission from the atmosphere. 

Quantifying the radiance from Figure 5 brings us to the radiance equation used for 

hyperspectral detection. We will describe the Big Equation [33] with some modifications 

in notation. Starting with the solar irradiance we describe both the visible/near infrared 

components of the radiance as well as the long wave components. The total radiance at 

the sensor is 

 

   

! 

Ltotal = Lreflective + Lthermal       (1) 

 

 

where Ltotal is total radiance at the sensor; Lrefelective is the solar irradiance contribution; 

and Lthermal is the emissive radiance contribution. 

The reflective contribution is the Solar irradiance reflected off objects into the 

sensor field of view (FOV) which occurs in the ~0.4 µm to ~5.0 µm range of the electro-

magnetic spectrum. The thermal contribution results from self-emission from the surface 

and the atmosphere within the sensor FOV. Self-emission is electromagnetic radiation 
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emitted by a body with a temperature greater than absolute zero. The spectral distribution 

of the radiation is governed by Planck’s Law. 

 

! 

S(") =
2#hc 2

"5
1

e
ch

"kT $1       (2) 

 

 

S(!) = spectral radiant emittance 

l  = wavelength 

h = Planck’s Constant 

T = absolute temperature 

c = velocity of light 

k = Boltzman’s constant 

 

 

From Planck’s Law, Wien’s law can be derived which gives the wavelength of maximum 

emittance [34]. 

 

! 

"
max

=
a

T        (3) 

      

 

where a = 2898 µmK 

 

 

For the surface of the Earth with a temperature ~300 K the peak emittance occurs at 

!max = 9.66 µm (LWIR). For the Sun, ~6000 K, peak emittance occurs at !max = 0.48 µm, 

which is in the visible spectrum. Figure 6 illustrates the total radiance as a function of 

wavelength by Planck’s Law for objects at 6000 K (center) and 300 K (right), also plotted 

is the Sun’s irradiance at the top of the atmosphere (TOA) as calculated by MODTRAN 

(left). 
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Figure 6. Blackbody Radiation at Sun and Earth Temperatures  

(MODTRAN - left, 6000 K - center, 300 K - right) 

 

 

The reflective contributions of total radiance is illustrated in Figure 7, and is described by 

equation (4). 

 

! 

Lreflective = L
1
+ L

2
+ L

3
+ L

4
+ L

5    (4) 
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Figure 7. Solar Radiance Contribution to the Schott’s Big Equation 

 

 

L1 represents photons from the Sun passing through the atmosphere and being 

reflected into the sensor. This is the most direct path between the Sun and the sensor. L2 

represents photons emitted from the Sun, scattered in the atmosphere and reflected off of 

the surface. They then travel through the atmosphere into the sensor. These photons are 

commonly referred to as sky shine. L3 photons start at the sun and are directly reflected 

off  the atmosphere. This is called upwelled radiance. L4 and L5 photons represent 

multiple bounce photons from background objects or scattered through the atmosphere 

and the surface. 

Thermal energy radiance paths are illustrated in Figure 8. As evidenced in Figure 6, 

direct solar contribution to the LWIR is negligible. However, the Sun is primarily 

responsible for heating the atmosphere. L8 in Figure 8, is this component. 
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Figure 8. Thermal Radiance Contribution to Schott’s Big Equation 

 

 

! 

L
thermal

= L
6

+ L
7

+ L
8

+ L
9      (5) 

 

 

L6 photons are emitted directly from the surface and travel through the atmosphere 

into the surface. L7 photons are generated in the atmosphere and are reflected into the 

sensor off of the surface. This is called downwelled radiance. L8 photons are emission 

from the atmosphere sent directly into the sensor. This is also upwelled radiance. Finally 

L9 photons are emitted from bodies and scattered off multiple bodies prior to reaching the 

sensor.  In the analysis of the Big Equation [33] a sensitivity study of the total radiance 

contributions for the visible through LWIR portions of the spectrum is performed. The 

order of magnitude results are summarized in Table 2. 
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Table 2. Order of Magnitude Contributions to Total Radiance
2
 

 

Wavelength 

Range 

L1 L2 L3 L4 L6 L7 L8 L9 Ltotal 

0.4 – 0.7 µm 10
-3

 10
-4

 10
-3

 10
-5

 10
-27

 10
-31

 10
-29

 10
-29

 10
-3

 

3 – 5 µm 10
-5

 10
-7

 10
-7

 10
-7

 10
-4

 10
-6

 10
-29

 10
-29

 10
-4

 

8 – 14 µm 10
-6

 10
-8

 10
-8

 10
-8

 10
-3

 10
-5

 10
-3

 10
-4

 10
-3

 

 

 

As we will see shortly the hyperspectral data used for our trace gas detection spans 

~7.5 µm to ~12 µm. This allows us to make some simplifying assumptions to the 

radiance equation based on the orders of magnitude. Within the 8 µm to 14 µm range, the 

Lreflective components are at least three orders of magnitude less than the total radiance. 

Within the Lthermal components, L7 is at least an order of magnitude less than the total 

radiance. L9 is only an order of magnitude less than the total radiance, but very difficult to 

estimate since it is based on multiple scattering from objects in the scene. For our 

purposes, this is also set to zero. We can then set L1 = L2 = L3 = L4 =L6 = L7 = L9 =0, 

and our total radiance equation becomes, 

 

! 

L
total

= L
6

+ L
8       (6) 

 

 

where, 

 

! 

L6 = "(#)L
T#$(#)      (7) 

 

 

"(!) = wavelength dependent emissivity of the body 

LT! = blackbody radiation from the object from Planck’s Law 

#(!) = wavelength dependent transmission through the atmosphere  

 

                                                
2
 Adapted from Schott (1997), pg. 117 
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! 

L
8

= L
u"      (8) 

 

 

Lu! = wavelength dependent atmospheric upwelling radiance 

 

Then equation (6) becomes 

 

 

! 

L
total

= "(#)L
T#$(#) + L

u#       (9) 

 

 

In solving equation (9), LT! is easily calculated using Planck’s Law while "(!) is 

estimated as an average emissivity across the wavelengths. The emissivity is dependent 

on the background of the spectral scene and is selected accordingly. The other two 

components, atmospheric upwelling and atmospheric transmission are modeled using a 

radiative transfer or atmospheric model. 

 

! 

L
total

= "(#)L
T#$(#) + L

u# + "
noise     (10) 

 

 

For completeness we add "noise to equation (9), which represents the noise or error 

associated with the collected radiance data at the sensor. Consideration of this residual 

error in the inversion process is a fundamental computational issue [35; 36]. This is 

especially true in solving remote sensing problems. Solution to the remote sensing 

inversion problem requires solving a Freedholm integral equation of the first kind [35]. It 

is a computational issue many hyperspectral analysts overlook. 

Two different atmospheric models are used for our trace gas detection. For 

simulated data cubes and AHI data, the Moderate Resolution Transmission code 

(MODTRAN) is used. MODTRAN is a broadband atmospheric model that has become 
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the de-facto standard for hyperspectral analysis [37]. At a spectral resolution of 0.1 to 1 

cm
-1

, this model is more than adequate for the collected data. 

For the AIRS data, the spectral resolution of the AIRS sensor is significantly 

greater than AHI and MODTRAN (!/#! > 1200 or better than 10
-3

 cm
-1

). A line-by-line 

radiative transfer model (LBLRTM) from Atmospheric and Environmental Research Inc. 

is used. LBLRTM is the atmospheric model that other models and sensors are compared 

to [38]. LBLRTM is typically the model used for atmospheric studies. 

 

1.3 Radiance Model for Gas Detection 

 

As a hyperspectral sensor collects data over large areas, it is obvious that gas/plume 

targets of interest are sparsely represented in the data. This is also true in the case of gas 

detection. Although, in applying the matched filter there is an assumption that the 

spectral data mean and covariance matrix are not significantly influenced by the presence 

of the target [15]. If the target signature is spread across the scene such that the 

covariance matrix is significantly influenced by the target signature, poor results can 

occur. This is actually the case in some of the AHI data presented in Chapter 3.  

The fundamental problem in detecting weak signatures in hyperspectral data is 

separating the background from the target. The background has usually been 

differentiated into general categories such as urban, forest, and desert areas [39]. The 

background itself has been and continues to be a fundamental issue in the design of 
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hyperspectral collections and experiments. As research has shown, backgrounds cannot 

be easily characterized and generalized [39; 40]. 

In this model, the background represents not only the physical background in the 

scene, but all of the radiance contributions that are not the target signature. Equation (10) 

is essentially the background radiance model. For a gas in the target scene, the model 

requires the addition of the target signature. This radiance model follows Young’s 

discussion in his report on detection of gases from industrial stack plumes [41]. 

The description of the background, equation (10) is equivalent to Young’s equation 

describing radiance without a plume present in the scene. Both models are in agreement 

with Schott’s radiative transfer expression. Young follows by describing the addition of 

the plume to the radiance equation. Added to the background model are: 

 

1. Surface radiance attenuated by the plume, and 

2. Radiance contribution of the plume itself. 

 

Young makes assumptions and simplifications to his model concluding with his equation 

for the radiance in the presence of a plume. 

 

! 

Lplume = Cn (")# (")kn (") + L
0
(")

n=1

N

$
     (11) 

 

where, 

Cn(!) = Thermal contrast spectrum for the nth Gas  

#(!) = wavelength dependent transmission through the atmosphere 

kn(!) = Spectral absorption coefficient for the nth gas 

L0(!) = Ltotal from equation (10) 
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The thermal contrast spectrum is defined as 
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where, 

cn = denotes plume and ambient column density 

B = Planck law radiance for the plume (P), surface (S), ambient (A) 

"s = surface emissivity  

! 

" n = denotes the average quantity for the broadband LWIR spectrum 

 

 

Equation (11) is used to generate all the simulated data cubes and is the basis for trace 

gas detection in Chapter 2. 

 

1.4 Hyperspectral Detection Methods 

 

There are numerous works, which describe hyperspectral data analysis and 

signature matching methods in great detail [14; 42-44]. Provided here is an overview of 

the analysis process and description of the detection and matching methods used.  The 

hyperspectral analysis process is broken into 5 stages. 

 

1. Collection – physical data collections, sometimes the actual flight campaign 

2. Pre-Processing – preparing the data for analysis, e.g. calibration 

3. Processing to include material, object, event detection and identification – the 

actual analysis step 
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4. Product Generation – taking the results of analysis and making them suitable for 

external users 

5. Dissemination of products – physical or electronic distribution of products and 

data to other users 

 

Most of the steps listed above are intuitive perhaps to the experienced spectral data 

analyst but a short summary of each step is provided. The process begins with collection. 

This is the actual airborne flight or spacecraft overflight that activates the hyperspectral 

sensor and collects radiance data from the scene. The data is stored on-board for either 

data transmission to a ground station or physical transfer to the ground processing site. 

Depending on the sensor and system design, the collected radiance data may be 

radiometrically, spectrally, and/or spatially calibrated during the collection step. These 

steps may also be conducted on the ground as part of the pre-processing step. 

Preprocessing generally encompasses any preparation of the data, calibration, 

splitting of flight lines, quality control, and so on. It may also include atmospheric 

compensation of the data. Atmospheric compensation includes modeling of the 

atmosphere and removal of the atmospheric effects from the data so that matching of 

spectral features in the processing step can be accomplished. Processing includes any 

analysis of the data that transforms the at-sensor radiance data into a new set of 

information. This may include detection and classification maps, vegetation analysis, 

anomaly detections, terrain categorization, and background characterization. The WPS 

algorithm is focused on the processing phase of hyperspectral analysis. 
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The last two steps are straightforward. Product generation is the process to take the 

newly generated information and to create a standard product. This may be formation of 

another data set such as NASA’s Level 4 and Level 5 products, formal briefing slides, a 

community standard product format etc. The last step, dissemination is the not-so-simple 

task of transmitting these products to end users. This may sound unimportant, but given 

the volume of hyperspectral data, and the potential volume of the products it may 

generate, this task is anything but trivial. 

Within the processing step, detection and identification are sometimes treated 

synonymously. Detection and identification are merely the confident identification of a 

material (solid, liquid or gas) in the spectral data. Most often, detection is performed via  

visual selection of areas of interest. This is followed by a comparison of spectral features 

of the pixels in the area of interest, to a reference library. The spectral comparison 

method for gas detection is usually a linear least squares fit (linear regression) of the 

pixel spectra against the target reference library [41]. 

The more difficult step that of absolute quantification of a specific material in the 

scene is often treated separately. In many cases, it is sufficient to detect the materials 

confidently in the data. The focus of this research is successful detection. The 

quantification process is a well-researched area based on Beer’s Law. Quantification is 

fundamental to classical spectroscopy [45; 46]. 

The basis for comparison to the wavelet packet subspace approach is dual pronged. 

Two often used matching methods are used to assess WPS performance. One method, the 

spectral angle mapper or SAM, is a whole-pixel based approach while the second 
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method, the spectral matched filter (MF) is a statistical method. The matched filter 

examines the 2
nd

 order statistics (i.e., data covariance) of the data population in order to 

determine the optimal filter. The spectral angle is simply the angle between 2 vectors in 

n-dimensional space.  It calculates the spectral similarity between a reference spectrum 

and a pixel spectrum [4]. 
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t = in-scene pixel spectrum  

r = reference spectrum 

 

 

Spectral angle will be used as baseline both in spectral space and in wavelet 

coefficient space. It measures the angle between the target (gas) spectrum and the in-

scene data. SAM is chosen because it is insensitive to the brightness difference between 

two spectra [31]. 

The second matching method chosen is the matched filter. The matched filter is 

commonly used for weak target detection in hyperspectral data especially gas detection 

[14; 15; 17; 47]. The first matched filter was developed over fifty years ago and was 

applied to radar signal processing [48]. The simple matched filter is defined as 
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where, 
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x = in-scene pixel vector (spectra) 

K = covariance matrix 

t = target spectra (library reference spectra) 

m = spectral data mean 

 

 

K is derived from the data through equation (16), but the best estimate of the 

covariance matrix, is not necessarily the best estimate of the inverse covariance matrix 

[15]. Although K is an n-by-n matrix it is not necessarily easily invertible [49]. There are 

several methods to calculate matrix inverse or a pseudoinverse, such as the Moore-

Penrose matrix inverse [50]. It is important to examine the matrix rank and singularity in 

determining the appropriate inverse method. It should be noted however that this is a 

significant computational issue as a direct matrix inverse as calculated by MatLab or IDL 

may lead to erroneous results. This is due to both machine precision and the matrix 

inverse algorithm. 

The simple matched filter is adapted into the clutter matched filter (CMF) as 

defined by Funk & Theiler [15]. The CMF takes into account correlations between 

spectral channels and modifies equation (15). 
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To summarize, SAM will be used as pixel-by-pixel matching method in both 

spectral space and wavelet coefficient space. CMF will be used as the statistical method 

that operates in feature space. 

 

1.5 Spectral Library 

 

The spectral library used for this research is the Pacific Northwest National Labs 

(PNNL) infrared reference database. The database was chosen for three reasons. First, the 

database is designed for hyperspectral imaging and detection. Second, it is well known in 

the hyperspectral community and third, it is publicly available.  

The database is a collection of nearly 500 gas phase species designed for 

atmospheric monitoring, remote sensing, and hyperspectral imaging. The spectra are 

collected at 5° C, 25° C and 50° C using Fourier Transform spectrometry. The database 

has specific requirements for spectral resolution, species purity, accuracy and precision. 

The database is funded by the United States Government and publicly available at 

http://nwir.pnl.gov [51].  

Only four gases are chosen for study. This limits the scope of the simulated data 

sets and the analysis to be performed.  The gases chosen were selected based on four 

criteria: 

 

1. The gas must have some earth science significance as detected by the AIRS 

instrument. 
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2. The gas must be potentially present in the AHI data set. 

3. The gas must be present in the publicly available Pacific Northwest National Labs 

Infrared Spectral Library.  

4. The gas must have significant spectral features in both the AIRS and AHI 

wavebands.  

 

The selection criteria are shown in Table 3. A short description of each gas follows. Each 

gas is plotted in Figure 9. 

 

Table 3. Gases Selected for Study 

 

Name Chemical 

Composition 

In 

PNNL  

Location in 

AHI data 

Earth 

Science 

Significance 

Spectral 

Features 

Sulfur 

Dioxide 

SO2 Yes Potentially 

in Fairfield 

– Power 

Plant 

Significant in 

Volcanic 

Eruptions 

and Ash 

Plumes 

For AHI 

feature at 8-9 

µm while 

larger feature 

at 7.5 µm in 

AIRS  

Methane CH4 Yes N/A Significant 

greenhouse 

gas 

Large features 

7-8 µm only 

partially in 

AHI 

Ammonia NH3 Yes Potentially 

in CAFO 

site 

Air pollutant, 

precursor to 

ozone 

Strong 

periodic 

features 8.5-

12.5 µm 

Benzene C6H6 Yes Potentially 

in refinery 

site 

Known 

carcinogen, 

source 

burning coal 

and oil 

Strong feature 

14-15 µm in 

AIRS, smaller 

feature at 9.5 

µm in AHI 
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Sulfur Dioxide is the third most abundant gas released from volcanic eruptions 

(H2O and CO2 are the first and second). Rates of emission from an active volcano can 

range from 10-20 million metric tons per day [52]. Significant man-made emission of 

sulfur dioxide released into the atmosphere is due to coal burning electrical utilities and is 

on the order of 13 million tons per year [53]. Its chemical composition is SO2. The 

infrared signature is due to sulfur and oxygen stretching vibration. This provides strong 

infrared bands between 1450 cm
-1

 and 1150 cm
-1

 (6.8 µm – 8.7 µm) [54]. In the AHI 

wavelengths detection will be made using the smaller feature near 8.7 µm. 

Methane is emitted from both natural sources (~190 million tons per year) and 

man-made sources (~540 million tons per year – US only). According to the EPA, 60% 

of the methane emissions are due to anthropogenic activities. These include, landfills, 

natural gas and petroleum activities, coal mining, livestock emission, and manure 

management. Natural sources include wetlands, termites, oceans, and methane hydrate. 

Of interesting note, is  an estimated 13% of global methane emission is due to ocean and 

methane hydrates. There is much ongoing research determining exact sources and rates 

[55]. Methane has a chemical composition of CH4 and is a hydrocarbon. Methane has 

strong absorption features in the 7 µm to 8 µm range, which are useful for both AIRS and 

AHI wavebands. 

Ammonia is widely and commonly used in household and industrial cleaners. It is 

also present in the manufacture of synthetics, plastics, explosives, and has numerous 

other uses. It has both man made and natural sources and is tracked by the EPA as a 
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precursor/promoter of air pollutants. Ammonia’s chemical composition is NH3 and it has 

strong, narrow absorption features from 9 µm to 13 µm. 

 

 

Figure 9. PNNL Target Spectra (AHI and AIRS Wavebands) 

 

 

Benzene is used primarily in motor fuels and as a solvent. It is also used in the 

manufacture of detergents, explosives, and pharmaceuticals. It is found in tobacco smoke, 

emissions from burning coal and oil, motor vehicle exhaust, and evaporation from 

gasoline service stations [56]. Benzene has a chemical composition of C6H6 and is a 

hydrocarbon. Its peak absorbance occurs in the 3100 cm
-1

 (3.2 µm) range and has weaker 
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bands in the 2000 cm
-1

 to 1700 cm
-1

 (5 µm to 6 µm) range. Of most interest in AHI 

wavelengths is C-H bending between 1200 cm
-1

 to 1000 cm
-1

 (8 µm to 10µm) [54].  

 

1.6 Hyperspectral Sensors  

 

The Airborne Hyperspectral Imager (AHI) was developed by the Defense 

Advanced Research Project Agency (DARPA) as part of their Hyperspectral Mine 

Detection Program. It was built to exploit features in the 8.0 µm to 11.0 µm long-wave 

infrared range with a spatial and spectral resolution designed to detect buried mines. [57] 

AHI has demonstrated its ability to perform landmine detection when the appropriate 

processing algorithms are applied [58]. It has also demonstrated its ability to detect 

volcanic SO2 [59], and toxic air pollutants [60]. 

The AHI system consists of a LWIR hyperspectral sensor with a boresighted 3-

color LCD linescanning camera. The system performs on-board radiance calibration and 

has 256 spectral bands between 7.5 µm and 12 µm. The AHI data used was provided by 

the Environmental Protection Agency from their 2004 Plume Ex experiment [60]. Figure 

10 is an AHI hyperspectral image and linescan image of the Dow Chemical Plant in 

Freeport, Texas. 
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Figure 10. AHI Hyperspectral Image (Left) and Linescan Image (Right) 

(Images not Geo-Rectified) 

 

 

The AHI data was collected over 2 days in April 2004 and consists of over three 

dozen flightlines of data. Flightlines are as long as 7000 lines and have been manually 

split into 750 line segments for processing. The data was collected over several chemical 

plants, refineries, power generation facilities, and animal feeding operations. 

The Advanced Infrared Sounder (AIRS) was launched aboard NASA’s Aqua 

satellite in May 2002. It is a high spectral resolution infrared sounder that covers 3.74 µm 

to 15.4 µm across 2378 channels. It has 13.5 km spatial resolution with better than 1 K 
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temperature retrieval accuracy. Earth science products generated by the AIRS ground 

processing system include land and sea surface temperature, atmospheric temperature 

profiles, cloud cover, cloud-top height, cloud-top temperature, and surface emissivity. 

The AIRS instrument also carries a Vis/NIR multispectral sensor with 2.7 km spatial 

resolution. The multispectral sensor is intended to identify low level cloud, different 

terrain, and surface covers [6; 61-64]. 

AIRS is the first NASA instrument to measure global climate change parameters. 

The system has demonstrated its ability to perform high accuracy retrieval of global 

atmospheric and surface parameters. Its demonstrated temperature retrieval accuracy is 

better than 1 K [65]. Research and products developed with its data include cloud 

characteristics and parameters, volcanic sulfur dioxide, global methane, carbon dioxide, 

carbon monoxide and numerical weather prediction [65-70]. From published research, 

AIRS data and products support a rich area of research and study within the earth science 

and atmospheric science communities. 

The AIRS data selected for this study include three separate data sets. The first data 

set is of the Montserrat volcanic eruption in July 2003. This data set is known to have 

SO2 within its volcanic ash cloud. The second and third data sets are man-made 

emissions of SO2. This occurred in June and July 2003 outside of Al-Mishraq, Iraq. This 

event was caused by a fire at a sulfur plant that burned for almost a month.  
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1.7 The Wavelet and Wavelet Packet Transforms 

 

Before we begin a description of the wavelet and wavelet packet transforms, we 

must first make some observations regarding the signal that we are applying it to. The 

fundamental intent of remote sensing and specifically hyperspectral analysis is to collect 

electromagnetic information across multiple frequencies and separate the signal of 

interest from the noise. That noise may be background emissions, sensor artifacts, sensor 

noise, atmospheric contributions, contributions from adjacent pixels as well as sub-pixel 

contributions to the signal. For the hyperspectral analysis the target signal representation 

in spectral space is known. It is a gas spectrum from the reference library.  

In the hyperspectral data cube, each pixel’s z-vector is the signal under study. That 

signal is treated as a linear combination of the fundamental target signature being 

searched for and all of the background contributions. Even for the gas detection problem, 

the background is a linear addition to the weak target signal as described in the radiance, 

model equation (11). 

The idea of a applying a linear transformation to that signal or that population of 

signals is not new [31; 42; 43]. Its purpose is representing the signal in a new way and 

gaining new information [71]. The WPS approach applies the 1-D wavelet packet 

transform to each individual pixel spectrum in an attempt to separate the target signal 

from the background. 

The wavelet $ is a function of zero-average, dilated with a scale parameter s, and 

translated by u. [29], 
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The wavelet transform of a function f at scale s and position u is 
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Traversing scale and location for s and u are accomplished through dyadic 

intervals. A change in notation is made here, moving from scale s, indicated now by j, 

and location u, indicated now by k. The intervals are defined as 
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Stepping through scale j and location k, a simple example for a dyadic interval spanning 0 

to 1 is illustrated in Table 4. 
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Table 4. Example Values for Dyadic Intervals 

 

j k 2
-j
k 2

-j
(k+1) 

0 0 0 1 

1 0 0 0.5 

1 1 0.5 1 

2 0 0 0.25 

2 1 0.25 0.5 

2 2 0.5 0.75 

2 3 0.75 1 

3 0 0 0.125 

3 1 0.125 0.25 

3 2 0.25 0.375 

3 3 0.375 0.5 

3 4 0.5 0.625 

3 5 0.625 0.75 

3 6 0.75 0.875 

3 7 0.875 1 

 

 

j=0

j=1

j=2

j=3 0-.125 .125-.25 .25-.375 .375-.5 .5-.625 .625-.75 .75-.875 .875-1

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

.5-.75

k=2

.75-1

k=3

0-.25 .25-.5

k=0 k=1

k=0 k=1

k=0

0.0-1.0

0-0.5 0.5-1

 

Figure 11. Illustration of Dyadic Intervals 

 

 

The maximum scale j and locations k are driven by the length of the input vector. 

The input signal to the wavelet transform must be of length 2
n
 or adjustments to the input 

vector must be made. (See [26] pgs 231-232 for additional details.) When dealing with 

the integral in equation (18) and its application to a discrete input vector, the integral can 

be converted to a summation over the appropriate intervals. 



   

 38 

The wavelet transform in equation (20) convolves the wavelet $ with some f at 

every scale j and location k forming an orthonormal basis (if the wavelet is proven to be 

orthonormal). A convolution of $ with the input vector occurs at scale j. The convolution 

is then dilated from scale j to scale j+1. The reader is warned though that in practice the 

scales are inverted. The wavelet is applied to the input vector at the bottom of Figure 11 

first and then applied to larger and larger scales. 

It is the coefficients of this convolution operation at multiple scales that represent 

the new information being sought. Unlike the Fourier transform, which provides a 

convenient transformation between space or time and frequency, the wavelet 

transformation gives us information at multiple scales and locations.  

The wavelet is developed from its scaling function %(x), which satisfies the two-

scale dilation equation [26]. 
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h is the scaling filter and the wavelet is then, 
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where the wavelet filter is 
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For j and k & Z, where Z is the set of integers, the collection of wavelets, [26] 

{$j,k(x)}j,k&z is an orthonormal basis if 
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The scaling and wavelet filters are used in the construction of the approximation 

and detail operators H and G, defined as 
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(Hc)(k) = c(n)h(n " 2k)
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! 

(Gc)(k) = c(n)g(n " 2k)
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     (28) 

 

 

The operators H and G are a convolution with the filters h and g followed by a 

downsampling. H and G are used in the orthogonal wavelet matrix W. The discrete 

wavelet transform can be thought of as linear transformation, taking the signal vector c of 

length 2
n
, and transforming by W [26]. 

 

! 

Wc = d       (29) 
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Similar to the approach that brings the Fourier integral equation into a linear 

transformation and matrix operation, the wavelet transform can also be proven to be a 

recursive matrix operation. The discrete wavelet transform is of O(n) operations and is 

constructed with an approximation matrix H and a detail matrix G. These two matrices 

are of size L/2 x L where L is the length of the 2
n
 input vector. This is essentially a low 

pass and high pass filter applied to the input signal. The combination of the two matrices 

construct the wavelet matrix and are recursively applied. The tree structure in Figure 12 

illustrates the process [26; 71]. 

 

 

Figure 12. Tree Diagram of the DWT 

 

 

C0 is the input vector and c1, d1 are the approximation and detail coefficients, 

respectively. The wavelet matrix is initial(cn) coefficients. The coefficients at c4 and d1 
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through d4 make up the orthonormal wavelet basis, and their combined length is 

equivalent to the input vector. 

The wavelet transform has properties that are applicable to detecting specific 

features. For example the Haar wavelet can capture jump discontinuities. Large wavelet 

coefficients across multiple scales indicates the presence of the features at specific 

locations across multiple scales. The Haar wavelet also has good localization around the 

feature. The coefficients quickly vanish outside of the interval of the feature. This ability 

to look at multiple scales simultaneously allows large spectral and small spectral features 

to be identified and filtered. 

In reviewing the DWT tree structure of Figure 12 it seems obvious that the tree can 

be completed. This is accomplished by computing the DWT of the remaining nodes and 

creating a binary tree, (See Figure 13). This is the basis for the wavelet packet transform. 

The wavelet packets generated by the discrete wavelet packet transform (DWPT) form 

the discrete wavelet packet library. 

 

 

Figure 13. Tree Structure for the Discrete Wavelet Packet Transform 
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There are several reasons to apply the DWPT over the DWT. Primarily the 

orthonormal basis developed by the DWT represents a transform that is dependent on the 

construction of the wavelet and its properties. It is possible to find a best wavelet packet 

basis that optimizes the resulting coefficients for a specific measure of efficiency [26]. In 

other words, it is possible to find an orthonormal best basis that best represents the input 

signal according to some selected measure (the wavelet packet subspace). This parallels 

the principal components approach in generating an orthogonal basis. The difference is 

that the principal components approach selects a basis based on variance of the data. The 

DWPT basis is selected based on a cost function. This cost function may be entropy, 

energy, norm or other. For the trace gas detection problem, this means that an 

orthonormal basis can be selected from the wavelet packet library which best represents 

the gas spectrum. In fact there are 2
n/2

 (where n is the length of the input vector) discrete 

wavelet packet bases to choose from. One could also select a basis that best represents the 

background in the hyperspectral scene from the wavelet packet library. As discussed in 

Chapter 2, both are done as part of the WPS approach. 

Finding this basis falls to a best basis algorithm. The algorithm calculates a cost 

function for each node of the DWPT tree relative to some measure. The smaller the cost 

function, the better that vector is represented by the basis.  By traversing the tree from the 

bottom up, and requiring an additivity condition on the cost at each node, a best basis is 

quickly found. I refer to [26] pgs. 364-365 for a step-by-step description of the algorithm. 

There are numerous cost functions that have been used. Some better known examples are 

Shannon entropy, thresholding, and signal-to-noise ratio. 



   

 43 

There is much precedent for application of the DWT to hyperspectral data. In 

multispectral and hyperspectral analysis, much work has been done to reduce the 

dimensionality of the data and make it more computationally tractable. Spectral linear un-

mixing has also been of significant interest as have specific feature extraction methods. 

There are numerous papers on the DWT approach to dimension reduction. These usually 

discuss the similarities and improvements of the DWT over the PCA approach. Several 

authors demonstrate improvements in both computational efficiency and classification 

results. Previously this type of work compared traditional dimension reduction and 

classification methods in spectral and feature space, to wavelet coefficient space. In these 

cases the 1-D DWT is applied and these coefficients are used. Some efforts applying the 

DWT to hyperspectral data are summarized below. 

• In 1995, material identification based on multi-resolution wavelet 

techniques was proposed. Discrimination was based on wavelet transform 

decomposition using the fewest wavelet coefficients required. The research 

demonstrated dimension reduction based on a wavelet approach [72]. 

• In 2000, the use of wavelet based classifiers was proposed. Vegetation 

spectra and nearest-neighbor classification were used to demonstrate that 

wavelet based classifier results are comparable to traditional nearest-

neighbor classification [23]. 

• In 2001, an adaptive multi-channel wavelet transform (AMDWT) was 

proposed. Sub-pixel targets were assumed to be Gaussian absorption bands. 

It was concluded the AMDWT was very promising for sub-pixel targets 
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[73]. Smoothing and derivative analysis using DWT was demonstrated in 

2001. Derivative analysis and scale-space images was discussed. It was 

concluded that wavelet-based methods are feasible and practical for 

derivative analysis of hyperspectral images. In addition the use of the 

Mallot/Zhong wavelet to represent hyperspectral signatures across many 

scales was demonstrated. Also demonstrated were wavelet applications for: 

1) smoothing pre-filters 2) generalized spectral decomposition 3) speed 

improvements [20]. 

• Wavelet Multi-Resolution Analysis incorporating an automated statistical 

classification system using Fisher’s Linear Discriminant Analysis (LDA) 

for feature reduction, and Maximum Likelihood for classification was also 

demonstrated in 2001. It was found that the Continous Wavelet Transform 

(CWT) performed more accurately than DWT, but the DWT (Haar) was 

computationally more efficient [27]. 

• Also in 2002, DWT dimensionality reduction and feature extraction with 

wavelet based linear-unmixing was performed. Using the Haar wavelet, 

wavelet coefficients at different composition levels are used as features. It 

was concluded that the linearity properties of the DWT are important for 

Linear Mixing Methods and that wavelet based features result in a 

promising improvement on abundance estimation [74]. 

• The DWT for feature extraction and dimension reduction was also 

proposed. The background of the wavelet transform and the concept Space-
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Scale Tiling was discussed as well as wavelet based features and an 

automated classification system. Dimension reduction using PCA, feature 

selection using Fisher’s LDA and then classify using Maximum Likelihood 

was performed. Comparing multiple wavelets, it was concluded in 

endmember applications DWT based systems provide over 95% 

classification accuracy compared to PCA. This is a significant increase in 

classification accuracy. The DWT outperformed both Fast Fourier 

Transform (FFT) and Discrete Cosine Transform (DCT) based feature 

extraction. For future work, they propose a more systematic choice of the 

mother wavelet and possible 2-D applications [75]. 

• In 2003, dimension reduction using several wavelets was proposed. Fisher’s 

LDA and autocorrelation were applied to select features and Maximum 

Likelihood applied to perform classification. They concluded that it was 

possible to eliminate noise by discarding lower level DWT decomposition 

and that the Daubechies 6 DWT had higher classification accuracy than 

FFT or PCA methods [28]. 

• Also in 2003, a hybrid wavelet-based PCA reduction was proposed. The 

computational efficiency of  the wavelet transform versus the PCA 

approach was discussed. Results show that applying the wavelet transform 

and then the principal components rotation had better classification 

accuracy than principal components alone. The computational cost of their 
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proposed hybrid method is higher than the wavelet method alone, but less 

than the PCA method [76]. 

The application of the DWPT to hyperspectral analysis, although proposed by some 

authors and proponents of the DWT, is not as well studied as the DWT applications have 

been.  

• In 2002 a hyperspectral feature extraction methods using DWPT with the 

best basis cost function based on entropy or norm was proposed but not 

demonstrated. Accuracy of classification with improved computational 

efficiency was discussed [18]. Spectral un-mixing through an independent 

component analysis with wavelet packets was also proposed. This presented 

an automated endmember selection process [77]. 

As discussed previously, AIRS earth science research is a well published topic. 

AIRS data has also been a topic of wavelet based compression [78]. 

Given the large body of work, the general approach of applying a DWT or DWPT 

to hyperspectral data is accepted. But, this approach for trace gas detection in the thermal 

infrared using a DWPT is certainly a new area of research.  

 

1.8 Computational Challenges 

 

The computational challenges are somewhat straightforward. Solution of matched 

filter for trace gas detection requires O(N
3
) operations [29]. Matched filter operations 

require: 
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1. Calculation of the spectral data mean from the data set 

2. Calculation of the covariance matrix from all pixels in all bands 

3. Inversion of the covariance matrix using a pseudoinverse technique  

4. Loop through all the pixels to calculate a matched filter score 

 

To accomplish these four steps the following must be done: 

 

1. The entire data cube must be accessible in memory (or significant time costs are 

incurred when accessing data in swap space) 

2. The data must be initially looped through to calculate the data mean 

3. Each pixel is looped through a third time to calculate the covariance matrix 

4. The inverse (pseudoinverse) is calculated 

5. The data must be looped through again to calculate the matched filter score 

 

The wavelet packet approach overcomes these issues by performing pixel by pixel 

operations and has a lower computational cost, O(NlogN). The wavelet packet approach 

applies the following steps: 

 

1. Prior to processing data, select the best basis for target material and background 

from the DWPT library using the selected cost function 

2. Loop through each individual pixel of data and apply the Wavelet Packet 

Transform, an O(NlogN) operation 
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3. During this loop apply a matching method to calculate a match score 

 

The wavelet packet approach eliminates the need for all of the data to be stored in 

memory. The order of operations is significantly less than the matched filter and the data 

is only looped through once. Finally, this approach is a pixel-by-pixel calculation, which 

easily lends itself to parallelization. 

 

1.9 Research Goals 

 

The goal of this research has two integrated components, 1) develop a wavelet 

packet hyperspectral detection method, and 2) develop an easily parallelizable method for 

trace gas detection in spectral data. By developing a wavelet packet trace gas detection 

method in spectral space, this becomes an easily parallelizable problem. Each individual 

pixel can be analyzed separately on any node of a cluster computer or on any processor of 

a multi-processor high performance computer architecture. This differs significantly from 

the current state-of-the art in trace gas detection. Current techniques are based on the 

matched filter. These require calculation of the inverse covariance matrix and subsequent 

eigenvalue decomposition. Thus, matched filter techniques or any other statistical 

techniques in feature space, are not easily parallelizable. In addition, a wavelet packet 

transform with a target specific best basis (the WPS approach), would in itself be a new 

method for spectral detection. This new method will be demonstrated using simulated 
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hyperspectral data cubes, data from the Airborne Hyperspectral Imager (AHI), and ultra-

spectral data from the NASA Advanced Infrared Sounder (AIRS).  
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2 Methods 

 

 

 

 

The methods section follows the hyperspectral analysis process as discussed in 

Chapter 1. There are two parts of the analysis process 1) individual data cube analysis, 2) 

automated data analysis. Algorithm and data analysis are performed on individual data 

cubes to measure performance and determine whether the wavelet packet approach 

compares well to other methods. Once the wavelet packet approach is successful, it is 

applied to an automated process.  All three data types, simulated data cubes (SDC), AHI, 

and AIRS are examined in the individual cube analysis, while only AIRS data is 

automatically processed. The automated AIRS process is the end result of the WPS 

algorithm development. 

The automated process downloads AIRS data weekly. The data are processed with 

CMF and the WPS approach. The products are then disseminated to a website. These 

detection products include detection maps and KML files, which allow users to view the 

detections in Google Earth. Results from the automated process are not discussed herein.  

Flowcharts are used within this chapter to describe the key steps taken to process 

the data. Each section will discuss the details of data acquisition and manipulation, 

processing and analysis, comparison methods, and visualization methods as appropriate. 

Each flowchart is broken out by data type (SDC, AHI, AIRS). Figure 14 is a roadmap of 

the analysis steps performed. 
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Figure 14. The Roadmap of the Data Analysis Process 
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2.1 Data Collection 

 

Three types of data were chosen to demonstrate the performance of the wavelet 

packet approach against the matched filter technique in a logical manner.  These types of 

data are, 1) simulated data cubes, 2) AHI data, and 3) AIRS data.    

Simulated data cubes (SDC) provide a controlled data set that have complete 

ground truth. Plumes are inserted into a homogenous background in specific elliptical 

patterns. Their use provides complete knowledge of the data. Realistic ground truth for 

gas detection is excessively difficult. The use of simulated data cubes provides full 

knowledge of the scene so that algorithm performance metrics can be evaluated. The 

simulated data cubes contain SO2 and CH4 with known locations, known relative 

quantities, and known noise characteristics. From this information receiver operator 

characteristics (ROC) curves are constructed to compare multiple detection methods to 

each other. There are many instances of simulated hyperspectral data for algorithm 

development and comparison [40; 79; 80]. In this case, the constructed data is much less 

complex and contains a homogenous background with weak gas signatures. 

Several cubes are constructed with various gases, locations, and quantities. The 

simulated cubes are constructed using the radiance model discussed in Chapter 1 for the 

AHI wavebands. Each cube is: 256 samples, by 500 lines, by 256 bands. Table 5 provides 

the characteristics of the simulated cubes and Figure 15 illustrates the process used to 

construct each data cube. SDC 1 is the simplest case and SDC 4 the most complex case. 
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Table 5. Simulated Data Cube Characteristics 

 

Name Background Gas 1  Gas 2 Location 1 Location 2 S/C 

SDC 1 Homogenous – 

surface emission and 

atmospheric 

upwelling 

SO2 N/A Quadrant 1 N/A High 

SDC 2 Homogenous + noise SO2 N/A Quadrant 1 N/A Med 

SDC 

2A 

Homogenous + noise SO2 N/A Quadrant 1 N/A Low 

SDC 3  Homogenous + noise  SO2 CH4 Quadrant 1 Quadrant 4 Med 

SDC 4  Homogenous + noise SO2 CH4 Quadrant 1 Quadrant 1 Med 

SDC 

4A  

Homogenous + noise SO2 CH4 Quadrant 1 Quadrant 1 Very 

Low 

 

 

 

Figure 15. Simulated Data Cube Construction Process 
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Once the cubes are constructed, the clutter matched filter, wavelet packet subspace 

approach, and spectral angle mapper, are used against each simulated data cube. SDC 1 

provides the opportunity to verify that all three algorithms are performing in an ideal 

noise-free environment. SDC 2, 3, and 4 have added random noise and a different gas to 

increase the complexity of the scene. SDC 4 also co-locates the gases. The gases overlap 

partially in Quadrant 1. (Quadrant 1 is upper left quadrant, Quadrant 2 is upper right, 

Quadrant 3 is lower left, and Quadrant 4 is lower right.) 

 

2.2 Descriptions of Simulated Data Cubes 

 

SDC 1 inserts a plume of SO2 into the upper left quadrant of the scene. There are 

183 pixels of SO2. The background is a linear combination of surface blackbody with 

atmospheric transmission applied and atmospheric upwelling. The sensor is positioned at 

a 2000 ft altitude to simulate an AHI flight collect. Gas contribution is approximately 

0.02% of column density. The surface temperature is 290 K, the plume is 295 K, and the 

ambient atmospheric temperature is 292 K. A signal to clutter ratio (S/C) is calculated at 

greater than 100 dB. The signal to clutter is measured based on the covariance matrix and 

the target signature [15]. 

SDC 2 mimics SDC 1 and contains a plume of SO2 in the upper left quadrant of the 

scene but has a small amount of random noise. There are 183 pixels of SO2. The 

homogenous background is composed of surface blackbody with atmospheric 

transmission applied and atmospheric upwelling. The sensor is again positioned at a 2000 
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ft altitude to simulate an AHI flight collection. Gas contribution (as in SDC 1) is 

approximately 0.02% of column density. The surface temperature as in SDC 1 is 290 K, 

the plume is 295 K, and the ambient atmospheric temperature is 292 K. Random noise is 

added to each pixel in the background. A signal to clutter ratio is calculated at 

approximately -23 dB. 

SDC 2A increases the noise level from SDC 2. As with SDC 1, a plume of SO2 is 

inserted into the upper left quadrant of the scene. There are 183 pixels of SO2. The 

homogenous background is composed of surface blackbody with atmospheric 

transmission applied and atmospheric upwelling. The sensor is positioned at a 2000 ft 

altitude to simulate an AHI flight collection. Gas contribution is approximately 0.02% of 

column density. The surface temperature is 290 K, the plume is 295 K, and the ambient 

atmospheric temperature is 292 K. Random noise is added to each pixel in the 

background. A signal to clutter ratio is calculated at approximately -40 dB. 

SDC 3 inserts both a plume of SO2 into the upper left quadrant of the scene and a 

colder (less than ambient air temperature) methane (CH4) plume into the lower right 

quadrant. There are 183 pixels of SO2 and 629 pixels of CH4. The homogenous 

background is composed of surface blackbody with atmospheric transmission applied and 

atmospheric upwelling. The sensor is positioned at a 2000 ft altitude to simulate an AHI 

flight collection. SO2 contribution is approximately 0.02% of column density and CH4 

contribution is approximately 0.001% of column density. The surface temperature is 290 

K, the SO2 plume is 295 K and the CH4 plume is 285 K, and the ambient atmospheric 
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temperature is 292 K. Random noise is added to each pixel in the background. A signal to 

clutter ratio is calculated at approximately -23 dB for both gases. 

SDC 4 co-locates both the SO2 and CH4 into the upper left quadrant. There are 183 

pixels of SO2 and 629 pixels of CH4. 167 pixels contain both S02 and CH4. The 

homogenous background is composed of surface blackbody with atmospheric 

transmission applied and atmospheric upwelling. The sensor is positioned at a 2000 ft 

altitude to simulate an AHI flight collection. SO2 contribution is approximately 0.02% of 

column density and CH4 contribution is approximately 0.001% of column density. The 

surface temperature is 290 K, the SO2 plume is 295 K and the CH4 plume is 285 K, and 

the ambient atmospheric temperature is 292 K. Random noise is added to each pixel in 

the background. A signal to clutter ratio is calculated at approximately -23 dB for both 

gases. 

SDC 4A emulates SDC 4 but changes the CH4 to emission and significantly 

decreases S/C. There are 183 pixels of SO2 and 629 pixels of CH4. 167 pixels contain 

both S02 and CH4. The homogenous background is composed of surface blackbody with 

atmospheric transmission applied and atmospheric upwelling. The sensor is positioned at 

a 2000 ft altitude to simulate an AHI flight collection. SO2 contribution is approximately 

0.02% of column density and CH4 contribution is less than 0.001% of column density. 

The surface temperature is 290 K, the SO2 plume is 295 K and the CH4 plume is 293 K, 

and the ambient atmospheric temperature is 292 K. A signal to clutter ratio is calculated 

at approximately -40 dB and -44 dB for SO2 and CH4 respectively. 
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Figure 16 below illustrates the broadband image of the simulated cubes and spectra 

for the background and the target gases for SDC 3. Images for the other simulated data 

cubes are shown in Appendix 2. 

 

 
Figure 16. Simulated Data Cube 3 

 

 

2.3 Description of Airborne Hyperspectral Imager Data 

 

The AHI data used was part of the April 2004 Plume EX experiment conducted by 

the EPA [60]. Data provided and published papers [60] indicate the possible presence of 

sulfur dioxide, ammonia, and benzene. The collects occurred over a confined animal 
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feeding operation (CAFO), a petrochemical plant, and a refinery in southeast Texas. The 

AHI sensor was flown at 2000 ft and 5000 ft altitudes for the facilities. From this 

experiment, four flight lines were selected that had indications of these gases in the 

provided data or published data. Each flight line was 3000 to 7000 lines long and was 

split into smaller segments for ease of processing. AHI data was provided by Mr. David 

Williams of the EPA via external hard disk drive. 

The AHI data selection process evaluated and selected flightlines based on the 

geospatial data and metadata included with each flightline. Google Earth was used to 

visualize the location of each flight. Figure 17 describes the process. 

 

 

Figure 17. AHI Data Collection Process 
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The first selected flightline is 121247 collected on April 20, 2004 and was flown at 

an altitude of 2000 ft. This scene contains a possible SO2 plume adjacent to power plant 

stacks. The second flightline, 150652, was flown on April 19, 2004 at an altitude of 5000 

ft. In this flightline a suspected ammonia plume is present along the length of the lower 

buildings.  Flightline 105948 is an industrial stack at a refinery. Benzene was reported 

within this scene. The last flightline, 153924, is of a chemical plant and contains multiple 

potential plumes. The metadata for 153924 includes facility information for potential 

chemical releases and their locations. Figure 18 below has the hyperspectral image on the 

left and the linescan false color image on the right. 

 

 

Figure 18. AHI Flightlines from Plume Ex  



   

 60 

2.4 Description of Advanced Infrared Sounder Data 

 

AIRS data selected for analysis include two sulfur dioxide emission events. The 

first is a natural event, the volcanic eruption at Soufriere Hills in Montserrat on July 13, 

2003. This event was detected by the NASA’s Total Ozone Mapping Spectrometer 

(TOMS). The event was captured in AIRS data granule 169 from the same day.  A Level 

1B (unprocessed) AIRS broadband radiance image is shown in Figure 19. An example of 

the processed AIRS visible/near-infrared high-resolution geo-registered image follows in 

Figure 20. 

 

 

Figure 19. AIRS Broadband Radiance Image, Data Granule 169, July 13, 2003 
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Figure 20. AIRS VNIR Processed Image
3
 

 

 

The second and third AIRS data sets are a man-made SO2 events caused by the fire 

at the Al-Mishraq Sulfur Plant near Mosul, Iraq, in June of 2003. The fire raged for 

almost a month. Several AIRS data granules captured the site during the event. The SO2 

plume was also detected in TOMS data and emission quantities were calculated [81]. 

AIRS data granule 102 from June 29 and data granule 107 from July 2, 2003 were 

selected for analysis. On June 29, 2003 approximately 100 KT were emitted from the 

plant. On July 3, 2003 approximately 36 KT was emitted from the plant. Both quantities 

were estimated with TOMS data. The range of daily quantities emitted from the plant 

spans from 1 KT to over 100 KT per day. 

                                                
3
 http://disc.sci.gsfc.nasa.gov/get_data.shtml 
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AIRS data was retrieved from NASA Goddard’s Earth Sciences Data and 

Information Services Center at http://disc.sci.gsfc.nasa.gov/get_data.shtml. The GES 

DISC is an intuitive website which provides preview images as well as full data sets for 

immediate download. The DISC also provides an FTP data pool for automated retrieval 

of collected data. The manual and automated retrieval process are described in Figure 21 

and Figure 22 respectively. 

 

 

Figure 21. AIRS Manual Data Retrieval Process 
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Figure 22. AIRS Automated Data Retrieval Process 

 

 

2.5 Data Pre-Processing 

 

Pre-processing of the data is dependent on the data type. The three types of data 

used required similar but different steps in pre-processing. The general pre-processing 

steps include spectral and radiometric calibration, bad band removal, atmospheric 

characterization, and target library compensation. 

The simulated data cubes were constructed based on the radiance model discussed 

in Chapter 1 and were designed to emulate AHI data cubes. AHI wavelengths were used 

and no radiometric or spectral calibration was required for the data. No bad bands were 

modeled in the data. An atmospheric model was required to generate the atmospheric 

transmission and upwelling for a sensor at altitude. This was accomplished using 
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MODTRAN. A straightforward MODTRAN run was performed for a mid-latitude 

summer collection. The sensor is nadir looking at an altitude of 2000 ft. No aerosols or 

rain were modeled in the scene. Figure 23 illustrates the surface blackbody and upwelling 

radiance applied to the simulated data cubes as generated by MODTRAN. 

 

 

Figure 23. MODTRAN Generated Atmosphere Applied to Simulated Data Cubes 

 

 

The AHI data provided by the EPA had been previously spectrally and 

radiometrically calibrated into micrometers and 1000*W/sr/m2/µm respectively. Initial 

spectral calibration was slightly off as indicated by several readme files. A separate 

wavelength file was provided with the data. No bad bands were identified upon initial 

visual inspection of the data. MODTRAN was used to characterize the atmosphere based 

on the supplied aircraft flight data. The MODTRAN model was a nadir looking sensor at 
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the appropriate AHI altitude. No aerosols or rain were modeled. The provided data were 

binary files with ENVI header files. The binary data was opened in MatLab and spatially 

subset into files with 300-750 lines each. 

Both the simulated data and AHI data were pre-processed in the same manner. 

Figure 24 describes the steps. 

 

 

Figure 24. SDC and AHI Pre-Processing Steps 

 

 

AIRS data retrieved from the GES DISC is provided in hierarchical data format 

(HDF). These HDF files include the raw data and several layers of metadata, which 

include all the information required for processing. The metadata includes satellite 

parameters that define sensor location, pointing angles, sun angles, sensor performance, 

sensor calibration, and geo-registration data.  
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The HDF files are opened in MatLab and the metadata examined. The data 

retrieved is Level 1B. Level 1B data is radiometrically and spectrally calibrated by 

NASA. Calibration and quality assurance flags indicate good and questionable spectral 

bands. Based on these flags, any questionable bands are removed from the data for 

processing. Sensor metadata is also used to drive the atmospheric model. For AIRS data, 

LBLRTM is used to characterize the atmosphere. Inputs from the metadata into 

LBLRTM include: sensor altitude, location, CO2 concentration, and surface temperature. 

Figure 25 illustrates the AIRS pre-processing steps. 

 

 

Figure 25. AIRS Pre-Processing Steps 
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For all three data types, once atmospheric transmission is calculated, that 

transmission is applied to the target or library spectra. This step follows the radiance 

model of equation (11). Application of the transmission to the library spectra completes 

the pre-processing step. 

 

2.6 Data Processing and Detection 

 

The processing and detection step involves application of the detection method to 

the data.  All three detection methods are applied to all data types as part of the individual 

data cube analysis. Comparisons are then made between each detection method. 

Application of spectral angle and matched filter is straightforward. The equations 

presented in Chapter 1 are applied to the data in either a pixel-by-pixel method, or in the 

case of matched filter to the entire data set. A score value is calculated for each pixel in 

the scene with the score representing the strength of the match between the pixel vector 

and the target spectra being searched for. The resulting image or map, sometimes called a 

detection map or classification map, is the output of the detection method. Each target 

spectra generates a detection map with the score values in the spatial domain.  

Once the detection maps are complete, the results are analyzed in terms of their 

statistics. As with an image, the score values can be plotted as a histogram illustrating the 

distribution. From the histogram, pixels are found which are potentially strong matches to 

the target spectra. A threshold can then be set indicating that values above or below the 

threshold represent the detected target signature with some confidence level.  
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Classification maps are generally created from the detection results once a 

threshold is chosen and applied to the detection image. The threshold is usually based on 

score values from a histogram or ROC curve that defines the acceptable level of 

detections versus false alarms. For this comparison, thresholds that represent multiples of 

the standard deviation from each detection map are used. Figures 26 and 27 describe the 

SAM and CMF processing steps. 

 

 

Figure 26. Spectral Angle Mapper Process 
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Figure 27. Clutter Matched Filter Process 

 

 

The wavelet packet subspace approach, as with the other methods, also generates a 

detection map for each target spectrum. The wavelet packet subspace approach applies a 

wavelet packet decomposition to each pixel vector prior to generating the detection map. 
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Figure 28. Wavelet Packet Algorithm Approach 

 

 

Examining Figure 28, two significant operations are performed to transform the 

data from its original spectral space to wavelet coefficient space. The first is the 

application of the wavelet packet decomposition, and the second is the selection of the 

best basis for both the target signature and an estimate of the background. Prior to 

discussing those operations, we will discuss the overall progression of the process. 

 



   

 71 

1. The data are first reshaped from an x by y by z cube into an x by y matrix. This is 

done to speed row major operations in MatLab. This step is also performed for 

CMF.  

2. An estimate of the background is calculated. The background estimate is used to 

identify the contribution of the background to the overall pixel signature. This 

differs from the calculation of the spectral data mean in CMF, in that it is used to 

filter background contributions in the wavelet packet library. This estimate can be 

taken from the data itself.  In this study, the estimate is created from the first 25 

lines of the data. 

3. The scaling filter of the selected mother wavelet is applied to the data (target, 

background, and data). This prevents any “criminal application” of the DWT or 

DWPT [71]. 

4. A wavelet packet decomposition is then applied to the filtered target spectra and a 

best basis is determined using a cost function. The cost function used is the simple 

L
1
 norm. The depth and terminal nodes of the best basis are retrieved. 

5. A wavelet packet decomposition is performed on the filtered background estimate 

and a best basis is determined using the same cost function. The terminal nodes of 

the best basis are retrieved. 

6. The target spectra best basis nodes and the background best basis nodes are 

compared. Nodes that intersect both the target and background are eliminated. 

The remaining target best basis nodes are retained and their coefficients used for 

detection. 
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7. The data are then looped through. Each pixel vector has the scaling filter applied 

then undergoes a wavelet packet decomposition. The coefficients from the target 

best basis nodes of the data are retrieved and compared to the target spectra 

coefficients using a matching method. In this study spectral angle is used as the 

matching method. 

8. The resulting score values are reshaped into a matrix representing the spatial 

domain and this is the detection map. 

 

The steps above reveal that the wavelet packet subspace approach attempts to filter 

out the background contribution in wavelet coefficient space. The target spectrum is 

emphasized by selecting its best basis in coefficient space. This process is analogous to 

de-noising a signal by removing the noise contributions in wavelet coefficient space and 

then reconstructing the signal in its original space. This approach performs the detection 

in wavelet coefficient space negating the need to re-construct the original signal.  Key to 

the performance of the approach is the selection of the both wavelet and the best basis. 

 

2.7 Wavelet Selection 

 

Many texts on wavelets discuss the details of theory and application. Selection of a 

wavelet is met with general recommendations and with significant dependence on the 

signal under analysis. For the hyperspectral analysis process there are several 

considerations when selecting a wavelet. 
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1. Vanishing Moments – The number of vanishing moments describes a wavelet’s 

smoothness, approximation, and ability to reproduce polynomial functions. With 

increasing vanishing moments comes a greater ability for the wavelet to 

reproduce functions and polynomials with fewer coefficients. 

2. Size of Support/Compact Support – If we are seeking to efficiently capture 

spectral features of a given size, the size of support by a selected wavelet must 

generate high amplitude coefficients near or at the same scale as the feature. This 

will then minimize high amplitude coefficients outside the scale/location of the 

feature. 

3. Size of Filters – Longer filters increase computation time and can add artifacts 

during reconstruction. Smoother wavelets with higher vanishing moments require 

longer filters. Since the emphasis is not with reconstruction in the process, there 

exists a balance between the length of the filter and its computational impact on 

analysis.  

4. Regularity/Symmetry – The regularity and symmetry of the wavelet influences 

the errors introduced in analysis and reconstruction. Regularity impacts 

reconstruction in image coding applications, while symmetry is of concern for 

edge effects in periodic functions. These factors are of less concern for the 

hyperspectral application. 
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General consensus for wavelet selection is to choose a wavelet that produces the 

most number of coefficients closest to zero [26; 29; 82]. Previous work with wavelet and 

hyperspectral data has made conclusions and recommendations on which wavelets 

outperform others. Unfortunately none of the research generalizes a best wavelet for 

hyperspectral data. Additionally, none of it addresses long wave infrared gas detection. 

This approach emphasizes wavelet selection based on the target spectrum. It 

follows the general recommendation to choose a wavelet that produces the most number 

of coefficients near zero.  Wavelet selection follows three steps: 1) numerical analysis of 

several orthogonal wavelets to determine best wavelet for target spectra, 2) qualitative 

analysis of numerical results relative to the wavelet selection criteria listed previously, 

and 3) pragmatic analysis in which the most promising wavelets from Step 2 are applied 

as the wavelet packet subspace approach  and are directly compared to spectral angle and 

matched filter. 

Starting with the target spectra under study (sulfur dioxide, methane, ammonia, 

benzene), all temperatures available within the PNNL library are selected and 

downsampled to AHI (or AIRS) wavelengths. Applying a single-level wavelet 

decomposition to each spectrum and examining the statistics of the coefficients is next. 

Figure 29 and Figure 30 illustrate the results for AHI wavelengths and Figure 31 shows 

results for AIRS wavelengths. 
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Figure 29. Wavelet Coefficient Statistics for AHI Wavelengths 

 

 

The x-axis in the figures indicates the mother wavelet applied. The y-axis 

represents the statistic score. Twelve target spectra are analyzed numbering 1 to 12. 

There are three temperatures (5° C, 25° C, 50° C) for each of the 4 gases. The list of 

gases follows in Table 6. In the mode image figures, darker regions represent fewer zero 

coefficients and whiter regions represent more zero coefficients. The mathematical mode 

indicates the numbers that occur most frequently. 
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Figure 30. Wavelet Coefficient Mode Image for AHI Wavelengths 

 

 

Table 6. Target Gases Used in Wavelet Selection  

(Number indicates the x-axis target spectrum in Figure 30) 

 

Temperature Gas 

5°  C 25°  C 50°  C 

Methane 1 2 3 

Sulfur Dioxide 4 5 6 

Benzene 7 8 9 

Ammonia 10 11 12 

 

 

The means and standard deviations are uninteresting for the spectra at AHI 

wavelengths. The modes of all wavelets remain close to zero with increasing frequency 

of modes occurring for the shorter wavelets (Haar, Coif2, Sym2, etc.). 
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Figure 31. Wavelet Coefficient Statistics for AIRS Wavelengths 

 

 

Statistics for the AIRS wavelengths are all generally uninteresting with means and 

standard deviations remaining flat for all wavelengths. Modes are misleading in that the 

frequency of the mode is one. An in depth review of the score indicates many coefficients 

near zero, but no wavelet significantly outscores the others. The mode image for AIRS 

wavelengths is equally uninteresting. 

This process is also applied to all spectra in the PNNL library. Results of this are 

provided in Appendix 2. Results for biorthogonal wavelets are also included. 
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Figure 32. Wavelet Coefficient Mode Image for AIRS Wavelengths 

 

 

Given the numerical results, there is no clear best choice of wavelet. Taking into 

account vanishing moments, length, size of support, the most promising wavelets appear 

to be the shorter Daubechies, Coifman, Symlet, and Biorthogonal wavelets. Results from 

the pragmatic case are discussed in Chapter 4. 

 

2.8 Cost Function for Best Basis 

 

Previous work in dimension reduction for hyperspectral data analysis has focused 

primarily on information content with respect to the variance in the data. The wavelet 

packet library provides the opportunity to select a basis on a multitude of cost functions. 

There are many texts in information theory that describe entropy and information content 
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applicable to our best basis selection and cost function. Given the many small variables 

that drive hyperspectral analysis, the cost function chosen can have a significant impact 

to the performance of the algorithm. It is however chosen as a simple geometric approach 

to the information. 

The cost function chosen is the L
1
 norm. The L

1
 norm is a distance measure, similar 

to the Euclidean distance in n-dimensional space. Euclidean distance has been used as a 

classification tool in hyperspectral analysis. The L
1
 norm chosen based on simplicity as 

well as similarity to Euclidean Distance. The cost function for the best basis is a distance 

measure of the target spectrum from a reference. In this case a zero vector. This is 

analogous to a principal components analysis where the components with the largest 

variance are chosen as the best representation of the input signal. Figure 33 illustrates the 

target spectrum as it progress from original spectrum (top), is then filtered using the 

mother wavelet (middle), and is then represented in wavelet coefficient space (bottom) 

after best basis selection. 

 



   

 80 

 

Figure 33. Comparison of Spectral and WPS Coefficient Space 

 

 

2.9 Products for Comparison and Analysis 

 

From the detection maps, several other plots and images are constructed to compare 

and contrast results. 

 

1. Image Histograms of score values are generated from the detection maps. These 

histograms are used to measure and visualize the separation between detected 

gases and the background. Threshold values are determined from the histograms. 
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2. Classification Maps are thresholded detection maps. The thresholds from image 

histograms and from Receiver Operator Characteristics (ROC) curves are used to 

build classification maps. 

3. Receiver Operator Characteristics (ROC) Curves are used to quantify algorithm 

performance. They require truth data and quantify probability of detection (Pd) 

versus probability of false alarm (Pfa). 

4. Scatter Plots illustrate the correlation of  an algorithm’s score values against 

another algorithm’s score values. Correlation between the sets of score values 

indicates the algorithms are in agreement with one another. 

5. Keyhole Markup Language (KML) files used to visualize results in Google Earth. 

Results from AIRS data are visualized in Google Earth as part of the automated 

AIRS process. Georegistered images are used to validate AIRS detections. 

 

The following table summarizes which products will be used for each data type. 

 

Table 7. Summary of Visualization and Comparison Methods 

 

 SDC AHI AIRS 

Histograms Yes Yes Yes 

Classification Maps Yes Yes Yes 

ROC Curves Yes No No 

Scatter Plots Yes Yes Yes 
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2.10 Dissemination of AIRS Detections 

 

The automated AIRS process generates classification maps and KML files. The 

classification maps are thresholded detection maps that are geo-registered to specific map 

zones. Ten map zones are created across the globe. As AIRS data are processed, its 

geospatial information is used to register the results to one of the zones. Separate maps 

are created for each zone, each target spectrum detection, and detection method. Figure 

34 is the matched filter methane classification map for the western United States.  Figure 

35 walks through the steps in the automated process. 

 

 

Figure 34. AIRS Automated Classification Map 
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Once the thresholded detections are geo-registered, each pixel containing a 

thresholded detection is used to create a polygon for use in Google Earth. The spatial 

coordinates of the polygon are written to a KML file which are also split up by map zone, 

gas, and detection method. Polygons are color coded to indicate positive or negative 

scores, with the height of each polygon representing the scaled score. Figure 36 illustrates 

the automated KML process. Updated KML files are available for download at 

http://www.earthintelligence.us/Trace_Gas_Detection/. An example is shown in Figure 

37.  

 

 

Figure 35. AIRS Automated Mapping Process 
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Figure 36. AIRS Automated KML Process 

 

 

 

Figure 37. AIRS SO2, CH4, NH3 CMF Detections in Google Earth 
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2.11 Computational Environment 

 

The majority of algorithm performance evaluation, prototyping, and data 

processing is performed in MatLab on a Macintosh 2.5 Ghz Dual Processor G5 

workstation. The workstation utilizes a 64-bit processor with 8 GB of RAM (4 GB 

available to each processor).  An additional 32-bit dual-core Intel processor is also used 

to perform wavelet packet subspace analysis of the hyperspectral data. 

Although one of the original intents of the proposed research was to port the 

algorithms to a computer cluster, the original cluster chosen is no longer available. At the 

successful completion of algorithm development, parallelization of the wavelet packet 

subspace approach onto a computer cluster is an easily parallelizable problem. Only a 

suitable hardware platform would be required to complete the parallelization. 

Automated AIRS processing will be accomplished on the single Macintosh 

workstation. A combination of Applescript, shell scripting, and MatLab code is used to 

automatically download, process, and disseminate detection products via website. The 

automated process will perform weekly downloads and processing. This could be 

accomplished on a daily basis using a cluster computer with very high bandwidth internet 

connectivity. 
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3 Results 

 

 

 

 

Results are presented in the following section. The results proceed from the 

simulated data into AHI and then AIRS data. Summary descriptions of the results and the 

process are discussed with detailed discussion left for Chapter 4. 

 

3.1 Simulated Data Cube Results 

 

The simulated data cubes are used to initially test the performance of all three 

algorithms against known gases and a homogenous background. They are also used to 

help characterize the behavior of the WPS approach. The results of the less complex data 

sets are uninteresting. Results from the more complex data sets guide wavelet selection 

and provide an initial performance assessment.  

SDC 1 contains SO2 with a simple background (known surface and atmospheric 

upwelling), and demonstrates that all algorithms easily separate the target signature from 

the background. SO2 is easily observed visually in Figure 38. Reviewing the statistics of 

the detection images demonstrates a clear separation (greater than 3') between the 

background and the target pixels. Only two bars appear in the histogram, one 

representing the background and one the target pixels (barely visible), see Figure 39. 

Similarly, the scatter plot has only two points, see Figure 40. One point represents the 
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single score for all the target pixels and the other point is a single score for all 

background pixels. The WPS ROC curve is shown (the other two are similar) in Figure 

41. Pd and Pfa quickly jump to 1 as the target is detected below 1.17 radians.  

 

 

Figure 38. SO2 Detection Map for SDC 1 
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Figure 39. Histogram for SDC 1 

 

 

Figure 40. Scatter Plot for SDC 1 
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Figure 41. WPS ROC Curve for SDC 1 

 

 

SDC 2, SO2 with low noise background, has similar results to SDC 1. The target 

and background are visually detected and easily separated as seen in Figure 42. Normally 

distributed random noise is added to the background. Noise is added to all pixels prior to 

adding the target radiance. The results of the noise are clear in the data statistics. The 

histogram and scatter plot, (Figure 44 and Figure 45) now have a distribution of scores 

for both the target and background pixels. A classification map for the WPS is added to 

illustrate target separation at 1', 2', and 3'  in Figure 43. At 3' the target is clearly 

separated from the background. The histogram and scatter plot also show clear separation 

between the target and background. All three ROC curves demonstrate the full detection 

of the target prior to any false alarms as illustrated by Figures 46-48.  
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Figure 42. Detection Map for SDC 2 (SO2) 

 

 

Figure 43. WPS Classification Map for SDC 2 (SO2) 
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Figure 44. Histogram for SDC 2 (SO2) 

 

 

Figure 45. Scatter Plot for SDC 2 (SO2) 
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Figure 46. WPS ROC Curve for SDC 2 (SO2) 

 

 

Figure 47. SAM ROC Curve for SDC 2 (SO2) 
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Figure 48. CMF ROC Curve for SDC 2 (SO2) 

 

 

SDC 2A, SO2 with high noise background, begins to add enough noise to reduce 

the target and background separation. All three algorithms can still separate the target and 

background as evidenced by the detection image and data statistics in Figure 49, Figure 

51 and Figure 52. In the classification map, Figure 50, erroneous pixels begin to appear at 

the 3' level. Only the WPS ROC curve is shown as all three algorithms have good 

performance, see Figure 53. The SAM and CMF ROC curves are almost identical. All 

three algorithms can separate target from background with detections and false alarms 

clearly separated. 
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Figure 49. Detection Map for SDC 2A (SO2) 

 

 

Figure 50. Classification Map for SDC 2A (SO2) 



   

 95 

 

Figure 51. Histogram for SDC 2A (SO2) 

 

 

Figure 52. Scatterplot for SDC 2A (SO2) 
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Figure 53. WPS ROC Curve for SDC 2A (SO2) 

 

 

SDC 3 adds a second target plume to the scene, (SO2 and CH4 with low noise 

homogenous background). All three algorithms do well against SO2 but CMF begins to 

show significant degradation against CH4. The SO2 target is separable both visually and 

statistically for all three (Figures 54-57), while the CH4 target is inseparable for CMF, 

(Figures 59-62). WPS classification at 3' separates SO2 and CH4 from the background 

and from each other. Below 3', some false alarms occur among the background and CH4. 

Only the WPS ROC curve is shown for SO2 as SAM and CMF have similar performance, 

see Figure 58. For CH4 all three ROC curves are shown in Figures 63-65.  
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Figure 54. Detection Map for SDC 3 (SO2) 

 

 

Figure 55. WPS Classification Map for SDC 3 (SO2) 
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Figure 56. Histogram for SDC 3 (SO2) 

 

 

Figure 57. Scatterplot for SDC 3 (SO2) 
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Figure 58. WPS ROC Curve for SDC 3 (SO2) 

 

 

Figure 59. Detection Map for SDC 3 (CH4) 
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Figure 60. WPS Classification Map for SDC 3 (CH4) 

 

 

Figure 61. Histogram for SDC 3  (CH4) 
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Figure 62. Scatterplot for SDC 3 (CH4) 

 

 

Figure 63. WPS ROC Curve for SDC 3 (CH4) 
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Figure 64. SAM ROC Curve for SDC 3 (CH4) 

 

 

Figure 65. CMF ROC Curve for SDC 3 (CH4) 
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SDC 4 co-locates the target plumes of SDC 3. The background noise level is the 

same as SDC 3. SDC 4 results are similar to SDC 3 results in that all three algorithms do 

well against SO2 while CMF performance is degraded against CH4. SO2 results are shown 

in Figures 66-69. There are no other noteworthy differences between SDC 3 and SDC 4 

(Results illustrated in Figures 71-74). Again, only the WPS ROC curve is shown for SO2 

as SAM and CMF have similar performance, see Figure 70. For CH4 all three ROC 

curves are shown in Figures 75-77. 

 

 

Figure 66. Detection Map for SDC 4 (SO2) 
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Figure 67. WPS Classification Map for SDC 4 (SO2) 

 

 

Figure 68. Histogram for SDC 4 (SO2) 
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Figure 69. Scatterplot for SDC 4 (SO2) 

 

 

Figure 70. WPS ROC Curve for SDC 4 (SO2) 
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Figure 71. Detection Map for SDC 4 (CH4) 

 

 

Figure 72. Classification Map for SDC 4 (CH4) 
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.  

Figure 73. Histogram for SDC 4 (CH4) 

 

 

Figure 74. Scatterplot for SDC 4 (CH4) 
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Figure 75. WPS ROC Curve for SDC 4 (CH4) 

 

 

Figure 76. SAM ROC Curve for SDC 4 (CH4) 
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Figure 77. CMF ROC Curve for SDC 4 (CH4) 

 

 

SDC 4A increases the background noise level of SDC 4. SO2 detection 

performance continues to do well for all algorithms. All algorithms continue to separate 

SO2 from the background and the other target plume both visually and statistically. But, 

SDC 4A has pushed the limits of all three algorithms in CH4 detection. None of the 

algorithms do well in detecting CH4. Although visual detection is still good for all three, 

the data statistics indicate significant degradation. In the CH4 ROC curves, WPS appears 

to have a slight advantage over SAM and CMF as evidenced when areas under the curve 

are compared. All other statistics indicate no separation. SO2 results are presented in 

Figures 78-84. CH4 results are presented in Figures 85-91. 
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Figure 78. Detection Map for SDC 4A (SO2) 

 

 

Figure 79. WPS Classification Map for SDC 4A (SO2) 
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Figure 80. Histogram for SDC 4A (SO2) 

 

 

Figure 81. Scatterplot for SDC 4A (SO2) 
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Figure 82. DWPT ROC Curve for SDC 4A (SO2) 

 

 

Figure 83. SAM ROC Curve for SDC 4A (SO2) 
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Figure 84. CMF ROC Rurve for SDC 4A (SO2) 

 

 

Figure 85. Detection Map for SDC 4A (CH4) 
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Figure 86. WPS Classification Map for SDC 4A (CH4) 

 

 

Figure 87. Histogram for SDC 4A (CH4) 
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Figure 88. Scatterplot for SDC 4A (CH4) 

 

 

Figure 89. WPS ROC Curve for SDC 4A (CH4) 



   

 116 

 

Figure 90. SAM ROC Curve for SDC 4A (CH4) 

 

 

Figure 91. CMF ROC Curve for SDC 4A (CH4) 
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3.2 Airborne Hyperspectral Imager Results 

 

The focus of the AHI data analysis is plume detection in the wavelet packet 

subspace. In typical LWIR analysis, the detection step is followed by an identification 

step. The identification step uses linear regression to confidently identify the spectra. This 

step is left for discussion in Chapter 4, while the results herein focus on the ability of the 

WPS to detect a potential gas emission. 

The three AHI flightlines analyzed represent both known and unknown gas 

emissions. Flightline 121247 contains a known SO2 plume emitted from a power 

generation facility. Flightlines 105948 and 153924 are collected over petroleum refineries 

and were expected to have gas plumes in them. In the cases where unknown plumes may 

be present an additional identification step is applied to the suspected gas plume to assist 

in gas identification. 

Results for all three include the following figures: 

 

1. Detection Planes for SAM, CMF and WPS – These represent a detection for a 

specific target gases. 

2. Selected Detection Planes (Color Maps) – These are the planes that best represent 

a suspected gas plume. 

3. Scatter Plot – The scatter plots illustrate the general differences in the algorithm 

scores for the selected detection plane. 
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4. Classification Map – The classification map includes the 1', 2', and 3' classified 

WPS detection planes and indicates the plume selected for identification. These 

figures are provided in Chapter 4. 

 

AHI 121247 has a known SO2 plume. All three algorithms were used with multiple 

target gases to visually compare detection planes. The SAM results were disappointing 

since no visible plumes are evident see Figure 92. Both CMF and WPS did have potential 

plumes in multiple image planes as shown in Figure 93 and Figure 94. The strongest 

visually for CMF was in the isobutane (C4H10) and propane (C3H8) images followed by 

the SO2 image. The strongest visually for WPS image planes were the sulfur dioxide and 

isobutane planes. The SO2 planes were selected for the identification step. The 

identification process with linear regression is discussed in Chapter 4. Visual comparison 

across the SO2 detection planes, (SAM, WPS, and CMF) clearly show superior 

performance of the WPS plane versus the other two, Figure 95. A scatter plot for the 

selected detection plane is shown in Figure 96. The SO2 detection plane was chosen for 

the identification step because of the visual impact of the WPS image as well as the a 

priori knowledge of SO2. 
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Figure 92. SAM Detection Planes for AHI 121247 

 

 

Figure 93. CMF Detection Planes for AHI 121247 
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Figure 94. WPS Detection Planes for AHI 121247 

 

 

Figure 95. Selected Detection Planes for AHI 121247 (SO2) 
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Figure 96. Scatterplot for AHI 121247 

 

 

AHI 150652 is data collected over an animal feeding operation and AHI 105948 is 

data collected over a petroleum refinery. Although this data had plumes in them [60], 

neither of the published detections could be verified. Neither plume was detected with 

any of the algorithms. Another unknown plume in AHI 105948 was detected and 

identified. 

For the two flight lines with unknown plumes (AHI 105948 and AHI153924), the 

typical two-step detection and identification process were applied. First, potential gas 

plumes were selected using visual review of the individual detection planes. The potential 

plumes were then identified using a liner regression technique [41]. A larger library of 

gases was used in the detection process to facilitate plume detection.  
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SAM results were again disappointing in that no planes could be used for plume 

detection, Figure 97. Both CMF and WPS had more potential plumes, but selection of a 

real plume versus a background feature was challenging (Figure 98 and Figure 99). 

Review of both the linescan image and the detection planes were required to visually 

separate potential plumes from ground features. The large slanted feature across the 

middle of the scene is an industrial stack. A small dark area, just below the stack, visible 

in the benzene CMF and WPS planes, was selected for identification. Visual comparison 

of all detection planes did not indicate any significant advantage of CMF or WPS (Figure 

100). A scatterplot for the benzene detection plane is shown in Figure 101. 
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Figure 97. SAM Detection Planes for AHI 105948 
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Figure 98. CMF Detection Planes for AHI 105948 
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Figure 99. WPS Detection Planes for AHI 105948 

 

 

 

Figure 100. Selected Detection Planes for AHI 105948 (Benzene) 
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Figure 101. Scatterplot for AHI 105948 

 

 

AHI 153924 is another petroleum refinery with suspected gas plumes. The same 

two-step approach as 105948 was taken for plume detection. In this case the AHI 

metadata included a potential set of gases released from this location. Gases that were 

available in the PNNL library were used for the detection step. 

As with the previous AHI data, SAM performance was disappointing with no 

visible identification possible, (Figure 102). Both WPS and CMF exhibited a strong 

potential plume in the benzene image, Figure 103 and Figure 104. The visual strength of 

the color detection planes for CMF and WPS led to selection of the potential plume in the 

benzene detection images, Figure 105. Statistics of the image also indicate strong 

benzene detection scores (2' to 3' classification). The potential emission is located in 
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the upper half of the image near the center. This corresponds to a large tank in the 

linescan image. Visual comparison of the WPS and CMF planes lead to no significant 

advantage of one method to the other. But, used together and in conjunction with the 

statistics of the filter scores, this appears to be a strong result. Identification in Chapter 4 

also leads to a potential benzene emission. A scatterplot for the benzene detection plane 

is shown in Figure 106. 

 

 

Figure 102. SAM Detection Planes for AHI 153924 
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Figure 103. CMF Detection Planes for AHI 153924 

 

 

Figure 104. WPS Detection Planes for AHI 153924 
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Figure 105. Selected Detection Planes for AHI 153924 (Benzene) 

 

 

Figure 106. Scatterplot for AHI 153924 
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3.3 Advanced Infrared Sounder Data 

 

The focus of analysis of AIRS data is the same as AHI data, the detection of gas 

emissions in the wavelet packet subspace. Given the spatial resolution of AIRS, gas 

emission events of a global nature, such as volcanic eruptions or large scale fires are 

suitable for this type of detection. The AIRS analysis focuses on sulfur dioxide detection 

from natural and man-made vents. Detection is attempted with the same algorithms as the 

previous data sets. Identification of the sulfur dioxide is through visual comparison and 

correlation with other published results. The wavelet packet subspace process is applied 

in the same process as the previous data sets. Detection images, classification maps, 

scatterplots, and histograms are used to illustrate the results. 

The first data set, data granule 169, contains a large volcanic plume from Soufriere 

Hills volcanic eruption in Montserrat, July 2003. Comparison of the three algorithms 

shows varying levels of visual detection with WPS having the most striking image in 

Figure 107. The classification map for WPS demonstrates excellent detection beyond 3' 

when compared to a TOMS SO2 detection of the same event (Appendix 1).  SAM and 

CMF had limited success beyond 1', (See Figure 108, Figure 109, Figure 110, and 

Figure 111). Appendix 1 includes some initial work regarding this data set. In the 

previous analysis a single level wavelet transform was used for a visual detection. In this 

case, the full wavelet packet subspace process with the SO2 target spectrum best-basis has 

been applied. Statistics of the detection scores indicate that although SAM and CMF 

could separate some of the SO2 pixels, the WPS separated many more of the target pixels 
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from the rest of the scene. A georegistered image, Figure 114, clearly indicates the source 

of the plume from Montserrat. A comparison of pixel and SO2 spectra show good visual 

correlation between the pixel and reference spectrum, Figure 113. Identification of the 

SO2 is discussed in Chapter 4. 

 

 

Figure 107. Detection map for AIRS Granule 169 (SO2) 
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Figure 108. WPS Classification Map for AIRS Granule 169 (SO2) 

 

 

Figure 109. SAM Classification Map for AIRS Granule 169 (SO2) 
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Figure 110. CMF Classification Map for AIRS Granule 169 (SO2) 

 

 

Figure 111. Scatterplot for AIRS Granule 169 (SO2) 
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Figure 112. Histogram for AIRS Granule 169 (SO2) 

 

 

Figure 113. SO2 Spectral Comparison for AIRS 169 

 



   

 135 

 

Figure 114. Georegistered Image of AIRS 169  

(Montserrat Volcanic Eruption, 2003) 

 

 

AIRS data granules 102 and 107 are from June 29, 2003 and July 3, 2003 

respectively. These data granules contain the Al-Mishraq sulfur fire of 2004 [81]. The 

same process for plume detection was applied to these data sets. In both cases the WPS 

detection process clearly indicates a potential SO2 emission, Figure 115 and Figure 116. 

Classification at 3' also indicates a strong score for both 102 and 107, see Figure 117 

and Figure 118. SAM and CMF detection images are marginal at best. Statistics for the 

detection scores show good separation by WPS for SO2 and the background while SAM 

and CMF scores are virtually inseparable, see Figure 119 and Figure 120. (Data granule 

107 figures are provided in Appendix 3.) Target spectrum and pixel spectrum visual 
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comparison for 102 and 107 are not as definitive as 169, (not shown). The SO2 

identification applied is discussed further in Chapter 4. Georegistered images provide 

evidence that AL-Mishraq is the source of the emission and potential SO2, Figure 121 

and Figure 122 

 

 

Figure 115. Detection map for AIRS Granule 102 (SO2) 
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Figure 116. Detection map for AIRS Granule 107 (SO2) 

 

 

Figure 117. WPS Classification Map for AIRS Granule 102 (SO2) 
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Figure 118. WPS Classification Map for AIRS Granule 107 (SO2) 

 

 

Figure 119. Scatterplot for AIRS Granule 102 (SO2) 
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Figure 120. Histogram for AIRS Granule 102 (SO2) 

 

 

Figure 121. Georegistered Image for AIRS 102 
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Figure 122. Georegistered Image for AIRS 107 
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4 Discussion 

 

 

 

 

Chapter 4 will discuss the results. It will document factual relationships, their 

significance and other observations. Exceptions in the process will be noted as well as 

any theoretical implications and initial conclusions. The chapter will progress through the 

overall research process. Starting with the simulated data cubes, stops are made along the 

way to discuss wavelet selection, wavelet node and coefficient selection, and potential 

improvements to the wavelet packet subspace approach. 

 

4.1 Construction of Simulated Data Cubes 

 

In construction of the simulated cubes, the primary driver was development of the 

radiance model. The simulated data cubes focused on AHI wavebands because of AHI’s 

spectral and spatial resolution. This was done for two reasons. First, the primary focus of 

the simulated data was to evaluate the WPS algorithm in a relatively simple model. The 

second is, AIRS’s high spectral and low spatial resolution. AIRS requires a complex 

atmospheric and surface model to define each pixel. 

For the AHI spatial resolution of several square meters, it could be assumed that 

any one pixel would contain homogenous surface emission, a homogenous target gas 

signature in some known relative quantity, and homogenous atmospheric upwelling. For 
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the AIRS spectral and spatial resolution these assumptions are not necessarily valid. Here 

each assumption is evaluated in slightly more detail.  

For AIRS, the source of surface emissions are the contributions from many types of 

land surface materials. This is due to its large spatial resolution of  > 14 km by 14 km per 

pixel. These surface emissions also include rivers, lakes, and the ocean. Because of its 

varied material type, the surface emission is more like a graybody emission than the 

single material assumed to be in an AHI pixel. One could argue that at the pixel level, the 

homogenous surface emission is valid in either case. When comparing the total area 

collected, each AIRS pixel must be modeled as individual graybodies with different 

surface emissivities and temperatures. For an AHI flightline over a similar background 

(i.e. forest, desert, or urban backgrounds), it may be assumed that most of the background 

is similar, requiring only a single surface emissivity and temperature for the entire scene. 

This same argument easily moves into atmospheric upwelling. In a single 14 km by 

14 km pixel, the atmosphere may contain, clouds, rain, and open sky, while in a pixel of 

several square meters (~25 m
2
), a homogenous atmosphere is easily assumed. Across the 

entire AHI flightline there generally exists only open sky and cloud covered areas. These 

areas can be spatially subset during analysis and the atmosphere assumed to be 

homogenous in each case. 

For the homogenous target spectrum assumption, a single AIRS pixel covers a 

minimum of 196 km
2
. Gas emissions at that scale are global events and may occur in 

only a single pixel. A relatively small gas plume in an AHI flightline will cover many 

pixels with similar distributions in several pixels. A single expected relative quantity and 
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temperature for each scene is much simpler to estimate than modeling multiple 196 km
2
 

areas. 

For the simulated data cubes the simplest assumptions are made. A single surface 

upwelling with the same temperature and emissivity is used across the scene. A single 

atmospheric upwelling is also applied across the scene. The gas plume inserted is at the 

same homogenous temperature and relative quantity for each pixel in the plume. For data 

cubes with noise (lower S/C) random noise is added to the background. The background 

combines surface emission and atmospheric upwelling prior to adding the plume 

signature. The plume does not add another noise component. This model best represents 

the AHI assumptions vice the AIRS assumptions.  

This does lead us to the validity of the radiance model across high and low spectral 

and spatial resolutions. Fundamentally the radiance model is valid in either case. The 

basic physics remains the same for any variation of spectral or spatial resolution. The 

significant difference occurs in the pixel-by-pixel modeling of the surface emission and 

atmospheric upwelling. For the AHI case, the assumption has already been made for 

uniform surface emission and upwelling across the scene. For the AIRS case, each pixel 

should have an individually calculated surface emission and atmospheric upwelling given 

its large spatial resolution. 

The analysis conducted on the AIRS data does not develop individual models for 

each pixel. It takes the same assumption as the AHI analysis that the surface emission and 

atmospheric upwelling are uniform across the scene. This is done to alleviate the 

computational burden of 12150 LBLRTM atmospheric model runs per AIRS data granule 
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and to simplify the characterization of each pixel’s surface and atmospheric properties. In 

practice or production, individual runs and pixels are independent and this number of 

atmospheric model runs is an easily parallelizable problem. The single LBLRTM run per 

data cube is performed for all three algorithms evaluated. Thus, no algorithm has any 

advantage or disadvantage given this assumption. 

The most significant contribution of the radiance model is its concept of thermal 

contrast. Thermal contrast is a function of: surface temperature, ambient air temperature, 

plume temperature, plume column density, and ambient air column density. Once 

calculated, it applies a scalar value to the target spectra, which drives the intensity of the 

plume and its basic character as an absorption or emission spectrum. 

 

 

Figure 123. Variation of Target Signature (Benzene) Caused by Thermal Contrast 
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Figure 123 shows a benzene spectrum that has been sampled to AHI wavelengths. 

Multiple thermal contrasts have been applied.  The emission signatures, (plume 

temperature greater than ambient), are positive on the radiance scale. The more intense 

blue line represents a greater column density of gas than the green line. Both lines are at 

similar plume and ambient temperatures of 295 K and 292 K respectively.  

The red and magenta lines are absorption signatures (plume temperature less than 

ambient) with similarly varied column densities. The more intense absorption (red) is at 

the same column density as the blue line, and the magenta line is at the same column 

density as the black line. The plume temperature in this case (both red and magenta) is 

288 K with ambient air temperature remaining at 292 K.  

As we can see from the figure, the absorption or emission characteristic of the 

target signature is driven by the relationship between plume temperature and ambient air 

temperature. Intensity of the signature is driven by the column density of the combined 

plume and ambient air. It is significant to note that when the plume temperature is at the 

ambient air temperature, there is zero thermal contrast and thus no target signature (green 

line).  

 

4.2 Wavelet Selection Process 

 

With the simulated data constructed and with the radiance model well understood, 

the simulated cubes were then used to evaluate algorithm performance and to assist in the 

wavelet selection process. In Chapter 2, the wavelet selection process describes a brute-
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force method to identify the best wavelet per target signature. Few definitive conclusions 

are made with the brute-force method for the four target gases under study. The 

quantitative and qualitative observations that are made include both shorter mother 

wavelets appear to generate more near zero coefficients, and differing target spectra do 

not appear to drive wavelet choice.  

To evaluate the pragmatic case, several variations of the simulated data cubes with 

several mother wavelets were run. As the results in Chapter 3 demonstrate, algorithm 

performance was not stressed until SDC 4A. SDC 1 through SDC 3 did not reveal any 

specific metric that could discriminate performance between individual mother wavelets. 

An intermediate simulated data cube was constructed that emulated SDC 4A but with a 

higher S/C ratio of ~ -33dB for CH4. This configuration was developed after a trial and 

error period of manipulating thermal contrast and evaluating ROC curves, histograms, 

Pd/Pfa, and area under the ROC curves. The area under the ROC curve proved to be a 

discriminator for wavelet performance and CH4 was the stressing case. The results follow 

in Table 8. 
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Table 8. Pragmatic Wavelet Selection Results 

 

Algorithm/Wavelet Area under the ROC 

Curve 

Spectral Angle Mapper 0.94220 

Clutter Matched Filter 0.94608 

Daubechies 1 0.91032 

Daubechies 2 0.92708 

Daubechies 3 0.92526 

Coiflet 2 0.92396 

Coiflet 3 0.90056 

Symlet 2 0.92708 

Symlet 3 0.92526 

Biorthogonal 1.1 0.91032 

 

 

Longer wavelets were attempted, but their computational time in the MatLab 

environment proved to be prohibitive (see section 4.7). The general trend identified was 

that a shorter, not necessarily the shortest, mother wavelet had slightly better performance 

than longer wavelets. Symlet and Daubechies had identical performance, while Coiflet 

and Biorthogonal wavelets were slightly behind. Selected mother wavelets were then 

applied to SDC 4A with the following results. 

 

Table 9. SDC 4A Wavelet Selection Results 

 

Algorithm/Wavelet Area under the ROC 

Curve 

Spectral Angle Mapper 0.68604 

Clutter Matched Filter 0.66641 

Daubechies 2 0.79774 

Daubechies 3 0.79099 

Symlet 2 0.79774 

Coiflet 2 0.78693 



   

 148 

Again, the Daubechies 2 and Symlet 2 had slightly better performance. In this case, 

the WPS algorithm outperformed SAM and CMF. This result holds significant promise 

for the analysis of real hyperspectral data in the wavelet packet subspace. 

Depth of the wavelet packet decomposition was chosen adaptively. Depth was 

based on the best level tree of the target signature. When the WPS process was applied to 

the simulated data cubes, best level trees were determined to be N=2 for CH4 and N=5 

for SO2. When larger depths were manually chosen, performance decreased. No results 

were tabulated for manually chosen depths.  

The pragmatic results agree with the Chapter 2 quantitative and qualitative 

observations. With the pragmatic results for SDC 4A, the Daubechies 2 mother wavelet 

with adaptive depth selection was used to calculate the results for SDC 1-3, the AHI 

flightlines, and the AIRS data granules. 

 

4.3 Observations from the Simulated Data Cubes 

 

Significant observations from analysis of the simulated data include: 

 

1. The concept of thermal contrast drives the target spectrum characteristics 

regardless of algorithm 

2. Shorter wavelets perform better than longer wavelets both by measured metrics 

and by computational time  
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3. Wavelet packet decomposition depth should be driven adaptively by target 

spectrum best-basis 

4. A best basis cost function of the L
1
 Norm, although chosen arbitrarily, appears to 

be adequate for characterizing a gas spectrum in a wavelet packet library 

5. In one specific controlled case, WPS has outperformed both SAM and CMF. This 

case was the most stressing (lowest S/C) case among the simulated data. 

 

4.4 Comparison of WPS Approach to SAM and CMF 

 

Spectral Angle Mapper is not generally a method used for trace gas detection. In 

most analysis some type of matched filter or orthogonal projection is used to separate the 

background from the weak target spectrum. SAM is used as part of this comparison to 

demonstrate how the wavelet packet subspace does indeed increase the background and 

target separation leading to improved target detection. The comparison follows.  

SAM is applied in spectral space to each pixel of the simulated data cube. In the 

wavelet packet subspace approach, a wavelet packet best basis is chosen adaptively based 

on the target spectrum of interest. This best basis defines the wavelet decomposition 

applied to the spectral data and selects the nodes and coefficients used to match the target 

to the data. The two patterns, wavelet packet decomposed target coefficients and wavelet 

packet decomposed pixel coefficients, are compared to each other by measuring the 

spectral angle between them. Without the wavelet packet decomposition, this pattern 

match reduces to the original SAM algorithm. Thus, comparing the two matching scores 
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quantifies the difference or similarity that the transformation to wavelet packet space 

applies. The similarities and difference are most clearly seen in the scatter plots of 

Chapter 3. 

The SDC scatter plot results illustrate the correlation between SAM and the WPS 

filter scores. All of the scatter plots illustrate a nearly linear relationship between the two 

sets of scores. This implies a strong positive correlation. This is somewhat expected as 

the wavelet packet decomposition is a linear transformation of the spectral data into 

another space. 

WPS and CMF scores demonstrate a similar trend but with a strong negative 

correlation. The sign of the correlation is due to several factors. These include target 

spectra in emission or absorption and the statistics of the data cube as represented in the 

data covariance. What is important is that the behavior of the scores does not vary for 

unknown reasons. The correlation characteristics are similar for all cases and the 

separation between background and target clusters is consistent. 

Interestingly, multiple clusters appear in the CMF vs. SAM scatter plots for the 

multiple plume cases. Most likely this is the other plume in the scene. For WPS 

comparisons, the second plume is part of the background cluster. This behavior is 

consistent with the idea that the target has been separated from the background through 

the best basis. The second plume has become part of the background. 

For all cases where the noise increases and the target signature decreases, e.g. SDC 

2Aand 4A, the separation between the target cluster and background cluster decreases (as 

expected). For CH4 in SDC 4A, none of the algorithms have any separation between the 
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target and background and thus the target is not detectable. The WPS algorithm behaves 

in a similar fashion as SAM and CMF. 

For the weaker CH4 plume in SDC 3, 4, and 4A, CMF performance falls off. This 

may be due to the presence of both plumes in calculation of the covariance matrix. It is 

expected in application of the CMF that the covariance matrix represents the background 

only. This result suggests that the data used for calculation of the covariance matrix 

should never include any potential target signatures. This concept is applied in analysis of 

the AHI data. 

The WPS algorithm has several intrinsic qualities worth noting at this point. The 

WPS algorithm is target signature based. A wavelet packet library is decomposed for the 

target spectrum and a best-basis chosen based on the L
1
 Norm cost function. The best-

basis is represented by nodes of the wavelet packet tree. Each node contains the 

coefficients for that scale and location of the wavelet packet decomposition. Significant 

differences that define the WPS algorithm are: 

 

1. The best basis nodes are an orthogonal subspace that best represents the target 

spectrum for the given cost function (L
1
 Norm). 

2. The target vector is represented by the concatenation of the coefficients from the 

best basis nodes. 

3. The target vector can implicitly reduce the dimensionality of the spectral space. 

That is, the total number of coefficients used for pattern matching may be 

significantly less than the original number of spectral bands.  
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4. The background is implicitly suppressed by eliminating any best basis nodes of 

the background vector wavelet packet decomposition and by using the target best 

basis for matching. 

5. Significant features of the target signature are captured in scale and location 

through the best basis nodes. 

 

SAM does not possess any of these qualities. CMF does represent an orthogonal 

subspace that is rotated to match the variance of the data. CMF also suppresses the 

background component through calculation of the inverse covariance and applies it to the 

pixel vector (data vector). Separating the WPS from CMF explicitly is the orthogonal 

subspace chosen for matching best represents the target spectrum based on an entropy 

criterion (i.e., cost function). The CMF uses only variance. Also, any entropy criterion 

may be used to select the subspace. At least 2
N/2

 subspaces are possible (N = number of 

bands used for the target spectrum).  

 

4.5 Analysis of the AHI Flightlines 

 

The AHI flightlines were analyzed using two different analysis methods. The first 

method was focused on duplicating the plume detections provided with the AHI data set. 

The second method was focused on detecting and identifying other potential plumes in 

the data. A manual review of the data led to both spatial and spectral sub-setting. Bands 
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below 7.5 µm and above 11.5 µm were assessed as bad or inconsistent among pixels. 

Samples 1 to 8 in the spatial domain were also considered bad. 

Method 1 was applied to FL 121247 and FL 150652. FL 150652 contains a 

potential NH3 (ammonia) plume and FL 121247 contains a potential SO2 plume. The 

analysis method is straightforward. Each algorithm was applied to the data using several 

library spectra. Visual and statistical results were compared among the three algorithms. 

Method 2 was applied to FL 105948 and FL 153924. Flightline 153924 had no 

known plumes in it. FL 105948 had a potential benzene plume [60] but this plume was 

not detected nor analyzed. This analysis method had two steps 1) apply each algorithm 

using several library spectra and visually compare results 2) select a potential plume from 

step 1 and use linear regression to identify the most significant chemical. These two steps 

are the typical detection and identification steps used in LWIR hyperspectral gas analysis. 

Visual comparison of the WPS and CMF detections to the EPA provided SO2 

detections are striking (Figure 124). SAM detection was weak in all cases. The CMF 

algorithm partially detects the SO2 while WPS performed significantly better. CMF had 

stronger detections in the isobutane matched filter plane. WPS also had a strong 

isobutane detection, noted in Figure 94. Covariance calculation for CMF used data from 

another section of the same flightline where no SO2 was detected. WPS SO2 detection 

best matched the provided EPA image. The EPA analysis applied a principal component 

method with matched filter. Specifics of the procedure are unknown. 
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Figure 124. Comparison of SO2 Detections FL121247 

WPS – Left, CMF – Center, EPA Provided – Right 

 

 

To quantify the strength of the potential SO2 plume, a classification map was 

created showing a strong plume beyond 2' in Figure 125. A preliminary linear regression 

was applied in this case (although not part of the discussed analysis method). The 

regression result was not as strong as expected with R
2
 of ~0.4 and an F-Statistic of 45. 

Pearson correlation between SO2 and the plume spectra was calculated at 0.697. These 

results indicate there are most likely other gases mixed in the plume with SO2. The EPA 

provided SO2 identification was a visual comparison of spectra only. 
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Figure 125. FL 121247 SO2 Plume Classification Map 

 

 

FL150652 is a collect over a CAFO facility and has a potential NH3 plume. After 

applying all three methods, no plume was detected. Modifications to the CMF and WPS 

algorithms and the atmospheric model were attempted with no success. (Modifications 

included selection of different backgrounds for the covariance matrix calculation and 

adjustments to the MODTRAN model.) included The potential NH3 plume was 

previously identified as very weak [60]. Individual pixel examination of the data and 

comparison to the published results led to no conclusions regarding the presence of 

ammonia. No results are provided herein. 
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FL 105948 and FL 153924 were selected for analysis for their potential for gas 

plumes. Both flightlines were collected over major petroleum refineries and were 

expected to contain multiple plumes. Metadata existed for FL 153924, which indicated 

known releases of various gases. In both cases all three algorithms were applied to detect 

plumes. No significant changes were noted in any of the algorithms. The initial depth of 

the wavelet packet decomposition was reduced from 8 to a range of 2-4 to speed 

detection time.  

It should be noted that the initial depth is used to perform a full wavelet 

decomposition of the target spectra. The best basis is selected from the full 

decomposition tree. The level of the best basis tree is generally not the initial depth. For 

example the SO2 target depth selected was 5 while for CH4 the target depth was 2. The 

depth chosen should match the bandwidth of the spectral features of interest (adaptive 

depth selection). 

FL 105948 was the most challenging in regards to plume detection. Ultimately a 

small area just south of the industrial stack was chosen as a potential plume. This area 

was identified in both the CMF and WPS detections. SAM had little success in any of the 

flightlines for plume detection. FL 105948 had few potential plume detections. A trial 

and error process was applied in selecting a potential plume and then applying a linear 

regression for identification. Plumes were selected by examining the means and standard 

deviations of the filter scores. Pixels greater than 2' or 3' away from the data mean were 

selected as plume pixels. Figure 126 is a classification map built from the WPS benzene 

detection plane. 
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Figure 126. FL 105948 WPS Plume Detection 

 

 

A Google Earth image was used to provide context to the scene. The plume is 

located just south of the industrial stack in the upper left quadrant. The target library for 

detection consisted of chemicals listed in the AHI metadata for the FL 153924 site and 

that were available in the PNNL Library. A table of chemicals used for detection and 

identification is given in Appendix 4. 

 

 

Figure 127. Google Earth Image for FL 105948 
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A constrained linear regression was applied to the mean pixel spectrum of the 

plume. Figure 128 plots the plume and background spectra. A sum to 1 constraint was 

applied. The regression library applied did not contain all of the potential chemicals that 

may be present in the plume or scene. These results represent linear regression against the 

target spectrum with only the library spectra that were available. Also, an average 

background spectrum was inserted into the library to represent a background endmember. 

The results indicate a potential methane plume, which is not unreasonable for this 

location. R
2
 for the regression was strong at 0.74 with a F-Statistic of 45. There were no 

other chemicals with significantly high regression coefficients. Visual review of the 

plume and methane spectrum indicate a single feature at about 8.25 µm. This is 

potentially a plume that contains methane. 

 

 

Figure 128. FL 105948 Spectral Identification of CH4 

 



   

 159 

WPS and CMF analysis of FL 153924 led to several potential plumes. The 

strongest appeared in the benzene detection plane for both WPS and CMF. The linescan 

image provided sufficient context to determine that the potential plume was directly over 

a large chemical storage tank. The results of the classification map based on the benzene 

detection plane proved a strong plume beyond 3', see Figure 129. The same constrained 

linear regression was applied to the mean plume pixel as FL 105948. The library used 

was also identical. The regression result indicates a benzene plume. R
2
 is calculated at 

0.858 with an F-Statistic of 72. Visual comparison of the mean plume pixel and target 

spectrum illustrates the difference between background and plume pixel representing the 

major features of benzene between 8.5 µm and 11 µm, Figure 130. Benzene releases are 

indicated by the metadata for this site. The regression scores coupled with the strong 

WPS and CMF benzene detection, metadata, and contextual data, indicate the strong 

possibility for a benzene plume. 
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Figure 129. FL 153924 WPS Plume Detection 
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Figure 130. FL 153924 Spectral Identification of Benzene 

 

 

The AHI results demonstrate that WPS plume detection has equivalent results to a 

similar CMF based process. In some cases visualization and detection of the plume may 

be improved with the WPS. The combination of both the WPS and CMF detection planes 

can improve plume identification and its subsequent chemical identification. The SAM 

algorithm, as the results in Chapter 3 illustrate, was not effective in plume detection. The 

SAM result clearly demonstrates that the wavelet packet subspace does indeed transform 

the pixel spectrum into a subspace that more easily detects the target spectrum. 

Full identification through linear regression remains a separate topic and is not 

addressed by the WPS algorithm. The negative result of FL 150652 requires further study 

and a better understanding of the principal components approach used to detect the NH3 

plume in that case. 
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4.6 Validation of Atmospheric SO2 Detection and Identification in AIRS Data 

 

Linear regression techniques are typically applied to high spatial, low spectral 

resolution airborne hyperspectral data for gas identification. In a lower spatial resolution 

case such as AIRS, linear regression may not be the most suitable method for 

identification. Given the AIRS pixel resolution of 14 km, any pixel spectrum represents 

the mixing of gasses in over 196 km
2
. A linear regression would need to take into account 

all of the possible atmospheric constituents that may be present across that area. Even if 

such information is known, the error associated with such small relative quantities of gas 

would quickly negate any reasonable result. Modeling and calculating the atmosphere at 

this larger scale is best left to complex atmospheric models such as MODTRAN or 

LBLRTM and detailed atmospheric analysis. 

Many times gases are detected and identified in the atmosphere by examining the 

difference in brightness temperature of specific bands in the spectrum of interest. These 

bias difference methods take advantage of spectral absorption and emission features of 

the gas and are used for aerosol, particulate, and gas detection and identification [83; 84].  

For SO2, a simple approach would be to ratio the deep absorption at 7.35 µm with the 

significantly less absorption at 7.32 µm. This type of band math is commonly applied to 

quickly reveal features of interest.  

To validate our WPS detection of atmospheric SO2 we apply the bias difference 

methods applied by Carn in his measurement of volcanic SO2 from Mt Etna [81]. The 

results are visually compared. The two bias differences are 1285-1345 cm
-1

 (7.78-7.43 
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µm) and 1228-995cm
-1

 (8.14-10.05 µm), (BD1 and BD2 respectively). These bias 

differences are calculated with the brightness temperature for each wavelength. The 

difference between the two brightness temperatures results in the difference image. Each 

of the bias difference methods uses the difference between a region with a significant 

absorption feature and a region with no absorption. For completeness, pixel spectra for 

each suspected plume are compared to the target spectrum in Figure 134. 

AIRS 169 is the July 2003 Montserrat eruption. The WPS method and BD1 (1285-

1345 cm
-1

) agree very well. The BD2 (1228-995cm
-1

) image does not appear to perform 

well. The BD2 feature in the SO2 spectrum is significantly weaker than the BD1 feature. 

This particular SO2 plume has been identified with other sensors such as TOMS in the 

ultraviolet spectrum. This result demonstrates the WPS algorithm’s ability to detect SO2. 

In applying the WPS in this case, depth was selected adaptively as previously discussed. 

Additional target spectra were assessed for this scene, but none detected the plume as 

clearly as SO2. 
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Figure 131. AIRS Data Granule 169 SO2 Detection Comparison 

Top Left: WPS, Top Right: 1285-1345 cm
-1

, Bottom: 1228-995 cm
-1

 

 

 

AIRS 102 contains the June 29, 2003 Iraqi sulfur fire. Again the WPS and BD1 

methods detect the SO2 plume very well. In the BD2 method there is a small darker area 

that coincides with the SO2 plume of the other methods. Two of the three methods appear 

to agree on the location of SO2 while the BD2 case is marginal.  
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Figure 132. AIRS Data Granule 102 SO2 Detection Comparison 

Top Left: WPS, Top Right: 1285-1345 cm
-1

, Bottom: 1228-995 cm
-1
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AIRS 107 also contains the July 2, 2003 Iraqi sulfur fire event. In this case the 

WPS detection visually performs the best. The BD2 method has somewhat more contrast 

than the BD1 method near the source of the fire at Al-Mishraq.  

 

 

Figure 133. AIRS Data Granule 107 SO2 Detection Comparison 

Top Left: WPS, Top Right: 1285-1345 cm
-1

, Bottom: 1228-995 cm
-1
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In both the AIRS 102 and 107 cases, initial results with the WPS method were 

inconclusive. A more detailed examination led to the wavelet coefficients selected for 

target signature pattern matching. The nodes selected by the process were not identical to 

the nodes selected for AIRS 169.  Ten nodes were selected for 102 and 107, while six 

nodes were selected for 169. Two variables were identified that differed between the 

cases. 1) bad bands identified in AIRS metadata, and 2) atmospheric model runs 

(different run for each case). Both of these variables can change the target spectrum used 

for the best basis either by changing the wavelengths used or by changing the intensity of 

the spectral features. Since AIRS 169 was a proven case of SO2 detection, those nodes 

were applied to the other data sets to generate the results of Chapter 3. 

Examination of the nodes and coefficients also revealed that some nodes 

significantly drove the magnitude of the angle between the vectors. This is a common 

situation when examining the data in feature space. Eliminating those coefficients or 

normalizing the magnitude of the coefficients across the entire target vector, will mitigate 

this situation. Normalization of the coefficients across the vector will also ensure the 

information in the nodes selected is not lost. 
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Figure 134. Pixel Spectra for AIRS SO2 Detections 

 

 

Examination of the pixel spectra leads to quick confirmation of the SO2 plume in 

AIRS 169. AIRS 102 and AIRS 107 are less convincing. Linear regression was attempted 

on the AIRS spectra. Results were inconclusive and are not reported. The combination of 

the BD methods for 102 and 107 and SO2 detections by other sensors on these dates and 

at these locations [81] provides convincing evidence that this is an SO2 plume.  
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4.7 Computational Improvements and Issues 

 

Initial order of operations estimates for the CMF and WPS approach suggest that 

the number of operations for each approach are similar in magnitude. The total 

magnitudes are the same, but the difference occurs in the number of operations per pixel. 

For the CMF approach an inverse covariance matrix, ((N
3
), must be calculated once for 

the entire data cube. Then, a multiplication of that matrix against each pixel is performed, 

((N
3
) + ((m x n).   In the WPS approach, a wavelet packet decomposition is applied to 

each pixel, ((NLog(N)) for the decomposition, multiplied by the total number of pixels 

or ((NLog(N)) x (m x n).  

In the MatLab environment, this similar order of magnitude in operations did not 

equate to similar computational times. In general, wavelet decomposition times were at 

least an order of magnitude greater than the covariance matrix calculation. An AIRS 

CMF run took on the order of 2-4 minutes, while a similar WPS run was of the order 20-

30 minutes. The following were observed during processing: 

 

1. On a dual CPU processor, only a single processor was utilized for either CMF or 

WPS (multi-threading was enabled). 

2. The CPU that was utilized was not at full capacity during computation of the 

WPS. It was at full capacity for CMF. 

3. CMF required significantly more memory for computation (1.5 GB for CMF vs. 

400 MB for WPS). 
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4. There was a significant amount of disk activity during the WPS processing. 

 

The CMF processing times are not unexpected. All of the processing is performed 

in memory with significant operations reduced to large matrix multiplies and calculation 

of the pseudoinverse, both of which are memory and CPU intensive. CMF processing 

requires access to all of the data cube to perform its operations. Analyzing a data cube of 

500 MB will fill at least 500 MB of memory with the data alone. 

The WPS processing observations must be attributed to the MatLab environment. 

MatLab internal wavelet packet decomposition functions were used and the amount of 

background processing and bookkeeping performed is unknown. Since wavelet 

decomposition is a recursive matrix multiply, background processing, other bookkeeping, 

and multiple disk reads/writes are driving the computational time difference. 

Significant differences were also noted in computational time between a dual 64-bit 

PowerPC processor and a dual-core 32-bit Intel processor. In many cases the 32-bit Intel 

Processor was significantly faster in wavelet processing than the PowerPC processor. It’s 

assumed that the MatLab environment is optimized for one platform vice the other. In 

general, computational times on both a dual processor (dual-core) Intel platform and dual 

processor PowerPC platform were disappointing.  

Regardless of the computational time, the original objective of the research has 

been met. The WPS approach only requires access to one pixel of data at a time. The 

pixel-by-pixel method for trace gas detection has been demonstrated. This approach is an 

easily parallelizable problem. 
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4.8 Image Context and Visualization Aspects 

 

Analysis of both AHI and AIRS data required significant context to understand the 

results. In the AHI analysis, the first step was to identify the location of each flightline. 

Google Earth was used with aircraft GPS data to identity which flightline may be of 

interest. The other AHI metadata provided general locations and types of gases that may 

be present at specific facilities. Detailed examination of the location of a potential plume 

was required to determine if there was a source for the plume and if the identified gas 

was reasonable for that location. Again, Google Earth was used to get higher resolution 

imagery for areas of interest. 

AIRS image context was slightly different. Given its global coverage, the data and 

its results cover wide areas. Without some geospatial context, detection and identification 

leads to results with low utility. These results must be mapped to a location before the 

context can be understood. The detection images indicate SO2. But georegistering that 

result confirms that the SO2 is the Al-Mishraq sulfur fire. 

To facilitate context and understanding of the results, Google Earth is used to 

visualize the results of automated AIRS processing. CMF and WPS automated results are 

converted to KML files that can be opened in Google Earth. With the demanding 

computational time requirements in the prototype environment, weekly analysis of AIRS 

global data is performed. Results are pushed to a website where both georegistered 

images and KML files are available (www.earthintelligence.net). 
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5 Conclusions 

 

 

 

 

The WPS approach is a new method for the hyperspectral data analysis toolbox. 

The results demonstrate that the WPS approach can be used to detect and identify trace 

gases in the atmosphere. Since the WPS approach is a single pixel analysis method, it 

facilitates the parallelization of hyperspectral data analysis. This is a tremendous benefit 

over matched filter methods, which require calculation of the covariance matrix from the 

data population. A significant benefit of this single pixel approach is its potential 

application real-time collection and analysis systems. The original research goals were to: 

 

1. develop a wavelet packet hyperspectral detection method, and 

2. develop an easily parallelizable method for trace gas detection in spectral data. 

 

By demonstrating that the WPS approach performs as well as state-of-the-art gas 

detection methods, both goals #1 and #2 have been met.  

 

5.1 Wavelet Packet Subspace for Spectral Trace Gas Detection 

 

The results demonstrate that in both simulated and real hyperspectral and ultra-

spectral data the WPS approach can detect trace gases. When compared to state-of-the-art 
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algorithms, WPS performance is comparable to and in some case exceeds those 

algorithms. This performance is consistently demonstrated in all three types of data 

through both statistical and visual methods. The AHI and AIRS results demonstrate that 

in both the high-spatial/low-spectral resolution and low-spatial/high-spectral resolution 

case, the WPS approach performs well. This is due to the target-based detection and 

adaptive best-basis approach that are implicit in the WPS method. 

The initial selection of the Daubechies 2 mother wavelet followed a quantitative 

and qualitative selection process. Pure numerical results of the process led to a general 

direction for selection of the mother wavelet. The pragmatic results demonstrated that 

Daubechies 2 would perform best as the mother wavelet.  

Selection of the L1 Norm as the cost function for the best-basis was much more 

subjective. The pragmatic results also indicated this cost function would perform well. 

Best-basis selection will require more study.  

The WPS approach finds an orthogonal subspace that best represents the target of 

interest. In doing so it implicitly suppresses background contributions of the scene. This 

approach parallels the fundamental problem in hyperspectral gas detection, separation of 

the target from the background. 

 

5.2 Computational Improvements 

 

The order of operations for the WPS is comparable to state-of-the-art detection 

methods. Of significant difference is the pixel based approach of WPS. This approach 
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transforms the memory intensive processing of matched filter techniques into an easily 

parallelizable problem. This EPP is a much more appropriate solution to real-time 

spectral collection and analysis systems. Real-time systems can more easily make use of 

their multi-processor designs and architectures by simply transmitting and processing 

individual pixel vectors as opposed to very large matrices. 

 

5.3 Context & Visualization 

 

Hyperspectral analysis made significant use of Google Earth to provide context and 

visualization. Geospatial tools such as Google Earth are critical in developing high-

confidence results. Without geospatial context and/or high resolution imagery, 

atmospheric gas detections may make little sense. Validation of many of the results 

herein would not have been possible without geospatial context. Google Earth is now 

used as part of an automated detection process for AIRS data developed to implement the 

WPS approach.  

 

5.4 Future Research  

 

This work has applied a well known signal processing technique to hyperspectral 

data analysis. There are numerous variations in both orthogonal subspaces and cost 

functions that the wavelet packet subspace could apply. This work has focused on a basic 
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approach driven by the target characteristics of LWIR hyperspectral data. Future research 

in this area will include: 

 

1. Application of the WPS to more LWIR data with different spectral and spatial 

resolutions, 

2. Application of the WPS to reflective hyperspectral data analysis, 

3. Further study of wavelet selection for reflective data, 

4. Study of different cost functions and their impact on algorithm, performance, and 

5. Implementation of the WPS on a high performance computing platform for real-

time hyperspectral analysis. 

 

It is hoped that this research encourages others in the hyperspectral community to 

examine the WPS approach and to use it for analysis of spectral data. 

 



   

 176 

Appendix 1. Previous Wavelet Based Hyperspectral Analysis 

 

 

 

 

Experiment 1 performs classification of hyperspectral data using in-scene pixels as 

the target of interest. This case uses AVIRIS data of Moffett Field, CA in the reflective 

region of the electro-magnetic spectrum. A comparison is made of existing hyperspectral 

classification methods using reflectance values versus the same classification methods on 

Daubechies 4 discrete wavelet transform coefficients. This case also compares the impact 

of dimension reduction on classification methods. 

Experiment 2 uses an AIRS data set in the emissive region of the electro-magnetic 

spectrum. This data set is of the July 13, 2003 volcanic eruption in the Soufriere Hills of 

Montserrat. This experiment attempts to visually identify features in the data similar to 

how a Principal Components Analysis is used to identify dominant features in multi-

spectral or hyperspectral data. Experiment 2 attempts to detect the volcanic ash cloud in 

the data prior to identifying SO2 in the ash cloud. The detection step visually compares 

the ability of the DWT to a PCA to detect the ash cloud. 

Experiment 3 analyzes an application of the Discrete Wavelet Packet Transform 

(DWPT). The same AVIRIS data set from Experiment 1 is utilized. A pixel of grass and 

asphalt is linearly mixed to demonstrate the improvement in classification between 

spectral space and the DWPT.  
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Experiment 1: Reflective In-Scene Classification with DWT 

 

Using an AVIRIS data set of Moffett Field, CA, four types of pixels using literal 

information, water, grass (fairway grass), rooftop, and road surface (probably asphalt) are 

chosen. Figure 1is a close-up image of the regions chosen as known spectra. Figure 2 is a 

plot of the spectra for the known materials, blue-water, green-grass, magenta-rooftop, 

red-asphalt. These regions have been chosen for two reasons: 1) Spectral diversity, 

vegetation vs. non-vegetation, and water, 2) Image features. All four regions were easy to 

identify in image space. Once these regions were chosen, three classification methods are 

used to find additional pixels, which can be classified as one of the four regions of 

interest. 

 

 

Figure1. Moffet Field Regions of Interest  

(Blue - Water, Yellow - Roof, Magenta - Runway, Green - Grass) 
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Figure 2. Spectra for Regions of Interest  

(Blue - Water, Yellow - Roof, Magenta - Runway, Green - Grass) 

 

 

Classification methods come in two basic types, distance measures, and statistical 

measures. For this experiment we will use both distance measures, (Spectral Angle and 

Euclidean Distance) and a statistical measure (Spectral Matched Filter).  

The baseline classification maps for spectral angle, Euclidean distance, and 

matched filter are shown in leftmost column of Figure 3. The baseline case applies 

classification methods in spectral space using all the wavebands available. The fairway 

grass region in green is present in at least 3 other areas, which may also be golf courses. 

The rooftops in yellow clearly standout in the upper right as well as the asphalt region 

from the airport. The water region is spread out through the middle of the image.  
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Figure 3. Classification Map Comparison, Spectral Space, PCA, DWT 

 

 

In comparing the baseline cases we see that Euclidean distance finds the major 

roadway across the lower right of the image, while the other methods do not. The 

matched filter results highlights the airport features, and seems to provide a cleaner view 

of the golf course features. 

Classification maps for the principal components case are shown in the center 

column of Figure 3. These figures show the all bands case with no dimension reduction. 

In comparing this case to the baseline case, asphalt features show up more prominently in 

the spectral angle and Euclidean distance maps than in the baseline case. Although the 
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baseline case shows more asphalt around the rooftops in the upper right. Water features 

are much less prominent in this case. 

The matched filter results for this case (all bands) show some questionable results. 

Rooftop features appear to be miss-classified as asphalt, and two large features show up 

in the middle right portion of the image. These results may be due to Hughes Phenomena 

or an error in the processing. Water features are very dissimilar. 

The wavelet transform case classification maps (all bands) are shown in the 

rightmost column of Figure 3. The wavelet transform case shows excellent correlation 

with the baseline case. The asphalt features in all three classification methods are very 

similar, as are the water, rooftop, and grass. Reviewing raw tabulated data, wavelet 

results for spectral angle and Euclidean distance was excellent.  

In addition to these results, classification was also performed on a reduced 

dimensionality set of data. This step is typical of hyperspectral dimension reduction using 

PCA. Of the original 224 bands, reduced sets of 2, 4, 8,16, and 32 bands are used and the 

same classification methods are performed.  (Spectral matched filter compares only 16 

and all bands.) Results are tabulated in Table 1. Overall classification accuracy for all 

four regions (asphalt, grass, rooftop, water) is captured in the Overall result column.  
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Table 1. Euclidean Distance and Spectral Angle Comparison 

 

 

 

 

Experiment 2: Emissive In-Scene Detection with DWT 

 

Experiment 2 attempts to detect a volcanic ash cloud. A typical use of PCA in 

multi-spectral or hyperspectral data is to visually detect principal features in the data. In a 

reflective data set this may be water features, or roads, etc. The data set used in this 

experiment is AIRS data from a 2003 eruption in Montserrat. 

Bands Overall Commision Omission Overall Commision Omission

2 93.5 70.98 71.47 94.39 24.11 23.98

4 96.35 35.18 35.43 95.79 19.79 19.51

8 97.01 29 29.93 97.68 9.58 9.79

16 97.01 29 29.93 98.22 6.28 5.5

32 99.86 0.06 0 98.76 3.1 4.13

all 97 29.42 29.42 100 0 0

Bands Overall Commision Omission Overall Commision Omission

2 98.06 1.25 1.02 97.65 15.64 15.91

4 99.03 0.64 0.45 98.36 5.8 5.89

8 99.51 0.29 0.06 98.89 0.96 0.58

16 99.88 0 0.06 99.13 0.77 0.42

32 96.99 29.43 29.52 99.31 0.38 0.13

all 100 0 0 100 0 0

Bands Overall Commision Omission Overall Commision Omission

16 95.22 8.61 9.57 95.54 10.92 11.49

all 95.23 8.61 9.57 95.42 18.05 17.73

16 94.64 33.06 33.83 94.94 33.41 33.9

all 94.64 33.06 33.83 95.02 36.22 36.04

16 95.71 17.37 18.56 96.36 17.53 18.37

all 95.71 17.37 18.56 99.99 0 0

Compared to Baseline Spectral Matched Filter

PCA - Spectral Matched Filter

Wavelet Transform - Spectral Angle

Wavelet Transform - Euclidean Distance

Wavelet Transform - Spectral Matched Filter

Compared to Baseline Spectral Angle

PCA - Spectral Angle

PCA - Euclidean Distance

Compared to Baseline Euclidean Distance
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Various satellite sensors were able to capture the volcanic ash cloud as it traveled 

through the atmosphere. This included Landsat ETM, TOMS and AIRS. Volcanic Ash 

Clouds are a significant hazard to aviation and detection of volcanic sulfur dioxide is a 

method used to track the dispersion of volcanic ash. TOMS (Total Ozone Mapping 

Spectrometer) measured the sulfur dioxide content of the volcanic ash cloud, see Figure 

4. This data will be used to visually verify the ash cloud. 

 

 

Figure 4. TOMS SO2 Measurement of Soufriere Hills Eruption
4
 

 

 

 The AIRS data cube were both transformed by the PC rotation and wavelet 

transform. AIRS data includes topography and latitude/longitude for each pixel. This 

provided a reference point to aid in identifying where the source of the volcanic cloud. 

(This AIRS data cube is spatially inverted from typical geographic coordinates.) This 

data cube has no underlying land masses and has a complete ocean background. In 

browsing the PC cube we see no significant features in the first 100 bands. In browsing 

                                                
4
 http://toms.umbc.edu/ 
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the DWT cube we see a stunning image in band 25. Comparing this to the TOMS image, 

we clearly see a shape similar to the SO2 cloud, see Figure 5.  

 

 

Figure 5.  Original Image, PCA, and DWT Results for Detection Compared 

Original Data (Left), PCA Rotation (Center), DWT Coefficients (Right)  

 

 

Experiment 3: Hyperspectral Classification with DWPT 

 

Experiment 3 uses the same AVIRIS data as Experiment 1. From this data 2 pixel 

spectra are selected: 1) grass and 2) asphalt. These spectra are linearly mixed from 0% 

(all asphalt) to 100% (all grass) in 5% increments (95% asphalt, 5% grass). Three 

classification metrics are used to compare results. Spectral Angle (SA: angle between n-

dimensional vectors), Euclidean Distance (ED: distance between n-dimensional vectors) 

Measure), and Pearson Product Moment Correlation (PMC: a linear regression 

coefficient). Spectral Angle and Euclidean Distance were chosen because of their 

widespread application in hyperspectral analysis. Pearson was chosen because it is 
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insensitive to the gain and offset variations that Spectral Angle (SA) and Euclidean 

Distance (ED) are subject to. 

 

 

Figure 6. Target and Background Spectrum 

 

 

As the pixels are linearly mixed, in Figure 6, they are classified against the target 

spectrum of grass. Thus at 100% grass all classification methods should show their 

maximum correlation, i.e. 0.0 for Spectral Angle, 0.0 for Euclidean Distance, and 1.0 for 

Pearson Product Moment Correlation (PMC). This classification is done in two spaces, 1) 

Spectral Space, 2) Wavelet Coefficient Space. In spectral space the classification is 

straightforward, the mixed pixel spectrum is compared to the target spectrum (grass), and 

a scalar value is calculated. 

In Wavelet Coefficient Space, a target based approach is used. A DWPT 

(Daubechies 5) is applied to the target spectrum, (grass spectrum). From this basis set, a 

best basis is chosen using Log Energy as a cost function
1,1

.  The same DWPT is applied 

to the mixed pixel spectrum. The best basis developed from the target spectrum is then 
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used to select wavelet coefficients from both the target spectrum and the mixed pixel 

spectrum. These two sets of wavelet coefficients are then compared using the three 

classification methods. 

 

 

Figure 7. Results Comparison No Noise Case 

 

 

The results in Figure 7 show SA and ED to be identical. PMC for low percentage of 

target material (0.0-0.3) shows better correlation for Wavelet Coefficients than in spectral 

space. This is not unexpected as the basis is chosen from the significant features of the 

target spectrum. This higher correlation indicates the asphalt spectrum has features that 

are very similar to the target (grass). In reviewing the two spectra, this is clear. The next 

set of results adds 5% of random noise to the mixed pixel, and then 30%. 

For the 5% noise case (Figure 8, left), Wavelet Coefficient Space demonstrates 

slight improvement for all classification methods. For the 30% case (Figure 8, right), the 

improvement in Wavelet Coefficient Space is much more pronounced. 
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Figure 8. Results Comparison 5% (Left) and 30% (Right) Random Noise Case 
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Appendix 2. Simulated Data Cube Images and Spectra 

 

 

 

 

 

Figure 1. Simulated Data Cube 1 
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Figure 2. Simulated Data Cube 2 
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Figure 3. Simulated Data Cube 2A 
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Figure 4. Simulated Data Cube 3 
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Figure 5. Simulated Data Cube 4 
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Figure 6. Simulated Data Cube 4A 
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Appendix 3. Additional Wavelet Selection Results 

 

 

 

 

 

Figure 1.  Wavelet Coefficient Statistics for AHI Wavelengths (Biorthogonal Wavelets) 

 

 

Figure 2. Wavelet Mode Image for AHI Wavelengths (Biorthogonal Wavelets) 
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Figure 3. Wavelet Coefficient Statistics for AIRS Wavelengths (Biorthogonal Wavelets) 

 

Figure 4. Wavelet Mode Image for AIRS Wavelengths (Biorthogonal Wavelets) 
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Figure 5.  Wavelet Coefficient Statistics for AHI Wavelengths (Orthogonal Wavelets 

Wavelets – All Spectra) 

 

 

Figure 6. Wavelet Mode Image for AHI Wavelengths (Orthogonal Wavelets – All 

Spectra) 
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Figure 7.  Wavelet Coefficient Statistics for AHI Wavelengths (Biorthogonal Wavelets 

Wavelets – All Spectra) 

 

Figure 8. Wavelet Mode Image for AHI Wavelengths (Biorthogonal Wavelets Wavelets – 

All Spectra) 
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Figure 9.  Wavelet Coefficient Statistics for AIRS Wavelengths (Orthogonal Wavelets 

Wavelets – All Spectra) 

 

Figure 10. Wavelet Mode Image for AIRS Wavelengths (Orthogonal Wavelets Wavelets 

– All Spectra) 
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Figure 11.  Wavelet Coefficient Statistics for AIRS Wavelengths (Biorthogonal Wavelets 

Wavelets – All Spectra) 
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Figure 12. Wavelet Mode Image for AIRS Wavelengths (Biorthogonal Wavelets 

Wavelets – All Spectra) 
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Appendix 4. Additional AIRS Results 

 

 

 

 

 

Figure 1. Scatter Plot for AIRS Data Granule 107 
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Figure 2. Histogram for AIRS Data Granule 107 

 

 

Figure 3. Plume SO2 Spectra Comparison for AIRS Data Granule 107 
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Appendix 5. Detection and Regression Libraries 

 

 

 

 

Table 1. Detection Library 

 

Chemical Name Chemical Formula Temperature

Benzene C6H6 25C

Butane C4H10 25C

Ethane C2H6 25C

Methane CH4 5C

Methane CH4 25C

Methane CH4 50C

Propane C3H8 5C

Propane C3H8 25C

Propane C3H8 50C

Ethene C2H4 25C

Isobutane C4H10 25C

Isoprene C5H8 5C

Isoprene C5H8 50C

Methylethylbutene C2H5C(CH3) 25C

Ammonia NH3 25C

Ammonia NH3 50C

Propene C3H6 25C

Sulfur Dixoide SO2 25C  
 

 

Table 2. Regression Library 

 

Chemical Name Chemical Formula Temperature

Benzene C6H6 25C

Butane C4H10 25C

Ethane C2H6 25C

Propane C3H8 25C

Methane CH4 25C

Ethene C2H4 25C

Isobutane C4H10 25C

Sulfur Dioxide SO2 25C
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