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ABSTRACT

A theoretical framework is presented which treats inductive learning
as a process of generalizing and simplifying symbolic descriptiens, under
a guidance of generalization rules (representing inference processes which
generalize descriptions) and problem environment rulzs (representing
problem dependent knowledge). This approach inifies various types of
inductive learning, such as learning from examples ( determination of
characteriscic or deseriminant descriprions, and sequence prediction), arnd
learning from ohservation (revealing a conceptual structure undezlyring
an arbitrary collection of entities).

A brief descripction is given of twe inductive learning programs
INDUCE 2 ——~ for learning characteristic ¢r discriminant structural descrip-
tions, and CLUSTER/PAF --- for learning from observation (‘'conceptual
clustering'). The latter program determines a taxonomic description, -
which partitions 3 given collection of entities into clusters,; such chat
gach cluster is described by a single conjunction of relational statements
and the obtained assembly of clusters satisfies an assumed cricterion of
preference, ’ _

The presented methodology can be useful for automated 'conceptual’
analysis of experimental data, for searching for patterns and abstracting
the contents of databases, and also for aiding the knowledge acguisicion
processes in the development of expert systems.
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INTRODUCTION

Our understanding of inductive learning processes remains

very limited despite considerable progress in recent years. Making

progress in this area 1s §articular1y difficult, not only because of the
intrinsic complexity of these prcblems, but also because of their cpen-—
endadness. This open-endedness implies that when we make inductive asser-
tions about some piece of reality, there is no natural limit to the level
of detail of descriptions of this reality, co the scope of concepts aud
operators used in the expression of these assertions, or to the richness
of thelr forms. Consequently, In order to achieve mon-trivial general
solutions, one has to circumscribe carefully the nature and goals orf the
résearch. This includes defining the language in which descriptions may
be writter and the modes of inference which will be gsed. Careful deiini-
tions will avoid the main difficulty of mest current research: attacking

problems which are too general with techniques which are too limited.

Recently there has been a growing need for practical solutions
in the area of inductive learning. For example, the development of
'knowledge—bascd'expertﬁsystems requires efficient methods for aéqﬁifing'éhd
refining knowledge. Curreatly, the onl} method of knowledge acquisition is
the handerafting of zn expert's knowledie in some knowledge representation systesd,
é.,g., production rules (Shortliffe {11, Pavis [2]) or a semantic net

(Brachman [3]). Progress in the theory of induction and the devylcpment'of



effi{cient inductive programs can provide valuable assistance and an alter-
native method in this area. For example, inductive programs could be useful
for f£1lling in gaps and testing the consistency and completeness of expert-
derived decision rules, for removing redundancies, or for incremental improve-
ment of the rules through the analysis of their performance. They could pro-
vide a means for detecting regularitiss ila data bases and knowledge
bases. Also, for appropriately selected problems, the programs could deter-
mine the decision rules directly from examples of expart decisiouns, which
would greatly facilitate the transfer of knowledge from experts into machines.
Experiments on the acquisition of rules for the diagnosis of soybean disea~
 ses (Michalski and Chilausky [4]) have indicated that rule-lezrning fron
examples 1is not only feasible, but in certain aspects it may be even preferable,

Another potential er applying inductive programs 1is in various
areas of science, e.g., bilology, microbilology, and genetics. Here they could
assist a scientist in revealing structure or detecting interesting cenceptual
patterns In collections of abssrvations or results of experiments. The
traditional mathematical techniques of regression analysis, npumerical taxonomy,
factor analysis, and distance~based clustering techniques are not sufficiently
adequate for this task. Methods of conceptual data analysis are needed, whose
results are not mathematical formulas but conceptual descriptions of data,
involving boéh qualitative and quantitative relationships.

Similar in general framework, but different in objectives ié ragearch in a
sub-area of computer inductive learning such as automatic programming
(e.g., Shaw, Swartout and Creen [5], Jouannaud and Kodratoff [6], Burstall and
Darlington [7], Biermann [8], Smith [9], Pettorossi [10]). Here, the objective
is to synthesize a program from {fb palrs or computatiocnal traces, or to

improve its computational efflciency by applicatior of correctness-preserving



transformation rules. The final result of learning is thus a pregram, in a
given programming language, with its inherent sequential structure, destined
for machine rather than human "“consumption” (or, in other words, a description
in “computer terms' rather than in "human terms'). Here, the postulate of
human comprehensibility (mentioned below) is not too relevant. Quite similar
to research on automatic programming is research on grammatical inference
(e.g., Bierman and Feldman [11], Yau and Fu {12]) where the objective of
learning is a formal grammar.

This paper is concerned with computer inductive inference, which
could be called a "conceptual" induction. The final result of learning is
a symbolic description of a class (or classes) of entities (which typically
are not computational processes) which is in a form of a logical-type
expression. Such an expression is expected to be relatively "close" to a
natural language description of the same class(es) of entities, épecifically

it should satisfy whar we call the comprenensibility postulate:

The results of computer induction should be concep*ual descri piicns of
data, seimilar zo ihe deseripiicns a hurman expert mighs produce observing the
sare data. Thay srould ke cowprehensible by humens as single ‘ebunks' of
information, cirectly interpretable in natural language, ard can tnvolve
both guantitative and qualitative information.

This postulate implies that descriptions should avoid more
than one level of bracketing, more than one implication or exception symbol,
avoid recursion, avoid including more than 3-4 conditions in a conjunction
and more than 2-3 conjunctions in a disjunction, not include more than two
quantifiers, etec. (the exact numbers can be disputed, but the principle
is clear). This postulate can be used to decide when to 8ssign a
name to a specific formula and use that name inside another fotmula.

This postulate stems {from the motivation of thls research to provide new

methods for knowledge acquisition and techniques for conceptual data analysis,



It is also well confirmed by the new role for research in artificial intel-
ligence, as envisaged by (Michie [13]), which is to develop techniques for
conceptuzl interface and kncwledge refinement.

In this paper we will consider two hasic types of inductive
inference: learning from examples and learning from observation (specifieally,

the so called "conceptual clustering").

2. COMPUTER INDUCTION AS GENERALIZATION AND SIMPLIFICATION OF SYMBOLIC
DESCRIPTIONS

2.1  Inductive Paradigm

The process of induction can be characterized as the search for an
economical and correct expression of a function which is only parrially knowt.
Tn other words, its goal is the determination and validationm of plausible
seneral descriptions (inductive assertions or hypotheses) which explain a
giueﬁ body of data, and are able to predict new data. Between the two aspects
of induction -- the geneg@ﬁiou'of plausible inductive assertions and their
validation -- only the first is the subject of our study. We feel that the
subject of hypotheses generation, in particular the problems of gemeralization

"and simplification of symbolic descriptions by a computer, is a quite unexplured
and very important direction of research. The problens of hypothesis confirma-
tion, in the Carnapian (Carnapl4 ) or similar sense, are considered to be
beyond the scope of this work. In our approach, inductive assertions are
judged by a human expert interacting with the computer, and/or tested by
standard statistical techniques. The research is concentrated on the following
inductive paradigm:

Given is:
(a) a set of data rules (input rules), which consist of data deserip-

tions, {cij}’ specifying initial knowledge about some entities

( objects, situations, processes, ete.), and the generalizazion
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Descriptions Sﬁj can be symbolic specificaticns of conditions
which given situations satisfy, production rules, sequences of
attribute-value pairs representing observations or results

of experiments, ete. The descriptions are assumed to be
expressions in a certain logical calculus, e.g., propositional
éalculus, a decision tree structure, predicate calculus, or
calculi specilally developed for inductive inference, such 3;
variable valued logic systems VLI (Michalski tl&]) or VL2

(Michalski [16]).

(b) a set of rules which define a problem environment, i.e.,
represent knewledge about the induction problem unéar consider=
ation. This includes -definitiocns of value sets of all descrip-
tors* used in the daté rules, the properties of descriptors
and their interrelationships and any "world knowledge'
characteristic to the problem at hand.

(¢) a prefervence or (optimality) eriterion, which for any two
symbolic desecriptions of an assumed form, and of the same
generalization class, specifies which one is more preferable,

or states that they are equally preferable.

*Decopiptoreg are variables, relatioms and functions which are used in symbolic
descriptions of objects or situations.



The problem is to detenmine a set of nductive assertions (output descriptionsl:
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which are most preferable among all sets of rules in an assumed format, that
do not contradict the problem enuirorment rules, and which are, with regard to
the data rules, consistent and complete.

A set of inductive assertions 1s conaistent with regard to data
rules, if any situation which satisfies a data rule of some generalization
class either satisfies an assertion of the same class, or does not satisfy
any assertion.

A  set of asssrtions is complete with regerd to imput rules, if
any situation which satisfles some data rules also satisfles some asgertion
in the set.

It is easy to s=e that if a set of assertions 1s vonslstent and
complete with regard to the data ruleﬁ, then it is semantically equivalent
to of more general tham the data rules (i.e., there may exist situations
vhich sétisfy an assertion but do not satisfy any data rules).

From a given set of data rules it is usually possible to derive
many differeant sets of hypotheses which are consistent and complete, and
which satisfy the problem environment rules. The role of the preference
criterion is to select one (or a few alternatives) which is (are) most
desirable in the given applicatiom. The preferance eriterion may refer to

the simplicity of hypotheses (defined in some way), their generality, the



cost of measuring the information needed for their evaluatien, their degree
of approximation to the given facts, etc. (Michalski [16]).

We will distinguish following special types of .inducticon (this is
not an exhauscive classification):

1. Learning from examples

Within this type three subclasses of problems were studied most:

a. concept acquisition, or learning a chargeteristic deserirtion
of a class of entities (representing a concept).

b. classification learning, or learning discriminant deseriptiors
of related classes of objects.

c. sequence prediction, or discovery of a4 rule which generates a
given sequence of entities.

II. Learning from abservation

" which reveals a

it is a process of "conceptual clustering,’
conceptual structure underlying an arbitrary collection of entities.
1t produces a tazonomic deseripiion of

The*

Most of the research on computer induction has dealt with a special
|

subproblem of type Ia, namely learning a conjunctive concept (description)
characterizing a given class of entities. Here the data rules involve only
one generalization class (which represents a certain comcept), or

two generalization classes; the second class being the set of "negative
examples" (e.g., Winston [17], Vere [18], Hayes-Roth [19]). Where there is
only one generalization class (the so-called uniclass genevalization) there

{s no natural limit for generalizing the given set of descriptiens. In such
case the limit can be imposed, e.g., by the form of expression of the inductive
assertion (e. . , that it should be a most specific conjunctive generalization
wi “in the given notational framework, as in (Hayes-Roth [19]) and (vere [18]),

or ; the assumed degree of generality (Stepp [20]). When there are negative



examples the concept of near mias (Winston [17]) can be wsad to aflectively
determine the limit of generalization .

- A general problem of type Ia is to learn a characteristic deseriziton
(it can be, e.g., a disjunctive deseription, grammar, or an algorithm) which
characterizes all entities of a given class, aud dees net characterize any
entity which 1s net in this class.

Problems of type Ib are typical pattern classification problems.

Data rules involve many generalization classes; each generalization class
represents a single pattern recognition class, In this case, the individual
descriptions Cij are generalized so long as it leads to their simpliciation and
preserves the condition of consistency (e.g., Michalski [21]). Obtained
{nductive assertions are diseriminant descriptions, which permit one to
distinguish one recognition class from all other classes. A descriminant
description of a class is a special case of characteristic descripticn, where
any object which is not in the class is in one of the finite (ugually quits
limited) number of other classes. Of spécial interest are discriminant
descriptions which have minimal cost (e.g., the minimal computational
complexity, or minimal number of descriptors involved).

Problems of type Ic are concerned with the discovery of a rule governming -
geqeration of an ordered sequence of entities., The rule may be deterministic
(as in lettgr_sequence_predicnion (e.g., Simon & Lea [22}), or nondeterministic,
as in the card game EULESIS (Dietterich {23]). Data rules involve here only
one generalization class, or two generalization classes, where the second
class represents "megative examples."

Problems of type IL (learning from observation) are concerned with
determining a structure underlying a collection of entities, In particular,

such a structure can be a partition of the collection into clusters of emtities



representing certain single concepts ("conceptual clustering," Michalski [24]).
Data descriptions in (I) represent in this case individual entities, and they
all belong to the same generalization class (i.e., data descriptioms cousist of
a single row of data rules in e.g. (1)).

Methods of induction can be eharacterized by the type of language
used for expressing initial descriptions Cij and final inductive assertions

éj' Many authors use a restricted form of predicate calculus (usually

quantifier-free) of, or some equivalent notation (e.g., Morgan [25],
Fikes, Hunt and Nilssen [26], Bamerji [27], Cohen [38], Hayes-Roth and
MeDermott (29], Vere [18]).

In our earlier work we used a special propositional calculus with

multiple-valued variables, called variable-valued logic system VL Later on

1
we developed an extension of'the first order predicate calculus, called
VL21 (Michalski {16]). It is a much richer language than VLL’ which includes

. several novel operators not present in predicate calculus, e.g., the trtarnagl
conjunction, intermal disjunction, the gxeeption, the selector. We found these
operators very useful for describing and implementing generalization processes;
they also directly correspond to linguistic constructions used in human
descriprions. L,y also provides a ugifying formal framework for adequately
handling descriptors measured on different scales, (The orientation toward

descriptions with descriptors of different types is cne of the unlque aspects

of our approach to inductiocn.)

2.2 Relevancy of Descriptors in Data Descripticns

A fundamental question underlying any machine ind.otiom problem is
that of what information the machine is given as input data, and what informa-
tion the machine is supposed to produce. An important specific question here

concerns data relevancy, i.e., how relevant to the problem under
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consideration must be the variables (in general, descriptors) in the input dzta,

and what 1isg the relationship between variables ip the output descriptions and

the initial variables?
it is useful to distinguish chrze cases:

1. The input data consists of descriptioans of objects in terns
of variables which are relevant to the problem, and the
machine is supposed to determine a logical or mathematical
formula of an assumed form invelving the given variables
(e.g., a disjunctive normal expression, a regregsion polynonial,
etc-) N

2. The input data consists of descriptions of objects as in case 1,
but the descriptions may involve, in addition to relevant
variables, a relatively large number of irrelevant variables.
The machine is to determine a solution description involving
only relevant variables.

3. This case is like case 2, except that the initial descripticns
may not include the relevant variables at ail. They must
include, however, among irrelevant variables, also variables
whose certain functions (e.g., represented by mathematical
expressions ot intermediate logical formulas) are relevant
variables. The final formula is then formulated in terms ot
the derived variables.

The above casas represent problem statements which put progressively
less demand en the content of the ipput data (i.e., on the human defining the

problem) and more demand on the machine.

The early work on concept [ormation and the traditional metheds of
data analysis represent case 1. Most of the recent research deals with
case 2. In this case, the method of indvction has to include efficient |
mechanisms of determining irrelelvant variables. The logiec provides such
mechanisms, and this is one of the advantages of logical type solutions.
Case 3 represents the subjicot of what we call cunstruciive taduction.

Our research on induction using system le and initial work
using VL

21 has dealr basicaily with case 2. Later on we realized how to

approach constructive induction, and formulated the first constructive

generalization rules, We have incorpeorated them in our inductive
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program INDUCE 1 (Larson and Michalski [30], Larson [31]) and in the newer
improved version INDUCE-1.1 (Dietterich [32]).

The need for introducing the concept of constructive induction way
not be obvious. The concept has basically a pragmatic value. To explain
this, assume first that the output assertions involve derived descriptors,
which stand for certain expressions in the same formal language. Suppose that
these expressions involve, in turn, descriptors which stand for some other
expressions, and so on, until the final expressions involve only initial
descriptors. 1In this case the censtructive induction simply means that the
output descriptions are multi-level or recursive.

But this is not the only interesting case. Derived descriptors in
the output assertions may be any arbitrary, fixed (i,e., not learned) transfor-
mations of the input descripters, specified by a mathematical formula, a
computer program, oT, even implemen;ed in hardware (e.g., the hardware
implementation of fast Fourier transform), Their specification may require
language quite different from the accepted formal descriptive language. To
determine these descriptors by learning, in the same fashion as the output
descriptions, may be a formidable task. They can be determined, e.g., through
suggestions of possibly useful transformations provided by anm expert, or as
a result of sgome generate-and-test search procedure. In our approach, the
derived deseriptors are determined by comstructive induction rules, which

represent segments of problem-oriented knowledge of experts.

2.3 Problem Specification and the Form of Inductive Assertions

The induction process starts with the problem specification and
ends with a set of alternative inductive assertions. The protlem specijica-

tion consists of a) data rules, b) specification of the problem envirorment
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and ¢) the preference eriterion. We will briefly discuss each of these topics,

2.3.1 Form of data rules and inductive assertions
In program INDUCE 2, the data descriptions, C‘j’ and ianductive
Loy

assertions, Cé:. are c-formulas (or VL., terms), defined as products of VL
“ef

21 21

selectors, with zero or more quantifiers in front. TFor example, a Céj can

be:

F(2)PL,P2 [celor(Pl) = red,blue][weith=(F1l) > weight (P2
___[length(PZ) 3..8] [ontop(P1,P2) |A
{shape(Pl) + shape(P2) = box]

Paraphrasing the rule in English:

There are two {and only two) parts Pl, P2 such that color of P1 is red
or blue, weight of Pl is greater than of P2, length of P2 is between 3 and 8
inclusively, Pl is on top of P2, shape of P1, and of P2 is "box'.

For the description 'of the language see Michalski [21]. The concept
of numericail quantifierza(k)Pl, PZ’ ..oy 15 explained ia sec, 3 (rule {(wvii)).
Sinée gselectors can include internal disjunction and involve concepts of
different levels of generality (as defined by the generalization tree; see
next section), the c¢~-formulas are more genaral concepts than conjunctive
statements of predicates.

Other desirable forms of-Cij are;

® Assertions with the exception operator

(Tl VT, ¥ A (3)

wvhere Ty T4, Tz, ... are c—formulas, aud\v is the exception operator (see
Appendix l}.

The motivation for this form comes from the observaticn that a
description can be simpler in some cases, if it states an overgeneralized
rule and specifies the exceptions. We have introduced this concept in che
past (Michalski 74), but have not made much progress with it., Recently
Vere (1978) propesed an algnrithm for handling such assertions in the frame-
work of conventional conjunctive statements. He allows several levels of
exception, which we consider undesirable because of the postulate of com-
prehensibility.
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e Implicative assertions
ey = 7y) (4
Production rules used in krowledge-based inference systems are

a special case of (4), when T ig omlitted and =here is no internal disjunn-
tion. Among interesting inductive problems regarding this case are:

1. develaping algorithms for exposing contradictions in a set of implicative
assertions

2. deriving simpler assertions from a set of assertions

3. generalizing assertions so that they may answer 2 wider class of questions
while being consistent.

Various aspects of the last problem within a less general frame-
work were studied, e.g., by Hedrick [34],

® (ase assertions
([£ = Rll -+ Tl) v ([f = RZ] 4¢T2) Ve oxe (5)
vhere RL,RQ..are pairwise disjoint sets. .

This form occurs when a deseription is split into individual cases character—
jzed by different values of a certain descriptor.

3.2.2 Specification of the problem environment

The problem environment is defined by the specification of the
types of the deseriptors, their values sets and their inferrelationships.

® Types of descriptors

The process of generalizing a description depends on the type of
deseriptors used in the descripticn. The type of a descriptor depends on the
structure of the value set of the descripteor. We distinguish among three
different structures of a value set:

1, Unordered

Elements cf the domain are considered to be independent
entities, ne structure ig assumed to relate them. -
variable or functicn symbol with this domain is called
nom'nal (e.g., variable 'blood type', ox relation

contains (A, Bl, B2) (meanihg: A contains Bl and B2).
2. Linearly Ordered
The domain is a linearly ordered sat. A wariable or

function symbol with this domain is calied Zirear
{e.g., military rank, temperature, weight). Variables
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measured on ordinal, intsrval ,ratis and absolute scales
are special cases of 2 litear descriptor.

Tree Urdered

Flements of the domain are ordered inte a tree structure,
callad a gaxeﬂ;li:a:ion trege. A predecessov nede in the
tree represents a concept wnich is more general than the

concepts represented by the dependent nodes (e.g., the
predecessor of nodes 'triangle, rectangle, pentagon,
etc.,' may be a 'polygon'). A varizble or function
symbol with such a domain is called strueiwred.

Each descriptor (a variable or funcuion symbol) is assigned its

type in the specification of the problem. In the case of structured descriptors,

the structure of the value set is defined by inference rules ( see descriptor

shape(bi) in example in sec, 3).

® Relationships among descriptors

In addition to assigning a domain to each variable and function

symbol, one defines properties of variables and atomic functions characteristic

for the given problem. They are represented In the form of inference rules,

Here are a few examples of such properties.

1.

2.

Restrictions on Variables
Suppose that we want to represent a restriction on the event
space saying that if a value of variable x, is 0 ('a person
does not smoke'), then the variable x, is ~'not zpplicable’
(x, = kind of cigarettes the person sitckes). This is repre-
gentad by a rule:
[x; = 0] => [x, = NA]
NA = not applicable
Relationships Between Atomic Functions
For example, suppose that for any situation in a given pro-
biem, the atemic functiom f(x,, xz) iz always greater than
the atomic function g(x], xz). We& reprasent this:
T Vxlsxz [f(xl; xz) > _g(xln xz)]

Properties of Predicate Functions

For exarple, suppose that a predicate functiom is transitive,
We represent this:
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T ‘-':_Vx: ,x3([left(xl.x2)][left(xz 9:{3)-] » [lEft(Xl,x;s):})

otk .ypes of relationships characteristic for the problenm
eny.ronmént can be represented similarly.

The rationale behind the inclusion of the problem environment
deseription reflects our position that the guidance of the process of in-
duction by the knowiedge pertinent to the problem is necessary for nontrivial
inducrive problems.

2.3.3 The preference criterion

The preference criterion specifies the desired preoperties of the solu-
tion to the problem, i.e., the properties of hypotheéses being scught. There are
many dimensions, independent and interdependent, on which the hypotheses can be
evaluated. The weight given to each dimension depends on the ultimate use of the
hypothesis (e.g., the number of operators in it, the quantity of informa-
tion required to encode the hypothesis using operators from an a priori
defined set {Coulon and Kayser [33]), the scope of the hypothesis relating
the cvents predicted by the hypothesis to the events actually observed
(some form of measure of degree of generalization), the cost of méasuri-ng
the descriptors in the hypothesis, ete. Therefore, instead of defining a
specific criterion, we specify only a general form of the criterion. The
form, called a 'lexicographie functional' consists of an ordered list cf
criteria measuring hyvpothesis quality and a list of 'tolerances' for these
criteria (Michalski [15]).

An importané and somewhat surprising property of such an approach
is that by properly defining the preference criterion, the same computer
program can produce either the characteristic or diseriminar’t descriptions

of object classes.
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3. GEHERALIZATION RULES

The transformation from data descriptions (eg. (1)) to inductive asscr
tions (eg. (2)) can be viewed (at least conceptually) as an application of certain
generalization rules to the data descriptions or intermediate descriptions,

A generalization rule is defined ag a rule which transforms one
or more symbolic descriptions (data rules) in the same generalization class
into a new description (inductive assertion) of the same class wnich is
equivalent or more general than the set of initial descriptions.

A descripticn

Vii>K (6)
1s equivalen® to a set of

{v, ;2 >k}, i=1, 2, ... (N

1
if any event ( a description of 2n cobjeect or situation) which

satisfies at least one of the V., 1 =1, 2, ..., satisfies also

i
V, and conversely. If the converse is pot required, the rule (%) is
said to be more general than (7).

The generalization rules are applied to data rules under the
cendition of preserving consistency and completeness, and achieving epti-
mality according to the preference criterion. A basic property of a
generalization transformation is that the rvesulting rule has UNKNOWN
truth-status; being a hypoethesis, its truth-status must be tested on new
data. Generalization rules do not guarantee that the inductive assertionms
are useful or plausible,

We have formalized several generalization rulesg, both for non-
constructive and constructive induction. (The natatian'nl %: DZ specifies
that D, is more genmeral than Dl).

Non-coastructive rulas:

(1) the extending reference rule
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e > K ko ¥[L=1Rr,] 1 > K

VL = R 5

l]
where L - is an atemic function

R?.:}Rl' and Rl’RZ are subsets of the value set,
DfL), of descripter L.

V - an arbitrary description { a gontext formula )
This is a generally applicable rulej the type of descriptor
L does not matter.
The dropping seleetor (or dropping condition) rule

V[L =R) :: >K Kk ¥ 1> K

This rule is also generally applicable. It is one of the
most commonly used rules for generalizing information.
It can be derired from rule (i), by assuming that R, in
(1) 1s equal the wvalue set D(L)., 1In this case the selector
L = R2] always has truth-status TRUE, and as such can bhe

removed.

The closing interval rule

VL = a) :: > X
F_ﬁTL = a..b] :: > K
VIL =B] 3 > K

This rule 1s applicable only when L 1s a linear descriptor.

To {llustrate rule (11i), conzider as objects two states of

a machine, and as a generalization class; a characterization
of the states as noymai. The rule says that if the states
differ only in that the machine has two different temperatures,
say, @ and b, then the hypothesis is made that all states

in which the temperature is in the interval [a,P] are also
normat.

The zlimbing generalizaticn tree rule

(VL = a] 11 > &

one or
more V[L =b] :: > KX
rules < . K ylL =8] 2: > X

LV[L = 1] 11 > K

where L 1is a stfudtured descriptor
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s - represents the lowest parant pode whose
descendents include nodes a, b, ... and i,
in the generalization tree for L.
The rule is applicable only to selectors involving structured
descriptors. This rule has been used, e.g., In (Winstoen [171],
Hedrick {34], Lenat [35]).
Example:
V[shape(p) = triangle] :: > X
F V[shape(p) = polygon]
Vishape(p) = rectangla] :: > X

The ectension ugaings rule

Vl[L = Rl] - AN
[L# Ry 12> X
Vz[L = RE] 11 7K
where leﬁ RZ =@

Vl and V2 ~ arbitrary descriptions.

This rule 1is generally applicable. It is used to take

into consideration ‘negative examples', or, in general,

to maintain consistency. It is a basic rule for determining
discriminant eiass descriptions.

The ‘twrning comstants into variables' rule

VIp(a,Y)] :: > X

one or
more Vip(b,Y)] ¢ > K
rules < . ' <3x, Vip(x,¥)] :: > K

Ve, 1] 5 > X
where Y stands for one cr more arguments of atomie
function p.
x ds a variablie whose valee set includes a; b, .., 1.

It can be proven that this rule is a special case of the
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extending veference rule (). This is a rule of general
appliczbility. Ic is the basiec rule used in works on in-

duction employing predicate calculus.

oow v

(vii) Exdending the quuitificutizr dewsiv yule
In the simplest case, the rule changes the vniversal

quantifier into the axistential guantifier:
Ye,vey k de, v

where V(P) stands for a formula containing the quantified
variable P.

Using the concept of a nuwmerical quantifier, the.rule can
be defined in a more general way.

Let the expression
A(s)p, V(P)

stand for a statement, which is true, if che formula V(P) is
true for at least one number of occurrences of P, specifiad
in the set of integers S. (S is called the guantification
domain). For example,
(2..8)P, V(P)
states that there are 2 to 8 P-s for which V(P) is true,
Thus, EP, V(P) is equivalent to 3(3_ B, V(r)
and
\/P, V(P) is equivalent to - (k)B, V(P), where k is the
cardinality of the value set of P,

The general form of the rule is:
despe, vy Ecszap, v(®)

. C .
where Sl - 82
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If in a quantifier expression (k)P, ..., where k is an
integer, one wants to distinguish between different P-s,

then one writes (k) Pl’ Pz, I 5 Pk’ PR

Constructive Rules:

Constructive gemeralisation rules generalize descriptions by
involving new (derived) descriptors, which are functions of initial or other
derived descriptors. Thus, these rules evoke eonstructive induction
procedures, which generate new descriptors.

These rules may represent knowledge or heuristics which are of
general applicability (e.g., capturinglsemantical dependencies of natural
language), or applicable only in the specific problem domain. There is no
limit for such rules.

Here are a few exanples of more general rules:

(e-1) Counting rules:

® CQ rule (count quantified arguments)
Given an expression with a quanrifier formj}(k) Pl’PZ""'Pk’
the rule generates descriptors "#P-COND', which measure the number of
Pi-s satisfying certain condition COND (since there may be many
conditions formulated, the rule can potentially generate a large
'number of such descriptors). TIf COND is not specified, the
descriptor simply counts quantified arguments.
For example, if the COND is 'the arguments P, such that

[attributel(Pi) = R]', then the generated descriptor will be

Yo7 wattribute.-R'. If the aftribute, is, e.g., length, and R

1 1
is .+4], then the derived descriptor is '#Pi-length-z,.&' (the

number of P, -s, whose length is between 2 and 4, inclusively),



® CA-rule (EpuntlgrgumEﬂtsj

1f an initial descriptor is a relation with variable or fixed
number of arguments, REL(Pl,PZ,...), the rule generates descériptors
i p-COND' , which measure the number of arguments in REL which
satisfy condirion COND.

Similarly to the above, there may be many such descriptors
generated (each with different CoND) .

Fo; example, if relation is cohtaﬁﬁs(A,Bl,Bz,...), i.e., A
contains objects BBy, .., and COND 1is "B -s which are large and
red', then the derived descriptor '#R-lzrge-red-A-contains' measures the
number of Bi—s which are large and rad, and contained in A.

(c-iii) The generating chain properties rule

I1f the arguments of different occurrences pf the same transitive
relation (e.g., relation 'above', 'left-of', 'next-to', 'in-front-of’,
etc.) form a chain, i.e., form a consecutive sequence of objects
ordered by the relation, the rule generates descriptors relating to

some specific objects in the chain, such as:

LST-object - the 'least object', i.e., the object at the
beginning of the chain (e.g.,; the bottom
object In the case of relatiom 'above')
MST-object - the object at the end of the chain (e.g.;
the top object)
MID-object - the objects in the middle of the chain
Nth-object - the object at the Nth position (from LST-object)

in the chain.
After identifying these objects, the rule investigates all knowm
properties of them (as specified in the data rules) for

determining potentially relevant new descriptors.
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The Tule also genzrates a descriptor characterizing the chain

itself:

® REL-chain-length - the length of the chain defined by relaticn
REL, TFor example, 1f the relation is

ON-TOP, then the REL-¢hain-length would
specify the height of a stack of objects.

The deseriptor association detectlon rule:

Suppose that in an event, existentially quantified variables
Pl’PZ""Pm satisfy a conditicn_CONnPl,Pz,...,Pm), and the values
of two descriptors x(Pi}, and y(Pi) can be ordered into strictly

ascending sequences:
< < >
x(P[)> and yv(P,)

where 1 ¢ {1,2,...,m}.

If the order of Pi—a in both sequences is identical, then a

two-argument predicate descriptor is generated
+(x,y)

which states that descriptors x and y are related by a monctonically
growing function (if x grows then y grows), for ?i-s satisfying
COND(PI,Pz,...,Pm).

If the order of Pi-s in the second sequence is opposite to the

order of P,—s in the first sequence, then another descriptor is

i

generated:

+ (‘K,Y)

stating that 'if x grows then y decreases', for Pi-s satisfying

the GGND(PI,P "’Pm)'

2r
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The above 'monotonic' definition of derived descripter
+(x,y) (or +{x,y)) can be generalized by not reguiring that the
order of Pi-s in the corresponding sequences is identical
(or opposite), but 'sufficiently similar' (or 'sufficiently
dissimilar'), where similarity is measured by, e.g., the coefficient
of statistical correlation.
Concluding this subject, we will note that the conecept of generalization
rules is very useful for understanding and classifying different methods of

inductive learning (Dietterich and Michalski [36]).

3. LEARNING FROM EXAMPLES
We will discuss here briefly the subject of learning from examples,
considering it from the viewpoint of developing methods for 'conceptual' data
analysis . Such methods are intended to discover conceptual (i.e,, logical
functional, or causal) relationships in data, rather than statistical, which
are the subhject of conventional methods of dara analysis.
Fecr concreteness, let us considér a simple data analysis problem,
involving imaginary 'cells' (fig. 1). Suppose that cells DNB represent a
sample of cancerous cells, and cells DNE_-- a sample of normal cells.
Suppose cthat a researcher wants to determine:
@ a]]1 important common properties of cancerous cells, and of
normal cells (i.e., to determiné characteristic descriptions
of each class)
® properties differentiating between the two classes of cells
(i.e., discriminant descriptions of each class).
An assumption is made that tﬁe properties to be discovered mov
involve both the quantitative information about the cells and their cowponents,

as well as the qualitative information, which includes nominal variables and
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relationships existing among the components. Using this example we will
briefly describe the methodology underlying program INDUCE 2 (a successor
of the earlier program INDUCE 1.1 (Larson and Michalski [30], Larson [31],
Dietterich [32}).

The solution to the posed problem (or similar problems) can be
obtained by a successive repetition of a 'foecus attention-hypothesize-test'
cycle.

The 'focus attention' phase is concerned with defining the scope of
the problem under consideration. This includes selecting descriptors
appearing to be relevant, specifying underlying assumptions and formulating
the relevant problem knowledge. This phase is performed by a researcher; it
involves his/her technical knowledge and informal intuitions. The 'test'
phase examines the hypotheses and tests them on new data. This phase may
require colleéting new samples, performing laboratory experiments, and/er
eritically amalyzing the hypotheses, involving knowledge inaccessible to any
currently feasible computer program. .

It is the 'hypothesize' phase in which the program INDUCE 2 may
play a useful role, that of an assistant in conducting gearch for the most
plausible and/or most interesting hypotheses.

Thi; search may be a formidable combinatorial task for a reSea;cher,
if the size of the sample data is large, and each item of the data (in this
case, a cell) is described by many variables and/or relations.

The methodology underlying INDUCE 2 requires a collaboration between
a user and the program, in which each party does what it can do best. The
major steps are as follows:

1. The user formulates the inltial space of descriptors, and

specifies the type, domain and any special properties of

each descriptor (e.g., the rransitivity of a relation).
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In Lhe case of the structured descriptors, the user also specifies
the structure of the domain,
Suppose that for our simple example problem, the following descriptors
are selected:
I Clobal (descriptors characterizing a whole cell)
® circ - the number of sagments in the circumference of the cell
Type: linear
Domain: (1..10}
® sol - the type of the physiological solution in the cell (marked
in fig. 1 by capital lsetters)
Type: nonminal
Domain: {A,B,C,D}
IT Local (descriptors characterizing cell bodieg and their relationship
® shape (Bi) - the shape of bedy Bi
Type: structured
Leaves of the domain: {circle, ellipse, heptagon, triangle,
square, boat, spring}
Higher nodes are defined by rules:

[shape = eircle, ellipse] = [shape = oval]

[shape = triangle, square, heptagon] = [shape = polygon]
[shape = oval, polygon] = [shape = regular]
[shape = spring, boat] = [shape = irregular]

® texture_(Bi) - the texture of Bi
Type: nominal
Domain: {blank, grid, solid-black, solid-grey, stripes,

cross, wavy}
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® weight (Bi) - the welght of body Bi
Type: linear
Domain: [1..5]
® grient (Bi) - rthe orientation of Bi
Type: linear - cyelic (the last element is followed by
the first)
Domain: (N, NE, E, SE, S, SW, W, NW}
® contains (C,Bl.Bz....) - C contains bodies Bl,Bz,...
Type: nominal
Domain: {true,false}
Properties: transitive relation

® hastails (B,L_,Lz,...) ~ B has tails Ll;L

l 2,..-

Descriptor applicable only if [shapﬁ(ci) = boat]
Type: mnominal
Domain: [(true,false}

Note that descriptors 'contains® and 'hastails' are predicatss with
variable number of arguments. Descriptor 'contains' is characterized as the
transitive relation. Descriptors 'hastails' and 'orient' are applicable only
under a certain cendition,

2, The user formulates data rules, which describe cells in terms
of selected descriptors and specify the generalization class
associated with each cell. For example, following is a data
rule for the DNB cell 1:

e, 3(6)3,.38,,...,3, [contains (CELL,,B,,B), .-+ ,B,)]
[circ(CELLl)=8] [-sol(CELLl)=A_] [Shap'e(Bl)'=ellip_se]
[texture(Bl)=stripes]Iweight(Bl)=4][orient(Bl)=NW][cbntains(Bz,B3)]

lshape(52)=circle]{texture(B2)=solid—grey]...
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[shape(36)=circle][texture(36)=grid][weighL(B6)=5]
11> [class=DNB]

3. The user indicates which general rules of constructive
{nduction are applicable, and also formulaces any problem-
specific rules,

For example, the counting rule CQ {(sec. 3) will generate,
among others, a descriptor!

. @ ‘#B-black-boat' - the number of bodies whose shape is 'boat'
and texture is 'solid-black' (i.e., using COND
[shape(B)=boat] [texture(B)=seolid-black])

(For simplicity of notation, the name of this descriptor, as
well as other descriptors beléw. has been abbreviated, so it
does not follow strictly the naming convention described in

sec. 3.) The counting rule CA will generate such descriptors as:

total-B =~ the total number of bodies in a cell (if condition COND is NULL)

indep~B = the number of independent bodies in a cell (zssuming COND

'hodies not contained in another body')

ifcontains-E - the number of bodies contained in another body B

#tails-boat-B ~- the number of tails im a body B, whose shape is 'boat'.

Program INDUCE 2 alsc allows a user to formulate arbitrary arithmetic

expressions, as suggestions of possibly relevant descriptors. TFor example,

the user may suggest a descriptor:

welght (CELL) = weight(ﬂi),

z
i
where Bi, i=1,2,... are quantified variables.

The program also has knowledge of certain concepts, such as

even-odd number, area and perimier a triangle or rectangle.
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Finally, the user specifies the type of description sought and
the criterion of preference. For this example, we will assume
that both characteristic and descriminant descriptions are
sought, and that the criterion of preference for characteristic
deseriptions is 'to maximize the length of the output c~formula’,
and for discriminant descriptions~-'to minimize the length of the

output c-formula'.

For illustration, we will give here samples 6f characteristic and

discriminant descriptions obtained for the DNB 'cells' im fig. 1:

Characteristic descriptions of DNB cells:

o J(1) B [weight(B)=5]

("in every cell there is one (and only one) body with weight 5')

e %2 By B_z

[contains (Bl,Bz)}[shape(Bl)-shape(32)=circle]n
[texture(31)=solid-grey]{weight(Bl)=even}A
[texture(32)=salid—black][weight(32)=odd]A

[#contains-B, = 1] ( « denotes the internal comjunction)

("in every cell there are two bodies of circle shape, one contained

in another, the outside circle is solid-grey, has "even' weight,

the inside circle is solid-black and has 'odd' weight. The

outside eircle contains only one bedy.')

L4 23(1) B, [shape(B)=circle][texture(B)=grid]

[weight(B) > 3]

("every cell contains a circle with 'grid' texture, whose weight

is at least 3') (also discriminant)

® [circ=even]

('the number of segments in the circumference of every cell is even')

(alsa discriminant)



30

. :3(> 1) B [shape(B)=boat][orient{B)=N,NE]
[Seal e boaptiinli
('every cell has at least one bady of 'boat! shape, which has ane
tail with § or NL orientation')
e 3(2) B [shape(B)=circle][texture(B)=sold~black]
alternatively
[48-cirele-solid-black=2]

(each c4ll has exactly two bodies, which are cireles and have selid

black 4exture) (also discriminant)

Discriminant descriptions of DNB cells:
In addition to characteristic descriptions which are also diserimi-
nant as marked above), here are some discriminant descriptions:
e J(1) B {texture(B)=grid][weight(B) > 3]
(Yevery cell DNB, as opposed to DNC, has exactly one body with
'grid" texture and weight greater or equal 3"}
. 3(3 1) B [¢hape(B)=boat][orient(B)=N,NE]

('....at least one 'boat' shape body with orientation N or NE')

—— - ana T Ld

' eu...a circle containing a single object’

Note, that each deseription involves the minimum number of conditions
necessary to distinguish any DNB cell from any DNC cell. Underscored descriptors
are derived descriptors obtained through constructive induction.

The above example is too simple that really unexpected patterns can

be discovered, But it {llustrates well the potential of a learning program
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as a tool for searching for patterms in complex data, especially when the
relevant properties may involve numerlical and relational information at the
same time, The program therefore offers a new tool for data analysis.

How does the program work? Earlier implementations of the program
are described in (Larson [31], Michalski [16], Dietterich [32]). The new version,
INDUCE 2, is under completion and will be described in a separate paper. An
outline of the main algerithm is given in Appendix 1. Here we will give a
summary of the main ideas, their limitations, and describe some problems for
future research.

The work of the preogram can be viewed essentially as the process
of applying gensralization rules, inference rules (describing
the problem enviromment) and constructive induction rules to
the data rules, in order to determine inductive assertions which are

consistent and complete. User_ selected preference criteria are used to select the

'__Eost preferable assertions as the final solution. -
The process of generating inducrtive assertions is inherently
combinatorlally explosive, so the major questiorn is how to guide this
process i;xoréar to detect quickly the most preferable assertiouns.
As described in Appendix 1, the first part of the program
generates (by putting together step by step the 'most rEIEVant'zeiectors)
a set of consistent o-formulas.
The relevancy test for the selectors is a function of the number
of data rules covered in the given generalization class, and, in the case of
diseriminant descriptions, also rules covered in other generalization classes.
C-formulas are represented as labelled graphs, and testing then
for consistency (l.e., the null intersection with degeriptions of ohjects

in generalization classes other than the class under consideration) or for
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the degree of coverage of the given ecliss is done by testing for subgraph
qumorphism. By taking advantege of the labels on nodes and ares, thnis
operation was greatly simplified. However, 1t is nevercheloss quite time

and space consumming.

In the second part, the program transforms the consistent e-
formulas into VLl evants (i.e,, sequences of values of gertain many-valued
variables {Michalski 15], and further generalization is done using
AQVAL/! generalization procedure (Michalski and Larson [37]).

During this process, the extension against, closing ihe interval and
elimbing generalization tree generalization rules ars applied. The VLl
events are represented as binary strings, and most of the operations doae
during this process are logical operations on binary strings. Conseguantly,
this part of the algorithm is very fast and efficient. Thus, the

high efficiency of the program is due to the change of the data structures
representing the rules into more efficient Iorm, once a relevant set of
selectors have been found (by determining consistent generalizations).

A disadvantage of this algorithm is that the extension of references
of selectors, achieved by the application of the extension against, the
closing interval and climbing gemeralization rules, is done after a (supposedly)
relevant set of selectors have been determined. It is possible, however,
that a selector from the initial data rules, or zenerated by constructive

generalization rules which did not pass the 'relevance test', could turn

out to be very relevant 1f 1its reference was appropriately generalized.

On the other hand, applying the above genmeralization rules to each selector
represented as a graph structure (i.e,, before the AQVAL procedure takes over)
could be computationally very costly, This problem will ba aggravated whea

the number of rule gencrating derived descriptors wiil be increasecd.
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We plan to seek solutions to this problem by designing a better deseriptor
relevaney test, detarmining more adcquate data structures for representing
selectors and testing intersectlons with descriptiors, and by applying problem
knewledge.

Another type of learning frem examples is 'sequence prediction', 1i.e.
learning from the data which have a strict linear order. Such a problem occurs
when given is a sequence of entities (e.g., letters, or, in more general case,
structured objects) and the problem is ta discover a rule which might have
generated the sequence. The program here has to take into gensideration the
order, and consequently new form of rules and also derived descriptors can bhe

involved. For more derails we will refer the reader to Dietterich [23,40].

4, LEARNING FROM OBSERVATION

The major difference between problems of learning a characteristic
description from examples (type IA), and problems of learning from
observation (type II) is that in the latér problem the input is usually an
arbitrary collection of entities, rather than a collecticn of examples
representing a single predetermined conceptual glass; and that the goal 1a
to determine a partition of the collection into categories (in general, to
determine a structure within the collection), such that each category represents
a certaiﬁ concept.

Problems of this type have been intensively studied in the area of
cluster analysis and pattern recognition (as 'learning without teacher').
The methods which have been developed in these areas partition the entities
into clustersysuch that the entities within each cluster have a high
'degree of similarity', and entities of different clusters have a low

'degree of similarity'.
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The degree of similarity between two entlties is tynically a
function (usually a reciproecal of a distance function), which takes into
consideration only properties of these entities and not thHelr relation to
other entities, ar to some predefined conecepts. Consequently, clusters
obtained this way rarely have any simple conceptual interpretation.

In this section we will briefly describe an approach to clustering
which we call conceptual clustering. In this approach, entities are assembled
into a single cluster, if together they represent some concept from a pre-
defipned set of concepts.

For example, consider the set of points shown in Fig. 2.
L

& typlcal deseription of this set by a human is something like
‘acirele on a straight line'. Thus, the points A and B, although closer
to each other than to any other points, will be put into different clusters,
because they are parts of different concepts.

Since the points in Fig. 2 do not £ill up completely the circle
and the straight line, the obtained coﬁceptual clusters represent generaliza-
ticns of the initial data points. Consequently, conceptual clustering can
be viewed as a form of generalization of symbolic descriptioms, similarly
to problems of learning from examples. The input rules ate symbolic
deseriptions of the entities in the collection (to interpret this problem
as a special case of the paradigm in sec. 2.1, consider the collection

as a single generalization class).
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If the concepts into which the collection is to be partitioned
are defined as C~formulas, then the generalization rules discussed befcre
would apply also here (within the restriction that the resulting formulas
cannot intersect). Similarly, constructive induction rules_apply.

We will cutline heve an algorithm for such a clustering,
assuming that che concepts are simpler constructs than C-formulas, nanely,
non-quantified C-formulas with wnary selectors, i.e., logical products of

such selectors. Unary selectors are relational statements:

(= f Ri]
where:
X is one of n predefined variables (i=1,2,...,n)
# is one of the relational operators = # > > < <
Ri is a subset of the value set of X, -

A selector 1s gatisfied by a value of x,, if this value is in
relation ## with some value from Ri' Such restricted C-formulas are called

VL, complexes or, briefly, complexes (Michalski [24 1).

1
Individual entities are assumed to be described by events, which

are sequences of values of variables %t

(all azl v "y an)

where a.€ D(xi), and D(xi) is the value set of x,, 1=1, 2, ..., n.

i

An event e 1ls sald to satisfy a complex, if values of xq in e satisfy all
selactors.

Suppose E is a set of events, each of which satisfies a complex C.
If there exist events satisfying C which are not in E, then they are called
unobserved events. The number of unobserved events in a complex is called
the sparseness of the complex. We will consider the following problem.
Glven is an eveut set E and an integer k. Determine k pairwise disjoint

complexes such that:
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1. they represent a partition of E into k subsets (a k-partition)

2. the total sparseness of the complexes is minimum.
The theoretical basis and an algorithm for a solution of this problem
{in somewhat more general formulation, where the clustering criterion is
not limited to sparaeness}is described in Michalski [ 24]1. The algorithm
is interactive, and its general structure is based on the dynamic clustering
method (Diday and Simon [3% ]). Each step starts with k specially selected
data events, called seeds. The seeds are treated as representives of k
classes, and this way the problem 1s reduced to esgentially a classification
problem (type 1b). The step ends with a determination of a set of k complexes
defining a partition of E. From such complex a new seed is selected,
and the obtained set of k seeds is the input to the next iteration. The
algorithm terminates with a k-partition of E, defined by k complexes, which
bas the 'local' minjmum of the total sparsenass, or, in general, of the assumed
cost criterion., (The algorithm does not guarantee the global minirmum.)

Figure 3 (on the next page) presents an example illustrating -

this process. The space of all events. is defined by variables Xy» X9 Ky
and Xy with value set sizes of 2, 5, 4 and 2, respectively. The

space is represented as a diagram, where each cell represents a possible event.

Cells marked by 1 represent data events, the remaining cells represent uncbserved
events. Figure 3a shows complexes obtained in the first iteration,
The remaining figures show results from the consecutive iterations. Cells
representing seed events in each iteration are marked by -+.

The solution with the mininmun sparseness is shown in Figure 3c,

The partition is specified by complexes:

a - [xl = 0][x2 w 1]{x4 = 0]

a, = {xl = 0] [‘x2 w 2) [x3 m l..3)

WO O —O

= fx, = 1Ix, 1. «3}
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This result was obtained by program CLUSTER/PAF lmplementing
the algorithm,

Another experiment with the program involved clustering 47 cases of
soybran diseases. -Thcse cases represented four different diseases, as
determined by plant pathologists (the program was not, of course, gilven
this {nformation). Each case was represented by an evﬁnt of 35 many-valued
variables, With k=4, the program partitioned éll cases 1intao four

tategories. These Ffour categories turned out to be precisely the

categories corresponding to individual diseases. The complexes defining

the categories involved known characteristic symptoms of the corresponding

diseases. This, and another experiment-(inVleing conceptual clustering of 100

Spanish songs) is described in more detail by Stepp [41].
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5, SUMMARY

Inductive learning is described as a process of generallzing and
conceptually simplifying symbolic descriptions of given collections of
entities, It is shown that this process can be viewed as an application of
generalization rules and problem gnvirsument rules to initial and intermediate
descripticns, Two types of inductive learning are digtinguished: learning
from examples and learning from observation. The most studied categories of
learning from examples include determination of characteristic and discriminant
descriptions, and sequence prediction. Learning form observation ("econgeptual
clustering') produces a taxonomic description of a collection of entities,
which reveals the conceptual structure underlying the collection.

The presented thecretical framework unifies the above types of
learning, and was used to develop two learning programs: INDUCE 2 ---
far determiping characteristic or discriminant structural descriptions, and
CLUSTER/PAF --- for conceptual clustering of arbitrary c¢ollecticns of entiries.
The described methodology is viewed as especially promising for applications
such as automated 'conceptual' analysis of experimental data, searching for
patterns and abstracting the coentents of databases, or aiding knowledge

acquisition processes in the development of Lnowledge-based systems.
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APPENDIX 1

Outline of the Top Level Algorithm of IMNDUCE 2

1. At the first step, the data ruleﬁ (whose condition parts are in the
disjunctive simple forms) are transformed to a new set of rules, in which
condition parts are in the form of c-expressions. A c-expression (a
eonjunctive expression) is a product of selectors accompanied by zerc or
more quantifier forms, i,e., forms QFxl,xz'..,, where QF denotes a
quantifier. (Note, that due to the use of the internal disjunctien and
quantifiers, a c-expression represents a more general concept than a
conjunction of predicates.)

2. A decision c¢lass i£ selectéd, say Ki, and all c-éxpreséioné a;éaciaeed

with this class are put into a set Fl, and all remaining c-expressions

.a;e Dut info a set FO ('the ;Eé:%l.rgpresents events ta be covered ,-“
and set FO represents CDdétraints, i.e.; events not to be cavered ).

3. By application of inference rules (describing the problem envircnment)
and. constructive generalization rules, new selectors are generated. 7he
'most promising' seléctors (according to-a certain criterion) are added

to the ec-expressions in F1 and. FO.

4. A c-expression is sclected from Fl, and a set of consistent generalizations
(a restricted star) of this expression is obtained, This {is done by starting
with single selectors (called 'seads'), selected from this c-expregsion

as the 'most promising’® ones (according to the preference criterion). In each



fh
absequent mxt step,a new selector is added to the c-expression obteincd iu
the previous step (initially the sceds), until 2 specified nuzber {(pavsneter
-NCOHSIST) of consistent generalizations is Jeternined. Consistency ibs
achicved when ; c-gxpression has NULL intnrsection with the set FO, This
'rule growing' process is illustrated in fig. Al.
5. The obtained c-expressions, and c-expressions in FO, are transformed

to two sots El and EQ, respectively, of VL, events (i.e., saguences of

1
values of certain discrete varilables).

A procedure for g?neralizing VLl descrivtions is then applicd
to obtain the 'best cover' (according to a user defined eritarion) of set El
against EQ (the procedure iy a version of AQVAL/1 learning program [37].

During this process, the extension against, the c¢losing
the interval and the climbing genercliazction tree rules are applied,

The result 1s transformed to a new set of c-expressions
{a restricted star) in which selectors ﬁave now appropriately generalirzed
reforences,

6. The 'best' c-expression is selected from the restricted star.

7. If the c-expression completely covems¥l, then the process repcats for
another decision class. Dtherwisé, the set F1 is reduced to contain only the
uncovered c-expressions, and steps 4 to 7 are repeated,

The implementation of the inductive process in INDUCE~1.1 ﬁbnsists
of a2 large collection of specialized algorithms, esach accomplishirg curtain
task . Amonz the most important tasks are:

1. the implementation of the 'rule growing process'’

2. testing whether one c-expression is a generalization of ('covers
another c-cxpression. This is done by testing for subgraph isomorghism,

3. pgpeneralization of & c-~expression by extending the selector
references and forming irredundant c-expressions (includes application of AQ1l

AQVAL/L procedure).
4. pgeneration of new descriptors and new selectors
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o - adisgarded c-rule

- ® _ zn active c-rule

W . . terminal node denoting a consistent c-rule

Each arc represents an operation of adding a new selector to a c-rule

The branching factor is determined by pavametexr ALTER. The
number of active rules (whiech are maintsined for the next step af the
rule prowing process) is svecified by parameter MAXSTAR., The number of

terminzl nodez (consistent gencralizations) which program attempcs to
"generate is specified by parameter NCONSIST,

Illustration of the rule growing process
(di"d@pplication of the dropping salector rule in the reverse order)

Figure Al.



